* i386-tdep.c (i386_extract_struct_value_address): Use
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "objfiles.h"
29 #include "target.h"
30 #include "floatformat.h"
31 #include "symfile.h"
32 #include "symtab.h"
33 #include "gdbcmd.h"
34 #include "command.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "doublest.h"
38 #include "value.h"
39 #include "gdb_assert.h"
40
41 #include "i386-tdep.h"
42 #include "i387-tdep.h"
43
44 /* Names of the registers. The first 10 registers match the register
45 numbering scheme used by GCC for stabs and DWARF. */
46 static char *i386_register_names[] =
47 {
48 "eax", "ecx", "edx", "ebx",
49 "esp", "ebp", "esi", "edi",
50 "eip", "eflags", "cs", "ss",
51 "ds", "es", "fs", "gs",
52 "st0", "st1", "st2", "st3",
53 "st4", "st5", "st6", "st7",
54 "fctrl", "fstat", "ftag", "fiseg",
55 "fioff", "foseg", "fooff", "fop",
56 "xmm0", "xmm1", "xmm2", "xmm3",
57 "xmm4", "xmm5", "xmm6", "xmm7",
58 "mxcsr"
59 };
60
61 /* MMX registers. */
62
63 static char *i386_mmx_names[] =
64 {
65 "mm0", "mm1", "mm2", "mm3",
66 "mm4", "mm5", "mm6", "mm7"
67 };
68 static const int mmx_num_regs = (sizeof (i386_mmx_names)
69 / sizeof (i386_mmx_names[0]));
70 #define MM0_REGNUM (NUM_REGS)
71
72 static int
73 mmx_regnum_p (int reg)
74 {
75 return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
76 }
77
78 /* Return the name of register REG. */
79
80 const char *
81 i386_register_name (int reg)
82 {
83 if (reg < 0)
84 return NULL;
85 if (mmx_regnum_p (reg))
86 return i386_mmx_names[reg - MM0_REGNUM];
87 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
88 return NULL;
89
90 return i386_register_names[reg];
91 }
92
93 /* Convert stabs register number REG to the appropriate register
94 number used by GDB. */
95
96 static int
97 i386_stab_reg_to_regnum (int reg)
98 {
99 /* This implements what GCC calls the "default" register map. */
100 if (reg >= 0 && reg <= 7)
101 {
102 /* General registers. */
103 return reg;
104 }
105 else if (reg >= 12 && reg <= 19)
106 {
107 /* Floating-point registers. */
108 return reg - 12 + FP0_REGNUM;
109 }
110 else if (reg >= 21 && reg <= 28)
111 {
112 /* SSE registers. */
113 return reg - 21 + XMM0_REGNUM;
114 }
115 else if (reg >= 29 && reg <= 36)
116 {
117 /* MMX registers. */
118 return reg - 29 + MM0_REGNUM;
119 }
120
121 /* This will hopefully provoke a warning. */
122 return NUM_REGS + NUM_PSEUDO_REGS;
123 }
124
125 /* Convert DWARF register number REG to the appropriate register
126 number used by GDB. */
127
128 static int
129 i386_dwarf_reg_to_regnum (int reg)
130 {
131 /* The DWARF register numbering includes %eip and %eflags, and
132 numbers the floating point registers differently. */
133 if (reg >= 0 && reg <= 9)
134 {
135 /* General registers. */
136 return reg;
137 }
138 else if (reg >= 11 && reg <= 18)
139 {
140 /* Floating-point registers. */
141 return reg - 11 + FP0_REGNUM;
142 }
143 else if (reg >= 21)
144 {
145 /* The SSE and MMX registers have identical numbers as in stabs. */
146 return i386_stab_reg_to_regnum (reg);
147 }
148
149 /* This will hopefully provoke a warning. */
150 return NUM_REGS + NUM_PSEUDO_REGS;
151 }
152 \f
153
154 /* This is the variable that is set with "set disassembly-flavor", and
155 its legitimate values. */
156 static const char att_flavor[] = "att";
157 static const char intel_flavor[] = "intel";
158 static const char *valid_flavors[] =
159 {
160 att_flavor,
161 intel_flavor,
162 NULL
163 };
164 static const char *disassembly_flavor = att_flavor;
165
166 /* Stdio style buffering was used to minimize calls to ptrace, but
167 this buffering did not take into account that the code section
168 being accessed may not be an even number of buffers long (even if
169 the buffer is only sizeof(int) long). In cases where the code
170 section size happened to be a non-integral number of buffers long,
171 attempting to read the last buffer would fail. Simply using
172 target_read_memory and ignoring errors, rather than read_memory, is
173 not the correct solution, since legitimate access errors would then
174 be totally ignored. To properly handle this situation and continue
175 to use buffering would require that this code be able to determine
176 the minimum code section size granularity (not the alignment of the
177 section itself, since the actual failing case that pointed out this
178 problem had a section alignment of 4 but was not a multiple of 4
179 bytes long), on a target by target basis, and then adjust it's
180 buffer size accordingly. This is messy, but potentially feasible.
