2011-12-05 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / i386-linux-nat.c
1 /* Native-dependent code for GNU/Linux i386.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010, 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "i386-nat.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "regset.h"
27 #include "target.h"
28 #include "linux-nat.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "elf/common.h"
33 #include <sys/uio.h>
34 #include <sys/ptrace.h>
35 #include <sys/user.h>
36 #include <sys/procfs.h>
37
38 #ifdef HAVE_SYS_REG_H
39 #include <sys/reg.h>
40 #endif
41
42 #ifndef ORIG_EAX
43 #define ORIG_EAX -1
44 #endif
45
46 #ifdef HAVE_SYS_DEBUGREG_H
47 #include <sys/debugreg.h>
48 #endif
49
50 #ifndef DR_FIRSTADDR
51 #define DR_FIRSTADDR 0
52 #endif
53
54 #ifndef DR_LASTADDR
55 #define DR_LASTADDR 3
56 #endif
57
58 #ifndef DR_STATUS
59 #define DR_STATUS 6
60 #endif
61
62 #ifndef DR_CONTROL
63 #define DR_CONTROL 7
64 #endif
65
66 /* Prototypes for supply_gregset etc. */
67 #include "gregset.h"
68
69 #include "i387-tdep.h"
70 #include "i386-tdep.h"
71 #include "i386-linux-tdep.h"
72
73 /* Defines ps_err_e, struct ps_prochandle. */
74 #include "gdb_proc_service.h"
75
76 #include "i386-xstate.h"
77
78 #ifndef PTRACE_GETREGSET
79 #define PTRACE_GETREGSET 0x4204
80 #endif
81
82 #ifndef PTRACE_SETREGSET
83 #define PTRACE_SETREGSET 0x4205
84 #endif
85
86 /* Does the current host support PTRACE_GETREGSET? */
87 static int have_ptrace_getregset = -1;
88 \f
89
90 /* The register sets used in GNU/Linux ELF core-dumps are identical to
91 the register sets in `struct user' that is used for a.out
92 core-dumps, and is also used by `ptrace'. The corresponding types
93 are `elf_gregset_t' for the general-purpose registers (with
94 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
95 for the floating-point registers.
96
97 Those types used to be available under the names `gregset_t' and
98 `fpregset_t' too, and this file used those names in the past. But
99 those names are now used for the register sets used in the
100 `mcontext_t' type, and have a different size and layout. */
101
102 /* Which ptrace request retrieves which registers?
103 These apply to the corresponding SET requests as well. */
104
105 #define GETREGS_SUPPLIES(regno) \
106 ((0 <= (regno) && (regno) <= 15) || (regno) == I386_LINUX_ORIG_EAX_REGNUM)
107
108 #define GETFPXREGS_SUPPLIES(regno) \
109 (I386_ST0_REGNUM <= (regno) && (regno) < I386_SSE_NUM_REGS)
110
111 #define GETXSTATEREGS_SUPPLIES(regno) \
112 (I386_ST0_REGNUM <= (regno) && (regno) < I386_AVX_NUM_REGS)
113
114 /* Does the current host support the GETREGS request? */
115 int have_ptrace_getregs =
116 #ifdef HAVE_PTRACE_GETREGS
117 1
118 #else
119 0
120 #endif
121 ;
122
123 /* Does the current host support the GETFPXREGS request? The header
124 file may or may not define it, and even if it is defined, the
125 kernel will return EIO if it's running on a pre-SSE processor.
