Create nat/i386-dregs.c
[deliverable/binutils-gdb.git] / gdb / i386-nat.c
1 /* Native-dependent code for the i386.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "i386-nat.h"
22 #include "gdbcmd.h"
23 #include "inferior.h"
24
25 /* Support for hardware watchpoints and breakpoints using the i386
26 debug registers.
27
28 This provides several functions for inserting and removing
29 hardware-assisted breakpoints and watchpoints, testing if one or
30 more of the watchpoints triggered and at what address, checking
31 whether a given region can be watched, etc.
32
33 The functions below implement debug registers sharing by reference
34 counts, and allow to watch regions up to 16 bytes long. */
35
36 /* Whether or not to print the mirrored debug registers. */
37 int debug_hw_points;
38
39 /* Low-level function vector. */
40 struct i386_dr_low_type i386_dr_low;
41
42 /* Per-process data. We don't bind this to a per-inferior registry
43 because of targets like x86 GNU/Linux that need to keep track of
44 processes that aren't bound to any inferior (e.g., fork children,
45 checkpoints). */
46
47 struct i386_process_info
48 {
49 /* Linked list. */
50 struct i386_process_info *next;
51
52 /* The process identifier. */
53 pid_t pid;
54
55 /* Copy of i386 hardware debug registers. */
56 struct i386_debug_reg_state state;
57 };
58
59 static struct i386_process_info *i386_process_list = NULL;
60
61 /* Find process data for process PID. */
62
63 static struct i386_process_info *
64 i386_find_process_pid (pid_t pid)
65 {
66 struct i386_process_info *proc;
67
68 for (proc = i386_process_list; proc; proc = proc->next)
69 if (proc->pid == pid)
70 return proc;
71
72 return NULL;
73 }
74
75 /* Add process data for process PID. Returns newly allocated info
76 object. */
77
78 static struct i386_process_info *
79 i386_add_process (pid_t pid)
80 {
81 struct i386_process_info *proc;
82
83 proc = xcalloc (1, sizeof (*proc));
84 proc->pid = pid;
85
86 proc->next = i386_process_list;
87 i386_process_list = proc;
88
89 return proc;
90 }
91
92 /* Get data specific info for process PID, creating it if necessary.
93 Never returns NULL. */
94
95 static struct i386_process_info *
96 i386_process_info_get (pid_t pid)
97 {
98 struct i386_process_info *proc;
99
100 proc = i386_find_process_pid (pid);
101 if (proc == NULL)
102 proc = i386_add_process (pid);
103
104 return proc;
105 }
106
107 /* Get debug registers state for process PID. */
108
109 struct i386_debug_reg_state *
110 i386_debug_reg_state (pid_t pid)
111 {
112 return &i386_process_info_get (pid)->state;
113 }
114
115 /* See declaration in i386-nat.h. */
116
117 void
118 i386_forget_process (pid_t pid)
119 {
120 struct i386_process_info *proc, **proc_link;
121
122 proc = i386_process_list;
123 proc_link = &i386_process_list;
124
125 while (proc != NULL)
126 {
127 if (proc->pid == pid)
128 {
129 *proc_link = proc->next;
130
131 xfree (proc);
132 return;
133 }
134
135 proc_link = &proc->next;
136 proc = *proc_link;
137 }
138 }
139
140 /* Clear the reference counts and forget everything we knew about the
141 debug registers. */
142
143 void
144 i386_cleanup_dregs (void)
145 {
146 /* Starting from scratch has the same effect. */
147 i386_forget_process (ptid_get_pid (inferior_ptid));
148 }
149
150 /* Insert a watchpoint to watch a memory region which starts at
151 address ADDR and whose length is LEN bytes. Watch memory accesses
152 of the type TYPE. Return 0 on success, -1 on failure. */
153
154 static int
155 i386_insert_watchpoint (struct target_ops *self,
156 CORE_ADDR addr, int len, int type,
157 struct expression *cond)
158 {
159 struct i386_debug_reg_state *state
160 = i386_debug_reg_state (ptid_get_pid (inferior_ptid));
161
162 return i386_dr_insert_watchpoint (state, type, addr, len);
163 }
164
165 /* Remove a watchpoint that watched the memory region which starts at
166 address ADDR, whose length is LEN bytes, and for accesses of the
167 type TYPE. Return 0 on success, -1 on failure. */
168 static int
169 i386_remove_watchpoint (struct target_ops *self,
170 CORE_ADDR addr, int len, int type,
171 struct expression *cond)
172 {
173 struct i386_debug_reg_state *state
174 = i386_debug_reg_state (ptid_get_pid (inferior_ptid));
175
176 return i386_dr_remove_watchpoint (state, type, addr, len);
177 }
178
179 /* Return non-zero if we can watch a memory region that starts at
180 address ADDR and whose length is LEN bytes. */
181
182 static int
183 i386_region_ok_for_watchpoint (struct target_ops *self,
184 CORE_ADDR addr, int len)
185 {
186 struct i386_debug_reg_state *state
187 = i386_debug_reg_state (ptid_get_pid (inferior_ptid));
188
189 return i386_dr_region_ok_for_watchpoint (state, addr, len);
190 }
191
192 /* If the inferior has some break/watchpoint that triggered, set the
193 address associated with that break/watchpoint and return non-zero.
