2004-12-13 Randolph Chung <tausq@debian.org>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "completer.h"
32 #include "osabi.h"
33 #include "gdb_assert.h"
34 #include "arch-utils.h"
35 /* For argument passing to the inferior */
36 #include "symtab.h"
37 #include "dis-asm.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 #include "frame-base.h"
41
42 #include "gdbcore.h"
43 #include "gdbcmd.h"
44 #include "objfiles.h"
45 #include "hppa-tdep.h"
46
47 static int hppa_debug = 0;
48
49 /* Some local constants. */
50 static const int hppa32_num_regs = 128;
51 static const int hppa64_num_regs = 96;
52
53 /* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59 const struct objfile_data *hppa_objfile_priv_data = NULL;
60
61 /* Get at various relevent fields of an instruction word. */
62 #define MASK_5 0x1f
63 #define MASK_11 0x7ff
64 #define MASK_14 0x3fff
65 #define MASK_21 0x1fffff
66
67 /* Sizes (in bytes) of the native unwind entries. */
68 #define UNWIND_ENTRY_SIZE 16
69 #define STUB_UNWIND_ENTRY_SIZE 8
70
71 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
73 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74
75 /* Handle 32/64-bit struct return conventions. */
76
77 static enum return_value_convention
78 hppa32_return_value (struct gdbarch *gdbarch,
79 struct type *type, struct regcache *regcache,
80 void *readbuf, const void *writebuf)
81 {
82 if (TYPE_LENGTH (type) <= 2 * 4)
83 {
84 /* The value always lives in the right hand end of the register
85 (or register pair)? */
86 int b;
87 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
88 int part = TYPE_LENGTH (type) % 4;
89 /* The left hand register contains only part of the value,
90 transfer that first so that the rest can be xfered as entire
91 4-byte registers. */
92 if (part > 0)
93 {
94 if (readbuf != NULL)
95 regcache_cooked_read_part (regcache, reg, 4 - part,
96 part, readbuf);
97 if (writebuf != NULL)
98 regcache_cooked_write_part (regcache, reg, 4 - part,
99 part, writebuf);
100 reg++;
101 }
102 /* Now transfer the remaining register values. */
103 for (b = part; b < TYPE_LENGTH (type); b += 4)
104 {
105 if (readbuf != NULL)
106 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
107 if (writebuf != NULL)
108 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
109 reg++;
110 }
111 return RETURN_VALUE_REGISTER_CONVENTION;
112 }
113 else
114 return RETURN_VALUE_STRUCT_CONVENTION;
115 }
116
117 static enum return_value_convention
118 hppa64_return_value (struct gdbarch *gdbarch,
119 struct type *type, struct regcache *regcache,
120 void *readbuf, const void *writebuf)
121 {
122 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
123 are in r28, padded on the left. Aggregates less that 65 bits are
124 in r28, right padded. Aggregates upto 128 bits are in r28 and
125 r29, right padded. */
126 if (TYPE_CODE (type) == TYPE_CODE_FLT
127 && TYPE_LENGTH (type) <= 8)
128 {
129 /* Floats are right aligned? */
130 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
131 if (readbuf != NULL)
132 regcache_cooked_read_part (regcache, HPPA_FP4_REGNUM, offset,
133 TYPE_LENGTH (type), readbuf);
134 if (writebuf != NULL)
135 regcache_cooked_write_part (regcache, HPPA_FP4_REGNUM, offset,
136 TYPE_LENGTH (type), writebuf);
137 return RETURN_VALUE_REGISTER_CONVENTION;
138 }
139 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
140 {
141 /* Integrals are right aligned. */
142 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
143 if (readbuf != NULL)
144 regcache_cooked_read_part (regcache, 28, offset,
145 TYPE_LENGTH (type), readbuf);
146 if (writebuf != NULL)
147 regcache_cooked_write_part (regcache, 28, offset,
148 TYPE_LENGTH (type), writebuf);
149 return RETURN_VALUE_REGISTER_CONVENTION;
150 }
151 else if (TYPE_LENGTH (type) <= 2 * 8)
152 {
153 /* Composite values are left aligned. */
154 int b;
155 for (b = 0; b < TYPE_LENGTH (type); b += 8)
156 {
157 int part = min (8, TYPE_LENGTH (type) - b);
158 if (readbuf != NULL)
159 regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
160 (char *) readbuf + b);
161 if (writebuf != NULL)
162 regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
163 (const char *) writebuf + b);
164 }
165 return RETURN_VALUE_REGISTER_CONVENTION;
166 }
167 else
168 return RETURN_VALUE_STRUCT_CONVENTION;
169 }
170
171 /* Routines to extract various sized constants out of hppa
172 instructions. */
173
174 /* This assumes that no garbage lies outside of the lower bits of
175 value. */
176
177 int
178 hppa_sign_extend (unsigned val, unsigned bits)
179 {
180 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
181 }
182
183 /* For many immediate values the sign bit is the low bit! */
184
185 int
186 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
187 {
188 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
189 }
190
191 /* Extract the bits at positions between FROM and TO, using HP's numbering
192 (MSB = 0). */
193
194 int
195 hppa_get_field (unsigned word, int from, int to)
196 {
197 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
198 }
199
200 /* extract the immediate field from a ld{bhw}s instruction */
201
202 int
203 hppa_extract_5_load (unsigned word)
204 {
205 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
206 }
207
208 /* extract the immediate field from a break instruction */
209
210 unsigned
211 hppa_extract_5r_store (unsigned word)
212 {
213 return (word & MASK_5);
214 }
215
216 /* extract the immediate field from a {sr}sm instruction */
217
218 unsigned
219 hppa_extract_5R_store (unsigned word)
220 {
221 return (word >> 16 & MASK_5);
222 }
223
224 /* extract a 14 bit immediate field */
225
226 int
227 hppa_extract_14 (unsigned word)
228 {
229 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
230 }
231
232 /* extract a 21 bit constant */
233
234 int
235 hppa_extract_21 (unsigned word)
236 {
237 int val;
238
239 word &= MASK_21;
240 word <<= 11;
241 val = hppa_get_field (word, 20, 20);
242 val <<= 11;
243 val |= hppa_get_field (word, 9, 19);
244 val <<= 2;
245 val |= hppa_get_field (word, 5, 6);
246 val <<= 5;
247 val |= hppa_get_field (word, 0, 4);
248 val <<= 2;
249 val |= hppa_get_field (word, 7, 8);
250 return hppa_sign_extend (val, 21) << 11;
251 }
252
253 /* extract a 17 bit constant from branch instructions, returning the
254 19 bit signed value. */
255
256 int
257 hppa_extract_17 (unsigned word)
258 {
259 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
260 hppa_get_field (word, 29, 29) << 10 |
261 hppa_get_field (word, 11, 15) << 11 |
262 (word & 0x1) << 16, 17) << 2;
263 }
264
265 CORE_ADDR
266 hppa_symbol_address(const char *sym)
267 {
268 struct minimal_symbol *minsym;
269
270 minsym = lookup_minimal_symbol (sym, NULL, NULL);
271 if (minsym)
272 return SYMBOL_VALUE_ADDRESS (minsym);
273 else
274 return (CORE_ADDR)-1;
275 }
276 \f
277
278 /* Compare the start address for two unwind entries returning 1 if
279 the first address is larger than the second, -1 if the second is
280 larger than the first, and zero if they are equal. */
281
282 static int
283 compare_unwind_entries (const void *arg1, const void *arg2)
284 {
285 const struct unwind_table_entry *a = arg1;
286 const struct unwind_table_entry *b = arg2;
287
288 if (a->region_start > b->region_start)
289 return 1;
290 else if (a->region_start < b->region_start)
291 return -1;
292 else
293 return 0;
294 }
295
296 static void
297 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
298 {
299 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
300 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
301 {
302 bfd_vma value = section->vma - section->filepos;
303 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
304
305 if (value < *low_text_segment_address)
306 *low_text_segment_address = value;
307 }
308 }
309
310 static void
311 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
312 asection *section, unsigned int entries, unsigned int size,
313 CORE_ADDR text_offset)
314 {
315 /* We will read the unwind entries into temporary memory, then
316 fill in the actual unwind table. */
317
318 if (size > 0)
319 {
320 unsigned long tmp;
321 unsigned i;
322 char *buf = alloca (size);
323 CORE_ADDR low_text_segment_address;
324
325 /* For ELF targets, then unwinds are supposed to
326 be segment relative offsets instead of absolute addresses.
