*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / i386-linux-tdep.c
1 /* Target-dependent code for GNU/Linux running on i386's, for GDB.
2
3 Copyright 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "value.h"
26 #include "regcache.h"
27 #include "inferior.h"
28 #include "osabi.h"
29 #include "reggroups.h"
30 #include "solib-svr4.h"
31
32 #include "gdb_string.h"
33
34 #include "i386-tdep.h"
35 #include "i386-linux-tdep.h"
36 #include "glibc-tdep.h"
37
38 /* Return the name of register REG. */
39
40 static const char *
41 i386_linux_register_name (int reg)
42 {
43 /* Deal with the extra "orig_eax" pseudo register. */
44 if (reg == I386_LINUX_ORIG_EAX_REGNUM)
45 return "orig_eax";
46
47 return i386_register_name (reg);
48 }
49
50 /* Return non-zero, when the register is in the corresponding register
51 group. Put the LINUX_ORIG_EAX register in the system group. */
52 static int
53 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
54 struct reggroup *group)
55 {
56 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
57 return (group == system_reggroup
58 || group == save_reggroup
59 || group == restore_reggroup);
60 return i386_register_reggroup_p (gdbarch, regnum, group);
61 }
62
63 \f
64 /* Recognizing signal handler frames. */
65
66 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
67 "realtime" (RT) signals. The RT signals can provide additional
68 information to the signal handler if the SA_SIGINFO flag is set
69 when establishing a signal handler using `sigaction'. It is not
70 unlikely that future versions of GNU/Linux will support SA_SIGINFO
71 for normal signals too. */
72
73 /* When the i386 Linux kernel calls a signal handler and the
74 SA_RESTORER flag isn't set, the return address points to a bit of
75 code on the stack. This function returns whether the PC appears to
76 be within this bit of code.
77
78 The instruction sequence for normal signals is
79 pop %eax
80 mov $0x77, %eax
81 int $0x80
82 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
83
84 Checking for the code sequence should be somewhat reliable, because
85 the effect is to call the system call sigreturn. This is unlikely
86 to occur anywhere other than a signal trampoline.
87
88 It kind of sucks that we have to read memory from the process in
89 order to identify a signal trampoline, but there doesn't seem to be
90 any other way. The PC_IN_SIGTRAMP macro in tm-linux.h arranges to
91 only call us if no function name could be identified, which should
92 be the case since the code is on the stack.
93
94 Detection of signal trampolines for handlers that set the
95 SA_RESTORER flag is in general not possible. Unfortunately this is
96 what the GNU C Library has been doing for quite some time now.
97 However, as of version 2.1.2, the GNU C Library uses signal
98 trampolines (named __restore and __restore_rt) that are identical
99 to the ones used by the kernel. Therefore, these trampolines are
100 supported too. */
101
102 #define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
103 #define LINUX_SIGTRAMP_OFFSET0 0
104 #define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
105 #define LINUX_SIGTRAMP_OFFSET1 1
106 #define LINUX_SIGTRAMP_INSN2 0xcd /* int */
107 #define LINUX_SIGTRAMP_OFFSET2 6
108
109 static const unsigned char linux_sigtramp_code[] =
110 {
111 LINUX_SIGTRAMP_INSN0, /* pop %eax */
112 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
113 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
114 };
115
116 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
117
118 /* If PC is in a sigtramp routine, return the address of the start of
119 the routine. Otherwise, return 0. */
120
121 static CORE_ADDR
122 i386_linux_sigtramp_start (CORE_ADDR pc)
123 {
124 unsigned char buf[LINUX_SIGTRAMP_LEN];
125
126 /* We only recognize a signal trampoline if PC is at the start of
127 one of the three instructions. We optimize for finding the PC at
128 the start, as will be the case when the trampoline is not the
129 first frame on the stack. We assume that in the case where the
130 PC is not at the start of the instruction sequence, there will be
131 a few trailing readable bytes on the stack. */
132
133 if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
134 return 0;
135
136 if (buf[0] != LINUX_SIGTRAMP_INSN0)
137 {
138 int adjust;
139
140 switch (buf[0])
141 {
142 case LINUX_SIGTRAMP_INSN1:
143 adjust = LINUX_SIGTRAMP_OFFSET1;
144 break;
145 case LINUX_SIGTRAMP_INSN2:
146 adjust = LINUX_SIGTRAMP_OFFSET2;
147 break;
148 default:
149 return 0;
150 }
151
152 pc -= adjust;
153
154 if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
155 return 0;
156 }
157
158 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
159 return 0;
160
161 return pc;
162 }
163
164 /* This function does the same for RT signals. Here the instruction
165 sequence is
166 mov $0xad, %eax
167 int $0x80
168 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
169
170 The effect is to call the system call rt_sigreturn. */
171
172 #define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
173 #define LINUX_RT_SIGTRAMP_OFFSET0 0
174 #define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
