* sparc64-tdep.h (sparc64_regnum): Fix comment.
[deliverable/binutils-gdb.git] / gdb / i386-linux-nat.c
1 /* Native-dependent code for GNU/Linux x86.
2
3 Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "linux-nat.h"
27
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include <sys/ptrace.h>
31 #include <sys/user.h>
32 #include <sys/procfs.h>
33
34 #ifdef HAVE_SYS_REG_H
35 #include <sys/reg.h>
36 #endif
37
38 #ifndef ORIG_EAX
39 #define ORIG_EAX -1
40 #endif
41
42 #ifdef HAVE_SYS_DEBUGREG_H
43 #include <sys/debugreg.h>
44 #endif
45
46 #ifndef DR_FIRSTADDR
47 #define DR_FIRSTADDR 0
48 #endif
49
50 #ifndef DR_LASTADDR
51 #define DR_LASTADDR 3
52 #endif
53
54 #ifndef DR_STATUS
55 #define DR_STATUS 6
56 #endif
57
58 #ifndef DR_CONTROL
59 #define DR_CONTROL 7
60 #endif
61
62 /* Prototypes for supply_gregset etc. */
63 #include "gregset.h"
64
65 /* Prototypes for i387_supply_fsave etc. */
66 #include "i387-tdep.h"
67
68 /* Defines for XMM0_REGNUM etc. */
69 #include "i386-tdep.h"
70
71 /* Defines I386_LINUX_ORIG_EAX_REGNUM. */
72 #include "i386-linux-tdep.h"
73
74 /* Defines ps_err_e, struct ps_prochandle. */
75 #include "gdb_proc_service.h"
76
77 /* Prototypes for local functions. */
78 static void dummy_sse_values (void);
79 \f
80
81 /* The register sets used in GNU/Linux ELF core-dumps are identical to
82 the register sets in `struct user' that is used for a.out
83 core-dumps, and is also used by `ptrace'. The corresponding types
84 are `elf_gregset_t' for the general-purpose registers (with
85 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
86 for the floating-point registers.
87
88 Those types used to be available under the names `gregset_t' and
89 `fpregset_t' too, and this file used those names in the past. But
90 those names are now used for the register sets used in the
91 `mcontext_t' type, and have a different size and layout. */
92
93 /* Mapping between the general-purpose registers in `struct user'
94 format and GDB's register array layout. */
95 static int regmap[] =
96 {
97 EAX, ECX, EDX, EBX,
98 UESP, EBP, ESI, EDI,
99 EIP, EFL, CS, SS,
100 DS, ES, FS, GS,
101 -1, -1, -1, -1, /* st0, st1, st2, st3 */
102 -1, -1, -1, -1, /* st4, st5, st6, st7 */
103 -1, -1, -1, -1, /* fctrl, fstat, ftag, fiseg */
104 -1, -1, -1, -1, /* fioff, foseg, fooff, fop */
105 -1, -1, -1, -1, /* xmm0, xmm1, xmm2, xmm3 */
106 -1, -1, -1, -1, /* xmm4, xmm5, xmm6, xmm6 */
107 -1, /* mxcsr */
108 ORIG_EAX
109 };
110
111 /* Which ptrace request retrieves which registers?
112 These apply to the corresponding SET requests as well. */
113
114 #define GETREGS_SUPPLIES(regno) \
115 ((0 <= (regno) && (regno) <= 15) || (regno) == I386_LINUX_ORIG_EAX_REGNUM)
116
117 #define GETFPREGS_SUPPLIES(regno) \
118 (FP0_REGNUM <= (regno) && (regno) <= LAST_FPU_CTRL_REGNUM)
119
120 #define GETFPXREGS_SUPPLIES(regno) \
121 (FP0_REGNUM <= (regno) && (regno) <= MXCSR_REGNUM)
122
123 /* Does the current host support the GETREGS request? */
124 int have_ptrace_getregs =
125 #ifdef HAVE_PTRACE_GETREGS
126 1
127 #else
128 0
129 #endif
130 ;
131
132 /* Does the current host support the GETFPXREGS request? The header
133 file may or may not define it, and even if it is defined, the
134 kernel will return EIO if it's running on a pre-SSE processor.
