Index: ChangeLog
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "frame.h"
29 #include "bfd.h"
30 #include "inferior.h"
31 #include "value.h"
32 #include "regcache.h"
33 #include "completer.h"
34 #include "language.h"
35 #include "osabi.h"
36 #include "gdb_assert.h"
37 #include "infttrace.h"
38 #include "arch-utils.h"
39 /* For argument passing to the inferior */
40 #include "symtab.h"
41 #include "infcall.h"
42 #include "dis-asm.h"
43 #include "trad-frame.h"
44 #include "frame-unwind.h"
45 #include "frame-base.h"
46
47 #ifdef USG
48 #include <sys/types.h>
49 #endif
50
51 #include <dl.h>
52 #include <sys/param.h>
53 #include <signal.h>
54
55 #include <sys/ptrace.h>
56 #include <machine/save_state.h>
57
58 #ifdef COFF_ENCAPSULATE
59 #include "a.out.encap.h"
60 #else
61 #endif
62
63 /*#include <sys/user.h> After a.out.h */
64 #include <sys/file.h>
65 #include "gdb_stat.h"
66 #include "gdb_wait.h"
67
68 #include "gdbcore.h"
69 #include "gdbcmd.h"
70 #include "target.h"
71 #include "symfile.h"
72 #include "objfiles.h"
73 #include "hppa-tdep.h"
74
75 /* Some local constants. */
76 static const int hppa32_num_regs = 128;
77 static const int hppa64_num_regs = 96;
78
79 static const int hppa64_call_dummy_breakpoint_offset = 22 * 4;
80
81 /* DEPRECATED_CALL_DUMMY_LENGTH is computed based on the size of a
82 word on the target machine, not the size of an instruction. Since
83 a word on this target holds two instructions we have to divide the
84 instruction size by two to get the word size of the dummy. */
85 static const int hppa32_call_dummy_length = INSTRUCTION_SIZE * 28;
86 static const int hppa64_call_dummy_length = INSTRUCTION_SIZE * 26 / 2;
87
88 /* Get at various relevent fields of an instruction word. */
89 #define MASK_5 0x1f
90 #define MASK_11 0x7ff
91 #define MASK_14 0x3fff
92 #define MASK_21 0x1fffff
93
94 /* Define offsets into the call dummy for the target function address.
95 See comments related to CALL_DUMMY for more info. */
96 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
97 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
98
99 /* Define offsets into the call dummy for the _sr4export address.
100 See comments related to CALL_DUMMY for more info. */
101 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
102 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
103
104 /* To support detection of the pseudo-initial frame
105 that threads have. */
106 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
107 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
108
109 /* Sizes (in bytes) of the native unwind entries. */
110 #define UNWIND_ENTRY_SIZE 16
111 #define STUB_UNWIND_ENTRY_SIZE 8
112
113 static int get_field (unsigned word, int from, int to);
114
115 static int extract_5_load (unsigned int);
116
117 static unsigned extract_5R_store (unsigned int);
118
119 static unsigned extract_5r_store (unsigned int);
120
121 static void hppa_frame_init_saved_regs (struct frame_info *frame);
122
123 static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
124
125 static int find_proc_framesize (CORE_ADDR);
126
127 static int find_return_regnum (CORE_ADDR);
128
129 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
130
131 static int extract_17 (unsigned int);
132
133 static unsigned deposit_21 (unsigned int, unsigned int);
134
135 static int extract_21 (unsigned);
136
137 static unsigned deposit_14 (int, unsigned int);
138
139 static int extract_14 (unsigned);
140
141 static void unwind_command (char *, int);
142
143 static int low_sign_extend (unsigned int, unsigned int);
144
145 static int sign_extend (unsigned int, unsigned int);
146
147 static int restore_pc_queue (CORE_ADDR *);
148
149 static int hppa_alignof (struct type *);
150
151 static int prologue_inst_adjust_sp (unsigned long);
152
153 static int is_branch (unsigned long);
154
155 static int inst_saves_gr (unsigned long);
156
157 static int inst_saves_fr (unsigned long);
158
159 static int pc_in_interrupt_handler (CORE_ADDR);
160
161 static int pc_in_linker_stub (CORE_ADDR);
162
163 static int compare_unwind_entries (const void *, const void *);
164
165 static void read_unwind_info (struct objfile *);
166
167 static void internalize_unwinds (struct objfile *,
168 struct unwind_table_entry *,
169 asection *, unsigned int,
170 unsigned int, CORE_ADDR);
171 static void pa_print_registers (char *, int, int);
172 static void pa_strcat_registers (char *, int, int, struct ui_file *);
173 static void pa_register_look_aside (char *, int, long *);
174 static void pa_print_fp_reg (int);
175 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
176 static void record_text_segment_lowaddr (bfd *, asection *, void *);
177 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
178 following functions static, once we hppa is partially multiarched. */
179 int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
180 CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
181 CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
182 int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
183 int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
184 CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
185 int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
186 CORE_ADDR hppa64_stack_align (CORE_ADDR sp);
187 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
188 int hppa_instruction_nullified (void);
189 int hppa_register_raw_size (int reg_nr);
190 int hppa_register_byte (int reg_nr);
191 struct type * hppa32_register_virtual_type (int reg_nr);
192 struct type * hppa64_register_virtual_type (int reg_nr);
193 void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
194 void hppa64_extract_return_value (struct type *type, char *regbuf,
195 char *valbuf);
196 int hppa64_use_struct_convention (int gcc_p, struct type *type);
197 void hppa64_store_return_value (struct type *type, char *valbuf);
198 int hppa_cannot_store_register (int regnum);
199 void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
200 CORE_ADDR hppa_frame_chain (struct frame_info *frame);
201 int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
202 int hppa_frameless_function_invocation (struct frame_info *frame);
203 CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
204 CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
205 int hppa_frame_num_args (struct frame_info *frame);
206 void hppa_push_dummy_frame (void);
207 void hppa_pop_frame (void);
208 CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
209 int nargs, struct value **args,
210 struct type *type, int gcc_p);
211 CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
212 int struct_return, CORE_ADDR struct_addr);
213 CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
214 CORE_ADDR hppa_target_read_pc (ptid_t ptid);
215 void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
216 CORE_ADDR hppa_target_read_fp (void);
217
218 typedef struct
219 {
220 struct minimal_symbol *msym;
221 CORE_ADDR solib_handle;
222 CORE_ADDR return_val;
223 }
224 args_for_find_stub;
225
226 static int cover_find_stub_with_shl_get (void *);
227
228 static int is_pa_2 = 0; /* False */
229
230 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
231 extern int hp_som_som_object_present;
232
233 /* In breakpoint.c */
234 extern int exception_catchpoints_are_fragile;
235
236 /* Should call_function allocate stack space for a struct return? */
237
238 int
239 hppa64_use_struct_convention (int gcc_p, struct type *type)
240 {
241 /* RM: struct upto 128 bits are returned in registers */
242 return TYPE_LENGTH (type) > 16;
243 }
244
245 /* Handle 32/64-bit struct return conventions. */
246
247 static enum return_value_convention
248 hppa32_return_value (struct gdbarch *gdbarch,
249 struct type *type, struct regcache *regcache,
250 void *readbuf, const void *writebuf)
251 {
252 if (TYPE_CODE (type) == TYPE_CODE_FLT)
253 {
254 if (readbuf != NULL)
255 regcache_cooked_read_part (regcache, FP4_REGNUM, 0,
256 TYPE_LENGTH (type), readbuf);
257 if (writebuf != NULL)
258 regcache_cooked_write_part (regcache, FP4_REGNUM, 0,
259 TYPE_LENGTH (type), writebuf);
260 return RETURN_VALUE_REGISTER_CONVENTION;
261 }
262 if (TYPE_LENGTH (type) <= 2 * 4)
263 {
264 /* The value always lives in the right hand end of the register
265 (or register pair)? */
266 int b;
267 int reg = 28;
268 int part = TYPE_LENGTH (type) % 4;
269 /* The left hand register contains only part of the value,
270 transfer that first so that the rest can be xfered as entire
271 4-byte registers. */
272 if (part > 0)
273 {
274 if (readbuf != NULL)
275 regcache_cooked_read_part (regcache, reg, 4 - part,
276 part, readbuf);
277 if (writebuf != NULL)
278 regcache_cooked_write_part (regcache, reg, 4 - part,
279 part, writebuf);
280 reg++;
281 }
282 /* Now transfer the remaining register values. */
283 for (b = part; b < TYPE_LENGTH (type); b += 4)
284 {
285 if (readbuf != NULL)
286 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
287 if (writebuf != NULL)
288 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
289 reg++;
290 }
291 return RETURN_VALUE_REGISTER_CONVENTION;
292 }
293 else
294 return RETURN_VALUE_STRUCT_CONVENTION;
295 }
296
297 static enum return_value_convention
298 hppa64_return_value (struct gdbarch *gdbarch,
299 struct type *type, struct regcache *regcache,
300 void *readbuf, const void *writebuf)
301 {
302 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
303 are in r28, padded on the left. Aggregates less that 65 bits are
304 in r28, right padded. Aggregates upto 128 bits are in r28 and
305 r29, right padded. */
306 if (TYPE_CODE (type) == TYPE_CODE_FLT)
307 {
308 /* Floats are right aligned? */
309 int offset = register_size (gdbarch, FP4_REGNUM) - TYPE_LENGTH (type);
310 if (readbuf != NULL)
311 regcache_cooked_read_part (regcache, FP4_REGNUM, offset,
312 TYPE_LENGTH (type), readbuf);
313 if (writebuf != NULL)
314 regcache_cooked_write_part (regcache, FP4_REGNUM, offset,
315 TYPE_LENGTH (type), writebuf);
316 return RETURN_VALUE_REGISTER_CONVENTION;
317 }
318 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
319 {
320 /* Integrals are right aligned. */
321 int offset = register_size (gdbarch, FP4_REGNUM) - TYPE_LENGTH (type);
322 if (readbuf != NULL)
323 regcache_cooked_read_part (regcache, 28, offset,
324 TYPE_LENGTH (type), readbuf);
325 if (writebuf != NULL)
326 regcache_cooked_write_part (regcache, 28, offset,
327 TYPE_LENGTH (type), writebuf);
328 return RETURN_VALUE_REGISTER_CONVENTION;
329 }
330 else if (TYPE_LENGTH (type) <= 2 * 8)
331 {
332 /* Composite values are left aligned. */
333 int b;
334 for (b = 0; b < TYPE_LENGTH (type); b += 8)
335 {
336 int part = (TYPE_LENGTH (type) - b - 1) % 8 + 1;
337 if (readbuf != NULL)
338 regcache_cooked_read_part (regcache, 28, 0, part,
339 (char *) readbuf + b);
340 if (writebuf != NULL)
341 regcache_cooked_write_part (regcache, 28, 0, part,
342 (const char *) writebuf + b);
343 }
344 return RETURN_VALUE_REGISTER_CONVENTION;
345 }
346 else
347 return RETURN_VALUE_STRUCT_CONVENTION;
348 }
349
350 /* Routines to extract various sized constants out of hppa
351 instructions. */
352
353 /* This assumes that no garbage lies outside of the lower bits of
354 value. */
355
356 static int
357 sign_extend (unsigned val, unsigned bits)
358 {
359 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
360 }
361
362 /* For many immediate values the sign bit is the low bit! */
363
364 static int
365 low_sign_extend (unsigned val, unsigned bits)
366 {
367 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
368 }
369
370 /* Extract the bits at positions between FROM and TO, using HP's numbering
371 (MSB = 0). */
372
373 static int
374 get_field (unsigned word, int from, int to)
375 {
376 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
377 }
378
379 /* extract the immediate field from a ld{bhw}s instruction */
380
381 static int
382 extract_5_load (unsigned word)
383 {
384 return low_sign_extend (word >> 16 & MASK_5, 5);
385 }
386
387 /* extract the immediate field from a break instruction */
388
389 static unsigned
390 extract_5r_store (unsigned word)
391 {
392 return (word & MASK_5);
393 }
394
395 /* extract the immediate field from a {sr}sm instruction */
396
397 static unsigned
398 extract_5R_store (unsigned word)
399 {
400 return (word >> 16 & MASK_5);
401 }
402
403 /* extract a 14 bit immediate field */
404
405 static int
406 extract_14 (unsigned word)
407 {
408 return low_sign_extend (word & MASK_14, 14);
409 }
410
411 /* deposit a 14 bit constant in a word */
412
413 static unsigned
414 deposit_14 (int opnd, unsigned word)
415 {
416 unsigned sign = (opnd < 0 ? 1 : 0);
417
418 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
419 }
420
421 /* extract a 21 bit constant */
422
423 static int
424 extract_21 (unsigned word)
425 {
426 int val;
427
428 word &= MASK_21;
429 word <<= 11;
430 val = get_field (word, 20, 20);
431 val <<= 11;
432 val |= get_field (word, 9, 19);
433 val <<= 2;
434 val |= get_field (word, 5, 6);
435 val <<= 5;
436 val |= get_field (word, 0, 4);
437 val <<= 2;
438 val |= get_field (word, 7, 8);
439 return sign_extend (val, 21) << 11;
440 }
441
442 /* deposit a 21 bit constant in a word. Although 21 bit constants are
443 usually the top 21 bits of a 32 bit constant, we assume that only
444 the low 21 bits of opnd are relevant */
445
446 static unsigned
447 deposit_21 (unsigned opnd, unsigned word)
448 {
449 unsigned val = 0;
450
451 val |= get_field (opnd, 11 + 14, 11 + 18);
452 val <<= 2;
453 val |= get_field (opnd, 11 + 12, 11 + 13);
454 val <<= 2;
455 val |= get_field (opnd, 11 + 19, 11 + 20);
456 val <<= 11;
457 val |= get_field (opnd, 11 + 1, 11 + 11);
458 val <<= 1;
459 val |= get_field (opnd, 11 + 0, 11 + 0);
460 return word | val;
461 }
462
463 /* extract a 17 bit constant from branch instructions, returning the
464 19 bit signed value. */
465
466 static int
467 extract_17 (unsigned word)
468 {
469 return sign_extend (get_field (word, 19, 28) |
470 get_field (word, 29, 29) << 10 |
471 get_field (word, 11, 15) << 11 |
472 (word & 0x1) << 16, 17) << 2;
473 }
474 \f
475
476 /* Compare the start address for two unwind entries returning 1 if
477 the first address is larger than the second, -1 if the second is
478 larger than the first, and zero if they are equal. */
479
480 static int
481 compare_unwind_entries (const void *arg1, const void *arg2)
482 {
483 const struct unwind_table_entry *a = arg1;
484 const struct unwind_table_entry *b = arg2;
485
486 if (a->region_start > b->region_start)
487 return 1;
488 else if (a->region_start < b->region_start)
489 return -1;
490 else
491 return 0;
492 }
493
494 static CORE_ADDR low_text_segment_address;
495
496 static void
497 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
498 {
499 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
500 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
501 && section->vma < low_text_segment_address)
502 low_text_segment_address = section->vma;
503 }
504
505 static void
506 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
507 asection *section, unsigned int entries, unsigned int size,
508 CORE_ADDR text_offset)
509 {
510 /* We will read the unwind entries into temporary memory, then
511 fill in the actual unwind table. */
512 if (size > 0)
513 {
514 unsigned long tmp;
515 unsigned i;
516 char *buf = alloca (size);
517
518 low_text_segment_address = -1;
519
520 /* If addresses are 64 bits wide, then unwinds are supposed to
521 be segment relative offsets instead of absolute addresses.
522
523 Note that when loading a shared library (text_offset != 0) the
524 unwinds are already relative to the text_offset that will be
525 passed in. */
526 if (TARGET_PTR_BIT == 64 && text_offset == 0)
527 {
528 bfd_map_over_sections (objfile->obfd,
529 record_text_segment_lowaddr, NULL);
530
531 /* ?!? Mask off some low bits. Should this instead subtract
532 out the lowest section's filepos or something like that?
533 This looks very hokey to me. */
534 low_text_segment_address &= ~0xfff;
535 text_offset += low_text_segment_address;
536 }
537
538 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
539
540 /* Now internalize the information being careful to handle host/target
541 endian issues. */
542 for (i = 0; i < entries; i++)
543 {
544 table[i].region_start = bfd_get_32 (objfile->obfd,
545 (bfd_byte *) buf);
546 table[i].region_start += text_offset;
547 buf += 4;
548 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
549 table[i].region_end += text_offset;
550 buf += 4;
551 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
552 buf += 4;
553 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
554 table[i].Millicode = (tmp >> 30) & 0x1;
555 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
556 table[i].Region_description = (tmp >> 27) & 0x3;
557 table[i].reserved1 = (tmp >> 26) & 0x1;
558 table[i].Entry_SR = (tmp >> 25) & 0x1;
559 table[i].Entry_FR = (tmp >> 21) & 0xf;
560 table[i].Entry_GR = (tmp >> 16) & 0x1f;
561 table[i].Args_stored = (tmp >> 15) & 0x1;
562 table[i].Variable_Frame = (tmp >> 14) & 0x1;
563 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
564 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
565 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
566 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
567 table[i].Ada_Region = (tmp >> 9) & 0x1;
568 table[i].cxx_info = (tmp >> 8) & 0x1;
569 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
570 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
571 table[i].reserved2 = (tmp >> 5) & 0x1;
572 table[i].Save_SP = (tmp >> 4) & 0x1;
573 table[i].Save_RP = (tmp >> 3) & 0x1;
574 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
575 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
576 table[i].Cleanup_defined = tmp & 0x1;
577 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
578 buf += 4;
579 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
580 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
581 table[i].Large_frame = (tmp >> 29) & 0x1;
582 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
583 table[i].reserved4 = (tmp >> 27) & 0x1;
584 table[i].Total_frame_size = tmp & 0x7ffffff;
585
586 /* Stub unwinds are handled elsewhere. */
587 table[i].stub_unwind.stub_type = 0;
588 table[i].stub_unwind.padding = 0;
589 }
590 }
591 }
592
593 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
594 the object file. This info is used mainly by find_unwind_entry() to find
595 out the stack frame size and frame pointer used by procedures. We put
596 everything on the psymbol obstack in the objfile so that it automatically
597 gets freed when the objfile is destroyed. */
598
599 static void
600 read_unwind_info (struct objfile *objfile)
601 {
602 asection *unwind_sec, *stub_unwind_sec;
603 unsigned unwind_size, stub_unwind_size, total_size;
604 unsigned index, unwind_entries;
605 unsigned stub_entries, total_entries;
606 CORE_ADDR text_offset;
607 struct obj_unwind_info *ui;
608 obj_private_data_t *obj_private;
609
610 text_offset = ANOFFSET (objfile->section_offsets, 0);
611 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
612 sizeof (struct obj_unwind_info));
613
614 ui->table = NULL;
615 ui->cache = NULL;
616 ui->last = -1;
617
618 /* For reasons unknown the HP PA64 tools generate multiple unwinder
619 sections in a single executable. So we just iterate over every
620 section in the BFD looking for unwinder sections intead of trying
621 to do a lookup with bfd_get_section_by_name.
622
623 First determine the total size of the unwind tables so that we
624 can allocate memory in a nice big hunk. */
625 total_entries = 0;
626 for (unwind_sec = objfile->obfd->sections;
627 unwind_sec;
628 unwind_sec = unwind_sec->next)
629 {
630 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
631 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
632 {
633 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
634 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
635
636 total_entries += unwind_entries;
637 }
638 }
639
640 /* Now compute the size of the stub unwinds. Note the ELF tools do not
641 use stub unwinds at the curren time. */
642 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
643
644 if (stub_unwind_sec)
645 {
646 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
647 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
648 }
649 else
650 {
651 stub_unwind_size = 0;
652 stub_entries = 0;
653 }
654
655 /* Compute total number of unwind entries and their total size. */
656 total_entries += stub_entries;
657 total_size = total_entries * sizeof (struct unwind_table_entry);
658
659 /* Allocate memory for the unwind table. */
660 ui->table = (struct unwind_table_entry *)
661 obstack_alloc (&objfile->objfile_obstack, total_size);
662 ui->last = total_entries - 1;
663
664 /* Now read in each unwind section and internalize the standard unwind
665 entries. */
666 index = 0;
667 for (unwind_sec = objfile->obfd->sections;
668 unwind_sec;
669 unwind_sec = unwind_sec->next)
670 {
671 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
672 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
673 {
674 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
675 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
676
677 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
678 unwind_entries, unwind_size, text_offset);
679 index += unwind_entries;
680 }
681 }
682
683 /* Now read in and internalize the stub unwind entries. */
684 if (stub_unwind_size > 0)
685 {
686 unsigned int i;
687 char *buf = alloca (stub_unwind_size);
688
689 /* Read in the stub unwind entries. */
690 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
691 0, stub_unwind_size);
692
693 /* Now convert them into regular unwind entries. */
694 for (i = 0; i < stub_entries; i++, index++)
695 {
696 /* Clear out the next unwind entry. */
697 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
698
699 /* Convert offset & size into region_start and region_end.