175 #define LINUX_RT_SIGTRAMP_OFFSET1 5
176
177 static const unsigned char linux_rt_sigtramp_code[] =
178 {
179 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
180 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
181 };
182
183 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
184
185 /* If PC is in a RT sigtramp routine, return the address of the start
186 of the routine. Otherwise, return 0. */
187
188 static CORE_ADDR
189 i386_linux_rt_sigtramp_start (CORE_ADDR pc)
190 {
191 unsigned char buf[LINUX_RT_SIGTRAMP_LEN];
192
193 /* We only recognize a signal trampoline if PC is at the start of
194 one of the two instructions. We optimize for finding the PC at
195 the start, as will be the case when the trampoline is not the
196 first frame on the stack. We assume that in the case where the
197 PC is not at the start of the instruction sequence, there will be
198 a few trailing readable bytes on the stack. */
199
200 if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
201 return 0;
202
203 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
204 {
205 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
206 return 0;
207
208 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
209
210 if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
211 return 0;
212 }
213
214 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
215 return 0;
216
217 return pc;
218 }
219
220 /* Return whether PC is in a GNU/Linux sigtramp routine. */
221
222 static int
223 i386_linux_pc_in_sigtramp (CORE_ADDR pc, char *name)
224 {
225 /* If we have NAME, we can optimize the search. The trampolines are
226 named __restore and __restore_rt. However, they aren't dynamically
227 exported from the shared C library, so the trampoline may appear to
228 be part of the preceding function. This should always be sigaction,
229 __sigaction, or __libc_sigaction (all aliases to the same function). */
230 if (name == NULL || strstr (name, "sigaction") != NULL)
231 return (i386_linux_sigtramp_start (pc) != 0
232 || i386_linux_rt_sigtramp_start (pc) != 0);
233
234 return (strcmp ("__restore", name) == 0
235 || strcmp ("__restore_rt", name) == 0);
236 }
237
238 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
239 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
240
241 /* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
242 routine, return the address of the associated sigcontext structure. */
243
244 static CORE_ADDR
245 i386_linux_sigcontext_addr (struct frame_info *next_frame)
246 {
247 CORE_ADDR pc;
248 CORE_ADDR sp;
249 char buf[4];
250
251 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
252 sp = extract_unsigned_integer (buf, 4);
253
254 pc = i386_linux_sigtramp_start (frame_pc_unwind (next_frame));
255 if (pc)
256 {
257 /* The sigcontext structure lives on the stack, right after
258 the signum argument. We determine the address of the
259 sigcontext structure by looking at the frame's stack
260 pointer. Keep in mind that the first instruction of the
261 sigtramp code is "pop %eax". If the PC is after this
262 instruction, adjust the returned value accordingly. */
263 if (pc == frame_pc_unwind (next_frame))
264 return sp + 4;
265 return sp;
266 }
267
268 pc = i386_linux_rt_sigtramp_start (frame_pc_unwind (next_frame));
269 if (pc)
270 {
271 CORE_ADDR ucontext_addr;
272
273 /* The sigcontext structure is part of the user context. A
274 pointer to the user context is passed as the third argument
275 to the signal handler. */
276 read_memory (sp + 8, buf, 4);
277 ucontext_addr = extract_unsigned_integer (buf, 4) + 20;
278 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
279 }
280
281 error ("Couldn't recognize signal trampoline.");
282 return 0;
283 }
284
285 /* Set the program counter for process PTID to PC. */
286
287 static void
288 i386_linux_write_pc (CORE_ADDR pc, ptid_t ptid)
289 {
290 write_register_pid (I386_EIP_REGNUM, pc, ptid);
291
292 /* We must be careful with modifying the program counter. If we
293 just interrupted a system call, the kernel might try to restart
294 it when we resume the inferior. On restarting the system call,
295 the kernel will try backing up the program counter even though it
296 no longer points at the system call. This typically results in a
297 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
298 "orig_eax" pseudo-register.
299
300 Note that "orig_eax" is saved when setting up a dummy call frame.
301 This means that it is properly restored when that frame is
302 popped, and that the interrupted system call will be restarted
303 when we resume the inferior on return from a function call from
304 within GDB. In all other cases the system call will not be
305 restarted. */
306 write_register_pid (I386_LINUX_ORIG_EAX_REGNUM, -1, ptid);
307 }
308 \f
309 /* Calling functions in shared libraries. */
310
311 CORE_ADDR
312 i386_linux_skip_solib_resolver (CORE_ADDR pc)
313 {
314 return glibc_skip_solib_resolver (pc);
315 }
316
317 /* Fetch (and possibly build) an appropriate link_map_offsets
318 structure for native GNU/Linux x86 targets using the struct offsets
319 defined in link.h (but without actual reference to that file).
