2004-06-06 Randolph Chung <tausq@debian.org>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "completer.h"
32 #include "osabi.h"
33 #include "gdb_assert.h"
34 #include "arch-utils.h"
35 /* For argument passing to the inferior */
36 #include "symtab.h"
37 #include "dis-asm.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 #include "frame-base.h"
41
42 #include "gdbcore.h"
43 #include "gdbcmd.h"
44 #include "objfiles.h"
45 #include "hppa-tdep.h"
46
47 static int hppa_debug = 0;
48
49 /* Some local constants. */
50 static const int hppa32_num_regs = 128;
51 static const int hppa64_num_regs = 96;
52
53 /* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59 const struct objfile_data *hppa_objfile_priv_data = NULL;
60
61 /* Get at various relevent fields of an instruction word. */
62 #define MASK_5 0x1f
63 #define MASK_11 0x7ff
64 #define MASK_14 0x3fff
65 #define MASK_21 0x1fffff
66
67 /* Sizes (in bytes) of the native unwind entries. */
68 #define UNWIND_ENTRY_SIZE 16
69 #define STUB_UNWIND_ENTRY_SIZE 8
70
71 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
73 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74 int hppa_instruction_nullified (void);
75
76 /* Handle 32/64-bit struct return conventions. */
77
78 static enum return_value_convention
79 hppa32_return_value (struct gdbarch *gdbarch,
80 struct type *type, struct regcache *regcache,
81 void *readbuf, const void *writebuf)
82 {
83 if (TYPE_LENGTH (type) <= 2 * 4)
84 {
85 /* The value always lives in the right hand end of the register
86 (or register pair)? */
87 int b;
88 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
89 int part = TYPE_LENGTH (type) % 4;
90 /* The left hand register contains only part of the value,
91 transfer that first so that the rest can be xfered as entire
92 4-byte registers. */
93 if (part > 0)
94 {
95 if (readbuf != NULL)
96 regcache_cooked_read_part (regcache, reg, 4 - part,
97 part, readbuf);
98 if (writebuf != NULL)
99 regcache_cooked_write_part (regcache, reg, 4 - part,
100 part, writebuf);
101 reg++;
102 }
103 /* Now transfer the remaining register values. */
104 for (b = part; b < TYPE_LENGTH (type); b += 4)
105 {
106 if (readbuf != NULL)
107 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
108 if (writebuf != NULL)
109 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
110 reg++;
111 }
112 return RETURN_VALUE_REGISTER_CONVENTION;
113 }
114 else
115 return RETURN_VALUE_STRUCT_CONVENTION;
116 }
117
118 static enum return_value_convention
119 hppa64_return_value (struct gdbarch *gdbarch,
120 struct type *type, struct regcache *regcache,
121 void *readbuf, const void *writebuf)
122 {
123 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
124 are in r28, padded on the left. Aggregates less that 65 bits are
125 in r28, right padded. Aggregates upto 128 bits are in r28 and
126 r29, right padded. */
127 if (TYPE_CODE (type) == TYPE_CODE_FLT
128 && TYPE_LENGTH (type) <= 8)
129 {
130 /* Floats are right aligned? */
131 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
132 if (readbuf != NULL)
133 regcache_cooked_read_part (regcache, HPPA_FP4_REGNUM, offset,
134 TYPE_LENGTH (type), readbuf);
135 if (writebuf != NULL)
136 regcache_cooked_write_part (regcache, HPPA_FP4_REGNUM, offset,
137 TYPE_LENGTH (type), writebuf);
138 return RETURN_VALUE_REGISTER_CONVENTION;
139 }
140 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
141 {
142 /* Integrals are right aligned. */
143 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
144 if (readbuf != NULL)
145 regcache_cooked_read_part (regcache, 28, offset,
146 TYPE_LENGTH (type), readbuf);
147 if (writebuf != NULL)
148 regcache_cooked_write_part (regcache, 28, offset,
149 TYPE_LENGTH (type), writebuf);
150 return RETURN_VALUE_REGISTER_CONVENTION;
151 }
152 else if (TYPE_LENGTH (type) <= 2 * 8)
153 {
154 /* Composite values are left aligned. */
155 int b;
156 for (b = 0; b < TYPE_LENGTH (type); b += 8)
157 {
158 int part = min (8, TYPE_LENGTH (type) - b);
159 if (readbuf != NULL)
160 regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
161 (char *) readbuf + b);
162 if (writebuf != NULL)
163 regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
164 (const char *) writebuf + b);
165 }
166 return RETURN_VALUE_REGISTER_CONVENTION;
167 }
168 else
169 return RETURN_VALUE_STRUCT_CONVENTION;
170 }
171
172 /* Routines to extract various sized constants out of hppa
173 instructions. */
174
175 /* This assumes that no garbage lies outside of the lower bits of
176 value. */
177
178 int
179 hppa_sign_extend (unsigned val, unsigned bits)
180 {
181 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
182 }
183
184 /* For many immediate values the sign bit is the low bit! */
185
186 int
187 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
188 {
189 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
190 }
191
192 /* Extract the bits at positions between FROM and TO, using HP's numbering
193 (MSB = 0). */
194
195 int
196 hppa_get_field (unsigned word, int from, int to)
197 {
198 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
199 }
200
201 /* extract the immediate field from a ld{bhw}s instruction */
202
203 int
204 hppa_extract_5_load (unsigned word)
205 {
206 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
207 }
208
209 /* extract the immediate field from a break instruction */
210
211 unsigned
212 hppa_extract_5r_store (unsigned word)
213 {
214 return (word & MASK_5);
215 }
216
217 /* extract the immediate field from a {sr}sm instruction */
218
219 unsigned
220 hppa_extract_5R_store (unsigned word)
221 {
222 return (word >> 16 & MASK_5);
223 }
224
225 /* extract a 14 bit immediate field */
226
227 int
228 hppa_extract_14 (unsigned word)
229 {
230 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
231 }
232
233 /* extract a 21 bit constant */
234
235 int
236 hppa_extract_21 (unsigned word)
237 {
238 int val;
239
240 word &= MASK_21;
241 word <<= 11;
242 val = hppa_get_field (word, 20, 20);
243 val <<= 11;
244 val |= hppa_get_field (word, 9, 19);
245 val <<= 2;
246 val |= hppa_get_field (word, 5, 6);
247 val <<= 5;
248 val |= hppa_get_field (word, 0, 4);
249 val <<= 2;
250 val |= hppa_get_field (word, 7, 8);
251 return hppa_sign_extend (val, 21) << 11;
252 }
253
254 /* extract a 17 bit constant from branch instructions, returning the
255 19 bit signed value. */
256
257 int
258 hppa_extract_17 (unsigned word)
259 {
260 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
261 hppa_get_field (word, 29, 29) << 10 |
262 hppa_get_field (word, 11, 15) << 11 |
263 (word & 0x1) << 16, 17) << 2;
264 }
265 \f
266
267 /* Compare the start address for two unwind entries returning 1 if
268 the first address is larger than the second, -1 if the second is
269 larger than the first, and zero if they are equal. */
270
271 static int
272 compare_unwind_entries (const void *arg1, const void *arg2)
273 {
274 const struct unwind_table_entry *a = arg1;
275 const struct unwind_table_entry *b = arg2;
276
277 if (a->region_start > b->region_start)
278 return 1;
279 else if (a->region_start < b->region_start)
280 return -1;
281 else
282 return 0;
283 }
284
285 static void
286 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
287 {
288 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
289 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
290 {
291 bfd_vma value = section->vma - section->filepos;
292 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
293
294 if (value < *low_text_segment_address)
295 *low_text_segment_address = value;
296 }
297 }
298
299 static void
300 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
301 asection *section, unsigned int entries, unsigned int size,
302 CORE_ADDR text_offset)
303 {
304 /* We will read the unwind entries into temporary memory, then
305 fill in the actual unwind table. */
306
307 if (size > 0)
308 {
309 unsigned long tmp;
310 unsigned i;
311 char *buf = alloca (size);
312 CORE_ADDR low_text_segment_address;
313
314 /* For ELF targets, then unwinds are supposed to
315 be segment relative offsets instead of absolute addresses.
316
317 Note that when loading a shared library (text_offset != 0) the
318 unwinds are already relative to the text_offset that will be
319 passed in. */
320 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
321 {
322 low_text_segment_address = -1;
323
324 bfd_map_over_sections (objfile->obfd,
325 record_text_segment_lowaddr,
326 &low_text_segment_address);
327
328 text_offset = low_text_segment_address;
329 }
330
331 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
332
333 /* Now internalize the information being careful to handle host/target
334 endian issues. */
335 for (i = 0; i < entries; i++)
336 {
337 table[i].region_start = bfd_get_32 (objfile->obfd,
338 (bfd_byte *) buf);
339 table[i].region_start += text_offset;
340 buf += 4;
341 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
342 table[i].region_end += text_offset;
343 buf += 4;
344 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
345 buf += 4;
346 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
347 table[i].Millicode = (tmp >> 30) & 0x1;
348 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
349 table[i].Region_description = (tmp >> 27) & 0x3;
350 table[i].reserved1 = (tmp >> 26) & 0x1;
351 table[i].Entry_SR = (tmp >> 25) & 0x1;
352 table[i].Entry_FR = (tmp >> 21) & 0xf;
353 table[i].Entry_GR = (tmp >> 16) & 0x1f;
354 table[i].Args_stored = (tmp >> 15) & 0x1;
355 table[i].Variable_Frame = (tmp >> 14) & 0x1;
356 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
357 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
358 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
359 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
360 table[i].Ada_Region = (tmp >> 9) & 0x1;
361 table[i].cxx_info = (tmp >> 8) & 0x1;
362 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
363 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
364 table[i].reserved2 = (tmp >> 5) & 0x1;
365 table[i].Save_SP = (tmp >> 4) & 0x1;
366 table[i].Save_RP = (tmp >> 3) & 0x1;
367 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
368 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
369 table[i].Cleanup_defined = tmp & 0x1;
370 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
371 buf += 4;
372 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
373 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
374 table[i].Large_frame = (tmp >> 29) & 0x1;
375 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
376 table[i].reserved4 = (tmp >> 27) & 0x1;
377 table[i].Total_frame_size = tmp & 0x7ffffff;
378
379 /* Stub unwinds are handled elsewhere. */
380 table[i].stub_unwind.stub_type = 0;
381 table[i].stub_unwind.padding = 0;
382 }
383 }
384 }
385
386 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
387 the object file. This info is used mainly by find_unwind_entry() to find
388 out the stack frame size and frame pointer used by procedures. We put
389 everything on the psymbol obstack in the objfile so that it automatically
390 gets freed when the objfile is destroyed. */
391
392 static void
393 read_unwind_info (struct objfile *objfile)
394 {
395 asection *unwind_sec, *stub_unwind_sec;
396 unsigned unwind_size, stub_unwind_size, total_size;
397 unsigned index, unwind_entries;
398 unsigned stub_entries, total_entries;
399 CORE_ADDR text_offset;
400 struct hppa_unwind_info *ui;
401 struct hppa_objfile_private *obj_private;
402
403 text_offset = ANOFFSET (objfile->section_offsets, 0);
404 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
405 sizeof (struct hppa_unwind_info));
406
407 ui->table = NULL;
408 ui->cache = NULL;
409 ui->last = -1;
410
411 /* For reasons unknown the HP PA64 tools generate multiple unwinder
412 sections in a single executable. So we just iterate over every
413 section in the BFD looking for unwinder sections intead of trying
414 to do a lookup with bfd_get_section_by_name.
