2000-08-10 Jimmy Guo <guo@cup.hp.com>
[deliverable/binutils-gdb.git] / gdb / i386-linux-nat.c
1 /* Native-dependent code for Linux/x86.
2 Copyright 1999, 2000 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24
25 /* For i386_linux_skip_solib_resolver. */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29
30 #include <sys/ptrace.h>
31 #include <sys/user.h>
32 #include <sys/procfs.h>
33
34 #ifdef HAVE_SYS_REG_H
35 #include <sys/reg.h>
36 #endif
37
38 /* Prototypes for supply_gregset etc. */
39 #include "gregset.h"
40
41 /* Prototypes for i387_supply_fsave etc. */
42 #include "i387-nat.h"
43
44 /* On Linux, threads are implemented as pseudo-processes, in which
45 case we may be tracing more than one process at a time. In that
46 case, inferior_pid will contain the main process ID and the
47 individual thread (process) ID mashed together. These macros are
48 used to separate them out. These definitions should be overridden
49 if thread support is included. */
50
51 #if !defined (PIDGET) /* Default definition for PIDGET/TIDGET. */
52 #define PIDGET(PID) PID
53 #define TIDGET(PID) 0
54 #endif
55 \f
56
57 /* The register sets used in Linux ELF core-dumps are identical to the
58 register sets in `struct user' that is used for a.out core-dumps,
59 and is also used by `ptrace'. The corresponding types are
60 `elf_gregset_t' for the general-purpose registers (with
61 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
62 for the floating-point registers.
63
64 Those types used to be available under the names `gregset_t' and
65 `fpregset_t' too, and this file used those names in the past. But
66 those names are now used for the register sets used in the
67 `mcontext_t' type, and have a different size and layout. */
68
69 /* Mapping between the general-purpose registers in `struct user'
70 format and GDB's register array layout. */
71 static int regmap[] =
72 {
73 EAX, ECX, EDX, EBX,
74 UESP, EBP, ESI, EDI,
75 EIP, EFL, CS, SS,
76 DS, ES, FS, GS
77 };
78
79 /* Which ptrace request retrieves which registers?
80 These apply to the corresponding SET requests as well. */
81 #define GETREGS_SUPPLIES(regno) \
82 (0 <= (regno) && (regno) <= 15)
83 #define GETFPREGS_SUPPLIES(regno) \
84 (FP0_REGNUM <= (regno) && (regno) <= LAST_FPU_CTRL_REGNUM)
85 #define GETFPXREGS_SUPPLIES(regno) \
86 (FP0_REGNUM <= (regno) && (regno) <= MXCSR_REGNUM)
87
88 /* Does the current host support the GETREGS request? */
89 int have_ptrace_getregs =
90 #ifdef HAVE_PTRACE_GETREGS
91 1
92 #else
93 0
94 #endif
95 ;
96
97 /* Does the current host support the GETFPXREGS request? The header
98 file may or may not define it, and even if it is defined, the
99 kernel will return EIO if it's running on a pre-SSE processor.
100
101 My instinct is to attach this to some architecture- or
102 target-specific data structure, but really, a particular GDB
103 process can only run on top of one kernel at a time. So it's okay
104 for this to be a simple variable. */
105 int have_ptrace_getfpxregs =
106 #ifdef HAVE_PTRACE_GETFPXREGS
107 1
108 #else
109 0
110 #endif
111 ;
112 \f
113
114 /* Fetching registers directly from the U area, one at a time. */
115
116 /* FIXME: kettenis/2000-03-05: This duplicates code from `inptrace.c'.