320
321 This makes it possible to access GNU/Linux x86 shared libraries
322 from a GDB that was not built on an GNU/Linux x86 host (for cross
323 debugging). */
324
325 static struct link_map_offsets *
326 i386_linux_svr4_fetch_link_map_offsets (void)
327 {
328 static struct link_map_offsets lmo;
329 static struct link_map_offsets *lmp = NULL;
330
331 if (lmp == NULL)
332 {
333 lmp = &lmo;
334
335 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
336 this is all we need. */
337 lmo.r_map_offset = 4;
338 lmo.r_map_size = 4;
339
340 lmo.link_map_size = 20; /* The actual size is 552 bytes, but
341 this is all we need. */
342 lmo.l_addr_offset = 0;
343 lmo.l_addr_size = 4;
344
345 lmo.l_name_offset = 4;
346 lmo.l_name_size = 4;
347
348 lmo.l_next_offset = 12;
349 lmo.l_next_size = 4;
350
351 lmo.l_prev_offset = 16;
352 lmo.l_prev_size = 4;
353 }
354
355 return lmp;
356 }
357 \f
358
359 /* The register sets used in GNU/Linux ELF core-dumps are identical to
360 the register sets in `struct user' that are used for a.out
361 core-dumps. These are also used by ptrace(2). The corresponding
362 types are `elf_gregset_t' for the general-purpose registers (with
363 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
364 for the floating-point registers.
365
366 Those types used to be available under the names `gregset_t' and
367 `fpregset_t' too, and GDB used those names in the past. But those
368 names are now used for the register sets used in the `mcontext_t'
369 type, which have a different size and layout. */
370
371 /* Mapping between the general-purpose registers in `struct user'
372 format and GDB's register cache layout. */
373
374 /* From <sys/reg.h>. */
375 static int i386_linux_gregset_reg_offset[] =
376 {
377 6 * 4, /* %eax */
378 1 * 4, /* %ecx */
379 2 * 4, /* %edx */
380 0 * 4, /* %ebx */
381 15 * 4, /* %esp */
382 5 * 4, /* %ebp */
383 3 * 4, /* %esi */
384 4 * 4, /* %edi */
385 12 * 4, /* %eip */
386 14 * 4, /* %eflags */
387 13 * 4, /* %cs */
388 16 * 4, /* %ss */
389 7 * 4, /* %ds */
390 8 * 4, /* %es */
391 9 * 4, /* %fs */
392 10 * 4, /* %gs */
393 -1, -1, -1, -1, -1, -1, -1, -1,
394 -1, -1, -1, -1, -1, -1, -1, -1,
395 -1, -1, -1, -1, -1, -1, -1, -1,
396 -1,
397 11 * 4 /* "orig_eax" */
398 };
399
400 /* Mapping between the general-purpose registers in `struct
401 sigcontext' format and GDB's register cache layout. */
402
403 /* From <asm/sigcontext.h>. */
404 static int i386_linux_sc_reg_offset[] =
405 {
406 11 * 4, /* %eax */
407 10 * 4, /* %ecx */
408 9 * 4, /* %edx */
409 8 * 4, /* %ebx */
410 7 * 4, /* %esp */
411 6 * 4, /* %ebp */
412 5 * 4, /* %esi */
413 4 * 4, /* %edi */
414 14 * 4, /* %eip */
415 16 * 4, /* %eflags */
416 15 * 4, /* %cs */
417 18 * 4, /* %ss */
418 3 * 4, /* %ds */
419 2 * 4, /* %es */
420 1 * 4, /* %fs */
421 0 * 4 /* %gs */
422 };
423
424 static void
425 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
426 {
427 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
428
429 /* GNU/Linux uses ELF. */
430 i386_elf_init_abi (info, gdbarch);
431
432 /* Since we have the extra "orig_eax" register on GNU/Linux, we have
433 to adjust a few things. */
434
435 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
436 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
437 set_gdbarch_register_name (gdbarch, i386_linux_register_name);
438 set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p);
439
440 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
441 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
442 tdep->sizeof_gregset = 17 * 4;
443
444 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
445
446 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
447 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
448 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
449
450 /* When the i386 Linux kernel calls a signal handler, the return
451 address points to a bit of code on the stack. This function is
452 used to identify this bit of code as a signal trampoline in order
453 to support backtracing through calls to signal handlers. */
454 set_gdbarch_pc_in_sigtramp (gdbarch, i386_linux_pc_in_sigtramp);
455
456 set_solib_svr4_fetch_link_map_offsets (gdbarch,
457 i386_linux_svr4_fetch_link_map_offsets);
458 }
459
460 /* Provide a prototype to silence -Wmissing-prototypes. */
461 extern void _initialize_i386_linux_tdep (void);
462
463 void
464 _initialize_i386_linux_tdep (void)
465 {
466 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
467 i386_linux_init_abi);
468 }
This page took 0.038796 seconds and 4 git commands to generate.