327
328 Note that when loading a shared library (text_offset != 0) the
329 unwinds are already relative to the text_offset that will be
330 passed in. */
331 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
332 {
333 low_text_segment_address = -1;
334
335 bfd_map_over_sections (objfile->obfd,
336 record_text_segment_lowaddr,
337 &low_text_segment_address);
338
339 text_offset = low_text_segment_address;
340 }
341 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
342 {
343 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
344 }
345
346 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
347
348 /* Now internalize the information being careful to handle host/target
349 endian issues. */
350 for (i = 0; i < entries; i++)
351 {
352 table[i].region_start = bfd_get_32 (objfile->obfd,
353 (bfd_byte *) buf);
354 table[i].region_start += text_offset;
355 buf += 4;
356 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
357 table[i].region_end += text_offset;
358 buf += 4;
359 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
360 buf += 4;
361 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
362 table[i].Millicode = (tmp >> 30) & 0x1;
363 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
364 table[i].Region_description = (tmp >> 27) & 0x3;
365 table[i].reserved1 = (tmp >> 26) & 0x1;
366 table[i].Entry_SR = (tmp >> 25) & 0x1;
367 table[i].Entry_FR = (tmp >> 21) & 0xf;
368 table[i].Entry_GR = (tmp >> 16) & 0x1f;
369 table[i].Args_stored = (tmp >> 15) & 0x1;
370 table[i].Variable_Frame = (tmp >> 14) & 0x1;
371 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
372 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
373 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
374 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
375 table[i].Ada_Region = (tmp >> 9) & 0x1;
376 table[i].cxx_info = (tmp >> 8) & 0x1;
377 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
378 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
379 table[i].reserved2 = (tmp >> 5) & 0x1;
380 table[i].Save_SP = (tmp >> 4) & 0x1;
381 table[i].Save_RP = (tmp >> 3) & 0x1;
382 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
383 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
384 table[i].Cleanup_defined = tmp & 0x1;
385 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
386 buf += 4;
387 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
388 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
389 table[i].Large_frame = (tmp >> 29) & 0x1;
390 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
391 table[i].reserved4 = (tmp >> 27) & 0x1;
392 table[i].Total_frame_size = tmp & 0x7ffffff;
393
394 /* Stub unwinds are handled elsewhere. */
395 table[i].stub_unwind.stub_type = 0;
396 table[i].stub_unwind.padding = 0;
397 }
398 }
399 }
400
401 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
402 the object file. This info is used mainly by find_unwind_entry() to find
403 out the stack frame size and frame pointer used by procedures. We put
404 everything on the psymbol obstack in the objfile so that it automatically
405 gets freed when the objfile is destroyed. */
406
407 static void
408 read_unwind_info (struct objfile *objfile)
409 {
410 asection *unwind_sec, *stub_unwind_sec;
411 unsigned unwind_size, stub_unwind_size, total_size;
412 unsigned index, unwind_entries;
413 unsigned stub_entries, total_entries;
414 CORE_ADDR text_offset;
415 struct hppa_unwind_info *ui;
416 struct hppa_objfile_private *obj_private;
417
418 text_offset = ANOFFSET (objfile->section_offsets, 0);
419 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
420 sizeof (struct hppa_unwind_info));
421
422 ui->table = NULL;
423 ui->cache = NULL;
424 ui->last = -1;
425
426 /* For reasons unknown the HP PA64 tools generate multiple unwinder
427 sections in a single executable. So we just iterate over every
428 section in the BFD looking for unwinder sections intead of trying
429 to do a lookup with bfd_get_section_by_name.
430
431 First determine the total size of the unwind tables so that we
432 can allocate memory in a nice big hunk. */
433 total_entries = 0;
434 for (unwind_sec = objfile->obfd->sections;
435 unwind_sec;
436 unwind_sec = unwind_sec->next)
437 {
438 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
439 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
440 {
441 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
442 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
443
444 total_entries += unwind_entries;
445 }
446 }
447
448 /* Now compute the size of the stub unwinds. Note the ELF tools do not
449 use stub unwinds at the curren time. */
450 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
451
452 if (stub_unwind_sec)
453 {
454 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
455 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
456 }
457 else
458 {
459 stub_unwind_size = 0;
460 stub_entries = 0;
461 }
462
463 /* Compute total number of unwind entries and their total size. */
464 total_entries += stub_entries;
465 total_size = total_entries * sizeof (struct unwind_table_entry);
466
467 /* Allocate memory for the unwind table. */
468 ui->table = (struct unwind_table_entry *)
469 obstack_alloc (&objfile->objfile_obstack, total_size);
470 ui->last = total_entries - 1;
471
472 /* Now read in each unwind section and internalize the standard unwind
473 entries. */
474 index = 0;
475 for (unwind_sec = objfile->obfd->sections;
476 unwind_sec;
477 unwind_sec = unwind_sec->next)
478 {
479 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
480 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
481 {
482 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
483 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
484
485 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
486 unwind_entries, unwind_size, text_offset);
487 index += unwind_entries;
488 }
489 }
490
491 /* Now read in and internalize the stub unwind entries. */
492 if (stub_unwind_size > 0)
493 {
494 unsigned int i;
495 char *buf = alloca (stub_unwind_size);
496
497 /* Read in the stub unwind entries. */
498 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
499 0, stub_unwind_size);
500
501 /* Now convert them into regular unwind entries. */
502 for (i = 0; i < stub_entries; i++, index++)
503 {
504 /* Clear out the next unwind entry. */
505 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
506
507 /* Convert offset & size into region_start and region_end.
508 Stuff away the stub type into "reserved" fields. */
509 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
510 (bfd_byte *) buf);
511 ui->table[index].region_start += text_offset;
512 buf += 4;
513 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
514 (bfd_byte *) buf);
515 buf += 2;
516 ui->table[index].region_end
517 = ui->table[index].region_start + 4 *
518 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
519 buf += 2;
520 }
521
522 }
523
524 /* Unwind table needs to be kept sorted. */
525 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
526 compare_unwind_entries);
527
528 /* Keep a pointer to the unwind information. */
529 obj_private = (struct hppa_objfile_private *)
530 objfile_data (objfile, hppa_objfile_priv_data);
531 if (obj_private == NULL)
532 {
533 obj_private = (struct hppa_objfile_private *)
534 obstack_alloc (&objfile->objfile_obstack,
535 sizeof (struct hppa_objfile_private));
536 set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
537 obj_private->unwind_info = NULL;
538 obj_private->so_info = NULL;
539 obj_private->dp = 0;
540 }
541 obj_private->unwind_info = ui;
542 }
543
544 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
545 of the objfiles seeking the unwind table entry for this PC. Each objfile
546 contains a sorted list of struct unwind_table_entry. Since we do a binary
547 search of the unwind tables, we depend upon them to be sorted. */
548
549 struct unwind_table_entry *
550 find_unwind_entry (CORE_ADDR pc)
551 {
552 int first, middle, last;
553 struct objfile *objfile;
554 struct hppa_objfile_private *priv;
555
556 if (hppa_debug)
557 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
558 paddr_nz (pc));
559
560 /* A function at address 0? Not in HP-UX! */
561 if (pc == (CORE_ADDR) 0)
562 {
563 if (hppa_debug)
564 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
565 return NULL;
566 }
567
568 ALL_OBJFILES (objfile)
569 {
570 struct hppa_unwind_info *ui;
571 ui = NULL;
572 priv = objfile_data (objfile, hppa_objfile_priv_data);
573 if (priv)
574 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
575
576 if (!ui)
577 {
578 read_unwind_info (objfile);
579 priv = objfile_data (objfile, hppa_objfile_priv_data);
580 if (priv == NULL)
581 error ("Internal error reading unwind information.");
582 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
583 }
584
585 /* First, check the cache */
586
587 if (ui->cache
588 && pc >= ui->cache->region_start
589 && pc <= ui->cache->region_end)
590 {
591 if (hppa_debug)
592 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
593 paddr_nz ((CORE_ADDR) ui->cache));
594 return ui->cache;
595 }
596
597 /* Not in the cache, do a binary search */
598
599 first = 0;
600 last = ui->last;
601
602 while (first <= last)
603 {
604 middle = (first + last) / 2;
605 if (pc >= ui->table[middle].region_start
606 && pc <= ui->table[middle].region_end)
607 {
608 ui->cache = &ui->table[middle];
609 if (hppa_debug)
610 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
611 paddr_nz ((CORE_ADDR) ui->cache));
612 return &ui->table[middle];
613 }
614
615 if (pc < ui->table[middle].region_start)
616 last = middle - 1;
617 else
618 first = middle + 1;
619 }
620 } /* ALL_OBJFILES() */
621
622 if (hppa_debug)
623 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
624
625 return NULL;
626 }
627
628 static const unsigned char *
629 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
630 {
631 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
632 (*len) = sizeof (breakpoint);
633 return breakpoint;
634 }
635
636 /* Return the name of a register. */
637
638 static const char *
639 hppa32_register_name (int i)
640 {
641 static char *names[] = {
642 "flags", "r1", "rp", "r3",
643 "r4", "r5", "r6", "r7",
644 "r8", "r9", "r10", "r11",
645 "r12", "r13", "r14", "r15",
646 "r16", "r17", "r18", "r19",
647 "r20", "r21", "r22", "r23",
648 "r24", "r25", "r26", "dp",
649 "ret0", "ret1", "sp", "r31",
650 "sar", "pcoqh", "pcsqh", "pcoqt",
651 "pcsqt", "eiem", "iir", "isr",
652 "ior", "ipsw", "goto", "sr4",
653 "sr0", "sr1", "sr2", "sr3",
654 "sr5", "sr6", "sr7", "cr0",
655 "cr8", "cr9", "ccr", "cr12",
656 "cr13", "cr24", "cr25", "cr26",
657 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
658 "fpsr", "fpe1", "fpe2", "fpe3",
659 "fpe4", "fpe5", "fpe6", "fpe7",
660 "fr4", "fr4R", "fr5", "fr5R",
661 "fr6", "fr6R", "fr7", "fr7R",
662 "fr8", "fr8R", "fr9", "fr9R",
663 "fr10", "fr10R", "fr11", "fr11R",
664 "fr12", "fr12R", "fr13", "fr13R",
665 "fr14", "fr14R", "fr15", "fr15R",
666 "fr16", "fr16R", "fr17", "fr17R",
667 "fr18", "fr18R", "fr19", "fr19R",
668 "fr20", "fr20R", "fr21", "fr21R",
669 "fr22", "fr22R", "fr23", "fr23R",
670 "fr24", "fr24R", "fr25", "fr25R",
671 "fr26", "fr26R", "fr27", "fr27R",
672 "fr28", "fr28R", "fr29", "fr29R",
673 "fr30", "fr30R", "fr31", "fr31R"
674 };
675 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
676 return NULL;
677 else
678 return names[i];
679 }
680
681 static const char *
682 hppa64_register_name (int i)
683 {
684 static char *names[] = {
685 "flags", "r1", "rp", "r3",
686 "r4", "r5", "r6", "r7",
687 "r8", "r9", "r10", "r11",
688 "r12", "r13", "r14", "r15",
689 "r16", "r17", "r18", "r19",
690 "r20", "r21", "r22", "r23",
691 "r24", "r25", "r26", "dp",
692 "ret0", "ret1", "sp", "r31",
693 "sar", "pcoqh", "pcsqh", "pcoqt",
694 "pcsqt", "eiem", "iir", "isr",
695 "ior", "ipsw", "goto", "sr4",
696 "sr0", "sr1", "sr2", "sr3",
697 "sr5", "sr6", "sr7", "cr0",
698 "cr8", "cr9", "ccr", "cr12",
699 "cr13", "cr24", "cr25", "cr26",
700 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
701 "fpsr", "fpe1", "fpe2", "fpe3",
702 "fr4", "fr5", "fr6", "fr7",
703 "fr8", "fr9", "fr10", "fr11",
704 "fr12", "fr13", "fr14", "fr15",
705 "fr16", "fr17", "fr18", "fr19",
706 "fr20", "fr21", "fr22", "fr23",
707 "fr24", "fr25", "fr26", "fr27",
708 "fr28", "fr29", "fr30", "fr31"
709 };
710 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
711 return NULL;
712 else
713 return names[i];
714 }
715
716 /* This function pushes a stack frame with arguments as part of the
717 inferior function calling mechanism.