117 The problem is that we define FETCH_INFERIOR_REGISTERS since we
118 want to use our own versions of {fetch,store}_inferior_registers
119 that use the GETREGS request. This means that the code in
120 `infptrace.c' is #ifdef'd out. But we need to fall back on that
121 code when GDB is running on top of a kernel that doesn't support
122 the GETREGS request. I want to avoid changing `infptrace.c' right
123 now. */
124
125 #ifndef PT_READ_U
126 #define PT_READ_U PTRACE_PEEKUSR
127 #endif
128 #ifndef PT_WRITE_U
129 #define PT_WRITE_U PTRACE_POKEUSR
130 #endif
131
132 /* Default the type of the ptrace transfer to int. */
133 #ifndef PTRACE_XFER_TYPE
134 #define PTRACE_XFER_TYPE int
135 #endif
136
137 /* Registers we shouldn't try to fetch. */
138 #if !defined (CANNOT_FETCH_REGISTER)
139 #define CANNOT_FETCH_REGISTER(regno) 0
140 #endif
141
142 /* Fetch one register. */
143
144 static void
145 fetch_register (int regno)
146 {
147 /* This isn't really an address. But ptrace thinks of it as one. */
148 CORE_ADDR regaddr;
149 char mess[128]; /* For messages */
150 register int i;
151 unsigned int offset; /* Offset of registers within the u area. */
152 char buf[MAX_REGISTER_RAW_SIZE];
153 int tid;
154
155 if (CANNOT_FETCH_REGISTER (regno))
156 {
157 memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
158 supply_register (regno, buf);
159 return;
160 }
161
162 /* Overload thread id onto process id */
163 if ((tid = TIDGET (inferior_pid)) == 0)
164 tid = inferior_pid; /* no thread id, just use process id */
165
166 offset = U_REGS_OFFSET;
167
168 regaddr = register_addr (regno, offset);
169 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
170 {
171 errno = 0;
172 *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
173 (PTRACE_ARG3_TYPE) regaddr, 0);
174 regaddr += sizeof (PTRACE_XFER_TYPE);
175 if (errno != 0)
176 {
177 sprintf (mess, "reading register %s (#%d)",
178 REGISTER_NAME (regno), regno);
179 perror_with_name (mess);
180 }
181 }
182 supply_register (regno, buf);
183 }
184
185 /* Fetch register values from the inferior.
186 If REGNO is negative, do this for all registers.
187 Otherwise, REGNO specifies which register (so we can save time). */
188
189 void
190 old_fetch_inferior_registers (int regno)
191 {
192 if (regno >= 0)
193 {
194 fetch_register (regno);
195 }
196 else
197 {
198 for (regno = 0; regno < ARCH_NUM_REGS; regno++)
199 {
200 fetch_register (regno);
201 }
202 }
203 }
204
205 /* Registers we shouldn't try to store. */
206 #if !defined (CANNOT_STORE_REGISTER)
207 #define CANNOT_STORE_REGISTER(regno) 0
208 #endif
209
210 /* Store one register. */
211
212 static void
213 store_register (int regno)
214 {
215 /* This isn't really an address. But ptrace thinks of it as one. */
216 CORE_ADDR regaddr;
217 char mess[128]; /* For messages */
218 register int i;
219 unsigned int offset; /* Offset of registers within the u area. */
220 int tid;
221
222 if (CANNOT_STORE_REGISTER (regno))
223 {
224 return;
225 }
226
227 /* Overload thread id onto process id */
228 if ((tid = TIDGET (inferior_pid)) == 0)
229 tid = inferior_pid; /* no thread id, just use process id */
230
231 offset = U_REGS_OFFSET;
232
233 regaddr = register_addr (regno, offset);
234 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
235 {
236 errno = 0;
237 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
238 *(PTRACE_XFER_TYPE *) & registers[REGISTER_BYTE (regno) + i]);
239 regaddr += sizeof (PTRACE_XFER_TYPE);
240 if (errno != 0)
241 {
242 sprintf (mess, "writing register %s (#%d)",
243 REGISTER_NAME (regno), regno);
244 perror_with_name (mess);
245 }
246 }
247 }
248
249 /* Store our register values back into the inferior.