135
136 My instinct is to attach this to some architecture- or
137 target-specific data structure, but really, a particular GDB
138 process can only run on top of one kernel at a time. So it's okay
139 for this to be a simple variable. */
140 int have_ptrace_getfpxregs =
141 #ifdef HAVE_PTRACE_GETFPXREGS
142 1
143 #else
144 0
145 #endif
146 ;
147 \f
148
149 /* Support for the user struct. */
150
151 /* Return the address of register REGNUM. BLOCKEND is the value of
152 u.u_ar0, which should point to the registers. */
153
154 CORE_ADDR
155 register_u_addr (CORE_ADDR blockend, int regnum)
156 {
157 return (blockend + 4 * regmap[regnum]);
158 }
159
160 /* Return the size of the user struct. */
161
162 int
163 kernel_u_size (void)
164 {
165 return (sizeof (struct user));
166 }
167 \f
168
169 /* Accessing registers through the U area, one at a time. */
170
171 /* Fetch one register. */
172
173 static void
174 fetch_register (int regno)
175 {
176 int tid;
177 int val;
178
179 gdb_assert (!have_ptrace_getregs);
180 if (cannot_fetch_register (regno))
181 {
182 supply_register (regno, NULL);
183 return;
184 }
185
186 /* GNU/Linux LWP ID's are process ID's. */
187 tid = TIDGET (inferior_ptid);
188 if (tid == 0)
189 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
190
191 errno = 0;
192 val = ptrace (PTRACE_PEEKUSER, tid, register_addr (regno, 0), 0);
193 if (errno != 0)
194 error ("Couldn't read register %s (#%d): %s.", REGISTER_NAME (regno),
195 regno, safe_strerror (errno));
196
197 supply_register (regno, &val);
198 }
199
200 /* Store one register. */
201
202 static void
203 store_register (int regno)
204 {
205 int tid;
206 int val;
207
208 gdb_assert (!have_ptrace_getregs);
209 if (cannot_store_register (regno))
210 return;
211
212 /* GNU/Linux LWP ID's are process ID's. */
213 tid = TIDGET (inferior_ptid);
214 if (tid == 0)
215 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
216
217 errno = 0;
218 regcache_collect (regno, &val);
219 ptrace (PTRACE_POKEUSER, tid, register_addr (regno, 0), val);
220 if (errno != 0)
221 error ("Couldn't write register %s (#%d): %s.", REGISTER_NAME (regno),
222 regno, safe_strerror (errno));
223 }
224 \f
225
226 /* Transfering the general-purpose registers between GDB, inferiors
227 and core files. */
228
229 /* Fill GDB's register array with the general-purpose register values
230 in *GREGSETP. */
231
232 void
233 supply_gregset (elf_gregset_t *gregsetp)
234 {
235 elf_greg_t *regp = (elf_greg_t *) gregsetp;
236 int i;
237
238 for (i = 0; i < I386_NUM_GREGS; i++)
239 supply_register (i, regp + regmap[i]);
240
241 if (I386_LINUX_ORIG_EAX_REGNUM < NUM_REGS)
242 supply_register (I386_LINUX_ORIG_EAX_REGNUM, regp + ORIG_EAX);
243 }
244
245 /* Fill register REGNO (if it is a general-purpose register) in
246 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
247 do this for all registers. */
248
249 void
250 fill_gregset (elf_gregset_t *gregsetp, int regno)
251 {
252 elf_greg_t *regp = (elf_greg_t *) gregsetp;
253 int i;
254
255 for (i = 0; i < I386_NUM_GREGS; i++)
256 if (regno == -1 || regno == i)
257 regcache_collect (i, regp + regmap[i]);
258
259 if ((regno == -1 || regno == I386_LINUX_ORIG_EAX_REGNUM)
260 && I386_LINUX_ORIG_EAX_REGNUM < NUM_REGS)
261 regcache_collect (I386_LINUX_ORIG_EAX_REGNUM, regp + ORIG_EAX);
262 }
263
264 #ifdef HAVE_PTRACE_GETREGS
265
266 /* Fetch all general-purpose registers from process/thread TID and
267 store their values in GDB's register array. */
268
269 static void