718
719 This is the version of the function for the 32-bit PA machines, in
720 which later arguments appear at lower addresses. (The stack always
721 grows towards higher addresses.)
722
723 We simply allocate the appropriate amount of stack space and put
724 arguments into their proper slots. */
725
726 static CORE_ADDR
727 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
728 struct regcache *regcache, CORE_ADDR bp_addr,
729 int nargs, struct value **args, CORE_ADDR sp,
730 int struct_return, CORE_ADDR struct_addr)
731 {
732 /* Stack base address at which any pass-by-reference parameters are
733 stored. */
734 CORE_ADDR struct_end = 0;
735 /* Stack base address at which the first parameter is stored. */
736 CORE_ADDR param_end = 0;
737
738 /* The inner most end of the stack after all the parameters have
739 been pushed. */
740 CORE_ADDR new_sp = 0;
741
742 /* Two passes. First pass computes the location of everything,
743 second pass writes the bytes out. */
744 int write_pass;
745
746 /* Global pointer (r19) of the function we are trying to call. */
747 CORE_ADDR gp;
748
749 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
750
751 for (write_pass = 0; write_pass < 2; write_pass++)
752 {
753 CORE_ADDR struct_ptr = 0;
754 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
755 struct_ptr is adjusted for each argument below, so the first
756 argument will end up at sp-36. */
757 CORE_ADDR param_ptr = 32;
758 int i;
759 int small_struct = 0;
760
761 for (i = 0; i < nargs; i++)
762 {
763 struct value *arg = args[i];
764 struct type *type = check_typedef (value_type (arg));
765 /* The corresponding parameter that is pushed onto the
766 stack, and [possibly] passed in a register. */
767 char param_val[8];
768 int param_len;
769 memset (param_val, 0, sizeof param_val);
770 if (TYPE_LENGTH (type) > 8)
771 {
772 /* Large parameter, pass by reference. Store the value
773 in "struct" area and then pass its address. */
774 param_len = 4;
775 struct_ptr += align_up (TYPE_LENGTH (type), 8);
776 if (write_pass)
777 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
778 TYPE_LENGTH (type));
779 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
780 }
781 else if (TYPE_CODE (type) == TYPE_CODE_INT
782 || TYPE_CODE (type) == TYPE_CODE_ENUM)
783 {
784 /* Integer value store, right aligned. "unpack_long"
785 takes care of any sign-extension problems. */
786 param_len = align_up (TYPE_LENGTH (type), 4);
787 store_unsigned_integer (param_val, param_len,
788 unpack_long (type,
789 VALUE_CONTENTS (arg)));
790 }
791 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
792 {
793 /* Floating point value store, right aligned. */
794 param_len = align_up (TYPE_LENGTH (type), 4);
795 memcpy (param_val, VALUE_CONTENTS (arg), param_len);
796 }
797 else
798 {
799 param_len = align_up (TYPE_LENGTH (type), 4);
800
801 /* Small struct value are stored right-aligned. */
802 memcpy (param_val + param_len - TYPE_LENGTH (type),
803 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
804
805 /* Structures of size 5, 6 and 7 bytes are special in that
806 the higher-ordered word is stored in the lower-ordered
807 argument, and even though it is a 8-byte quantity the
808 registers need not be 8-byte aligned. */
809 if (param_len > 4 && param_len < 8)
810 small_struct = 1;
811 }
812
813 param_ptr += param_len;
814 if (param_len == 8 && !small_struct)
815 param_ptr = align_up (param_ptr, 8);
816
817 /* First 4 non-FP arguments are passed in gr26-gr23.
818 First 4 32-bit FP arguments are passed in fr4L-fr7L.
819 First 2 64-bit FP arguments are passed in fr5 and fr7.
820
821 The rest go on the stack, starting at sp-36, towards lower
822 addresses. 8-byte arguments must be aligned to a 8-byte
823 stack boundary. */
824 if (write_pass)
825 {
826 write_memory (param_end - param_ptr, param_val, param_len);
827
828 /* There are some cases when we don't know the type
829 expected by the callee (e.g. for variadic functions), so
830 pass the parameters in both general and fp regs. */
831 if (param_ptr <= 48)
832 {
833 int grreg = 26 - (param_ptr - 36) / 4;
834 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
835 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
836
837 regcache_cooked_write (regcache, grreg, param_val);
838 regcache_cooked_write (regcache, fpLreg, param_val);
839
840 if (param_len > 4)
841 {
842 regcache_cooked_write (regcache, grreg + 1,
843 param_val + 4);
844
845 regcache_cooked_write (regcache, fpreg, param_val);
846 regcache_cooked_write (regcache, fpreg + 1,
847 param_val + 4);
848 }
849 }
850 }
851 }
852
853 /* Update the various stack pointers. */
854 if (!write_pass)
855 {
856 struct_end = sp + align_up (struct_ptr, 64);
857 /* PARAM_PTR already accounts for all the arguments passed
858 by the user. However, the ABI mandates minimum stack
859 space allocations for outgoing arguments. The ABI also
860 mandates minimum stack alignments which we must
861 preserve. */
862 param_end = struct_end + align_up (param_ptr, 64);
863 }
864 }
865
866 /* If a structure has to be returned, set up register 28 to hold its
867 address */
868 if (struct_return)
869 write_register (28, struct_addr);
870
871 gp = tdep->find_global_pointer (function);
872
873 if (gp != 0)
874 write_register (19, gp);
875
876 /* Set the return address. */
877 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
878
879 /* Update the Stack Pointer. */
880 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
881
882 return param_end;
883 }
884
885 /* This function pushes a stack frame with arguments as part of the
886 inferior function calling mechanism.
887
888 This is the version for the PA64, in which later arguments appear
889 at higher addresses. (The stack always grows towards higher
890 addresses.)
891
892 We simply allocate the appropriate amount of stack space and put
893 arguments into their proper slots.
894
895 This ABI also requires that the caller provide an argument pointer
896 to the callee, so we do that too. */
897
898 static CORE_ADDR
899 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
900 struct regcache *regcache, CORE_ADDR bp_addr,
901 int nargs, struct value **args, CORE_ADDR sp,
902 int struct_return, CORE_ADDR struct_addr)
903 {
904 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
905 reverse engineering testsuite failures. */
906
907 /* Stack base address at which any pass-by-reference parameters are
908 stored. */
909 CORE_ADDR struct_end = 0;
910 /* Stack base address at which the first parameter is stored. */
911 CORE_ADDR param_end = 0;
912
913 /* The inner most end of the stack after all the parameters have
914 been pushed. */
915 CORE_ADDR new_sp = 0;
916
917 /* Two passes. First pass computes the location of everything,
918 second pass writes the bytes out. */
919 int write_pass;
920 for (write_pass = 0; write_pass < 2; write_pass++)
921 {
922 CORE_ADDR struct_ptr = 0;
923 CORE_ADDR param_ptr = 0;
924 int i;
925 for (i = 0; i < nargs; i++)
926 {
927 struct value *arg = args[i];
928 struct type *type = check_typedef (value_type (arg));
929 if ((TYPE_CODE (type) == TYPE_CODE_INT
930 || TYPE_CODE (type) == TYPE_CODE_ENUM)
931 && TYPE_LENGTH (type) <= 8)
932 {
933 /* Integer value store, right aligned. "unpack_long"
934 takes care of any sign-extension problems. */
935 param_ptr += 8;
936 if (write_pass)
937 {
938 ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
939 int reg = 27 - param_ptr / 8;
940 write_memory_unsigned_integer (param_end - param_ptr,
941 val, 8);
942 if (reg >= 19)
943 regcache_cooked_write_unsigned (regcache, reg, val);
944 }
945 }
946 else
947 {
948 /* Small struct value, store left aligned? */
949 int reg;
950 if (TYPE_LENGTH (type) > 8)
951 {
952 param_ptr = align_up (param_ptr, 16);
953 reg = 26 - param_ptr / 8;
954 param_ptr += align_up (TYPE_LENGTH (type), 16);
955 }
956 else
957 {
958 param_ptr = align_up (param_ptr, 8);
959 reg = 26 - param_ptr / 8;
960 param_ptr += align_up (TYPE_LENGTH (type), 8);
961 }
962 if (write_pass)
963 {
964 int byte;
965 write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
966 TYPE_LENGTH (type));
967 for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
968 {
969 if (reg >= 19)
970 {
971 int len = min (8, TYPE_LENGTH (type) - byte);
972 regcache_cooked_write_part (regcache, reg, 0, len,
973 VALUE_CONTENTS (arg) + byte);
974 }
975 reg--;
976 }
977 }
978 }
979 }
980 /* Update the various stack pointers. */
981 if (!write_pass)
982 {
983 struct_end = sp + struct_ptr;
984 /* PARAM_PTR already accounts for all the arguments passed
985 by the user. However, the ABI mandates minimum stack
986 space allocations for outgoing arguments. The ABI also
987 mandates minimum stack alignments which we must
988 preserve. */
989 param_end = struct_end + max (align_up (param_ptr, 16), 64);
990 }
991 }
992
993 /* If a structure has to be returned, set up register 28 to hold its
994 address */
995 if (struct_return)
996 write_register (28, struct_addr);
997
998 /* Set the return address. */
999 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1000
1001 /* Update the Stack Pointer. */
1002 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end + 64);
1003
1004 /* The stack will have 32 bytes of additional space for a frame marker. */
1005 return param_end + 64;
1006 }
1007
1008 static CORE_ADDR
1009 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1010 CORE_ADDR addr,
1011 struct target_ops *targ)
1012 {
1013 if (addr & 2)
1014 {
1015 CORE_ADDR plabel;
1016
1017 plabel = addr & ~3;
1018 target_read_memory(plabel, (char *)&addr, 4);
1019 }
1020
1021 return addr;
1022 }
1023
1024 static CORE_ADDR
1025 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1026 {
1027 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1028 and not _bit_)! */
1029 return align_up (addr, 64);
1030 }
1031
1032 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1033
1034 static CORE_ADDR
1035 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1036 {
1037 /* Just always 16-byte align. */
1038 return align_up (addr, 16);
1039 }
1040
1041 CORE_ADDR
1042 hppa_read_pc (ptid_t ptid)
1043 {
1044 ULONGEST ipsw;
1045 CORE_ADDR pc;
1046
1047 ipsw = read_register_pid (HPPA_IPSW_REGNUM, ptid);
1048 pc = read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid);
1049
1050 /* If the current instruction is nullified, then we are effectively
1051 still executing the previous instruction. Pretend we are still
1052 there. This is needed when single stepping; if the nullified
1053 instruction is on a different line, we don't want GDB to think
1054 we've stepped onto that line. */
1055 if (ipsw & 0x00200000)
1056 pc -= 4;
1057
1058 return pc & ~0x3;
1059 }
1060
1061 void
1062 hppa_write_pc (CORE_ADDR pc, ptid_t ptid)
1063 {
1064 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, pc, ptid);
1065 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, pc + 4, ptid);
1066 }
1067
1068 /* return the alignment of a type in bytes. Structures have the maximum
1069 alignment required by their fields. */
1070
1071 static int
1072 hppa_alignof (struct type *type)
1073 {
1074 int max_align, align, i;
1075 CHECK_TYPEDEF (type);
1076 switch (TYPE_CODE (type))
1077 {
1078 case TYPE_CODE_PTR:
1079 case TYPE_CODE_INT:
1080 case TYPE_CODE_FLT:
1081 return TYPE_LENGTH (type);
1082 case TYPE_CODE_ARRAY:
1083 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1084 case TYPE_CODE_STRUCT:
1085 case TYPE_CODE_UNION:
1086 max_align = 1;
1087 for (i = 0; i < TYPE_NFIELDS (type); i++)
1088 {
1089 /* Bit fields have no real alignment. */
1090 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1091 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1092 {
1093 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1094 max_align = max (max_align, align);
1095 }
1096 }
1097 return max_align;
1098 default:
1099 return 4;
1100 }
1101 }
1102
1103 /* For the given instruction (INST), return any adjustment it makes
1104 to the stack pointer or zero for no adjustment.