250 If REGNO is negative, do this for all registers.
251 Otherwise, REGNO specifies which register (so we can save time). */
252
253 void
254 old_store_inferior_registers (int regno)
255 {
256 if (regno >= 0)
257 {
258 store_register (regno);
259 }
260 else
261 {
262 for (regno = 0; regno < ARCH_NUM_REGS; regno++)
263 {
264 store_register (regno);
265 }
266 }
267 }
268 \f
269
270 /* Transfering the general-purpose registers between GDB, inferiors
271 and core files. */
272
273 /* Fill GDB's register array with the genereal-purpose register values
274 in *GREGSETP. */
275
276 void
277 supply_gregset (elf_gregset_t *gregsetp)
278 {
279 elf_greg_t *regp = (elf_greg_t *) gregsetp;
280 int i;
281
282 for (i = 0; i < NUM_GREGS; i++)
283 supply_register (i, (char *) (regp + regmap[i]));
284 }
285
286 /* Fill register REGNO (if it is a general-purpose register) in
287 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
288 do this for all registers. */
289
290 void
291 fill_gregset (elf_gregset_t *gregsetp, int regno)
292 {
293 elf_greg_t *regp = (elf_greg_t *) gregsetp;
294 int i;
295
296 for (i = 0; i < NUM_GREGS; i++)
297 if ((regno == -1 || regno == i))
298 *(regp + regmap[i]) = *(elf_greg_t *) &registers[REGISTER_BYTE (i)];
299 }
300
301 #ifdef HAVE_PTRACE_GETREGS
302
303 /* Fetch all general-purpose registers from process/thread TID and
304 store their values in GDB's register array. */
305
306 static void
307 fetch_regs (int tid)
308 {
309 elf_gregset_t regs;
310
311 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
312 {
313 if (errno == EIO)
314 {
315 /* The kernel we're running on doesn't support the GETREGS
316 request. Reset `have_ptrace_getregs'. */
317 have_ptrace_getregs = 0;
318 return;
319 }
320
321 perror_with_name ("Couldn't get registers");
322 }
323
324 supply_gregset (&regs);
325 }
326
327 /* Store all valid general-purpose registers in GDB's register array
328 into the process/thread specified by TID. */
329
330 static void
331 store_regs (int tid, int regno)
332 {
333 elf_gregset_t regs;
334
335 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
336 perror_with_name ("Couldn't get registers");
337
338 fill_gregset (&regs, regno);
339
340 if (ptrace (PTRACE_SETREGS, tid, 0, (int) &regs) < 0)
341 perror_with_name ("Couldn't write registers");
342 }
343
344 #else
345
346 static void fetch_regs (int tid) {}
347 static void store_regs (int tid, int regno) {}
348
349 #endif
350 \f
351
352 /* Transfering floating-point registers between GDB, inferiors and cores. */
353
354 /* Fill GDB's register array with the floating-point register values in
355 *FPREGSETP. */
356
357 void
358 supply_fpregset (elf_fpregset_t *fpregsetp)
359 {
360 i387_supply_fsave ((char *) fpregsetp);
361 }
362
363 /* Fill register REGNO (if it is a floating-point register) in
364 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
365 do this for all registers. */
366
367 void
368 fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
369 {
370 i387_fill_fsave ((char *) fpregsetp, regno);
371 }
372
373 #ifdef HAVE_PTRACE_GETREGS
374
375 /* Fetch all floating-point registers from process/thread TID and store
376 thier values in GDB's register array. */
377
378 static void
379 fetch_fpregs (int tid)
380 {
381 elf_fpregset_t fpregs;
382
383 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
384 perror_with_name ("Couldn't get floating point status");
385
386 supply_fpregset (&fpregs);
387 }
388
389 /* Store all valid floating-point registers in GDB's register array
390 into the process/thread specified by TID. */
391
392 static void
393 store_fpregs (int tid, int regno)
394 {
395 elf_fpregset_t fpregs;
396
397 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
398 perror_with_name ("Couldn't get floating point status");
399
400 fill_fpregset (&fpregs, regno);
401
402 if (ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs) < 0)
403 perror_with_name ("Couldn't write floating point status");
404 }
405
406 #else
407
408 static void fetch_fpregs (int tid) {}
409 static void store_fpregs (int tid, int regno) {}
410
411 #endif
412 \f
413
414 /* Transfering floating-point and SSE registers to and from GDB. */
415
416 #ifdef HAVE_PTRACE_GETFPXREGS
417
418 /* Fill GDB's register array with the floating-point and SSE register
419 values in *FPXREGSETP. */
420
421 static void
422 supply_fpxregset (elf_fpxregset_t *fpxregsetp)
423 {
424 i387_supply_fxsave ((char *) fpxregsetp);
425 }
426
427 /* Fill register REGNO (if it is a floating-point or SSE register) in
428 *FPXREGSETP with the value in GDB's register array. If REGNO is
429 -1, do this for all registers. */
430
431 static void
432 fill_fpxregset (elf_fpxregset_t *fpxregsetp, int regno)
433 {
434 i387_fill_fxsave ((char *) fpxregsetp, regno);
435 }
436
437 /* Fetch all registers covered by the PTRACE_GETFPXREGS request from
438 process/thread TID and store their values in GDB's register array.