415
416 First determine the total size of the unwind tables so that we
417 can allocate memory in a nice big hunk. */
418 total_entries = 0;
419 for (unwind_sec = objfile->obfd->sections;
420 unwind_sec;
421 unwind_sec = unwind_sec->next)
422 {
423 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
424 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
425 {
426 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
427 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
428
429 total_entries += unwind_entries;
430 }
431 }
432
433 /* Now compute the size of the stub unwinds. Note the ELF tools do not
434 use stub unwinds at the curren time. */
435 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
436
437 if (stub_unwind_sec)
438 {
439 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
440 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
441 }
442 else
443 {
444 stub_unwind_size = 0;
445 stub_entries = 0;
446 }
447
448 /* Compute total number of unwind entries and their total size. */
449 total_entries += stub_entries;
450 total_size = total_entries * sizeof (struct unwind_table_entry);
451
452 /* Allocate memory for the unwind table. */
453 ui->table = (struct unwind_table_entry *)
454 obstack_alloc (&objfile->objfile_obstack, total_size);
455 ui->last = total_entries - 1;
456
457 /* Now read in each unwind section and internalize the standard unwind
458 entries. */
459 index = 0;
460 for (unwind_sec = objfile->obfd->sections;
461 unwind_sec;
462 unwind_sec = unwind_sec->next)
463 {
464 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
465 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
466 {
467 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
468 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
469
470 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
471 unwind_entries, unwind_size, text_offset);
472 index += unwind_entries;
473 }
474 }
475
476 /* Now read in and internalize the stub unwind entries. */
477 if (stub_unwind_size > 0)
478 {
479 unsigned int i;
480 char *buf = alloca (stub_unwind_size);
481
482 /* Read in the stub unwind entries. */
483 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
484 0, stub_unwind_size);
485
486 /* Now convert them into regular unwind entries. */
487 for (i = 0; i < stub_entries; i++, index++)
488 {
489 /* Clear out the next unwind entry. */
490 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
491
492 /* Convert offset & size into region_start and region_end.
493 Stuff away the stub type into "reserved" fields. */
494 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
495 (bfd_byte *) buf);
496 ui->table[index].region_start += text_offset;
497 buf += 4;
498 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
499 (bfd_byte *) buf);
500 buf += 2;
501 ui->table[index].region_end
502 = ui->table[index].region_start + 4 *
503 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
504 buf += 2;
505 }
506
507 }
508
509 /* Unwind table needs to be kept sorted. */
510 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
511 compare_unwind_entries);
512
513 /* Keep a pointer to the unwind information. */
514 obj_private = (struct hppa_objfile_private *)
515 objfile_data (objfile, hppa_objfile_priv_data);
516 if (obj_private == NULL)
517 {
518 obj_private = (struct hppa_objfile_private *)
519 obstack_alloc (&objfile->objfile_obstack,
520 sizeof (struct hppa_objfile_private));
521 set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
522 obj_private->unwind_info = NULL;
523 obj_private->so_info = NULL;
524 obj_private->dp = 0;
525 }
526 obj_private->unwind_info = ui;
527 }
528
529 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
530 of the objfiles seeking the unwind table entry for this PC. Each objfile
531 contains a sorted list of struct unwind_table_entry. Since we do a binary
532 search of the unwind tables, we depend upon them to be sorted. */
533
534 struct unwind_table_entry *
535 find_unwind_entry (CORE_ADDR pc)
536 {
537 int first, middle, last;
538 struct objfile *objfile;
539 struct hppa_objfile_private *priv;
540
541 if (hppa_debug)
542 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
543 paddr_nz (pc));
544
545 /* A function at address 0? Not in HP-UX! */
546 if (pc == (CORE_ADDR) 0)
547 {
548 if (hppa_debug)
549 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
550 return NULL;
551 }
552
553 ALL_OBJFILES (objfile)
554 {
555 struct hppa_unwind_info *ui;
556 ui = NULL;
557 priv = objfile_data (objfile, hppa_objfile_priv_data);
558 if (priv)
559 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
560
561 if (!ui)
562 {
563 read_unwind_info (objfile);
564 priv = objfile_data (objfile, hppa_objfile_priv_data);
565 if (priv == NULL)
566 error ("Internal error reading unwind information.");
567 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
568 }
569
570 /* First, check the cache */
571
572 if (ui->cache
573 && pc >= ui->cache->region_start
574 && pc <= ui->cache->region_end)
575 {
576 if (hppa_debug)
577 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
578 paddr_nz ((CORE_ADDR) ui->cache));
579 return ui->cache;
580 }
581
582 /* Not in the cache, do a binary search */
583
584 first = 0;
585 last = ui->last;
586
587 while (first <= last)
588 {
589 middle = (first + last) / 2;
590 if (pc >= ui->table[middle].region_start
591 && pc <= ui->table[middle].region_end)
592 {
593 ui->cache = &ui->table[middle];
594 if (hppa_debug)
595 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
596 paddr_nz ((CORE_ADDR) ui->cache));
597 return &ui->table[middle];
598 }
599
600 if (pc < ui->table[middle].region_start)
601 last = middle - 1;
602 else
603 first = middle + 1;
604 }
605 } /* ALL_OBJFILES() */
606
607 if (hppa_debug)
608 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
609
610 return NULL;
611 }
612
613 static const unsigned char *
614 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
615 {
616 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
617 (*len) = sizeof (breakpoint);
618 return breakpoint;
619 }
620
621 /* Return the name of a register. */
622
623 const char *
624 hppa32_register_name (int i)
625 {
626 static char *names[] = {
627 "flags", "r1", "rp", "r3",
628 "r4", "r5", "r6", "r7",
629 "r8", "r9", "r10", "r11",
630 "r12", "r13", "r14", "r15",
631 "r16", "r17", "r18", "r19",
632 "r20", "r21", "r22", "r23",
633 "r24", "r25", "r26", "dp",
634 "ret0", "ret1", "sp", "r31",
635 "sar", "pcoqh", "pcsqh", "pcoqt",
636 "pcsqt", "eiem", "iir", "isr",
637 "ior", "ipsw", "goto", "sr4",
638 "sr0", "sr1", "sr2", "sr3",
639 "sr5", "sr6", "sr7", "cr0",
640 "cr8", "cr9", "ccr", "cr12",
641 "cr13", "cr24", "cr25", "cr26",
642 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
643 "fpsr", "fpe1", "fpe2", "fpe3",
644 "fpe4", "fpe5", "fpe6", "fpe7",
645 "fr4", "fr4R", "fr5", "fr5R",
646 "fr6", "fr6R", "fr7", "fr7R",
647 "fr8", "fr8R", "fr9", "fr9R",
648 "fr10", "fr10R", "fr11", "fr11R",
649 "fr12", "fr12R", "fr13", "fr13R",
650 "fr14", "fr14R", "fr15", "fr15R",
651 "fr16", "fr16R", "fr17", "fr17R",
652 "fr18", "fr18R", "fr19", "fr19R",
653 "fr20", "fr20R", "fr21", "fr21R",
654 "fr22", "fr22R", "fr23", "fr23R",
655 "fr24", "fr24R", "fr25", "fr25R",
656 "fr26", "fr26R", "fr27", "fr27R",
657 "fr28", "fr28R", "fr29", "fr29R",
658 "fr30", "fr30R", "fr31", "fr31R"
659 };
660 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
661 return NULL;
662 else
663 return names[i];
664 }
665
666 const char *
667 hppa64_register_name (int i)
668 {
669 static char *names[] = {
670 "flags", "r1", "rp", "r3",
671 "r4", "r5", "r6", "r7",
672 "r8", "r9", "r10", "r11",
673 "r12", "r13", "r14", "r15",
674 "r16", "r17", "r18", "r19",
675 "r20", "r21", "r22", "r23",
676 "r24", "r25", "r26", "dp",
677 "ret0", "ret1", "sp", "r31",
678 "sar", "pcoqh", "pcsqh", "pcoqt",
679 "pcsqt", "eiem", "iir", "isr",
680 "ior", "ipsw", "goto", "sr4",
681 "sr0", "sr1", "sr2", "sr3",
682 "sr5", "sr6", "sr7", "cr0",
683 "cr8", "cr9", "ccr", "cr12",
684 "cr13", "cr24", "cr25", "cr26",
685 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
686 "fpsr", "fpe1", "fpe2", "fpe3",
687 "fr4", "fr5", "fr6", "fr7",
688 "fr8", "fr9", "fr10", "fr11",
689 "fr12", "fr13", "fr14", "fr15",
690 "fr16", "fr17", "fr18", "fr19",
691 "fr20", "fr21", "fr22", "fr23",
692 "fr24", "fr25", "fr26", "fr27",
693 "fr28", "fr29", "fr30", "fr31"
694 };
695 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
696 return NULL;
697 else
698 return names[i];
699 }
700
701 /* This function pushes a stack frame with arguments as part of the
702 inferior function calling mechanism.