126
127 My instinct is to attach this to some architecture- or
128 target-specific data structure, but really, a particular GDB
129 process can only run on top of one kernel at a time. So it's okay
130 for this to be a simple variable. */
131 int have_ptrace_getfpxregs =
132 #ifdef HAVE_PTRACE_GETFPXREGS
133 -1
134 #else
135 0
136 #endif
137 ;
138 \f
139
140 /* Accessing registers through the U area, one at a time. */
141
142 /* Fetch one register. */
143
144 static void
145 fetch_register (struct regcache *regcache, int regno)
146 {
147 int tid;
148 int val;
149
150 gdb_assert (!have_ptrace_getregs);
151 if (i386_linux_gregset_reg_offset[regno] == -1)
152 {
153 regcache_raw_supply (regcache, regno, NULL);
154 return;
155 }
156
157 /* GNU/Linux LWP ID's are process ID's. */
158 tid = TIDGET (inferior_ptid);
159 if (tid == 0)
160 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
161
162 errno = 0;
163 val = ptrace (PTRACE_PEEKUSER, tid,
164 i386_linux_gregset_reg_offset[regno], 0);
165 if (errno != 0)
166 error (_("Couldn't read register %s (#%d): %s."),
167 gdbarch_register_name (get_regcache_arch (regcache), regno),
168 regno, safe_strerror (errno));
169
170 regcache_raw_supply (regcache, regno, &val);
171 }
172
173 /* Store one register. */
174
175 static void
176 store_register (const struct regcache *regcache, int regno)
177 {
178 int tid;
179 int val;
180
181 gdb_assert (!have_ptrace_getregs);
182 if (i386_linux_gregset_reg_offset[regno] == -1)
183 return;
184
185 /* GNU/Linux LWP ID's are process ID's. */
186 tid = TIDGET (inferior_ptid);
187 if (tid == 0)
188 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
189
190 errno = 0;
191 regcache_raw_collect (regcache, regno, &val);
192 ptrace (PTRACE_POKEUSER, tid,
193 i386_linux_gregset_reg_offset[regno], val);
194 if (errno != 0)
195 error (_("Couldn't write register %s (#%d): %s."),
196 gdbarch_register_name (get_regcache_arch (regcache), regno),
197 regno, safe_strerror (errno));
198 }
199 \f
200
201 /* Transfering the general-purpose registers between GDB, inferiors
202 and core files. */
203
204 /* Fill GDB's register array with the general-purpose register values
205 in *GREGSETP. */
206
207 void
208 supply_gregset (struct regcache *regcache, const elf_gregset_t *gregsetp)
209 {
210 const gdb_byte *regp = (const gdb_byte *) gregsetp;
211 int i;
212
213 for (i = 0; i < I386_NUM_GREGS; i++)
214 regcache_raw_supply (regcache, i,
215 regp + i386_linux_gregset_reg_offset[i]);
216
217 if (I386_LINUX_ORIG_EAX_REGNUM
218 < gdbarch_num_regs (get_regcache_arch (regcache)))
219 regcache_raw_supply (regcache, I386_LINUX_ORIG_EAX_REGNUM, regp
220 + i386_linux_gregset_reg_offset[I386_LINUX_ORIG_EAX_REGNUM]);
221 }
222
223 /* Fill register REGNO (if it is a general-purpose register) in
224 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
225 do this for all registers. */
226
227 void
228 fill_gregset (const struct regcache *regcache,
229 elf_gregset_t *gregsetp, int regno)
230 {
231 gdb_byte *regp = (gdb_byte *) gregsetp;
232 int i;
233
234 for (i = 0; i < I386_NUM_GREGS; i++)
235 if (regno == -1 || regno == i)
236 regcache_raw_collect (regcache, i,
237 regp + i386_linux_gregset_reg_offset[i]);
238
239 if ((regno == -1 || regno == I386_LINUX_ORIG_EAX_REGNUM)
240 && I386_LINUX_ORIG_EAX_REGNUM
241 < gdbarch_num_regs (get_regcache_arch (regcache)))
242 regcache_raw_collect (regcache, I386_LINUX_ORIG_EAX_REGNUM, regp
243 + i386_linux_gregset_reg_offset[I386_LINUX_ORIG_EAX_REGNUM]);
244 }
245
246 #ifdef HAVE_PTRACE_GETREGS
247
248 /* Fetch all general-purpose registers from process/thread TID and
249 store their values in GDB's register array. */
250
251 static void
252 fetch_regs (struct regcache *regcache, int tid)
253 {
254 elf_gregset_t regs;
255 elf_gregset_t *regs_p = &regs;
256