1105
1106 This only handles instructions commonly found in prologues. */
1107
1108 static int
1109 prologue_inst_adjust_sp (unsigned long inst)
1110 {
1111 /* This must persist across calls. */
1112 static int save_high21;
1113
1114 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1115 if ((inst & 0xffffc000) == 0x37de0000)
1116 return hppa_extract_14 (inst);
1117
1118 /* stwm X,D(sp) */
1119 if ((inst & 0xffe00000) == 0x6fc00000)
1120 return hppa_extract_14 (inst);
1121
1122 /* std,ma X,D(sp) */
1123 if ((inst & 0xffe00008) == 0x73c00008)
1124 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1125
1126 /* addil high21,%r1; ldo low11,(%r1),%r30)
1127 save high bits in save_high21 for later use. */
1128 if ((inst & 0xffe00000) == 0x28200000)
1129 {
1130 save_high21 = hppa_extract_21 (inst);
1131 return 0;
1132 }
1133
1134 if ((inst & 0xffff0000) == 0x343e0000)
1135 return save_high21 + hppa_extract_14 (inst);
1136
1137 /* fstws as used by the HP compilers. */
1138 if ((inst & 0xffffffe0) == 0x2fd01220)
1139 return hppa_extract_5_load (inst);
1140
1141 /* No adjustment. */
1142 return 0;
1143 }
1144
1145 /* Return nonzero if INST is a branch of some kind, else return zero. */
1146
1147 static int
1148 is_branch (unsigned long inst)
1149 {
1150 switch (inst >> 26)
1151 {
1152 case 0x20:
1153 case 0x21:
1154 case 0x22:
1155 case 0x23:
1156 case 0x27:
1157 case 0x28:
1158 case 0x29:
1159 case 0x2a:
1160 case 0x2b:
1161 case 0x2f:
1162 case 0x30:
1163 case 0x31:
1164 case 0x32:
1165 case 0x33:
1166 case 0x38:
1167 case 0x39:
1168 case 0x3a:
1169 case 0x3b:
1170 return 1;
1171
1172 default:
1173 return 0;
1174 }
1175 }
1176
1177 /* Return the register number for a GR which is saved by INST or
1178 zero it INST does not save a GR. */
1179
1180 static int
1181 inst_saves_gr (unsigned long inst)
1182 {
1183 /* Does it look like a stw? */
1184 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1185 || (inst >> 26) == 0x1f
1186 || ((inst >> 26) == 0x1f
1187 && ((inst >> 6) == 0xa)))
1188 return hppa_extract_5R_store (inst);
1189
1190 /* Does it look like a std? */
1191 if ((inst >> 26) == 0x1c
1192 || ((inst >> 26) == 0x03
1193 && ((inst >> 6) & 0xf) == 0xb))
1194 return hppa_extract_5R_store (inst);
1195
1196 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1197 if ((inst >> 26) == 0x1b)
1198 return hppa_extract_5R_store (inst);
1199
1200 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1201 too. */
1202 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1203 || ((inst >> 26) == 0x3
1204 && (((inst >> 6) & 0xf) == 0x8
1205 || (inst >> 6) & 0xf) == 0x9))
1206 return hppa_extract_5R_store (inst);
1207
1208 return 0;
1209 }
1210
1211 /* Return the register number for a FR which is saved by INST or
1212 zero it INST does not save a FR.
1213
1214 Note we only care about full 64bit register stores (that's the only
1215 kind of stores the prologue will use).
1216
1217 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1218
1219 static int
1220 inst_saves_fr (unsigned long inst)
1221 {
1222 /* is this an FSTD ? */
1223 if ((inst & 0xfc00dfc0) == 0x2c001200)
1224 return hppa_extract_5r_store (inst);
1225 if ((inst & 0xfc000002) == 0x70000002)
1226 return hppa_extract_5R_store (inst);
1227 /* is this an FSTW ? */
1228 if ((inst & 0xfc00df80) == 0x24001200)
1229 return hppa_extract_5r_store (inst);
1230 if ((inst & 0xfc000002) == 0x7c000000)
1231 return hppa_extract_5R_store (inst);
1232 return 0;
1233 }
1234
1235 /* Advance PC across any function entry prologue instructions
1236 to reach some "real" code.
1237
1238 Use information in the unwind table to determine what exactly should
1239 be in the prologue. */
1240
1241
1242 static CORE_ADDR
1243 skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
1244 {
1245 char buf[4];
1246 CORE_ADDR orig_pc = pc;
1247 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1248 unsigned long args_stored, status, i, restart_gr, restart_fr;
1249 struct unwind_table_entry *u;
1250 int final_iteration;
1251
1252 restart_gr = 0;
1253 restart_fr = 0;
1254
1255 restart:
1256 u = find_unwind_entry (pc);
1257 if (!u)
1258 return pc;
1259
1260 /* If we are not at the beginning of a function, then return now. */
1261 if ((pc & ~0x3) != u->region_start)
1262 return pc;
1263
1264 /* This is how much of a frame adjustment we need to account for. */
1265 stack_remaining = u->Total_frame_size << 3;
1266
1267 /* Magic register saves we want to know about. */
1268 save_rp = u->Save_RP;
1269 save_sp = u->Save_SP;
1270
1271 /* An indication that args may be stored into the stack. Unfortunately
1272 the HPUX compilers tend to set this in cases where no args were
1273 stored too!. */
1274 args_stored = 1;
1275
1276 /* Turn the Entry_GR field into a bitmask. */
1277 save_gr = 0;
1278 for (i = 3; i < u->Entry_GR + 3; i++)
1279 {
1280 /* Frame pointer gets saved into a special location. */
1281 if (u->Save_SP && i == HPPA_FP_REGNUM)
1282 continue;
1283
1284 save_gr |= (1 << i);
1285 }
1286 save_gr &= ~restart_gr;
1287
1288 /* Turn the Entry_FR field into a bitmask too. */
1289 save_fr = 0;
1290 for (i = 12; i < u->Entry_FR + 12; i++)
1291 save_fr |= (1 << i);
1292 save_fr &= ~restart_fr;
1293
1294 final_iteration = 0;
1295
1296 /* Loop until we find everything of interest or hit a branch.
1297
1298 For unoptimized GCC code and for any HP CC code this will never ever
1299 examine any user instructions.
1300
1301 For optimzied GCC code we're faced with problems. GCC will schedule
1302 its prologue and make prologue instructions available for delay slot
1303 filling. The end result is user code gets mixed in with the prologue
1304 and a prologue instruction may be in the delay slot of the first branch
1305 or call.
1306
1307 Some unexpected things are expected with debugging optimized code, so
1308 we allow this routine to walk past user instructions in optimized
1309 GCC code. */
1310 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1311 || args_stored)
1312 {
1313 unsigned int reg_num;
1314 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1315 unsigned long old_save_rp, old_save_sp, next_inst;
1316
1317 /* Save copies of all the triggers so we can compare them later
1318 (only for HPC). */
1319 old_save_gr = save_gr;
1320 old_save_fr = save_fr;
1321 old_save_rp = save_rp;
1322 old_save_sp = save_sp;
1323 old_stack_remaining = stack_remaining;
1324
1325 status = deprecated_read_memory_nobpt (pc, buf, 4);
1326 inst = extract_unsigned_integer (buf, 4);
1327
1328 /* Yow! */
1329 if (status != 0)
1330 return pc;
1331
1332 /* Note the interesting effects of this instruction. */
1333 stack_remaining -= prologue_inst_adjust_sp (inst);
1334
1335 /* There are limited ways to store the return pointer into the
1336 stack. */
1337 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
1338 save_rp = 0;
1339
1340 /* These are the only ways we save SP into the stack. At this time
1341 the HP compilers never bother to save SP into the stack. */
1342 if ((inst & 0xffffc000) == 0x6fc10000
1343 || (inst & 0xffffc00c) == 0x73c10008)
1344 save_sp = 0;
1345
1346 /* Are we loading some register with an offset from the argument
1347 pointer? */
1348 if ((inst & 0xffe00000) == 0x37a00000
1349 || (inst & 0xffffffe0) == 0x081d0240)
1350 {
1351 pc += 4;
1352 continue;
1353 }
1354
1355 /* Account for general and floating-point register saves. */
1356 reg_num = inst_saves_gr (inst);
1357 save_gr &= ~(1 << reg_num);
1358
1359 /* Ugh. Also account for argument stores into the stack.