703
704 This is the version of the function for the 32-bit PA machines, in
705 which later arguments appear at lower addresses. (The stack always
706 grows towards higher addresses.)
707
708 We simply allocate the appropriate amount of stack space and put
709 arguments into their proper slots. */
710
711 CORE_ADDR
712 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
713 struct regcache *regcache, CORE_ADDR bp_addr,
714 int nargs, struct value **args, CORE_ADDR sp,
715 int struct_return, CORE_ADDR struct_addr)
716 {
717 /* Stack base address at which any pass-by-reference parameters are
718 stored. */
719 CORE_ADDR struct_end = 0;
720 /* Stack base address at which the first parameter is stored. */
721 CORE_ADDR param_end = 0;
722
723 /* The inner most end of the stack after all the parameters have
724 been pushed. */
725 CORE_ADDR new_sp = 0;
726
727 /* Two passes. First pass computes the location of everything,
728 second pass writes the bytes out. */
729 int write_pass;
730
731 /* Global pointer (r19) of the function we are trying to call. */
732 CORE_ADDR gp;
733
734 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
735
736 for (write_pass = 0; write_pass < 2; write_pass++)
737 {
738 CORE_ADDR struct_ptr = 0;
739 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
740 struct_ptr is adjusted for each argument below, so the first
741 argument will end up at sp-36. */
742 CORE_ADDR param_ptr = 32;
743 int i;
744 int small_struct = 0;
745
746 for (i = 0; i < nargs; i++)
747 {
748 struct value *arg = args[i];
749 struct type *type = check_typedef (VALUE_TYPE (arg));
750 /* The corresponding parameter that is pushed onto the
751 stack, and [possibly] passed in a register. */
752 char param_val[8];
753 int param_len;
754 memset (param_val, 0, sizeof param_val);
755 if (TYPE_LENGTH (type) > 8)
756 {
757 /* Large parameter, pass by reference. Store the value
758 in "struct" area and then pass its address. */
759 param_len = 4;
760 struct_ptr += align_up (TYPE_LENGTH (type), 8);
761 if (write_pass)
762 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
763 TYPE_LENGTH (type));
764 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
765 }
766 else if (TYPE_CODE (type) == TYPE_CODE_INT
767 || TYPE_CODE (type) == TYPE_CODE_ENUM)
768 {
769 /* Integer value store, right aligned. "unpack_long"
770 takes care of any sign-extension problems. */
771 param_len = align_up (TYPE_LENGTH (type), 4);
772 store_unsigned_integer (param_val, param_len,
773 unpack_long (type,
774 VALUE_CONTENTS (arg)));
775 }
776 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
777 {
778 /* Floating point value store, right aligned. */
779 param_len = align_up (TYPE_LENGTH (type), 4);
780 memcpy (param_val, VALUE_CONTENTS (arg), param_len);
781 }
782 else
783 {
784 param_len = align_up (TYPE_LENGTH (type), 4);
785
786 /* Small struct value are stored right-aligned. */
787 memcpy (param_val + param_len - TYPE_LENGTH (type),
788 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
789
790 /* Structures of size 5, 6 and 7 bytes are special in that
791 the higher-ordered word is stored in the lower-ordered
792 argument, and even though it is a 8-byte quantity the
793 registers need not be 8-byte aligned. */
794 if (param_len > 4 && param_len < 8)
795 small_struct = 1;
796 }
797
798 param_ptr += param_len;
799 if (param_len == 8 && !small_struct)
800 param_ptr = align_up (param_ptr, 8);
801
802 /* First 4 non-FP arguments are passed in gr26-gr23.
803 First 4 32-bit FP arguments are passed in fr4L-fr7L.
804 First 2 64-bit FP arguments are passed in fr5 and fr7.
805
806 The rest go on the stack, starting at sp-36, towards lower
807 addresses. 8-byte arguments must be aligned to a 8-byte
808 stack boundary. */
809 if (write_pass)
810 {
811 write_memory (param_end - param_ptr, param_val, param_len);
812
813 /* There are some cases when we don't know the type
814 expected by the callee (e.g. for variadic functions), so
815 pass the parameters in both general and fp regs. */
816 if (param_ptr <= 48)
817 {
818 int grreg = 26 - (param_ptr - 36) / 4;
819 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
820 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
821
822 regcache_cooked_write (regcache, grreg, param_val);
823 regcache_cooked_write (regcache, fpLreg, param_val);
824
825 if (param_len > 4)
826 {
827 regcache_cooked_write (regcache, grreg + 1,
828 param_val + 4);
829
830 regcache_cooked_write (regcache, fpreg, param_val);
831 regcache_cooked_write (regcache, fpreg + 1,
832 param_val + 4);
833 }
834 }
835 }
836 }
837
838 /* Update the various stack pointers. */
839 if (!write_pass)
840 {
841 struct_end = sp + align_up (struct_ptr, 64);
842 /* PARAM_PTR already accounts for all the arguments passed
843 by the user. However, the ABI mandates minimum stack
844 space allocations for outgoing arguments. The ABI also
845 mandates minimum stack alignments which we must
846 preserve. */
847 param_end = struct_end + align_up (param_ptr, 64);
848 }
849 }
850
851 /* If a structure has to be returned, set up register 28 to hold its
852 address */
853 if (struct_return)
854 write_register (28, struct_addr);
855
856 gp = tdep->find_global_pointer (function);
857
858 if (gp != 0)
859 write_register (19, gp);
860
861 /* Set the return address. */
862 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
863
864 /* Update the Stack Pointer. */
865 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
866
867 return param_end;
868 }
869
870 /* This function pushes a stack frame with arguments as part of the
871 inferior function calling mechanism.
872
873 This is the version for the PA64, in which later arguments appear
874 at higher addresses. (The stack always grows towards higher
875 addresses.)
876
877 We simply allocate the appropriate amount of stack space and put
878 arguments into their proper slots.
879
880 This ABI also requires that the caller provide an argument pointer
881 to the callee, so we do that too. */
882
883 CORE_ADDR
884 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
885 struct regcache *regcache, CORE_ADDR bp_addr,
886 int nargs, struct value **args, CORE_ADDR sp,
887 int struct_return, CORE_ADDR struct_addr)
888 {
889 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
890 reverse engineering testsuite failures. */
891
892 /* Stack base address at which any pass-by-reference parameters are
893 stored. */
894 CORE_ADDR struct_end = 0;
895 /* Stack base address at which the first parameter is stored. */
896 CORE_ADDR param_end = 0;
897
898 /* The inner most end of the stack after all the parameters have
899 been pushed. */
900 CORE_ADDR new_sp = 0;
901
902 /* Two passes. First pass computes the location of everything,
903 second pass writes the bytes out. */
904 int write_pass;
905 for (write_pass = 0; write_pass < 2; write_pass++)
906 {
907 CORE_ADDR struct_ptr = 0;
908 CORE_ADDR param_ptr = 0;
909 int i;
910 for (i = 0; i < nargs; i++)
911 {
912 struct value *arg = args[i];
913 struct type *type = check_typedef (VALUE_TYPE (arg));
914 if ((TYPE_CODE (type) == TYPE_CODE_INT
915 || TYPE_CODE (type) == TYPE_CODE_ENUM)
916 && TYPE_LENGTH (type) <= 8)
917 {
918 /* Integer value store, right aligned. "unpack_long"
919 takes care of any sign-extension problems. */
920 param_ptr += 8;
921 if (write_pass)
922 {
923 ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
924 int reg = 27 - param_ptr / 8;
925 write_memory_unsigned_integer (param_end - param_ptr,
926 val, 8);
927 if (reg >= 19)
928 regcache_cooked_write_unsigned (regcache, reg, val);
929 }
930 }
931 else
932 {
933 /* Small struct value, store left aligned? */
934 int reg;
935 if (TYPE_LENGTH (type) > 8)
936 {
937 param_ptr = align_up (param_ptr, 16);
938 reg = 26 - param_ptr / 8;
939 param_ptr += align_up (TYPE_LENGTH (type), 16);
940 }
941 else
942 {
943 param_ptr = align_up (param_ptr, 8);
944 reg = 26 - param_ptr / 8;
945 param_ptr += align_up (TYPE_LENGTH (type), 8);
946 }
947 if (write_pass)
948 {
949 int byte;
950 write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
951 TYPE_LENGTH (type));
952 for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
953 {
954 if (reg >= 19)
955 {
956 int len = min (8, TYPE_LENGTH (type) - byte);
957 regcache_cooked_write_part (regcache, reg, 0, len,
958 VALUE_CONTENTS (arg) + byte);
959 }
960 reg--;
961 }
962 }
963 }
964 }
965 /* Update the various stack pointers. */
966 if (!write_pass)
967 {
968 struct_end = sp + struct_ptr;
969 /* PARAM_PTR already accounts for all the arguments passed
970 by the user. However, the ABI mandates minimum stack
971 space allocations for outgoing arguments. The ABI also
972 mandates minimum stack alignments which we must
973 preserve. */
974 param_end = struct_end + max (align_up (param_ptr, 16), 64);
975 }
976 }
977
978 /* If a structure has to be returned, set up register 28 to hold its
979 address */
980 if (struct_return)
981 write_register (28, struct_addr);
982
983 /* Set the return address. */
984 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
985
986 /* Update the Stack Pointer. */
987 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end + 64);
988
989 /* The stack will have 32 bytes of additional space for a frame marker. */
990 return param_end + 64;
991 }
992
993 static CORE_ADDR
994 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
995 CORE_ADDR addr,
996 struct target_ops *targ)
997 {
998 if (addr & 2)
999 {
1000 CORE_ADDR plabel;
1001
1002 plabel = addr & ~3;
1003 target_read_memory(plabel, (char *)&addr, 4);
1004 }
1005
1006 return addr;
1007 }
1008
1009 static CORE_ADDR
1010 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1011 {
1012 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1013 and not _bit_)! */
1014 return align_up (addr, 64);
1015 }
1016
1017 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1018
1019 static CORE_ADDR
1020 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1021 {
1022 /* Just always 16-byte align. */
1023 return align_up (addr, 16);
1024 }
1025
1026
1027 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1028 bits. */
1029
1030 static CORE_ADDR
1031 hppa_target_read_pc (ptid_t ptid)
1032 {
1033 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1034
1035 /* The following test does not belong here. It is OS-specific, and belongs
1036 in native code. */
1037 /* Test SS_INSYSCALL */
1038 if (flags & 2)
1039 return read_register_pid (31, ptid) & ~0x3;
1040
1041 return read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid) & ~0x3;
1042 }
1043
1044 /* Write out the PC. If currently in a syscall, then also write the new
1045 PC value into %r31. */
1046
1047 static void
1048 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
1049 {
1050 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1051
1052 /* The following test does not belong here. It is OS-specific, and belongs
1053 in native code. */
1054 /* If in a syscall, then set %r31. Also make sure to get the
1055 privilege bits set correctly. */
1056 /* Test SS_INSYSCALL */
1057 if (flags & 2)
1058 write_register_pid (31, v | 0x3, ptid);
1059
1060 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, v, ptid);
1061 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, v + 4, ptid);
1062 }
1063
1064 /* return the alignment of a type in bytes. Structures have the maximum
1065 alignment required by their fields. */
1066
1067 static int
1068 hppa_alignof (struct type *type)
1069 {
1070 int max_align, align, i;
1071 CHECK_TYPEDEF (type);
1072 switch (TYPE_CODE (type))
1073 {
1074 case TYPE_CODE_PTR:
1075 case TYPE_CODE_INT:
1076 case TYPE_CODE_FLT:
1077 return TYPE_LENGTH (type);
1078 case TYPE_CODE_ARRAY:
1079 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1080 case TYPE_CODE_STRUCT:
1081 case TYPE_CODE_UNION:
1082 max_align = 1;
1083 for (i = 0; i < TYPE_NFIELDS (type); i++)
1084 {
1085 /* Bit fields have no real alignment. */
1086 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1087 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1088 {
1089 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1090 max_align = max (max_align, align);
1091 }
1092 }
1093 return max_align;
1094 default:
1095 return 4;
1096 }
1097 }
1098
1099 /* For the given instruction (INST), return any adjustment it makes
1100 to the stack pointer or zero for no adjustment.
