* linux-thread-db.c (thread_db_mourn_inferior): Remove breakpoints
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "command.h"
27 #include "dummy-frame.h"
28 #include "dwarf2-frame.h"
29 #include "doublest.h"
30 #include "floatformat.h"
31 #include "frame.h"
32 #include "frame-base.h"
33 #include "frame-unwind.h"
34 #include "inferior.h"
35 #include "gdbcmd.h"
36 #include "gdbcore.h"
37 #include "objfiles.h"
38 #include "osabi.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41 #include "regset.h"
42 #include "symfile.h"
43 #include "symtab.h"
44 #include "target.h"
45 #include "value.h"
46 #include "dis-asm.h"
47
48 #include "gdb_assert.h"
49 #include "gdb_string.h"
50
51 #include "i386-tdep.h"
52 #include "i387-tdep.h"
53
54 /* Register names. */
55
56 static char *i386_register_names[] =
57 {
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69 };
70
71 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
72
73 /* Register names for MMX pseudo-registers. */
74
75 static char *i386_mmx_names[] =
76 {
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79 };
80
81 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
82
83 static int
84 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
85 {
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
92 }
93
94 /* SSE register? */
95
96 static int
97 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
98 {
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101 #define I387_ST0_REGNUM tdep->st0_regnum
102 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109 #undef I387_ST0_REGNUM
110 #undef I387_NUM_XMM_REGS
111 }
112
113 static int
114 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
115 {
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118 #define I387_ST0_REGNUM tdep->st0_regnum
119 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126 #undef I387_ST0_REGNUM
127 #undef I387_NUM_XMM_REGS
128 }
129
130 #define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131 #define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132 #define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134 /* FP register? */
135
136 int
137 i386_fp_regnum_p (int regnum)
138 {
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
143 }
144
145 int
146 i386_fpc_regnum_p (int regnum)
147 {
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
152 }
153
154 /* Return the name of register REGNUM. */
155
156 const char *
157 i386_register_name (int regnum)
158 {
159 if (i386_mmx_regnum_p (current_gdbarch, regnum))
160 return i386_mmx_names[regnum - I387_MM0_REGNUM];
161
162 if (regnum >= 0 && regnum < i386_num_register_names)
163 return i386_register_names[regnum];
164
165 return NULL;
166 }
167
168 /* Convert a dbx register number REG to the appropriate register
169 number used by GDB. */
170
171 static int
172 i386_dbx_reg_to_regnum (int reg)
173 {
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
177 if (reg >= 0 && reg <= 7)
178 {
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
190 return reg - 12 + I387_ST0_REGNUM;
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
195 return reg - 21 + I387_XMM0_REGNUM;
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
200 return reg - 29 + I387_MM0_REGNUM;
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205 }
206
207 /* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
209
210 static int
211 i386_svr4_reg_to_regnum (int reg)
212 {
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
220 /* General-purpose registers. */
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
226 return reg - 11 + I387_ST0_REGNUM;
227 }
228 else if (reg >= 21 && reg <= 36)
229 {
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
232 }
233
234 switch (reg)
235 {
236 case 37: return I387_FCTRL_REGNUM;
237 case 38: return I387_FSTAT_REGNUM;
238 case 39: return I387_MXCSR_REGNUM;
239 case 40: return I386_ES_REGNUM;
240 case 41: return I386_CS_REGNUM;
241 case 42: return I386_SS_REGNUM;
242 case 43: return I386_DS_REGNUM;
243 case 44: return I386_FS_REGNUM;
244 case 45: return I386_GS_REGNUM;
245 }
246
247 /* This will hopefully provoke a warning. */
248 return NUM_REGS + NUM_PSEUDO_REGS;
249 }
250
251 #undef I387_ST0_REGNUM
252 #undef I387_MM0_REGNUM
253 #undef I387_NUM_XMM_REGS
254 \f
255
256 /* This is the variable that is set with "set disassembly-flavor", and
257 its legitimate values. */
258 static const char att_flavor[] = "att";
259 static const char intel_flavor[] = "intel";
260 static const char *valid_flavors[] =
261 {
262 att_flavor,
263 intel_flavor,
264 NULL
265 };
266 static const char *disassembly_flavor = att_flavor;
267 \f
268
269 /* Use the program counter to determine the contents and size of a
270 breakpoint instruction. Return a pointer to a string of bytes that
271 encode a breakpoint instruction, store the length of the string in
272 *LEN and optionally adjust *PC to point to the correct memory
273 location for inserting the breakpoint.
274
275 On the i386 we have a single breakpoint that fits in a single byte
276 and can be inserted anywhere.
277
278 This function is 64-bit safe. */
279
280 static const gdb_byte *
281 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
282 {
283 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
284
285 *len = sizeof (break_insn);
286 return break_insn;
287 }
288 \f
289 #ifdef I386_REGNO_TO_SYMMETRY
290 #error "The Sequent Symmetry is no longer supported."
291 #endif
292
293 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
294 and %esp "belong" to the calling function. Therefore these
295 registers should be saved if they're going to be modified. */
296
297 /* The maximum number of saved registers. This should include all
298 registers mentioned above, and %eip. */
299 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
300
301 struct i386_frame_cache
302 {
303 /* Base address. */
304 CORE_ADDR base;
305 LONGEST sp_offset;
306 CORE_ADDR pc;
307
308 /* Saved registers. */
309 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
310 CORE_ADDR saved_sp;
311 int pc_in_eax;
312
313 /* Stack space reserved for local variables. */
314 long locals;
315 };
316
317 /* Allocate and initialize a frame cache. */
318
319 static struct i386_frame_cache *
320 i386_alloc_frame_cache (void)
321 {
322 struct i386_frame_cache *cache;
323 int i;
324
325 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
326
327 /* Base address. */
328 cache->base = 0;
329 cache->sp_offset = -4;
330 cache->pc = 0;
331
332 /* Saved registers. We initialize these to -1 since zero is a valid
333 offset (that's where %ebp is supposed to be stored). */
334 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
335 cache->saved_regs[i] = -1;
336 cache->saved_sp = 0;
337 cache->pc_in_eax = 0;
338
339 /* Frameless until proven otherwise. */
340 cache->locals = -1;
341
342 return cache;
343 }
344
345 /* If the instruction at PC is a jump, return the address of its
346 target. Otherwise, return PC. */
347
348 static CORE_ADDR
349 i386_follow_jump (CORE_ADDR pc)
350 {
351 gdb_byte op;
352 long delta = 0;
353 int data16 = 0;
354
355 op = read_memory_unsigned_integer (pc, 1);
356 if (op == 0x66)
357 {
358 data16 = 1;
359 op = read_memory_unsigned_integer (pc + 1, 1);
360 }
361
362 switch (op)
363 {
364 case 0xe9:
365 /* Relative jump: if data16 == 0, disp32, else disp16. */
366 if (data16)
367 {
368 delta = read_memory_integer (pc + 2, 2);
369
370 /* Include the size of the jmp instruction (including the
371 0x66 prefix). */
372 delta += 4;
373 }
374 else
375 {
376 delta = read_memory_integer (pc + 1, 4);
377
378 /* Include the size of the jmp instruction. */
379 delta += 5;
380 }
381 break;
382 case 0xeb:
383 /* Relative jump, disp8 (ignore data16). */
384 delta = read_memory_integer (pc + data16 + 1, 1);
385
386 delta += data16 + 2;
387 break;
388 }
389
390 return pc + delta;
391 }
392
393 /* Check whether PC points at a prologue for a function returning a
394 structure or union. If so, it updates CACHE and returns the
395 address of the first instruction after the code sequence that
396 removes the "hidden" argument from the stack or CURRENT_PC,
397 whichever is smaller. Otherwise, return PC. */
398
399 static CORE_ADDR
400 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
401 struct i386_frame_cache *cache)
402 {
403 /* Functions that return a structure or union start with:
404
405 popl %eax 0x58
406 xchgl %eax, (%esp) 0x87 0x04 0x24
407 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
408
409 (the System V compiler puts out the second `xchg' instruction,
410 and the assembler doesn't try to optimize it, so the 'sib' form
411 gets generated). This sequence is used to get the address of the
412 return buffer for a function that returns a structure. */
413 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
414 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
415 gdb_byte buf[4];
416 gdb_byte op;
417
418 if (current_pc <= pc)
419 return pc;
420
421 op = read_memory_unsigned_integer (pc, 1);