1360 Unfortunately args_stored only tells us that some arguments
1361 where stored into the stack. Not how many or what kind!
1362
1363 This is a kludge as on the HP compiler sets this bit and it
1364 never does prologue scheduling. So once we see one, skip past
1365 all of them. We have similar code for the fp arg stores below.
1366
1367 FIXME. Can still die if we have a mix of GR and FR argument
1368 stores! */
1369 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1370 {
1371 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1372 {
1373 pc += 4;
1374 status = deprecated_read_memory_nobpt (pc, buf, 4);
1375 inst = extract_unsigned_integer (buf, 4);
1376 if (status != 0)
1377 return pc;
1378 reg_num = inst_saves_gr (inst);
1379 }
1380 args_stored = 0;
1381 continue;
1382 }
1383
1384 reg_num = inst_saves_fr (inst);
1385 save_fr &= ~(1 << reg_num);
1386
1387 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1388 next_inst = extract_unsigned_integer (buf, 4);
1389
1390 /* Yow! */
1391 if (status != 0)
1392 return pc;
1393
1394 /* We've got to be read to handle the ldo before the fp register
1395 save. */
1396 if ((inst & 0xfc000000) == 0x34000000
1397 && inst_saves_fr (next_inst) >= 4
1398 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1399 {
1400 /* So we drop into the code below in a reasonable state. */
1401 reg_num = inst_saves_fr (next_inst);
1402 pc -= 4;
1403 }
1404
1405 /* Ugh. Also account for argument stores into the stack.
1406 This is a kludge as on the HP compiler sets this bit and it
1407 never does prologue scheduling. So once we see one, skip past
1408 all of them. */
1409 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1410 {
1411 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1412 {
1413 pc += 8;
1414 status = deprecated_read_memory_nobpt (pc, buf, 4);
1415 inst = extract_unsigned_integer (buf, 4);
1416 if (status != 0)
1417 return pc;
1418 if ((inst & 0xfc000000) != 0x34000000)
1419 break;
1420 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1421 next_inst = extract_unsigned_integer (buf, 4);
1422 if (status != 0)
1423 return pc;
1424 reg_num = inst_saves_fr (next_inst);
1425 }
1426 args_stored = 0;
1427 continue;
1428 }
1429
1430 /* Quit if we hit any kind of branch. This can happen if a prologue
1431 instruction is in the delay slot of the first call/branch. */
1432 if (is_branch (inst) && stop_before_branch)
1433 break;
1434
1435 /* What a crock. The HP compilers set args_stored even if no
1436 arguments were stored into the stack (boo hiss). This could
1437 cause this code to then skip a bunch of user insns (up to the
1438 first branch).
1439
1440 To combat this we try to identify when args_stored was bogusly
1441 set and clear it. We only do this when args_stored is nonzero,
1442 all other resources are accounted for, and nothing changed on
1443 this pass. */
1444 if (args_stored
1445 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1446 && old_save_gr == save_gr && old_save_fr == save_fr
1447 && old_save_rp == save_rp && old_save_sp == save_sp
1448 && old_stack_remaining == stack_remaining)
1449 break;
1450
1451 /* Bump the PC. */
1452 pc += 4;
1453
1454 /* !stop_before_branch, so also look at the insn in the delay slot
1455 of the branch. */
1456 if (final_iteration)
1457 break;
1458 if (is_branch (inst))
1459 final_iteration = 1;
1460 }
1461
1462 /* We've got a tenative location for the end of the prologue. However
1463 because of limitations in the unwind descriptor mechanism we may
1464 have went too far into user code looking for the save of a register
1465 that does not exist. So, if there registers we expected to be saved
1466 but never were, mask them out and restart.
1467
1468 This should only happen in optimized code, and should be very rare. */
1469 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1470 {
1471 pc = orig_pc;
1472 restart_gr = save_gr;
1473 restart_fr = save_fr;
1474 goto restart;
1475 }
1476
1477 return pc;
1478 }
1479
1480
1481 /* Return the address of the PC after the last prologue instruction if
1482 we can determine it from the debug symbols. Else return zero. */
1483
1484 static CORE_ADDR
1485 after_prologue (CORE_ADDR pc)
1486 {
1487 struct symtab_and_line sal;
1488 CORE_ADDR func_addr, func_end;
1489 struct symbol *f;
1490
1491 /* If we can not find the symbol in the partial symbol table, then
1492 there is no hope we can determine the function's start address
1493 with this code. */
1494 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1495 return 0;
1496
1497 /* Get the line associated with FUNC_ADDR. */
1498 sal = find_pc_line (func_addr, 0);
1499
1500 /* There are only two cases to consider. First, the end of the source line
1501 is within the function bounds. In that case we return the end of the
1502 source line. Second is the end of the source line extends beyond the
1503 bounds of the current function. We need to use the slow code to
1504 examine instructions in that case.
1505
1506 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1507 the wrong thing to do. In fact, it should be entirely possible for this
1508 function to always return zero since the slow instruction scanning code
1509 is supposed to *always* work. If it does not, then it is a bug. */
1510 if (sal.end < func_end)
1511 return sal.end;
1512 else
1513 return 0;
1514 }
1515
1516 /* To skip prologues, I use this predicate. Returns either PC itself
1517 if the code at PC does not look like a function prologue; otherwise
1518 returns an address that (if we're lucky) follows the prologue.
1519
1520 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1521 It doesn't necessarily skips all the insns in the prologue. In fact
1522 we might not want to skip all the insns because a prologue insn may
1523 appear in the delay slot of the first branch, and we don't want to
1524 skip over the branch in that case. */
1525
1526 static CORE_ADDR
1527 hppa_skip_prologue (CORE_ADDR pc)
1528 {
1529 unsigned long inst;
1530 int offset;
1531 CORE_ADDR post_prologue_pc;
1532 char buf[4];
1533
1534 /* See if we can determine the end of the prologue via the symbol table.
1535 If so, then return either PC, or the PC after the prologue, whichever
1536 is greater. */
1537
1538 post_prologue_pc = after_prologue (pc);
1539
1540 /* If after_prologue returned a useful address, then use it. Else
1541 fall back on the instruction skipping code.
1542
1543 Some folks have claimed this causes problems because the breakpoint
1544 may be the first instruction of the prologue. If that happens, then
1545 the instruction skipping code has a bug that needs to be fixed. */
1546 if (post_prologue_pc != 0)
1547 return max (pc, post_prologue_pc);
1548 else
1549 return (skip_prologue_hard_way (pc, 1));
1550 }
1551
1552 struct hppa_frame_cache
1553 {
1554 CORE_ADDR base;
1555 struct trad_frame_saved_reg *saved_regs;
1556 };
1557
1558 static struct hppa_frame_cache *
1559 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1560 {
1561 struct hppa_frame_cache *cache;
1562 long saved_gr_mask;
1563 long saved_fr_mask;
1564 CORE_ADDR this_sp;
1565 long frame_size;
1566 struct unwind_table_entry *u;
1567 CORE_ADDR prologue_end;
1568 int fp_in_r1 = 0;
1569 int i;
1570
1571 if (hppa_debug)
1572 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1573 frame_relative_level(next_frame));
1574
1575 if ((*this_cache) != NULL)
1576 {
1577 if (hppa_debug)
1578 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1579 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1580 return (*this_cache);
1581 }
1582 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1583 (*this_cache) = cache;
1584 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1585
1586 /* Yow! */
1587 u = find_unwind_entry (frame_pc_unwind (next_frame));
1588 if (!u)
1589 {
1590 if (hppa_debug)
1591 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1592 return (*this_cache);
1593 }
1594
1595 /* Turn the Entry_GR field into a bitmask. */
1596 saved_gr_mask = 0;
1597 for (i = 3; i < u->Entry_GR + 3; i++)
1598 {
1599 /* Frame pointer gets saved into a special location. */
1600 if (u->Save_SP && i == HPPA_FP_REGNUM)
1601 continue;
1602
1603 saved_gr_mask |= (1 << i);
1604 }
1605
1606 /* Turn the Entry_FR field into a bitmask too. */
1607 saved_fr_mask = 0;
1608 for (i = 12; i < u->Entry_FR + 12; i++)
1609 saved_fr_mask |= (1 << i);
1610
1611 /* Loop until we find everything of interest or hit a branch.
1612
1613 For unoptimized GCC code and for any HP CC code this will never ever
1614 examine any user instructions.
1615
1616 For optimized GCC code we're faced with problems. GCC will schedule
1617 its prologue and make prologue instructions available for delay slot
1618 filling. The end result is user code gets mixed in with the prologue
1619 and a prologue instruction may be in the delay slot of the first branch
1620 or call.
1621
1622 Some unexpected things are expected with debugging optimized code, so
1623 we allow this routine to walk past user instructions in optimized
1624 GCC code. */
1625 {
1626 int final_iteration = 0;
1627 CORE_ADDR pc, end_pc;
1628 int looking_for_sp = u->Save_SP;
1629 int looking_for_rp = u->Save_RP;
1630 int fp_loc = -1;
1631
1632 /* We have to use skip_prologue_hard_way instead of just
1633 skip_prologue_using_sal, in case we stepped into a function without
1634 symbol information. hppa_skip_prologue also bounds the returned
1635 pc by the passed in pc, so it will not return a pc in the next
1636 function.