257 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
258 {
259 if (errno == EIO)
260 {
261 /* The kernel we're running on doesn't support the GETREGS
262 request. Reset `have_ptrace_getregs'. */
263 have_ptrace_getregs = 0;
264 return;
265 }
266
267 perror_with_name (_("Couldn't get registers"));
268 }
269
270 supply_gregset (regcache, (const elf_gregset_t *) regs_p);
271 }
272
273 /* Store all valid general-purpose registers in GDB's register array
274 into the process/thread specified by TID. */
275
276 static void
277 store_regs (const struct regcache *regcache, int tid, int regno)
278 {
279 elf_gregset_t regs;
280
281 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
282 perror_with_name (_("Couldn't get registers"));
283
284 fill_gregset (regcache, &regs, regno);
285
286 if (ptrace (PTRACE_SETREGS, tid, 0, (int) &regs) < 0)
287 perror_with_name (_("Couldn't write registers"));
288 }
289
290 #else
291
292 static void fetch_regs (struct regcache *regcache, int tid) {}
293 static void store_regs (const struct regcache *regcache, int tid, int regno) {}
294
295 #endif
296 \f
297
298 /* Transfering floating-point registers between GDB, inferiors and cores. */
299
300 /* Fill GDB's register array with the floating-point register values in
301 *FPREGSETP. */
302
303 void
304 supply_fpregset (struct regcache *regcache, const elf_fpregset_t *fpregsetp)
305 {
306 i387_supply_fsave (regcache, -1, fpregsetp);
307 }
308
309 /* Fill register REGNO (if it is a floating-point register) in
310 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
311 do this for all registers. */
312
313 void
314 fill_fpregset (const struct regcache *regcache,
315 elf_fpregset_t *fpregsetp, int regno)
316 {
317 i387_collect_fsave (regcache, regno, fpregsetp);
318 }
319
320 #ifdef HAVE_PTRACE_GETREGS
321
322 /* Fetch all floating-point registers from process/thread TID and store
323 thier values in GDB's register array. */
324
325 static void
326 fetch_fpregs (struct regcache *regcache, int tid)
327 {
328 elf_fpregset_t fpregs;
329
330 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
331 perror_with_name (_("Couldn't get floating point status"));
332
333 supply_fpregset (regcache, (const elf_fpregset_t *) &fpregs);
334 }
335
336 /* Store all valid floating-point registers in GDB's register array
337 into the process/thread specified by TID. */
338
339 static void
340 store_fpregs (const struct regcache *regcache, int tid, int regno)
341 {
342 elf_fpregset_t fpregs;
343
344 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
345 perror_with_name (_("Couldn't get floating point status"));
346
347 fill_fpregset (regcache, &fpregs, regno);
348
349 if (ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs) < 0)
350 perror_with_name (_("Couldn't write floating point status"));
351 }
352
353 #else
354
355 static void
356 fetch_fpregs (struct regcache *regcache, int tid)
357 {
358 }
359
360 static void
361 store_fpregs (const struct regcache *regcache, int tid, int regno)
362 {
363 }
364
365 #endif
366 \f
367
368 /* Transfering floating-point and SSE registers to and from GDB. */
369
370 /* Fetch all registers covered by the PTRACE_GETREGSET request from
371 process/thread TID and store their values in GDB's register array.
372 Return non-zero if successful, zero otherwise. */
373
374 static int
375 fetch_xstateregs (struct regcache *regcache, int tid)
376 {
377 char xstateregs[I386_XSTATE_MAX_SIZE];
378 struct iovec iov;
379
380 if (!have_ptrace_getregset)
381 return 0;
382
383 iov.iov_base = xstateregs;
384 iov.iov_len = sizeof(xstateregs);
385 if (ptrace (PTRACE_GETREGSET, tid, (unsigned int) NT_X86_XSTATE,
386 &iov) < 0)
387 perror_with_name (_("Couldn't read extended state status"));
388
389 i387_supply_xsave (regcache, -1, xstateregs);
390 return 1;