422
423 if (op != 0x58) /* popl %eax */
424 return pc;
425
426 read_memory (pc + 1, buf, 4);
427 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
428 return pc;
429
430 if (current_pc == pc)
431 {
432 cache->sp_offset += 4;
433 return current_pc;
434 }
435
436 if (current_pc == pc + 1)
437 {
438 cache->pc_in_eax = 1;
439 return current_pc;
440 }
441
442 if (buf[1] == proto1[1])
443 return pc + 4;
444 else
445 return pc + 5;
446 }
447
448 static CORE_ADDR
449 i386_skip_probe (CORE_ADDR pc)
450 {
451 /* A function may start with
452
453 pushl constant
454 call _probe
455 addl $4, %esp
456
457 followed by
458
459 pushl %ebp
460
461 etc. */
462 gdb_byte buf[8];
463 gdb_byte op;
464
465 op = read_memory_unsigned_integer (pc, 1);
466
467 if (op == 0x68 || op == 0x6a)
468 {
469 int delta;
470
471 /* Skip past the `pushl' instruction; it has either a one-byte or a
472 four-byte operand, depending on the opcode. */
473 if (op == 0x68)
474 delta = 5;
475 else
476 delta = 2;
477
478 /* Read the following 8 bytes, which should be `call _probe' (6
479 bytes) followed by `addl $4,%esp' (2 bytes). */
480 read_memory (pc + delta, buf, sizeof (buf));
481 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
482 pc += delta + sizeof (buf);
483 }
484
485 return pc;
486 }
487
488 /* Maximum instruction length we need to handle. */
489 #define I386_MAX_INSN_LEN 6
490
491 /* Instruction description. */
492 struct i386_insn
493 {
494 size_t len;
495 gdb_byte insn[I386_MAX_INSN_LEN];
496 gdb_byte mask[I386_MAX_INSN_LEN];
497 };
498
499 /* Search for the instruction at PC in the list SKIP_INSNS. Return
500 the first instruction description that matches. Otherwise, return
501 NULL. */
502
503 static struct i386_insn *
504 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
505 {
506 struct i386_insn *insn;
507 gdb_byte op;
508
509 op = read_memory_unsigned_integer (pc, 1);
510
511 for (insn = skip_insns; insn->len > 0; insn++)
512 {
513 if ((op & insn->mask[0]) == insn->insn[0])
514 {
515 gdb_byte buf[I386_MAX_INSN_LEN - 1];
516 int insn_matched = 1;
517 size_t i;
518
519 gdb_assert (insn->len > 1);
520 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
521
522 read_memory (pc + 1, buf, insn->len - 1);
523 for (i = 1; i < insn->len; i++)
524 {
525 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
526 insn_matched = 0;
527 }
528
529 if (insn_matched)
530 return insn;
531 }
532 }
533
534 return NULL;
535 }
536
537 /* Some special instructions that might be migrated by GCC into the
538 part of the prologue that sets up the new stack frame. Because the
539 stack frame hasn't been setup yet, no registers have been saved
540 yet, and only the scratch registers %eax, %ecx and %edx can be
541 touched. */
542
543 struct i386_insn i386_frame_setup_skip_insns[] =
544 {
545 /* Check for `movb imm8, r' and `movl imm32, r'.
546
547 ??? Should we handle 16-bit operand-sizes here? */
548
549 /* `movb imm8, %al' and `movb imm8, %ah' */
550 /* `movb imm8, %cl' and `movb imm8, %ch' */
551 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
552 /* `movb imm8, %dl' and `movb imm8, %dh' */
553 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
554 /* `movl imm32, %eax' and `movl imm32, %ecx' */
555 { 5, { 0xb8 }, { 0xfe } },
556 /* `movl imm32, %edx' */
557 { 5, { 0xba }, { 0xff } },
558
559 /* Check for `mov imm32, r32'. Note that there is an alternative
560 encoding for `mov m32, %eax'.
561
562 ??? Should we handle SIB adressing here?
563 ??? Should we handle 16-bit operand-sizes here? */
564
565 /* `movl m32, %eax' */
566 { 5, { 0xa1 }, { 0xff } },
567 /* `movl m32, %eax' and `mov; m32, %ecx' */
568 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
569 /* `movl m32, %edx' */
570 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
571
572 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
573 Because of the symmetry, there are actually two ways to encode
574 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
575 opcode bytes 0x31 and 0x33 for `xorl'. */
576
577 /* `subl %eax, %eax' */
578 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
579 /* `subl %ecx, %ecx' */
580 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
581 /* `subl %edx, %edx' */
582 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
583 /* `xorl %eax, %eax' */
584 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
585 /* `xorl %ecx, %ecx' */
586 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
587 /* `xorl %edx, %edx' */
588 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
589 { 0 }
590 };
591
592 /* Check whether PC points at a code that sets up a new stack frame.
593 If so, it updates CACHE and returns the address of the first
594 instruction after the sequence that sets up the frame or LIMIT,
595 whichever is smaller. If we don't recognize the code, return PC. */
596
597 static CORE_ADDR
598 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
599 struct i386_frame_cache *cache)
600 {
601 struct i386_insn *insn;
602 gdb_byte op;
603 int skip = 0;
604
605 if (limit <= pc)
606 return limit;
607
608 op = read_memory_unsigned_integer (pc, 1);
609
610 if (op == 0x55) /* pushl %ebp */
611 {
612 /* Take into account that we've executed the `pushl %ebp' that
613 starts this instruction sequence. */
614 cache->saved_regs[I386_EBP_REGNUM] = 0;
615 cache->sp_offset += 4;
616 pc++;
617
618 /* If that's all, return now. */
619 if (limit <= pc)
620 return limit;
621
622 /* Check for some special instructions that might be migrated by
623 GCC into the prologue and skip them. At this point in the
624 prologue, code should only touch the scratch registers %eax,
625 %ecx and %edx, so while the number of posibilities is sheer,
626 it is limited.
627
628 Make sure we only skip these instructions if we later see the
629 `movl %esp, %ebp' that actually sets up the frame. */
630 while (pc + skip < limit)
631 {
632 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
633 if (insn == NULL)
634 break;
635
636 skip += insn->len;
637 }
638
639 /* If that's all, return now. */
640 if (limit <= pc + skip)
641 return limit;
642
643 op = read_memory_unsigned_integer (pc + skip, 1);
644
645 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
646 switch (op)
647 {
648 case 0x8b:
649 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
650 return pc;
651 break;
652 case 0x89:
653 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
654 return pc;
655 break;
656 default:
657 return pc;
658 }
659
660 /* OK, we actually have a frame. We just don't know how large
661 it is yet. Set its size to zero. We'll adjust it if
662 necessary. We also now commit to skipping the special
663 instructions mentioned before. */
664 cache->locals = 0;
665 pc += (skip + 2);
666
667 /* If that's all, return now. */
668 if (limit <= pc)
669 return limit;
670
671 /* Check for stack adjustment
672
673 subl $XXX, %esp
674
675 NOTE: You can't subtract a 16-bit immediate from a 32-bit
676 reg, so we don't have to worry about a data16 prefix. */
677 op = read_memory_unsigned_integer (pc, 1);
678 if (op == 0x83)
679 {
680 /* `subl' with 8-bit immediate. */
681 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
682 /* Some instruction starting with 0x83 other than `subl'. */
683 return pc;
684
685 /* `subl' with signed 8-bit immediate (though it wouldn't
686 make sense to be negative). */
687 cache->locals = read_memory_integer (pc + 2, 1);
688 return pc + 3;
689 }
690 else if (op == 0x81)
691 {
692 /* Maybe it is `subl' with a 32-bit immediate. */
693 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
694 /* Some instruction starting with 0x81 other than `subl'. */
695 return pc;
696
697 /* It is `subl' with a 32-bit immediate. */
698 cache->locals = read_memory_integer (pc + 2, 4);
699 return pc + 6;
700 }
701 else
702 {
703 /* Some instruction other than `subl'. */
704 return pc;
705 }
706 }
707 else if (op == 0xc8) /* enter */
708 {
709 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
710 return pc + 4;
711 }
712
713 return pc;
714 }
715
716 /* Check whether PC points at code that saves registers on the stack.
717 If so, it updates CACHE and returns the address of the first
718 instruction after the register saves or CURRENT_PC, whichever is
719 smaller. Otherwise, return PC. */
720
721 static CORE_ADDR
722 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
723 struct i386_frame_cache *cache)
724 {
725 CORE_ADDR offset = 0;
726 gdb_byte op;
727 int i;
728
729 if (cache->locals > 0)
730 offset -= cache->locals;
731 for (i = 0; i < 8 && pc < current_pc; i++)
732 {
733 op = read_memory_unsigned_integer (pc, 1);
734 if (op < 0x50 || op > 0x57)
735 break;
736
737 offset -= 4;
738 cache->saved_regs[op - 0x50] = offset;
739 cache->sp_offset += 4;
740 pc++;
741 }
742
743 return pc;
744 }
745
746 /* Do a full analysis of the prologue at PC and update CACHE
747 accordingly. Bail out early if CURRENT_PC is reached. Return the
748 address where the analysis stopped.