700 Stuff away the stub type into "reserved" fields. */
701 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
702 (bfd_byte *) buf);
703 ui->table[index].region_start += text_offset;
704 buf += 4;
705 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
706 (bfd_byte *) buf);
707 buf += 2;
708 ui->table[index].region_end
709 = ui->table[index].region_start + 4 *
710 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
711 buf += 2;
712 }
713
714 }
715
716 /* Unwind table needs to be kept sorted. */
717 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
718 compare_unwind_entries);
719
720 /* Keep a pointer to the unwind information. */
721 if (objfile->obj_private == NULL)
722 {
723 obj_private = (obj_private_data_t *)
724 obstack_alloc (&objfile->objfile_obstack,
725 sizeof (obj_private_data_t));
726 obj_private->unwind_info = NULL;
727 obj_private->so_info = NULL;
728 obj_private->dp = 0;
729
730 objfile->obj_private = obj_private;
731 }
732 obj_private = (obj_private_data_t *) objfile->obj_private;
733 obj_private->unwind_info = ui;
734 }
735
736 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
737 of the objfiles seeking the unwind table entry for this PC. Each objfile
738 contains a sorted list of struct unwind_table_entry. Since we do a binary
739 search of the unwind tables, we depend upon them to be sorted. */
740
741 struct unwind_table_entry *
742 find_unwind_entry (CORE_ADDR pc)
743 {
744 int first, middle, last;
745 struct objfile *objfile;
746
747 /* A function at address 0? Not in HP-UX! */
748 if (pc == (CORE_ADDR) 0)
749 return NULL;
750
751 ALL_OBJFILES (objfile)
752 {
753 struct obj_unwind_info *ui;
754 ui = NULL;
755 if (objfile->obj_private)
756 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
757
758 if (!ui)
759 {
760 read_unwind_info (objfile);
761 if (objfile->obj_private == NULL)
762 error ("Internal error reading unwind information.");
763 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
764 }
765
766 /* First, check the cache */
767
768 if (ui->cache
769 && pc >= ui->cache->region_start
770 && pc <= ui->cache->region_end)
771 return ui->cache;
772
773 /* Not in the cache, do a binary search */
774
775 first = 0;
776 last = ui->last;
777
778 while (first <= last)
779 {
780 middle = (first + last) / 2;
781 if (pc >= ui->table[middle].region_start
782 && pc <= ui->table[middle].region_end)
783 {
784 ui->cache = &ui->table[middle];
785 return &ui->table[middle];
786 }
787
788 if (pc < ui->table[middle].region_start)
789 last = middle - 1;
790 else
791 first = middle + 1;
792 }
793 } /* ALL_OBJFILES() */
794 return NULL;
795 }
796
797 const unsigned char *
798 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
799 {
800 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
801 (*len) = sizeof (breakpoint);
802 return breakpoint;
803 }
804
805 /* Return the name of a register. */
806
807 const char *
808 hppa32_register_name (int i)
809 {
810 static char *names[] = {
811 "flags", "r1", "rp", "r3",
812 "r4", "r5", "r6", "r7",
813 "r8", "r9", "r10", "r11",
814 "r12", "r13", "r14", "r15",
815 "r16", "r17", "r18", "r19",
816 "r20", "r21", "r22", "r23",
817 "r24", "r25", "r26", "dp",
818 "ret0", "ret1", "sp", "r31",
819 "sar", "pcoqh", "pcsqh", "pcoqt",
820 "pcsqt", "eiem", "iir", "isr",
821 "ior", "ipsw", "goto", "sr4",
822 "sr0", "sr1", "sr2", "sr3",
823 "sr5", "sr6", "sr7", "cr0",
824 "cr8", "cr9", "ccr", "cr12",
825 "cr13", "cr24", "cr25", "cr26",
826 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
827 "fpsr", "fpe1", "fpe2", "fpe3",
828 "fpe4", "fpe5", "fpe6", "fpe7",
829 "fr4", "fr4R", "fr5", "fr5R",
830 "fr6", "fr6R", "fr7", "fr7R",
831 "fr8", "fr8R", "fr9", "fr9R",
832 "fr10", "fr10R", "fr11", "fr11R",
833 "fr12", "fr12R", "fr13", "fr13R",
834 "fr14", "fr14R", "fr15", "fr15R",
835 "fr16", "fr16R", "fr17", "fr17R",
836 "fr18", "fr18R", "fr19", "fr19R",
837 "fr20", "fr20R", "fr21", "fr21R",
838 "fr22", "fr22R", "fr23", "fr23R",
839 "fr24", "fr24R", "fr25", "fr25R",
840 "fr26", "fr26R", "fr27", "fr27R",
841 "fr28", "fr28R", "fr29", "fr29R",
842 "fr30", "fr30R", "fr31", "fr31R"
843 };
844 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
845 return NULL;
846 else
847 return names[i];
848 }
849
850 const char *
851 hppa64_register_name (int i)
852 {
853 static char *names[] = {
854 "flags", "r1", "rp", "r3",
855 "r4", "r5", "r6", "r7",
856 "r8", "r9", "r10", "r11",
857 "r12", "r13", "r14", "r15",
858 "r16", "r17", "r18", "r19",
859 "r20", "r21", "r22", "r23",
860 "r24", "r25", "r26", "dp",
861 "ret0", "ret1", "sp", "r31",
862 "sar", "pcoqh", "pcsqh", "pcoqt",
863 "pcsqt", "eiem", "iir", "isr",
864 "ior", "ipsw", "goto", "sr4",
865 "sr0", "sr1", "sr2", "sr3",
866 "sr5", "sr6", "sr7", "cr0",
867 "cr8", "cr9", "ccr", "cr12",
868 "cr13", "cr24", "cr25", "cr26",
869 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
870 "fpsr", "fpe1", "fpe2", "fpe3",
871 "fr4", "fr5", "fr6", "fr7",
872 "fr8", "fr9", "fr10", "fr11",
873 "fr12", "fr13", "fr14", "fr15",
874 "fr16", "fr17", "fr18", "fr19",
875 "fr20", "fr21", "fr22", "fr23",
876 "fr24", "fr25", "fr26", "fr27",
877 "fr28", "fr29", "fr30", "fr31"
878 };
879 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
880 return NULL;
881 else
882 return names[i];
883 }
884
885
886
887 /* Return the adjustment necessary to make for addresses on the stack
888 as presented by hpread.c.
889
890 This is necessary because of the stack direction on the PA and the
891 bizarre way in which someone (?) decided they wanted to handle
892 frame pointerless code in GDB. */
893 int
894 hpread_adjust_stack_address (CORE_ADDR func_addr)
895 {
896 struct unwind_table_entry *u;
897
898 u = find_unwind_entry (func_addr);
899 if (!u)
900 return 0;
901 else
902 return u->Total_frame_size << 3;
903 }
904
905 /* Called to determine if PC is in an interrupt handler of some
906 kind. */
907
908 static int
909 pc_in_interrupt_handler (CORE_ADDR pc)
910 {
911 struct unwind_table_entry *u;
912 struct minimal_symbol *msym_us;
913
914 u = find_unwind_entry (pc);
915 if (!u)
916 return 0;
917
918 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
919 its frame isn't a pure interrupt frame. Deal with this. */
920 msym_us = lookup_minimal_symbol_by_pc (pc);
921
922 return (u->HP_UX_interrupt_marker
923 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
924 }
925
926 /* Called when no unwind descriptor was found for PC. Returns 1 if it
927 appears that PC is in a linker stub.
928
929 ?!? Need to handle stubs which appear in PA64 code. */
930
931 static int
932 pc_in_linker_stub (CORE_ADDR pc)
933 {
934 int found_magic_instruction = 0;
935 int i;
936 char buf[4];
937
938 /* If unable to read memory, assume pc is not in a linker stub. */
939 if (target_read_memory (pc, buf, 4) != 0)
940 return 0;
941
942 /* We are looking for something like
943
944 ; $$dyncall jams RP into this special spot in the frame (RP')
945 ; before calling the "call stub"
946 ldw -18(sp),rp
947
948 ldsid (rp),r1 ; Get space associated with RP into r1
949 mtsp r1,sp ; Move it into space register 0
950 be,n 0(sr0),rp) ; back to your regularly scheduled program */
951
952 /* Maximum known linker stub size is 4 instructions. Search forward
953 from the given PC, then backward. */
954 for (i = 0; i < 4; i++)
955 {
956 /* If we hit something with an unwind, stop searching this direction. */
957
958 if (find_unwind_entry (pc + i * 4) != 0)
959 break;
960
961 /* Check for ldsid (rp),r1 which is the magic instruction for a
962 return from a cross-space function call. */
963 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
964 {
965 found_magic_instruction = 1;
966 break;
967 }
968 /* Add code to handle long call/branch and argument relocation stubs
969 here. */
970 }
971
972 if (found_magic_instruction != 0)
973 return 1;
974
975 /* Now look backward. */
976 for (i = 0; i < 4; i++)
977 {
978 /* If we hit something with an unwind, stop searching this direction. */
979
980 if (find_unwind_entry (pc - i * 4) != 0)
981 break;
982
983 /* Check for ldsid (rp),r1 which is the magic instruction for a
984 return from a cross-space function call. */
985 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
986 {
987 found_magic_instruction = 1;
988 break;
989 }
990 /* Add code to handle long call/branch and argument relocation stubs
991 here. */
992 }
993 return found_magic_instruction;
994 }
995
996 static int
997 find_return_regnum (CORE_ADDR pc)
998 {
999 struct unwind_table_entry *u;
1000
1001 u = find_unwind_entry (pc);
1002
1003 if (!u)
1004 return RP_REGNUM;
1005
1006 if (u->Millicode)
1007 return 31;
1008
1009 return RP_REGNUM;
1010 }
1011
1012 /* Return size of frame, or -1 if we should use a frame pointer. */
1013 static int
1014 find_proc_framesize (CORE_ADDR pc)
1015 {
1016 struct unwind_table_entry *u;
1017 struct minimal_symbol *msym_us;
1018
1019 /* This may indicate a bug in our callers... */
1020 if (pc == (CORE_ADDR) 0)
1021 return -1;
1022
1023 u = find_unwind_entry (pc);
1024
1025 if (!u)
1026 {
1027 if (pc_in_linker_stub (pc))
1028 /* Linker stubs have a zero size frame. */
1029 return 0;
1030 else
1031 return -1;
1032 }
1033
1034 msym_us = lookup_minimal_symbol_by_pc (pc);
1035
1036 /* If Save_SP is set, and we're not in an interrupt or signal caller,
1037 then we have a frame pointer. Use it. */
1038 if (u->Save_SP
1039 && !pc_in_interrupt_handler (pc)
1040 && msym_us
1041 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
1042 return -1;
1043
1044 return u->Total_frame_size << 3;
1045 }
1046
1047 /* Return offset from sp at which rp is saved, or 0 if not saved. */
1048 static int rp_saved (CORE_ADDR);
1049
1050 static int
1051 rp_saved (CORE_ADDR pc)
1052 {
1053 struct unwind_table_entry *u;
1054
1055 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
1056 if (pc == (CORE_ADDR) 0)
1057 return 0;
1058
1059 u = find_unwind_entry (pc);
1060
1061 if (!u)
1062 {
1063 if (pc_in_linker_stub (pc))
1064 /* This is the so-called RP'. */
1065 return -24;
1066 else
1067 return 0;
1068 }
1069
1070 if (u->Save_RP)
1071 return (TARGET_PTR_BIT == 64 ? -16 : -20);
1072 else if (u->stub_unwind.stub_type != 0)
1073 {
1074 switch (u->stub_unwind.stub_type)
1075 {
1076 case EXPORT:
1077 case IMPORT:
1078 return -24;
1079 case PARAMETER_RELOCATION:
1080 return -8;
1081 default:
1082 return 0;
1083 }
1084 }
1085 else
1086 return 0;
1087 }
1088 \f
1089 int
1090 hppa_frameless_function_invocation (struct frame_info *frame)
1091 {
1092 struct unwind_table_entry *u;
1093
1094 u = find_unwind_entry (get_frame_pc (frame));
1095
1096 if (u == 0)
1097 return 0;
1098
1099 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
1100 }
1101
1102 /* Immediately after a function call, return the saved pc.
1103 Can't go through the frames for this because on some machines
1104 the new frame is not set up until the new function executes
1105 some instructions. */
1106
1107 CORE_ADDR
1108 hppa_saved_pc_after_call (struct frame_info *frame)
1109 {
1110 int ret_regnum;
1111 CORE_ADDR pc;
1112 struct unwind_table_entry *u;
1113
1114 ret_regnum = find_return_regnum (get_frame_pc (frame));
1115 pc = read_register (ret_regnum) & ~0x3;
1116
1117 /* If PC is in a linker stub, then we need to dig the address
1118 the stub will return to out of the stack. */
1119 u = find_unwind_entry (pc);
1120 if (u && u->stub_unwind.stub_type != 0)
1121 return DEPRECATED_FRAME_SAVED_PC (frame);
1122 else
1123 return pc;
1124 }
1125 \f
1126 CORE_ADDR
1127 hppa_frame_saved_pc (struct frame_info *frame)
1128 {
1129 CORE_ADDR pc = get_frame_pc (frame);
1130 struct unwind_table_entry *u;
1131 CORE_ADDR old_pc = 0;
1132 int spun_around_loop = 0;
1133 int rp_offset = 0;
1134
1135 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
1136 at the base of the frame in an interrupt handler. Registers within
1137 are saved in the exact same order as GDB numbers registers. How
1138 convienent. */
1139 if (pc_in_interrupt_handler (pc))
1140 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
1141 TARGET_PTR_BIT / 8) & ~0x3;
1142
1143 if ((get_frame_pc (frame) >= get_frame_base (frame)
1144 && (get_frame_pc (frame)
1145 <= (get_frame_base (frame)
1146 /* A call dummy is sized in words, but it is actually a
1147 series of instructions. Account for that scaling
1148 factor. */
1149 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
1150 * DEPRECATED_CALL_DUMMY_LENGTH)
1151 /* Similarly we have to account for 64bit wide register
1152 saves. */
1153 + (32 * DEPRECATED_REGISTER_SIZE)
1154 /* We always consider FP regs 8 bytes long. */
1155 + (NUM_REGS - FP0_REGNUM) * 8
1156 /* Similarly we have to account for 64bit wide register
1157 saves. */
1158 + (6 * DEPRECATED_REGISTER_SIZE)))))
1159 {
1160 return read_memory_integer ((get_frame_base (frame)
1161 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
1162 TARGET_PTR_BIT / 8) & ~0x3;
1163 }
1164
1165 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
1166 /* Deal with signal handler caller frames too. */
1167 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1168 {
1169 CORE_ADDR rp;
1170 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
1171 return rp & ~0x3;
1172 }
1173 #endif
1174
1175 if (hppa_frameless_function_invocation (frame))
1176 {
1177 int ret_regnum;
1178
1179 ret_regnum = find_return_regnum (pc);
1180
1181 /* If the next frame is an interrupt frame or a signal
1182 handler caller, then we need to look in the saved
1183 register area to get the return pointer (the values
1184 in the registers may not correspond to anything useful). */
1185 if (get_next_frame (frame)
1186 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1187 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1188 {
1189 CORE_ADDR *saved_regs;
1190 hppa_frame_init_saved_regs (get_next_frame (frame));
1191 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
1192 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1193 TARGET_PTR_BIT / 8) & 0x2)
1194 {
1195 pc = read_memory_integer (saved_regs[31],
1196 TARGET_PTR_BIT / 8) & ~0x3;
1197
1198 /* Syscalls are really two frames. The syscall stub itself
1199 with a return pointer in %rp and the kernel call with
1200 a return pointer in %r31. We return the %rp variant
1201 if %r31 is the same as frame->pc. */
1202 if (pc == get_frame_pc (frame))
1203 pc = read_memory_integer (saved_regs[RP_REGNUM],
1204 TARGET_PTR_BIT / 8) & ~0x3;
1205 }
1206 else
1207 pc = read_memory_integer (saved_regs[RP_REGNUM],
1208 TARGET_PTR_BIT / 8) & ~0x3;
1209 }
1210 else
1211 pc = read_register (ret_regnum) & ~0x3;
1212 }
1213 else
1214 {
1215 spun_around_loop = 0;
1216 old_pc = pc;
1217
1218 restart:
1219 rp_offset = rp_saved (pc);
1220
1221 /* Similar to code in frameless function case. If the next
1222 frame is a signal or interrupt handler, then dig the right
1223 information out of the saved register info. */
1224 if (rp_offset == 0
1225 && get_next_frame (frame)
1226 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1227 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1228 {
1229 CORE_ADDR *saved_regs;
1230 hppa_frame_init_saved_regs (get_next_frame (frame));
1231 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
1232 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1233 TARGET_PTR_BIT / 8) & 0x2)
1234 {
1235 pc = read_memory_integer (saved_regs[31],
1236 TARGET_PTR_BIT / 8) & ~0x3;
1237
1238 /* Syscalls are really two frames. The syscall stub itself
1239 with a return pointer in %rp and the kernel call with
1240 a return pointer in %r31. We return the %rp variant
1241 if %r31 is the same as frame->pc. */
1242 if (pc == get_frame_pc (frame))
1243 pc = read_memory_integer (saved_regs[RP_REGNUM],
1244 TARGET_PTR_BIT / 8) & ~0x3;
1245 }
1246 else
1247 pc = read_memory_integer (saved_regs[RP_REGNUM],
1248 TARGET_PTR_BIT / 8) & ~0x3;
1249 }
1250 else if (rp_offset == 0)
1251 {
1252 old_pc = pc;
1253 pc = read_register (RP_REGNUM) & ~0x3;
1254 }
1255 else
1256 {
1257 old_pc = pc;
1258 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
1259 TARGET_PTR_BIT / 8) & ~0x3;
1260 }
1261 }
1262
1263 /* If PC is inside a linker stub, then dig out the address the stub
1264 will return to.
1265
1266 Don't do this for long branch stubs. Why? For some unknown reason
1267 _start is marked as a long branch stub in hpux10. */
1268 u = find_unwind_entry (pc);
1269 if (u && u->stub_unwind.stub_type != 0
1270 && u->stub_unwind.stub_type != LONG_BRANCH)
1271 {
1272 unsigned int insn;
1273
1274 /* If this is a dynamic executable, and we're in a signal handler,
1275 then the call chain will eventually point us into the stub for
1276 _sigreturn. Unlike most cases, we'll be pointed to the branch
1277 to the real sigreturn rather than the code after the real branch!.
1278
1279 Else, try to dig the address the stub will return to in the normal
1280 fashion. */
1281 insn = read_memory_integer (pc, 4);
1282 if ((insn & 0xfc00e000) == 0xe8000000)
1283 return (pc + extract_17 (insn) + 8) & ~0x3;
1284 else
1285 {
1286 if (old_pc == pc)
1287 spun_around_loop++;
1288
1289 if (spun_around_loop > 1)
1290 {
1291 /* We're just about to go around the loop again with
1292 no more hope of success. Die. */
1293 error ("Unable to find return pc for this frame");
1294 }
1295 else
1296 goto restart;
1297 }
1298 }
1299
1300 return pc;
1301 }
1302 \f
1303 /* We need to correct the PC and the FP for the outermost frame when we are
1304 in a system call. */
1305
1306 void
1307 hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1308 {
1309 int flags;
1310 int framesize;
1311
1312 if (get_next_frame (frame) && !fromleaf)
1313 return;
1314
1315 /* If the next frame represents a frameless function invocation then
1316 we have to do some adjustments that are normally done by
1317 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1318 this case.) */
1319 if (fromleaf)
1320 {
1321 /* Find the framesize of *this* frame without peeking at the PC
1322 in the current frame structure (it isn't set yet). */
1323 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
1324
1325 /* Now adjust our base frame accordingly. If we have a frame pointer
1326 use it, else subtract the size of this frame from the current
1327 frame. (we always want frame->frame to point at the lowest address
1328 in the frame). */
1329 if (framesize == -1)
1330 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1331 else
1332 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
1333 return;
1334 }
1335
1336 flags = read_register (FLAGS_REGNUM);
1337 if (flags & 2) /* In system call? */
1338 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
1339
1340 /* The outermost frame is always derived from PC-framesize
1341
1342 One might think frameless innermost frames should have
1343 a frame->frame that is the same as the parent's frame->frame.
1344 That is wrong; frame->frame in that case should be the *high*
1345 address of the parent's frame. It's complicated as hell to
1346 explain, but the parent *always* creates some stack space for
1347 the child. So the child actually does have a frame of some
1348 sorts, and its base is the high address in its parent's frame. */
1349 framesize = find_proc_framesize (get_frame_pc (frame));
1350 if (framesize == -1)
1351 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1352 else
1353 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
1354 }
1355 \f
1356 /* Given a GDB frame, determine the address of the calling function's
1357 frame. This will be used to create a new GDB frame struct, and
1358 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1359 will be called for the new frame.
1360
1361 This may involve searching through prologues for several functions
1362 at boundaries where GCC calls HP C code, or where code which has
1363 a frame pointer calls code without a frame pointer. */
1364
1365 CORE_ADDR
1366 hppa_frame_chain (struct frame_info *frame)
1367 {
1368 int my_framesize, caller_framesize;
1369 struct unwind_table_entry *u;
1370 CORE_ADDR frame_base;
1371 struct frame_info *tmp_frame;
1372
1373 /* A frame in the current frame list, or zero. */
1374 struct frame_info *saved_regs_frame = 0;
1375 /* Where the registers were saved in saved_regs_frame. If
1376 saved_regs_frame is zero, this is garbage. */
1377 CORE_ADDR *saved_regs = NULL;
1378
1379 CORE_ADDR caller_pc;
1380
1381 struct minimal_symbol *min_frame_symbol;
1382 struct symbol *frame_symbol;
1383 char *frame_symbol_name;
1384
1385 /* If this is a threaded application, and we see the
1386 routine "__pthread_exit", treat it as the stack root
1387 for this thread. */
1388 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1389 frame_symbol = find_pc_function (get_frame_pc (frame));
1390
1391 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1392 {
1393 /* The test above for "no user function name" would defend
1394 against the slim likelihood that a user might define a
1395 routine named "__pthread_exit" and then try to debug it.
1396
1397 If it weren't commented out, and you tried to debug the
1398 pthread library itself, you'd get errors.
1399
1400 So for today, we don't make that check. */
1401 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
1402 if (frame_symbol_name != 0)
1403 {
1404 if (0 == strncmp (frame_symbol_name,
1405 THREAD_INITIAL_FRAME_SYMBOL,
1406 THREAD_INITIAL_FRAME_SYM_LEN))
1407 {
1408 /* Pretend we've reached the bottom of the stack. */
1409 return (CORE_ADDR) 0;
1410 }
1411 }
1412 } /* End of hacky code for threads. */
1413
1414 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1415 are easy; at *sp we have a full save state strucutre which we can
1416 pull the old stack pointer from. Also see frame_saved_pc for
1417 code to dig a saved PC out of the save state structure. */
1418 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1419 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
1420 TARGET_PTR_BIT / 8);
1421 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1422 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1423 {
1424 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1425 }
1426 #endif
1427 else
1428 frame_base = get_frame_base (frame);
1429
1430 /* Get frame sizes for the current frame and the frame of the
1431 caller. */
1432 my_framesize = find_proc_framesize (get_frame_pc (frame));
1433 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
1434
1435 /* If we can't determine the caller's PC, then it's not likely we can
1436 really determine anything meaningful about its frame. We'll consider
1437 this to be stack bottom. */
1438 if (caller_pc == (CORE_ADDR) 0)
1439 return (CORE_ADDR) 0;
1440
1441 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
1442
1443 /* If caller does not have a frame pointer, then its frame
1444 can be found at current_frame - caller_framesize. */
1445 if (caller_framesize != -1)
1446 {
1447 return frame_base - caller_framesize;
1448 }
1449 /* Both caller and callee have frame pointers and are GCC compiled
1450 (SAVE_SP bit in unwind descriptor is on for both functions.
1451 The previous frame pointer is found at the top of the current frame. */
1452 if (caller_framesize == -1 && my_framesize == -1)
1453 {
1454 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1455 }
1456 /* Caller has a frame pointer, but callee does not. This is a little
1457 more difficult as GCC and HP C lay out locals and callee register save
1458 areas very differently.
1459
1460 The previous frame pointer could be in a register, or in one of
1461 several areas on the stack.
1462
1463 Walk from the current frame to the innermost frame examining
1464 unwind descriptors to determine if %r3 ever gets saved into the
1465 stack. If so return whatever value got saved into the stack.
1466 If it was never saved in the stack, then the value in %r3 is still
1467 valid, so use it.
1468
1469 We use information from unwind descriptors to determine if %r3
1470 is saved into the stack (Entry_GR field has this information). */
1471
1472 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
1473 {
1474 u = find_unwind_entry (get_frame_pc (tmp_frame));
1475
1476 if (!u)
1477 {
1478 /* We could find this information by examining prologues. I don't
1479 think anyone has actually written any tools (not even "strip")
1480 which leave them out of an executable, so maybe this is a moot
1481 point. */
1482 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1483 code that doesn't have unwind entries. For example, stepping into
1484 the dynamic linker will give you a PC that has none. Thus, I've
1485 disabled this warning. */
1486 #if 0
1487 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
1488 #endif
1489 return (CORE_ADDR) 0;
1490 }
1491
1492 if (u->Save_SP
1493 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1494 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1495 break;
1496
1497 /* Entry_GR specifies the number of callee-saved general registers
1498 saved in the stack. It starts at %r3, so %r3 would be 1. */
1499 if (u->Entry_GR >= 1)
1500 {
1501 /* The unwind entry claims that r3 is saved here. However,
1502 in optimized code, GCC often doesn't actually save r3.
1503 We'll discover this if we look at the prologue. */
1504 hppa_frame_init_saved_regs (tmp_frame);
1505 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1506 saved_regs_frame = tmp_frame;
1507
1508 /* If we have an address for r3, that's good. */
1509 if (saved_regs[DEPRECATED_FP_REGNUM])
1510 break;
1511 }
1512 }
1513
1514 if (tmp_frame)
1515 {
1516 /* We may have walked down the chain into a function with a frame
1517 pointer. */
1518 if (u->Save_SP
1519 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1520 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1521 {
1522 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
1523 }
1524 /* %r3 was saved somewhere in the stack. Dig it out. */
1525 else
1526 {
1527 /* Sick.
