1dfa9ee75719c2a7c557760abd66eb21f7d8459e
[deliverable/binutils-gdb.git] / gdb / i386-nat.c
1 /* Native-dependent code for the i386.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "i386-nat.h"
22 #include "breakpoint.h"
23 #include "command.h"
24 #include "gdbcmd.h"
25 #include "target.h"
26 #include "gdb_assert.h"
27 #include "inferior.h"
28
29 /* Support for hardware watchpoints and breakpoints using the i386
30 debug registers.
31
32 This provides several functions for inserting and removing
33 hardware-assisted breakpoints and watchpoints, testing if one or
34 more of the watchpoints triggered and at what address, checking
35 whether a given region can be watched, etc.
36
37 The functions below implement debug registers sharing by reference
38 counts, and allow to watch regions up to 16 bytes long. */
39
40 /* Whether or not to print the mirrored debug registers. */
41 static int debug_hw_points;
42
43 /* Function used for printing mirrored debug registers. */
44 #define debug_printf(fmt, args...) \
45 fprintf_unfiltered (gdb_stdlog, fmt, ##args);
46
47 /* Low-level function vector. */
48 struct i386_dr_low_type i386_dr_low;
49
50 #define i386_dr_low_can_set_addr() (i386_dr_low.set_addr != NULL)
51 #define i386_dr_low_can_set_control() (i386_dr_low.set_control != NULL)
52
53 #define i386_dr_low_set_addr(new_state, i) \
54 (i386_dr_low.set_addr ((i), (new_state)->dr_mirror[(i)]))
55
56 #define i386_dr_low_set_control(new_state) \
57 (i386_dr_low.set_control ((new_state)->dr_control_mirror))
58
59 #define i386_dr_low_get_addr(i) (i386_dr_low.get_addr ((i)))
60 #define i386_dr_low_get_status() (i386_dr_low.get_status ())
61 #define i386_dr_low_get_control() (i386_dr_low.get_control ())
62
63 /* Debug register size, in bytes. */
64 #define i386_get_debug_register_length() \
65 (i386_dr_low.debug_register_length)
66
67 /* Support for 8-byte wide hw watchpoints. */
68 #define TARGET_HAS_DR_LEN_8 (i386_get_debug_register_length () == 8)
69
70 /* DR7 Debug Control register fields. */
71
72 /* How many bits to skip in DR7 to get to R/W and LEN fields. */
73 #define DR_CONTROL_SHIFT 16
74 /* How many bits in DR7 per R/W and LEN field for each watchpoint. */
75 #define DR_CONTROL_SIZE 4
76
77 /* Watchpoint/breakpoint read/write fields in DR7. */
78 #define DR_RW_EXECUTE (0x0) /* Break on instruction execution. */
79 #define DR_RW_WRITE (0x1) /* Break on data writes. */
80 #define DR_RW_READ (0x3) /* Break on data reads or writes. */
81
82 /* This is here for completeness. No platform supports this
83 functionality yet (as of March 2001). Note that the DE flag in the
84 CR4 register needs to be set to support this. */
85 #ifndef DR_RW_IORW
86 #define DR_RW_IORW (0x2) /* Break on I/O reads or writes. */
87 #endif
88
89 /* Watchpoint/breakpoint length fields in DR7. The 2-bit left shift
90 is so we could OR this with the read/write field defined above. */
91 #define DR_LEN_1 (0x0 << 2) /* 1-byte region watch or breakpoint. */
92 #define DR_LEN_2 (0x1 << 2) /* 2-byte region watch. */
93 #define DR_LEN_4 (0x3 << 2) /* 4-byte region watch. */
94 #define DR_LEN_8 (0x2 << 2) /* 8-byte region watch (AMD64). */
95
96 /* Local and Global Enable flags in DR7.
97
98 When the Local Enable flag is set, the breakpoint/watchpoint is
99 enabled only for the current task; the processor automatically
100 clears this flag on every task switch. When the Global Enable flag
101 is set, the breakpoint/watchpoint is enabled for all tasks; the
102 processor never clears this flag.