270 fetch_regs (int tid)
271 {
272 elf_gregset_t regs;
273
274 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
275 {
276 if (errno == EIO)
277 {
278 /* The kernel we're running on doesn't support the GETREGS
279 request. Reset `have_ptrace_getregs'. */
280 have_ptrace_getregs = 0;
281 return;
282 }
283
284 perror_with_name ("Couldn't get registers");
285 }
286
287 supply_gregset (&regs);
288 }
289
290 /* Store all valid general-purpose registers in GDB's register array
291 into the process/thread specified by TID. */
292
293 static void
294 store_regs (int tid, int regno)
295 {
296 elf_gregset_t regs;
297
298 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
299 perror_with_name ("Couldn't get registers");
300
301 fill_gregset (&regs, regno);
302
303 if (ptrace (PTRACE_SETREGS, tid, 0, (int) &regs) < 0)
304 perror_with_name ("Couldn't write registers");
305 }
306
307 #else
308
309 static void fetch_regs (int tid) {}
310 static void store_regs (int tid, int regno) {}
311
312 #endif
313 \f
314
315 /* Transfering floating-point registers between GDB, inferiors and cores. */
316
317 /* Fill GDB's register array with the floating-point register values in
318 *FPREGSETP. */
319
320 void
321 supply_fpregset (elf_fpregset_t *fpregsetp)
322 {
323 i387_supply_fsave ((char *) fpregsetp);
324 dummy_sse_values ();
325 }
326
327 /* Fill register REGNO (if it is a floating-point register) in
328 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
329 do this for all registers. */
330
331 void
332 fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
333 {
334 i387_fill_fsave ((char *) fpregsetp, regno);
335 }
336
337 #ifdef HAVE_PTRACE_GETREGS
338
339 /* Fetch all floating-point registers from process/thread TID and store
340 thier values in GDB's register array. */
341
342 static void
343 fetch_fpregs (int tid)
344 {
345 elf_fpregset_t fpregs;
346
347 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
348 perror_with_name ("Couldn't get floating point status");
349
350 supply_fpregset (&fpregs);
351 }
352
353 /* Store all valid floating-point registers in GDB's register array
354 into the process/thread specified by TID. */
355
356 static void
357 store_fpregs (int tid, int regno)
358 {
359 elf_fpregset_t fpregs;
360
361 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
362 perror_with_name ("Couldn't get floating point status");
363
364 fill_fpregset (&fpregs, regno);
365
366 if (ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs) < 0)
367 perror_with_name ("Couldn't write floating point status");
368 }
369
370 #else
371
372 static void fetch_fpregs (int tid) {}
373 static void store_fpregs (int tid, int regno) {}
374
375 #endif
376 \f
377
378 /* Transfering floating-point and SSE registers to and from GDB. */
379
380 #ifdef HAVE_PTRACE_GETFPXREGS
381
382 /* Fill GDB's register array with the floating-point and SSE register
383 values in *FPXREGSETP. */
384
385 void
386 supply_fpxregset (elf_fpxregset_t *fpxregsetp)
387 {
388 i387_supply_fxsave ((char *) fpxregsetp);
389 }
390
391 /* Fill register REGNO (if it is a floating-point or SSE register) in
392 *FPXREGSETP with the value in GDB's register array. If REGNO is
393 -1, do this for all registers. */
394
395 void
396 fill_fpxregset (elf_fpxregset_t *fpxregsetp, int regno)
397 {
398 i387_fill_fxsave ((char *) fpxregsetp, regno);
399 }
400
401 /* Fetch all registers covered by the PTRACE_GETFPXREGS request from
402 process/thread TID and store their values in GDB's register array.