391 }
392
393 /* Store all valid registers in GDB's register array covered by the
394 PTRACE_SETREGSET request into the process/thread specified by TID.
395 Return non-zero if successful, zero otherwise. */
396
397 static int
398 store_xstateregs (const struct regcache *regcache, int tid, int regno)
399 {
400 char xstateregs[I386_XSTATE_MAX_SIZE];
401 struct iovec iov;
402
403 if (!have_ptrace_getregset)
404 return 0;
405
406 iov.iov_base = xstateregs;
407 iov.iov_len = sizeof(xstateregs);
408 if (ptrace (PTRACE_GETREGSET, tid, (unsigned int) NT_X86_XSTATE,
409 &iov) < 0)
410 perror_with_name (_("Couldn't read extended state status"));
411
412 i387_collect_xsave (regcache, regno, xstateregs, 0);
413
414 if (ptrace (PTRACE_SETREGSET, tid, (unsigned int) NT_X86_XSTATE,
415 (int) &iov) < 0)
416 perror_with_name (_("Couldn't write extended state status"));
417
418 return 1;
419 }
420
421 #ifdef HAVE_PTRACE_GETFPXREGS
422
423 /* Fetch all registers covered by the PTRACE_GETFPXREGS request from
424 process/thread TID and store their values in GDB's register array.
425 Return non-zero if successful, zero otherwise. */
426
427 static int
428 fetch_fpxregs (struct regcache *regcache, int tid)
429 {
430 elf_fpxregset_t fpxregs;
431
432 if (! have_ptrace_getfpxregs)
433 return 0;
434
435 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
436 {
437 if (errno == EIO)
438 {
439 have_ptrace_getfpxregs = 0;
440 return 0;
441 }
442
443 perror_with_name (_("Couldn't read floating-point and SSE registers"));
444 }
445
446 i387_supply_fxsave (regcache, -1, (const elf_fpxregset_t *) &fpxregs);
447 return 1;
448 }
449
450 /* Store all valid registers in GDB's register array covered by the
451 PTRACE_SETFPXREGS request into the process/thread specified by TID.
452 Return non-zero if successful, zero otherwise. */
453
454 static int
455 store_fpxregs (const struct regcache *regcache, int tid, int regno)
456 {
457 elf_fpxregset_t fpxregs;
458
459 if (! have_ptrace_getfpxregs)
460 return 0;
461
462 if (ptrace (PTRACE_GETFPXREGS, tid, 0, &fpxregs) == -1)
463 {
464 if (errno == EIO)
465 {
466 have_ptrace_getfpxregs = 0;
467 return 0;
468 }
469
470 perror_with_name (_("Couldn't read floating-point and SSE registers"));
471 }
472
473 i387_collect_fxsave (regcache, regno, &fpxregs);
474
475 if (ptrace (PTRACE_SETFPXREGS, tid, 0, &fpxregs) == -1)
476 perror_with_name (_("Couldn't write floating-point and SSE registers"));
477
478 return 1;
479 }
480
481 #else
482
483 static int
484 fetch_fpxregs (struct regcache *regcache, int tid)
485 {
486 return 0;
487 }
488
489 static int
490 store_fpxregs (const struct regcache *regcache, int tid, int regno)
491 {
492 return 0;
493 }
494
495 #endif /* HAVE_PTRACE_GETFPXREGS */
496 \f
497
498 /* Transferring arbitrary registers between GDB and inferior. */
499
500 /* Fetch register REGNO from the child process. If REGNO is -1, do
501 this for all registers (including the floating point and SSE
502 registers). */
503
504 static void
505 i386_linux_fetch_inferior_registers (struct target_ops *ops,
506 struct regcache *regcache, int regno)
507 {
508 int tid;
509
510 /* Use the old method of peeking around in `struct user' if the
511 GETREGS request isn't available. */
512 if (!have_ptrace_getregs)
513 {
514 int i;
515
516 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
517 if (regno == -1 || regno == i)