103
104 Currently, all watchpoint are locally enabled. If you need to
105 enable them globally, read the comment which pertains to this in
106 i386_dr_insert_aligned_watchpoint below. */
107 #define DR_LOCAL_ENABLE_SHIFT 0 /* Extra shift to the local enable bit. */
108 #define DR_GLOBAL_ENABLE_SHIFT 1 /* Extra shift to the global enable bit. */
109 #define DR_ENABLE_SIZE 2 /* Two enable bits per debug register. */
110
111 /* Local and global exact breakpoint enable flags (a.k.a. slowdown
112 flags). These are only required on i386, to allow detection of the
113 exact instruction which caused a watchpoint to break; i486 and
114 later processors do that automatically. We set these flags for
115 backwards compatibility. */
116 #define DR_LOCAL_SLOWDOWN (0x100)
117 #define DR_GLOBAL_SLOWDOWN (0x200)
118
119 /* Fields reserved by Intel. This includes the GD (General Detect
120 Enable) flag, which causes a debug exception to be generated when a
121 MOV instruction accesses one of the debug registers.
122
123 FIXME: My Intel manual says we should use 0xF800, not 0xFC00. */
124 #define DR_CONTROL_RESERVED (0xFC00)
125
126 /* Auxiliary helper macros. */
127
128 /* A value that masks all fields in DR7 that are reserved by Intel. */
129 #define I386_DR_CONTROL_MASK (~DR_CONTROL_RESERVED)
130
131 /* The I'th debug register is vacant if its Local and Global Enable
132 bits are reset in the Debug Control register. */
133 #define I386_DR_VACANT(state, i) \
134 (((state)->dr_control_mirror & (3 << (DR_ENABLE_SIZE * (i)))) == 0)
135
136 /* Locally enable the break/watchpoint in the I'th debug register. */
137 #define I386_DR_LOCAL_ENABLE(state, i) \
138 do { \
139 (state)->dr_control_mirror |= \
140 (1 << (DR_LOCAL_ENABLE_SHIFT + DR_ENABLE_SIZE * (i))); \
141 } while (0)
142
143 /* Globally enable the break/watchpoint in the I'th debug register. */
144 #define I386_DR_GLOBAL_ENABLE(state, i) \
145 do { \
146 (state)->dr_control_mirror |= \
147 (1 << (DR_GLOBAL_ENABLE_SHIFT + DR_ENABLE_SIZE * (i))); \
148 } while (0)
149
150 /* Disable the break/watchpoint in the I'th debug register. */
151 #define I386_DR_DISABLE(state, i) \
152 do { \
153 (state)->dr_control_mirror &= \
154 ~(3 << (DR_ENABLE_SIZE * (i))); \
155 } while (0)
156
157 /* Set in DR7 the RW and LEN fields for the I'th debug register. */
158 #define I386_DR_SET_RW_LEN(state, i, rwlen) \
159 do { \
160 (state)->dr_control_mirror &= \
161 ~(0x0f << (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))); \
162 (state)->dr_control_mirror |= \
163 ((rwlen) << (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))); \
164 } while (0)
165
166 /* Get from DR7 the RW and LEN fields for the I'th debug register. */
167 #define I386_DR_GET_RW_LEN(dr7, i) \
168 (((dr7) \
169 >> (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))) & 0x0f)
170
171 /* Did the watchpoint whose address is in the I'th register break? */
172 #define I386_DR_WATCH_HIT(dr6, i) ((dr6) & (1 << (i)))
173
174 /* Per-process data. We don't bind this to a per-inferior registry
175 because of targets like x86 GNU/Linux that need to keep track of
176 processes that aren't bound to any inferior (e.g., fork children,
177 checkpoints). */
178
179 struct i386_process_info
180 {
181 /* Linked list. */
182 struct i386_process_info *next;
183
184 /* The process identifier. */
185 pid_t pid;
186
187 /* Copy of i386 hardware debug registers. */
188 struct i386_debug_reg_state state;
189 };
190
191 static struct i386_process_info *i386_process_list = NULL;
192
193 /* Find process data for process PID. */
194
195 static struct i386_process_info *
196 i386_find_process_pid (pid_t pid)
197 {
198 struct i386_process_info *proc;
199
200 for (proc = i386_process_list; proc; proc = proc->next)
201 if (proc->pid == pid)
202 return proc;
203
204 return NULL;
205 }
206
207 /* Add process data for process PID. Returns newly allocated info
208 object. */
209
210 static struct i386_process_info *
211 i386_add_process (pid_t pid)
212 {
213 struct i386_process_info *proc;
214
215 proc = xcalloc (1, sizeof (*proc));
216 proc->pid = pid;
217
218 proc->next = i386_process_list;
219 i386_process_list = proc;
220
221 return proc;
222 }
223
224 /* Get data specific info for process PID, creating it if necessary.