403 Return non-zero if successful, zero otherwise. */
404
405 static int
406 fetch_fpxregs (int tid)
407 {
408 elf_fpxregset_t fpxregs;
409
410 if (! have_ptrace_getfpxregs)
411 return 0;
412
413 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
414 {
415 if (errno == EIO)
416 {
417 have_ptrace_getfpxregs = 0;
418 return 0;
419 }
420
421 perror_with_name ("Couldn't read floating-point and SSE registers");
422 }
423
424 supply_fpxregset (&fpxregs);
425 return 1;
426 }
427
428 /* Store all valid registers in GDB's register array covered by the
429 PTRACE_SETFPXREGS request into the process/thread specified by TID.
430 Return non-zero if successful, zero otherwise. */
431
432 static int
433 store_fpxregs (int tid, int regno)
434 {
435 elf_fpxregset_t fpxregs;
436
437 if (! have_ptrace_getfpxregs)
438 return 0;
439
440 if (ptrace (PTRACE_GETFPXREGS, tid, 0, &fpxregs) == -1)
441 {
442 if (errno == EIO)
443 {
444 have_ptrace_getfpxregs = 0;
445 return 0;
446 }
447
448 perror_with_name ("Couldn't read floating-point and SSE registers");
449 }
450
451 fill_fpxregset (&fpxregs, regno);
452
453 if (ptrace (PTRACE_SETFPXREGS, tid, 0, &fpxregs) == -1)
454 perror_with_name ("Couldn't write floating-point and SSE registers");
455
456 return 1;
457 }
458
459 /* Fill the XMM registers in the register array with dummy values. For
460 cases where we don't have access to the XMM registers. I think
461 this is cleaner than printing a warning. For a cleaner solution,
462 we should gdbarchify the i386 family. */
463
464 static void
465 dummy_sse_values (void)
466 {
467 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
468 /* C doesn't have a syntax for NaN's, so write it out as an array of
469 longs. */
470 static long dummy[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
471 static long mxcsr = 0x1f80;
472 int reg;
473
474 for (reg = 0; reg < tdep->num_xmm_regs; reg++)
475 supply_register (XMM0_REGNUM + reg, (char *) dummy);
476 if (tdep->num_xmm_regs > 0)
477 supply_register (MXCSR_REGNUM, (char *) &mxcsr);
478 }
479
480 #else
481
482 static int fetch_fpxregs (int tid) { return 0; }
483 static int store_fpxregs (int tid, int regno) { return 0; }
484 static void dummy_sse_values (void) {}
485
486 #endif /* HAVE_PTRACE_GETFPXREGS */
487 \f
488
489 /* Transferring arbitrary registers between GDB and inferior. */
490
491 /* Check if register REGNO in the child process is accessible.
492 If we are accessing registers directly via the U area, only the
493 general-purpose registers are available.