181 It probably needs the bfd library's help and support. For now, the
182 buffer size is set to 1. (FIXME -fnf) */
183
184 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
185 static CORE_ADDR codestream_next_addr;
186 static CORE_ADDR codestream_addr;
187 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
188 static int codestream_off;
189 static int codestream_cnt;
190
191 #define codestream_tell() (codestream_addr + codestream_off)
192 #define codestream_peek() \
193 (codestream_cnt == 0 ? \
194 codestream_fill(1) : codestream_buf[codestream_off])
195 #define codestream_get() \
196 (codestream_cnt-- == 0 ? \
197 codestream_fill(0) : codestream_buf[codestream_off++])
198
199 static unsigned char
200 codestream_fill (int peek_flag)
201 {
202 codestream_addr = codestream_next_addr;
203 codestream_next_addr += CODESTREAM_BUFSIZ;
204 codestream_off = 0;
205 codestream_cnt = CODESTREAM_BUFSIZ;
206 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
207
208 if (peek_flag)
209 return (codestream_peek ());
210 else
211 return (codestream_get ());
212 }
213
214 static void
215 codestream_seek (CORE_ADDR place)
216 {
217 codestream_next_addr = place / CODESTREAM_BUFSIZ;
218 codestream_next_addr *= CODESTREAM_BUFSIZ;
219 codestream_cnt = 0;
220 codestream_fill (1);
221 while (codestream_tell () != place)
222 codestream_get ();
223 }
224
225 static void
226 codestream_read (unsigned char *buf, int count)
227 {
228 unsigned char *p;
229 int i;
230 p = buf;
231 for (i = 0; i < count; i++)
232 *p++ = codestream_get ();
233 }
234 \f
235
236 /* If the next instruction is a jump, move to its target. */
237
238 static void
239 i386_follow_jump (void)
240 {
241 unsigned char buf[4];
242 long delta;
243
244 int data16;
245 CORE_ADDR pos;
246
247 pos = codestream_tell ();
248
249 data16 = 0;
250 if (codestream_peek () == 0x66)
251 {
252 codestream_get ();
253 data16 = 1;
254 }
255
256 switch (codestream_get ())
257 {
258 case 0xe9:
259 /* Relative jump: if data16 == 0, disp32, else disp16. */
260 if (data16)
261 {
262 codestream_read (buf, 2);
263 delta = extract_signed_integer (buf, 2);
264
265 /* Include the size of the jmp instruction (including the
266 0x66 prefix). */
267 pos += delta + 4;
268 }
269 else
270 {
271 codestream_read (buf, 4);
272 delta = extract_signed_integer (buf, 4);
273
274 pos += delta + 5;
275 }
276 break;
277 case 0xeb:
278 /* Relative jump, disp8 (ignore data16). */
279 codestream_read (buf, 1);
280 /* Sign-extend it. */
281 delta = extract_signed_integer (buf, 1);
282
283 pos += delta + 2;
284 break;
285 }
286 codestream_seek (pos);
287 }
288
289 /* Find & return the amount a local space allocated, and advance the
290 codestream to the first register push (if any).
291
292 If the entry sequence doesn't make sense, return -1, and leave
293 codestream pointer at a random spot. */
294
295 static long
296 i386_get_frame_setup (CORE_ADDR pc)
297 {
298 unsigned char op;
299
300 codestream_seek (pc);
301
302 i386_follow_jump ();
303
304 op = codestream_get ();
305
306 if (op == 0x58) /* popl %eax */
307 {
308 /* This function must start with
309
310 popl %eax 0x58
311 xchgl %eax, (%esp) 0x87 0x04 0x24
312 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
313
314 (the System V compiler puts out the second `xchg'
315 instruction, and the assembler doesn't try to optimize it, so
316 the 'sib' form gets generated). This sequence is used to get
317 the address of the return buffer for a function that returns
318 a structure. */
319 int pos;
320 unsigned char buf[4];
321 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
322 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
323
324 pos = codestream_tell ();
325 codestream_read (buf, 4);
326 if (memcmp (buf, proto1, 3) == 0)
327 pos += 3;
328 else if (memcmp (buf, proto2, 4) == 0)
329 pos += 4;
330
331 codestream_seek (pos);
332 op = codestream_get (); /* Update next opcode. */
333 }
334
335 if (op == 0x68 || op == 0x6a)
336 {
337 /* This function may start with
338
339 pushl constant
340 call _probe
341 addl $4, %esp
342
343 followed by
344
345 pushl %ebp
346
347 etc. */
348 int pos;
349 unsigned char buf[8];
350
351 /* Skip past the `pushl' instruction; it has either a one-byte
352 or a four-byte operand, depending on the opcode. */
353 pos = codestream_tell ();
354 if (op == 0x68)
355 pos += 4;
356 else
357 pos += 1;
358 codestream_seek (pos);
359
360 /* Read the following 8 bytes, which should be "call _probe" (6
361 bytes) followed by "addl $4,%esp" (2 bytes). */
362 codestream_read (buf, sizeof (buf));
363 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