749
750 We handle these cases:
751
752 The startup sequence can be at the start of the function, or the
753 function can start with a branch to startup code at the end.
754
755 %ebp can be set up with either the 'enter' instruction, or "pushl
756 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
757 once used in the System V compiler).
758
759 Local space is allocated just below the saved %ebp by either the
760 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
761 16-bit unsigned argument for space to allocate, and the 'addl'
762 instruction could have either a signed byte, or 32-bit immediate.
763
764 Next, the registers used by this function are pushed. With the
765 System V compiler they will always be in the order: %edi, %esi,
766 %ebx (and sometimes a harmless bug causes it to also save but not
767 restore %eax); however, the code below is willing to see the pushes
768 in any order, and will handle up to 8 of them.
769
770 If the setup sequence is at the end of the function, then the next
771 instruction will be a branch back to the start. */
772
773 static CORE_ADDR
774 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
775 struct i386_frame_cache *cache)
776 {
777 pc = i386_follow_jump (pc);
778 pc = i386_analyze_struct_return (pc, current_pc, cache);
779 pc = i386_skip_probe (pc);
780 pc = i386_analyze_frame_setup (pc, current_pc, cache);
781 return i386_analyze_register_saves (pc, current_pc, cache);
782 }
783
784 /* Return PC of first real instruction. */
785
786 static CORE_ADDR
787 i386_skip_prologue (CORE_ADDR start_pc)
788 {
789 static gdb_byte pic_pat[6] =
790 {
791 0xe8, 0, 0, 0, 0, /* call 0x0 */
792 0x5b, /* popl %ebx */
793 };
794 struct i386_frame_cache cache;
795 CORE_ADDR pc;
796 gdb_byte op;
797 int i;
798
799 cache.locals = -1;
800 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
801 if (cache.locals < 0)
802 return start_pc;
803
804 /* Found valid frame setup. */
805
806 /* The native cc on SVR4 in -K PIC mode inserts the following code
807 to get the address of the global offset table (GOT) into register
808 %ebx:
809
810 call 0x0
811 popl %ebx
812 movl %ebx,x(%ebp) (optional)
813 addl y,%ebx
814
815 This code is with the rest of the prologue (at the end of the
816 function), so we have to skip it to get to the first real
817 instruction at the start of the function. */
818
819 for (i = 0; i < 6; i++)
820 {
821 op = read_memory_unsigned_integer (pc + i, 1);
822 if (pic_pat[i] != op)
823 break;
824 }
825 if (i == 6)
826 {
827 int delta = 6;
828
829 op = read_memory_unsigned_integer (pc + delta, 1);
830
831 if (op == 0x89) /* movl %ebx, x(%ebp) */
832 {
833 op = read_memory_unsigned_integer (pc + delta + 1, 1);
834
835 if (op == 0x5d) /* One byte offset from %ebp. */
836 delta += 3;
837 else if (op == 0x9d) /* Four byte offset from %ebp. */
838 delta += 6;
839 else /* Unexpected instruction. */
840 delta = 0;
841
842 op = read_memory_unsigned_integer (pc + delta, 1);
843 }
844
845 /* addl y,%ebx */
846 if (delta > 0 && op == 0x81
847 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
848 {
849 pc += delta + 6;
850 }
851 }
852
853 /* If the function starts with a branch (to startup code at the end)
854 the last instruction should bring us back to the first
855 instruction of the real code. */
856 if (i386_follow_jump (start_pc) != start_pc)
857 pc = i386_follow_jump (pc);
858
859 return pc;
860 }
861
862 /* This function is 64-bit safe. */
863
864 static CORE_ADDR
865 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
866 {
867 gdb_byte buf[8];
868
869 frame_unwind_register (next_frame, PC_REGNUM, buf);
870 return extract_typed_address (buf, builtin_type_void_func_ptr);
871 }
872 \f
873
874 /* Normal frames. */
875
876 static struct i386_frame_cache *
877 i386_frame_cache (struct frame_info *next_frame, void **this_cache)
878 {
879 struct i386_frame_cache *cache;
880 gdb_byte buf[4];
881 int i;
882
883 if (*this_cache)
884 return *this_cache;
885
886 cache = i386_alloc_frame_cache ();
887 *this_cache = cache;
888
889 /* In principle, for normal frames, %ebp holds the frame pointer,
890 which holds the base address for the current stack frame.
891 However, for functions that don't need it, the frame pointer is
892 optional. For these "frameless" functions the frame pointer is
893 actually the frame pointer of the calling frame. Signal
894 trampolines are just a special case of a "frameless" function.
895 They (usually) share their frame pointer with the frame that was
896 in progress when the signal occurred. */
897
898 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
899 cache->base = extract_unsigned_integer (buf, 4);
900 if (cache->base == 0)
901 return cache;
902
903 /* For normal frames, %eip is stored at 4(%ebp). */
904 cache->saved_regs[I386_EIP_REGNUM] = 4;
905
906 cache->pc = frame_func_unwind (next_frame);
907 if (cache->pc != 0)
908 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
909
910 if (cache->locals < 0)
911 {
912 /* We didn't find a valid frame, which means that CACHE->base
913 currently holds the frame pointer for our calling frame. If
914 we're at the start of a function, or somewhere half-way its
915 prologue, the function's frame probably hasn't been fully
916 setup yet. Try to reconstruct the base address for the stack
917 frame by looking at the stack pointer. For truly "frameless"
918 functions this might work too. */
919
920 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
921 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
922 }
923
924 /* Now that we have the base address for the stack frame we can
925 calculate the value of %esp in the calling frame. */
926 cache->saved_sp = cache->base + 8;
927
928 /* Adjust all the saved registers such that they contain addresses
929 instead of offsets. */
930 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
931 if (cache->saved_regs[i] != -1)
932 cache->saved_regs[i] += cache->base;
933
934 return cache;
935 }
936
937 static void
938 i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
939 struct frame_id *this_id)
940 {
941 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
942
943 /* This marks the outermost frame. */
944 if (cache->base == 0)
945 return;
946
947 /* See the end of i386_push_dummy_call. */
948 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
949 }
950
951 static void
952 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
953 int regnum, int *optimizedp,
954 enum lval_type *lvalp, CORE_ADDR *addrp,
955 int *realnump, gdb_byte *valuep)
956 {
957 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
958
959 gdb_assert (regnum >= 0);
960
961 /* The System V ABI says that:
962
963 "The flags register contains the system flags, such as the
964 direction flag and the carry flag. The direction flag must be
965 set to the forward (that is, zero) direction before entry and
966 upon exit from a function. Other user flags have no specified
967 role in the standard calling sequence and are not preserved."
968
969 To guarantee the "upon exit" part of that statement we fake a
970 saved flags register that has its direction flag cleared.
971
972 Note that GCC doesn't seem to rely on the fact that the direction
973 flag is cleared after a function return; it always explicitly
974 clears the flag before operations where it matters.