1101
1102 This only handles instructions commonly found in prologues. */
1103
1104 static int
1105 prologue_inst_adjust_sp (unsigned long inst)
1106 {
1107 /* This must persist across calls. */
1108 static int save_high21;
1109
1110 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1111 if ((inst & 0xffffc000) == 0x37de0000)
1112 return hppa_extract_14 (inst);
1113
1114 /* stwm X,D(sp) */
1115 if ((inst & 0xffe00000) == 0x6fc00000)
1116 return hppa_extract_14 (inst);
1117
1118 /* std,ma X,D(sp) */
1119 if ((inst & 0xffe00008) == 0x73c00008)
1120 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1121
1122 /* addil high21,%r1; ldo low11,(%r1),%r30)
1123 save high bits in save_high21 for later use. */
1124 if ((inst & 0xffe00000) == 0x28200000)
1125 {
1126 save_high21 = hppa_extract_21 (inst);
1127 return 0;
1128 }
1129
1130 if ((inst & 0xffff0000) == 0x343e0000)
1131 return save_high21 + hppa_extract_14 (inst);
1132
1133 /* fstws as used by the HP compilers. */
1134 if ((inst & 0xffffffe0) == 0x2fd01220)
1135 return hppa_extract_5_load (inst);
1136
1137 /* No adjustment. */
1138 return 0;
1139 }
1140
1141 /* Return nonzero if INST is a branch of some kind, else return zero. */
1142
1143 static int
1144 is_branch (unsigned long inst)
1145 {
1146 switch (inst >> 26)
1147 {
1148 case 0x20:
1149 case 0x21:
1150 case 0x22:
1151 case 0x23:
1152 case 0x27:
1153 case 0x28:
1154 case 0x29:
1155 case 0x2a:
1156 case 0x2b:
1157 case 0x2f:
1158 case 0x30:
1159 case 0x31:
1160 case 0x32:
1161 case 0x33:
1162 case 0x38:
1163 case 0x39:
1164 case 0x3a:
1165 case 0x3b:
1166 return 1;
1167
1168 default:
1169 return 0;
1170 }
1171 }
1172
1173 /* Return the register number for a GR which is saved by INST or
1174 zero it INST does not save a GR. */
1175
1176 static int
1177 inst_saves_gr (unsigned long inst)
1178 {
1179 /* Does it look like a stw? */
1180 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1181 || (inst >> 26) == 0x1f
1182 || ((inst >> 26) == 0x1f
1183 && ((inst >> 6) == 0xa)))
1184 return hppa_extract_5R_store (inst);
1185
1186 /* Does it look like a std? */
1187 if ((inst >> 26) == 0x1c
1188 || ((inst >> 26) == 0x03
1189 && ((inst >> 6) & 0xf) == 0xb))
1190 return hppa_extract_5R_store (inst);
1191
1192 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1193 if ((inst >> 26) == 0x1b)
1194 return hppa_extract_5R_store (inst);
1195
1196 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1197 too. */
1198 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1199 || ((inst >> 26) == 0x3
1200 && (((inst >> 6) & 0xf) == 0x8
1201 || (inst >> 6) & 0xf) == 0x9))
1202 return hppa_extract_5R_store (inst);
1203
1204 return 0;
1205 }
1206
1207 /* Return the register number for a FR which is saved by INST or
1208 zero it INST does not save a FR.
1209
1210 Note we only care about full 64bit register stores (that's the only
1211 kind of stores the prologue will use).
1212
1213 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1214
1215 static int
1216 inst_saves_fr (unsigned long inst)
1217 {
1218 /* is this an FSTD ? */
1219 if ((inst & 0xfc00dfc0) == 0x2c001200)
1220 return hppa_extract_5r_store (inst);
1221 if ((inst & 0xfc000002) == 0x70000002)
1222 return hppa_extract_5R_store (inst);
1223 /* is this an FSTW ? */
1224 if ((inst & 0xfc00df80) == 0x24001200)
1225 return hppa_extract_5r_store (inst);
1226 if ((inst & 0xfc000002) == 0x7c000000)
1227 return hppa_extract_5R_store (inst);
1228 return 0;
1229 }
1230
1231 /* Advance PC across any function entry prologue instructions
1232 to reach some "real" code.
1233
1234 Use information in the unwind table to determine what exactly should
1235 be in the prologue. */
1236
1237
1238 CORE_ADDR
1239 skip_prologue_hard_way (CORE_ADDR pc)
1240 {
1241 char buf[4];
1242 CORE_ADDR orig_pc = pc;
1243 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1244 unsigned long args_stored, status, i, restart_gr, restart_fr;
1245 struct unwind_table_entry *u;
1246
1247 restart_gr = 0;
1248 restart_fr = 0;
1249
1250 restart:
1251 u = find_unwind_entry (pc);
1252 if (!u)
1253 return pc;
1254
1255 /* If we are not at the beginning of a function, then return now. */
1256 if ((pc & ~0x3) != u->region_start)
1257 return pc;
1258
1259 /* This is how much of a frame adjustment we need to account for. */
1260 stack_remaining = u->Total_frame_size << 3;
1261
1262 /* Magic register saves we want to know about. */
1263 save_rp = u->Save_RP;
1264 save_sp = u->Save_SP;
1265
1266 /* An indication that args may be stored into the stack. Unfortunately
1267 the HPUX compilers tend to set this in cases where no args were
1268 stored too!. */
1269 args_stored = 1;
1270
1271 /* Turn the Entry_GR field into a bitmask. */
1272 save_gr = 0;
1273 for (i = 3; i < u->Entry_GR + 3; i++)
1274 {
1275 /* Frame pointer gets saved into a special location. */
1276 if (u->Save_SP && i == HPPA_FP_REGNUM)
1277 continue;
1278
1279 save_gr |= (1 << i);
1280 }
1281 save_gr &= ~restart_gr;
1282
1283 /* Turn the Entry_FR field into a bitmask too. */
1284 save_fr = 0;
1285 for (i = 12; i < u->Entry_FR + 12; i++)
1286 save_fr |= (1 << i);
1287 save_fr &= ~restart_fr;
1288
1289 /* Loop until we find everything of interest or hit a branch.
1290
1291 For unoptimized GCC code and for any HP CC code this will never ever
1292 examine any user instructions.
1293
1294 For optimzied GCC code we're faced with problems. GCC will schedule
1295 its prologue and make prologue instructions available for delay slot
1296 filling. The end result is user code gets mixed in with the prologue
1297 and a prologue instruction may be in the delay slot of the first branch
1298 or call.