364 pos += sizeof (buf);
365 codestream_seek (pos);
366 op = codestream_get (); /* Update next opcode. */
367 }
368
369 if (op == 0x55) /* pushl %ebp */
370 {
371 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
372 switch (codestream_get ())
373 {
374 case 0x8b:
375 if (codestream_get () != 0xec)
376 return -1;
377 break;
378 case 0x89:
379 if (codestream_get () != 0xe5)
380 return -1;
381 break;
382 default:
383 return -1;
384 }
385 /* Check for stack adjustment
386
387 subl $XXX, %esp
388
389 NOTE: You can't subtract a 16 bit immediate from a 32 bit
390 reg, so we don't have to worry about a data16 prefix. */
391 op = codestream_peek ();
392 if (op == 0x83)
393 {
394 /* `subl' with 8 bit immediate. */
395 codestream_get ();
396 if (codestream_get () != 0xec)
397 /* Some instruction starting with 0x83 other than `subl'. */
398 {
399 codestream_seek (codestream_tell () - 2);
400 return 0;
401 }
402 /* `subl' with signed byte immediate (though it wouldn't
403 make sense to be negative). */
404 return (codestream_get ());
405 }
406 else if (op == 0x81)
407 {
408 char buf[4];
409 /* Maybe it is `subl' with a 32 bit immedediate. */
410 codestream_get ();
411 if (codestream_get () != 0xec)
412 /* Some instruction starting with 0x81 other than `subl'. */
413 {
414 codestream_seek (codestream_tell () - 2);
415 return 0;
416 }
417 /* It is `subl' with a 32 bit immediate. */
418 codestream_read ((unsigned char *) buf, 4);
419 return extract_signed_integer (buf, 4);
420 }
421 else
422 {
423 return 0;
424 }
425 }
426 else if (op == 0xc8)
427 {
428 char buf[2];
429 /* `enter' with 16 bit unsigned immediate. */
430 codestream_read ((unsigned char *) buf, 2);
431 codestream_get (); /* Flush final byte of enter instruction. */
432 return extract_unsigned_integer (buf, 2);
433 }
434 return (-1);
435 }
436
437 /* Signal trampolines don't have a meaningful frame. The frame
438 pointer value we use is actually the frame pointer of the calling
439 frame -- that is, the frame which was in progress when the signal
440 trampoline was entered. GDB mostly treats this frame pointer value
441 as a magic cookie. We detect the case of a signal trampoline by
442 looking at the SIGNAL_HANDLER_CALLER field, which is set based on
443 PC_IN_SIGTRAMP.
444
445 When a signal trampoline is invoked from a frameless function, we
446 essentially have two frameless functions in a row. In this case,
447 we use the same magic cookie for three frames in a row. We detect
448 this case by seeing whether the next frame has
449 SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
450 current frame is actually frameless. In this case, we need to get
451 the PC by looking at the SP register value stored in the signal
452 context.
453
454 This should work in most cases except in horrible situations where
455 a signal occurs just as we enter a function but before the frame
456 has been set up. Incidentally, that's just what happens when we
457 call a function from GDB with a signal pending (there's a test in
458 the testsuite that makes this happen). Therefore we pretend that
459 we have a frameless function if we're stopped at the start of a
460 function. */
461
462 /* Return non-zero if we're dealing with a frameless signal, that is,
463 a signal trampoline invoked from a frameless function. */
464
465 static int
466 i386_frameless_signal_p (struct frame_info *frame)
467 {
468 return (frame->next && frame->next->signal_handler_caller
469 && (frameless_look_for_prologue (frame)
470 || frame->pc == get_pc_function_start (frame->pc)));
471 }
472
473 /* Return the chain-pointer for FRAME. In the case of the i386, the
474 frame's nominal address is the address of a 4-byte word containing
475 the calling frame's address. */
476
477 static CORE_ADDR
478 i386_frame_chain (struct frame_info *frame)
479 {
480 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
481 return frame->frame;
482
483 if (frame->signal_handler_caller
484 || i386_frameless_signal_p (frame))
485 return frame->frame;
486
487 if (! inside_entry_file (frame->pc))
488 return read_memory_unsigned_integer (frame->frame, 4);
489
490 return 0;
491 }
492
493 /* Determine whether the function invocation represented by FRAME does
494 not have a from on the stack associated with it. If it does not,
495 return non-zero, otherwise return zero. */
496
497 static int
498 i386_frameless_function_invocation (struct frame_info *frame)
499 {
500 if (frame->signal_handler_caller)
501 return 0;
502
503 return frameless_look_for_prologue (frame);
504 }
505
506 /* Assuming FRAME is for a sigtramp routine, return the saved program