225 Never returns NULL. */
226
227 static struct i386_process_info *
228 i386_process_info_get (pid_t pid)
229 {
230 struct i386_process_info *proc;
231
232 proc = i386_find_process_pid (pid);
233 if (proc == NULL)
234 proc = i386_add_process (pid);
235
236 return proc;
237 }
238
239 /* Get debug registers state for process PID. */
240
241 struct i386_debug_reg_state *
242 i386_debug_reg_state (pid_t pid)
243 {
244 return &i386_process_info_get (pid)->state;
245 }
246
247 /* See declaration in i386-nat.h. */
248
249 void
250 i386_forget_process (pid_t pid)
251 {
252 struct i386_process_info *proc, **proc_link;
253
254 proc = i386_process_list;
255 proc_link = &i386_process_list;
256
257 while (proc != NULL)
258 {
259 if (proc->pid == pid)
260 {
261 *proc_link = proc->next;
262
263 xfree (proc);
264 return;
265 }
266
267 proc_link = &proc->next;
268 proc = *proc_link;
269 }
270 }
271
272 /* Types of operations supported by i386_handle_nonaligned_watchpoint. */
273 typedef enum { WP_INSERT, WP_REMOVE, WP_COUNT } i386_wp_op_t;
274
275 /* Implementation. */
276
277 /* Clear the reference counts and forget everything we knew about the
278 debug registers. */
279
280 void
281 i386_cleanup_dregs (void)
282 {
283 /* Starting from scratch has the same effect. */
284 i386_forget_process (ptid_get_pid (inferior_ptid));
285 }
286
287 /* Print the values of the mirrored debug registers. */
288
289 void
290 i386_dr_show (struct i386_debug_reg_state *state,
291 const char *func, CORE_ADDR addr,
292 int len, enum target_hw_bp_type type)
293 {
294 int i;
295
296 debug_printf ("%s", func);
297 if (addr || len)
298 debug_printf (" (addr=%s, len=%d, type=%s)",
299 phex (addr, 8), len,
300 type == hw_write ? "data-write"
301 : (type == hw_read ? "data-read"
302 : (type == hw_access ? "data-read/write"
303 : (type == hw_execute ? "instruction-execute"
304 /* FIXME: if/when I/O read/write
305 watchpoints are supported, add them
306 here. */
307 : "??unknown??"))));
308 debug_printf (":\n");
309 debug_printf ("\tCONTROL (DR7): %s STATUS (DR6): %s\n",
310 phex (state->dr_control_mirror, 8),
311 phex (state->dr_status_mirror, 8));
312 ALL_DEBUG_REGISTERS (i)
313 {
314 debug_printf ("\
315 \tDR%d: addr=0x%s, ref.count=%d DR%d: addr=0x%s, ref.count=%d\n",
316 i, phex (state->dr_mirror[i],
317 i386_get_debug_register_length ()),
318 state->dr_ref_count[i],
319 i + 1, phex (state->dr_mirror[i + 1],
320 i386_get_debug_register_length ()),
321 state->dr_ref_count[i + 1]);
322 i++;
323 }
324 }
325
326 /* Return the value of a 4-bit field for DR7 suitable for watching a
327 region of LEN bytes for accesses of type TYPE. LEN is assumed to
328 have the value of 1, 2, or 4. */
329
330 unsigned
331 i386_dr_length_and_rw_bits (int len, enum target_hw_bp_type type)
332 {
333 unsigned rw;
334
335 switch (type)
336 {
337 case hw_execute:
338 rw = DR_RW_EXECUTE;
339 break;
340 case hw_write:
341 rw = DR_RW_WRITE;
342 break;
343 case hw_read:
344 internal_error (__FILE__, __LINE__,
345 _("The i386 doesn't support "
346 "data-read watchpoints.\n"));
347 case hw_access:
348 rw = DR_RW_READ;
349 break;
350 #if 0
351 /* Not yet supported. */
352 case hw_io_access:
353 rw = DR_RW_IORW;
354 break;
355 #endif
356 default:
357 internal_error (__FILE__, __LINE__, _("\
358 Invalid hardware breakpoint type %d in i386_dr_length_and_rw_bits.\n"),
359 (int) type);
360 }
361
362 switch (len)
363 {
364 case 1:
365 return (DR_LEN_1 | rw);
366 case 2:
367 return (DR_LEN_2 | rw);
368 case 4:
369 return (DR_LEN_4 | rw);
370 case 8:
371 if (TARGET_HAS_DR_LEN_8)
372 return (DR_LEN_8 | rw);
373 /* ELSE FALL THROUGH */
374 default:
375 internal_error (__FILE__, __LINE__, _("\
376 Invalid hardware breakpoint length %d in i386_dr_length_and_rw_bits.\n"), len);
377 }
378 }
379
380 /* Insert a watchpoint at address ADDR, which is assumed to be aligned
381 according to the length of the region to watch. LEN_RW_BITS is the
382 value of the bits from DR7 which describes the length and access
383 type of the region to be watched by this watchpoint. Return 0 on
384 success, -1 on failure. */
385
386 int
387 i386_dr_insert_aligned_watchpoint (struct i386_debug_reg_state *state,
388 CORE_ADDR addr, unsigned len_rw_bits)
389 {
390 int i;
391
392 if (!i386_dr_low_can_set_addr () || !i386_dr_low_can_set_control ())
393 return -1;
394
395 /* First, look for an occupied debug register with the same address
396 and the same RW and LEN definitions. If we find one, we can
397 reuse it for this watchpoint as well (and save a register). */
398 ALL_DEBUG_REGISTERS (i)
399 {
400 if (!I386_DR_VACANT (state, i)
401 && state->dr_mirror[i] == addr
402 && I386_DR_GET_RW_LEN (state->dr_control_mirror, i) == len_rw_bits)
403 {
404 state->dr_ref_count[i]++;
405 return 0;
406 }
407 }
408
409 /* Next, look for a vacant debug register. */
410 ALL_DEBUG_REGISTERS (i)
411 {
412 if (I386_DR_VACANT (state, i))
413 break;
414 }
415
416 /* No more debug registers! */
417 if (i >= DR_NADDR)
418 return -1;
419
420 /* Now set up the register I to watch our region. */
421
422 /* Record the info in our local mirrored array. */
423 state->dr_mirror[i] = addr;
424 state->dr_ref_count[i] = 1;
425 I386_DR_SET_RW_LEN (state, i, len_rw_bits);
426 /* Note: we only enable the watchpoint locally, i.e. in the current
427 task. Currently, no i386 target allows or supports global
428 watchpoints; however, if any target would want that in the
429 future, GDB should probably provide a command to control whether
430 to enable watchpoints globally or locally, and the code below
431 should use global or local enable and slow-down flags as
432 appropriate. */
433 I386_DR_LOCAL_ENABLE (state, i);
434 state->dr_control_mirror |= DR_LOCAL_SLOWDOWN;
435 state->dr_control_mirror &= I386_DR_CONTROL_MASK;
436
437 return 0;
438 }
439
440 /* Remove a watchpoint at address ADDR, which is assumed to be aligned
441 according to the length of the region to watch. LEN_RW_BITS is the
442 value of the bits from DR7 which describes the length and access
443 type of the region watched by this watchpoint. Return 0 on
444 success, -1 on failure. */
445
446 int
447 i386_dr_remove_aligned_watchpoint (struct i386_debug_reg_state *state,
448 CORE_ADDR addr, unsigned len_rw_bits)
449 {
450 int i, retval = -1;
451
452 ALL_DEBUG_REGISTERS (i)
453 {
454 if (!I386_DR_VACANT (state, i)
455 && state->dr_mirror[i] == addr
456 && I386_DR_GET_RW_LEN (state->dr_control_mirror, i) == len_rw_bits)
457 {