439 Return non-zero if successful, zero otherwise. */
440
441 static int
442 fetch_fpxregs (int tid)
443 {
444 elf_fpxregset_t fpxregs;
445
446 if (! have_ptrace_getfpxregs)
447 return 0;
448
449 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
450 {
451 if (errno == EIO)
452 {
453 have_ptrace_getfpxregs = 0;
454 return 0;
455 }
456
457 perror_with_name ("Couldn't read floating-point and SSE registers");
458 }
459
460 supply_fpxregset (&fpxregs);
461 return 1;
462 }
463
464 /* Store all valid registers in GDB's register array covered by the
465 PTRACE_SETFPXREGS request into the process/thread specified by TID.
466 Return non-zero if successful, zero otherwise. */
467
468 static int
469 store_fpxregs (int tid, int regno)
470 {
471 elf_fpxregset_t fpxregs;
472
473 if (! have_ptrace_getfpxregs)
474 return 0;
475
476 if (ptrace (PTRACE_GETFPXREGS, tid, 0, &fpxregs) == -1)
477 perror_with_name ("Couldn't read floating-point and SSE registers");
478
479 fill_fpxregset (&fpxregs, regno);
480
481 if (ptrace (PTRACE_SETFPXREGS, tid, 0, &fpxregs) == -1)
482 perror_with_name ("Couldn't write floating-point and SSE registers");
483
484 return 1;
485 }
486
487 /* Fill the XMM registers in the register array with dummy values. For
488 cases where we don't have access to the XMM registers. I think
489 this is cleaner than printing a warning. For a cleaner solution,
490 we should gdbarchify the i386 family. */
491
492 static void
493 dummy_sse_values (void)
494 {
495 /* C doesn't have a syntax for NaN's, so write it out as an array of
496 longs. */
497 static long dummy[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
498 static long mxcsr = 0x1f80;
499 int reg;
500
501 for (reg = 0; reg < 8; reg++)
502 supply_register (XMM0_REGNUM + reg, (char *) dummy);
503 supply_register (MXCSR_REGNUM, (char *) &mxcsr);
504 }
505
506 #else
507
508 static int fetch_fpxregs (int tid) {}
509 static int store_fpxregs (int tid, int regno) {}
510 static void dummy_sse_values (void) {}
511
512 #endif /* HAVE_PTRACE_GETFPXREGS */
513 \f
514
515 /* Transferring arbitrary registers between GDB and inferior. */
516
517 /* Fetch register REGNO from the child process. If REGNO is -1, do
518 this for all registers (including the floating point and SSE
519 registers). */
520
521 void
522 fetch_inferior_registers (int regno)
523 {
524 int tid;
525
526 /* Use the old method of peeking around in `struct user' if the
527 GETREGS request isn't available. */
528 if (! have_ptrace_getregs)
529 {
530 old_fetch_inferior_registers (regno);
531 return;
532 }
533
534 /* Linux LWP ID's are process ID's. */
535 if ((tid = TIDGET (inferior_pid)) == 0)
536 tid = inferior_pid; /* Not a threaded program. */
537
538 /* Use the PTRACE_GETFPXREGS request whenever possible, since it
539 transfers more registers in one system call, and we'll cache the
540 results. But remember that fetch_fpxregs can fail, and return