975
976 FIXME: kettenis/20030316: I'm not quite sure whether this is the
977 right thing to do. The way we fake the flags register here makes
978 it impossible to change it. */
979
980 if (regnum == I386_EFLAGS_REGNUM)
981 {
982 *optimizedp = 0;
983 *lvalp = not_lval;
984 *addrp = 0;
985 *realnump = -1;
986 if (valuep)
987 {
988 ULONGEST val;
989
990 /* Clear the direction flag. */
991 val = frame_unwind_register_unsigned (next_frame,
992 I386_EFLAGS_REGNUM);
993 val &= ~(1 << 10);
994 store_unsigned_integer (valuep, 4, val);
995 }
996
997 return;
998 }
999
1000 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1001 {
1002 *optimizedp = 0;
1003 *lvalp = lval_register;
1004 *addrp = 0;
1005 *realnump = I386_EAX_REGNUM;
1006 if (valuep)
1007 frame_unwind_register (next_frame, (*realnump), valuep);
1008 return;
1009 }
1010
1011 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1012 {
1013 *optimizedp = 0;
1014 *lvalp = not_lval;
1015 *addrp = 0;
1016 *realnump = -1;
1017 if (valuep)
1018 {
1019 /* Store the value. */
1020 store_unsigned_integer (valuep, 4, cache->saved_sp);
1021 }
1022 return;
1023 }
1024
1025 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1026 {
1027 *optimizedp = 0;
1028 *lvalp = lval_memory;
1029 *addrp = cache->saved_regs[regnum];
1030 *realnump = -1;
1031 if (valuep)
1032 {
1033 /* Read the value in from memory. */
1034 read_memory (*addrp, valuep,
1035 register_size (current_gdbarch, regnum));
1036 }
1037 return;
1038 }
1039
1040 *optimizedp = 0;
1041 *lvalp = lval_register;
1042 *addrp = 0;
1043 *realnump = regnum;
1044 if (valuep)
1045 frame_unwind_register (next_frame, (*realnump), valuep);
1046 }
1047
1048 static const struct frame_unwind i386_frame_unwind =
1049 {
1050 NORMAL_FRAME,
1051 i386_frame_this_id,
1052 i386_frame_prev_register
1053 };
1054
1055 static const struct frame_unwind *
1056 i386_frame_sniffer (struct frame_info *next_frame)
1057 {
1058 return &i386_frame_unwind;
1059 }
1060 \f
1061
1062 /* Signal trampolines. */
1063
1064 static struct i386_frame_cache *
1065 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1066 {
1067 struct i386_frame_cache *cache;
1068 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1069 CORE_ADDR addr;
1070 gdb_byte buf[4];
1071
1072 if (*this_cache)
1073 return *this_cache;
1074
1075 cache = i386_alloc_frame_cache ();
1076
1077 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1078 cache->base = extract_unsigned_integer (buf, 4) - 4;
1079
1080 addr = tdep->sigcontext_addr (next_frame);
1081 if (tdep->sc_reg_offset)
1082 {
1083 int i;
1084
1085 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1086
1087 for (i = 0; i < tdep->sc_num_regs; i++)
1088 if (tdep->sc_reg_offset[i] != -1)
1089 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1090 }
1091 else
1092 {
1093 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1094 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1095 }
1096
1097 *this_cache = cache;
1098 return cache;
1099 }
1100
1101 static void
1102 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1103 struct frame_id *this_id)
1104 {
1105 struct i386_frame_cache *cache =
1106 i386_sigtramp_frame_cache (next_frame, this_cache);
1107
1108 /* See the end of i386_push_dummy_call. */
1109 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1110 }
1111
1112 static void
1113 i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1114 void **this_cache,
1115 int regnum, int *optimizedp,
1116 enum lval_type *lvalp, CORE_ADDR *addrp,
1117 int *realnump, gdb_byte *valuep)
1118 {
1119 /* Make sure we've initialized the cache. */
1120 i386_sigtramp_frame_cache (next_frame, this_cache);
1121
1122 i386_frame_prev_register (next_frame, this_cache, regnum,
1123 optimizedp, lvalp, addrp, realnump, valuep);
1124 }
1125
1126 static const struct frame_unwind i386_sigtramp_frame_unwind =
1127 {
1128 SIGTRAMP_FRAME,
1129 i386_sigtramp_frame_this_id,
1130 i386_sigtramp_frame_prev_register
1131 };
1132
1133 static const struct frame_unwind *
1134 i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
1135 {
1136 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1137
1138 /* We shouldn't even bother if we don't have a sigcontext_addr
1139 handler. */
1140 if (tdep->sigcontext_addr == NULL)
1141 return NULL;
1142
1143 if (tdep->sigtramp_p != NULL)
1144 {
1145 if (tdep->sigtramp_p (next_frame))
1146 return &i386_sigtramp_frame_unwind;
1147 }
1148
1149 if (tdep->sigtramp_start != 0)
1150 {
1151 CORE_ADDR pc = frame_pc_unwind (next_frame);
1152
1153 gdb_assert (tdep->sigtramp_end != 0);
1154 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1155 return &i386_sigtramp_frame_unwind;
1156 }
1157
1158 return NULL;
1159 }
1160 \f
1161
1162 static CORE_ADDR
1163 i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1164 {
1165 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1166
1167 return cache->base;
1168 }
1169
1170 static const struct frame_base i386_frame_base =
1171 {
1172 &i386_frame_unwind,
1173 i386_frame_base_address,
1174 i386_frame_base_address,
1175 i386_frame_base_address
1176 };
1177
1178 static struct frame_id
1179 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1180 {
1181 gdb_byte buf[4];
1182 CORE_ADDR fp;
1183
1184 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1185 fp = extract_unsigned_integer (buf, 4);
1186
1187 /* See the end of i386_push_dummy_call. */
1188 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1189 }
1190 \f
1191
1192 /* Figure out where the longjmp will land. Slurp the args out of the
1193 stack. We expect the first arg to be a pointer to the jmp_buf
1194 structure from which we extract the address that we will land at.
1195 This address is copied into PC. This routine returns non-zero on
1196 success.
1197
1198 This function is 64-bit safe. */
1199
1200 static int
1201 i386_get_longjmp_target (CORE_ADDR *pc)
1202 {
1203 gdb_byte buf[8];
1204 CORE_ADDR sp, jb_addr;
1205 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
1206 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1207
1208 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1209 longjmp will land. */
1210 if (jb_pc_offset == -1)
1211 return 0;
1212
1213 /* Don't use I386_ESP_REGNUM here, since this function is also used
1214 for AMD64. */
1215 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1216 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
1217 if (target_read_memory (sp + len, buf, len))
1218 return 0;
1219
1220 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1221 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1222 return 0;
1223
1224 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1225 return 1;
1226 }
1227 \f
1228
1229 static CORE_ADDR
1230 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1231 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1232 struct value **args, CORE_ADDR sp, int struct_return,
1233 CORE_ADDR struct_addr)
1234 {
1235 gdb_byte buf[4];
1236 int i;
1237
1238 /* Push arguments in reverse order. */
1239 for (i = nargs - 1; i >= 0; i--)
1240 {
1241 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
1242
1243 /* The System V ABI says that:
1244
1245 "An argument's size is increased, if necessary, to make it a
1246 multiple of [32-bit] words. This may require tail padding,
1247 depending on the size of the argument."
1248
1249 This makes sure the stack says word-aligned. */
1250 sp -= (len + 3) & ~3;
1251 write_memory (sp, value_contents_all (args[i]), len);
1252 }
1253
1254 /* Push value address. */
1255 if (struct_return)
1256 {
1257 sp -= 4;
1258 store_unsigned_integer (buf, 4, struct_addr);
1259 write_memory (sp, buf, 4);
1260 }
1261
1262 /* Store return address. */
1263 sp -= 4;
1264 store_unsigned_integer (buf, 4, bp_addr);
1265 write_memory (sp, buf, 4);
1266
1267 /* Finally, update the stack pointer... */
1268 store_unsigned_integer (buf, 4, sp);
1269 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1270
1271 /* ...and fake a frame pointer. */
1272 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1273
1274 /* MarkK wrote: This "+ 8" is all over the place:
1275 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1276 i386_unwind_dummy_id). It's there, since all frame unwinders for
1277 a given target have to agree (within a certain margin) on the
1278 definition of the stack address of a frame. Otherwise
1279 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1280 stack address *before* the function call as a frame's CFA. On
1281 the i386, when %ebp is used as a frame pointer, the offset
1282 between the contents %ebp and the CFA as defined by GCC. */
1283 return sp + 8;
1284 }
1285
1286 /* These registers are used for returning integers (and on some
1287 targets also for returning `struct' and `union' values when their
1288 size and alignment match an integer type). */
1289 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1290 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1291
1292 /* Read, for architecture GDBARCH, a function return value of TYPE
1293 from REGCACHE, and copy that into VALBUF. */
1294
1295 static void
1296 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1297 struct regcache *regcache, gdb_byte *valbuf)
1298 {
1299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1300 int len = TYPE_LENGTH (type);
1301 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1302
1303 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1304 {
1305 if (tdep->st0_regnum < 0)
1306 {
1307 warning (_("Cannot find floating-point return value."));
1308 memset (valbuf, 0, len);
1309 return;
1310 }
1311
1312 /* Floating-point return values can be found in %st(0). Convert
1313 its contents to the desired type. This is probably not
1314 exactly how it would happen on the target itself, but it is
1315 the best we can do. */
1316 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1317 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1318 }