518 fetch_register (regcache, i);
519
520 return;
521 }
522
523 /* GNU/Linux LWP ID's are process ID's. */
524 tid = TIDGET (inferior_ptid);
525 if (tid == 0)
526 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
527
528 /* Use the PTRACE_GETFPXREGS request whenever possible, since it
529 transfers more registers in one system call, and we'll cache the
530 results. But remember that fetch_fpxregs can fail, and return
531 zero. */
532 if (regno == -1)
533 {
534 fetch_regs (regcache, tid);
535
536 /* The call above might reset `have_ptrace_getregs'. */
537 if (!have_ptrace_getregs)
538 {
539 i386_linux_fetch_inferior_registers (ops, regcache, regno);
540 return;
541 }
542
543 if (fetch_xstateregs (regcache, tid))
544 return;
545 if (fetch_fpxregs (regcache, tid))
546 return;
547 fetch_fpregs (regcache, tid);
548 return;
549 }
550
551 if (GETREGS_SUPPLIES (regno))
552 {
553 fetch_regs (regcache, tid);
554 return;
555 }
556
557 if (GETXSTATEREGS_SUPPLIES (regno))
558 {
559 if (fetch_xstateregs (regcache, tid))
560 return;
561 }
562
563 if (GETFPXREGS_SUPPLIES (regno))
564 {
565 if (fetch_fpxregs (regcache, tid))
566 return;
567
568 /* Either our processor or our kernel doesn't support the SSE
569 registers, so read the FP registers in the traditional way,
570 and fill the SSE registers with dummy values. It would be
571 more graceful to handle differences in the register set using
572 gdbarch. Until then, this will at least make things work
573 plausibly. */
574 fetch_fpregs (regcache, tid);
575 return;
576 }
577
578 internal_error (__FILE__, __LINE__,
579 _("Got request for bad register number %d."), regno);
580 }
581
582 /* Store register REGNO back into the child process. If REGNO is -1,
583 do this for all registers (including the floating point and SSE
584 registers). */
585 static void
586 i386_linux_store_inferior_registers (struct target_ops *ops,
587 struct regcache *regcache, int regno)
588 {
589 int tid;
590
591 /* Use the old method of poking around in `struct user' if the
592 SETREGS request isn't available. */
593 if (!have_ptrace_getregs)
594 {
595 int i;
596
597 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
598 if (regno == -1 || regno == i)
599 store_register (regcache, i);
600
601 return;
602 }
603
604 /* GNU/Linux LWP ID's are process ID's. */
605 tid = TIDGET (inferior_ptid);
606 if (tid == 0)
607 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
608
609 /* Use the PTRACE_SETFPXREGS requests whenever possible, since it
610 transfers more registers in one system call. But remember that
611 store_fpxregs can fail, and return zero. */
612 if (regno == -1)
613 {
614 store_regs (regcache, tid, regno);
615 if (store_xstateregs (regcache, tid, regno))
616 return;
617 if (store_fpxregs (regcache, tid, regno))
618 return;
619 store_fpregs (regcache, tid, regno);
620 return;
621 }
622
623 if (GETREGS_SUPPLIES (regno))
624 {
625 store_regs (regcache, tid, regno);
626 return;
627 }
628
629 if (GETXSTATEREGS_SUPPLIES (regno))
630 {
631 if (store_xstateregs (regcache, tid, regno))
632 return;
633 }
634
635 if (GETFPXREGS_SUPPLIES (regno))
636 {
637 if (store_fpxregs (regcache, tid, regno))
638 return;
639
640 /* Either our processor or our kernel doesn't support the SSE
641 registers, so just write the FP registers in the traditional
642 way. */
643 store_fpregs (regcache, tid, regno);