494 All registers should be accessible if we have GETREGS support. */
495
496 int
497 cannot_fetch_register (int regno)
498 {
499 gdb_assert (regno >= 0 && regno < NUM_REGS);
500 return (!have_ptrace_getregs && regmap[regno] == -1);
501 }
502
503 int
504 cannot_store_register (int regno)
505 {
506 gdb_assert (regno >= 0 && regno < NUM_REGS);
507 return (!have_ptrace_getregs && regmap[regno] == -1);
508 }
509
510 /* Fetch register REGNO from the child process. If REGNO is -1, do
511 this for all registers (including the floating point and SSE
512 registers). */
513
514 void
515 fetch_inferior_registers (int regno)
516 {
517 int tid;
518
519 /* Use the old method of peeking around in `struct user' if the
520 GETREGS request isn't available. */
521 if (!have_ptrace_getregs)
522 {
523 int i;
524
525 for (i = 0; i < NUM_REGS; i++)
526 if (regno == -1 || regno == i)
527 fetch_register (i);
528
529 return;
530 }
531
532 /* GNU/Linux LWP ID's are process ID's. */
533 tid = TIDGET (inferior_ptid);
534 if (tid == 0)
535 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
536
537 /* Use the PTRACE_GETFPXREGS request whenever possible, since it
538 transfers more registers in one system call, and we'll cache the
539 results. But remember that fetch_fpxregs can fail, and return
540 zero. */
541 if (regno == -1)
542 {
543 fetch_regs (tid);
544
545 /* The call above might reset `have_ptrace_getregs'. */
546 if (!have_ptrace_getregs)
547 {
548 fetch_inferior_registers (regno);
549 return;
550 }
551
552 if (fetch_fpxregs (tid))
553 return;
554 fetch_fpregs (tid);
555 return;
556 }
557
558 if (GETREGS_SUPPLIES (regno))
559 {
560 fetch_regs (tid);
561 return;
562 }
563
564 if (GETFPXREGS_SUPPLIES (regno))
565 {
566 if (fetch_fpxregs (tid))
567 return;
568
569 /* Either our processor or our kernel doesn't support the SSE
570 registers, so read the FP registers in the traditional way,
571 and fill the SSE registers with dummy values. It would be
572 more graceful to handle differences in the register set using
573 gdbarch. Until then, this will at least make things work
574 plausibly. */
575 fetch_fpregs (tid);
576 return;
577 }
578
579 internal_error (__FILE__, __LINE__,
580 "Got request for bad register number %d.", regno);
581 }
582
583 /* Store register REGNO back into the child process. If REGNO is -1,
584 do this for all registers (including the floating point and SSE
585 registers). */
586 void
587 store_inferior_registers (int regno)
588 {
589 int tid;
590
591 /* Use the old method of poking around in `struct user' if the
592 SETREGS request isn't available. */
593 if (!have_ptrace_getregs)
594 {
595 int i;
596
597 for (i = 0; i < NUM_REGS; i++)
598 if (regno == -1 || regno == i)
599 store_register (i);
600
601 return;
602 }
603
604 /* GNU/Linux LWP ID's are process ID's. */
605 tid = TIDGET (inferior_ptid);
606 if (tid == 0)
607 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
608
609 /* Use the PTRACE_SETFPXREGS requests whenever possible, since it
610 transfers more registers in one system call. But remember that
611 store_fpxregs can fail, and return zero. */
612 if (regno == -1)
613 {
614 store_regs (tid, regno);
615 if (store_fpxregs (tid, regno))
616 return;
617 store_fpregs (tid, regno);
618 return;
619 }
620
621 if (GETREGS_SUPPLIES (regno))
622 {
623 store_regs (tid, regno);
624 return;
625 }
626
627 if (GETFPXREGS_SUPPLIES (regno))
628 {
629 if (store_fpxregs (tid, regno))
630 return;
631
632 /* Either our processor or our kernel doesn't support the SSE
633 registers, so just write the FP registers in the traditional
634 way. */
635 store_fpregs (tid, regno);
636 return;
637 }
638
639 internal_error (__FILE__, __LINE__,
640 "Got request to store bad register number %d.", regno);
641 }
642 \f
643
644 static unsigned long
645 i386_linux_dr_get (int regnum)
646 {
647 int tid;
648 unsigned long value;
649
650 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
651 multi-threaded processes here. For now, pretend there is just
652 one thread. */
653 tid = PIDGET (inferior_ptid);
654
655 /* FIXME: kettenis/2001-03-27: Calling perror_with_name if the
656 ptrace call fails breaks debugging remote targets. The correct
657 way to fix this is to add the hardware breakpoint and watchpoint
658 stuff to the target vectore. For now, just return zero if the
659 ptrace call fails. */
660 errno = 0;
661 value = ptrace (PTRACE_PEEKUSER, tid,
662 offsetof (struct user, u_debugreg[regnum]), 0);