507 counter. */
508
509 static CORE_ADDR
510 i386_sigtramp_saved_pc (struct frame_info *frame)
511 {
512 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
513 CORE_ADDR addr;
514
515 addr = tdep->sigcontext_addr (frame);
516 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
517 }
518
519 /* Assuming FRAME is for a sigtramp routine, return the saved stack
520 pointer. */
521
522 static CORE_ADDR
523 i386_sigtramp_saved_sp (struct frame_info *frame)
524 {
525 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
526 CORE_ADDR addr;
527
528 addr = tdep->sigcontext_addr (frame);
529 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
530 }
531
532 /* Return the saved program counter for FRAME. */
533
534 static CORE_ADDR
535 i386_frame_saved_pc (struct frame_info *frame)
536 {
537 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
538 return deprecated_read_register_dummy (frame->pc, frame->frame,
539 PC_REGNUM);
540
541 if (frame->signal_handler_caller)
542 return i386_sigtramp_saved_pc (frame);
543
544 if (i386_frameless_signal_p (frame))
545 {
546 CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
547 return read_memory_unsigned_integer (sp, 4);
548 }
549
550 return read_memory_unsigned_integer (frame->frame + 4, 4);
551 }
552
553 /* Immediately after a function call, return the saved pc. */
554
555 static CORE_ADDR
556 i386_saved_pc_after_call (struct frame_info *frame)
557 {
558 if (frame->signal_handler_caller)
559 return i386_sigtramp_saved_pc (frame);
560
561 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
562 }
563
564 /* Return number of args passed to a frame.
565 Can return -1, meaning no way to tell. */
566
567 static int
568 i386_frame_num_args (struct frame_info *fi)
569 {
570 #if 1
571 return -1;
572 #else
573 /* This loses because not only might the compiler not be popping the
574 args right after the function call, it might be popping args from
575 both this call and a previous one, and we would say there are
576 more args than there really are. */
577
578 int retpc;
579 unsigned char op;
580 struct frame_info *pfi;
581
582 /* On the i386, the instruction following the call could be:
583 popl %ecx - one arg
584 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
585 anything else - zero args. */
586
587 int frameless;
588
589 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
590 if (frameless)
591 /* In the absence of a frame pointer, GDB doesn't get correct
592 values for nameless arguments. Return -1, so it doesn't print
593 any nameless arguments. */
594 return -1;
595
596 pfi = get_prev_frame (fi);
597 if (pfi == 0)
598 {
599 /* NOTE: This can happen if we are looking at the frame for
600 main, because FRAME_CHAIN_VALID won't let us go into start.
601 If we have debugging symbols, that's not really a big deal;
602 it just means it will only show as many arguments to main as
603 are declared. */
604 return -1;
605 }
606 else
607 {
608 retpc = pfi->pc;
609 op = read_memory_integer (retpc, 1);
610 if (op == 0x59) /* pop %ecx */
611 return 1;
612 else if (op == 0x83)
613 {
614 op = read_memory_integer (retpc + 1, 1);
615 if (op == 0xc4)
616 /* addl $<signed imm 8 bits>, %esp */
617 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
618 else
619 return 0;
620 }
621 else if (op == 0x81) /* `add' with 32 bit immediate. */
622 {
623 op = read_memory_integer (retpc + 1, 1);
624 if (op == 0xc4)
625 /* addl $<imm 32>, %esp */
626 return read_memory_integer (retpc + 2, 4) / 4;
627 else
628 return 0;
629 }
630 else
631 {
632 return 0;
633 }
634 }
635 #endif
636 }
637
638 /* Parse the first few instructions the function to see what registers
639 were stored.
640
641 We handle these cases:
642
643 The startup sequence can be at the start of the function, or the
644 function can start with a branch to startup code at the end.
645
646 %ebp can be set up with either the 'enter' instruction, or "pushl
647 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
648 once used in the System V compiler).
649
650 Local space is allocated just below the saved %ebp by either the
651 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
652 bit unsigned argument for space to allocate, and the 'addl'
653 instruction could have either a signed byte, or 32 bit immediate.
654
655 Next, the registers used by this function are pushed. With the
656 System V compiler they will always be in the order: %edi, %esi,
657 %ebx (and sometimes a harmless bug causes it to also save but not
658 restore %eax); however, the code below is willing to see the pushes
659 in any order, and will handle up to 8 of them.