458 if (--state->dr_ref_count[i] == 0) /* No longer in use? */
459 {
460 /* Reset our mirror. */
461 state->dr_mirror[i] = 0;
462 I386_DR_DISABLE (state, i);
463 }
464 retval = 0;
465 }
466 }
467
468 return retval;
469 }
470
471 /* Insert or remove a (possibly non-aligned) watchpoint, or count the
472 number of debug registers required to watch a region at address
473 ADDR whose length is LEN for accesses of type TYPE. Return 0 on
474 successful insertion or removal, a positive number when queried
475 about the number of registers, or -1 on failure. If WHAT is not a
476 valid value, bombs through internal_error. */
477
478 static int
479 i386_handle_nonaligned_watchpoint (struct i386_debug_reg_state *state,
480 i386_wp_op_t what, CORE_ADDR addr, int len,
481 enum target_hw_bp_type type)
482 {
483 int retval = 0;
484 int max_wp_len = TARGET_HAS_DR_LEN_8 ? 8 : 4;
485
486 static const int size_try_array[8][8] =
487 {
488 {1, 1, 1, 1, 1, 1, 1, 1}, /* Trying size one. */
489 {2, 1, 2, 1, 2, 1, 2, 1}, /* Trying size two. */
490 {2, 1, 2, 1, 2, 1, 2, 1}, /* Trying size three. */
491 {4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size four. */
492 {4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size five. */
493 {4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size six. */
494 {4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size seven. */
495 {8, 1, 2, 1, 4, 1, 2, 1}, /* Trying size eight. */
496 };
497
498 while (len > 0)
499 {
500 int align = addr % max_wp_len;
501 /* Four (eight on AMD64) is the maximum length a debug register
502 can watch. */
503 int try = (len > max_wp_len ? (max_wp_len - 1) : len - 1);
504 int size = size_try_array[try][align];
505
506 if (what == WP_COUNT)
507 {
508 /* size_try_array[] is defined such that each iteration
509 through the loop is guaranteed to produce an address and a
510 size that can be watched with a single debug register.
511 Thus, for counting the registers required to watch a
512 region, we simply need to increment the count on each
513 iteration. */
514 retval++;
515 }
516 else
517 {
518 unsigned len_rw = i386_dr_length_and_rw_bits (size, type);
519
520 if (what == WP_INSERT)
521 retval = i386_dr_insert_aligned_watchpoint (state, addr, len_rw);
522 else if (what == WP_REMOVE)
523 retval = i386_dr_remove_aligned_watchpoint (state, addr, len_rw);
524 else
525 internal_error (__FILE__, __LINE__, _("\
526 Invalid value %d of operation in i386_handle_nonaligned_watchpoint.\n"),
527 (int) what);
528 if (retval)
529 break;
530 }
531
532 addr += size;
533 len -= size;
534 }
535
536 return retval;
537 }
538
539 /* Update the inferior debug registers state, in STATE, with the
540 new debug registers state, in NEW_STATE. */
541
542 void
543 i386_dr_update_inferior_debug_regs (struct i386_debug_reg_state *state,
544 struct i386_debug_reg_state *new_state)
545 {
546 int i;
547
548 ALL_DEBUG_REGISTERS (i)
549 {
550 if (I386_DR_VACANT (new_state, i) != I386_DR_VACANT (state, i))
551 i386_dr_low_set_addr (new_state, i);
552 else
553 gdb_assert (new_state->dr_mirror[i] == state->dr_mirror[i]);
554 }
555
556 if (new_state->dr_control_mirror != state->dr_control_mirror)
557 i386_dr_low_set_control (new_state);
558
559 *state = *new_state;
560 }
561