1528
1529 For optimization purposes many kernels don't have the
1530 callee saved registers into the save_state structure upon
1531 entry into the kernel for a syscall; the optimization
1532 is usually turned off if the process is being traced so
1533 that the debugger can get full register state for the
1534 process.
1535
1536 This scheme works well except for two cases:
1537
1538 * Attaching to a process when the process is in the
1539 kernel performing a system call (debugger can't get
1540 full register state for the inferior process since
1541 the process wasn't being traced when it entered the
1542 system call).
1543
1544 * Register state is not complete if the system call
1545 causes the process to core dump.
1546
1547
1548 The following heinous code is an attempt to deal with
1549 the lack of register state in a core dump. It will
1550 fail miserably if the function which performs the
1551 system call has a variable sized stack frame. */
1552
1553 if (tmp_frame != saved_regs_frame)
1554 {
1555 hppa_frame_init_saved_regs (tmp_frame);
1556 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1557 }
1558
1559 /* Abominable hack. */
1560 if (current_target.to_has_execution == 0
1561 && ((saved_regs[FLAGS_REGNUM]
1562 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1563 TARGET_PTR_BIT / 8)
1564 & 0x2))
1565 || (saved_regs[FLAGS_REGNUM] == 0
1566 && read_register (FLAGS_REGNUM) & 0x2)))
1567 {
1568 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1569 if (!u)
1570 {
1571 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1572 TARGET_PTR_BIT / 8);
1573 }
1574 else
1575 {
1576 return frame_base - (u->Total_frame_size << 3);
1577 }
1578 }
1579
1580 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1581 TARGET_PTR_BIT / 8);
1582 }
1583 }
1584 else
1585 {
1586 /* Get the innermost frame. */
1587 tmp_frame = frame;
1588 while (get_next_frame (tmp_frame) != NULL)
1589 tmp_frame = get_next_frame (tmp_frame);
1590
1591 if (tmp_frame != saved_regs_frame)
1592 {
1593 hppa_frame_init_saved_regs (tmp_frame);
1594 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1595 }
1596
1597 /* Abominable hack. See above. */
1598 if (current_target.to_has_execution == 0
1599 && ((saved_regs[FLAGS_REGNUM]
1600 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1601 TARGET_PTR_BIT / 8)
1602 & 0x2))
1603 || (saved_regs[FLAGS_REGNUM] == 0
1604 && read_register (FLAGS_REGNUM) & 0x2)))
1605 {
1606 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1607 if (!u)
1608 {
1609 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1610 TARGET_PTR_BIT / 8);
1611 }
1612 else
1613 {
1614 return frame_base - (u->Total_frame_size << 3);
1615 }
1616 }
1617
1618 /* The value in %r3 was never saved into the stack (thus %r3 still
1619 holds the value of the previous frame pointer). */
1620 return deprecated_read_fp ();
1621 }
1622 }
1623 \f
1624
1625 /* To see if a frame chain is valid, see if the caller looks like it
1626 was compiled with gcc. */
1627
1628 int
1629 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1630 {
1631 struct minimal_symbol *msym_us;
1632 struct minimal_symbol *msym_start;
1633 struct unwind_table_entry *u, *next_u = NULL;
1634 struct frame_info *next;
1635
1636 u = find_unwind_entry (get_frame_pc (thisframe));
1637
1638 if (u == NULL)
1639 return 1;
1640
1641 /* We can't just check that the same of msym_us is "_start", because
1642 someone idiotically decided that they were going to make a Ltext_end
1643 symbol with the same address. This Ltext_end symbol is totally
1644 indistinguishable (as nearly as I can tell) from the symbol for a function
1645 which is (legitimately, since it is in the user's namespace)
1646 named Ltext_end, so we can't just ignore it. */
1647 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
1648 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1649 if (msym_us
1650 && msym_start
1651 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1652 return 0;
1653
1654 /* Grrrr. Some new idiot decided that they don't want _start for the
1655 PRO configurations; $START$ calls main directly.... Deal with it. */
1656 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1657 if (msym_us
1658 && msym_start
1659 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1660 return 0;
1661
1662 next = get_next_frame (thisframe);
1663 if (next)
1664 next_u = find_unwind_entry (get_frame_pc (next));
1665
1666 /* If this frame does not save SP, has no stack, isn't a stub,
1667 and doesn't "call" an interrupt routine or signal handler caller,
1668 then its not valid. */
1669 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1670 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
1671 || (next_u && next_u->HP_UX_interrupt_marker))
1672 return 1;
1673
1674 if (pc_in_linker_stub (get_frame_pc (thisframe)))
1675 return 1;
1676
1677 return 0;
1678 }
1679
1680 /* These functions deal with saving and restoring register state
1681 around a function call in the inferior. They keep the stack
1682 double-word aligned; eventually, on an hp700, the stack will have
1683 to be aligned to a 64-byte boundary. */
1684
1685 void
1686 hppa_push_dummy_frame (void)
1687 {
1688 CORE_ADDR sp, pc, pcspace;
1689 int regnum;
1690 CORE_ADDR int_buffer;
1691 double freg_buffer;
1692
1693 pc = hppa_target_read_pc (inferior_ptid);
1694 int_buffer = read_register (FLAGS_REGNUM);
1695 if (int_buffer & 0x2)
1696 {
1697 const unsigned int sid = (pc >> 30) & 0x3;
1698 if (sid == 0)
1699 pcspace = read_register (SR4_REGNUM);
1700 else
1701 pcspace = read_register (SR4_REGNUM + 4 + sid);
1702 }
1703 else
1704 pcspace = read_register (PCSQ_HEAD_REGNUM);
1705
1706 /* Space for "arguments"; the RP goes in here. */
1707 sp = read_register (SP_REGNUM) + 48;
1708 int_buffer = read_register (RP_REGNUM) | 0x3;
1709
1710 /* The 32bit and 64bit ABIs save the return pointer into different
1711 stack slots. */
1712 if (DEPRECATED_REGISTER_SIZE == 8)
1713 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1714 else
1715 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1716
1717 int_buffer = deprecated_read_fp ();
1718 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1719
1720 write_register (DEPRECATED_FP_REGNUM, sp);
1721
1722 sp += 2 * DEPRECATED_REGISTER_SIZE;
1723
1724 for (regnum = 1; regnum < 32; regnum++)
1725 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
1726 sp = push_word (sp, read_register (regnum));
1727
1728 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1729 if (DEPRECATED_REGISTER_SIZE != 8)
1730 sp += 4;
1731
1732 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1733 {
1734 deprecated_read_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
1735 (char *) &freg_buffer, 8);
1736 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1737 }
1738 sp = push_word (sp, read_register (IPSW_REGNUM));
1739 sp = push_word (sp, read_register (SAR_REGNUM));
1740 sp = push_word (sp, pc);
1741 sp = push_word (sp, pcspace);
1742 sp = push_word (sp, pc + 4);
1743 sp = push_word (sp, pcspace);
1744 write_register (SP_REGNUM, sp);
1745 }
1746
1747 static void
1748 find_dummy_frame_regs (struct frame_info *frame,
1749 CORE_ADDR frame_saved_regs[])
1750 {
1751 CORE_ADDR fp = get_frame_base (frame);
1752 int i;
1753
1754 /* The 32bit and 64bit ABIs save RP into different locations. */
1755 if (DEPRECATED_REGISTER_SIZE == 8)
1756 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
1757 else
1758 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
1759
1760 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
1761
1762 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
1763
1764 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
1765 {
1766 if (i != DEPRECATED_FP_REGNUM)
1767 {
1768 frame_saved_regs[i] = fp;
1769 fp += DEPRECATED_REGISTER_SIZE;
1770 }
1771 }
1772
1773 /* This is not necessary or desirable for the 64bit ABI. */
1774 if (DEPRECATED_REGISTER_SIZE != 8)
1775 fp += 4;
1776
1777 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1778 frame_saved_regs[i] = fp;
1779
1780 frame_saved_regs[IPSW_REGNUM] = fp;
1781 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1782 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1783 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1784 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1785 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
1786 }
1787
1788 void
1789 hppa_pop_frame (void)
1790 {
1791 struct frame_info *frame = get_current_frame ();
1792 CORE_ADDR fp, npc, target_pc;
1793 int regnum;
1794 CORE_ADDR *fsr;
1795 double freg_buffer;
1796
1797 fp = get_frame_base (frame);
1798 hppa_frame_init_saved_regs (frame);
1799 fsr = deprecated_get_frame_saved_regs (frame);
1800
1801 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1802 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1803 restore_pc_queue (fsr);
1804 #endif
1805
1806 for (regnum = 31; regnum > 0; regnum--)
1807 if (fsr[regnum])
1808 write_register (regnum, read_memory_integer (fsr[regnum],
1809 DEPRECATED_REGISTER_SIZE));
1810
1811 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1812 if (fsr[regnum])
1813 {
1814 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
1815 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
1816 (char *) &freg_buffer, 8);
1817 }
1818
1819 if (fsr[IPSW_REGNUM])
1820 write_register (IPSW_REGNUM,
1821 read_memory_integer (fsr[IPSW_REGNUM],
1822 DEPRECATED_REGISTER_SIZE));
1823
1824 if (fsr[SAR_REGNUM])
1825 write_register (SAR_REGNUM,
1826 read_memory_integer (fsr[SAR_REGNUM],
1827 DEPRECATED_REGISTER_SIZE));
1828
1829 /* If the PC was explicitly saved, then just restore it. */
1830 if (fsr[PCOQ_TAIL_REGNUM])
1831 {
1832 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
1833 DEPRECATED_REGISTER_SIZE);
1834 write_register (PCOQ_TAIL_REGNUM, npc);
1835 }
1836 /* Else use the value in %rp to set the new PC. */
1837 else
1838 {
1839 npc = read_register (RP_REGNUM);
1840 write_pc (npc);
1841 }
1842
1843 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
1844
1845 if (fsr[IPSW_REGNUM]) /* call dummy */
1846 write_register (SP_REGNUM, fp - 48);
1847 else
1848 write_register (SP_REGNUM, fp);
1849
1850 /* The PC we just restored may be inside a return trampoline. If so
1851 we want to restart the inferior and run it through the trampoline.
1852
1853 Do this by setting a momentary breakpoint at the location the
1854 trampoline returns to.
1855
1856 Don't skip through the trampoline if we're popping a dummy frame. */
1857 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1858 if (target_pc && !fsr[IPSW_REGNUM])
1859 {
1860 struct symtab_and_line sal;
1861 struct breakpoint *breakpoint;
1862 struct cleanup *old_chain;
1863
1864 /* Set up our breakpoint. Set it to be silent as the MI code
1865 for "return_command" will print the frame we returned to. */
1866 sal = find_pc_line (target_pc, 0);
1867 sal.pc = target_pc;
1868 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
1869 breakpoint->silent = 1;
1870
1871 /* So we can clean things up. */
1872 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1873
1874 /* Start up the inferior. */
1875 clear_proceed_status ();
1876 proceed_to_finish = 1;
1877 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1878
1879 /* Perform our cleanups. */
1880 do_cleanups (old_chain);
1881 }
1882 flush_cached_frames ();
1883 }
1884
1885 /* After returning to a dummy on the stack, restore the instruction
1886 queue space registers. */
1887
1888 static int
1889 restore_pc_queue (CORE_ADDR *fsr)
1890 {
1891 CORE_ADDR pc = read_pc ();
1892 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
1893 TARGET_PTR_BIT / 8);
1894 struct target_waitstatus w;
1895 int insn_count;
1896
1897 /* Advance past break instruction in the call dummy. */
1898 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1899 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1900
1901 /* HPUX doesn't let us set the space registers or the space
1902 registers of the PC queue through ptrace. Boo, hiss.
1903 Conveniently, the call dummy has this sequence of instructions
1904 after the break:
1905 mtsp r21, sr0
1906 ble,n 0(sr0, r22)
1907
1908 So, load up the registers and single step until we are in the
1909 right place. */
1910
1911 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
1912 DEPRECATED_REGISTER_SIZE));
1913 write_register (22, new_pc);
1914
1915 for (insn_count = 0; insn_count < 3; insn_count++)
1916 {
1917 /* FIXME: What if the inferior gets a signal right now? Want to
1918 merge this into wait_for_inferior (as a special kind of
1919 watchpoint? By setting a breakpoint at the end? Is there
1920 any other choice? Is there *any* way to do this stuff with
1921 ptrace() or some equivalent?). */
1922 resume (1, 0);
1923 target_wait (inferior_ptid, &w);
1924
1925 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1926 {
1927 stop_signal = w.value.sig;
1928 terminal_ours_for_output ();
1929 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1930 target_signal_to_name (stop_signal),
1931 target_signal_to_string (stop_signal));
1932 gdb_flush (gdb_stdout);
1933 return 0;
1934 }
1935 }
1936 target_terminal_ours ();
1937 target_fetch_registers (-1);
1938 return 1;
1939 }
1940
1941
1942 #ifdef PA20W_CALLING_CONVENTIONS
1943
1944 /* This function pushes a stack frame with arguments as part of the
1945 inferior function calling mechanism.
1946
1947 This is the version for the PA64, in which later arguments appear
1948 at higher addresses. (The stack always grows towards higher
1949 addresses.)
1950
1951 We simply allocate the appropriate amount of stack space and put
1952 arguments into their proper slots. The call dummy code will copy
1953 arguments into registers as needed by the ABI.
1954
1955 This ABI also requires that the caller provide an argument pointer
1956 to the callee, so we do that too. */
1957
1958 CORE_ADDR
1959 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1960 int struct_return, CORE_ADDR struct_addr)
1961 {
1962 /* array of arguments' offsets */
1963 int *offset = (int *) alloca (nargs * sizeof (int));
1964
1965 /* array of arguments' lengths: real lengths in bytes, not aligned to
1966 word size */
1967 int *lengths = (int *) alloca (nargs * sizeof (int));
1968
1969 /* The value of SP as it was passed into this function after
1970 aligning. */
1971 CORE_ADDR orig_sp = DEPRECATED_STACK_ALIGN (sp);
1972
1973 /* The number of stack bytes occupied by the current argument. */
1974 int bytes_reserved;
1975
1976 /* The total number of bytes reserved for the arguments. */
1977 int cum_bytes_reserved = 0;
1978
1979 /* Similarly, but aligned. */
1980 int cum_bytes_aligned = 0;
1981 int i;
1982
1983 /* Iterate over each argument provided by the user. */
1984 for (i = 0; i < nargs; i++)
1985 {
1986 struct type *arg_type = VALUE_TYPE (args[i]);
1987
1988 /* Integral scalar values smaller than a register are padded on
1989 the left. We do this by promoting them to full-width,
1990 although the ABI says to pad them with garbage. */
1991 if (is_integral_type (arg_type)
1992 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
1993 {
1994 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1995 ? builtin_type_unsigned_long
1996 : builtin_type_long),
1997 args[i]);
1998 arg_type = VALUE_TYPE (args[i]);
1999 }
2000
2001 lengths[i] = TYPE_LENGTH (arg_type);
2002
2003 /* Align the size of the argument to the word size for this
2004 target. */
2005 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
2006
2007 offset[i] = cum_bytes_reserved;
2008
2009 /* Aggregates larger than eight bytes (the only types larger
2010 than eight bytes we have) are aligned on a 16-byte boundary,
2011 possibly padded on the right with garbage. This may leave an
2012 empty word on the stack, and thus an unused register, as per
2013 the ABI. */
2014 if (bytes_reserved > 8)
2015 {
2016 /* Round up the offset to a multiple of two slots. */
2017 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
2018 & -(2*DEPRECATED_REGISTER_SIZE));
2019
2020 /* Note the space we've wasted, if any. */
2021 bytes_reserved += new_offset - offset[i];
2022 offset[i] = new_offset;
2023 }
2024
2025 cum_bytes_reserved += bytes_reserved;
2026 }
2027
2028 /* CUM_BYTES_RESERVED already accounts for all the arguments
2029 passed by the user. However, the ABIs mandate minimum stack space
2030 allocations for outgoing arguments.
2031
2032 The ABIs also mandate minimum stack alignments which we must
2033 preserve. */
2034 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
2035 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2036
2037 /* Now write each of the args at the proper offset down the stack. */
2038 for (i = 0; i < nargs; i++)
2039 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
2040
2041 /* If a structure has to be returned, set up register 28 to hold its
2042 address */
2043 if (struct_return)
2044 write_register (28, struct_addr);
2045
2046 /* For the PA64 we must pass a pointer to the outgoing argument list.
2047 The ABI mandates that the pointer should point to the first byte of
2048 storage beyond the register flushback area.
2049
2050 However, the call dummy expects the outgoing argument pointer to
2051 be passed in register %r4. */
2052 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
2053
2054 /* ?!? This needs further work. We need to set up the global data
2055 pointer for this procedure. This assumes the same global pointer
2056 for every procedure. The call dummy expects the dp value to
2057 be passed in register %r6. */
2058 write_register (6, read_register (27));
2059
2060 /* The stack will have 64 bytes of additional space for a frame marker. */
2061 return sp + 64;
2062 }
2063
2064 #else
2065
2066 /* This function pushes a stack frame with arguments as part of the
2067 inferior function calling mechanism.
2068
2069 This is the version of the function for the 32-bit PA machines, in
2070 which later arguments appear at lower addresses. (The stack always
2071 grows towards higher addresses.)
2072
2073 We simply allocate the appropriate amount of stack space and put
2074 arguments into their proper slots. The call dummy code will copy
2075 arguments into registers as needed by the ABI. */
2076
2077 CORE_ADDR
2078 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
2079 int struct_return, CORE_ADDR struct_addr)
2080 {
2081 /* array of arguments' offsets */
2082 int *offset = (int *) alloca (nargs * sizeof (int));
2083
2084 /* array of arguments' lengths: real lengths in bytes, not aligned to
2085 word size */
2086 int *lengths = (int *) alloca (nargs * sizeof (int));
2087
2088 /* The number of stack bytes occupied by the current argument. */
2089 int bytes_reserved;
2090
2091 /* The total number of bytes reserved for the arguments. */
2092 int cum_bytes_reserved = 0;
2093
2094 /* Similarly, but aligned. */
2095 int cum_bytes_aligned = 0;
2096 int i;
2097
2098 /* Iterate over each argument provided by the user. */
2099 for (i = 0; i < nargs; i++)
2100 {
2101 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
2102
2103 /* Align the size of the argument to the word size for this
2104 target. */
2105 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
2106
2107 offset[i] = (cum_bytes_reserved
2108 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
2109
2110 /* If the argument is a double word argument, then it needs to be
2111 double word aligned. */
2112 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
2113 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
2114 {
2115 int new_offset = 0;
2116 /* BYTES_RESERVED is already aligned to the word, so we put
2117 the argument at one word more down the stack.
2118
2119 This will leave one empty word on the stack, and one unused
2120 register as mandated by the ABI. */
2121 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
2122 & -(2 * DEPRECATED_REGISTER_SIZE));
2123
2124 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
2125 {
2126 bytes_reserved += DEPRECATED_REGISTER_SIZE;
2127 offset[i] += DEPRECATED_REGISTER_SIZE;
2128 }
2129 }
2130
2131 cum_bytes_reserved += bytes_reserved;
2132
2133 }
2134
2135 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2136 by the user. However, the ABI mandates minimum stack space
2137 allocations for outgoing arguments.
2138
2139 The ABI also mandates minimum stack alignments which we must
2140 preserve. */
2141 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
2142 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2143
2144 /* Now write each of the args at the proper offset down the stack.
2145 ?!? We need to promote values to a full register instead of skipping
2146 words in the stack. */
2147 for (i = 0; i < nargs; i++)
2148 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
2149
2150 /* If a structure has to be returned, set up register 28 to hold its
2151 address */
2152 if (struct_return)
2153 write_register (28, struct_addr);
2154
2155 /* The stack will have 32 bytes of additional space for a frame marker. */
2156 return sp + 32;
2157 }
2158
2159 #endif
2160
2161 /* This function pushes a stack frame with arguments as part of the
2162 inferior function calling mechanism.
2163
2164 This is the version of the function for the 32-bit PA machines, in
2165 which later arguments appear at lower addresses. (The stack always
2166 grows towards higher addresses.)
2167
2168 We simply allocate the appropriate amount of stack space and put
2169 arguments into their proper slots. */
2170
2171 CORE_ADDR
2172 hppa32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2173 struct regcache *regcache, CORE_ADDR bp_addr,
2174 int nargs, struct value **args, CORE_ADDR sp,
2175 int struct_return, CORE_ADDR struct_addr)
2176 {
2177 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
2178 reverse engineering testsuite failures. */
2179
2180 /* Stack base address at which any pass-by-reference parameters are
2181 stored. */
2182 CORE_ADDR struct_end = 0;
2183 /* Stack base address at which the first parameter is stored. */
2184 CORE_ADDR param_end = 0;
2185
2186 /* The inner most end of the stack after all the parameters have
2187 been pushed. */
2188 CORE_ADDR new_sp = 0;
2189
2190 /* Two passes. First pass computes the location of everything,
2191 second pass writes the bytes out. */
2192 int write_pass;
2193 for (write_pass = 0; write_pass < 2; write_pass++)
2194 {
2195 CORE_ADDR struct_ptr = 0;
2196 CORE_ADDR param_ptr = 0;
2197 int reg = 27; /* NOTE: Registers go down. */
2198 int i;
2199 for (i = 0; i < nargs; i++)
2200 {
2201 struct value *arg = args[i];
2202 struct type *type = check_typedef (VALUE_TYPE (arg));
2203 /* The corresponding parameter that is pushed onto the
2204 stack, and [possibly] passed in a register. */
2205 char param_val[8];
2206 int param_len;
2207 memset (param_val, 0, sizeof param_val);
2208 if (TYPE_LENGTH (type) > 8)
2209 {
2210 /* Large parameter, pass by reference. Store the value
2211 in "struct" area and then pass its address. */
2212 param_len = 4;
2213 struct_ptr += align_up (TYPE_LENGTH (type), 8);
2214 if (write_pass)
2215 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
2216 TYPE_LENGTH (type));
2217 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
2218 }
2219 else if (TYPE_CODE (type) == TYPE_CODE_INT
2220 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2221 {
2222 /* Integer value store, right aligned. "unpack_long"
2223 takes care of any sign-extension problems. */
2224 param_len = align_up (TYPE_LENGTH (type), 4);
2225 store_unsigned_integer (param_val, param_len,
2226 unpack_long (type,
2227 VALUE_CONTENTS (arg)));
2228 }
2229 else
2230 {
2231 /* Small struct value, store right aligned? */
2232 param_len = align_up (TYPE_LENGTH (type), 4);
2233 memcpy (param_val + param_len - TYPE_LENGTH (type),
2234 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
2235 }
2236 param_ptr += param_len;
2237 reg -= param_len / 4;
2238 if (write_pass)
2239 {
2240 write_memory (param_end - param_ptr, param_val, param_len);
2241 if (reg >= 23)
2242 {
2243 regcache_cooked_write (regcache, reg, param_val);
2244 if (param_len > 4)
2245 regcache_cooked_write (regcache, reg + 1, param_val + 4);
2246 }
2247 }
2248 }
2249
2250 /* Update the various stack pointers. */
2251 if (!write_pass)
2252 {
2253 struct_end = sp + struct_ptr;
2254 /* PARAM_PTR already accounts for all the arguments passed
2255 by the user. However, the ABI mandates minimum stack
2256 space allocations for outgoing arguments. The ABI also
2257 mandates minimum stack alignments which we must
2258 preserve. */
2259 param_end = struct_end + max (align_up (param_ptr, 8),
2260 REG_PARM_STACK_SPACE);
2261 }
2262 }
2263
2264 /* If a structure has to be returned, set up register 28 to hold its
2265 address */
2266 if (struct_return)
2267 write_register (28, struct_addr);
2268
2269 /* Set the return address. */
2270 regcache_cooked_write_unsigned (regcache, RP_REGNUM, bp_addr);
2271
2272 /* The stack will have 32 bytes of additional space for a frame marker. */
2273 return param_end + 32;
2274 }
2275
2276 /* This function pushes a stack frame with arguments as part of the
2277 inferior function calling mechanism.