660
661 If the setup sequence is at the end of the function, then the next
662 instruction will be a branch back to the start. */
663
664 static void
665 i386_frame_init_saved_regs (struct frame_info *fip)
666 {
667 long locals = -1;
668 unsigned char op;
669 CORE_ADDR addr;
670 CORE_ADDR pc;
671 int i;
672
673 if (fip->saved_regs)
674 return;
675
676 frame_saved_regs_zalloc (fip);
677
678 pc = get_pc_function_start (fip->pc);
679 if (pc != 0)
680 locals = i386_get_frame_setup (pc);
681
682 if (locals >= 0)
683 {
684 addr = fip->frame - 4 - locals;
685 for (i = 0; i < 8; i++)
686 {
687 op = codestream_get ();
688 if (op < 0x50 || op > 0x57)
689 break;
690 #ifdef I386_REGNO_TO_SYMMETRY
691 /* Dynix uses different internal numbering. Ick. */
692 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
693 #else
694 fip->saved_regs[op - 0x50] = addr;
695 #endif
696 addr -= 4;
697 }
698 }
699
700 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
701 fip->saved_regs[FP_REGNUM] = fip->frame;
702 }
703
704 /* Return PC of first real instruction. */
705
706 static CORE_ADDR
707 i386_skip_prologue (CORE_ADDR pc)
708 {
709 unsigned char op;
710 int i;
711 static unsigned char pic_pat[6] =
712 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
713 0x5b, /* popl %ebx */
714 };
715 CORE_ADDR pos;
716
717 if (i386_get_frame_setup (pc) < 0)
718 return (pc);
719
720 /* Found valid frame setup -- codestream now points to start of push
721 instructions for saving registers. */
722
723 /* Skip over register saves. */
724 for (i = 0; i < 8; i++)
725 {
726 op = codestream_peek ();
727 /* Break if not `pushl' instrunction. */
728 if (op < 0x50 || op > 0x57)
729 break;
730 codestream_get ();
731 }
732
733 /* The native cc on SVR4 in -K PIC mode inserts the following code
734 to get the address of the global offset table (GOT) into register
735 %ebx
736
737 call 0x0
738 popl %ebx
739 movl %ebx,x(%ebp) (optional)
740 addl y,%ebx
741
742 This code is with the rest of the prologue (at the end of the
743 function), so we have to skip it to get to the first real
744 instruction at the start of the function. */
745
746 pos = codestream_tell ();
747 for (i = 0; i < 6; i++)
748 {
749 op = codestream_get ();
750 if (pic_pat[i] != op)
751 break;
752 }
753 if (i == 6)
754 {
755 unsigned char buf[4];
756 long delta = 6;
757
758 op = codestream_get ();
759 if (op == 0x89) /* movl %ebx, x(%ebp) */
760 {
761 op = codestream_get ();
762 if (op == 0x5d) /* One byte offset from %ebp. */
763 {
764 delta += 3;
765 codestream_read (buf, 1);
766 }
767 else if (op == 0x9d) /* Four byte offset from %ebp. */
768 {
769 delta += 6;
770 codestream_read (buf, 4);
771 }
772 else /* Unexpected instruction. */
773 delta = -1;
774 op = codestream_get ();
775 }
776 /* addl y,%ebx */
777 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
778 {
779 pos += delta + 6;
780 }
781 }
782 codestream_seek (pos);
783
784 i386_follow_jump ();
785
786 return (codestream_tell ());
787 }
788
789 /* Use the program counter to determine the contents and size of a
790 breakpoint instruction. Return a pointer to a string of bytes that
791 encode a breakpoint instruction, store the length of the string in
792 *LEN and optionally adjust *PC to point to the correct memory
793 location for inserting the breakpoint.
794
795 On the i386 we have a single breakpoint that fits in a single byte
796 and can be inserted anywhere. */
797
798 static const unsigned char *
799 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
800 {
801 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
802
803 *len = sizeof (break_insn);
804 return break_insn;
805 }
806
807 /* Push the return address (pointing to the call dummy) onto the stack
808 and return the new value for the stack pointer. */
809
810 static CORE_ADDR
811 i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
812 {
813 char buf[4];
814
815 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
816 write_memory (sp - 4, buf, 4);
817 return sp - 4;
818 }
819
820 static void
821 i386_do_pop_frame (struct frame_info *frame)
822 {
823 CORE_ADDR fp;
824 int regnum;
825 char regbuf[I386_MAX_REGISTER_SIZE];
826
827 fp = FRAME_FP (frame);
828 i386_frame_init_saved_regs (frame);
829
830 for (regnum = 0; regnum < NUM_REGS; regnum++)
831 {
832 CORE_ADDR addr;
833 addr = frame->saved_regs[regnum];
834 if (addr)
835 {
836 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
837 write_register_gen (regnum, regbuf);
838 }
839 }
840 write_register (FP_REGNUM, read_memory_integer (fp, 4));
841 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
842 write_register (SP_REGNUM, fp + 8);
843 flush_cached_frames ();
844 }
845
846 static void
847 i386_pop_frame (void)
848 {
849 generic_pop_current_frame (i386_do_pop_frame);
850 }
851 \f
852
853 /* Figure out where the longjmp will land. Slurp the args out of the
854 stack. We expect the first arg to be a pointer to the jmp_buf
855 structure from which we extract the address that we will land at.