1319 else
1320 {
1321 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1322 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1323
1324 if (len <= low_size)
1325 {
1326 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1327 memcpy (valbuf, buf, len);
1328 }
1329 else if (len <= (low_size + high_size))
1330 {
1331 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1332 memcpy (valbuf, buf, low_size);
1333 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1334 memcpy (valbuf + low_size, buf, len - low_size);
1335 }
1336 else
1337 internal_error (__FILE__, __LINE__,
1338 _("Cannot extract return value of %d bytes long."), len);
1339 }
1340 }
1341
1342 /* Write, for architecture GDBARCH, a function return value of TYPE
1343 from VALBUF into REGCACHE. */
1344
1345 static void
1346 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1347 struct regcache *regcache, const gdb_byte *valbuf)
1348 {
1349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1350 int len = TYPE_LENGTH (type);
1351
1352 /* Define I387_ST0_REGNUM such that we use the proper definitions
1353 for the architecture. */
1354 #define I387_ST0_REGNUM I386_ST0_REGNUM
1355
1356 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1357 {
1358 ULONGEST fstat;
1359 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1360
1361 if (tdep->st0_regnum < 0)
1362 {
1363 warning (_("Cannot set floating-point return value."));
1364 return;
1365 }
1366
1367 /* Returning floating-point values is a bit tricky. Apart from
1368 storing the return value in %st(0), we have to simulate the
1369 state of the FPU at function return point. */
1370
1371 /* Convert the value found in VALBUF to the extended
1372 floating-point format used by the FPU. This is probably
1373 not exactly how it would happen on the target itself, but
1374 it is the best we can do. */
1375 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1376 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1377
1378 /* Set the top of the floating-point register stack to 7. The
1379 actual value doesn't really matter, but 7 is what a normal
1380 function return would end up with if the program started out
1381 with a freshly initialized FPU. */
1382 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1383 fstat |= (7 << 11);
1384 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
1385
1386 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1387 the floating-point register stack to 7, the appropriate value
1388 for the tag word is 0x3fff. */
1389 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
1390 }
1391 else
1392 {
1393 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1394 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1395
1396 if (len <= low_size)
1397 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1398 else if (len <= (low_size + high_size))
1399 {
1400 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1401 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1402 len - low_size, valbuf + low_size);
1403 }
1404 else
1405 internal_error (__FILE__, __LINE__,
1406 _("Cannot store return value of %d bytes long."), len);
1407 }
1408
1409 #undef I387_ST0_REGNUM
1410 }
1411 \f
1412
1413 /* This is the variable that is set with "set struct-convention", and
1414 its legitimate values. */
1415 static const char default_struct_convention[] = "default";
1416 static const char pcc_struct_convention[] = "pcc";
1417 static const char reg_struct_convention[] = "reg";
1418 static const char *valid_conventions[] =
1419 {
1420 default_struct_convention,
1421 pcc_struct_convention,
1422 reg_struct_convention,
1423 NULL
1424 };
1425 static const char *struct_convention = default_struct_convention;
1426
1427 /* Return non-zero if TYPE, which is assumed to be a structure,
1428 a union type, or an array type, should be returned in registers
1429 for architecture GDBARCH. */
1430
1431 static int
1432 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1433 {
1434 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1435 enum type_code code = TYPE_CODE (type);
1436 int len = TYPE_LENGTH (type);
1437
1438 gdb_assert (code == TYPE_CODE_STRUCT
1439 || code == TYPE_CODE_UNION
1440 || code == TYPE_CODE_ARRAY);
1441
1442 if (struct_convention == pcc_struct_convention
1443 || (struct_convention == default_struct_convention
1444 && tdep->struct_return == pcc_struct_return))
1445 return 0;
1446
1447 /* Structures consisting of a single `float', `double' or 'long
1448 double' member are returned in %st(0). */
1449 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1450 {
1451 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1452 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1453 return (len == 4 || len == 8 || len == 12);
1454 }
1455
1456 return (len == 1 || len == 2 || len == 4 || len == 8);
1457 }
1458
1459 /* Determine, for architecture GDBARCH, how a return value of TYPE
1460 should be returned. If it is supposed to be returned in registers,
1461 and READBUF is non-zero, read the appropriate value from REGCACHE,
1462 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1463 from WRITEBUF into REGCACHE. */
1464
1465 static enum return_value_convention
1466 i386_return_value (struct gdbarch *gdbarch, struct type *type,
1467 struct regcache *regcache, gdb_byte *readbuf,
1468 const gdb_byte *writebuf)
1469 {
1470 enum type_code code = TYPE_CODE (type);
1471
1472 if ((code == TYPE_CODE_STRUCT
1473 || code == TYPE_CODE_UNION
1474 || code == TYPE_CODE_ARRAY)
1475 && !i386_reg_struct_return_p (gdbarch, type))
1476 {
1477 /* The System V ABI says that:
1478
1479 "A function that returns a structure or union also sets %eax
1480 to the value of the original address of the caller's area
1481 before it returns. Thus when the caller receives control
1482 again, the address of the returned object resides in register
1483 %eax and can be used to access the object."
1484
1485 So the ABI guarantees that we can always find the return
1486 value just after the function has returned. */
1487
1488 /* Note that the ABI doesn't mention functions returning arrays,
1489 which is something possible in certain languages such as Ada.
1490 In this case, the value is returned as if it was wrapped in
1491 a record, so the convention applied to records also applies
1492 to arrays. */
1493
1494 if (readbuf)
1495 {
1496 ULONGEST addr;
1497
1498 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1499 read_memory (addr, readbuf, TYPE_LENGTH (type));
1500 }
1501
1502 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1503 }
1504
1505 /* This special case is for structures consisting of a single
1506 `float', `double' or 'long double' member. These structures are
1507 returned in %st(0). For these structures, we call ourselves
1508 recursively, changing TYPE into the type of the first member of
1509 the structure. Since that should work for all structures that
1510 have only one member, we don't bother to check the member's type
1511 here. */
1512 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1513 {
1514 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1515 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1516 }
1517
1518 if (readbuf)
1519 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1520 if (writebuf)
1521 i386_store_return_value (gdbarch, type, regcache, writebuf);
1522
1523 return RETURN_VALUE_REGISTER_CONVENTION;
1524 }
1525 \f
1526
1527 /* Type for %eflags. */
1528 struct type *i386_eflags_type;
1529
1530 /* Types for the MMX and SSE registers. */
1531 struct type *i386_mmx_type;
1532 struct type *i386_sse_type;
1533 struct type *i386_mxcsr_type;
1534
1535 /* Construct types for ISA-specific registers. */
1536 static void
1537 i386_init_types (void)
1538 {
1539 struct type *type;
1540
1541 type = init_flags_type ("builtin_type_i386_eflags", 4);
1542 append_flags_type_flag (type, 0, "CF");
1543 append_flags_type_flag (type, 1, NULL);
1544 append_flags_type_flag (type, 2, "PF");
1545 append_flags_type_flag (type, 4, "AF");
1546 append_flags_type_flag (type, 6, "ZF");
1547 append_flags_type_flag (type, 7, "SF");
1548 append_flags_type_flag (type, 8, "TF");
1549 append_flags_type_flag (type, 9, "IF");
1550 append_flags_type_flag (type, 10, "DF");
1551 append_flags_type_flag (type, 11, "OF");
1552 append_flags_type_flag (type, 14, "NT");
1553 append_flags_type_flag (type, 16, "RF");
1554 append_flags_type_flag (type, 17, "VM");
1555 append_flags_type_flag (type, 18, "AC");
1556 append_flags_type_flag (type, 19, "VIF");
1557 append_flags_type_flag (type, 20, "VIP");
1558 append_flags_type_flag (type, 21, "ID");
1559 i386_eflags_type = type;
1560
1561 /* The type we're building is this: */
1562 #if 0
1563 union __gdb_builtin_type_vec64i
1564 {
1565 int64_t uint64;
1566 int32_t v2_int32[2];
1567 int16_t v4_int16[4];
1568 int8_t v8_int8[8];
1569 };
1570 #endif
1571
1572 type = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1573 append_composite_type_field (type, "uint64", builtin_type_int64);
1574 append_composite_type_field (type, "v2_int32", builtin_type_v2_int32);
1575 append_composite_type_field (type, "v4_int16", builtin_type_v4_int16);
1576 append_composite_type_field (type, "v8_int8", builtin_type_v8_int8);
1577 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1578 TYPE_NAME (type) = "builtin_type_vec64i";
1579 i386_mmx_type = type;
1580
1581 /* The type we're building is this: */
1582 #if 0
1583 union __gdb_builtin_type_vec128i
1584 {
1585 int128_t uint128;
1586 int64_t v2_int64[2];
1587 int32_t v4_int32[4];
1588 int16_t v8_int16[8];
1589 int8_t v16_int8[16];
1590 double v2_double[2];
1591 float v4_float[4];
1592 };
1593 #endif
1594
1595 type = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1596 append_composite_type_field (type, "v4_float", builtin_type_v4_float);
1597 append_composite_type_field (type, "v2_double", builtin_type_v2_double);