2278
2279 This is the version for the PA64, in which later arguments appear
2280 at higher addresses. (The stack always grows towards higher
2281 addresses.)
2282
2283 We simply allocate the appropriate amount of stack space and put
2284 arguments into their proper slots.
2285
2286 This ABI also requires that the caller provide an argument pointer
2287 to the callee, so we do that too. */
2288
2289 CORE_ADDR
2290 hppa64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2291 struct regcache *regcache, CORE_ADDR bp_addr,
2292 int nargs, struct value **args, CORE_ADDR sp,
2293 int struct_return, CORE_ADDR struct_addr)
2294 {
2295 /* Array of arguments' offsets. */
2296 int *offset = (int *) alloca (nargs * sizeof (int));
2297
2298 /* Array of arguments' lengths: real lengths in bytes, not aligned
2299 to word size. */
2300 int *lengths = (int *) alloca (nargs * sizeof (int));
2301
2302 /* The value of SP as it was passed into this function. */
2303 CORE_ADDR orig_sp = sp;
2304
2305 /* The number of stack bytes occupied by the current argument. */
2306 int bytes_reserved;
2307
2308 /* The total number of bytes reserved for the arguments. */
2309 int cum_bytes_reserved = 0;
2310
2311 /* Similarly, but aligned. */
2312 int cum_bytes_aligned = 0;
2313 int i;
2314
2315 /* Iterate over each argument provided by the user. */
2316 for (i = 0; i < nargs; i++)
2317 {
2318 struct type *arg_type = VALUE_TYPE (args[i]);
2319
2320 /* Integral scalar values smaller than a register are padded on
2321 the left. We do this by promoting them to full-width,
2322 although the ABI says to pad them with garbage. */
2323 if (is_integral_type (arg_type)
2324 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
2325 {
2326 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
2327 ? builtin_type_unsigned_long
2328 : builtin_type_long),
2329 args[i]);
2330 arg_type = VALUE_TYPE (args[i]);
2331 }
2332
2333 lengths[i] = TYPE_LENGTH (arg_type);
2334
2335 /* Align the size of the argument to the word size for this
2336 target. */
2337 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
2338
2339 offset[i] = cum_bytes_reserved;
2340
2341 /* Aggregates larger than eight bytes (the only types larger
2342 than eight bytes we have) are aligned on a 16-byte boundary,
2343 possibly padded on the right with garbage. This may leave an
2344 empty word on the stack, and thus an unused register, as per
2345 the ABI. */
2346 if (bytes_reserved > 8)
2347 {
2348 /* Round up the offset to a multiple of two slots. */
2349 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
2350 & -(2*DEPRECATED_REGISTER_SIZE));
2351
2352 /* Note the space we've wasted, if any. */
2353 bytes_reserved += new_offset - offset[i];
2354 offset[i] = new_offset;
2355 }
2356
2357 cum_bytes_reserved += bytes_reserved;
2358 }
2359
2360 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2361 by the user. However, the ABIs mandate minimum stack space
2362 allocations for outgoing arguments.
2363
2364 The ABIs also mandate minimum stack alignments which we must
2365 preserve. */
2366 cum_bytes_aligned = align_up (cum_bytes_reserved, 16);
2367 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2368
2369 /* Now write each of the args at the proper offset down the
2370 stack. */
2371 for (i = 0; i < nargs; i++)
2372 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
2373
2374 /* If a structure has to be returned, set up register 28 to hold its
2375 address */
2376 if (struct_return)
2377 write_register (28, struct_addr);
2378
2379 /* For the PA64 we must pass a pointer to the outgoing argument
2380 list. The ABI mandates that the pointer should point to the
2381 first byte of storage beyond the register flushback area.
2382
2383 However, the call dummy expects the outgoing argument pointer to
2384 be passed in register %r4. */
2385 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
2386
2387 /* ?!? This needs further work. We need to set up the global data
2388 pointer for this procedure. This assumes the same global pointer
2389 for every procedure. The call dummy expects the dp value to be
2390 passed in register %r6. */
2391 write_register (6, read_register (27));
2392
2393 /* Set the return address. */
2394 regcache_cooked_write_unsigned (regcache, RP_REGNUM, bp_addr);
2395
2396 /* The stack will have 64 bytes of additional space for a frame
2397 marker. */
2398 return sp + 64;
2399
2400 }
2401
2402 static CORE_ADDR
2403 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2404 {
2405 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
2406 and not _bit_)! */
2407 return align_up (addr, 64);
2408 }
2409
2410 /* Force all frames to 16-byte alignment. Better safe than sorry. */
2411
2412 static CORE_ADDR
2413 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2414 {
2415 /* Just always 16-byte align. */
2416 return align_up (addr, 16);
2417 }
2418
2419
2420 /* elz: Used to lookup a symbol in the shared libraries.
2421 This function calls shl_findsym, indirectly through a
2422 call to __d_shl_get. __d_shl_get is in end.c, which is always
2423 linked in by the hp compilers/linkers.
2424 The call to shl_findsym cannot be made directly because it needs
2425 to be active in target address space.
2426 inputs: - minimal symbol pointer for the function we want to look up
2427 - address in target space of the descriptor for the library
2428 where we want to look the symbol up.
2429 This address is retrieved using the
2430 som_solib_get_solib_by_pc function (somsolib.c).
2431 output: - real address in the library of the function.
2432 note: the handle can be null, in which case shl_findsym will look for
2433 the symbol in all the loaded shared libraries.
2434 files to look at if you need reference on this stuff:
2435 dld.c, dld_shl_findsym.c
2436 end.c
2437 man entry for shl_findsym */
2438
2439 CORE_ADDR
2440 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
2441 {
2442 struct symbol *get_sym, *symbol2;
2443 struct minimal_symbol *buff_minsym, *msymbol;
2444 struct type *ftype;
2445 struct value **args;
2446 struct value *funcval;
2447 struct value *val;
2448
2449 int x, namelen, err_value, tmp = -1;
2450 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
2451 CORE_ADDR stub_addr;
2452
2453
2454 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
2455 funcval = find_function_in_inferior ("__d_shl_get");
2456 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
2457 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
2458 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
2459 symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
2460 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
2461 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
2462 value_return_addr = endo_buff_addr + namelen;
2463 ftype = check_typedef (SYMBOL_TYPE (get_sym));
2464
2465 /* do alignment */
2466 if ((x = value_return_addr % 64) != 0)
2467 value_return_addr = value_return_addr + 64 - x;
2468
2469 errno_return_addr = value_return_addr + 64;
2470
2471
2472 /* set up stuff needed by __d_shl_get in buffer in end.o */
2473
2474 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
2475
2476 target_write_memory (value_return_addr, (char *) &tmp, 4);
2477
2478 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2479
2480 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2481 (char *) &handle, 4);
2482
2483 /* now prepare the arguments for the call */
2484
2485 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2486 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2487 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2488 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2489 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2490 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2491
2492 /* now call the function */
2493
2494 val = call_function_by_hand (funcval, 6, args);
2495
2496 /* now get the results */
2497
2498 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2499
2500 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2501 if (stub_addr <= 0)
2502 error ("call to __d_shl_get failed, error code is %d", err_value);
2503
2504 return (stub_addr);
2505 }
2506
2507 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2508 static int
2509 cover_find_stub_with_shl_get (void *args_untyped)
2510 {
2511 args_for_find_stub *args = args_untyped;
2512 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2513 return 0;
2514 }
2515
2516 /* Insert the specified number of args and function address
2517 into a call sequence of the above form stored at DUMMYNAME.
2518
2519 On the hppa we need to call the stack dummy through $$dyncall.
2520 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2521 argument, real_pc, which is the location where gdb should start up
2522 the inferior to do the function call.
2523
2524 This has to work across several versions of hpux, bsd, osf1. It has to
2525 work regardless of what compiler was used to build the inferior program.
2526 It should work regardless of whether or not end.o is available. It has
2527 to work even if gdb can not call into the dynamic loader in the inferior
2528 to query it for symbol names and addresses.
2529
2530 Yes, all those cases should work. Luckily code exists to handle most
2531 of them. The complexity is in selecting exactly what scheme should
2532 be used to perform the inferior call.
2533
2534 At the current time this routine is known not to handle cases where
2535 the program was linked with HP's compiler without including end.o.
2536
2537 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2538
2539 CORE_ADDR
2540 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2541 struct value **args, struct type *type, int gcc_p)
2542 {
2543 CORE_ADDR dyncall_addr;
2544 struct minimal_symbol *msymbol;
2545 struct minimal_symbol *trampoline;
2546 int flags = read_register (FLAGS_REGNUM);
2547 struct unwind_table_entry *u = NULL;
2548 CORE_ADDR new_stub = 0;
2549 CORE_ADDR solib_handle = 0;
2550
2551 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2552 passed an import stub, not a PLABEL. It is also necessary to set %r19
2553 (the PIC register) before performing the call.
2554
2555 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2556 are calling the target directly. When using __d_plt_call we want to
2557 use a PLABEL instead of an import stub. */
2558 int using_gcc_plt_call = 1;
2559
2560 #ifdef GDB_TARGET_IS_HPPA_20W
2561 /* We currently use completely different code for the PA2.0W inferior
2562 function call sequences. This needs to be cleaned up. */
2563 {
2564 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2565 struct target_waitstatus w;
2566 int inst1, inst2;
2567 char buf[4];
2568 int status;
2569 struct objfile *objfile;
2570
2571 /* We can not modify the PC space queues directly, so we start
2572 up the inferior and execute a couple instructions to set the
2573 space queues so that they point to the call dummy in the stack. */
2574 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2575 sr5 = read_register (SR5_REGNUM);
2576 if (1)
2577 {
2578 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2579 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2580 if (target_read_memory (pcoqh, buf, 4) != 0)
2581 error ("Couldn't modify space queue\n");
2582 inst1 = extract_unsigned_integer (buf, 4);
2583
2584 if (target_read_memory (pcoqt, buf, 4) != 0)
2585 error ("Couldn't modify space queue\n");
2586 inst2 = extract_unsigned_integer (buf, 4);
2587
2588 /* BVE (r1) */
2589 *((int *) buf) = 0xe820d000;
2590 if (target_write_memory (pcoqh, buf, 4) != 0)
2591 error ("Couldn't modify space queue\n");
2592
2593 /* NOP */
2594 *((int *) buf) = 0x08000240;
2595 if (target_write_memory (pcoqt, buf, 4) != 0)
2596 {
2597 *((int *) buf) = inst1;
2598 target_write_memory (pcoqh, buf, 4);
2599 error ("Couldn't modify space queue\n");
2600 }
2601
2602 write_register (1, pc);
2603
2604 /* Single step twice, the BVE instruction will set the space queue
2605 such that it points to the PC value written immediately above
2606 (ie the call dummy). */
2607 resume (1, 0);
2608 target_wait (inferior_ptid, &w);
2609 resume (1, 0);
2610 target_wait (inferior_ptid, &w);
2611
2612 /* Restore the two instructions at the old PC locations. */
2613 *((int *) buf) = inst1;
2614 target_write_memory (pcoqh, buf, 4);
2615 *((int *) buf) = inst2;
2616 target_write_memory (pcoqt, buf, 4);
2617 }
2618
2619 /* The call dummy wants the ultimate destination address initially
2620 in register %r5. */
2621 write_register (5, fun);
2622
2623 /* We need to see if this objfile has a different DP value than our
2624 own (it could be a shared library for example). */
2625 ALL_OBJFILES (objfile)
2626 {
2627 struct obj_section *s;
2628 obj_private_data_t *obj_private;
2629
2630 /* See if FUN is in any section within this shared library. */
2631 for (s = objfile->sections; s < objfile->sections_end; s++)
2632 if (s->addr <= fun && fun < s->endaddr)
2633 break;
2634
2635 if (s >= objfile->sections_end)
2636 continue;
2637
2638 obj_private = (obj_private_data_t *) objfile->obj_private;
2639
2640 /* The DP value may be different for each objfile. But within an
2641 objfile each function uses the same dp value. Thus we do not need
2642 to grope around the opd section looking for dp values.
2643
2644 ?!? This is not strictly correct since we may be in a shared library
2645 and want to call back into the main program. To make that case
2646 work correctly we need to set obj_private->dp for the main program's
2647 objfile, then remove this conditional. */
2648 if (obj_private->dp)
2649 write_register (27, obj_private->dp);
2650 break;
2651 }
2652 return pc;
2653 }
2654 #endif
2655
2656 #ifndef GDB_TARGET_IS_HPPA_20W
2657 /* Prefer __gcc_plt_call over the HP supplied routine because
2658 __gcc_plt_call works for any number of arguments. */
2659 trampoline = NULL;
2660 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2661 using_gcc_plt_call = 0;
2662
2663 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2664 if (msymbol == NULL)
2665 error ("Can't find an address for $$dyncall trampoline");
2666
2667 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2668
2669 /* FUN could be a procedure label, in which case we have to get
2670 its real address and the value of its GOT/DP if we plan to
2671 call the routine via gcc_plt_call. */
2672 if ((fun & 0x2) && using_gcc_plt_call)
2673 {
2674 /* Get the GOT/DP value for the target function. It's
2675 at *(fun+4). Note the call dummy is *NOT* allowed to
2676 trash %r19 before calling the target function. */
2677 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2678 DEPRECATED_REGISTER_SIZE));
2679
2680 /* Now get the real address for the function we are calling, it's
2681 at *fun. */
2682 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2683 TARGET_PTR_BIT / 8);
2684 }
2685 else
2686 {
2687
2688 #ifndef GDB_TARGET_IS_PA_ELF
2689 /* FUN could be an export stub, the real address of a function, or
2690 a PLABEL. When using gcc's PLT call routine we must call an import
2691 stub rather than the export stub or real function for lazy binding
2692 to work correctly
2693
2694 If we are using the gcc PLT call routine, then we need to
2695 get the import stub for the target function. */
2696 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2697 {
2698 struct objfile *objfile;
2699 struct minimal_symbol *funsymbol, *stub_symbol;
2700 CORE_ADDR newfun = 0;
2701
2702 funsymbol = lookup_minimal_symbol_by_pc (fun);
2703 if (!funsymbol)
2704 error ("Unable to find minimal symbol for target function.\n");
2705
2706 /* Search all the object files for an import symbol with the
2707 right name. */
2708 ALL_OBJFILES (objfile)
2709 {
2710 stub_symbol
2711 = lookup_minimal_symbol_solib_trampoline
2712 (DEPRECATED_SYMBOL_NAME (funsymbol), objfile);
2713
2714 if (!stub_symbol)
2715 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
2716 NULL, objfile);
2717
2718 /* Found a symbol with the right name. */
2719 if (stub_symbol)
2720 {
2721 struct unwind_table_entry *u;
2722 /* It must be a shared library trampoline. */
2723 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2724 continue;
2725
2726 /* It must also be an import stub. */
2727 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2728 if (u == NULL
2729 || (u->stub_unwind.stub_type != IMPORT
2730 #ifdef GDB_NATIVE_HPUX_11
2731 /* Sigh. The hpux 10.20 dynamic linker will blow
2732 chunks if we perform a call to an unbound function
2733 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2734 linker will blow chunks if we do not call the
2735 unbound function via the IMPORT_SHLIB stub.
2736
2737 We currently have no way to select bevahior on just
2738 the target. However, we only support HPUX/SOM in
2739 native mode. So we conditinalize on a native
2740 #ifdef. Ugly. Ugly. Ugly */
2741 && u->stub_unwind.stub_type != IMPORT_SHLIB
2742 #endif
2743 ))
2744 continue;
2745
2746 /* OK. Looks like the correct import stub. */
2747 newfun = SYMBOL_VALUE (stub_symbol);
2748 fun = newfun;
2749
2750 /* If we found an IMPORT stub, then we want to stop
2751 searching now. If we found an IMPORT_SHLIB, we want
2752 to continue the search in the hopes that we will find
2753 an IMPORT stub. */
2754 if (u->stub_unwind.stub_type == IMPORT)
2755 break;
2756 }
2757 }
2758
2759 /* Ouch. We did not find an import stub. Make an attempt to
2760 do the right thing instead of just croaking. Most of the
2761 time this will actually work. */
2762 if (newfun == 0)
2763 write_register (19, som_solib_get_got_by_pc (fun));
2764
2765 u = find_unwind_entry (fun);
2766 if (u
2767 && (u->stub_unwind.stub_type == IMPORT
2768 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2769 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2770
2771 /* If we found the import stub in the shared library, then we have
2772 to set %r19 before we call the stub. */
2773 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2774 write_register (19, som_solib_get_got_by_pc (fun));
2775 }
2776 #endif
2777 }
2778
2779 /* If we are calling into another load module then have sr4export call the
2780 magic __d_plt_call routine which is linked in from end.o.
2781
2782 You can't use _sr4export to make the call as the value in sp-24 will get
2783 fried and you end up returning to the wrong location. You can't call the
2784 target as the code to bind the PLT entry to a function can't return to a
2785 stack address.
2786
2787 Also, query the dynamic linker in the inferior to provide a suitable
2788 PLABEL for the target function. */
2789 if (!using_gcc_plt_call)
2790 {
2791 CORE_ADDR new_fun;
2792
2793 /* Get a handle for the shared library containing FUN. Given the
2794 handle we can query the shared library for a PLABEL. */
2795 solib_handle = som_solib_get_solib_by_pc (fun);
2796
2797 if (solib_handle)
2798 {
2799 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2800
2801 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2802
2803 if (trampoline == NULL)
2804 {
2805 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2806 }
2807
2808 /* This is where sr4export will jump to. */
2809 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2810
2811 /* If the function is in a shared library, then call __d_shl_get to
2812 get a PLABEL for the target function. */
2813 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2814
2815 if (new_stub == 0)
2816 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
2817
2818 /* We have to store the address of the stub in __shlib_funcptr. */
2819 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2820 (struct objfile *) NULL);
2821
2822 if (msymbol == NULL)
2823 error ("Can't find an address for __shlib_funcptr");
2824 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2825 (char *) &new_stub, 4);
2826
2827 /* We want sr4export to call __d_plt_call, so we claim it is
2828 the final target. Clear trampoline. */
2829 fun = new_fun;
2830 trampoline = NULL;
2831 }
2832 }
2833
2834 /* Store upper 21 bits of function address into ldil. fun will either be
2835 the final target (most cases) or __d_plt_call when calling into a shared
2836 library and __gcc_plt_call is not available. */
2837 store_unsigned_integer
2838 (&dummy[FUNC_LDIL_OFFSET],
2839 INSTRUCTION_SIZE,
2840 deposit_21 (fun >> 11,
2841 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2842 INSTRUCTION_SIZE)));
2843
2844 /* Store lower 11 bits of function address into ldo */
2845 store_unsigned_integer
2846 (&dummy[FUNC_LDO_OFFSET],
2847 INSTRUCTION_SIZE,
2848 deposit_14 (fun & MASK_11,
2849 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2850 INSTRUCTION_SIZE)));
2851 #ifdef SR4EXPORT_LDIL_OFFSET
2852
2853 {
2854 CORE_ADDR trampoline_addr;
2855
2856 /* We may still need sr4export's address too. */
2857
2858 if (trampoline == NULL)
2859 {
2860 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2861 if (msymbol == NULL)
2862 error ("Can't find an address for _sr4export trampoline");
2863
2864 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2865 }
2866 else
2867 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2868
2869
2870 /* Store upper 21 bits of trampoline's address into ldil */
2871 store_unsigned_integer
2872 (&dummy[SR4EXPORT_LDIL_OFFSET],
2873 INSTRUCTION_SIZE,
2874 deposit_21 (trampoline_addr >> 11,
2875 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2876 INSTRUCTION_SIZE)));
2877
2878 /* Store lower 11 bits of trampoline's address into ldo */
2879 store_unsigned_integer
2880 (&dummy[SR4EXPORT_LDO_OFFSET],
2881 INSTRUCTION_SIZE,
2882 deposit_14 (trampoline_addr & MASK_11,
2883 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2884 INSTRUCTION_SIZE)));
2885 }
2886 #endif
2887
2888 write_register (22, pc);
2889
2890 /* If we are in a syscall, then we should call the stack dummy
2891 directly. $$dyncall is not needed as the kernel sets up the
2892 space id registers properly based on the value in %r31. In
2893 fact calling $$dyncall will not work because the value in %r22
2894 will be clobbered on the syscall exit path.
2895
2896 Similarly if the current PC is in a shared library. Note however,
2897 this scheme won't work if the shared library isn't mapped into
2898 the same space as the stack. */
2899 if (flags & 2)
2900 return pc;
2901 #ifndef GDB_TARGET_IS_PA_ELF
2902 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
2903 return pc;
2904 #endif
2905 else
2906 return dyncall_addr;
2907 #endif
2908 }
2909
2910 /* If the pid is in a syscall, then the FP register is not readable.