541 zero. */
542 if (regno == -1)
543 {
544 fetch_regs (tid);
545
546 /* The call above might reset `have_ptrace_getregs'. */
547 if (! have_ptrace_getregs)
548 {
549 old_fetch_inferior_registers (-1);
550 return;
551 }
552
553 if (fetch_fpxregs (tid))
554 return;
555 fetch_fpregs (tid);
556 return;
557 }
558
559 if (GETREGS_SUPPLIES (regno))
560 {
561 fetch_regs (tid);
562 return;
563 }
564
565 if (GETFPXREGS_SUPPLIES (regno))
566 {
567 if (fetch_fpxregs (tid))
568 return;
569
570 /* Either our processor or our kernel doesn't support the SSE
571 registers, so read the FP registers in the traditional way,
572 and fill the SSE registers with dummy values. It would be
573 more graceful to handle differences in the register set using
574 gdbarch. Until then, this will at least make things work
575 plausibly. */
576 fetch_fpregs (tid);
577 dummy_sse_values ();
578 return;
579 }
580
581 internal_error ("Got request for bad register number %d.", regno);
582 }
583
584 /* Store register REGNO back into the child process. If REGNO is -1,
585 do this for all registers (including the floating point and SSE
586 registers). */
587 void
588 store_inferior_registers (int regno)
589 {
590 int tid;
591
592 /* Use the old method of poking around in `struct user' if the
593 SETREGS request isn't available. */
594 if (! have_ptrace_getregs)
595 {
596 old_store_inferior_registers (regno);
597 return;
598 }
599
600 /* Linux LWP ID's are process ID's. */
601 if ((tid = TIDGET (inferior_pid)) == 0)
602 tid = inferior_pid; /* Not a threaded program. */
603
604 /* Use the PTRACE_SETFPXREGS requests whenever possible, since it
605 transfers more registers in one system call. But remember that
606 store_fpxregs can fail, and return zero. */
607 if (regno == -1)
608 {
609 store_regs (tid, regno);
610 if (store_fpxregs (tid, regno))
611 return;
612 store_fpregs (tid, regno);
613 return;
614 }
615
616 if (GETREGS_SUPPLIES (regno))
617 {
618 store_regs (tid, regno);
619 return;
620 }
621
622 if (GETFPXREGS_SUPPLIES (regno))
623 {
624 if (store_fpxregs (tid, regno))
625 return;
626
627 /* Either our processor or our kernel doesn't support the SSE
628 registers, so just write the FP registers in the traditional
629 way. */
630 store_fpregs (tid, regno);
631 return;
632 }
633
634 internal_error ("Got request to store bad register number %d.", regno);
635 }
636 \f
637
638 /* Interpreting register set info found in core files. */
639
640 /* Provide registers to GDB from a core file.
641
642 (We can't use the generic version of this function in
643 core-regset.c, because Linux has *three* different kinds of
644 register set notes. core-regset.c would have to call
645 supply_fpxregset, which most platforms don't have.)
646
647 CORE_REG_SECT points to an array of bytes, which are the contents
648 of a `note' from a core file which BFD thinks might contain
649 register contents. CORE_REG_SIZE is its size.