562 /* Insert a watchpoint to watch a memory region which starts at
563 address ADDR and whose length is LEN bytes. Watch memory accesses
564 of the type TYPE. Return 0 on success, -1 on failure. */
565
566 static int
567 i386_insert_watchpoint (struct target_ops *self,
568 CORE_ADDR addr, int len, int type,
569 struct expression *cond)
570 {
571 struct i386_debug_reg_state *state
572 = i386_debug_reg_state (ptid_get_pid (inferior_ptid));
573 int retval;
574 /* Work on a local copy of the debug registers, and on success,
575 commit the change back to the inferior. */
576 struct i386_debug_reg_state local_state = *state;
577
578 if (type == hw_read)
579 return 1; /* unsupported */
580
581 if (((len != 1 && len != 2 && len != 4)
582 && !(TARGET_HAS_DR_LEN_8 && len == 8))
583 || addr % len != 0)
584 {
585 retval = i386_handle_nonaligned_watchpoint (&local_state,
586 WP_INSERT,
587 addr, len, type);
588 }
589 else
590 {
591 unsigned len_rw = i386_dr_length_and_rw_bits (len, type);
592
593 retval = i386_dr_insert_aligned_watchpoint (&local_state,
594 addr, len_rw);
595 }
596
597 if (retval == 0)
598 i386_dr_update_inferior_debug_regs (state, &local_state);
599
600 if (debug_hw_points)
601 i386_dr_show (state, "insert_watchpoint", addr, len, type);
602
603 return retval;
604 }
605
606 /* Remove a watchpoint that watched the memory region which starts at
607 address ADDR, whose length is LEN bytes, and for accesses of the
608 type TYPE. Return 0 on success, -1 on failure. */
609 static int
610 i386_remove_watchpoint (struct target_ops *self,
611 CORE_ADDR addr, int len, int type,
612 struct expression *cond)
613 {
614 struct i386_debug_reg_state *state
615 = i386_debug_reg_state (ptid_get_pid (inferior_ptid));
616 int retval;
617 /* Work on a local copy of the debug registers, and on success,
618 commit the change back to the inferior. */
619 struct i386_debug_reg_state local_state = *state;
620
621 if (((len != 1 && len != 2 && len != 4)
622 && !(TARGET_HAS_DR_LEN_8 && len == 8))
623 || addr % len != 0)
624 {
625 retval = i386_handle_nonaligned_watchpoint (&local_state,
626 WP_REMOVE,
627 addr, len, type);
628 }
629 else
630 {
631 unsigned len_rw = i386_dr_length_and_rw_bits (len, type);
632
633 retval = i386_dr_remove_aligned_watchpoint (&local_state,
634 addr, len_rw);
635 }
636
637 if (retval == 0)
638 i386_dr_update_inferior_debug_regs (state, &local_state);
639
640 if (debug_hw_points)
641 i386_dr_show (state, "remove_watchpoint", addr, len, type);
642
643 return retval;
644 }
645
646 /* Return non-zero if we can watch a memory region that starts at
647 address ADDR and whose length is LEN bytes. */
648
649 static int
650 i386_region_ok_for_watchpoint (struct target_ops *self,
651 CORE_ADDR addr, int len)
652 {
653 struct i386_debug_reg_state *state
654 = i386_debug_reg_state (ptid_get_pid (inferior_ptid));
655 int nregs;
656
657 /* Compute how many aligned watchpoints we would need to cover this
658 region. */
659 nregs = i386_handle_nonaligned_watchpoint (state, WP_COUNT,
660 addr, len, hw_write);
661 return nregs <= DR_NADDR ? 1 : 0;
662 }
663
664 /* If the inferior has some break/watchpoint that triggered, set the
665 address associated with that break/watchpoint and return non-zero.