1598 append_composite_type_field (type, "v16_int8", builtin_type_v16_int8);
1599 append_composite_type_field (type, "v8_int16", builtin_type_v8_int16);
1600 append_composite_type_field (type, "v4_int32", builtin_type_v4_int32);
1601 append_composite_type_field (type, "v2_int64", builtin_type_v2_int64);
1602 append_composite_type_field (type, "uint128", builtin_type_int128);
1603 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1604 TYPE_NAME (type) = "builtin_type_vec128i";
1605 i386_sse_type = type;
1606
1607 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1608 append_flags_type_flag (type, 0, "IE");
1609 append_flags_type_flag (type, 1, "DE");
1610 append_flags_type_flag (type, 2, "ZE");
1611 append_flags_type_flag (type, 3, "OE");
1612 append_flags_type_flag (type, 4, "UE");
1613 append_flags_type_flag (type, 5, "PE");
1614 append_flags_type_flag (type, 6, "DAZ");
1615 append_flags_type_flag (type, 7, "IM");
1616 append_flags_type_flag (type, 8, "DM");
1617 append_flags_type_flag (type, 9, "ZM");
1618 append_flags_type_flag (type, 10, "OM");
1619 append_flags_type_flag (type, 11, "UM");
1620 append_flags_type_flag (type, 12, "PM");
1621 append_flags_type_flag (type, 15, "FZ");
1622 i386_mxcsr_type = type;
1623 }
1624
1625 /* Return the GDB type object for the "standard" data type of data in
1626 register REGNUM. Perhaps %esi and %edi should go here, but
1627 potentially they could be used for things other than address. */
1628
1629 static struct type *
1630 i386_register_type (struct gdbarch *gdbarch, int regnum)
1631 {
1632 if (regnum == I386_EIP_REGNUM)
1633 return builtin_type_void_func_ptr;
1634
1635 if (regnum == I386_EFLAGS_REGNUM)
1636 return i386_eflags_type;
1637
1638 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1639 return builtin_type_void_data_ptr;
1640
1641 if (i386_fp_regnum_p (regnum))
1642 return builtin_type_i387_ext;
1643
1644 if (i386_mmx_regnum_p (gdbarch, regnum))
1645 return i386_mmx_type;
1646
1647 if (i386_sse_regnum_p (gdbarch, regnum))
1648 return i386_sse_type;
1649
1650 #define I387_ST0_REGNUM I386_ST0_REGNUM
1651 #define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
1652
1653 if (regnum == I387_MXCSR_REGNUM)
1654 return i386_mxcsr_type;
1655
1656 #undef I387_ST0_REGNUM
1657 #undef I387_NUM_XMM_REGS
1658
1659 return builtin_type_int;
1660 }
1661
1662 /* Map a cooked register onto a raw register or memory. For the i386,
1663 the MMX registers need to be mapped onto floating point registers. */
1664
1665 static int
1666 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1667 {
1668 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1669 int mmxreg, fpreg;
1670 ULONGEST fstat;
1671 int tos;
1672
1673 /* Define I387_ST0_REGNUM such that we use the proper definitions
1674 for REGCACHE's architecture. */
1675 #define I387_ST0_REGNUM tdep->st0_regnum
1676
1677 mmxreg = regnum - tdep->mm0_regnum;
1678 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1679 tos = (fstat >> 11) & 0x7;
1680 fpreg = (mmxreg + tos) % 8;
1681
1682 return (I387_ST0_REGNUM + fpreg);
1683
1684 #undef I387_ST0_REGNUM
1685 }
1686
1687 static void
1688 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1689 int regnum, gdb_byte *buf)
1690 {
1691 if (i386_mmx_regnum_p (gdbarch, regnum))
1692 {
1693 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1694 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1695
1696 /* Extract (always little endian). */
1697 regcache_raw_read (regcache, fpnum, mmx_buf);
1698 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1699 }
1700 else
1701 regcache_raw_read (regcache, regnum, buf);
1702 }
1703
1704 static void
1705 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1706 int regnum, const gdb_byte *buf)
1707 {
1708 if (i386_mmx_regnum_p (gdbarch, regnum))
1709 {
1710 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1711 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1712
1713 /* Read ... */
1714 regcache_raw_read (regcache, fpnum, mmx_buf);
1715 /* ... Modify ... (always little endian). */
1716 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
1717 /* ... Write. */
1718 regcache_raw_write (regcache, fpnum, mmx_buf);
1719 }
1720 else
1721 regcache_raw_write (regcache, regnum, buf);
1722 }
1723 \f
1724
1725 /* Return the register number of the register allocated by GCC after
1726 REGNUM, or -1 if there is no such register. */
1727
1728 static int
1729 i386_next_regnum (int regnum)
1730 {
1731 /* GCC allocates the registers in the order:
1732
1733 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1734
1735 Since storing a variable in %esp doesn't make any sense we return
1736 -1 for %ebp and for %esp itself. */
1737 static int next_regnum[] =
1738 {
1739 I386_EDX_REGNUM, /* Slot for %eax. */
1740 I386_EBX_REGNUM, /* Slot for %ecx. */
1741 I386_ECX_REGNUM, /* Slot for %edx. */
1742 I386_ESI_REGNUM, /* Slot for %ebx. */
1743 -1, -1, /* Slots for %esp and %ebp. */
1744 I386_EDI_REGNUM, /* Slot for %esi. */
1745 I386_EBP_REGNUM /* Slot for %edi. */
1746 };
1747
1748 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1749 return next_regnum[regnum];
1750
1751 return -1;
1752 }
1753
1754 /* Return nonzero if a value of type TYPE stored in register REGNUM
1755 needs any special handling. */
1756
1757 static int
1758 i386_convert_register_p (int regnum, struct type *type)
1759 {
1760 int len = TYPE_LENGTH (type);
1761
1762 /* Values may be spread across multiple registers. Most debugging
1763 formats aren't expressive enough to specify the locations, so
1764 some heuristics is involved. Right now we only handle types that
1765 have a length that is a multiple of the word size, since GCC
1766 doesn't seem to put any other types into registers. */
1767 if (len > 4 && len % 4 == 0)
1768 {
1769 int last_regnum = regnum;
1770
1771 while (len > 4)
1772 {
1773 last_regnum = i386_next_regnum (last_regnum);
1774 len -= 4;
1775 }
1776
1777 if (last_regnum != -1)
1778 return 1;
1779 }
1780
1781 return i386_fp_regnum_p (regnum);
1782 }
1783
1784 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1785 return its contents in TO. */
1786
1787 static void
1788 i386_register_to_value (struct frame_info *frame, int regnum,
1789 struct type *type, gdb_byte *to)
1790 {
1791 int len = TYPE_LENGTH (type);
1792
1793 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1794 available in FRAME (i.e. if it wasn't saved)? */
1795
1796 if (i386_fp_regnum_p (regnum))
1797 {
1798 i387_register_to_value (frame, regnum, type, to);
1799 return;
1800 }
1801
1802 /* Read a value spread across multiple registers. */
1803
1804 gdb_assert (len > 4 && len % 4 == 0);
1805
1806 while (len > 0)
1807 {
1808 gdb_assert (regnum != -1);
1809 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1810
1811 get_frame_register (frame, regnum, to);
1812 regnum = i386_next_regnum (regnum);
1813 len -= 4;
1814 to += 4;
1815 }
1816 }
1817
1818 /* Write the contents FROM of a value of type TYPE into register
1819 REGNUM in frame FRAME. */
1820
1821 static void
1822 i386_value_to_register (struct frame_info *frame, int regnum,
1823 struct type *type, const gdb_byte *from)
1824 {
1825 int len = TYPE_LENGTH (type);
1826
1827 if (i386_fp_regnum_p (regnum))
1828 {
1829 i387_value_to_register (frame, regnum, type, from);
1830 return;
1831 }
1832
1833 /* Write a value spread across multiple registers. */
1834
1835 gdb_assert (len > 4 && len % 4 == 0);
1836
1837 while (len > 0)
1838 {
1839 gdb_assert (regnum != -1);
1840 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1841
1842 put_frame_register (frame, regnum, from);
1843 regnum = i386_next_regnum (regnum);
1844 len -= 4;
1845 from += 4;
1846 }
1847 }
1848 \f
1849 /* Supply register REGNUM from the buffer specified by GREGS and LEN
1850 in the general-purpose register set REGSET to register cache
1851 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1852
1853 void
1854 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1855 int regnum, const void *gregs, size_t len)
1856 {
1857 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1858 const gdb_byte *regs = gregs;
1859 int i;
1860
1861 gdb_assert (len == tdep->sizeof_gregset);
1862
1863 for (i = 0; i < tdep->gregset_num_regs; i++)
1864 {
1865 if ((regnum == i || regnum == -1)
1866 && tdep->gregset_reg_offset[i] != -1)
1867 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1868 }
1869 }
1870
1871 /* Collect register REGNUM from the register cache REGCACHE and store
1872 it in the buffer specified by GREGS and LEN as described by the
1873 general-purpose register set REGSET. If REGNUM is -1, do this for
1874 all registers in REGSET. */
1875
1876 void
1877 i386_collect_gregset (const struct regset *regset,
1878 const struct regcache *regcache,
1879 int regnum, void *gregs, size_t len)
1880 {
1881 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1882 gdb_byte *regs = gregs;
1883 int i;
1884
1885 gdb_assert (len == tdep->sizeof_gregset);
1886
1887 for (i = 0; i < tdep->gregset_num_regs; i++)
1888 {
1889 if ((regnum == i || regnum == -1)
1890 && tdep->gregset_reg_offset[i] != -1)
1891 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1892 }
1893 }
1894
1895 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1896 in the floating-point register set REGSET to register cache
1897 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1898
1899 static void
1900 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1901 int regnum, const void *fpregs, size_t len)
1902 {
1903 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1904
1905 if (len == I387_SIZEOF_FXSAVE)
1906 {
1907 i387_supply_fxsave (regcache, regnum, fpregs);
1908 return;
1909 }
1910
1911 gdb_assert (len == tdep->sizeof_fpregset);
1912 i387_supply_fsave (regcache, regnum, fpregs);
1913 }
1914
1915 /* Collect register REGNUM from the register cache REGCACHE and store
1916 it in the buffer specified by FPREGS and LEN as described by the