2911 We'll return zero in that case, rather than attempting to read it
2912 and cause a warning. */
2913
2914 CORE_ADDR
2915 hppa_read_fp (int pid)
2916 {
2917 int flags = read_register (FLAGS_REGNUM);
2918
2919 if (flags & 2)
2920 {
2921 return (CORE_ADDR) 0;
2922 }
2923
2924 /* This is the only site that may directly read_register () the FP
2925 register. All others must use deprecated_read_fp (). */
2926 return read_register (DEPRECATED_FP_REGNUM);
2927 }
2928
2929 CORE_ADDR
2930 hppa_target_read_fp (void)
2931 {
2932 return hppa_read_fp (PIDGET (inferior_ptid));
2933 }
2934
2935 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2936 bits. */
2937
2938 CORE_ADDR
2939 hppa_target_read_pc (ptid_t ptid)
2940 {
2941 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2942
2943 /* The following test does not belong here. It is OS-specific, and belongs
2944 in native code. */
2945 /* Test SS_INSYSCALL */
2946 if (flags & 2)
2947 return read_register_pid (31, ptid) & ~0x3;
2948
2949 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2950 }
2951
2952 /* Write out the PC. If currently in a syscall, then also write the new
2953 PC value into %r31. */
2954
2955 void
2956 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
2957 {
2958 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2959
2960 /* The following test does not belong here. It is OS-specific, and belongs
2961 in native code. */
2962 /* If in a syscall, then set %r31. Also make sure to get the
2963 privilege bits set correctly. */
2964 /* Test SS_INSYSCALL */
2965 if (flags & 2)
2966 write_register_pid (31, v | 0x3, ptid);
2967
2968 write_register_pid (PC_REGNUM, v, ptid);
2969 write_register_pid (PCOQ_TAIL_REGNUM, v + 4, ptid);
2970 }
2971
2972 /* return the alignment of a type in bytes. Structures have the maximum
2973 alignment required by their fields. */
2974
2975 static int
2976 hppa_alignof (struct type *type)
2977 {
2978 int max_align, align, i;
2979 CHECK_TYPEDEF (type);
2980 switch (TYPE_CODE (type))
2981 {
2982 case TYPE_CODE_PTR:
2983 case TYPE_CODE_INT:
2984 case TYPE_CODE_FLT:
2985 return TYPE_LENGTH (type);
2986 case TYPE_CODE_ARRAY:
2987 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2988 case TYPE_CODE_STRUCT:
2989 case TYPE_CODE_UNION:
2990 max_align = 1;
2991 for (i = 0; i < TYPE_NFIELDS (type); i++)
2992 {
2993 /* Bit fields have no real alignment. */
2994 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2995 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2996 {
2997 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2998 max_align = max (max_align, align);
2999 }
3000 }
3001 return max_align;
3002 default:
3003 return 4;
3004 }
3005 }
3006
3007 /* Print the register regnum, or all registers if regnum is -1 */
3008
3009 void
3010 pa_do_registers_info (int regnum, int fpregs)
3011 {
3012 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
3013 int i;
3014
3015 /* Make a copy of gdb's save area (may cause actual
3016 reads from the target). */
3017 for (i = 0; i < NUM_REGS; i++)
3018 frame_register_read (deprecated_selected_frame, i,
3019 raw_regs + DEPRECATED_REGISTER_BYTE (i));
3020
3021 if (regnum == -1)
3022 pa_print_registers (raw_regs, regnum, fpregs);
3023 else if (regnum < FP4_REGNUM)
3024 {
3025 long reg_val[2];
3026
3027 /* Why is the value not passed through "extract_signed_integer"
3028 as in "pa_print_registers" below? */
3029 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
3030
3031 if (!is_pa_2)
3032 {
3033 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
3034 }
3035 else
3036 {
3037 /* Fancy % formats to prevent leading zeros. */
3038 if (reg_val[0] == 0)
3039 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
3040 else
3041 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
3042 reg_val[0], reg_val[1]);
3043 }
3044 }
3045 else
3046 /* Note that real floating point values only start at
3047 FP4_REGNUM. FP0 and up are just status and error
3048 registers, which have integral (bit) values. */
3049 pa_print_fp_reg (regnum);
3050 }
3051
3052 /********** new function ********************/
3053 void
3054 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
3055 enum precision_type precision)
3056 {
3057 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
3058 int i;
3059
3060 /* Make a copy of gdb's save area (may cause actual
3061 reads from the target). */
3062 for (i = 0; i < NUM_REGS; i++)
3063 frame_register_read (deprecated_selected_frame, i,
3064 raw_regs + DEPRECATED_REGISTER_BYTE (i));
3065
3066 if (regnum == -1)
3067 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
3068
3069 else if (regnum < FP4_REGNUM)
3070 {
3071 long reg_val[2];
3072
3073 /* Why is the value not passed through "extract_signed_integer"
3074 as in "pa_print_registers" below? */
3075 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
3076
3077 if (!is_pa_2)
3078 {
3079 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
3080 }
3081 else
3082 {
3083 /* Fancy % formats to prevent leading zeros. */
3084 if (reg_val[0] == 0)
3085 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
3086 reg_val[1]);
3087 else
3088 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
3089 reg_val[0], reg_val[1]);
3090 }
3091 }
3092 else
3093 /* Note that real floating point values only start at
3094 FP4_REGNUM. FP0 and up are just status and error
3095 registers, which have integral (bit) values. */
3096 pa_strcat_fp_reg (regnum, stream, precision);
3097 }
3098
3099 /* If this is a PA2.0 machine, fetch the real 64-bit register
3100 value. Otherwise use the info from gdb's saved register area.
3101
3102 Note that reg_val is really expected to be an array of longs,
3103 with two elements. */
3104 static void
3105 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
3106 {
3107 static int know_which = 0; /* False */
3108
3109 int regaddr;
3110 unsigned int offset;
3111 int i;
3112 int start;
3113
3114
3115 char buf[MAX_REGISTER_SIZE];
3116 long long reg_val;
3117
3118 if (!know_which)
3119 {
3120 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
3121 {
3122 is_pa_2 = (1 == 1);
3123 }
3124
3125 know_which = 1; /* True */
3126 }
3127
3128 raw_val[0] = 0;
3129 raw_val[1] = 0;
3130
3131 if (!is_pa_2)
3132 {
3133 raw_val[1] = *(long *) (raw_regs + DEPRECATED_REGISTER_BYTE (regnum));
3134 return;
3135 }
3136
3137 /* Code below copied from hppah-nat.c, with fixes for wide
3138 registers, using different area of save_state, etc. */
3139 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
3140 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
3141 {
3142 /* Use narrow regs area of save_state and default macro. */
3143 offset = U_REGS_OFFSET;
3144 regaddr = register_addr (regnum, offset);
3145 start = 1;
3146 }
3147 else
3148 {
3149 /* Use wide regs area, and calculate registers as 8 bytes wide.
3150
3151 We'd like to do this, but current version of "C" doesn't
3152 permit "offsetof":
3153
3154 offset = offsetof(save_state_t, ss_wide);
3155
3156 Note that to avoid "C" doing typed pointer arithmetic, we
3157 have to cast away the type in our offset calculation:
3158 otherwise we get an offset of 1! */
3159
3160 /* NB: save_state_t is not available before HPUX 9.
3161 The ss_wide field is not available previous to HPUX 10.20,
3162 so to avoid compile-time warnings, we only compile this for
3163 PA 2.0 processors. This control path should only be followed
3164 if we're debugging a PA 2.0 processor, so this should not cause
3165 problems. */
3166
3167 /* #if the following code out so that this file can still be
3168 compiled on older HPUX boxes (< 10.20) which don't have
3169 this structure/structure member. */
3170 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
3171 save_state_t temp;
3172
3173 offset = ((int) &temp.ss_wide) - ((int) &temp);
3174 regaddr = offset + regnum * 8;
3175 start = 0;
3176 #endif
3177 }
3178
3179 for (i = start; i < 2; i++)
3180 {
3181 errno = 0;
3182 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
3183 (PTRACE_ARG3_TYPE) regaddr, 0);
3184 if (errno != 0)
3185 {
3186 /* Warning, not error, in case we are attached; sometimes the
3187 kernel doesn't let us at the registers. */
3188 char *err = safe_strerror (errno);
3189 char *msg = alloca (strlen (err) + 128);
3190 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
3191 warning (msg);
3192 goto error_exit;
3193 }
3194
3195 regaddr += sizeof (long);
3196 }
3197
3198 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
3199 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
3200
3201 error_exit:
3202 ;
3203 }
3204
3205 /* "Info all-reg" command */
3206
3207 static void
3208 pa_print_registers (char *raw_regs, int regnum, int fpregs)
3209 {
3210 int i, j;
3211 /* Alas, we are compiled so that "long long" is 32 bits */
3212 long raw_val[2];
3213 long long_val;
3214 int rows = 48, columns = 2;
3215
3216 for (i = 0; i < rows; i++)
3217 {
3218 for (j = 0; j < columns; j++)
3219 {
3220 /* We display registers in column-major order. */
3221 int regnum = i + j * rows;
3222
3223 /* Q: Why is the value passed through "extract_signed_integer",
3224 while above, in "pa_do_registers_info" it isn't?
3225 A: ? */
3226 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
3227
3228 /* Even fancier % formats to prevent leading zeros
3229 and still maintain the output in columns. */
3230 if (!is_pa_2)
3231 {
3232 /* Being big-endian, on this machine the low bits
3233 (the ones we want to look at) are in the second longword. */
3234 long_val = extract_signed_integer (&raw_val[1], 4);
3235 printf_filtered ("%10.10s: %8lx ",
3236 REGISTER_NAME (regnum), long_val);
3237 }
3238 else
3239 {
3240 /* raw_val = extract_signed_integer(&raw_val, 8); */
3241 if (raw_val[0] == 0)
3242 printf_filtered ("%10.10s: %8lx ",
3243 REGISTER_NAME (regnum), raw_val[1]);
3244 else
3245 printf_filtered ("%10.10s: %8lx%8.8lx ",
3246 REGISTER_NAME (regnum),
3247 raw_val[0], raw_val[1]);
3248 }
3249 }
3250 printf_unfiltered ("\n");
3251 }
3252
3253 if (fpregs)
3254 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
3255 pa_print_fp_reg (i);
3256 }
3257
3258 /************* new function ******************/
3259 static void
3260 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
3261 struct ui_file *stream)
3262 {
3263 int i, j;
3264 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
3265 long long_val;
3266 enum precision_type precision;
3267
3268 precision = unspecified_precision;
3269
3270 for (i = 0; i < 18; i++)
3271 {
3272 for (j = 0; j < 4; j++)
3273 {
3274 /* Q: Why is the value passed through "extract_signed_integer",
3275 while above, in "pa_do_registers_info" it isn't?
3276 A: ? */
3277 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
3278
3279 /* Even fancier % formats to prevent leading zeros
3280 and still maintain the output in columns. */
3281 if (!is_pa_2)
3282 {
3283 /* Being big-endian, on this machine the low bits
3284 (the ones we want to look at) are in the second longword. */
3285 long_val = extract_signed_integer (&raw_val[1], 4);
3286 fprintf_filtered (stream, "%8.8s: %8lx ",
3287 REGISTER_NAME (i + (j * 18)), long_val);
3288 }
3289 else
3290 {
3291 /* raw_val = extract_signed_integer(&raw_val, 8); */
3292 if (raw_val[0] == 0)
3293 fprintf_filtered (stream, "%8.8s: %8lx ",
3294 REGISTER_NAME (i + (j * 18)), raw_val[1]);
3295 else
3296 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
3297 REGISTER_NAME (i + (j * 18)), raw_val[0],
3298 raw_val[1]);
3299 }
3300 }
3301 fprintf_unfiltered (stream, "\n");
3302 }
3303
3304 if (fpregs)
3305 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
3306 pa_strcat_fp_reg (i, stream, precision);
3307 }
3308
3309 static void
3310 pa_print_fp_reg (int i)
3311 {
3312 char raw_buffer[MAX_REGISTER_SIZE];
3313 char virtual_buffer[MAX_REGISTER_SIZE];
3314
3315 /* Get 32bits of data. */
3316 frame_register_read (deprecated_selected_frame, i, raw_buffer);
3317
3318 /* Put it in the buffer. No conversions are ever necessary. */
3319 memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i));
3320
3321 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
3322 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
3323 fputs_filtered ("(single precision) ", gdb_stdout);
3324
3325 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
3326 1, 0, Val_pretty_default);
3327 printf_filtered ("\n");
3328
3329 /* If "i" is even, then this register can also be a double-precision
3330 FP register. Dump it out as such. */
3331 if ((i % 2) == 0)
3332 {
3333 /* Get the data in raw format for the 2nd half. */
3334 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
3335
3336 /* Copy it into the appropriate part of the virtual buffer. */
3337 memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buffer,
3338 DEPRECATED_REGISTER_RAW_SIZE (i));
3339
3340 /* Dump it as a double. */
3341 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
3342 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
3343 fputs_filtered ("(double precision) ", gdb_stdout);
3344
3345 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
3346 1, 0, Val_pretty_default);
3347 printf_filtered ("\n");
3348 }
3349 }
3350
3351 /*************** new function ***********************/
3352 static void
3353 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
3354 {
3355 char raw_buffer[MAX_REGISTER_SIZE];
3356 char virtual_buffer[MAX_REGISTER_SIZE];
3357
3358 fputs_filtered (REGISTER_NAME (i), stream);
3359 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
3360
3361 /* Get 32bits of data. */
3362 frame_register_read (deprecated_selected_frame, i, raw_buffer);
3363
3364 /* Put it in the buffer. No conversions are ever necessary. */
3365 memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i));
3366
3367 if (precision == double_precision && (i % 2) == 0)
3368 {
3369
3370 char raw_buf[MAX_REGISTER_SIZE];
3371
3372 /* Get the data in raw format for the 2nd half. */
3373 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
3374
3375 /* Copy it into the appropriate part of the virtual buffer. */
3376 memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buf,
3377 DEPRECATED_REGISTER_RAW_SIZE (i));
3378
3379 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
3380 1, 0, Val_pretty_default);
3381
3382 }
3383 else
3384 {
3385 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
3386 1, 0, Val_pretty_default);
3387 }
3388
3389 }
3390
3391 /* Return one if PC is in the call path of a trampoline, else return zero.
3392
3393 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3394 just shared library trampolines (import, export). */
3395
3396 int
3397 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
3398 {
3399 struct minimal_symbol *minsym;
3400 struct unwind_table_entry *u;
3401 static CORE_ADDR dyncall = 0;
3402 static CORE_ADDR sr4export = 0;
3403
3404 #ifdef GDB_TARGET_IS_HPPA_20W
3405 /* PA64 has a completely different stub/trampoline scheme. Is it
3406 better? Maybe. It's certainly harder to determine with any
3407 certainty that we are in a stub because we can not refer to the
3408 unwinders to help.
3409
3410 The heuristic is simple. Try to lookup the current PC value in th
3411 minimal symbol table. If that fails, then assume we are not in a
3412 stub and return.
3413
3414 Then see if the PC value falls within the section bounds for the
3415 section containing the minimal symbol we found in the first
3416 step. If it does, then assume we are not in a stub and return.
3417
3418 Finally peek at the instructions to see if they look like a stub. */
3419 {
3420 struct minimal_symbol *minsym;
3421 asection *sec;
3422 CORE_ADDR addr;
3423 int insn, i;
3424
3425 minsym = lookup_minimal_symbol_by_pc (pc);
3426 if (! minsym)
3427 return 0;
3428
3429 sec = SYMBOL_BFD_SECTION (minsym);
3430
3431 if (bfd_get_section_vma (sec->owner, sec) <= pc
3432 && pc < (bfd_get_section_vma (sec->owner, sec)
3433 + bfd_section_size (sec->owner, sec)))
3434 return 0;
3435
3436 /* We might be in a stub. Peek at the instructions. Stubs are 3
3437 instructions long. */
3438 insn = read_memory_integer (pc, 4);
3439
3440 /* Find out where we think we are within the stub. */
3441 if ((insn & 0xffffc00e) == 0x53610000)
3442 addr = pc;
3443 else if ((insn & 0xffffffff) == 0xe820d000)
3444 addr = pc - 4;
3445 else if ((insn & 0xffffc00e) == 0x537b0000)
3446 addr = pc - 8;
3447 else
3448 return 0;
3449
3450 /* Now verify each insn in the range looks like a stub instruction. */
3451 insn = read_memory_integer (addr, 4);
3452 if ((insn & 0xffffc00e) != 0x53610000)
3453 return 0;
3454
3455 /* Now verify each insn in the range looks like a stub instruction. */
3456 insn = read_memory_integer (addr + 4, 4);
3457 if ((insn & 0xffffffff) != 0xe820d000)
3458 return 0;
3459
3460 /* Now verify each insn in the range looks like a stub instruction. */
3461 insn = read_memory_integer (addr + 8, 4);
3462 if ((insn & 0xffffc00e) != 0x537b0000)
3463 return 0;
3464
3465 /* Looks like a stub. */
3466 return 1;
3467 }
3468 #endif
3469
3470 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3471 new exec file */
3472
3473 /* First see if PC is in one of the two C-library trampolines. */
3474 if (!dyncall)
3475 {
3476 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3477 if (minsym)
3478 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3479 else
3480 dyncall = -1;
3481 }
3482
3483 if (!sr4export)
3484 {
3485 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3486 if (minsym)
3487 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3488 else
3489 sr4export = -1;
3490 }
3491
3492 if (pc == dyncall || pc == sr4export)
3493 return 1;
3494
3495 minsym = lookup_minimal_symbol_by_pc (pc);
3496 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
3497 return 1;
3498
3499 /* Get the unwind descriptor corresponding to PC, return zero
3500 if no unwind was found. */
3501 u = find_unwind_entry (pc);
3502 if (!u)
3503 return 0;
3504
3505 /* If this isn't a linker stub, then return now. */
3506 if (u->stub_unwind.stub_type == 0)
3507 return 0;
3508
3509 /* By definition a long-branch stub is a call stub. */
3510 if (u->stub_unwind.stub_type == LONG_BRANCH)
3511 return 1;
3512
3513 /* The call and return path execute the same instructions within
3514 an IMPORT stub! So an IMPORT stub is both a call and return
3515 trampoline. */
3516 if (u->stub_unwind.stub_type == IMPORT)
3517 return 1;
3518
3519 /* Parameter relocation stubs always have a call path and may have a
3520 return path. */
3521 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3522 || u->stub_unwind.stub_type == EXPORT)
3523 {
3524 CORE_ADDR addr;
3525
3526 /* Search forward from the current PC until we hit a branch
3527 or the end of the stub. */
3528 for (addr = pc; addr <= u->region_end; addr += 4)
3529 {
3530 unsigned long insn;
3531
3532 insn = read_memory_integer (addr, 4);
3533
3534 /* Does it look like a bl? If so then it's the call path, if
3535 we find a bv or be first, then we're on the return path. */
3536 if ((insn & 0xfc00e000) == 0xe8000000)
3537 return 1;
3538 else if ((insn & 0xfc00e001) == 0xe800c000
3539 || (insn & 0xfc000000) == 0xe0000000)
3540 return 0;
3541 }
3542
3543 /* Should never happen. */
3544 warning ("Unable to find branch in parameter relocation stub.\n");
3545 return 0;
3546 }
3547
3548 /* Unknown stub type. For now, just return zero. */
3549 return 0;
3550 }
3551
3552 /* Return one if PC is in the return path of a trampoline, else return zero.
3553
3554 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3555 just shared library trampolines (import, export). */
3556
3557 int
3558 hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
3559 {
3560 struct unwind_table_entry *u;
3561
3562 /* Get the unwind descriptor corresponding to PC, return zero
3563 if no unwind was found. */
3564 u = find_unwind_entry (pc);
3565 if (!u)
3566 return 0;
3567
3568 /* If this isn't a linker stub or it's just a long branch stub, then
3569 return zero. */
3570 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3571 return 0;
3572
3573 /* The call and return path execute the same instructions within
3574 an IMPORT stub! So an IMPORT stub is both a call and return
3575 trampoline. */
3576 if (u->stub_unwind.stub_type == IMPORT)
3577 return 1;
3578
3579 /* Parameter relocation stubs always have a call path and may have a
3580 return path. */
3581 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3582 || u->stub_unwind.stub_type == EXPORT)
3583 {
3584 CORE_ADDR addr;
3585
3586 /* Search forward from the current PC until we hit a branch
3587 or the end of the stub. */
3588 for (addr = pc; addr <= u->region_end; addr += 4)
3589 {
3590 unsigned long insn;
3591
3592 insn = read_memory_integer (addr, 4);
3593
3594 /* Does it look like a bl? If so then it's the call path, if
3595 we find a bv or be first, then we're on the return path. */
3596 if ((insn & 0xfc00e000) == 0xe8000000)
3597 return 0;
3598 else if ((insn & 0xfc00e001) == 0xe800c000
3599 || (insn & 0xfc000000) == 0xe0000000)
3600 return 1;
3601 }
3602
3603 /* Should never happen. */
3604 warning ("Unable to find branch in parameter relocation stub.\n");
3605 return 0;
3606 }
3607
3608 /* Unknown stub type. For now, just return zero. */
3609 return 0;
3610
3611 }
3612
3613 /* Figure out if PC is in a trampoline, and if so find out where
3614 the trampoline will jump to. If not in a trampoline, return zero.
3615
3616 Simple code examination probably is not a good idea since the code
3617 sequences in trampolines can also appear in user code.
3618
3619 We use unwinds and information from the minimal symbol table to
3620 determine when we're in a trampoline. This won't work for ELF
3621 (yet) since it doesn't create stub unwind entries. Whether or
3622 not ELF will create stub unwinds or normal unwinds for linker
3623 stubs is still being debated.
3624
3625 This should handle simple calls through dyncall or sr4export,
3626 long calls, argument relocation stubs, and dyncall/sr4export
3627 calling an argument relocation stub. It even handles some stubs
3628 used in dynamic executables. */
3629
3630 CORE_ADDR
3631 hppa_skip_trampoline_code (CORE_ADDR pc)
3632 {
3633 long orig_pc = pc;
3634 long prev_inst, curr_inst, loc;
3635 static CORE_ADDR dyncall = 0;
3636 static CORE_ADDR dyncall_external = 0;
3637 static CORE_ADDR sr4export = 0;
3638 struct minimal_symbol *msym;
3639 struct unwind_table_entry *u;
3640
3641 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3642 new exec file */
3643
3644 if (!dyncall)
3645 {
3646 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3647 if (msym)
3648 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3649 else
3650 dyncall = -1;
3651 }
3652
3653 if (!dyncall_external)
3654 {
3655 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3656 if (msym)
3657 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3658 else
3659 dyncall_external = -1;
3660 }
3661
3662 if (!sr4export)
3663 {
3664 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3665 if (msym)
3666 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3667 else
3668 sr4export = -1;
3669 }
3670
3671 /* Addresses passed to dyncall may *NOT* be the actual address
3672 of the function. So we may have to do something special. */
3673 if (pc == dyncall)
3674 {
3675 pc = (CORE_ADDR) read_register (22);
3676
3677 /* If bit 30 (counting from the left) is on, then pc is the address of
3678 the PLT entry for this function, not the address of the function
3679 itself. Bit 31 has meaning too, but only for MPE. */
3680 if (pc & 0x2)
3681 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3682 }
3683 if (pc == dyncall_external)
3684 {
3685 pc = (CORE_ADDR) read_register (22);
3686 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3687 }
3688 else if (pc == sr4export)
3689 pc = (CORE_ADDR) (read_register (22));
3690
3691 /* Get the unwind descriptor corresponding to PC, return zero
3692 if no unwind was found. */
3693 u = find_unwind_entry (pc);
3694 if (!u)
3695 return 0;
3696
3697 /* If this isn't a linker stub, then return now. */
3698 /* elz: attention here! (FIXME) because of a compiler/linker
3699 error, some stubs which should have a non zero stub_unwind.stub_type
3700 have unfortunately a value of zero. So this function would return here
3701 as if we were not in a trampoline. To fix this, we go look at the partial
3702 symbol information, which reports this guy as a stub.
3703 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3704 partial symbol information is also wrong sometimes. This is because
3705 when it is entered (somread.c::som_symtab_read()) it can happen that
3706 if the type of the symbol (from the som) is Entry, and the symbol is
3707 in a shared library, then it can also be a trampoline. This would
3708 be OK, except that I believe the way they decide if we are ina shared library
3709 does not work. SOOOO..., even if we have a regular function w/o trampolines
3710 its minimal symbol can be assigned type mst_solib_trampoline.
3711 Also, if we find that the symbol is a real stub, then we fix the unwind
3712 descriptor, and define the stub type to be EXPORT.
3713 Hopefully this is correct most of the times. */
3714 if (u->stub_unwind.stub_type == 0)
3715 {
3716
3717 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3718 we can delete all the code which appears between the lines */
3719 /*--------------------------------------------------------------------------*/
3720 msym = lookup_minimal_symbol_by_pc (pc);
3721
3722 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3723 return orig_pc == pc ? 0 : pc & ~0x3;
3724
3725 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3726 {
3727 struct objfile *objfile;
3728 struct minimal_symbol *msymbol;
3729 int function_found = 0;
3730
3731 /* go look if there is another minimal symbol with the same name as
3732 this one, but with type mst_text. This would happen if the msym
3733 is an actual trampoline, in which case there would be another
3734 symbol with the same name corresponding to the real function */
3735
3736 ALL_MSYMBOLS (objfile, msymbol)
3737 {
3738 if (MSYMBOL_TYPE (msymbol) == mst_text
3739 && DEPRECATED_STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
3740 {
3741 function_found = 1;
3742 break;
3743 }
3744 }
3745
3746 if (function_found)
3747 /* the type of msym is correct (mst_solib_trampoline), but
3748 the unwind info is wrong, so set it to the correct value */
3749 u->stub_unwind.stub_type = EXPORT;
3750 else
3751 /* the stub type info in the unwind is correct (this is not a
3752 trampoline), but the msym type information is wrong, it
3753 should be mst_text. So we need to fix the msym, and also
3754 get out of this function */
3755 {
3756 MSYMBOL_TYPE (msym) = mst_text;
3757 return orig_pc == pc ? 0 : pc & ~0x3;
3758 }
3759 }
3760
3761 /*--------------------------------------------------------------------------*/
3762 }
3763
3764 /* It's a stub. Search for a branch and figure out where it goes.