1637
1638 We used to call hppa_skip_prologue to find the end of the prologue,
1639 but if some non-prologue instructions get scheduled into the prologue,
1640 and the program is compiled with debug information, the "easy" way
1641 in hppa_skip_prologue will return a prologue end that is too early
1642 for us to notice any potential frame adjustments. */
1643
1644 /* We used to use frame_func_unwind () to locate the beginning of the
1645 function to pass to skip_prologue (). However, when objects are
1646 compiled without debug symbols, frame_func_unwind can return the wrong
1647 function (or 0). We can do better than that by using unwind records. */
1648
1649 prologue_end = skip_prologue_hard_way (u->region_start, 0);
1650 end_pc = frame_pc_unwind (next_frame);
1651
1652 if (prologue_end != 0 && end_pc > prologue_end)
1653 end_pc = prologue_end;
1654
1655 frame_size = 0;
1656
1657 for (pc = u->region_start;
1658 ((saved_gr_mask || saved_fr_mask
1659 || looking_for_sp || looking_for_rp
1660 || frame_size < (u->Total_frame_size << 3))
1661 && pc < end_pc);
1662 pc += 4)
1663 {
1664 int reg;
1665 char buf4[4];
1666 long inst;
1667
1668 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1669 sizeof buf4))
1670 {
1671 error ("Cannot read instruction at 0x%s\n", paddr_nz (pc));
1672 return (*this_cache);
1673 }
1674
1675 inst = extract_unsigned_integer (buf4, sizeof buf4);
1676
1677 /* Note the interesting effects of this instruction. */
1678 frame_size += prologue_inst_adjust_sp (inst);
1679
1680 /* There are limited ways to store the return pointer into the
1681 stack. */
1682 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1683 {
1684 looking_for_rp = 0;
1685 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1686 }
1687 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1688 {
1689 looking_for_rp = 0;
1690 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1691 }
1692 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1693 {
1694 looking_for_rp = 0;
1695 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1696 }
1697
1698 /* Check to see if we saved SP into the stack. This also
1699 happens to indicate the location of the saved frame
1700 pointer. */
1701 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1702 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1703 {
1704 looking_for_sp = 0;
1705 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1706 }
1707 else if (inst == 0x08030241) /* copy %r3, %r1 */
1708 {
1709 fp_in_r1 = 1;
1710 }
1711
1712 /* Account for general and floating-point register saves. */
1713 reg = inst_saves_gr (inst);
1714 if (reg >= 3 && reg <= 18
1715 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1716 {
1717 saved_gr_mask &= ~(1 << reg);
1718 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1719 /* stwm with a positive displacement is a _post_
1720 _modify_. */
1721 cache->saved_regs[reg].addr = 0;
1722 else if ((inst & 0xfc00000c) == 0x70000008)
1723 /* A std has explicit post_modify forms. */
1724 cache->saved_regs[reg].addr = 0;
1725 else
1726 {
1727 CORE_ADDR offset;
1728
1729 if ((inst >> 26) == 0x1c)
1730 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1731 else if ((inst >> 26) == 0x03)
1732 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1733 else
1734 offset = hppa_extract_14 (inst);
1735
1736 /* Handle code with and without frame pointers. */
1737 if (u->Save_SP)
1738 cache->saved_regs[reg].addr = offset;
1739 else
1740 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1741 }
1742 }
1743
1744 /* GCC handles callee saved FP regs a little differently.
1745
1746 It emits an instruction to put the value of the start of
1747 the FP store area into %r1. It then uses fstds,ma with a
1748 basereg of %r1 for the stores.
1749
1750 HP CC emits them at the current stack pointer modifying the
1751 stack pointer as it stores each register. */
1752
1753 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1754 if ((inst & 0xffffc000) == 0x34610000
1755 || (inst & 0xffffc000) == 0x37c10000)
1756 fp_loc = hppa_extract_14 (inst);
1757
1758 reg = inst_saves_fr (inst);
1759 if (reg >= 12 && reg <= 21)
1760 {
1761 /* Note +4 braindamage below is necessary because the FP
1762 status registers are internally 8 registers rather than
1763 the expected 4 registers. */
1764 saved_fr_mask &= ~(1 << reg);
1765 if (fp_loc == -1)
1766 {
1767 /* 1st HP CC FP register store. After this
1768 instruction we've set enough state that the GCC and
1769 HPCC code are both handled in the same manner. */
1770 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
1771 fp_loc = 8;
1772 }
1773 else
1774 {
1775 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
1776 fp_loc += 8;
1777 }
1778 }
1779
1780 /* Quit if we hit any kind of branch the previous iteration. */
1781 if (final_iteration)
1782 break;
1783 /* We want to look precisely one instruction beyond the branch
1784 if we have not found everything yet. */
1785 if (is_branch (inst))
1786 final_iteration = 1;
1787 }
1788 }
1789
1790 {
1791 /* The frame base always represents the value of %sp at entry to
1792 the current function (and is thus equivalent to the "saved"
1793 stack pointer. */
1794 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1795 CORE_ADDR fp;
1796
1797 if (hppa_debug)
1798 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1799 "prologue_end=0x%s) ",
1800 paddr_nz (this_sp),
1801 paddr_nz (frame_pc_unwind (next_frame)),
1802 paddr_nz (prologue_end));
1803
1804 /* Check to see if a frame pointer is available, and use it for
1805 frame unwinding if it is.
1806
1807 There are some situations where we need to rely on the frame
1808 pointer to do stack unwinding. For example, if a function calls
1809 alloca (), the stack pointer can get adjusted inside the body of
1810 the function. In this case, the ABI requires that the compiler
1811 maintain a frame pointer for the function.
1812
1813 The unwind record has a flag (alloca_frame) that indicates that
1814 a function has a variable frame; unfortunately, gcc/binutils
1815 does not set this flag. Instead, whenever a frame pointer is used
1816 and saved on the stack, the Save_SP flag is set. We use this to
1817 decide whether to use the frame pointer for unwinding.
1818
1819 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1820 instead of Save_SP. */
1821
1822 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1823
1824 if (frame_pc_unwind (next_frame) >= prologue_end
1825 && u->Save_SP && fp != 0)
1826 {
1827 cache->base = fp;
1828
1829 if (hppa_debug)
1830 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }",
1831 paddr_nz (cache->base));
1832 }
1833 else if (u->Save_SP
1834 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
1835 {
1836 /* Both we're expecting the SP to be saved and the SP has been
1837 saved. The entry SP value is saved at this frame's SP
1838 address. */
1839 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1840
1841 if (hppa_debug)
1842 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
1843 paddr_nz (cache->base));
1844 }
1845 else
1846 {
1847 /* The prologue has been slowly allocating stack space. Adjust
1848 the SP back. */
1849 cache->base = this_sp - frame_size;
1850 if (hppa_debug)
1851 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
1852 paddr_nz (cache->base));
1853
1854 }
1855 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
1856 }
1857
1858 /* The PC is found in the "return register", "Millicode" uses "r31"
1859 as the return register while normal code uses "rp". */
1860 if (u->Millicode)
1861 {
1862 if (trad_frame_addr_p (cache->saved_regs, 31))
1863 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
1864 else
1865 {
1866 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
1867 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
1868 }
1869 }
1870 else
1871 {
1872 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1873 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
1874 else
1875 {
1876 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1877 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
1878 }
1879 }
1880
1881 /* If Save_SP is set, then we expect the frame pointer to be saved in the
1882 frame. However, there is a one-insn window where we haven't saved it
1883 yet, but we've already clobbered it. Detect this case and fix it up.