856 This address is copied into PC. This routine returns true on
857 success. */
858
859 static int
860 i386_get_longjmp_target (CORE_ADDR *pc)
861 {
862 char buf[4];
863 CORE_ADDR sp, jb_addr;
864 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
865
866 /* If JB_PC_OFFSET is -1, we have no way to find out where the
867 longjmp will land. */
868 if (jb_pc_offset == -1)
869 return 0;
870
871 sp = read_register (SP_REGNUM);
872 if (target_read_memory (sp + 4, buf, 4))
873 return 0;
874
875 jb_addr = extract_address (buf, 4);
876 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
877 return 0;
878
879 *pc = extract_address (buf, 4);
880 return 1;
881 }
882 \f
883
884 static CORE_ADDR
885 i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
886 int struct_return, CORE_ADDR struct_addr)
887 {
888 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
889
890 if (struct_return)
891 {
892 char buf[4];
893
894 sp -= 4;
895 store_address (buf, 4, struct_addr);
896 write_memory (sp, buf, 4);
897 }
898
899 return sp;
900 }
901
902 static void
903 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
904 {
905 /* Do nothing. Everything was already done by i386_push_arguments. */
906 }
907
908 /* These registers are used for returning integers (and on some
909 targets also for returning `struct' and `union' values when their
910 size and alignment match an integer type). */
911 #define LOW_RETURN_REGNUM 0 /* %eax */
912 #define HIGH_RETURN_REGNUM 2 /* %edx */
913
914 /* Extract from an array REGBUF containing the (raw) register state, a
915 function return value of TYPE, and copy that, in virtual format,
916 into VALBUF. */
917
918 static void
919 i386_extract_return_value (struct type *type, struct regcache *regcache,
920 void *dst)
921 {
922 bfd_byte *valbuf = dst;
923 int len = TYPE_LENGTH (type);
924 char buf[I386_MAX_REGISTER_SIZE];
925
926 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
927 && TYPE_NFIELDS (type) == 1)
928 {
929 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
930 return;
931 }
932
933 if (TYPE_CODE (type) == TYPE_CODE_FLT)
934 {
935 if (FP0_REGNUM == 0)
936 {
937 warning ("Cannot find floating-point return value.");
938 memset (valbuf, 0, len);
939 return;
940 }
941
942 /* Floating-point return values can be found in %st(0). Convert
943 its contents to the desired type. This is probably not
944 exactly how it would happen on the target itself, but it is
945 the best we can do. */
946 regcache_raw_read (regcache, FP0_REGNUM, buf);
947 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
948 }
949 else
950 {
951 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
952 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
953
954 if (len <= low_size)
955 {
956 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
957 memcpy (valbuf, buf, len);
958 }
959 else if (len <= (low_size + high_size))
960 {
961 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
962 memcpy (valbuf, buf, low_size);
963 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
964 memcpy (valbuf + low_size, buf, len - low_size);
965 }
966 else
967 internal_error (__FILE__, __LINE__,
968 "Cannot extract return value of %d bytes long.", len);
969 }
970 }
971
972 /* Write into the appropriate registers a function return value stored
973 in VALBUF of type TYPE, given in virtual format. */
974
975 static void
976 i386_store_return_value (struct type *type, struct regcache *regcache,
977 const void *valbuf)
978 {
979 int len = TYPE_LENGTH (type);
980
981 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
982 && TYPE_NFIELDS (type) == 1)
983 {
984 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
985 return;
986 }
987
988 if (TYPE_CODE (type) == TYPE_CODE_FLT)
989 {
990 ULONGEST fstat;
991 char buf[FPU_REG_RAW_SIZE];
992
993 if (FP0_REGNUM == 0)
994 {
995 warning ("Cannot set floating-point return value.");
996 return;
997 }
998
999 /* Returning floating-point values is a bit tricky. Apart from
1000 storing the return value in %st(0), we have to simulate the
1001 state of the FPU at function return point. */
1002
1003 /* Convert the value found in VALBUF to the extended
1004 floating-point format used by the FPU. This is probably
1005 not exactly how it would happen on the target itself, but
1006 it is the best we can do. */
1007 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1008 regcache_raw_write (regcache, FP0_REGNUM, buf);
1009
1010 /* Set the top of the floating-point register stack to 7. The
1011 actual value doesn't really matter, but 7 is what a normal
1012 function return would end up with if the program started out
1013 with a freshly initialized FPU. */
1014 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1015 fstat |= (7 << 11);
1016 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
1017
1018 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1019 the floating-point register stack to 7, the appropriate value
1020 for the tag word is 0x3fff. */
1021 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
1022 }
1023 else
1024 {
1025 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1026 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1027
1028 if (len <= low_size)