1299
1300 Some unexpected things are expected with debugging optimized code, so
1301 we allow this routine to walk past user instructions in optimized
1302 GCC code. */
1303 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1304 || args_stored)
1305 {
1306 unsigned int reg_num;
1307 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1308 unsigned long old_save_rp, old_save_sp, next_inst;
1309
1310 /* Save copies of all the triggers so we can compare them later
1311 (only for HPC). */
1312 old_save_gr = save_gr;
1313 old_save_fr = save_fr;
1314 old_save_rp = save_rp;
1315 old_save_sp = save_sp;
1316 old_stack_remaining = stack_remaining;
1317
1318 status = read_memory_nobpt (pc, buf, 4);
1319 inst = extract_unsigned_integer (buf, 4);
1320
1321 /* Yow! */
1322 if (status != 0)
1323 return pc;
1324
1325 /* Note the interesting effects of this instruction. */
1326 stack_remaining -= prologue_inst_adjust_sp (inst);
1327
1328 /* There are limited ways to store the return pointer into the
1329 stack. */
1330 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
1331 save_rp = 0;
1332
1333 /* These are the only ways we save SP into the stack. At this time
1334 the HP compilers never bother to save SP into the stack. */
1335 if ((inst & 0xffffc000) == 0x6fc10000
1336 || (inst & 0xffffc00c) == 0x73c10008)
1337 save_sp = 0;
1338
1339 /* Are we loading some register with an offset from the argument
1340 pointer? */
1341 if ((inst & 0xffe00000) == 0x37a00000
1342 || (inst & 0xffffffe0) == 0x081d0240)
1343 {
1344 pc += 4;
1345 continue;
1346 }
1347
1348 /* Account for general and floating-point register saves. */
1349 reg_num = inst_saves_gr (inst);
1350 save_gr &= ~(1 << reg_num);
1351
1352 /* Ugh. Also account for argument stores into the stack.
1353 Unfortunately args_stored only tells us that some arguments
1354 where stored into the stack. Not how many or what kind!
1355
1356 This is a kludge as on the HP compiler sets this bit and it
1357 never does prologue scheduling. So once we see one, skip past
1358 all of them. We have similar code for the fp arg stores below.
1359
1360 FIXME. Can still die if we have a mix of GR and FR argument
1361 stores! */
1362 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1363 {
1364 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1365 {
1366 pc += 4;
1367 status = read_memory_nobpt (pc, buf, 4);
1368 inst = extract_unsigned_integer (buf, 4);
1369 if (status != 0)
1370 return pc;
1371 reg_num = inst_saves_gr (inst);
1372 }
1373 args_stored = 0;
1374 continue;
1375 }
1376
1377 reg_num = inst_saves_fr (inst);
1378 save_fr &= ~(1 << reg_num);
1379
1380 status = read_memory_nobpt (pc + 4, buf, 4);
1381 next_inst = extract_unsigned_integer (buf, 4);
1382
1383 /* Yow! */
1384 if (status != 0)
1385 return pc;
1386
1387 /* We've got to be read to handle the ldo before the fp register
1388 save. */
1389 if ((inst & 0xfc000000) == 0x34000000
1390 && inst_saves_fr (next_inst) >= 4
1391 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1392 {
1393 /* So we drop into the code below in a reasonable state. */
1394 reg_num = inst_saves_fr (next_inst);
1395 pc -= 4;
1396 }
1397
1398 /* Ugh. Also account for argument stores into the stack.
1399 This is a kludge as on the HP compiler sets this bit and it
1400 never does prologue scheduling. So once we see one, skip past
1401 all of them. */
1402 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1403 {
1404 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1405 {
1406 pc += 8;
1407 status = read_memory_nobpt (pc, buf, 4);
1408 inst = extract_unsigned_integer (buf, 4);
1409 if (status != 0)
1410 return pc;
1411 if ((inst & 0xfc000000) != 0x34000000)
1412 break;
1413 status = read_memory_nobpt (pc + 4, buf, 4);
1414 next_inst = extract_unsigned_integer (buf, 4);
1415 if (status != 0)
1416 return pc;
1417 reg_num = inst_saves_fr (next_inst);
1418 }
1419 args_stored = 0;
1420 continue;
1421 }
1422
1423 /* Quit if we hit any kind of branch. This can happen if a prologue
1424 instruction is in the delay slot of the first call/branch. */
1425 if (is_branch (inst))
1426 break;
1427
1428 /* What a crock. The HP compilers set args_stored even if no
1429 arguments were stored into the stack (boo hiss). This could
1430 cause this code to then skip a bunch of user insns (up to the
1431 first branch).
1432
1433 To combat this we try to identify when args_stored was bogusly
1434 set and clear it. We only do this when args_stored is nonzero,
1435 all other resources are accounted for, and nothing changed on
1436 this pass. */
1437 if (args_stored
1438 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1439 && old_save_gr == save_gr && old_save_fr == save_fr
1440 && old_save_rp == save_rp && old_save_sp == save_sp
1441 && old_stack_remaining == stack_remaining)
1442 break;
1443
1444 /* Bump the PC. */
1445 pc += 4;
1446 }
1447
1448 /* We've got a tenative location for the end of the prologue. However
1449 because of limitations in the unwind descriptor mechanism we may
1450 have went too far into user code looking for the save of a register
1451 that does not exist. So, if there registers we expected to be saved
1452 but never were, mask them out and restart.
1453
1454 This should only happen in optimized code, and should be very rare. */
1455 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1456 {
1457 pc = orig_pc;
1458 restart_gr = save_gr;
1459 restart_fr = save_fr;
1460 goto restart;
1461 }
1462
1463 return pc;
1464 }
1465
1466
1467 /* Return the address of the PC after the last prologue instruction if
1468 we can determine it from the debug symbols. Else return zero. */
1469
1470 static CORE_ADDR
1471 after_prologue (CORE_ADDR pc)
1472 {
1473 struct symtab_and_line sal;
1474 CORE_ADDR func_addr, func_end;
1475 struct symbol *f;
1476
1477 /* If we can not find the symbol in the partial symbol table, then
1478 there is no hope we can determine the function's start address
1479 with this code. */
1480 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1481 return 0;
1482
1483 /* Get the line associated with FUNC_ADDR. */
1484 sal = find_pc_line (func_addr, 0);
1485
1486 /* There are only two cases to consider. First, the end of the source line
1487 is within the function bounds. In that case we return the end of the
1488 source line. Second is the end of the source line extends beyond the
1489 bounds of the current function. We need to use the slow code to
1490 examine instructions in that case.
1491
1492 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1493 the wrong thing to do. In fact, it should be entirely possible for this
1494 function to always return zero since the slow instruction scanning code
1495 is supposed to *always* work. If it does not, then it is a bug. */
1496 if (sal.end < func_end)
1497 return sal.end;
1498 else
1499 return 0;
1500 }
1501
1502 /* To skip prologues, I use this predicate. Returns either PC itself
1503 if the code at PC does not look like a function prologue; otherwise
1504 returns an address that (if we're lucky) follows the prologue. If
1505 LENIENT, then we must skip everything which is involved in setting
1506 up the frame (it's OK to skip more, just so long as we don't skip
1507 anything which might clobber the registers which are being saved.
1508 Currently we must not skip more on the alpha, but we might the lenient
1509 stuff some day. */
1510
1511 static CORE_ADDR
1512 hppa_skip_prologue (CORE_ADDR pc)
1513 {
1514 unsigned long inst;
1515 int offset;
1516 CORE_ADDR post_prologue_pc;
1517 char buf[4];
1518
1519 /* See if we can determine the end of the prologue via the symbol table.
1520 If so, then return either PC, or the PC after the prologue, whichever
1521 is greater. */
1522
1523 post_prologue_pc = after_prologue (pc);
1524
1525 /* If after_prologue returned a useful address, then use it. Else
1526 fall back on the instruction skipping code.
1527
1528 Some folks have claimed this causes problems because the breakpoint
1529 may be the first instruction of the prologue. If that happens, then
1530 the instruction skipping code has a bug that needs to be fixed. */
1531 if (post_prologue_pc != 0)
1532 return max (pc, post_prologue_pc);
1533 else
1534 return (skip_prologue_hard_way (pc));
1535 }
1536
1537 struct hppa_frame_cache
1538 {
1539 CORE_ADDR base;
1540 struct trad_frame_saved_reg *saved_regs;
1541 };
1542
1543 static struct hppa_frame_cache *
1544 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1545 {
1546 struct hppa_frame_cache *cache;
1547 long saved_gr_mask;
1548 long saved_fr_mask;
1549 CORE_ADDR this_sp;
1550 long frame_size;
1551 struct unwind_table_entry *u;
1552 CORE_ADDR prologue_end;
1553 int i;
1554
1555 if (hppa_debug)
1556 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1557 frame_relative_level(next_frame));
1558
1559 if ((*this_cache) != NULL)
1560 {
1561 if (hppa_debug)
1562 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1563 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1564 return (*this_cache);
1565 }
1566 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1567 (*this_cache) = cache;
1568 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1569
1570 /* Yow! */
1571 u = find_unwind_entry (frame_func_unwind (next_frame));
1572 if (!u)
1573 {
1574 if (hppa_debug)
1575 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1576 return (*this_cache);
1577 }
1578
1579 /* Turn the Entry_GR field into a bitmask. */
1580 saved_gr_mask = 0;
1581 for (i = 3; i < u->Entry_GR + 3; i++)
1582 {
1583 /* Frame pointer gets saved into a special location. */
1584 if (u->Save_SP && i == HPPA_FP_REGNUM)
1585 continue;
1586
1587 saved_gr_mask |= (1 << i);
1588 }
1589
1590 /* Turn the Entry_FR field into a bitmask too. */
1591 saved_fr_mask = 0;
1592 for (i = 12; i < u->Entry_FR + 12; i++)
1593 saved_fr_mask |= (1 << i);
1594
1595 /* Loop until we find everything of interest or hit a branch.
1596
1597 For unoptimized GCC code and for any HP CC code this will never ever
1598 examine any user instructions.
1599
1600 For optimized GCC code we're faced with problems. GCC will schedule
1601 its prologue and make prologue instructions available for delay slot
1602 filling. The end result is user code gets mixed in with the prologue
1603 and a prologue instruction may be in the delay slot of the first branch
1604 or call.