666 Otherwise, return zero. */
667
668 static int
669 i386_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
670 {
671 struct i386_debug_reg_state *state
672 = i386_debug_reg_state (ptid_get_pid (inferior_ptid));
673 CORE_ADDR addr = 0;
674 int i;
675 int rc = 0;
676 /* The current thread's DR_STATUS. We always need to read this to
677 check whether some watchpoint caused the trap. */
678 unsigned status;
679 /* We need DR_CONTROL as well, but only iff DR_STATUS indicates a
680 data breakpoint trap. Only fetch it when necessary, to avoid an
681 unnecessary extra syscall when no watchpoint triggered. */
682 int control_p = 0;
683 unsigned control = 0;
684
685 /* In non-stop/async, threads can be running while we change the
686 global dr_mirror (and friends). Say, we set a watchpoint, and
687 let threads resume. Now, say you delete the watchpoint, or
688 add/remove watchpoints such that dr_mirror changes while threads
689 are running. On targets that support non-stop,
690 inserting/deleting watchpoints updates the global dr_mirror only.
691 It does not update the real thread's debug registers; that's only
692 done prior to resume. Instead, if threads are running when the
693 mirror changes, a temporary and transparent stop on all threads
694 is forced so they can get their copy of the debug registers
695 updated on re-resume. Now, say, a thread hit a watchpoint before
696 having been updated with the new dr_mirror contents, and we
697 haven't yet handled the corresponding SIGTRAP. If we trusted
698 dr_mirror below, we'd mistake the real trapped address (from the
699 last time we had updated debug registers in the thread) with
700 whatever was currently in dr_mirror. So to fix this, dr_mirror
701 always represents intention, what we _want_ threads to have in
702 debug registers. To get at the address and cause of the trap, we
703 need to read the state the thread still has in its debug
704 registers.
705
706 In sum, always get the current debug register values the current
707 thread has, instead of trusting the global mirror. If the thread
708 was running when we last changed watchpoints, the mirror no
709 longer represents what was set in this thread's debug
710 registers. */
711 status = i386_dr_low_get_status ();
712
713 ALL_DEBUG_REGISTERS (i)
714 {
715 if (!I386_DR_WATCH_HIT (status, i))
716 continue;
717
718 if (!control_p)
719 {
720 control = i386_dr_low_get_control ();
721 control_p = 1;
722 }
723
724 /* This second condition makes sure DRi is set up for a data
725 watchpoint, not a hardware breakpoint. The reason is that
726 GDB doesn't call the target_stopped_data_address method
727 except for data watchpoints. In other words, I'm being
728 paranoiac. */
729 if (I386_DR_GET_RW_LEN (control, i) != 0)
730 {
731 addr = i386_dr_low_get_addr (i);
732 rc = 1;
733 if (debug_hw_points)
734 i386_dr_show (state, "watchpoint_hit", addr, -1, hw_write);
735 }
736 }
737
738 if (debug_hw_points && addr == 0)
739 i386_dr_show (state, "stopped_data_addr", 0, 0, hw_write);
740
741 if (rc)
742 *addr_p = addr;
743 return rc;
744 }
745
746 /* Return non-zero if the inferior has some watchpoint that triggered.
747 Otherwise return zero. */
748
749 static int
750 i386_stopped_by_watchpoint (struct target_ops *ops)
751 {
752 CORE_ADDR addr = 0;
753 return i386_stopped_data_address (ops, &addr);
754 }
755
756 /* Insert a hardware-assisted breakpoint at BP_TGT->placed_address.