1029 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1030 else if (len <= (low_size + high_size))
1031 {
1032 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1033 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1034 len - low_size, (char *) valbuf + low_size);
1035 }
1036 else
1037 internal_error (__FILE__, __LINE__,
1038 "Cannot store return value of %d bytes long.", len);
1039 }
1040 }
1041
1042 /* Extract from REGCACHE, which contains the (raw) register state, the
1043 address in which a function should return its structure value, as a
1044 CORE_ADDR. */
1045
1046 static CORE_ADDR
1047 i386_extract_struct_value_address (struct regcache *regcache)
1048 {
1049 ULONGEST addr;
1050
1051 regcache_raw_read_unsigned (regcache, LOW_RETURN_REGNUM, &addr);
1052 return addr;
1053 }
1054 \f
1055
1056 /* This is the variable that is set with "set struct-convention", and
1057 its legitimate values. */
1058 static const char default_struct_convention[] = "default";
1059 static const char pcc_struct_convention[] = "pcc";
1060 static const char reg_struct_convention[] = "reg";
1061 static const char *valid_conventions[] =
1062 {
1063 default_struct_convention,
1064 pcc_struct_convention,
1065 reg_struct_convention,
1066 NULL
1067 };
1068 static const char *struct_convention = default_struct_convention;
1069
1070 static int
1071 i386_use_struct_convention (int gcc_p, struct type *type)
1072 {
1073 enum struct_return struct_return;
1074
1075 if (struct_convention == default_struct_convention)
1076 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1077 else if (struct_convention == pcc_struct_convention)
1078 struct_return = pcc_struct_return;
1079 else
1080 struct_return = reg_struct_return;
1081
1082 return generic_use_struct_convention (struct_return == reg_struct_return,
1083 type);
1084 }
1085 \f
1086
1087 /* Return the GDB type object for the "standard" data type of data in
1088 register REGNUM. Perhaps %esi and %edi should go here, but
1089 potentially they could be used for things other than address. */
1090
1091 static struct type *
1092 i386_register_virtual_type (int regnum)
1093 {
1094 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1095 return lookup_pointer_type (builtin_type_void);
1096
1097 if (FP_REGNUM_P (regnum))
1098 return builtin_type_i387_ext;
1099
1100 if (SSE_REGNUM_P (regnum))
1101 return builtin_type_vec128i;
1102
1103 if (mmx_regnum_p (regnum))
1104 return builtin_type_vec64i;
1105
1106 return builtin_type_int;
1107 }
1108
1109 /* Map a cooked register onto a raw register or memory. For the i386,
1110 the MMX registers need to be mapped onto floating point registers. */
1111
1112 static int
1113 mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1114 {
1115 int mmxi;
1116 ULONGEST fstat;
1117 int tos;
1118 int fpi;
1119 mmxi = regnum - MM0_REGNUM;
1120 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1121 tos = (fstat >> 11) & 0x7;
1122 fpi = (mmxi + tos) % 8;
1123 return (FP0_REGNUM + fpi);
1124 }
1125
1126 static void
1127 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1128 int regnum, void *buf)
1129 {
1130 if (mmx_regnum_p (regnum))
1131 {
1132 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1133 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1134 regcache_raw_read (regcache, fpnum, mmx_buf);
1135 /* Extract (always little endian). */
1136 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1137 }
1138 else
1139 regcache_raw_read (regcache, regnum, buf);
1140 }
1141
1142 static void
1143 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1144 int regnum, const void *buf)
1145 {
1146 if (mmx_regnum_p (regnum))
1147 {
1148 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1149 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1150 /* Read ... */
1151 regcache_raw_read (regcache, fpnum, mmx_buf);
1152 /* ... Modify ... (always little endian). */
1153 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1154 /* ... Write. */
1155 regcache_raw_write (regcache, fpnum, mmx_buf);
1156 }
1157 else
1158 regcache_raw_write (regcache, regnum, buf);
1159 }
1160
1161 /* Return true iff register REGNUM's virtual format is different from
1162 its raw format. Note that this definition assumes that the host
1163 supports IEEE 32-bit floats, since it doesn't say that SSE
1164 registers need conversion. Even if we can't find a counterexample,
1165 this is still sloppy. */
1166
1167 static int
1168 i386_register_convertible (int regnum)
1169 {
1170 return FP_REGNUM_P (regnum);
1171 }
1172
1173 /* Convert data from raw format for register REGNUM in buffer FROM to
1174 virtual format with type TYPE in buffer TO. */
1175
1176 static void
1177 i386_register_convert_to_virtual (int regnum, struct type *type,
1178 char *from, char *to)
1179 {
1180 gdb_assert (FP_REGNUM_P (regnum));
1181
1182 /* We only support floating-point values. */
1183 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1184 {
1185 warning ("Cannot convert floating-point register value "
1186 "to non-floating-point type.");
1187 memset (to, 0, TYPE_LENGTH (type));
1188 return;
1189 }
1190
1191 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1192 the extended floating-point format used by the FPU. */
1193 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1194 }