663 if (errno != 0)
664 #if 0
665 perror_with_name ("Couldn't read debug register");
666 #else
667 return 0;
668 #endif
669
670 return value;
671 }
672
673 static void
674 i386_linux_dr_set (int regnum, unsigned long value)
675 {
676 int tid;
677
678 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
679 multi-threaded processes here. For now, pretend there is just
680 one thread. */
681 tid = PIDGET (inferior_ptid);
682
683 errno = 0;
684 ptrace (PTRACE_POKEUSER, tid,
685 offsetof (struct user, u_debugreg[regnum]), value);
686 if (errno != 0)
687 perror_with_name ("Couldn't write debug register");
688 }
689
690 extern ps_err_e
691 ps_get_thread_area(const struct ps_prochandle *ph,
692 lwpid_t lwpid, int idx, void **base)
693 {
694 unsigned long int desc[3];
695 #define PTRACE_GET_THREAD_AREA 25
696
697 if (ptrace (PTRACE_GET_THREAD_AREA,
698 lwpid, (void *) idx, (unsigned long) &desc) < 0)
699 return PS_ERR;
700
701 *(int *)base = desc[1];
702 return PS_OK;
703 }
704
705 void
706 i386_linux_dr_set_control (unsigned long control)
707 {
708 i386_linux_dr_set (DR_CONTROL, control);
709 }
710
711 void
712 i386_linux_dr_set_addr (int regnum, CORE_ADDR addr)
713 {
714 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
715
716 i386_linux_dr_set (DR_FIRSTADDR + regnum, addr);
717 }
718
719 void
720 i386_linux_dr_reset_addr (int regnum)
721 {
722 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
723
724 i386_linux_dr_set (DR_FIRSTADDR + regnum, 0L);
725 }
726
727 unsigned long
728 i386_linux_dr_get_status (void)
729 {
730 return i386_linux_dr_get (DR_STATUS);
731 }
732 \f
733
734 /* Interpreting register set info found in core files. */
735
736 /* Provide registers to GDB from a core file.
737
738 (We can't use the generic version of this function in
739 core-regset.c, because GNU/Linux has *three* different kinds of
740 register set notes. core-regset.c would have to call
741 supply_fpxregset, which most platforms don't have.)
742
743 CORE_REG_SECT points to an array of bytes, which are the contents
744 of a `note' from a core file which BFD thinks might contain
745 register contents. CORE_REG_SIZE is its size.
746
747 WHICH says which register set corelow suspects this is:
748 0 --- the general-purpose register set, in elf_gregset_t format
749 2 --- the floating-point register set, in elf_fpregset_t format
750 3 --- the extended floating-point register set, in elf_fpxregset_t format
751
752 REG_ADDR isn't used on GNU/Linux. */
753
754 static void
755 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
756 int which, CORE_ADDR reg_addr)
757 {
758 elf_gregset_t gregset;
759 elf_fpregset_t fpregset;
760
761 switch (which)
762 {
763 case 0:
764 if (core_reg_size != sizeof (gregset))
765 warning ("Wrong size gregset in core file.");
766 else
767 {
768 memcpy (&gregset, core_reg_sect, sizeof (gregset));
769 supply_gregset (&gregset);
770 }
771 break;
772
773 case 2:
774 if (core_reg_size != sizeof (fpregset))
775 warning ("Wrong size fpregset in core file.");
776 else
777 {
778 memcpy (&fpregset, core_reg_sect, sizeof (fpregset));
779 supply_fpregset (&fpregset);
780 }
781 break;
782
783 #ifdef HAVE_PTRACE_GETFPXREGS
784 {
785 elf_fpxregset_t fpxregset;
786
787 case 3:
788 if (core_reg_size != sizeof (fpxregset))
789 warning ("Wrong size fpxregset in core file.");
790 else
791 {
792 memcpy (&fpxregset, core_reg_sect, sizeof (fpxregset));
793 supply_fpxregset (&fpxregset);
794 }
795 break;
796 }
797 #endif
798
799 default:
800 /* We've covered all the kinds of registers we know about here,
801 so this must be something we wouldn't know what to do with
802 anyway. Just ignore it. */
803 break;
804 }
805 }
806 \f
807
808 /* The instruction for a GNU/Linux system call is:
809 int $0x80
810 or 0xcd 0x80. */
811
812 static const unsigned char linux_syscall[] = { 0xcd, 0x80 };
813
814 #define LINUX_SYSCALL_LEN (sizeof linux_syscall)
815
816 /* The system call number is stored in the %eax register. */
817 #define LINUX_SYSCALL_REGNUM 0 /* %eax */
818
819 /* We are specifically interested in the sigreturn and rt_sigreturn
820 system calls. */
821
822 #ifndef SYS_sigreturn
823 #define SYS_sigreturn 0x77
824 #endif
825 #ifndef SYS_rt_sigreturn
826 #define SYS_rt_sigreturn 0xad
827 #endif
828
829 /* Offset to saved processor flags, from <asm/sigcontext.h>. */
830 #define LINUX_SIGCONTEXT_EFLAGS_OFFSET (64)
831
832 /* Resume execution of the inferior process.