757 Return 0 on success, EBUSY on failure. */
758 static int
759 i386_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
760 struct bp_target_info *bp_tgt)
761 {
762 struct i386_debug_reg_state *state
763 = i386_debug_reg_state (ptid_get_pid (inferior_ptid));
764 unsigned len_rw = i386_dr_length_and_rw_bits (1, hw_execute);
765 CORE_ADDR addr = bp_tgt->placed_address;
766 /* Work on a local copy of the debug registers, and on success,
767 commit the change back to the inferior. */
768 struct i386_debug_reg_state local_state = *state;
769 int retval = i386_dr_insert_aligned_watchpoint (&local_state,
770 addr,
771 len_rw) ? EBUSY : 0;
772
773 if (retval == 0)
774 i386_dr_update_inferior_debug_regs (state, &local_state);
775
776 if (debug_hw_points)
777 i386_dr_show (state, "insert_hwbp", addr, 1, hw_execute);
778
779 return retval;
780 }
781
782 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
783 Return 0 on success, -1 on failure. */
784
785 static int
786 i386_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
787 struct bp_target_info *bp_tgt)
788 {
789 struct i386_debug_reg_state *state
790 = i386_debug_reg_state (ptid_get_pid (inferior_ptid));
791 unsigned len_rw = i386_dr_length_and_rw_bits (1, hw_execute);
792 CORE_ADDR addr = bp_tgt->placed_address;
793 /* Work on a local copy of the debug registers, and on success,
794 commit the change back to the inferior. */
795 struct i386_debug_reg_state local_state = *state;
796 int retval = i386_dr_remove_aligned_watchpoint (&local_state,
797 addr, len_rw);
798
799 if (retval == 0)
800 i386_dr_update_inferior_debug_regs (state, &local_state);
801
802 if (debug_hw_points)
803 i386_dr_show (state, "remove_hwbp", addr, 1, hw_execute);
804
805 return retval;
806 }
807
808 /* Returns the number of hardware watchpoints of type TYPE that we can
809 set. Value is positive if we can set CNT watchpoints, zero if
810 setting watchpoints of type TYPE is not supported, and negative if
811 CNT is more than the maximum number of watchpoints of type TYPE
812 that we can support. TYPE is one of bp_hardware_watchpoint,
813 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
814 CNT is the number of such watchpoints used so far (including this
815 one). OTHERTYPE is non-zero if other types of watchpoints are
816 currently enabled.
817
818 We always return 1 here because we don't have enough information
819 about possible overlap of addresses that they want to watch. As an
820 extreme example, consider the case where all the watchpoints watch
821 the same address and the same region length: then we can handle a
822 virtually unlimited number of watchpoints, due to debug register
823 sharing implemented via reference counts in i386-nat.c. */
824
825 static int
826 i386_can_use_hw_breakpoint (struct target_ops *self,
827 int type, int cnt, int othertype)
828 {
829 return 1;
830 }
831
832 static void
833 add_show_debug_regs_command (void)
834 {
835 /* A maintenance command to enable printing the internal DRi mirror
836 variables. */
837 add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
838 &debug_hw_points, _("\
839 Set whether to show variables that mirror the x86 debug registers."), _("\
840 Show whether to show variables that mirror the x86 debug registers."), _("\
841 Use \"on\" to enable, \"off\" to disable.\n\
842 If enabled, the debug registers values are shown when GDB inserts\n\
843 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
844 triggers a breakpoint or watchpoint."),
845 NULL,
846 NULL,
847 &maintenance_set_cmdlist,
848 &maintenance_show_cmdlist);
849 }
850
851 /* There are only two global functions left. */
852
853 void
854 i386_use_watchpoints (struct target_ops *t)
855 {
856 /* After a watchpoint trap, the PC points to the instruction after the
857 one that caused the trap. Therefore we don't need to step over it.
858 But we do need to reset the status register to avoid another trap. */
859 t->to_have_continuable_watchpoint = 1;
860
861 t->to_can_use_hw_breakpoint = i386_can_use_hw_breakpoint;
862 t->to_region_ok_for_hw_watchpoint = i386_region_ok_for_watchpoint;
863 t->to_stopped_by_watchpoint = i386_stopped_by_watchpoint;
864 t->to_stopped_data_address = i386_stopped_data_address;
865 t->to_insert_watchpoint = i386_insert_watchpoint;
866 t->to_remove_watchpoint = i386_remove_watchpoint;
867 t->to_insert_hw_breakpoint = i386_insert_hw_breakpoint;
868 t->to_remove_hw_breakpoint = i386_remove_hw_breakpoint;
869 }
870
871 void
872 i386_set_debug_register_length (int len)
873 {
874 /* This function should be called only once for each native target. */
875 gdb_assert (i386_dr_low.debug_register_length == 0);
876 gdb_assert (len == 4 || len == 8);
877 i386_dr_low.debug_register_length = len;
878 add_show_debug_regs_command ();
879 }
This page took 0.046301 seconds and 4 git commands to generate.