3765 Note we have to handle multi insn branch sequences like ldil;ble.
3766 Most (all?) other branches can be determined by examining the contents
3767 of certain registers and the stack. */
3768
3769 loc = pc;
3770 curr_inst = 0;
3771 prev_inst = 0;
3772 while (1)
3773 {
3774 /* Make sure we haven't walked outside the range of this stub. */
3775 if (u != find_unwind_entry (loc))
3776 {
3777 warning ("Unable to find branch in linker stub");
3778 return orig_pc == pc ? 0 : pc & ~0x3;
3779 }
3780
3781 prev_inst = curr_inst;
3782 curr_inst = read_memory_integer (loc, 4);
3783
3784 /* Does it look like a branch external using %r1? Then it's the
3785 branch from the stub to the actual function. */
3786 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3787 {
3788 /* Yup. See if the previous instruction loaded
3789 a value into %r1. If so compute and return the jump address. */
3790 if ((prev_inst & 0xffe00000) == 0x20200000)
3791 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3792 else
3793 {
3794 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3795 return orig_pc == pc ? 0 : pc & ~0x3;
3796 }
3797 }
3798
3799 /* Does it look like a be 0(sr0,%r21)? OR
3800 Does it look like a be, n 0(sr0,%r21)? OR
3801 Does it look like a bve (r21)? (this is on PA2.0)
3802 Does it look like a bve, n(r21)? (this is also on PA2.0)
3803 That's the branch from an
3804 import stub to an export stub.
3805
3806 It is impossible to determine the target of the branch via
3807 simple examination of instructions and/or data (consider
3808 that the address in the plabel may be the address of the
3809 bind-on-reference routine in the dynamic loader).
3810
3811 So we have try an alternative approach.
3812
3813 Get the name of the symbol at our current location; it should
3814 be a stub symbol with the same name as the symbol in the
3815 shared library.
3816
3817 Then lookup a minimal symbol with the same name; we should
3818 get the minimal symbol for the target routine in the shared
3819 library as those take precedence of import/export stubs. */
3820 if ((curr_inst == 0xe2a00000) ||
3821 (curr_inst == 0xe2a00002) ||
3822 (curr_inst == 0xeaa0d000) ||
3823 (curr_inst == 0xeaa0d002))
3824 {
3825 struct minimal_symbol *stubsym, *libsym;
3826
3827 stubsym = lookup_minimal_symbol_by_pc (loc);
3828 if (stubsym == NULL)
3829 {
3830 warning ("Unable to find symbol for 0x%lx", loc);
3831 return orig_pc == pc ? 0 : pc & ~0x3;
3832 }
3833
3834 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
3835 if (libsym == NULL)
3836 {
3837 warning ("Unable to find library symbol for %s\n",
3838 DEPRECATED_SYMBOL_NAME (stubsym));
3839 return orig_pc == pc ? 0 : pc & ~0x3;
3840 }
3841
3842 return SYMBOL_VALUE (libsym);
3843 }
3844
3845 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3846 branch from the stub to the actual function. */
3847 /*elz */
3848 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3849 || (curr_inst & 0xffe0e000) == 0xe8000000
3850 || (curr_inst & 0xffe0e000) == 0xe800A000)
3851 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3852
3853 /* Does it look like bv (rp)? Note this depends on the
3854 current stack pointer being the same as the stack
3855 pointer in the stub itself! This is a branch on from the
3856 stub back to the original caller. */
3857 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3858 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3859 {
3860 /* Yup. See if the previous instruction loaded
3861 rp from sp - 8. */
3862 if (prev_inst == 0x4bc23ff1)
3863 return (read_memory_integer
3864 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3865 else
3866 {
3867 warning ("Unable to find restore of %%rp before bv (%%rp).");
3868 return orig_pc == pc ? 0 : pc & ~0x3;
3869 }
3870 }
3871
3872 /* elz: added this case to capture the new instruction
3873 at the end of the return part of an export stub used by
3874 the PA2.0: BVE, n (rp) */
3875 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3876 {
3877 return (read_memory_integer
3878 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3879 }
3880
3881 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3882 the original caller from the stub. Used in dynamic executables. */
3883 else if (curr_inst == 0xe0400002)
3884 {
3885 /* The value we jump to is sitting in sp - 24. But that's
3886 loaded several instructions before the be instruction.
3887 I guess we could check for the previous instruction being
3888 mtsp %r1,%sr0 if we want to do sanity checking. */
3889 return (read_memory_integer
3890 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3891 }
3892
3893 /* Haven't found the branch yet, but we're still in the stub.
3894 Keep looking. */
3895 loc += 4;
3896 }
3897 }
3898
3899
3900 /* For the given instruction (INST), return any adjustment it makes
3901 to the stack pointer or zero for no adjustment.
3902
3903 This only handles instructions commonly found in prologues. */
3904
3905 static int
3906 prologue_inst_adjust_sp (unsigned long inst)
3907 {
3908 /* This must persist across calls. */
3909 static int save_high21;
3910
3911 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3912 if ((inst & 0xffffc000) == 0x37de0000)
3913 return extract_14 (inst);
3914
3915 /* stwm X,D(sp) */
3916 if ((inst & 0xffe00000) == 0x6fc00000)
3917 return extract_14 (inst);
3918
3919 /* std,ma X,D(sp) */
3920 if ((inst & 0xffe00008) == 0x73c00008)
3921 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3922
3923 /* addil high21,%r1; ldo low11,(%r1),%r30)
3924 save high bits in save_high21 for later use. */
3925 if ((inst & 0xffe00000) == 0x28200000)
3926 {
3927 save_high21 = extract_21 (inst);
3928 return 0;
3929 }
3930
3931 if ((inst & 0xffff0000) == 0x343e0000)
3932 return save_high21 + extract_14 (inst);
3933
3934 /* fstws as used by the HP compilers. */
3935 if ((inst & 0xffffffe0) == 0x2fd01220)
3936 return extract_5_load (inst);
3937
3938 /* No adjustment. */
3939 return 0;
3940 }
3941
3942 /* Return nonzero if INST is a branch of some kind, else return zero. */
3943
3944 static int
3945 is_branch (unsigned long inst)
3946 {
3947 switch (inst >> 26)
3948 {
3949 case 0x20:
3950 case 0x21:
3951 case 0x22:
3952 case 0x23:
3953 case 0x27:
3954 case 0x28:
3955 case 0x29:
3956 case 0x2a:
3957 case 0x2b:
3958 case 0x2f:
3959 case 0x30:
3960 case 0x31:
3961 case 0x32:
3962 case 0x33:
3963 case 0x38:
3964 case 0x39:
3965 case 0x3a:
3966 case 0x3b:
3967 return 1;
3968
3969 default:
3970 return 0;
3971 }
3972 }
3973
3974 /* Return the register number for a GR which is saved by INST or
3975 zero it INST does not save a GR. */
3976
3977 static int
3978 inst_saves_gr (unsigned long inst)
3979 {
3980 /* Does it look like a stw? */
3981 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3982 || (inst >> 26) == 0x1f
3983 || ((inst >> 26) == 0x1f
3984 && ((inst >> 6) == 0xa)))
3985 return extract_5R_store (inst);
3986
3987 /* Does it look like a std? */
3988 if ((inst >> 26) == 0x1c
3989 || ((inst >> 26) == 0x03
3990 && ((inst >> 6) & 0xf) == 0xb))
3991 return extract_5R_store (inst);
3992
3993 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3994 if ((inst >> 26) == 0x1b)
3995 return extract_5R_store (inst);
3996
3997 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3998 too. */
3999 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
4000 || ((inst >> 26) == 0x3
4001 && (((inst >> 6) & 0xf) == 0x8
4002 || (inst >> 6) & 0xf) == 0x9))
4003 return extract_5R_store (inst);
4004
4005 return 0;
4006 }
4007
4008 /* Return the register number for a FR which is saved by INST or
4009 zero it INST does not save a FR.
4010
4011 Note we only care about full 64bit register stores (that's the only
4012 kind of stores the prologue will use).
4013
4014 FIXME: What about argument stores with the HP compiler in ANSI mode? */
4015
4016 static int
4017 inst_saves_fr (unsigned long inst)
4018 {
4019 /* is this an FSTD ? */
4020 if ((inst & 0xfc00dfc0) == 0x2c001200)
4021 return extract_5r_store (inst);
4022 if ((inst & 0xfc000002) == 0x70000002)
4023 return extract_5R_store (inst);
4024 /* is this an FSTW ? */
4025 if ((inst & 0xfc00df80) == 0x24001200)
4026 return extract_5r_store (inst);
4027 if ((inst & 0xfc000002) == 0x7c000000)
4028 return extract_5R_store (inst);
4029 return 0;
4030 }
4031
4032 /* Advance PC across any function entry prologue instructions
4033 to reach some "real" code.
4034
4035 Use information in the unwind table to determine what exactly should
4036 be in the prologue. */
4037
4038
4039 CORE_ADDR
4040 skip_prologue_hard_way (CORE_ADDR pc)
4041 {
4042 char buf[4];
4043 CORE_ADDR orig_pc = pc;
4044 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
4045 unsigned long args_stored, status, i, restart_gr, restart_fr;
4046 struct unwind_table_entry *u;
4047
4048 restart_gr = 0;
4049 restart_fr = 0;
4050
4051 restart:
4052 u = find_unwind_entry (pc);
4053 if (!u)
4054 return pc;
4055
4056 /* If we are not at the beginning of a function, then return now. */
4057 if ((pc & ~0x3) != u->region_start)
4058 return pc;
4059
4060 /* This is how much of a frame adjustment we need to account for. */
4061 stack_remaining = u->Total_frame_size << 3;
4062
4063 /* Magic register saves we want to know about. */
4064 save_rp = u->Save_RP;
4065 save_sp = u->Save_SP;
4066
4067 /* An indication that args may be stored into the stack. Unfortunately
4068 the HPUX compilers tend to set this in cases where no args were
4069 stored too!. */
4070 args_stored = 1;
4071
4072 /* Turn the Entry_GR field into a bitmask. */
4073 save_gr = 0;
4074 for (i = 3; i < u->Entry_GR + 3; i++)
4075 {
4076 /* Frame pointer gets saved into a special location. */
4077 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
4078 continue;
4079
4080 save_gr |= (1 << i);
4081 }
4082 save_gr &= ~restart_gr;
4083
4084 /* Turn the Entry_FR field into a bitmask too. */
4085 save_fr = 0;
4086 for (i = 12; i < u->Entry_FR + 12; i++)
4087 save_fr |= (1 << i);
4088 save_fr &= ~restart_fr;
4089
4090 /* Loop until we find everything of interest or hit a branch.
4091
4092 For unoptimized GCC code and for any HP CC code this will never ever
4093 examine any user instructions.
4094
4095 For optimzied GCC code we're faced with problems. GCC will schedule
4096 its prologue and make prologue instructions available for delay slot
4097 filling. The end result is user code gets mixed in with the prologue
4098 and a prologue instruction may be in the delay slot of the first branch
4099 or call.
4100
4101 Some unexpected things are expected with debugging optimized code, so
4102 we allow this routine to walk past user instructions in optimized
4103 GCC code. */
4104 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
4105 || args_stored)
4106 {
4107 unsigned int reg_num;
4108 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
4109 unsigned long old_save_rp, old_save_sp, next_inst;
4110
4111 /* Save copies of all the triggers so we can compare them later
4112 (only for HPC). */
4113 old_save_gr = save_gr;
4114 old_save_fr = save_fr;
4115 old_save_rp = save_rp;
4116 old_save_sp = save_sp;
4117 old_stack_remaining = stack_remaining;
4118
4119 status = target_read_memory (pc, buf, 4);
4120 inst = extract_unsigned_integer (buf, 4);
4121
4122 /* Yow! */
4123 if (status != 0)
4124 return pc;
4125
4126 /* Note the interesting effects of this instruction. */
4127 stack_remaining -= prologue_inst_adjust_sp (inst);
4128
4129 /* There are limited ways to store the return pointer into the
4130 stack. */
4131 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
4132 save_rp = 0;
4133
4134 /* These are the only ways we save SP into the stack. At this time
4135 the HP compilers never bother to save SP into the stack. */
4136 if ((inst & 0xffffc000) == 0x6fc10000
4137 || (inst & 0xffffc00c) == 0x73c10008)
4138 save_sp = 0;
4139
4140 /* Are we loading some register with an offset from the argument
4141 pointer? */
4142 if ((inst & 0xffe00000) == 0x37a00000
4143 || (inst & 0xffffffe0) == 0x081d0240)
4144 {
4145 pc += 4;
4146 continue;
4147 }
4148
4149 /* Account for general and floating-point register saves. */
4150 reg_num = inst_saves_gr (inst);
4151 save_gr &= ~(1 << reg_num);
4152
4153 /* Ugh. Also account for argument stores into the stack.
4154 Unfortunately args_stored only tells us that some arguments
4155 where stored into the stack. Not how many or what kind!
4156
4157 This is a kludge as on the HP compiler sets this bit and it
4158 never does prologue scheduling. So once we see one, skip past
4159 all of them. We have similar code for the fp arg stores below.
4160
4161 FIXME. Can still die if we have a mix of GR and FR argument
4162 stores! */
4163 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
4164 {
4165 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
4166 {
4167 pc += 4;
4168 status = target_read_memory (pc, buf, 4);
4169 inst = extract_unsigned_integer (buf, 4);
4170 if (status != 0)
4171 return pc;
4172 reg_num = inst_saves_gr (inst);
4173 }
4174 args_stored = 0;
4175 continue;
4176 }
4177
4178 reg_num = inst_saves_fr (inst);
4179 save_fr &= ~(1 << reg_num);
4180
4181 status = target_read_memory (pc + 4, buf, 4);
4182 next_inst = extract_unsigned_integer (buf, 4);
4183
4184 /* Yow! */
4185 if (status != 0)
4186 return pc;
4187
4188 /* We've got to be read to handle the ldo before the fp register
4189 save. */
4190 if ((inst & 0xfc000000) == 0x34000000
4191 && inst_saves_fr (next_inst) >= 4
4192 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
4193 {
4194 /* So we drop into the code below in a reasonable state. */
4195 reg_num = inst_saves_fr (next_inst);
4196 pc -= 4;
4197 }
4198
4199 /* Ugh. Also account for argument stores into the stack.
4200 This is a kludge as on the HP compiler sets this bit and it
4201 never does prologue scheduling. So once we see one, skip past
4202 all of them. */
4203 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
4204 {
4205 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
4206 {
4207 pc += 8;
4208 status = target_read_memory (pc, buf, 4);
4209 inst = extract_unsigned_integer (buf, 4);
4210 if (status != 0)
4211 return pc;
4212 if ((inst & 0xfc000000) != 0x34000000)
4213 break;
4214 status = target_read_memory (pc + 4, buf, 4);
4215 next_inst = extract_unsigned_integer (buf, 4);
4216 if (status != 0)
4217 return pc;
4218 reg_num = inst_saves_fr (next_inst);
4219 }
4220 args_stored = 0;
4221 continue;
4222 }
4223
4224 /* Quit if we hit any kind of branch. This can happen if a prologue
4225 instruction is in the delay slot of the first call/branch. */
4226 if (is_branch (inst))
4227 break;
4228
4229 /* What a crock. The HP compilers set args_stored even if no
4230 arguments were stored into the stack (boo hiss). This could
4231 cause this code to then skip a bunch of user insns (up to the
4232 first branch).
4233
4234 To combat this we try to identify when args_stored was bogusly
4235 set and clear it. We only do this when args_stored is nonzero,
4236 all other resources are accounted for, and nothing changed on
4237 this pass. */
4238 if (args_stored
4239 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
4240 && old_save_gr == save_gr && old_save_fr == save_fr
4241 && old_save_rp == save_rp && old_save_sp == save_sp
4242 && old_stack_remaining == stack_remaining)
4243 break;
4244
4245 /* Bump the PC. */
4246 pc += 4;
4247 }
4248
4249 /* We've got a tenative location for the end of the prologue. However
4250 because of limitations in the unwind descriptor mechanism we may
4251 have went too far into user code looking for the save of a register
4252 that does not exist. So, if there registers we expected to be saved
4253 but never were, mask them out and restart.
4254
4255 This should only happen in optimized code, and should be very rare. */
4256 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
4257 {
4258 pc = orig_pc;
4259 restart_gr = save_gr;
4260 restart_fr = save_fr;
4261 goto restart;
4262 }
4263
4264 return pc;
4265 }
4266
4267
4268 /* Return the address of the PC after the last prologue instruction if
4269 we can determine it from the debug symbols. Else return zero. */
4270
4271 static CORE_ADDR
4272 after_prologue (CORE_ADDR pc)
4273 {
4274 struct symtab_and_line sal;
4275 CORE_ADDR func_addr, func_end;
4276 struct symbol *f;
4277
4278 /* If we can not find the symbol in the partial symbol table, then
4279 there is no hope we can determine the function's start address
4280 with this code. */
4281 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4282 return 0;
4283
4284 /* Get the line associated with FUNC_ADDR. */
4285 sal = find_pc_line (func_addr, 0);
4286
4287 /* There are only two cases to consider. First, the end of the source line
4288 is within the function bounds. In that case we return the end of the
4289 source line. Second is the end of the source line extends beyond the
4290 bounds of the current function. We need to use the slow code to
4291 examine instructions in that case.
4292
4293 Anything else is simply a bug elsewhere. Fixing it here is absolutely
4294 the wrong thing to do. In fact, it should be entirely possible for this
4295 function to always return zero since the slow instruction scanning code
4296 is supposed to *always* work. If it does not, then it is a bug. */
4297 if (sal.end < func_end)
4298 return sal.end;
4299 else
4300 return 0;
4301 }
4302
4303 /* To skip prologues, I use this predicate. Returns either PC itself
4304 if the code at PC does not look like a function prologue; otherwise
4305 returns an address that (if we're lucky) follows the prologue. If
4306 LENIENT, then we must skip everything which is involved in setting
4307 up the frame (it's OK to skip more, just so long as we don't skip
4308 anything which might clobber the registers which are being saved.
4309 Currently we must not skip more on the alpha, but we might the lenient
4310 stuff some day. */
4311
4312 CORE_ADDR
4313 hppa_skip_prologue (CORE_ADDR pc)
4314 {
4315 unsigned long inst;
4316 int offset;
4317 CORE_ADDR post_prologue_pc;
4318 char buf[4];
4319
4320 /* See if we can determine the end of the prologue via the symbol table.
4321 If so, then return either PC, or the PC after the prologue, whichever
4322 is greater. */
4323
4324 post_prologue_pc = after_prologue (pc);
4325
4326 /* If after_prologue returned a useful address, then use it. Else
4327 fall back on the instruction skipping code.
4328
4329 Some folks have claimed this causes problems because the breakpoint
4330 may be the first instruction of the prologue. If that happens, then
4331 the instruction skipping code has a bug that needs to be fixed. */
4332 if (post_prologue_pc != 0)
4333 return max (pc, post_prologue_pc);
4334 else
4335 return (skip_prologue_hard_way (pc));
4336 }
4337
4338 /* Put here the code to store, into the SAVED_REGS, the addresses of
4339 the saved registers of frame described by FRAME_INFO. This
4340 includes special registers such as pc and fp saved in special ways
4341 in the stack frame. sp is even more special: the address we return
4342 for it IS the sp for the next frame. */
4343
4344 void
4345 hppa_frame_find_saved_regs (struct frame_info *frame_info,
4346 CORE_ADDR frame_saved_regs[])
4347 {
4348 CORE_ADDR pc;
4349 struct unwind_table_entry *u;
4350 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
4351 int status, i, reg;
4352 char buf[4];
4353 int fp_loc = -1;
4354 int final_iteration;
4355
4356 /* Zero out everything. */
4357 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
4358
4359 /* Call dummy frames always look the same, so there's no need to
4360 examine the dummy code to determine locations of saved registers;
4361 instead, let find_dummy_frame_regs fill in the correct offsets
4362 for the saved registers. */
4363 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
4364 && (get_frame_pc (frame_info)
4365 <= (get_frame_base (frame_info)
4366 /* A call dummy is sized in words, but it is actually a
4367 series of instructions. Account for that scaling
4368 factor. */
4369 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
4370 * DEPRECATED_CALL_DUMMY_LENGTH)
4371 /* Similarly we have to account for 64bit wide register
4372 saves. */
4373 + (32 * DEPRECATED_REGISTER_SIZE)
4374 /* We always consider FP regs 8 bytes long. */
4375 + (NUM_REGS - FP0_REGNUM) * 8
4376 /* Similarly we have to account for 64bit wide register
4377 saves. */
4378 + (6 * DEPRECATED_REGISTER_SIZE)))))
4379 find_dummy_frame_regs (frame_info, frame_saved_regs);
4380
4381 /* Interrupt handlers are special too. They lay out the register
4382 state in the exact same order as the register numbers in GDB. */
4383 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
4384 {
4385 for (i = 0; i < NUM_REGS; i++)
4386 {
4387 /* SP is a little special. */
4388 if (i == SP_REGNUM)
4389 frame_saved_regs[SP_REGNUM]
4390 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
4391 TARGET_PTR_BIT / 8);
4392 else
4393 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
4394 }
4395 return;
4396 }
4397
4398 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
4399 /* Handle signal handler callers. */
4400 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
4401 {
4402 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
4403 return;
4404 }
4405 #endif
4406
4407 /* Get the starting address of the function referred to by the PC
4408 saved in frame. */
4409 pc = get_frame_func (frame_info);
4410
4411 /* Yow! */
4412 u = find_unwind_entry (pc);
4413 if (!u)
4414 return;
4415
4416 /* This is how much of a frame adjustment we need to account for. */
4417 stack_remaining = u->Total_frame_size << 3;
4418
4419 /* Magic register saves we want to know about. */
4420 save_rp = u->Save_RP;
4421 save_sp = u->Save_SP;
4422
4423 /* Turn the Entry_GR field into a bitmask. */
4424 save_gr = 0;
4425 for (i = 3; i < u->Entry_GR + 3; i++)
4426 {
4427 /* Frame pointer gets saved into a special location. */
4428 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
4429 continue;
4430
4431 save_gr |= (1 << i);
4432 }
4433
4434 /* Turn the Entry_FR field into a bitmask too. */
4435 save_fr = 0;
4436 for (i = 12; i < u->Entry_FR + 12; i++)
4437 save_fr |= (1 << i);
4438
4439 /* The frame always represents the value of %sp at entry to the
4440 current function (and is thus equivalent to the "saved" stack
4441 pointer. */
4442 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
4443
4444 /* Loop until we find everything of interest or hit a branch.
4445
4446 For unoptimized GCC code and for any HP CC code this will never ever
4447 examine any user instructions.
4448
4449 For optimized GCC code we're faced with problems. GCC will schedule
4450 its prologue and make prologue instructions available for delay slot
4451 filling. The end result is user code gets mixed in with the prologue
4452 and a prologue instruction may be in the delay slot of the first branch
4453 or call.