644 return;
645 }
646
647 internal_error (__FILE__, __LINE__,
648 _("Got request to store bad register number %d."), regno);
649 }
650 \f
651
652 /* Support for debug registers. */
653
654 static unsigned long i386_linux_dr[DR_CONTROL + 1];
655
656 /* Get debug register REGNUM value from only the one LWP of PTID. */
657
658 static unsigned long
659 i386_linux_dr_get (ptid_t ptid, int regnum)
660 {
661 int tid;
662 unsigned long value;
663
664 tid = TIDGET (ptid);
665 if (tid == 0)
666 tid = PIDGET (ptid);
667
668 errno = 0;
669 value = ptrace (PTRACE_PEEKUSER, tid,
670 offsetof (struct user, u_debugreg[regnum]), 0);
671 if (errno != 0)
672 perror_with_name (_("Couldn't read debug register"));
673
674 return value;
675 }
676
677 /* Set debug register REGNUM to VALUE in only the one LWP of PTID. */
678
679 static void
680 i386_linux_dr_set (ptid_t ptid, int regnum, unsigned long value)
681 {
682 int tid;
683
684 tid = TIDGET (ptid);
685 if (tid == 0)
686 tid = PIDGET (ptid);
687
688 errno = 0;
689 ptrace (PTRACE_POKEUSER, tid,
690 offsetof (struct user, u_debugreg[regnum]), value);
691 if (errno != 0)
692 perror_with_name (_("Couldn't write debug register"));
693 }
694
695 /* Set DR_CONTROL to ADDR in all LWPs of LWP_LIST. */
696
697 static void
698 i386_linux_dr_set_control (unsigned long control)
699 {
700 struct lwp_info *lp;
701
702 i386_linux_dr[DR_CONTROL] = control;
703 ALL_LWPS (lp)
704 i386_linux_dr_set (lp->ptid, DR_CONTROL, control);
705 }
706
707 /* Set address REGNUM (zero based) to ADDR in all LWPs of LWP_LIST. */
708
709 static void
710 i386_linux_dr_set_addr (int regnum, CORE_ADDR addr)
711 {
712 struct lwp_info *lp;
713
714 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
715
716 i386_linux_dr[DR_FIRSTADDR + regnum] = addr;
717 ALL_LWPS (lp)
718 i386_linux_dr_set (lp->ptid, DR_FIRSTADDR + regnum, addr);
719 }
720
721 /* Set address REGNUM (zero based) to zero in all LWPs of LWP_LIST. */
722
723 static void
724 i386_linux_dr_reset_addr (int regnum)
725 {
726 i386_linux_dr_set_addr (regnum, 0);
727 }
728
729 /* Get DR_STATUS from only the one LWP of INFERIOR_PTID. */
730
731 static unsigned long
732 i386_linux_dr_get_status (void)
733 {
734 return i386_linux_dr_get (inferior_ptid, DR_STATUS);
735 }
736
737 /* Unset MASK bits in DR_STATUS in all LWPs of LWP_LIST. */
738
739 static void
740 i386_linux_dr_unset_status (unsigned long mask)
741 {
742 struct lwp_info *lp;
743
744 ALL_LWPS (lp)
745 {
746 unsigned long value;
747
748 value = i386_linux_dr_get (lp->ptid, DR_STATUS);
749 value &= ~mask;
750 i386_linux_dr_set (lp->ptid, DR_STATUS, value);
751 }
752 }
753
754 static void
755 i386_linux_new_thread (ptid_t ptid)
756 {
757 int i;
758
759 for (i = DR_FIRSTADDR; i <= DR_LASTADDR; i++)
760 i386_linux_dr_set (ptid, i, i386_linux_dr[i]);
761
762 i386_linux_dr_set (ptid, DR_CONTROL, i386_linux_dr[DR_CONTROL]);
763 }
764 \f
765
766 /* Called by libthread_db. Returns a pointer to the thread local
767 storage (or its descriptor). */
768
769 ps_err_e
770 ps_get_thread_area (const struct ps_prochandle *ph,
771 lwpid_t lwpid, int idx, void **base)
772 {
773 /* NOTE: cagney/2003-08-26: The definition of this buffer is found
774 in the kernel header <asm-i386/ldt.h>. It, after padding, is 4 x
775 4 byte integers in size: `entry_number', `base_addr', `limit',
776 and a bunch of status bits.