1605
1606 Some unexpected things are expected with debugging optimized code, so
1607 we allow this routine to walk past user instructions in optimized
1608 GCC code. */
1609 {
1610 int final_iteration = 0;
1611 CORE_ADDR pc, end_pc;
1612 int looking_for_sp = u->Save_SP;
1613 int looking_for_rp = u->Save_RP;
1614 int fp_loc = -1;
1615
1616 /* We have to use hppa_skip_prologue instead of just
1617 skip_prologue_using_sal, in case we stepped into a function without
1618 symbol information. hppa_skip_prologue also bounds the returned
1619 pc by the passed in pc, so it will not return a pc in the next
1620 function. */
1621 prologue_end = hppa_skip_prologue (frame_func_unwind (next_frame));
1622 end_pc = frame_pc_unwind (next_frame);
1623
1624 if (prologue_end != 0 && end_pc > prologue_end)
1625 end_pc = prologue_end;
1626
1627 frame_size = 0;
1628
1629 for (pc = frame_func_unwind (next_frame);
1630 ((saved_gr_mask || saved_fr_mask
1631 || looking_for_sp || looking_for_rp
1632 || frame_size < (u->Total_frame_size << 3))
1633 && pc < end_pc);
1634 pc += 4)
1635 {
1636 int reg;
1637 char buf4[4];
1638 long status = read_memory_nobpt (pc, buf4, sizeof buf4);
1639 long inst = extract_unsigned_integer (buf4, sizeof buf4);
1640
1641 /* Note the interesting effects of this instruction. */
1642 frame_size += prologue_inst_adjust_sp (inst);
1643
1644 /* There are limited ways to store the return pointer into the
1645 stack. */
1646 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1647 {
1648 looking_for_rp = 0;
1649 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1650 }
1651 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1652 {
1653 looking_for_rp = 0;
1654 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1655 }
1656
1657 /* Check to see if we saved SP into the stack. This also
1658 happens to indicate the location of the saved frame
1659 pointer. */
1660 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1661 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1662 {
1663 looking_for_sp = 0;
1664 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1665 }
1666
1667 /* Account for general and floating-point register saves. */
1668 reg = inst_saves_gr (inst);
1669 if (reg >= 3 && reg <= 18
1670 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1671 {
1672 saved_gr_mask &= ~(1 << reg);
1673 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1674 /* stwm with a positive displacement is a _post_
1675 _modify_. */
1676 cache->saved_regs[reg].addr = 0;
1677 else if ((inst & 0xfc00000c) == 0x70000008)
1678 /* A std has explicit post_modify forms. */
1679 cache->saved_regs[reg].addr = 0;
1680 else
1681 {
1682 CORE_ADDR offset;
1683
1684 if ((inst >> 26) == 0x1c)
1685 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1686 else if ((inst >> 26) == 0x03)
1687 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1688 else
1689 offset = hppa_extract_14 (inst);
1690
1691 /* Handle code with and without frame pointers. */
1692 if (u->Save_SP)
1693 cache->saved_regs[reg].addr = offset;
1694 else
1695 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1696 }
1697 }
1698
1699 /* GCC handles callee saved FP regs a little differently.
1700
1701 It emits an instruction to put the value of the start of
1702 the FP store area into %r1. It then uses fstds,ma with a
1703 basereg of %r1 for the stores.
1704
1705 HP CC emits them at the current stack pointer modifying the
1706 stack pointer as it stores each register. */
1707
1708 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1709 if ((inst & 0xffffc000) == 0x34610000
1710 || (inst & 0xffffc000) == 0x37c10000)
1711 fp_loc = hppa_extract_14 (inst);
1712
1713 reg = inst_saves_fr (inst);
1714 if (reg >= 12 && reg <= 21)
1715 {
1716 /* Note +4 braindamage below is necessary because the FP
1717 status registers are internally 8 registers rather than
1718 the expected 4 registers. */
1719 saved_fr_mask &= ~(1 << reg);
1720 if (fp_loc == -1)
1721 {
1722 /* 1st HP CC FP register store. After this
1723 instruction we've set enough state that the GCC and
1724 HPCC code are both handled in the same manner. */
1725 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
1726 fp_loc = 8;
1727 }
1728 else
1729 {
1730 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
1731 fp_loc += 8;
1732 }
1733 }
1734
1735 /* Quit if we hit any kind of branch the previous iteration. */
1736 if (final_iteration)
1737 break;
1738 /* We want to look precisely one instruction beyond the branch
1739 if we have not found everything yet. */
1740 if (is_branch (inst))
1741 final_iteration = 1;
1742 }
1743 }
1744
1745 {
1746 /* The frame base always represents the value of %sp at entry to
1747 the current function (and is thus equivalent to the "saved"
1748 stack pointer. */
1749 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1750 CORE_ADDR fp;
1751
1752 if (hppa_debug)
1753 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1754 "prologue_end=0x%s) ",
1755 paddr_nz (this_sp),
1756 paddr_nz (frame_pc_unwind (next_frame)),
1757 paddr_nz (prologue_end));
1758
1759 /* Check to see if a frame pointer is available, and use it for
1760 frame unwinding if it is.
1761
1762 There are some situations where we need to rely on the frame
1763 pointer to do stack unwinding. For example, if a function calls
1764 alloca (), the stack pointer can get adjusted inside the body of
1765 the function. In this case, the ABI requires that the compiler
1766 maintain a frame pointer for the function.
1767
1768 The unwind record has a flag (alloca_frame) that indicates that
1769 a function has a variable frame; unfortunately, gcc/binutils
1770 does not set this flag. Instead, whenever a frame pointer is used
1771 and saved on the stack, the Save_SP flag is set. We use this to
1772 decide whether to use the frame pointer for unwinding.
1773
1774 fp should never be zero here; checking just in case.
1775
1776 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1777 instead of Save_SP. */
1778
1779 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1780
1781 if (frame_pc_unwind (next_frame) >= prologue_end
1782 && u->Save_SP && fp != 0)
1783 {
1784 cache->base = fp;
1785
1786 if (hppa_debug)
1787 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }",
1788 paddr_nz (cache->base));
1789 }
1790 else if (frame_pc_unwind (next_frame) >= prologue_end)
1791 {
1792 if (u->Save_SP && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
1793 {
1794 /* Both we're expecting the SP to be saved and the SP has been
1795 saved. The entry SP value is saved at this frame's SP
1796 address. */
1797 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1798
1799 if (hppa_debug)
1800 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
1801 paddr_nz (cache->base));
1802 }
1803 else
1804 {
1805 /* The prologue has been slowly allocating stack space. Adjust
1806 the SP back. */
1807 cache->base = this_sp - frame_size;
1808 if (hppa_debug)
1809 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
1810 paddr_nz (cache->base));
1811
1812 }
1813 }
1814 else
1815 {
1816 /* This frame has not yet been created. */
1817 cache->base = this_sp;
1818
1819 if (hppa_debug)
1820 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [before prologue] } ",
1821 paddr_nz (cache->base));
1822
1823 }
1824
1825 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
1826 }
1827
1828 /* The PC is found in the "return register", "Millicode" uses "r31"
1829 as the return register while normal code uses "rp". */
1830 if (u->Millicode)
1831 {
1832 if (trad_frame_addr_p (cache->saved_regs, 31))
1833 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
1834 else
1835 {
1836 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
1837 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
1838 }
1839 }
1840 else
1841 {
1842 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1843 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
1844 else
1845 {
1846 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1847 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
1848 }
1849 }
1850
1851 {
1852 /* Convert all the offsets into addresses. */
1853 int reg;
1854 for (reg = 0; reg < NUM_REGS; reg++)
1855 {
1856 if (trad_frame_addr_p (cache->saved_regs, reg))
1857 cache->saved_regs[reg].addr += cache->base;
1858 }
1859 }
1860
1861 if (hppa_debug)
1862 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
1863 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1864 return (*this_cache);
1865 }
1866
1867 static void
1868 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
1869 struct frame_id *this_id)
1870 {
1871 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
1872 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1873 }
1874
1875 static void
1876 hppa_frame_prev_register (struct frame_info *next_frame,
1877 void **this_cache,
1878 int regnum, int *optimizedp,
1879 enum lval_type *lvalp, CORE_ADDR *addrp,
1880 int *realnump, void *valuep)
1881 {
1882 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
1883 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1884 optimizedp, lvalp, addrp, realnump, valuep);
1885 }
1886
1887 static const struct frame_unwind hppa_frame_unwind =
1888 {
1889 NORMAL_FRAME,
1890 hppa_frame_this_id,
1891 hppa_frame_prev_register
1892 };
1893
1894 static const struct frame_unwind *
1895 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
1896 {
1897 CORE_ADDR pc = frame_pc_unwind (next_frame);
1898
1899 if (find_unwind_entry (pc))
1900 return &hppa_frame_unwind;
1901
1902 return NULL;
1903 }
1904
1905 /* This is a generic fallback frame unwinder that kicks in if we fail all
1906 the other ones. Normally we would expect the stub and regular unwinder
1907 to work, but in some cases we might hit a function that just doesn't
1908 have any unwind information available. In this case we try to do
1909 unwinding solely based on code reading. This is obviously going to be
1910 slow, so only use this as a last resort. Currently this will only
1911 identify the stack and pc for the frame. */
1912
1913 static struct hppa_frame_cache *
1914 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
1915 {
1916 struct hppa_frame_cache *cache;
1917 unsigned int frame_size;
1918 CORE_ADDR pc, start_pc, end_pc, cur_pc;
1919
1920 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1921 (*this_cache) = cache;
1922 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1923
1924 pc = frame_func_unwind (next_frame);
1925 cur_pc = frame_pc_unwind (next_frame);
1926 frame_size = 0;
1927
1928 find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
1929
1930 if (start_pc == 0 || end_pc == 0)
1931 {
1932 error ("Cannot find bounds of current function (@0x%s), unwinding will "
1933 "fail.", paddr_nz (pc));
1934 return cache;
1935 }
1936
1937 if (end_pc > cur_pc)
1938 end_pc = cur_pc;
1939
1940 for (pc = start_pc; pc < end_pc; pc += 4)
1941 {
1942 unsigned int insn;
1943
1944 insn = read_memory_unsigned_integer (pc, 4);
1945
1946 frame_size += prologue_inst_adjust_sp (insn);
1947
1948 /* There are limited ways to store the return pointer into the
1949 stack. */
1950 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1951 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1952 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1953 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1954 }