1884
1885 The prologue sequence for frame-pointer functions is:
1886 0: stw %rp, -20(%sp)
1887 4: copy %r3, %r1
1888 8: copy %sp, %r3
1889 c: stw,ma %r1, XX(%sp)
1890
1891 So if we are at offset c, the r3 value that we want is not yet saved
1892 on the stack, but it's been overwritten. The prologue analyzer will
1893 set fp_in_r1 when it sees the copy insn so we know to get the value
1894 from r1 instead. */
1895 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
1896 && fp_in_r1)
1897 {
1898 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
1899 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
1900 }
1901
1902 {
1903 /* Convert all the offsets into addresses. */
1904 int reg;
1905 for (reg = 0; reg < NUM_REGS; reg++)
1906 {
1907 if (trad_frame_addr_p (cache->saved_regs, reg))
1908 cache->saved_regs[reg].addr += cache->base;
1909 }
1910 }
1911
1912 {
1913 struct gdbarch *gdbarch;
1914 struct gdbarch_tdep *tdep;
1915
1916 gdbarch = get_frame_arch (next_frame);
1917 tdep = gdbarch_tdep (gdbarch);
1918
1919 if (tdep->unwind_adjust_stub)
1920 {
1921 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
1922 }
1923 }
1924
1925 if (hppa_debug)
1926 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
1927 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1928 return (*this_cache);
1929 }
1930
1931 static void
1932 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
1933 struct frame_id *this_id)
1934 {
1935 struct hppa_frame_cache *info;
1936 CORE_ADDR pc = frame_pc_unwind (next_frame);
1937 struct unwind_table_entry *u;
1938
1939 info = hppa_frame_cache (next_frame, this_cache);
1940 u = find_unwind_entry (pc);
1941
1942 (*this_id) = frame_id_build (info->base, u->region_start);
1943 }
1944
1945 static void
1946 hppa_frame_prev_register (struct frame_info *next_frame,
1947 void **this_cache,
1948 int regnum, int *optimizedp,
1949 enum lval_type *lvalp, CORE_ADDR *addrp,
1950 int *realnump, void *valuep)
1951 {
1952 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
1953 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1954 optimizedp, lvalp, addrp, realnump, valuep);
1955 }
1956
1957 static const struct frame_unwind hppa_frame_unwind =
1958 {
1959 NORMAL_FRAME,
1960 hppa_frame_this_id,
1961 hppa_frame_prev_register
1962 };
1963
1964 static const struct frame_unwind *
1965 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
1966 {
1967 CORE_ADDR pc = frame_pc_unwind (next_frame);
1968
1969 if (find_unwind_entry (pc))
1970 return &hppa_frame_unwind;
1971
1972 return NULL;
1973 }
1974
1975 /* This is a generic fallback frame unwinder that kicks in if we fail all
1976 the other ones. Normally we would expect the stub and regular unwinder
1977 to work, but in some cases we might hit a function that just doesn't
1978 have any unwind information available. In this case we try to do
1979 unwinding solely based on code reading. This is obviously going to be
1980 slow, so only use this as a last resort. Currently this will only
1981 identify the stack and pc for the frame. */
1982
1983 static struct hppa_frame_cache *
1984 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
1985 {
1986 struct hppa_frame_cache *cache;
1987 unsigned int frame_size;
1988 int found_rp;
1989 CORE_ADDR pc, start_pc, end_pc, cur_pc;
1990
1991 if (hppa_debug)
1992 fprintf_unfiltered (gdb_stdlog, "{ hppa_fallback_frame_cache (frame=%d)-> ",
1993 frame_relative_level(next_frame));
1994
1995 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1996 (*this_cache) = cache;
1997 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1998
1999 pc = frame_func_unwind (next_frame);
2000 cur_pc = frame_pc_unwind (next_frame);
2001 frame_size = 0;
2002 found_rp = 0;
2003
2004 find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
2005
2006 if (start_pc == 0 || end_pc == 0)
2007 {
2008 error ("Cannot find bounds of current function (@0x%s), unwinding will "
2009 "fail.", paddr_nz (pc));
2010 return cache;
2011 }
2012
2013 if (end_pc > cur_pc)
2014 end_pc = cur_pc;
2015
2016 for (pc = start_pc; pc < end_pc; pc += 4)
2017 {
2018 unsigned int insn;
2019
2020 insn = read_memory_unsigned_integer (pc, 4);
2021
2022 frame_size += prologue_inst_adjust_sp (insn);
2023
2024 /* There are limited ways to store the return pointer into the
2025 stack. */
2026 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2027 {
2028 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2029 found_rp = 1;
2030 }
2031 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
2032 {
2033 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2034 found_rp = 1;
2035 }
2036 }
2037
2038 if (hppa_debug)
2039 fprintf_unfiltered (gdb_stdlog, " frame_size = %d, found_rp = %d }\n",
2040 frame_size, found_rp);
2041
2042 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size;
2043 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2044
2045 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2046 {
2047 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2048 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
2049 }
2050 else
2051 {
2052 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2053 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2054 }
2055
2056 return cache;
2057 }
2058
2059 static void
2060 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2061 struct frame_id *this_id)
2062 {
2063 struct hppa_frame_cache *info =
2064 hppa_fallback_frame_cache (next_frame, this_cache);
2065 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2066 }
2067
2068 static void
2069 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2070 void **this_cache,
2071 int regnum, int *optimizedp,
2072 enum lval_type *lvalp, CORE_ADDR *addrp,
2073 int *realnump, void *valuep)
2074 {
2075 struct hppa_frame_cache *info =
2076 hppa_fallback_frame_cache (next_frame, this_cache);
2077 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2078 optimizedp, lvalp, addrp, realnump, valuep);
2079 }
2080
2081 static const struct frame_unwind hppa_fallback_frame_unwind =
2082 {
2083 NORMAL_FRAME,
2084 hppa_fallback_frame_this_id,
2085 hppa_fallback_frame_prev_register
2086 };
2087
2088 static const struct frame_unwind *
2089 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2090 {
2091 return &hppa_fallback_frame_unwind;
2092 }
2093
2094 /* Stub frames, used for all kinds of call stubs. */
2095 struct hppa_stub_unwind_cache
2096 {
2097 CORE_ADDR base;
2098 struct trad_frame_saved_reg *saved_regs;
2099 };
2100
2101 static struct hppa_stub_unwind_cache *
2102 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2103 void **this_cache)
2104 {
2105 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2106 struct hppa_stub_unwind_cache *info;
2107 struct unwind_table_entry *u;
2108
2109 if (*this_cache)
2110 return *this_cache;
2111
2112 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2113 *this_cache = info;
2114 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2115
2116 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2117
2118 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2119 {
2120 /* HPUX uses export stubs in function calls; the export stub clobbers
2121 the return value of the caller, and, later restores it from the
2122 stack. */
2123 u = find_unwind_entry (frame_pc_unwind (next_frame));
2124
2125 if (u && u->stub_unwind.stub_type == EXPORT)
2126 {
2127 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2128
2129 return info;
2130 }
2131 }
2132
2133 /* By default we assume that stubs do not change the rp. */
2134 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2135
2136 return info;
2137 }
2138
2139 static void
2140 hppa_stub_frame_this_id (struct frame_info *next_frame,
2141 void **this_prologue_cache,
2142 struct frame_id *this_id)
2143 {
2144 struct hppa_stub_unwind_cache *info
2145 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2146
2147 if (info)
2148 *this_id = frame_id_build (info->base, frame_func_unwind (next_frame));
2149 else
2150 *this_id = null_frame_id;
2151 }
2152
2153 static void
2154 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2155 void **this_prologue_cache,
2156 int regnum, int *optimizedp,
2157 enum lval_type *lvalp, CORE_ADDR *addrp,
2158 int *realnump, void *valuep)
2159 {
2160 struct hppa_stub_unwind_cache *info
2161 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2162
2163 if (info)
2164 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2165 optimizedp, lvalp, addrp, realnump,
2166 valuep);
2167 else
2168 error ("Requesting registers from null frame.\n");
2169 }
2170
2171 static const struct frame_unwind hppa_stub_frame_unwind = {
2172 NORMAL_FRAME,
2173 hppa_stub_frame_this_id,
2174 hppa_stub_frame_prev_register
2175 };
2176
2177 static const struct frame_unwind *
2178 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2179 {
2180 CORE_ADDR pc = frame_pc_unwind (next_frame);
2181 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2183
2184 if (pc == 0
2185 || (tdep->in_solib_call_trampoline != NULL
2186 && tdep->in_solib_call_trampoline (pc, NULL))
2187 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2188 return &hppa_stub_frame_unwind;
2189 return NULL;
2190 }
2191
2192 static struct frame_id
2193 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2194 {
2195 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2196 HPPA_SP_REGNUM),
2197 frame_pc_unwind (next_frame));
2198 }
2199
2200 CORE_ADDR
2201 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2202 {
2203 ULONGEST ipsw;
2204 CORE_ADDR pc;
2205
2206 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2207 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2208
2209 /* If the current instruction is nullified, then we are effectively
2210 still executing the previous instruction. Pretend we are still
2211 there. This is needed when single stepping; if the nullified
2212 instruction is on a different line, we don't want GDB to think
2213 we've stepped onto that line. */
2214 if (ipsw & 0x00200000)
2215 pc -= 4;
2216
2217 return pc & ~0x3;
2218 }
2219
2220 /* Instead of this nasty cast, add a method pvoid() that prints out a
2221 host VOID data type (remember %p isn't portable). */
2222
2223 static CORE_ADDR
2224 hppa_pointer_to_address_hack (void *ptr)
2225 {
2226 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2227 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2228 }
2229
2230 static void
2231 unwind_command (char *exp, int from_tty)
2232 {
2233 CORE_ADDR address;
2234 struct unwind_table_entry *u;
2235
2236 /* If we have an expression, evaluate it and use it as the address. */
2237
2238 if (exp != 0 && *exp != 0)
2239 address = parse_and_eval_address (exp);
2240 else
2241 return;
2242
2243 u = find_unwind_entry (address);
2244
2245 if (!u)
2246 {
2247 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2248 return;
2249 }
2250
2251 printf_unfiltered ("unwind_table_entry (0x%s):\n",
2252 paddr_nz (hppa_pointer_to_address_hack (u)));
2253
2254 printf_unfiltered ("\tregion_start = ");
2255 print_address (u->region_start, gdb_stdout);
2256 gdb_flush (gdb_stdout);
2257
2258 printf_unfiltered ("\n\tregion_end = ");
2259 print_address (u->region_end, gdb_stdout);
2260 gdb_flush (gdb_stdout);
2261
2262 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2263
2264 printf_unfiltered ("\n\tflags =");
2265 pif (Cannot_unwind);
2266 pif (Millicode);
2267 pif (Millicode_save_sr0);
2268 pif (Entry_SR);
2269 pif (Args_stored);
2270 pif (Variable_Frame);
2271 pif (Separate_Package_Body);
2272 pif (Frame_Extension_Millicode);
2273 pif (Stack_Overflow_Check);
2274 pif (Two_Instruction_SP_Increment);
2275 pif (Ada_Region);
2276 pif (Save_SP);
2277 pif (Save_RP);
2278 pif (Save_MRP_in_frame);
2279 pif (extn_ptr_defined);
2280 pif (Cleanup_defined);
2281 pif (MPE_XL_interrupt_marker);
2282 pif (HP_UX_interrupt_marker);
2283 pif (Large_frame);
2284
2285 putchar_unfiltered ('\n');
2286
2287 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2288
2289 pin (Region_description);
2290 pin (Entry_FR);
2291 pin (Entry_GR);
2292 pin (Total_frame_size);
2293
2294 if (u->stub_unwind.stub_type)
2295 {
2296 printf_unfiltered ("\tstub type = ");
2297 switch (u->stub_unwind.stub_type)
2298 {
2299 case LONG_BRANCH:
2300 printf_unfiltered ("long branch\n");
2301 break;
2302 case PARAMETER_RELOCATION:
2303 printf_unfiltered ("parameter relocation\n");
2304 break;
2305 case EXPORT:
2306 printf_unfiltered ("export\n");
2307 break;
2308 case IMPORT:
2309 printf_unfiltered ("import\n");
2310 break;
2311 case IMPORT_SHLIB:
2312 printf_unfiltered ("import shlib\n");
2313 break;
2314 default:
2315 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2316 }
2317 }
2318 }
2319
2320 int
2321 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2322 {
2323 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2324
2325 An example of this occurs when an a.out is linked against a foo.sl.
2326 The foo.sl defines a global bar(), and the a.out declares a signature
2327 for bar(). However, the a.out doesn't directly call bar(), but passes
2328 its address in another call.
2329
2330 If you have this scenario and attempt to "break bar" before running,
2331 gdb will find a minimal symbol for bar() in the a.out. But that
2332 symbol's address will be negative. What this appears to denote is
2333 an index backwards from the base of the procedure linkage table (PLT)
2334 into the data linkage table (DLT), the end of which is contiguous
2335 with the start of the PLT. This is clearly not a valid address for
2336 us to set a breakpoint on.