777
778 The values returned by this ptrace call should be part of the
779 regcache buffer, and ps_get_thread_area should channel its
780 request through the regcache. That way remote targets could
781 provide the value using the remote protocol and not this direct
782 call.
783
784 Is this function needed? I'm guessing that the `base' is the
785 address of a descriptor that libthread_db uses to find the
786 thread local address base that GDB needs. Perhaps that
787 descriptor is defined by the ABI. Anyway, given that
788 libthread_db calls this function without prompting (gdb
789 requesting tls base) I guess it needs info in there anyway. */
790 unsigned int desc[4];
791 gdb_assert (sizeof (int) == 4);
792
793 #ifndef PTRACE_GET_THREAD_AREA
794 #define PTRACE_GET_THREAD_AREA 25
795 #endif
796
797 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid,
798 (void *) idx, (unsigned long) &desc) < 0)
799 return PS_ERR;
800
801 *(int *)base = desc[1];
802 return PS_OK;
803 }
804 \f
805
806 /* The instruction for a GNU/Linux system call is:
807 int $0x80
808 or 0xcd 0x80. */
809
810 static const unsigned char linux_syscall[] = { 0xcd, 0x80 };
811
812 #define LINUX_SYSCALL_LEN (sizeof linux_syscall)
813
814 /* The system call number is stored in the %eax register. */
815 #define LINUX_SYSCALL_REGNUM I386_EAX_REGNUM
816
817 /* We are specifically interested in the sigreturn and rt_sigreturn
818 system calls. */
819
820 #ifndef SYS_sigreturn
821 #define SYS_sigreturn 0x77
822 #endif
823 #ifndef SYS_rt_sigreturn
824 #define SYS_rt_sigreturn 0xad
825 #endif
826
827 /* Offset to saved processor flags, from <asm/sigcontext.h>. */
828 #define LINUX_SIGCONTEXT_EFLAGS_OFFSET (64)
829
830 /* Resume execution of the inferior process.
831 If STEP is nonzero, single-step it.
832 If SIGNAL is nonzero, give it that signal. */
833
834 static void
835 i386_linux_resume (struct target_ops *ops,
836 ptid_t ptid, int step, enum target_signal signal)
837 {
838 int pid = PIDGET (ptid);
839
840 int request;
841
842 if (catch_syscall_enabled () > 0)
843 request = PTRACE_SYSCALL;
844 else
845 request = PTRACE_CONT;
846
847 if (step)
848 {
849 struct regcache *regcache = get_thread_regcache (pid_to_ptid (pid));
850 struct gdbarch *gdbarch = get_regcache_arch (regcache);
851 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
852 ULONGEST pc;
853 gdb_byte buf[LINUX_SYSCALL_LEN];
854
855 request = PTRACE_SINGLESTEP;
856
857 regcache_cooked_read_unsigned (regcache,
858 gdbarch_pc_regnum (gdbarch), &pc);
859
860 /* Returning from a signal trampoline is done by calling a
861 special system call (sigreturn or rt_sigreturn, see
862 i386-linux-tdep.c for more information). This system call
863 restores the registers that were saved when the signal was
864 raised, including %eflags. That means that single-stepping
865 won't work. Instead, we'll have to modify the signal context
866 that's about to be restored, and set the trace flag there. */
867
868 /* First check if PC is at a system call. */
869 if (target_read_memory (pc, buf, LINUX_SYSCALL_LEN) == 0
870 && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0)
871 {
872 ULONGEST syscall;
873 regcache_cooked_read_unsigned (regcache,
874 LINUX_SYSCALL_REGNUM, &syscall);
875
876 /* Then check the system call number. */
877 if (syscall == SYS_sigreturn || syscall == SYS_rt_sigreturn)
878 {
879 ULONGEST sp, addr;
880 unsigned long int eflags;
881
882 regcache_cooked_read_unsigned (regcache, I386_ESP_REGNUM, &sp);