194 Otherwise, return zero. */
195
196 static int
197 i386_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
198 {
199 struct i386_debug_reg_state *state
200 = i386_debug_reg_state (ptid_get_pid (inferior_ptid));
201
202 return i386_dr_stopped_data_address (state, addr_p);
203 }
204
205 /* Return non-zero if the inferior has some watchpoint that triggered.
206 Otherwise return zero. */
207
208 static int
209 i386_stopped_by_watchpoint (struct target_ops *ops)
210 {
211 CORE_ADDR addr = 0;
212 return i386_stopped_data_address (ops, &addr);
213 }
214
215 /* Insert a hardware-assisted breakpoint at BP_TGT->placed_address.
216 Return 0 on success, EBUSY on failure. */
217
218 static int
219 i386_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
220 struct bp_target_info *bp_tgt)
221 {
222 return i386_insert_watchpoint (self, bp_tgt->placed_address, 1,
223 hw_execute, NULL) ? EBUSY : 0;
224 }
225
226 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
227 Return 0 on success, -1 on failure. */
228
229 static int
230 i386_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
231 struct bp_target_info *bp_tgt)
232 {
233 return i386_remove_watchpoint (self, bp_tgt->placed_address, 1,
234 hw_execute, NULL);
235 }
236
237 /* Returns the number of hardware watchpoints of type TYPE that we can
238 set. Value is positive if we can set CNT watchpoints, zero if
239 setting watchpoints of type TYPE is not supported, and negative if
240 CNT is more than the maximum number of watchpoints of type TYPE
241 that we can support. TYPE is one of bp_hardware_watchpoint,
242 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
243 CNT is the number of such watchpoints used so far (including this
244 one). OTHERTYPE is non-zero if other types of watchpoints are
245 currently enabled.
246
247 We always return 1 here because we don't have enough information
248 about possible overlap of addresses that they want to watch. As an
249 extreme example, consider the case where all the watchpoints watch
250 the same address and the same region length: then we can handle a
251 virtually unlimited number of watchpoints, due to debug register
252 sharing implemented via reference counts in i386-nat.c. */
253
254 static int
255 i386_can_use_hw_breakpoint (struct target_ops *self,
256 int type, int cnt, int othertype)
257 {
258 return 1;
259 }
260
261 static void
262 add_show_debug_regs_command (void)
263 {
264 /* A maintenance command to enable printing the internal DRi mirror
265 variables. */
266 add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
267 &debug_hw_points, _("\
268 Set whether to show variables that mirror the x86 debug registers."), _("\
269 Show whether to show variables that mirror the x86 debug registers."), _("\
270 Use \"on\" to enable, \"off\" to disable.\n\
271 If enabled, the debug registers values are shown when GDB inserts\n\
272 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
273 triggers a breakpoint or watchpoint."),
274 NULL,
275 NULL,
276 &maintenance_set_cmdlist,
277 &maintenance_show_cmdlist);
278 }
279
280 /* There are only two global functions left. */
281
282 void
283 i386_use_watchpoints (struct target_ops *t)
284 {
285 /* After a watchpoint trap, the PC points to the instruction after the
286 one that caused the trap. Therefore we don't need to step over it.
287 But we do need to reset the status register to avoid another trap. */
288 t->to_have_continuable_watchpoint = 1;
289
290 t->to_can_use_hw_breakpoint = i386_can_use_hw_breakpoint;
291 t->to_region_ok_for_hw_watchpoint = i386_region_ok_for_watchpoint;
292 t->to_stopped_by_watchpoint = i386_stopped_by_watchpoint;
293 t->to_stopped_data_address = i386_stopped_data_address;
294 t->to_insert_watchpoint = i386_insert_watchpoint;
295 t->to_remove_watchpoint = i386_remove_watchpoint;
296 t->to_insert_hw_breakpoint = i386_insert_hw_breakpoint;
297 t->to_remove_hw_breakpoint = i386_remove_hw_breakpoint;
298 }
299
300 void
301 i386_set_debug_register_length (int len)
302 {
303 /* This function should be called only once for each native target. */
304 gdb_assert (i386_dr_low.debug_register_length == 0);
305 gdb_assert (len == 4 || len == 8);
306 i386_dr_low.debug_register_length = len;
307 add_show_debug_regs_command ();
308 }
This page took 0.047969 seconds and 4 git commands to generate.