1955
1956 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size;
1957 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
1958
1959 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1960 {
1961 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
1962 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
1963 }
1964 else
1965 {
1966 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1967 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
1968 }
1969
1970 return cache;
1971 }
1972
1973 static void
1974 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
1975 struct frame_id *this_id)
1976 {
1977 struct hppa_frame_cache *info =
1978 hppa_fallback_frame_cache (next_frame, this_cache);
1979 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1980 }
1981
1982 static void
1983 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
1984 void **this_cache,
1985 int regnum, int *optimizedp,
1986 enum lval_type *lvalp, CORE_ADDR *addrp,
1987 int *realnump, void *valuep)
1988 {
1989 struct hppa_frame_cache *info =
1990 hppa_fallback_frame_cache (next_frame, this_cache);
1991 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1992 optimizedp, lvalp, addrp, realnump, valuep);
1993 }
1994
1995 static const struct frame_unwind hppa_fallback_frame_unwind =
1996 {
1997 NORMAL_FRAME,
1998 hppa_fallback_frame_this_id,
1999 hppa_fallback_frame_prev_register
2000 };
2001
2002 static const struct frame_unwind *
2003 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2004 {
2005 return &hppa_fallback_frame_unwind;
2006 }
2007
2008 static CORE_ADDR
2009 hppa_frame_base_address (struct frame_info *next_frame,
2010 void **this_cache)
2011 {
2012 struct hppa_frame_cache *info = hppa_frame_cache (next_frame,
2013 this_cache);
2014 return info->base;
2015 }
2016
2017 static const struct frame_base hppa_frame_base = {
2018 &hppa_frame_unwind,
2019 hppa_frame_base_address,
2020 hppa_frame_base_address,
2021 hppa_frame_base_address
2022 };
2023
2024 static const struct frame_base *
2025 hppa_frame_base_sniffer (struct frame_info *next_frame)
2026 {
2027 return &hppa_frame_base;
2028 }
2029
2030 /* Stub frames, used for all kinds of call stubs. */
2031 struct hppa_stub_unwind_cache
2032 {
2033 CORE_ADDR base;
2034 struct trad_frame_saved_reg *saved_regs;
2035 };
2036
2037 static struct hppa_stub_unwind_cache *
2038 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2039 void **this_cache)
2040 {
2041 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2042 struct hppa_stub_unwind_cache *info;
2043 struct unwind_table_entry *u;
2044
2045 if (*this_cache)
2046 return *this_cache;
2047
2048 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2049 *this_cache = info;
2050 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2051
2052 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2053
2054 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2055 {
2056 /* HPUX uses export stubs in function calls; the export stub clobbers
2057 the return value of the caller, and, later restores it from the
2058 stack. */
2059 u = find_unwind_entry (frame_pc_unwind (next_frame));
2060
2061 if (u && u->stub_unwind.stub_type == EXPORT)
2062 {
2063 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2064
2065 return info;
2066 }
2067 }
2068
2069 /* By default we assume that stubs do not change the rp. */
2070 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2071
2072 return info;
2073 }
2074
2075 static void
2076 hppa_stub_frame_this_id (struct frame_info *next_frame,
2077 void **this_prologue_cache,
2078 struct frame_id *this_id)
2079 {
2080 struct hppa_stub_unwind_cache *info
2081 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2082 *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
2083 }
2084
2085 static void
2086 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2087 void **this_prologue_cache,
2088 int regnum, int *optimizedp,
2089 enum lval_type *lvalp, CORE_ADDR *addrp,
2090 int *realnump, void *valuep)
2091 {
2092 struct hppa_stub_unwind_cache *info
2093 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2094 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2095 optimizedp, lvalp, addrp, realnump, valuep);
2096 }
2097
2098 static const struct frame_unwind hppa_stub_frame_unwind = {
2099 NORMAL_FRAME,
2100 hppa_stub_frame_this_id,
2101 hppa_stub_frame_prev_register
2102 };
2103
2104 static const struct frame_unwind *
2105 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2106 {
2107 CORE_ADDR pc = frame_pc_unwind (next_frame);
2108
2109 if (pc == 0
2110 || IN_SOLIB_CALL_TRAMPOLINE (pc, NULL)
2111 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2112 return &hppa_stub_frame_unwind;
2113 return NULL;
2114 }
2115
2116 static struct frame_id
2117 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2118 {
2119 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2120 HPPA_SP_REGNUM),
2121 frame_pc_unwind (next_frame));
2122 }
2123
2124 static CORE_ADDR
2125 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2126 {
2127 return frame_unwind_register_signed (next_frame, HPPA_PCOQ_HEAD_REGNUM) & ~3;
2128 }
2129
2130 /* Instead of this nasty cast, add a method pvoid() that prints out a
2131 host VOID data type (remember %p isn't portable). */
2132
2133 static CORE_ADDR
2134 hppa_pointer_to_address_hack (void *ptr)
2135 {
2136 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2137 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2138 }
2139
2140 static void
2141 unwind_command (char *exp, int from_tty)
2142 {
2143 CORE_ADDR address;
2144 struct unwind_table_entry *u;
2145
2146 /* If we have an expression, evaluate it and use it as the address. */
2147
2148 if (exp != 0 && *exp != 0)
2149 address = parse_and_eval_address (exp);
2150 else
2151 return;
2152
2153 u = find_unwind_entry (address);
2154
2155 if (!u)
2156 {
2157 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2158 return;
2159 }
2160
2161 printf_unfiltered ("unwind_table_entry (0x%s):\n",
2162 paddr_nz (hppa_pointer_to_address_hack (u)));
2163
2164 printf_unfiltered ("\tregion_start = ");
2165 print_address (u->region_start, gdb_stdout);
2166
2167 printf_unfiltered ("\n\tregion_end = ");
2168 print_address (u->region_end, gdb_stdout);
2169
2170 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2171
2172 printf_unfiltered ("\n\tflags =");
2173 pif (Cannot_unwind);
2174 pif (Millicode);
2175 pif (Millicode_save_sr0);
2176 pif (Entry_SR);
2177 pif (Args_stored);
2178 pif (Variable_Frame);
2179 pif (Separate_Package_Body);
2180 pif (Frame_Extension_Millicode);
2181 pif (Stack_Overflow_Check);
2182 pif (Two_Instruction_SP_Increment);
2183 pif (Ada_Region);
2184 pif (Save_SP);
2185 pif (Save_RP);
2186 pif (Save_MRP_in_frame);
2187 pif (extn_ptr_defined);
2188 pif (Cleanup_defined);
2189 pif (MPE_XL_interrupt_marker);
2190 pif (HP_UX_interrupt_marker);
2191 pif (Large_frame);
2192
2193 putchar_unfiltered ('\n');
2194
2195 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2196
2197 pin (Region_description);
2198 pin (Entry_FR);
2199 pin (Entry_GR);
2200 pin (Total_frame_size);
2201 }
2202
2203 void
2204 hppa_skip_permanent_breakpoint (void)
2205 {
2206 /* To step over a breakpoint instruction on the PA takes some
2207 fiddling with the instruction address queue.
2208
2209 When we stop at a breakpoint, the IA queue front (the instruction
2210 we're executing now) points at the breakpoint instruction, and
2211 the IA queue back (the next instruction to execute) points to
2212 whatever instruction we would execute after the breakpoint, if it
2213 were an ordinary instruction. This is the case even if the
2214 breakpoint is in the delay slot of a branch instruction.
2215
2216 Clearly, to step past the breakpoint, we need to set the queue
2217 front to the back. But what do we put in the back? What
2218 instruction comes after that one? Because of the branch delay
2219 slot, the next insn is always at the back + 4. */
2220 write_register (HPPA_PCOQ_HEAD_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM));
2221 write_register (HPPA_PCSQ_HEAD_REGNUM, read_register (HPPA_PCSQ_TAIL_REGNUM));
2222
2223 write_register (HPPA_PCOQ_TAIL_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM) + 4);
2224 /* We can leave the tail's space the same, since there's no jump. */
2225 }
2226
2227 int
2228 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2229 {
2230 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2231
2232 An example of this occurs when an a.out is linked against a foo.sl.
2233 The foo.sl defines a global bar(), and the a.out declares a signature
2234 for bar(). However, the a.out doesn't directly call bar(), but passes
2235 its address in another call.
2236
2237 If you have this scenario and attempt to "break bar" before running,
2238 gdb will find a minimal symbol for bar() in the a.out. But that
2239 symbol's address will be negative. What this appears to denote is
2240 an index backwards from the base of the procedure linkage table (PLT)
2241 into the data linkage table (DLT), the end of which is contiguous
2242 with the start of the PLT. This is clearly not a valid address for
2243 us to set a breakpoint on.
2244
2245 Note that one must be careful in how one checks for a negative address.
2246 0xc0000000 is a legitimate address of something in a shared text
2247 segment, for example. Since I don't know what the possible range
2248 is of these "really, truly negative" addresses that come from the
2249 minimal symbols, I'm resorting to the gross hack of checking the
2250 top byte of the address for all 1's. Sigh. */
2251
2252 return (!target_has_stack && (pc & 0xFF000000));
2253 }
2254
2255 int
2256 hppa_instruction_nullified (void)
2257 {
2258 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
2259 avoid the type cast. I'm leaving it as is for now as I'm doing
2260 semi-mechanical multiarching-related changes. */
2261 const int ipsw = (int) read_register (HPPA_IPSW_REGNUM);
2262 const int flags = (int) read_register (HPPA_FLAGS_REGNUM);
2263
2264 return ((ipsw & 0x00200000) && !(flags & 0x2));
2265 }
2266
2267 /* Return the GDB type object for the "standard" data type of data
2268 in register N. */
2269
2270 static struct type *
2271 hppa32_register_type (struct gdbarch *gdbarch, int reg_nr)
2272 {
2273 if (reg_nr < HPPA_FP4_REGNUM)
2274 return builtin_type_uint32;
2275 else
2276 return builtin_type_ieee_single_big;
2277 }
2278
2279 /* Return the GDB type object for the "standard" data type of data
2280 in register N. hppa64 version. */
2281
2282 static struct type *
2283 hppa64_register_type (struct gdbarch *gdbarch, int reg_nr)
2284 {
2285 if (reg_nr < HPPA_FP4_REGNUM)
2286 return builtin_type_uint64;
2287 else
2288 return builtin_type_ieee_double_big;
2289 }
2290
2291 /* Return True if REGNUM is not a register available to the user
2292 through ptrace(). */
2293
2294 static int
2295 hppa_cannot_store_register (int regnum)
2296 {
2297 return (regnum == 0
2298 || regnum == HPPA_PCSQ_HEAD_REGNUM
2299 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2300 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2301
2302 }
2303
2304 static CORE_ADDR
2305 hppa_smash_text_address (CORE_ADDR addr)
2306 {
2307 /* The low two bits of the PC on the PA contain the privilege level.