650
651 WHICH says which register set corelow suspects this is:
652 0 --- the general-purpose register set, in elf_gregset_t format
653 2 --- the floating-point register set, in elf_fpregset_t format
654 3 --- the extended floating-point register set, in elf_fpxregset_t format
655
656 REG_ADDR isn't used on Linux. */
657
658 static void
659 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
660 int which, CORE_ADDR reg_addr)
661 {
662 elf_gregset_t gregset;
663 elf_fpregset_t fpregset;
664
665 switch (which)
666 {
667 case 0:
668 if (core_reg_size != sizeof (gregset))
669 warning ("Wrong size gregset in core file.");
670 else
671 {
672 memcpy (&gregset, core_reg_sect, sizeof (gregset));
673 supply_gregset (&gregset);
674 }
675 break;
676
677 case 2:
678 if (core_reg_size != sizeof (fpregset))
679 warning ("Wrong size fpregset in core file.");
680 else
681 {
682 memcpy (&fpregset, core_reg_sect, sizeof (fpregset));
683 supply_fpregset (&fpregset);
684 }
685 break;
686
687 #ifdef HAVE_PTRACE_GETFPXREGS
688 {
689 elf_fpxregset_t fpxregset;
690
691 case 3:
692 if (core_reg_size != sizeof (fpxregset))
693 warning ("Wrong size fpxregset in core file.");
694 else
695 {
696 memcpy (&fpxregset, core_reg_sect, sizeof (fpxregset));
697 supply_fpxregset (&fpxregset);
698 }
699 break;
700 }
701 #endif
702
703 default:
704 /* We've covered all the kinds of registers we know about here,
705 so this must be something we wouldn't know what to do with
706 anyway. Just ignore it. */
707 break;
708 }
709 }
710 \f
711
712 /* The instruction for a Linux system call is:
713 int $0x80
714 or 0xcd 0x80. */
715
716 static const unsigned char linux_syscall[] = { 0xcd, 0x80 };
717
718 #define LINUX_SYSCALL_LEN (sizeof linux_syscall)
719
720 /* The system call number is stored in the %eax register. */
721 #define LINUX_SYSCALL_REGNUM 0 /* %eax */
722
723 /* We are specifically interested in the sigreturn and rt_sigreturn
724 system calls. */
725
726 #ifndef SYS_sigreturn
727 #define SYS_sigreturn 0x77
728 #endif
729 #ifndef SYS_rt_sigreturn
730 #define SYS_rt_sigreturn 0xad
731 #endif
732
733 /* Offset to saved processor flags, from <asm/sigcontext.h>. */
734 #define LINUX_SIGCONTEXT_EFLAGS_OFFSET (64)
735
736 /* Resume execution of the inferior process.
737 If STEP is nonzero, single-step it.
738 If SIGNAL is nonzero, give it that signal. */
739
740 void
741 child_resume (int pid, int step, enum target_signal signal)
742 {
743 int request = PTRACE_CONT;
744
745 if (pid == -1)
746 /* Resume all threads. */
747 /* I think this only gets used in the non-threaded case, where "resume
748 all threads" and "resume inferior_pid" are the same. */
749 pid = inferior_pid;
750
751 if (step)
752 {
753 CORE_ADDR pc = read_pc_pid (pid);
754 unsigned char buf[LINUX_SYSCALL_LEN];
755
756 request = PTRACE_SINGLESTEP;
757
758 /* Returning from a signal trampoline is done by calling a
759 special system call (sigreturn or rt_sigreturn, see
760 i386-linux-tdep.c for more information). This system call
761 restores the registers that were saved when the signal was
762 raised, including %eflags. That means that single-stepping
763 won't work. Instead, we'll have to modify the signal context
764 that's about to be restored, and set the trace flag there. */
765
766 /* First check if PC is at a system call. */
767 if (read_memory_nobpt (pc, (char *) buf, LINUX_SYSCALL_LEN) == 0
768 && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0)
769 {
770 int syscall = read_register_pid (LINUX_SYSCALL_REGNUM, pid);
771
772 /* Then check the system call number. */
773 if (syscall == SYS_sigreturn || syscall == SYS_rt_sigreturn)
774 {
775 CORE_ADDR sp = read_register (SP_REGNUM);
776 CORE_ADDR addr = sp;
777 unsigned long int eflags;
778
779 if (syscall == SYS_rt_sigreturn)