4454
4455 Some unexpected things are expected with debugging optimized code, so
4456 we allow this routine to walk past user instructions in optimized
4457 GCC code. */
4458 final_iteration = 0;
4459 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
4460 && pc <= get_frame_pc (frame_info))
4461 {
4462 status = target_read_memory (pc, buf, 4);
4463 inst = extract_unsigned_integer (buf, 4);
4464
4465 /* Yow! */
4466 if (status != 0)
4467 return;
4468
4469 /* Note the interesting effects of this instruction. */
4470 stack_remaining -= prologue_inst_adjust_sp (inst);
4471
4472 /* There are limited ways to store the return pointer into the
4473 stack. */
4474 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4475 {
4476 save_rp = 0;
4477 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
4478 }
4479 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4480 {
4481 save_rp = 0;
4482 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
4483 }
4484
4485 /* Note if we saved SP into the stack. This also happens to indicate
4486 the location of the saved frame pointer. */
4487 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4488 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4489 {
4490 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
4491 save_sp = 0;
4492 }
4493
4494 /* Account for general and floating-point register saves. */
4495 reg = inst_saves_gr (inst);
4496 if (reg >= 3 && reg <= 18
4497 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4498 {
4499 save_gr &= ~(1 << reg);
4500
4501 /* stwm with a positive displacement is a *post modify*. */
4502 if ((inst >> 26) == 0x1b
4503 && extract_14 (inst) >= 0)
4504 frame_saved_regs[reg] = get_frame_base (frame_info);
4505 /* A std has explicit post_modify forms. */
4506 else if ((inst & 0xfc00000c) == 0x70000008)
4507 frame_saved_regs[reg] = get_frame_base (frame_info);
4508 else
4509 {
4510 CORE_ADDR offset;
4511
4512 if ((inst >> 26) == 0x1c)
4513 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4514 else if ((inst >> 26) == 0x03)
4515 offset = low_sign_extend (inst & 0x1f, 5);
4516 else
4517 offset = extract_14 (inst);
4518
4519 /* Handle code with and without frame pointers. */
4520 if (u->Save_SP)
4521 frame_saved_regs[reg]
4522 = get_frame_base (frame_info) + offset;
4523 else
4524 frame_saved_regs[reg]
4525 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
4526 + offset);
4527 }
4528 }
4529
4530
4531 /* GCC handles callee saved FP regs a little differently.
4532
4533 It emits an instruction to put the value of the start of
4534 the FP store area into %r1. It then uses fstds,ma with
4535 a basereg of %r1 for the stores.
4536
4537 HP CC emits them at the current stack pointer modifying
4538 the stack pointer as it stores each register. */
4539
4540 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4541 if ((inst & 0xffffc000) == 0x34610000
4542 || (inst & 0xffffc000) == 0x37c10000)
4543 fp_loc = extract_14 (inst);
4544
4545 reg = inst_saves_fr (inst);
4546 if (reg >= 12 && reg <= 21)
4547 {
4548 /* Note +4 braindamage below is necessary because the FP status
4549 registers are internally 8 registers rather than the expected
4550 4 registers. */
4551 save_fr &= ~(1 << reg);
4552 if (fp_loc == -1)
4553 {
4554 /* 1st HP CC FP register store. After this instruction
4555 we've set enough state that the GCC and HPCC code are
4556 both handled in the same manner. */
4557 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
4558 fp_loc = 8;
4559 }
4560 else
4561 {
4562 frame_saved_regs[reg + FP0_REGNUM + 4]
4563 = get_frame_base (frame_info) + fp_loc;
4564 fp_loc += 8;
4565 }
4566 }
4567
4568 /* Quit if we hit any kind of branch the previous iteration. */
4569 if (final_iteration)
4570 break;
4571
4572 /* We want to look precisely one instruction beyond the branch
4573 if we have not found everything yet. */
4574 if (is_branch (inst))
4575 final_iteration = 1;
4576
4577 /* Bump the PC. */
4578 pc += 4;
4579 }
4580 }
4581
4582 /* XXX - deprecated. This is a compatibility function for targets
4583 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4584 /* Find the addresses in which registers are saved in FRAME. */
4585
4586 static void
4587 hppa_frame_init_saved_regs (struct frame_info *frame)
4588 {
4589 if (deprecated_get_frame_saved_regs (frame) == NULL)
4590 frame_saved_regs_zalloc (frame);
4591 hppa_frame_find_saved_regs (frame, deprecated_get_frame_saved_regs (frame));
4592 }
4593
4594 struct hppa_frame_cache
4595 {
4596 CORE_ADDR base;
4597 struct trad_frame_saved_reg *saved_regs;
4598 };
4599
4600 static struct hppa_frame_cache *
4601 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
4602 {
4603 struct hppa_frame_cache *cache;
4604 long saved_gr_mask;
4605 long saved_fr_mask;
4606 CORE_ADDR this_sp;
4607 long frame_size;
4608 struct unwind_table_entry *u;
4609 int i;
4610
4611 if ((*this_cache) != NULL)
4612 return (*this_cache);
4613 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
4614 (*this_cache) = cache;
4615 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
4616
4617 /* Yow! */
4618 u = find_unwind_entry (frame_func_unwind (next_frame));
4619 if (!u)
4620 return;
4621
4622 /* Turn the Entry_GR field into a bitmask. */
4623 saved_gr_mask = 0;
4624 for (i = 3; i < u->Entry_GR + 3; i++)
4625 {
4626 /* Frame pointer gets saved into a special location. */
4627 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
4628 continue;
4629
4630 saved_gr_mask |= (1 << i);
4631 }
4632
4633 /* Turn the Entry_FR field into a bitmask too. */
4634 saved_fr_mask = 0;
4635 for (i = 12; i < u->Entry_FR + 12; i++)
4636 saved_fr_mask |= (1 << i);
4637
4638 /* Loop until we find everything of interest or hit a branch.
4639
4640 For unoptimized GCC code and for any HP CC code this will never ever
4641 examine any user instructions.
4642
4643 For optimized GCC code we're faced with problems. GCC will schedule
4644 its prologue and make prologue instructions available for delay slot
4645 filling. The end result is user code gets mixed in with the prologue
4646 and a prologue instruction may be in the delay slot of the first branch
4647 or call.
4648
4649 Some unexpected things are expected with debugging optimized code, so
4650 we allow this routine to walk past user instructions in optimized
4651 GCC code. */
4652 {
4653 int final_iteration = 0;
4654 CORE_ADDR pc;
4655 CORE_ADDR end_pc = skip_prologue_using_sal (pc);
4656 int looking_for_sp = u->Save_SP;
4657 int looking_for_rp = u->Save_RP;
4658 int fp_loc = -1;
4659 if (end_pc == 0)
4660 end_pc = frame_pc_unwind (next_frame);
4661 frame_size = 0;
4662 for (pc = frame_func_unwind (next_frame);
4663 ((saved_gr_mask || saved_fr_mask
4664 || looking_for_sp || looking_for_rp
4665 || frame_size < (u->Total_frame_size << 3))
4666 && pc <= end_pc);
4667 pc += 4)
4668 {
4669 int reg;
4670 char buf4[4];
4671 long status = target_read_memory (pc, buf4, sizeof buf4);
4672 long inst = extract_unsigned_integer (buf4, sizeof buf4);
4673
4674 /* Note the interesting effects of this instruction. */
4675 frame_size += prologue_inst_adjust_sp (inst);
4676
4677 /* There are limited ways to store the return pointer into the
4678 stack. */
4679 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4680 {
4681 looking_for_rp = 0;
4682 cache->saved_regs[RP_REGNUM].addr = -20;
4683 }
4684 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4685 {
4686 looking_for_rp = 0;
4687 cache->saved_regs[RP_REGNUM].addr = -16;
4688 }
4689
4690 /* Check to see if we saved SP into the stack. This also
4691 happens to indicate the location of the saved frame
4692 pointer. */
4693 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4694 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4695 {
4696 looking_for_sp = 0;
4697 cache->saved_regs[DEPRECATED_FP_REGNUM].addr = 0;
4698 }
4699
4700 /* Account for general and floating-point register saves. */
4701 reg = inst_saves_gr (inst);
4702 if (reg >= 3 && reg <= 18
4703 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4704 {
4705 saved_gr_mask &= ~(1 << reg);
4706 if ((inst >> 26) == 0x1b && extract_14 (inst) >= 0)
4707 /* stwm with a positive displacement is a _post_
4708 _modify_. */
4709 cache->saved_regs[reg].addr = 0;
4710 else if ((inst & 0xfc00000c) == 0x70000008)
4711 /* A std has explicit post_modify forms. */
4712 cache->saved_regs[reg].addr = 0;
4713 else
4714 {
4715 CORE_ADDR offset;
4716
4717 if ((inst >> 26) == 0x1c)
4718 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4719 else if ((inst >> 26) == 0x03)
4720 offset = low_sign_extend (inst & 0x1f, 5);
4721 else
4722 offset = extract_14 (inst);
4723
4724 /* Handle code with and without frame pointers. */
4725 if (u->Save_SP)
4726 cache->saved_regs[reg].addr = offset;
4727 else
4728 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
4729 }
4730 }
4731
4732 /* GCC handles callee saved FP regs a little differently.
4733
4734 It emits an instruction to put the value of the start of
4735 the FP store area into %r1. It then uses fstds,ma with a
4736 basereg of %r1 for the stores.
4737
4738 HP CC emits them at the current stack pointer modifying the
4739 stack pointer as it stores each register. */
4740
4741 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4742 if ((inst & 0xffffc000) == 0x34610000
4743 || (inst & 0xffffc000) == 0x37c10000)
4744 fp_loc = extract_14 (inst);
4745
4746 reg = inst_saves_fr (inst);
4747 if (reg >= 12 && reg <= 21)
4748 {
4749 /* Note +4 braindamage below is necessary because the FP
4750 status registers are internally 8 registers rather than
4751 the expected 4 registers. */
4752 saved_fr_mask &= ~(1 << reg);
4753 if (fp_loc == -1)
4754 {
4755 /* 1st HP CC FP register store. After this
4756 instruction we've set enough state that the GCC and
4757 HPCC code are both handled in the same manner. */
4758 cache->saved_regs[reg + FP4_REGNUM + 4].addr = 0;
4759 fp_loc = 8;
4760 }
4761 else
4762 {
4763 cache->saved_regs[reg + FP0_REGNUM + 4].addr = fp_loc;
4764 fp_loc += 8;
4765 }
4766 }
4767
4768 /* Quit if we hit any kind of branch the previous iteration. */
4769 if (final_iteration)
4770 break;
4771 /* We want to look precisely one instruction beyond the branch
4772 if we have not found everything yet. */
4773 if (is_branch (inst))
4774 final_iteration = 1;
4775 }
4776 }
4777
4778 {
4779 /* The frame base always represents the value of %sp at entry to
4780 the current function (and is thus equivalent to the "saved"
4781 stack pointer. */
4782 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
4783 /* FIXME: cagney/2004-02-22: This assumes that the frame has been
4784 created. If it hasn't everything will be out-of-wack. */
4785 if (u->Save_SP && trad_frame_addr_p (cache->saved_regs, SP_REGNUM))
4786 /* Both we're expecting the SP to be saved and the SP has been
4787 saved. The entry SP value is saved at this frame's SP
4788 address. */
4789 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
4790 else
4791 /* The prologue has been slowly allocating stack space. Adjust
4792 the SP back. */
4793 cache->base = this_sp - frame_size;
4794 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
4795 }
4796
4797 /* The PC is found in the "return register". */
4798 if (u->Millicode)
4799 cache->saved_regs[PC_REGNUM] = cache->saved_regs[31];
4800 else
4801 cache->saved_regs[PC_REGNUM] = cache->saved_regs[RP_REGNUM];
4802
4803 {
4804 /* Convert all the offsets into addresses. */
4805 int reg;
4806 for (reg = 0; reg < NUM_REGS; reg++)
4807 {
4808 if (trad_frame_addr_p (cache->saved_regs, reg))
4809 cache->saved_regs[reg].addr += cache->base;
4810 }
4811 }
4812
4813 return (*this_cache);
4814 }
4815
4816 static void
4817 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
4818 struct frame_id *this_id)
4819 {
4820 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
4821 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
4822 }
4823
4824 static void
4825 hppa_frame_prev_register (struct frame_info *next_frame,
4826 void **this_cache,
4827 int regnum, int *optimizedp,
4828 enum lval_type *lvalp, CORE_ADDR *addrp,
4829 int *realnump, void *valuep)
4830 {
4831 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
4832 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
4833 optimizedp, lvalp, addrp, realnump, valuep);
4834 }
4835
4836 static const struct frame_unwind hppa_frame_unwind =
4837 {
4838 NORMAL_FRAME,
4839 hppa_frame_this_id,
4840 hppa_frame_prev_register
4841 };
4842
4843 static const struct frame_unwind *
4844 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
4845 {
4846 return &hppa_frame_unwind;
4847 }
4848
4849 static CORE_ADDR
4850 hppa_frame_base_address (struct frame_info *next_frame,
4851 void **this_cache)
4852 {
4853 struct hppa_frame_cache *info = hppa_frame_cache (next_frame,
4854 this_cache);
4855 return info->base;
4856 }
4857
4858 static const struct frame_base hppa_frame_base = {
4859 &hppa_frame_unwind,
4860 hppa_frame_base_address,
4861 hppa_frame_base_address,
4862 hppa_frame_base_address
4863 };
4864
4865 static const struct frame_base *
4866 hppa_frame_base_sniffer (struct frame_info *next_frame)
4867 {
4868 return &hppa_frame_base;
4869 }
4870
4871 static struct frame_id
4872 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
4873 {
4874 return frame_id_build (frame_unwind_register_unsigned (next_frame,
4875 SP_REGNUM),
4876 frame_pc_unwind (next_frame));
4877 }
4878
4879 static CORE_ADDR
4880 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
4881 {
4882 return frame_unwind_register_signed (next_frame, PC_REGNUM) & ~3;
4883 }
4884
4885 /* Exception handling support for the HP-UX ANSI C++ compiler.
4886 The compiler (aCC) provides a callback for exception events;
4887 GDB can set a breakpoint on this callback and find out what
4888 exception event has occurred. */
4889
4890 /* The name of the hook to be set to point to the callback function */
4891 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4892 /* The name of the function to be used to set the hook value */
4893 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4894 /* The name of the callback function in end.o */
4895 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4896 /* Name of function in end.o on which a break is set (called by above) */
4897 static char HP_ACC_EH_break[] = "__d_eh_break";
4898 /* Name of flag (in end.o) that enables catching throws */
4899 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4900 /* Name of flag (in end.o) that enables catching catching */
4901 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4902 /* The enum used by aCC */
4903 typedef enum
4904 {
4905 __EH_NOTIFY_THROW,
4906 __EH_NOTIFY_CATCH
4907 }
4908 __eh_notification;
4909
4910 /* Is exception-handling support available with this executable? */
4911 static int hp_cxx_exception_support = 0;
4912 /* Has the initialize function been run? */
4913 int hp_cxx_exception_support_initialized = 0;
4914 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4915 extern int exception_support_initialized;
4916 /* Address of __eh_notify_hook */
4917 static CORE_ADDR eh_notify_hook_addr = 0;
4918 /* Address of __d_eh_notify_callback */
4919 static CORE_ADDR eh_notify_callback_addr = 0;
4920 /* Address of __d_eh_break */
4921 static CORE_ADDR eh_break_addr = 0;
4922 /* Address of __d_eh_catch_catch */
4923 static CORE_ADDR eh_catch_catch_addr = 0;
4924 /* Address of __d_eh_catch_throw */
4925 static CORE_ADDR eh_catch_throw_addr = 0;
4926 /* Sal for __d_eh_break */
4927 static struct symtab_and_line *break_callback_sal = 0;
4928
4929 /* Code in end.c expects __d_pid to be set in the inferior,
4930 otherwise __d_eh_notify_callback doesn't bother to call
4931 __d_eh_break! So we poke the pid into this symbol
4932 ourselves.
4933 0 => success
4934 1 => failure */
4935 int
4936 setup_d_pid_in_inferior (void)
4937 {
4938 CORE_ADDR anaddr;
4939 struct minimal_symbol *msymbol;
4940 char buf[4]; /* FIXME 32x64? */
4941
4942 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4943 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4944 if (msymbol == NULL)
4945 {
4946 warning ("Unable to find __d_pid symbol in object file.");
4947 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4948 return 1;
4949 }
4950
4951 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4952 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4953 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4954 {
4955 warning ("Unable to write __d_pid");
4956 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4957 return 1;
4958 }
4959 return 0;
4960 }
4961
4962 /* Initialize exception catchpoint support by looking for the
4963 necessary hooks/callbacks in end.o, etc., and set the hook value to
4964 point to the required debug function
4965
4966 Return 0 => failure
4967 1 => success */
4968
4969 static int
4970 initialize_hp_cxx_exception_support (void)
4971 {
4972 struct symtabs_and_lines sals;
4973 struct cleanup *old_chain;
4974 struct cleanup *canonical_strings_chain = NULL;
4975 int i;
4976 char *addr_start;
4977 char *addr_end = NULL;
4978 char **canonical = (char **) NULL;
4979 int thread = -1;
4980 struct symbol *sym = NULL;
4981 struct minimal_symbol *msym = NULL;
4982 struct objfile *objfile;
4983 asection *shlib_info;
4984
4985 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4986 recursion is a possibility because finding the hook for exception
4987 callbacks involves making a call in the inferior, which means
4988 re-inserting breakpoints which can re-invoke this code */
4989
4990 static int recurse = 0;
4991 if (recurse > 0)
4992 {
4993 hp_cxx_exception_support_initialized = 0;
4994 exception_support_initialized = 0;
4995 return 0;
4996 }
4997
4998 hp_cxx_exception_support = 0;
4999
5000 /* First check if we have seen any HP compiled objects; if not,
5001 it is very unlikely that HP's idiosyncratic callback mechanism
5002 for exception handling debug support will be available!
5003 This will percolate back up to breakpoint.c, where our callers
5004 will decide to try the g++ exception-handling support instead. */
5005 if (!hp_som_som_object_present)
5006 return 0;
5007
5008 /* We have a SOM executable with SOM debug info; find the hooks */
5009
5010 /* First look for the notify hook provided by aCC runtime libs */
5011 /* If we find this symbol, we conclude that the executable must
5012 have HP aCC exception support built in. If this symbol is not
5013 found, even though we're a HP SOM-SOM file, we may have been
5014 built with some other compiler (not aCC). This results percolates
5015 back up to our callers in breakpoint.c which can decide to
5016 try the g++ style of exception support instead.
5017 If this symbol is found but the other symbols we require are
5018 not found, there is something weird going on, and g++ support
5019 should *not* be tried as an alternative.
5020
5021 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
5022 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
5023
5024 /* libCsup has this hook; it'll usually be non-debuggable */
5025 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
5026 if (msym)
5027 {
5028 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
5029 hp_cxx_exception_support = 1;
5030 }
5031 else
5032 {
5033 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
5034 warning ("Executable may not have been compiled debuggable with HP aCC.");
5035 warning ("GDB will be unable to intercept exception events.");
5036 eh_notify_hook_addr = 0;
5037 hp_cxx_exception_support = 0;
5038 return 0;
5039 }
5040
5041 /* Next look for the notify callback routine in end.o */
5042 /* This is always available in the SOM symbol dictionary if end.o is linked in */
5043 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
5044 if (msym)
5045 {
5046 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
5047 hp_cxx_exception_support = 1;
5048 }
5049 else
5050 {
5051 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
5052 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
5053 warning ("GDB will be unable to intercept exception events.");
5054 eh_notify_callback_addr = 0;
5055 return 0;
5056 }
5057
5058 #ifndef GDB_TARGET_IS_HPPA_20W
5059 /* Check whether the executable is dynamically linked or archive bound */
5060 /* With an archive-bound executable we can use the raw addresses we find
5061 for the callback function, etc. without modification. For an executable
5062 with shared libraries, we have to do more work to find the plabel, which
5063 can be the target of a call through $$dyncall from the aCC runtime support
5064 library (libCsup) which is linked shared by default by aCC. */
5065 /* This test below was copied from somsolib.c/somread.c. It may not be a very
5066 reliable one to test that an executable is linked shared. pai/1997-07-18 */
5067 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
5068 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
5069 {
5070 /* The minsym we have has the local code address, but that's not the
5071 plabel that can be used by an inter-load-module call. */
5072 /* Find solib handle for main image (which has end.o), and use that
5073 and the min sym as arguments to __d_shl_get() (which does the equivalent
5074 of shl_findsym()) to find the plabel. */
5075
5076 args_for_find_stub args;
5077 static char message[] = "Error while finding exception callback hook:\n";
5078
5079 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
5080 args.msym = msym;
5081 args.return_val = 0;
5082
5083 recurse++;
5084 catch_errors (cover_find_stub_with_shl_get, &args, message,
5085 RETURN_MASK_ALL);
5086 eh_notify_callback_addr = args.return_val;
5087 recurse--;
5088
5089 exception_catchpoints_are_fragile = 1;
5090
5091 if (!eh_notify_callback_addr)
5092 {
5093 /* We can get here either if there is no plabel in the export list
5094 for the main image, or if something strange happened (?) */
5095 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
5096 warning ("GDB will not be able to intercept exception events.");
5097 return 0;
5098 }
5099 }
5100 else
5101 exception_catchpoints_are_fragile = 0;
5102 #endif
5103
5104 /* Now, look for the breakpointable routine in end.o */
5105 /* This should also be available in the SOM symbol dict. if end.o linked in */
5106 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
5107 if (msym)
5108 {
5109 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
5110 hp_cxx_exception_support = 1;
5111 }
5112 else
5113 {
5114 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
5115 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
5116 warning ("GDB will be unable to intercept exception events.");
5117 eh_break_addr = 0;
5118 return 0;
5119 }
5120
5121 /* Next look for the catch enable flag provided in end.o */
5122 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
5123 VAR_DOMAIN, 0, (struct symtab **) NULL);
5124 if (sym) /* sometimes present in debug info */
5125 {
5126 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
5127 hp_cxx_exception_support = 1;
5128 }
5129 else
5130 /* otherwise look in SOM symbol dict. */
5131 {
5132 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
5133 if (msym)
5134 {
5135 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
5136 hp_cxx_exception_support = 1;
5137 }
5138 else
5139 {
5140 warning ("Unable to enable interception of exception catches.");
5141 warning ("Executable may not have been compiled debuggable with HP aCC.");
5142 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
5143 return 0;
5144 }
5145 }
5146
5147 /* Next look for the catch enable flag provided end.o */
5148 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
5149 VAR_DOMAIN, 0, (struct symtab **) NULL);
5150 if (sym) /* sometimes present in debug info */
5151 {
5152 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
5153 hp_cxx_exception_support = 1;
5154 }
5155 else
5156 /* otherwise look in SOM symbol dict. */
5157 {
5158 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
5159 if (msym)
5160 {
5161 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
5162 hp_cxx_exception_support = 1;
5163 }
5164 else
5165 {
5166 warning ("Unable to enable interception of exception throws.");
5167 warning ("Executable may not have been compiled debuggable with HP aCC.");
5168 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
5169 return 0;
5170 }
5171 }
5172
5173 /* Set the flags */
5174 hp_cxx_exception_support = 2; /* everything worked so far */
5175 hp_cxx_exception_support_initialized = 1;
5176 exception_support_initialized = 1;
5177
5178 return 1;
5179 }
5180
5181 /* Target operation for enabling or disabling interception of
5182 exception events.