2308 Some genius implementing a (non-GCC) compiler apparently decided
2309 this means that "addresses" in a text section therefore include a
2310 privilege level, and thus symbol tables should contain these bits.
2311 This seems like a bonehead thing to do--anyway, it seems to work
2312 for our purposes to just ignore those bits. */
2313
2314 return (addr &= ~0x3);
2315 }
2316
2317 /* Get the ith function argument for the current function. */
2318 CORE_ADDR
2319 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2320 struct type *type)
2321 {
2322 CORE_ADDR addr;
2323 get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr);
2324 return addr;
2325 }
2326
2327 static void
2328 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2329 int regnum, void *buf)
2330 {
2331 ULONGEST tmp;
2332
2333 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2334 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2335 tmp &= ~0x3;
2336 store_unsigned_integer (buf, sizeof(tmp), tmp);
2337 }
2338
2339 static CORE_ADDR
2340 hppa_find_global_pointer (struct value *function)
2341 {
2342 return 0;
2343 }
2344
2345 void
2346 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2347 struct trad_frame_saved_reg saved_regs[],
2348 int regnum, int *optimizedp,
2349 enum lval_type *lvalp, CORE_ADDR *addrp,
2350 int *realnump, void *valuep)
2351 {
2352 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2353 {
2354 if (valuep)
2355 {
2356 CORE_ADDR pc;
2357
2358 trad_frame_prev_register (next_frame, saved_regs,
2359 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2360 lvalp, addrp, realnump, valuep);
2361
2362 pc = extract_unsigned_integer (valuep, 4);
2363 store_unsigned_integer (valuep, 4, pc + 4);
2364 }
2365
2366 /* It's a computed value. */
2367 *optimizedp = 0;
2368 *lvalp = not_lval;
2369 *addrp = 0;
2370 *realnump = -1;
2371 return;
2372 }
2373
2374 trad_frame_prev_register (next_frame, saved_regs, regnum,
2375 optimizedp, lvalp, addrp, realnump, valuep);
2376 }
2377 \f
2378
2379 /* Here is a table of C type sizes on hppa with various compiles
2380 and options. I measured this on PA 9000/800 with HP-UX 11.11
2381 and these compilers:
2382
2383 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2384 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2385 /opt/aCC/bin/aCC B3910B A.03.45
2386 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2387
2388 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2389 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2390 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2391 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2392 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2393 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2394 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2395 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2396
2397 Each line is:
2398
2399 compiler and options
2400 char, short, int, long, long long
2401 float, double, long double
2402 char *, void (*)()
2403
2404 So all these compilers use either ILP32 or LP64 model.
2405 TODO: gcc has more options so it needs more investigation.
2406
2407 For floating point types, see:
2408
2409 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2410 HP-UX floating-point guide, hpux 11.00
2411
2412 -- chastain 2003-12-18 */
2413
2414 static struct gdbarch *
2415 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2416 {
2417 struct gdbarch_tdep *tdep;
2418 struct gdbarch *gdbarch;
2419
2420 /* Try to determine the ABI of the object we are loading. */
2421 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2422 {
2423 /* If it's a SOM file, assume it's HP/UX SOM. */
2424 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2425 info.osabi = GDB_OSABI_HPUX_SOM;
2426 }
2427
2428 /* find a candidate among the list of pre-declared architectures. */
2429 arches = gdbarch_list_lookup_by_info (arches, &info);
2430 if (arches != NULL)
2431 return (arches->gdbarch);
2432
2433 /* If none found, then allocate and initialize one. */
2434 tdep = XZALLOC (struct gdbarch_tdep);
2435 gdbarch = gdbarch_alloc (&info, tdep);
2436
2437 /* Determine from the bfd_arch_info structure if we are dealing with
2438 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2439 then default to a 32bit machine. */
2440 if (info.bfd_arch_info != NULL)
2441 tdep->bytes_per_address =
2442 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2443 else
2444 tdep->bytes_per_address = 4;
2445
2446 tdep->find_global_pointer = hppa_find_global_pointer;
2447
2448 /* Some parts of the gdbarch vector depend on whether we are running
2449 on a 32 bits or 64 bits target. */
2450 switch (tdep->bytes_per_address)
2451 {
2452 case 4:
2453 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2454 set_gdbarch_register_name (gdbarch, hppa32_register_name);
2455 set_gdbarch_register_type (gdbarch, hppa32_register_type);
2456 break;
2457 case 8:
2458 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2459 set_gdbarch_register_name (gdbarch, hppa64_register_name);
2460 set_gdbarch_register_type (gdbarch, hppa64_register_type);
2461 break;
2462 default:
2463 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2464 tdep->bytes_per_address);
2465 }
2466
2467 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2468 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2469
2470 /* The following gdbarch vector elements are the same in both ILP32
2471 and LP64, but might show differences some day. */
2472 set_gdbarch_long_long_bit (gdbarch, 64);
2473 set_gdbarch_long_double_bit (gdbarch, 128);
2474 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
2475
2476 /* The following gdbarch vector elements do not depend on the address
2477 size, or in any other gdbarch element previously set. */
2478 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
2479 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
2480 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2481 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
2482 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
2483 set_gdbarch_cannot_fetch_register (gdbarch, hppa_cannot_store_register);
2484 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
2485 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2486 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2487 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
2488 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
2489
2490 /* Helper for function argument information. */
2491 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2492
2493 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2494
2495 /* When a hardware watchpoint triggers, we'll move the inferior past
2496 it by removing all eventpoints; stepping past the instruction
2497 that caused the trigger; reinserting eventpoints; and checking
2498 whether any watched location changed. */
2499 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2500
2501 /* Inferior function call methods. */
2502 switch (tdep->bytes_per_address)
2503 {
2504 case 4:
2505 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2506 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
2507 set_gdbarch_convert_from_func_ptr_addr
2508 (gdbarch, hppa32_convert_from_func_ptr_addr);
2509 break;
2510 case 8:
2511 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2512 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
2513 break;
2514 default:
2515 internal_error (__FILE__, __LINE__, "bad switch");
2516 }
2517
2518 /* Struct return methods. */
2519 switch (tdep->bytes_per_address)
2520 {
2521 case 4:
2522 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2523 break;
2524 case 8:
2525 set_gdbarch_return_value (gdbarch, hppa64_return_value);
2526 break;
2527 default:
2528 internal_error (__FILE__, __LINE__, "bad switch");
2529 }
2530
2531 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
2532 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
2533
2534 /* Frame unwind methods. */
2535 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2536 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
2537
2538 /* Hook in ABI-specific overrides, if they have been registered. */
2539 gdbarch_init_osabi (info, gdbarch);
2540
2541 /* Hook in the default unwinders. */
2542 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
2543 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
2544 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
2545 frame_base_append_sniffer (gdbarch, hppa_frame_base_sniffer);
2546
2547 return gdbarch;
2548 }
2549
2550 static void
2551 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2552 {
2553 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2554
2555 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2556 tdep->bytes_per_address);
2557 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
2558 }
2559
2560 void
2561 _initialize_hppa_tdep (void)
2562 {
2563 struct cmd_list_element *c;
2564 void break_at_finish_command (char *arg, int from_tty);
2565 void tbreak_at_finish_command (char *arg, int from_tty);
2566 void break_at_finish_at_depth_command (char *arg, int from_tty);
2567
2568 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
2569
2570 hppa_objfile_priv_data = register_objfile_data ();
2571
2572 add_cmd ("unwind", class_maintenance, unwind_command,
2573 "Print unwind table entry at given address.",
2574 &maintenanceprintlist);
2575
2576 deprecate_cmd (add_com ("xbreak", class_breakpoint,
2577 break_at_finish_command,
2578 concat ("Set breakpoint at procedure exit. \n\
2579 Argument may be function name, or \"*\" and an address.\n\
2580 If function is specified, break at end of code for that function.\n\
2581 If an address is specified, break at the end of the function that contains \n\
2582 that exact address.\n",
2583 "With no arg, uses current execution address of selected stack frame.\n\
2584 This is useful for breaking on return to a stack frame.\n\
2585 \n\
2586 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
2587 \n\
2588 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
2589 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
2590 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
2591 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
2592 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
2593
2594 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
2595 tbreak_at_finish_command,
2596 "Set temporary breakpoint at procedure exit. Either there should\n\
2597 be no argument or the argument must be a depth.\n"), NULL);
2598 set_cmd_completer (c, location_completer);
2599
2600 if (xdb_commands)
2601 deprecate_cmd (add_com ("bx", class_breakpoint,
2602 break_at_finish_at_depth_command,
2603 "Set breakpoint at procedure exit. Either there should\n\
2604 be no argument or the argument must be a depth.\n"), NULL);
2605
2606 /* Debug this files internals. */
2607 add_show_from_set (add_set_cmd ("hppa", class_maintenance, var_zinteger,
2608 &hppa_debug, "Set hppa debugging.\n\
2609 When non-zero, hppa specific debugging is enabled.", &setdebuglist), &showdebuglist);
2610 }
This page took 0.094168 seconds and 5 git commands to generate.