1917 floating-point register set REGSET. If REGNUM is -1, do this for
1918 all registers in REGSET. */
1919
1920 static void
1921 i386_collect_fpregset (const struct regset *regset,
1922 const struct regcache *regcache,
1923 int regnum, void *fpregs, size_t len)
1924 {
1925 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1926
1927 if (len == I387_SIZEOF_FXSAVE)
1928 {
1929 i387_collect_fxsave (regcache, regnum, fpregs);
1930 return;
1931 }
1932
1933 gdb_assert (len == tdep->sizeof_fpregset);
1934 i387_collect_fsave (regcache, regnum, fpregs);
1935 }
1936
1937 /* Return the appropriate register set for the core section identified
1938 by SECT_NAME and SECT_SIZE. */
1939
1940 const struct regset *
1941 i386_regset_from_core_section (struct gdbarch *gdbarch,
1942 const char *sect_name, size_t sect_size)
1943 {
1944 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1945
1946 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1947 {
1948 if (tdep->gregset == NULL)
1949 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
1950 i386_collect_gregset);
1951 return tdep->gregset;
1952 }
1953
1954 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1955 || (strcmp (sect_name, ".reg-xfp") == 0
1956 && sect_size == I387_SIZEOF_FXSAVE))
1957 {
1958 if (tdep->fpregset == NULL)
1959 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
1960 i386_collect_fpregset);
1961 return tdep->fpregset;
1962 }
1963
1964 return NULL;
1965 }
1966 \f
1967
1968 #ifdef STATIC_TRANSFORM_NAME
1969 /* SunPRO encodes the static variables. This is not related to C++
1970 mangling, it is done for C too. */
1971
1972 char *
1973 sunpro_static_transform_name (char *name)
1974 {
1975 char *p;
1976 if (IS_STATIC_TRANSFORM_NAME (name))
1977 {
1978 /* For file-local statics there will be a period, a bunch of
1979 junk (the contents of which match a string given in the
1980 N_OPT), a period and the name. For function-local statics
1981 there will be a bunch of junk (which seems to change the
1982 second character from 'A' to 'B'), a period, the name of the
1983 function, and the name. So just skip everything before the
1984 last period. */
1985 p = strrchr (name, '.');
1986 if (p != NULL)
1987 name = p + 1;
1988 }
1989 return name;
1990 }
1991 #endif /* STATIC_TRANSFORM_NAME */
1992 \f
1993
1994 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1995
1996 CORE_ADDR
1997 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1998 {
1999 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
2000 {
2001 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
2002 struct minimal_symbol *indsym =
2003 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2004 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2005
2006 if (symname)
2007 {
2008 if (strncmp (symname, "__imp_", 6) == 0
2009 || strncmp (symname, "_imp_", 5) == 0)
2010 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2011 }
2012 }
2013 return 0; /* Not a trampoline. */
2014 }
2015 \f
2016
2017 /* Return whether the frame preceding NEXT_FRAME corresponds to a
2018 sigtramp routine. */
2019
2020 static int
2021 i386_sigtramp_p (struct frame_info *next_frame)
2022 {
2023 CORE_ADDR pc = frame_pc_unwind (next_frame);
2024 char *name;
2025
2026 find_pc_partial_function (pc, &name, NULL, NULL);
2027 return (name && strcmp ("_sigtramp", name) == 0);
2028 }
2029 \f
2030
2031 /* We have two flavours of disassembly. The machinery on this page
2032 deals with switching between those. */
2033
2034 static int
2035 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2036 {
2037 gdb_assert (disassembly_flavor == att_flavor
2038 || disassembly_flavor == intel_flavor);
2039
2040 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2041 constified, cast to prevent a compiler warning. */
2042 info->disassembler_options = (char *) disassembly_flavor;
2043 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
2044
2045 return print_insn_i386 (pc, info);
2046 }
2047 \f
2048
2049 /* There are a few i386 architecture variants that differ only
2050 slightly from the generic i386 target. For now, we don't give them
2051 their own source file, but include them here. As a consequence,
2052 they'll always be included. */
2053
2054 /* System V Release 4 (SVR4). */
2055
2056 /* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
2057 sigtramp routine. */
2058
2059 static int
2060 i386_svr4_sigtramp_p (struct frame_info *next_frame)
2061 {
2062 CORE_ADDR pc = frame_pc_unwind (next_frame);
2063 char *name;
2064
2065 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2066 currently unknown. */
2067 find_pc_partial_function (pc, &name, NULL, NULL);
2068 return (name && (strcmp ("_sigreturn", name) == 0
2069 || strcmp ("_sigacthandler", name) == 0
2070 || strcmp ("sigvechandler", name) == 0));
2071 }
2072
2073 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2074 routine, return the address of the associated sigcontext (ucontext)
2075 structure. */
2076
2077 static CORE_ADDR
2078 i386_svr4_sigcontext_addr (struct frame_info *next_frame)
2079 {
2080 gdb_byte buf[4];
2081 CORE_ADDR sp;
2082
2083 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2084 sp = extract_unsigned_integer (buf, 4);
2085
2086 return read_memory_unsigned_integer (sp + 8, 4);
2087 }
2088 \f
2089
2090 /* Generic ELF. */
2091
2092 void
2093 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2094 {
2095 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2096 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2097 }
2098
2099 /* System V Release 4 (SVR4). */
2100
2101 void
2102 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2103 {
2104 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2105
2106 /* System V Release 4 uses ELF. */
2107 i386_elf_init_abi (info, gdbarch);
2108
2109 /* System V Release 4 has shared libraries. */
2110 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2111
2112 tdep->sigtramp_p = i386_svr4_sigtramp_p;
2113 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
2114 tdep->sc_pc_offset = 36 + 14 * 4;
2115 tdep->sc_sp_offset = 36 + 17 * 4;
2116
2117 tdep->jb_pc_offset = 20;
2118 }
2119
2120 /* DJGPP. */
2121
2122 static void
2123 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2124 {
2125 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2126
2127 /* DJGPP doesn't have any special frames for signal handlers. */
2128 tdep->sigtramp_p = NULL;
2129
2130 tdep->jb_pc_offset = 36;
2131 }
2132
2133 /* NetWare. */
2134
2135 static void
2136 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2137 {
2138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2139
2140 tdep->jb_pc_offset = 24;
2141 }
2142 \f
2143
2144 /* i386 register groups. In addition to the normal groups, add "mmx"
2145 and "sse". */
2146
2147 static struct reggroup *i386_sse_reggroup;
2148 static struct reggroup *i386_mmx_reggroup;
2149
2150 static void
2151 i386_init_reggroups (void)
2152 {
2153 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2154 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2155 }
2156
2157 static void
2158 i386_add_reggroups (struct gdbarch *gdbarch)
2159 {
2160 reggroup_add (gdbarch, i386_sse_reggroup);
2161 reggroup_add (gdbarch, i386_mmx_reggroup);
2162 reggroup_add (gdbarch, general_reggroup);
2163 reggroup_add (gdbarch, float_reggroup);
2164 reggroup_add (gdbarch, all_reggroup);
2165 reggroup_add (gdbarch, save_reggroup);
2166 reggroup_add (gdbarch, restore_reggroup);
2167 reggroup_add (gdbarch, vector_reggroup);
2168 reggroup_add (gdbarch, system_reggroup);
2169 }
2170
2171 int
2172 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2173 struct reggroup *group)
2174 {
2175 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2176 || i386_mxcsr_regnum_p (gdbarch, regnum));
2177 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2178 || i386_fpc_regnum_p (regnum));
2179 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2180
2181 if (group == i386_mmx_reggroup)
2182 return mmx_regnum_p;
2183 if (group == i386_sse_reggroup)
2184 return sse_regnum_p;
2185 if (group == vector_reggroup)
2186 return (mmx_regnum_p || sse_regnum_p);
2187 if (group == float_reggroup)
2188 return fp_regnum_p;
2189 if (group == general_reggroup)
2190 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2191
2192 return default_register_reggroup_p (gdbarch, regnum, group);
2193 }
2194 \f
2195
2196 /* Get the ARGIth function argument for the current function. */
2197
2198 static CORE_ADDR
2199 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2200 struct type *type)
2201 {
2202 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2203 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2204 }
2205
2206 \f
2207 static struct gdbarch *
2208 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2209 {
2210 struct gdbarch_tdep *tdep;
2211 struct gdbarch *gdbarch;
2212
2213 /* If there is already a candidate, use it. */
2214 arches = gdbarch_list_lookup_by_info (arches, &info);
2215 if (arches != NULL)
2216 return arches->gdbarch;
2217
2218 /* Allocate space for the new architecture. */
2219 tdep = XMALLOC (struct gdbarch_tdep);
2220 gdbarch = gdbarch_alloc (&info, tdep);
2221
2222 /* General-purpose registers. */
2223 tdep->gregset = NULL;
2224 tdep->gregset_reg_offset = NULL;
2225 tdep->gregset_num_regs = I386_NUM_GREGS;
2226 tdep->sizeof_gregset = 0;
2227
2228 /* Floating-point registers. */
2229 tdep->fpregset = NULL;
2230 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2231
2232 /* The default settings include the FPU registers, the MMX registers
2233 and the SSE registers. This can be overridden for a specific ABI
2234 by adjusting the members `st0_regnum', `mm0_regnum' and
2235 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2236 will show up in the output of "info all-registers". Ideally we
2237 should try to autodetect whether they are available, such that we
2238 can prevent "info all-registers" from displaying registers that
2239 aren't available.