5183 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
5184 ENABLE is either 0 (disable) or 1 (enable).
5185 Return value is NULL if no support found;
5186 -1 if something went wrong,
5187 or a pointer to a symtab/line struct if the breakpointable
5188 address was found. */
5189
5190 struct symtab_and_line *
5191 child_enable_exception_callback (enum exception_event_kind kind, int enable)
5192 {
5193 char buf[4];
5194
5195 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
5196 if (!initialize_hp_cxx_exception_support ())
5197 return NULL;
5198
5199 switch (hp_cxx_exception_support)
5200 {
5201 case 0:
5202 /* Assuming no HP support at all */
5203 return NULL;
5204 case 1:
5205 /* HP support should be present, but something went wrong */
5206 return (struct symtab_and_line *) -1; /* yuck! */
5207 /* there may be other cases in the future */
5208 }
5209
5210 /* Set the EH hook to point to the callback routine */
5211 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
5212 /* pai: (temp) FIXME should there be a pack operation first? */
5213 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
5214 {
5215 warning ("Could not write to target memory for exception event callback.");
5216 warning ("Interception of exception events may not work.");
5217 return (struct symtab_and_line *) -1;
5218 }
5219 if (enable)
5220 {
5221 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
5222 if (PIDGET (inferior_ptid) > 0)
5223 {
5224 if (setup_d_pid_in_inferior ())
5225 return (struct symtab_and_line *) -1;
5226 }
5227 else
5228 {
5229 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
5230 return (struct symtab_and_line *) -1;
5231 }
5232 }
5233
5234 switch (kind)
5235 {
5236 case EX_EVENT_THROW:
5237 store_unsigned_integer (buf, 4, enable ? 1 : 0);
5238 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
5239 {
5240 warning ("Couldn't enable exception throw interception.");
5241 return (struct symtab_and_line *) -1;
5242 }
5243 break;
5244 case EX_EVENT_CATCH:
5245 store_unsigned_integer (buf, 4, enable ? 1 : 0);
5246 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
5247 {
5248 warning ("Couldn't enable exception catch interception.");
5249 return (struct symtab_and_line *) -1;
5250 }
5251 break;
5252 default:
5253 error ("Request to enable unknown or unsupported exception event.");
5254 }
5255
5256 /* Copy break address into new sal struct, malloc'ing if needed. */
5257 if (!break_callback_sal)
5258 {
5259 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
5260 }
5261 init_sal (break_callback_sal);
5262 break_callback_sal->symtab = NULL;
5263 break_callback_sal->pc = eh_break_addr;
5264 break_callback_sal->line = 0;
5265 break_callback_sal->end = eh_break_addr;
5266
5267 return break_callback_sal;
5268 }
5269
5270 /* Record some information about the current exception event */
5271 static struct exception_event_record current_ex_event;
5272 /* Convenience struct */
5273 static struct symtab_and_line null_symtab_and_line =
5274 {NULL, 0, 0, 0};
5275
5276 /* Report current exception event. Returns a pointer to a record
5277 that describes the kind of the event, where it was thrown from,
5278 and where it will be caught. More information may be reported
5279 in the future */
5280 struct exception_event_record *
5281 child_get_current_exception_event (void)
5282 {
5283 CORE_ADDR event_kind;
5284 CORE_ADDR throw_addr;
5285 CORE_ADDR catch_addr;
5286 struct frame_info *fi, *curr_frame;
5287 int level = 1;
5288
5289 curr_frame = get_current_frame ();
5290 if (!curr_frame)
5291 return (struct exception_event_record *) NULL;
5292
5293 /* Go up one frame to __d_eh_notify_callback, because at the
5294 point when this code is executed, there's garbage in the
5295 arguments of __d_eh_break. */
5296 fi = find_relative_frame (curr_frame, &level);
5297 if (level != 0)
5298 return (struct exception_event_record *) NULL;
5299
5300 select_frame (fi);
5301
5302 /* Read in the arguments */
5303 /* __d_eh_notify_callback() is called with 3 arguments:
5304 1. event kind catch or throw
5305 2. the target address if known
5306 3. a flag -- not sure what this is. pai/1997-07-17 */
5307 event_kind = read_register (ARG0_REGNUM);
5308 catch_addr = read_register (ARG1_REGNUM);
5309
5310 /* Now go down to a user frame */
5311 /* For a throw, __d_eh_break is called by
5312 __d_eh_notify_callback which is called by
5313 __notify_throw which is called
5314 from user code.
5315 For a catch, __d_eh_break is called by
5316 __d_eh_notify_callback which is called by
5317 <stackwalking stuff> which is called by
5318 __throw__<stuff> or __rethrow_<stuff> which is called
5319 from user code. */
5320 /* FIXME: Don't use such magic numbers; search for the frames */
5321 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
5322 fi = find_relative_frame (curr_frame, &level);
5323 if (level != 0)
5324 return (struct exception_event_record *) NULL;
5325
5326 select_frame (fi);
5327 throw_addr = get_frame_pc (fi);
5328
5329 /* Go back to original (top) frame */
5330 select_frame (curr_frame);
5331
5332 current_ex_event.kind = (enum exception_event_kind) event_kind;
5333 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
5334 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
5335
5336 return &current_ex_event;
5337 }
5338
5339 /* Instead of this nasty cast, add a method pvoid() that prints out a
5340 host VOID data type (remember %p isn't portable). */
5341
5342 static CORE_ADDR
5343 hppa_pointer_to_address_hack (void *ptr)
5344 {
5345 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
5346 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
5347 }
5348
5349 static void
5350 unwind_command (char *exp, int from_tty)
5351 {
5352 CORE_ADDR address;
5353 struct unwind_table_entry *u;
5354
5355 /* If we have an expression, evaluate it and use it as the address. */
5356
5357 if (exp != 0 && *exp != 0)
5358 address = parse_and_eval_address (exp);
5359 else
5360 return;
5361
5362 u = find_unwind_entry (address);
5363
5364 if (!u)
5365 {
5366 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
5367 return;
5368 }
5369
5370 printf_unfiltered ("unwind_table_entry (0x%s):\n",
5371 paddr_nz (hppa_pointer_to_address_hack (u)));
5372
5373 printf_unfiltered ("\tregion_start = ");
5374 print_address (u->region_start, gdb_stdout);
5375
5376 printf_unfiltered ("\n\tregion_end = ");
5377 print_address (u->region_end, gdb_stdout);
5378
5379 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
5380
5381 printf_unfiltered ("\n\tflags =");
5382 pif (Cannot_unwind);
5383 pif (Millicode);
5384 pif (Millicode_save_sr0);
5385 pif (Entry_SR);
5386 pif (Args_stored);
5387 pif (Variable_Frame);
5388 pif (Separate_Package_Body);
5389 pif (Frame_Extension_Millicode);
5390 pif (Stack_Overflow_Check);
5391 pif (Two_Instruction_SP_Increment);
5392 pif (Ada_Region);
5393 pif (Save_SP);
5394 pif (Save_RP);
5395 pif (Save_MRP_in_frame);
5396 pif (extn_ptr_defined);
5397 pif (Cleanup_defined);
5398 pif (MPE_XL_interrupt_marker);
5399 pif (HP_UX_interrupt_marker);
5400 pif (Large_frame);
5401
5402 putchar_unfiltered ('\n');
5403
5404 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
5405
5406 pin (Region_description);
5407 pin (Entry_FR);
5408 pin (Entry_GR);
5409 pin (Total_frame_size);
5410 }
5411
5412 void
5413 hppa_skip_permanent_breakpoint (void)
5414 {
5415 /* To step over a breakpoint instruction on the PA takes some
5416 fiddling with the instruction address queue.
5417
5418 When we stop at a breakpoint, the IA queue front (the instruction
5419 we're executing now) points at the breakpoint instruction, and
5420 the IA queue back (the next instruction to execute) points to
5421 whatever instruction we would execute after the breakpoint, if it
5422 were an ordinary instruction. This is the case even if the
5423 breakpoint is in the delay slot of a branch instruction.
5424
5425 Clearly, to step past the breakpoint, we need to set the queue
5426 front to the back. But what do we put in the back? What
5427 instruction comes after that one? Because of the branch delay
5428 slot, the next insn is always at the back + 4. */
5429 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
5430 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
5431
5432 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
5433 /* We can leave the tail's space the same, since there's no jump. */
5434 }
5435
5436 /* Same as hppa32_store_return_value(), but for the PA64 ABI. */
5437
5438 void
5439 hppa64_store_return_value (struct type *type, char *valbuf)
5440 {
5441 if (TYPE_CODE (type) == TYPE_CODE_FLT)
5442 deprecated_write_register_bytes
5443 (DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
5444 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5445 valbuf, TYPE_LENGTH (type));
5446 else if (is_integral_type(type))
5447 deprecated_write_register_bytes
5448 (DEPRECATED_REGISTER_BYTE (28)
5449 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5450 valbuf, TYPE_LENGTH (type));
5451 else if (TYPE_LENGTH (type) <= 8)
5452 deprecated_write_register_bytes
5453 (DEPRECATED_REGISTER_BYTE (28),valbuf, TYPE_LENGTH (type));
5454 else if (TYPE_LENGTH (type) <= 16)
5455 {
5456 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28),valbuf, 8);
5457 deprecated_write_register_bytes
5458 (DEPRECATED_REGISTER_BYTE (29), valbuf + 8, TYPE_LENGTH (type) - 8);
5459 }
5460 }
5461
5462 /* Same as hppa32_extract_return_value but for the PA64 ABI case. */
5463
5464 void
5465 hppa64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
5466 {
5467 /* RM: Floats are returned in FR4R, doubles in FR4.
5468 Integral values are in r28, padded on the left.
5469 Aggregates less that 65 bits are in r28, right padded.
5470 Aggregates upto 128 bits are in r28 and r29, right padded. */
5471 if (TYPE_CODE (type) == TYPE_CODE_FLT)
5472 memcpy (valbuf,
5473 regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
5474 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5475 TYPE_LENGTH (type));
5476 else if (is_integral_type(type))
5477 memcpy (valbuf,
5478 regbuf + DEPRECATED_REGISTER_BYTE (28)
5479 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5480 TYPE_LENGTH (type));
5481 else if (TYPE_LENGTH (type) <= 8)
5482 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28),
5483 TYPE_LENGTH (type));
5484 else if (TYPE_LENGTH (type) <= 16)
5485 {
5486 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28), 8);
5487 memcpy (valbuf + 8, regbuf + DEPRECATED_REGISTER_BYTE (29),
5488 TYPE_LENGTH (type) - 8);
5489 }
5490 }
5491
5492 int
5493 hppa_reg_struct_has_addr (int gcc_p, struct type *type)
5494 {
5495 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
5496 via a pointer regardless of its type or the compiler used. */
5497 return (TYPE_LENGTH (type) > 8);
5498 }
5499
5500 int
5501 hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
5502 {
5503 /* Stack grows upward */
5504 return (lhs > rhs);
5505 }
5506
5507 CORE_ADDR
5508 hppa64_stack_align (CORE_ADDR sp)
5509 {
5510 /* The PA64 ABI mandates a 16 byte stack alignment. */
5511 return ((sp % 16) ? (sp + 15) & -16 : sp);
5512 }
5513
5514 int
5515 hppa_pc_requires_run_before_use (CORE_ADDR pc)
5516 {
5517 /* Sometimes we may pluck out a minimal symbol that has a negative address.
5518
5519 An example of this occurs when an a.out is linked against a foo.sl.
5520 The foo.sl defines a global bar(), and the a.out declares a signature
5521 for bar(). However, the a.out doesn't directly call bar(), but passes
5522 its address in another call.
5523
5524 If you have this scenario and attempt to "break bar" before running,
5525 gdb will find a minimal symbol for bar() in the a.out. But that
5526 symbol's address will be negative. What this appears to denote is
5527 an index backwards from the base of the procedure linkage table (PLT)
5528 into the data linkage table (DLT), the end of which is contiguous
5529 with the start of the PLT. This is clearly not a valid address for
5530 us to set a breakpoint on.
5531
5532 Note that one must be careful in how one checks for a negative address.
5533 0xc0000000 is a legitimate address of something in a shared text
5534 segment, for example. Since I don't know what the possible range
5535 is of these "really, truly negative" addresses that come from the
5536 minimal symbols, I'm resorting to the gross hack of checking the
5537 top byte of the address for all 1's. Sigh. */
5538
5539 return (!target_has_stack && (pc & 0xFF000000));
5540 }
5541
5542 int
5543 hppa_instruction_nullified (void)
5544 {
5545 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
5546 avoid the type cast. I'm leaving it as is for now as I'm doing
5547 semi-mechanical multiarching-related changes. */
5548 const int ipsw = (int) read_register (IPSW_REGNUM);
5549 const int flags = (int) read_register (FLAGS_REGNUM);
5550
5551 return ((ipsw & 0x00200000) && !(flags & 0x2));
5552 }
5553
5554 int
5555 hppa_register_raw_size (int reg_nr)
5556 {
5557 /* All registers have the same size. */
5558 return DEPRECATED_REGISTER_SIZE;
5559 }
5560
5561 /* Index within the register vector of the first byte of the space i
5562 used for register REG_NR. */
5563
5564 int
5565 hppa_register_byte (int reg_nr)
5566 {
5567 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5568
5569 return reg_nr * tdep->bytes_per_address;
5570 }
5571
5572 /* Return the GDB type object for the "standard" data type of data
5573 in register N. */
5574
5575 struct type *
5576 hppa32_register_virtual_type (int reg_nr)
5577 {
5578 if (reg_nr < FP4_REGNUM)
5579 return builtin_type_int;
5580 else
5581 return builtin_type_float;
5582 }
5583
5584 /* Return the GDB type object for the "standard" data type of data
5585 in register N. hppa64 version. */
5586
5587 struct type *
5588 hppa64_register_virtual_type (int reg_nr)
5589 {
5590 if (reg_nr < FP4_REGNUM)
5591 return builtin_type_unsigned_long_long;
5592 else
5593 return builtin_type_double;
5594 }
5595
5596 /* Store the address of the place in which to copy the structure the
5597 subroutine will return. This is called from call_function. */
5598
5599 void
5600 hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
5601 {
5602 write_register (28, addr);
5603 }
5604 /* Return True if REGNUM is not a register available to the user
5605 through ptrace(). */
5606
5607 int
5608 hppa_cannot_store_register (int regnum)
5609 {
5610 return (regnum == 0
5611 || regnum == PCSQ_HEAD_REGNUM
5612 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
5613 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
5614
5615 }
5616
5617 CORE_ADDR
5618 hppa_smash_text_address (CORE_ADDR addr)
5619 {
5620 /* The low two bits of the PC on the PA contain the privilege level.
5621 Some genius implementing a (non-GCC) compiler apparently decided
5622 this means that "addresses" in a text section therefore include a
5623 privilege level, and thus symbol tables should contain these bits.
5624 This seems like a bonehead thing to do--anyway, it seems to work
5625 for our purposes to just ignore those bits. */
5626
5627 return (addr &= ~0x3);
5628 }
5629
5630 /* Get the ith function argument for the current function. */
5631 CORE_ADDR
5632 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
5633 struct type *type)
5634 {
5635 CORE_ADDR addr;
5636 get_frame_register (frame, R0_REGNUM + 26 - argi, &addr);
5637 return addr;
5638 }
5639
5640 /* Here is a table of C type sizes on hppa with various compiles
5641 and options. I measured this on PA 9000/800 with HP-UX 11.11
5642 and these compilers:
5643
5644 /usr/ccs/bin/cc HP92453-01 A.11.01.21
5645 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
5646 /opt/aCC/bin/aCC B3910B A.03.45
5647 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
5648
5649 cc : 1 2 4 4 8 : 4 8 -- : 4 4
5650 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
5651 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
5652 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
5653 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
5654 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
5655 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
5656 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
5657
5658 Each line is:
5659
5660 compiler and options
5661 char, short, int, long, long long
5662 float, double, long double
5663 char *, void (*)()
5664
5665 So all these compilers use either ILP32 or LP64 model.
5666 TODO: gcc has more options so it needs more investigation.
5667
5668 For floating point types, see:
5669
5670 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
5671 HP-UX floating-point guide, hpux 11.00
5672
5673 -- chastain 2003-12-18 */
5674
5675 static struct gdbarch *
5676 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5677 {
5678 struct gdbarch_tdep *tdep;
5679 struct gdbarch *gdbarch;
5680
5681 /* Try to determine the ABI of the object we are loading. */
5682 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
5683 {
5684 /* If it's a SOM file, assume it's HP/UX SOM. */
5685 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
5686 info.osabi = GDB_OSABI_HPUX_SOM;
5687 }
5688
5689 /* find a candidate among the list of pre-declared architectures. */
5690 arches = gdbarch_list_lookup_by_info (arches, &info);
5691 if (arches != NULL)
5692 return (arches->gdbarch);
5693
5694 /* If none found, then allocate and initialize one. */
5695 tdep = XMALLOC (struct gdbarch_tdep);
5696 gdbarch = gdbarch_alloc (&info, tdep);
5697
5698 /* Determine from the bfd_arch_info structure if we are dealing with
5699 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
5700 then default to a 32bit machine. */
5701 if (info.bfd_arch_info != NULL)
5702 tdep->bytes_per_address =
5703 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
5704 else
5705 tdep->bytes_per_address = 4;
5706
5707 /* Some parts of the gdbarch vector depend on whether we are running
5708 on a 32 bits or 64 bits target. */
5709 switch (tdep->bytes_per_address)
5710 {
5711 case 4:
5712 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
5713 set_gdbarch_register_name (gdbarch, hppa32_register_name);
5714 set_gdbarch_deprecated_register_virtual_type
5715 (gdbarch, hppa32_register_virtual_type);
5716 break;
5717 case 8:
5718 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
5719 set_gdbarch_register_name (gdbarch, hppa64_register_name);
5720 set_gdbarch_deprecated_register_virtual_type
5721 (gdbarch, hppa64_register_virtual_type);
5722 break;
5723 default:
5724 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
5725 tdep->bytes_per_address);
5726 }
5727
5728 /* The following gdbarch vector elements depend on other parts of this
5729 vector which have been set above, depending on the ABI. */
5730 set_gdbarch_deprecated_register_bytes
5731 (gdbarch, gdbarch_num_regs (gdbarch) * tdep->bytes_per_address);
5732 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5733 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5734
5735 /* The following gdbarch vector elements are the same in both ILP32
5736 and LP64, but might show differences some day. */
5737 set_gdbarch_long_long_bit (gdbarch, 64);
5738 set_gdbarch_long_double_bit (gdbarch, 128);
5739 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
5740
5741 /* The following gdbarch vector elements do not depend on the address
5742 size, or in any other gdbarch element previously set. */
5743 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
5744 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
5745 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
5746 set_gdbarch_in_solib_return_trampoline (gdbarch,
5747 hppa_in_solib_return_trampoline);
5748 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
5749 set_gdbarch_deprecated_register_size (gdbarch, tdep->bytes_per_address);
5750 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
5751 set_gdbarch_sp_regnum (gdbarch, 30);
5752 set_gdbarch_fp0_regnum (gdbarch, 64);
5753 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
5754 set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size);
5755 set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte);
5756 set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size);
5757 set_gdbarch_deprecated_max_register_raw_size (gdbarch, tdep->bytes_per_address);
5758 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
5759 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
5760 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
5761 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5762 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5763 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5764 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5765 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
5766
5767 /* Helper for function argument information. */
5768 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
5769
5770 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
5771
5772 /* When a hardware watchpoint triggers, we'll move the inferior past
5773 it by removing all eventpoints; stepping past the instruction
5774 that caused the trigger; reinserting eventpoints; and checking
5775 whether any watched location changed. */
5776 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5777
5778 /* Inferior function call methods. */
5779 switch (tdep->bytes_per_address)
5780 {
5781 case 4:
5782 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
5783 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
5784 break;
5785 case 8:
5786 if (0)
5787 {
5788 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
5789 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
5790 break;
5791 }
5792 else
5793 {
5794 set_gdbarch_deprecated_call_dummy_breakpoint_offset (gdbarch, hppa64_call_dummy_breakpoint_offset);
5795 set_gdbarch_deprecated_call_dummy_length (gdbarch, hppa64_call_dummy_length);
5796 set_gdbarch_deprecated_stack_align (gdbarch, hppa64_stack_align);
5797 break;
5798 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
5799 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5800 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
5801 set_gdbarch_deprecated_use_generic_dummy_frames (gdbarch, 0);
5802 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_on_stack);
5803 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
5804 }
5805 break;
5806 }
5807
5808 /* Struct return methods. */
5809 switch (tdep->bytes_per_address)
5810 {
5811 case 4:
5812 set_gdbarch_return_value (gdbarch, hppa32_return_value);
5813 break;
5814 case 8:
5815 if (0)
5816 set_gdbarch_return_value (gdbarch, hppa64_return_value);
5817 else
5818 {
5819 set_gdbarch_deprecated_extract_return_value (gdbarch, hppa64_extract_return_value);
5820 set_gdbarch_use_struct_convention (gdbarch, hppa64_use_struct_convention);
5821 set_gdbarch_deprecated_store_return_value (gdbarch, hppa64_store_return_value);
5822 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
5823 }
5824 break;
5825 default:
5826 internal_error (__FILE__, __LINE__, "bad switch");
5827 }
5828
5829 /* Frame unwind methods. */
5830 if (0)
5831 {
5832 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
5833 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
5834 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
5835 frame_base_append_sniffer (gdbarch, hppa_frame_base_sniffer);
5836 }
5837 else
5838 {
5839 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
5840 set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default);
5841 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, hppa_frame_init_saved_regs);
5842 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
5843 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5844 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
5845 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, hppa_frameless_function_invocation);
5846 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
5847 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
5848 }
5849
5850 /* Hook in ABI-specific overrides, if they have been registered. */
5851 gdbarch_init_osabi (info, gdbarch);
5852
5853 return gdbarch;
5854 }
5855
5856 static void
5857 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5858 {
5859 /* Nothing to print for the moment. */
5860 }
5861
5862 void
5863 _initialize_hppa_tdep (void)
5864 {
5865 struct cmd_list_element *c;
5866 void break_at_finish_command (char *arg, int from_tty);
5867 void tbreak_at_finish_command (char *arg, int from_tty);
5868 void break_at_finish_at_depth_command (char *arg, int from_tty);
5869
5870 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
5871
5872 add_cmd ("unwind", class_maintenance, unwind_command,
5873 "Print unwind table entry at given address.",
5874 &maintenanceprintlist);
5875
5876 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5877 break_at_finish_command,
5878 concat ("Set breakpoint at procedure exit. \n\
5879 Argument may be function name, or \"*\" and an address.\n\
5880 If function is specified, break at end of code for that function.\n\
5881 If an address is specified, break at the end of the function that contains \n\
5882 that exact address.\n",
5883 "With no arg, uses current execution address of selected stack frame.\n\
5884 This is useful for breaking on return to a stack frame.\n\
5885 \n\
5886 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5887 \n\
5888 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5889 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5890 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5891 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5892 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5893
5894 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5895 tbreak_at_finish_command,
5896 "Set temporary breakpoint at procedure exit. Either there should\n\
5897 be no argument or the argument must be a depth.\n"), NULL);
5898 set_cmd_completer (c, location_completer);
5899
5900 if (xdb_commands)
5901 deprecate_cmd (add_com ("bx", class_breakpoint,
5902 break_at_finish_at_depth_command,
5903 "Set breakpoint at procedure exit. Either there should\n\
5904 be no argument or the argument must be a depth.\n"), NULL);
5905 }
5906
This page took 0.176676 seconds and 5 git commands to generate.