833 If STEP is nonzero, single-step it.
834 If SIGNAL is nonzero, give it that signal. */
835
836 void
837 child_resume (ptid_t ptid, int step, enum target_signal signal)
838 {
839 int pid = PIDGET (ptid);
840
841 int request = PTRACE_CONT;
842
843 if (pid == -1)
844 /* Resume all threads. */
845 /* I think this only gets used in the non-threaded case, where "resume
846 all threads" and "resume inferior_ptid" are the same. */
847 pid = PIDGET (inferior_ptid);
848
849 if (step)
850 {
851 CORE_ADDR pc = read_pc_pid (pid_to_ptid (pid));
852 unsigned char buf[LINUX_SYSCALL_LEN];
853
854 request = PTRACE_SINGLESTEP;
855
856 /* Returning from a signal trampoline is done by calling a
857 special system call (sigreturn or rt_sigreturn, see
858 i386-linux-tdep.c for more information). This system call
859 restores the registers that were saved when the signal was
860 raised, including %eflags. That means that single-stepping
861 won't work. Instead, we'll have to modify the signal context
862 that's about to be restored, and set the trace flag there. */
863
864 /* First check if PC is at a system call. */
865 if (read_memory_nobpt (pc, (char *) buf, LINUX_SYSCALL_LEN) == 0
866 && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0)
867 {
868 int syscall = read_register_pid (LINUX_SYSCALL_REGNUM,
869 pid_to_ptid (pid));
870
871 /* Then check the system call number. */
872 if (syscall == SYS_sigreturn || syscall == SYS_rt_sigreturn)
873 {
874 CORE_ADDR sp = read_register (I386_ESP_REGNUM);
875 CORE_ADDR addr = sp;
876 unsigned long int eflags;
877
878 if (syscall == SYS_rt_sigreturn)
879 addr = read_memory_integer (sp + 8, 4) + 20;
880
881 /* Set the trace flag in the context that's about to be
882 restored. */
883 addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET;
884 read_memory (addr, (char *) &eflags, 4);
885 eflags |= 0x0100;
886 write_memory (addr, (char *) &eflags, 4);
887 }
888 }
889 }
890
891 if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1)
892 perror_with_name ("ptrace");
893 }
894
895 void
896 child_post_startup_inferior (ptid_t ptid)
897 {
898 i386_cleanup_dregs ();
899 linux_child_post_startup_inferior (ptid);
900 }
901 \f
902
903 /* Register that we are able to handle GNU/Linux ELF core file
904 formats. */
905
906 static struct core_fns linux_elf_core_fns =
907 {
908 bfd_target_elf_flavour, /* core_flavour */
909 default_check_format, /* check_format */
910 default_core_sniffer, /* core_sniffer */
911 fetch_core_registers, /* core_read_registers */
912 NULL /* next */
913 };
914
915 void
916 _initialize_i386_linux_nat (void)
917 {
918 add_core_fns (&linux_elf_core_fns);
919 }
This page took 0.098342 seconds and 4 git commands to generate.