780 addr = read_memory_integer (sp + 8, 4) + 20;
781
782 /* Set the trace flag in the context that's about to be
783 restored. */
784 addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET;
785 read_memory (addr, (char *) &eflags, 4);
786 eflags |= 0x0100;
787 write_memory (addr, (char *) &eflags, 4);
788 }
789 }
790 }
791
792 if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1)
793 perror_with_name ("ptrace");
794 }
795 \f
796
797 /* Calling functions in shared libraries. */
798 /* FIXME: kettenis/2000-03-05: Doesn't this belong in a
799 target-dependent file? The function
800 `i386_linux_skip_solib_resolver' is mentioned in
801 `config/i386/tm-linux.h'. */
802
803 /* Find the minimal symbol named NAME, and return both the minsym
804 struct and its objfile. This probably ought to be in minsym.c, but
805 everything there is trying to deal with things like C++ and
806 SOFUN_ADDRESS_MAYBE_TURQUOISE, ... Since this is so simple, it may
807 be considered too special-purpose for general consumption. */
808
809 static struct minimal_symbol *
810 find_minsym_and_objfile (char *name, struct objfile **objfile_p)
811 {
812 struct objfile *objfile;
813
814 ALL_OBJFILES (objfile)
815 {
816 struct minimal_symbol *msym;
817
818 ALL_OBJFILE_MSYMBOLS (objfile, msym)
819 {
820 if (SYMBOL_NAME (msym)
821 && STREQ (SYMBOL_NAME (msym), name))
822 {
823 *objfile_p = objfile;
824 return msym;
825 }
826 }
827 }
828
829 return 0;
830 }
831
832 static CORE_ADDR
833 skip_hurd_resolver (CORE_ADDR pc)
834 {
835 /* The HURD dynamic linker is part of the GNU C library, so many
836 GNU/Linux distributions use it. (All ELF versions, as far as I
837 know.) An unresolved PLT entry points to "_dl_runtime_resolve",
838 which calls "fixup" to patch the PLT, and then passes control to
839 the function.
840
841 We look for the symbol `_dl_runtime_resolve', and find `fixup' in
842 the same objfile. If we are at the entry point of `fixup', then
843 we set a breakpoint at the return address (at the top of the
844 stack), and continue.
845
846 It's kind of gross to do all these checks every time we're
847 called, since they don't change once the executable has gotten
848 started. But this is only a temporary hack --- upcoming versions
849 of Linux will provide a portable, efficient interface for
850 debugging programs that use shared libraries. */
851
852 struct objfile *objfile;
853 struct minimal_symbol *resolver
854 = find_minsym_and_objfile ("_dl_runtime_resolve", &objfile);
855
856 if (resolver)
857 {
858 struct minimal_symbol *fixup
859 = lookup_minimal_symbol ("fixup", 0, objfile);
860
861 if (fixup && SYMBOL_VALUE_ADDRESS (fixup) == pc)
862 return (SAVED_PC_AFTER_CALL (get_current_frame ()));
863 }
864
865 return 0;
866 }
867
868 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c.
869 This function:
870 1) decides whether a PLT has sent us into the linker to resolve
871 a function reference, and
872 2) if so, tells us where to set a temporary breakpoint that will
873 trigger when the dynamic linker is done. */
874
875 CORE_ADDR
876 i386_linux_skip_solib_resolver (CORE_ADDR pc)
877 {
878 CORE_ADDR result;
879
880 /* Plug in functions for other kinds of resolvers here. */
881 result = skip_hurd_resolver (pc);
882 if (result)
883 return result;
884
885 return 0;
886 }
887 \f
888
889 /* Register that we are able to handle Linux ELF core file formats. */
890
891 static struct core_fns linux_elf_core_fns =
892 {
893 bfd_target_elf_flavour, /* core_flavour */
894 default_check_format, /* check_format */
895 default_core_sniffer, /* core_sniffer */
896 fetch_core_registers, /* core_read_registers */
897 NULL /* next */
898 };
899
900 void
901 _initialize_i386_linux_nat (void)
902 {
903 add_core_fns (&linux_elf_core_fns);
904 }
This page took 0.051339 seconds and 4 git commands to generate.