883 if (syscall == SYS_rt_sigreturn)
884 addr = read_memory_unsigned_integer (sp + 8, 4, byte_order)
885 + 20;
886 else
887 addr = sp;
888
889 /* Set the trace flag in the context that's about to be
890 restored. */
891 addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET;
892 read_memory (addr, (gdb_byte *) &eflags, 4);
893 eflags |= 0x0100;
894 write_memory (addr, (gdb_byte *) &eflags, 4);
895 }
896 }
897 }
898
899 if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1)
900 perror_with_name (("ptrace"));
901 }
902
903 static void (*super_post_startup_inferior) (ptid_t ptid);
904
905 static void
906 i386_linux_child_post_startup_inferior (ptid_t ptid)
907 {
908 i386_cleanup_dregs ();
909 super_post_startup_inferior (ptid);
910 }
911
912 /* Get Linux/x86 target description from running target. */
913
914 static const struct target_desc *
915 i386_linux_read_description (struct target_ops *ops)
916 {
917 int tid;
918 static uint64_t xcr0;
919
920 /* GNU/Linux LWP ID's are process ID's. */
921 tid = TIDGET (inferior_ptid);
922 if (tid == 0)
923 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
924
925 #ifdef HAVE_PTRACE_GETFPXREGS
926 if (have_ptrace_getfpxregs == -1)
927 {
928 elf_fpxregset_t fpxregs;
929
930 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
931 {
932 have_ptrace_getfpxregs = 0;
933 have_ptrace_getregset = 0;
934 return tdesc_i386_mmx_linux;
935 }
936 }
937 #endif
938
939 if (have_ptrace_getregset == -1)
940 {
941 uint64_t xstateregs[(I386_XSTATE_SSE_SIZE / sizeof (uint64_t))];
942 struct iovec iov;
943
944 iov.iov_base = xstateregs;
945 iov.iov_len = sizeof (xstateregs);
946
947 /* Check if PTRACE_GETREGSET works. */
948 if (ptrace (PTRACE_GETREGSET, tid, (unsigned int) NT_X86_XSTATE,
949 &iov) < 0)
950 have_ptrace_getregset = 0;
951 else
952 {
953 have_ptrace_getregset = 1;
954
955 /* Get XCR0 from XSAVE extended state. */
956 xcr0 = xstateregs[(I386_LINUX_XSAVE_XCR0_OFFSET
957 / sizeof (long long))];
958 }
959 }
960
961 /* Check the native XCR0 only if PTRACE_GETREGSET is available. */
962 if (have_ptrace_getregset
963 && (xcr0 & I386_XSTATE_AVX_MASK) == I386_XSTATE_AVX_MASK)
964 return tdesc_i386_avx_linux;
965 else
966 return tdesc_i386_linux;
967 }
968
969 void
970 _initialize_i386_linux_nat (void)
971 {
972 struct target_ops *t;
973
974 /* Fill in the generic GNU/Linux methods. */
975 t = linux_target ();
976
977 i386_use_watchpoints (t);
978
979 i386_dr_low.set_control = i386_linux_dr_set_control;
980 i386_dr_low.set_addr = i386_linux_dr_set_addr;
981 i386_dr_low.reset_addr = i386_linux_dr_reset_addr;
982 i386_dr_low.get_status = i386_linux_dr_get_status;
983 i386_dr_low.unset_status = i386_linux_dr_unset_status;
984 i386_set_debug_register_length (4);
985
986 /* Override the default ptrace resume method. */
987 t->to_resume = i386_linux_resume;
988
989 /* Override the GNU/Linux inferior startup hook. */
990 super_post_startup_inferior = t->to_post_startup_inferior;
991 t->to_post_startup_inferior = i386_linux_child_post_startup_inferior;
992
993 /* Add our register access methods. */
994 t->to_fetch_registers = i386_linux_fetch_inferior_registers;
995 t->to_store_registers = i386_linux_store_inferior_registers;
996
997 t->to_read_description = i386_linux_read_description;
998
999 /* Register the target. */
1000 linux_nat_add_target (t);
1001 linux_nat_set_new_thread (t, i386_linux_new_thread);
1002 }
This page took 0.061801 seconds and 4 git commands to generate.