2240
2241 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2242 [the SSE registers] always (even when they don't exist) or never
2243 showing them to the user (even when they do exist), I prefer the
2244 former over the latter. */
2245
2246 tdep->st0_regnum = I386_ST0_REGNUM;
2247
2248 /* The MMX registers are implemented as pseudo-registers. Put off
2249 calculating the register number for %mm0 until we know the number
2250 of raw registers. */
2251 tdep->mm0_regnum = 0;
2252
2253 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
2254 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2255
2256 tdep->jb_pc_offset = -1;
2257 tdep->struct_return = pcc_struct_return;
2258 tdep->sigtramp_start = 0;
2259 tdep->sigtramp_end = 0;
2260 tdep->sigtramp_p = i386_sigtramp_p;
2261 tdep->sigcontext_addr = NULL;
2262 tdep->sc_reg_offset = NULL;
2263 tdep->sc_pc_offset = -1;
2264 tdep->sc_sp_offset = -1;
2265
2266 /* The format used for `long double' on almost all i386 targets is
2267 the i387 extended floating-point format. In fact, of all targets
2268 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2269 on having a `long double' that's not `long' at all. */
2270 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
2271
2272 /* Although the i387 extended floating-point has only 80 significant
2273 bits, a `long double' actually takes up 96, probably to enforce
2274 alignment. */
2275 set_gdbarch_long_double_bit (gdbarch, 96);
2276
2277 /* The default ABI includes general-purpose registers,
2278 floating-point registers, and the SSE registers. */
2279 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2280 set_gdbarch_register_name (gdbarch, i386_register_name);
2281 set_gdbarch_register_type (gdbarch, i386_register_type);
2282
2283 /* Register numbers of various important registers. */
2284 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2285 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2286 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2287 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2288
2289 /* NOTE: kettenis/20040418: GCC does have two possible register
2290 numbering schemes on the i386: dbx and SVR4. These schemes
2291 differ in how they number %ebp, %esp, %eflags, and the
2292 floating-point registers, and are implemented by the arrays
2293 dbx_register_map[] and svr4_dbx_register_map in
2294 gcc/config/i386.c. GCC also defines a third numbering scheme in
2295 gcc/config/i386.c, which it designates as the "default" register
2296 map used in 64bit mode. This last register numbering scheme is
2297 implemented in dbx64_register_map, and is used for AMD64; see
2298 amd64-tdep.c.
2299
2300 Currently, each GCC i386 target always uses the same register
2301 numbering scheme across all its supported debugging formats
2302 i.e. SDB (COFF), stabs and DWARF 2. This is because
2303 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2304 DBX_REGISTER_NUMBER macro which is defined by each target's
2305 respective config header in a manner independent of the requested
2306 output debugging format.
2307
2308 This does not match the arrangement below, which presumes that
2309 the SDB and stabs numbering schemes differ from the DWARF and
2310 DWARF 2 ones. The reason for this arrangement is that it is
2311 likely to get the numbering scheme for the target's
2312 default/native debug format right. For targets where GCC is the
2313 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2314 targets where the native toolchain uses a different numbering
2315 scheme for a particular debug format (stabs-in-ELF on Solaris)
2316 the defaults below will have to be overridden, like
2317 i386_elf_init_abi() does. */
2318
2319 /* Use the dbx register numbering scheme for stabs and COFF. */
2320 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2321 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2322
2323 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2324 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2325 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2326
2327 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2328 be in use on any of the supported i386 targets. */
2329
2330 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2331
2332 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2333
2334 /* Call dummy code. */
2335 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2336
2337 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2338 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2339 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2340
2341 set_gdbarch_return_value (gdbarch, i386_return_value);
2342
2343 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2344
2345 /* Stack grows downward. */
2346 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2347
2348 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2349 set_gdbarch_decr_pc_after_break (gdbarch, 1);
2350
2351 set_gdbarch_frame_args_skip (gdbarch, 8);
2352
2353 /* Wire in the MMX registers. */
2354 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2355 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2356 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2357
2358 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2359
2360 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
2361
2362 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2363
2364 /* Add the i386 register groups. */
2365 i386_add_reggroups (gdbarch);
2366 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2367
2368 /* Helper for function argument information. */
2369 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2370
2371 /* Hook in the DWARF CFI frame unwinder. */
2372 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2373
2374 frame_base_set_default (gdbarch, &i386_frame_base);
2375
2376 /* Hook in ABI-specific overrides, if they have been registered. */
2377 gdbarch_init_osabi (info, gdbarch);
2378
2379 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2380 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
2381
2382 /* If we have a register mapping, enable the generic core file
2383 support, unless it has already been enabled. */
2384 if (tdep->gregset_reg_offset
2385 && !gdbarch_regset_from_core_section_p (gdbarch))
2386 set_gdbarch_regset_from_core_section (gdbarch,
2387 i386_regset_from_core_section);
2388
2389 /* Unless support for MMX has been disabled, make %mm0 the first
2390 pseudo-register. */
2391 if (tdep->mm0_regnum == 0)
2392 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2393
2394 return gdbarch;
2395 }
2396
2397 static enum gdb_osabi
2398 i386_coff_osabi_sniffer (bfd *abfd)
2399 {
2400 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2401 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2402 return GDB_OSABI_GO32;
2403
2404 return GDB_OSABI_UNKNOWN;
2405 }
2406
2407 static enum gdb_osabi
2408 i386_nlm_osabi_sniffer (bfd *abfd)
2409 {
2410 return GDB_OSABI_NETWARE;
2411 }
2412 \f
2413
2414 /* Provide a prototype to silence -Wmissing-prototypes. */
2415 void _initialize_i386_tdep (void);
2416
2417 void
2418 _initialize_i386_tdep (void)
2419 {
2420 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2421
2422 /* Add the variable that controls the disassembly flavor. */
2423 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2424 &disassembly_flavor, _("\
2425 Set the disassembly flavor."), _("\
2426 Show the disassembly flavor."), _("\
2427 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2428 NULL,
2429 NULL, /* FIXME: i18n: */
2430 &setlist, &showlist);
2431
2432 /* Add the variable that controls the convention for returning
2433 structs. */
2434 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2435 &struct_convention, _("\
2436 Set the convention for returning small structs."), _("\
2437 Show the convention for returning small structs."), _("\
2438 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2439 is \"default\"."),
2440 NULL,
2441 NULL, /* FIXME: i18n: */
2442 &setlist, &showlist);
2443
2444 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2445 i386_coff_osabi_sniffer);
2446 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2447 i386_nlm_osabi_sniffer);
2448
2449 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2450 i386_svr4_init_abi);
2451 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2452 i386_go32_init_abi);
2453 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
2454 i386_nw_init_abi);
2455
2456 /* Initialize the i386-specific register groups & types. */
2457 i386_init_reggroups ();
2458 i386_init_types();
2459 }
This page took 0.083385 seconds and 4 git commands to generate.