2337
2338 Note that one must be careful in how one checks for a negative address.
2339 0xc0000000 is a legitimate address of something in a shared text
2340 segment, for example. Since I don't know what the possible range
2341 is of these "really, truly negative" addresses that come from the
2342 minimal symbols, I'm resorting to the gross hack of checking the
2343 top byte of the address for all 1's. Sigh. */
2344
2345 return (!target_has_stack && (pc & 0xFF000000));
2346 }
2347
2348 /* Return the GDB type object for the "standard" data type of data
2349 in register N. */
2350
2351 static struct type *
2352 hppa32_register_type (struct gdbarch *gdbarch, int reg_nr)
2353 {
2354 if (reg_nr < HPPA_FP4_REGNUM)
2355 return builtin_type_uint32;
2356 else
2357 return builtin_type_ieee_single_big;
2358 }
2359
2360 /* Return the GDB type object for the "standard" data type of data
2361 in register N. hppa64 version. */
2362
2363 static struct type *
2364 hppa64_register_type (struct gdbarch *gdbarch, int reg_nr)
2365 {
2366 if (reg_nr < HPPA_FP4_REGNUM)
2367 return builtin_type_uint64;
2368 else
2369 return builtin_type_ieee_double_big;
2370 }
2371
2372 /* Return True if REGNUM is not a register available to the user
2373 through ptrace(). */
2374
2375 static int
2376 hppa_cannot_store_register (int regnum)
2377 {
2378 return (regnum == 0
2379 || regnum == HPPA_PCSQ_HEAD_REGNUM
2380 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2381 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2382
2383 }
2384
2385 static CORE_ADDR
2386 hppa_smash_text_address (CORE_ADDR addr)
2387 {
2388 /* The low two bits of the PC on the PA contain the privilege level.
2389 Some genius implementing a (non-GCC) compiler apparently decided
2390 this means that "addresses" in a text section therefore include a
2391 privilege level, and thus symbol tables should contain these bits.
2392 This seems like a bonehead thing to do--anyway, it seems to work
2393 for our purposes to just ignore those bits. */
2394
2395 return (addr &= ~0x3);
2396 }
2397
2398 /* Get the ith function argument for the current function. */
2399 static CORE_ADDR
2400 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2401 struct type *type)
2402 {
2403 CORE_ADDR addr;
2404 get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr);
2405 return addr;
2406 }
2407
2408 static void
2409 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2410 int regnum, void *buf)
2411 {
2412 ULONGEST tmp;
2413
2414 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2415 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2416 tmp &= ~0x3;
2417 store_unsigned_integer (buf, sizeof(tmp), tmp);
2418 }
2419
2420 static CORE_ADDR
2421 hppa_find_global_pointer (struct value *function)
2422 {
2423 return 0;
2424 }
2425
2426 void
2427 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2428 struct trad_frame_saved_reg saved_regs[],
2429 int regnum, int *optimizedp,
2430 enum lval_type *lvalp, CORE_ADDR *addrp,
2431 int *realnump, void *valuep)
2432 {
2433 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2434 {
2435 if (valuep)
2436 {
2437 CORE_ADDR pc;
2438
2439 trad_frame_get_prev_register (next_frame, saved_regs,
2440 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2441 lvalp, addrp, realnump, valuep);
2442
2443 pc = extract_unsigned_integer (valuep, 4);
2444 store_unsigned_integer (valuep, 4, pc + 4);
2445 }
2446
2447 /* It's a computed value. */
2448 *optimizedp = 0;
2449 *lvalp = not_lval;
2450 *addrp = 0;
2451 *realnump = -1;
2452 return;
2453 }
2454
2455 /* Make sure the "flags" register is zero in all unwound frames.
2456 The "flags" registers is a HP-UX specific wart, and only the code
2457 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2458 with it here. This shouldn't affect other systems since those
2459 should provide zero for the "flags" register anyway. */
2460 if (regnum == HPPA_FLAGS_REGNUM)
2461 {
2462 if (valuep)
2463 store_unsigned_integer (valuep,
2464 register_size (get_frame_arch (next_frame),
2465 regnum),
2466 0);
2467
2468 /* It's a computed value. */
2469 *optimizedp = 0;
2470 *lvalp = not_lval;
2471 *addrp = 0;
2472 *realnump = -1;
2473 return;
2474 }
2475
2476 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2477 optimizedp, lvalp, addrp, realnump, valuep);
2478 }
2479 \f
2480
2481 /* Here is a table of C type sizes on hppa with various compiles
2482 and options. I measured this on PA 9000/800 with HP-UX 11.11
2483 and these compilers:
2484
2485 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2486 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2487 /opt/aCC/bin/aCC B3910B A.03.45
2488 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2489
2490 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2491 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2492 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2493 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2494 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2495 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2496 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2497 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2498
2499 Each line is:
2500
2501 compiler and options
2502 char, short, int, long, long long
2503 float, double, long double
2504 char *, void (*)()
2505
2506 So all these compilers use either ILP32 or LP64 model.
2507 TODO: gcc has more options so it needs more investigation.
2508
2509 For floating point types, see:
2510
2511 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2512 HP-UX floating-point guide, hpux 11.00
2513
2514 -- chastain 2003-12-18 */
2515
2516 static struct gdbarch *
2517 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2518 {
2519 struct gdbarch_tdep *tdep;
2520 struct gdbarch *gdbarch;
2521
2522 /* Try to determine the ABI of the object we are loading. */
2523 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2524 {
2525 /* If it's a SOM file, assume it's HP/UX SOM. */
2526 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2527 info.osabi = GDB_OSABI_HPUX_SOM;
2528 }
2529
2530 /* find a candidate among the list of pre-declared architectures. */
2531 arches = gdbarch_list_lookup_by_info (arches, &info);
2532 if (arches != NULL)
2533 return (arches->gdbarch);
2534
2535 /* If none found, then allocate and initialize one. */
2536 tdep = XZALLOC (struct gdbarch_tdep);
2537 gdbarch = gdbarch_alloc (&info, tdep);
2538
2539 /* Determine from the bfd_arch_info structure if we are dealing with
2540 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2541 then default to a 32bit machine. */
2542 if (info.bfd_arch_info != NULL)
2543 tdep->bytes_per_address =
2544 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2545 else
2546 tdep->bytes_per_address = 4;
2547
2548 tdep->find_global_pointer = hppa_find_global_pointer;
2549
2550 /* Some parts of the gdbarch vector depend on whether we are running
2551 on a 32 bits or 64 bits target. */
2552 switch (tdep->bytes_per_address)
2553 {
2554 case 4:
2555 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2556 set_gdbarch_register_name (gdbarch, hppa32_register_name);
2557 set_gdbarch_register_type (gdbarch, hppa32_register_type);
2558 break;
2559 case 8:
2560 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2561 set_gdbarch_register_name (gdbarch, hppa64_register_name);
2562 set_gdbarch_register_type (gdbarch, hppa64_register_type);
2563 break;
2564 default:
2565 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2566 tdep->bytes_per_address);
2567 }
2568
2569 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2570 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2571
2572 /* The following gdbarch vector elements are the same in both ILP32
2573 and LP64, but might show differences some day. */
2574 set_gdbarch_long_long_bit (gdbarch, 64);
2575 set_gdbarch_long_double_bit (gdbarch, 128);
2576 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
2577
2578 /* The following gdbarch vector elements do not depend on the address
2579 size, or in any other gdbarch element previously set. */
2580 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
2581 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
2582 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2583 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
2584 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
2585 set_gdbarch_cannot_fetch_register (gdbarch, hppa_cannot_store_register);
2586 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
2587 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2588 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2589 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
2590 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
2591
2592 /* Helper for function argument information. */
2593 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2594
2595 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2596
2597 /* When a hardware watchpoint triggers, we'll move the inferior past
2598 it by removing all eventpoints; stepping past the instruction
2599 that caused the trigger; reinserting eventpoints; and checking
2600 whether any watched location changed. */
2601 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2602
2603 /* Inferior function call methods. */
2604 switch (tdep->bytes_per_address)
2605 {
2606 case 4:
2607 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2608 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
2609 set_gdbarch_convert_from_func_ptr_addr
2610 (gdbarch, hppa32_convert_from_func_ptr_addr);
2611 break;
2612 case 8:
2613 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2614 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
2615 break;
2616 default:
2617 internal_error (__FILE__, __LINE__, "bad switch");
2618 }
2619
2620 /* Struct return methods. */
2621 switch (tdep->bytes_per_address)
2622 {
2623 case 4:
2624 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2625 break;
2626 case 8:
2627 set_gdbarch_return_value (gdbarch, hppa64_return_value);
2628 break;
2629 default:
2630 internal_error (__FILE__, __LINE__, "bad switch");
2631 }
2632
2633 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
2634 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
2635
2636 /* Frame unwind methods. */
2637 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2638 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
2639
2640 /* Hook in ABI-specific overrides, if they have been registered. */
2641 gdbarch_init_osabi (info, gdbarch);
2642
2643 /* Hook in the default unwinders. */
2644 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
2645 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
2646 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
2647
2648 return gdbarch;
2649 }
2650
2651 static void
2652 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2653 {
2654 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2655
2656 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2657 tdep->bytes_per_address);
2658 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
2659 }
2660
2661 void
2662 _initialize_hppa_tdep (void)
2663 {
2664 struct cmd_list_element *c;
2665
2666 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
2667
2668 hppa_objfile_priv_data = register_objfile_data ();
2669
2670 add_cmd ("unwind", class_maintenance, unwind_command,
2671 "Print unwind table entry at given address.",
2672 &maintenanceprintlist);
2673
2674 /* Debug this files internals. */
2675 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, "\
2676 Set whether hppa target specific debugging information should be displayed.", "\
2677 Show whether hppa target specific debugging information is displayed.", "\
2678 This flag controls whether hppa target specific debugging information is\n\
2679 displayed. This information is particularly useful for debugging frame\n\
2680 unwinding problems.", "hppa debug flag is %s.",
2681 NULL, NULL, &setdebuglist, &showdebuglist);
2682 }
This page took 0.08839 seconds and 5 git commands to generate.