1195
1196 /* Convert data from virtual format with type TYPE in buffer FROM to
1197 raw format for register REGNUM in buffer TO. */
1198
1199 static void
1200 i386_register_convert_to_raw (struct type *type, int regnum,
1201 char *from, char *to)
1202 {
1203 gdb_assert (FP_REGNUM_P (regnum));
1204
1205 /* We only support floating-point values. */
1206 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1207 {
1208 warning ("Cannot convert non-floating-point type "
1209 "to floating-point register value.");
1210 memset (to, 0, TYPE_LENGTH (type));
1211 return;
1212 }
1213
1214 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1215 to the extended floating-point format used by the FPU. */
1216 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1217 }
1218 \f
1219
1220 #ifdef STATIC_TRANSFORM_NAME
1221 /* SunPRO encodes the static variables. This is not related to C++
1222 mangling, it is done for C too. */
1223
1224 char *
1225 sunpro_static_transform_name (char *name)
1226 {
1227 char *p;
1228 if (IS_STATIC_TRANSFORM_NAME (name))
1229 {
1230 /* For file-local statics there will be a period, a bunch of
1231 junk (the contents of which match a string given in the
1232 N_OPT), a period and the name. For function-local statics
1233 there will be a bunch of junk (which seems to change the
1234 second character from 'A' to 'B'), a period, the name of the
1235 function, and the name. So just skip everything before the
1236 last period. */
1237 p = strrchr (name, '.');
1238 if (p != NULL)
1239 name = p + 1;
1240 }
1241 return name;
1242 }
1243 #endif /* STATIC_TRANSFORM_NAME */
1244 \f
1245
1246 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1247
1248 CORE_ADDR
1249 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1250 {
1251 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1252 {
1253 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1254 struct minimal_symbol *indsym =
1255 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1256 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
1257
1258 if (symname)
1259 {
1260 if (strncmp (symname, "__imp_", 6) == 0
1261 || strncmp (symname, "_imp_", 5) == 0)
1262 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1263 }
1264 }
1265 return 0; /* Not a trampoline. */
1266 }
1267 \f
1268
1269 /* Return non-zero if PC and NAME show that we are in a signal
1270 trampoline. */
1271
1272 static int
1273 i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1274 {
1275 return (name && strcmp ("_sigtramp", name) == 0);
1276 }
1277 \f
1278
1279 /* We have two flavours of disassembly. The machinery on this page
1280 deals with switching between those. */
1281
1282 static int
1283 i386_print_insn (bfd_vma pc, disassemble_info *info)
1284 {
1285 gdb_assert (disassembly_flavor == att_flavor
1286 || disassembly_flavor == intel_flavor);
1287
1288 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1289 constified, cast to prevent a compiler warning. */
1290 info->disassembler_options = (char *) disassembly_flavor;
1291 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1292
1293 return print_insn_i386 (pc, info);
1294 }
1295 \f
1296
1297 /* There are a few i386 architecture variants that differ only
1298 slightly from the generic i386 target. For now, we don't give them
1299 their own source file, but include them here. As a consequence,
1300 they'll always be included. */
1301
1302 /* System V Release 4 (SVR4). */
1303
1304 static int
1305 i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
1306 {
1307 return (name && (strcmp ("_sigreturn", name) == 0
1308 || strcmp ("_sigacthandler", name) == 0
1309 || strcmp ("sigvechandler", name) == 0));
1310 }
1311
1312 /* Get address of the pushed ucontext (sigcontext) on the stack for
1313 all three variants of SVR4 sigtramps. */
1314
1315 static CORE_ADDR
1316 i386_svr4_sigcontext_addr (struct frame_info *frame)
1317 {
1318 int sigcontext_offset = -1;
1319 char *name = NULL;
1320
1321 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1322 if (name)
1323 {
1324 if (strcmp (name, "_sigreturn") == 0)
1325 sigcontext_offset = 132;
1326 else if (strcmp (name, "_sigacthandler") == 0)
1327 sigcontext_offset = 80;
1328 else if (strcmp (name, "sigvechandler") == 0)
1329 sigcontext_offset = 120;
1330 }
1331
1332 gdb_assert (sigcontext_offset != -1);
1333
1334 if (frame->next)
1335 return frame->next->frame + sigcontext_offset;
1336 return read_register (SP_REGNUM) + sigcontext_offset;
1337 }
1338 \f
1339
1340 /* DJGPP. */
1341
1342 static int
1343 i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1344 {
1345 /* DJGPP doesn't have any special frames for signal handlers. */
1346 return 0;
1347 }
1348 \f
1349
1350 /* Generic ELF. */
1351
1352 void
1353 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1354 {
1355 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1356 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1357 }
1358
1359 /* System V Release 4 (SVR4). */
1360
1361 void
1362 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1363 {
1364 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1365
1366 /* System V Release 4 uses ELF. */
1367 i386_elf_init_abi (info, gdbarch);
1368
1369 /* System V Release 4 has shared libraries. */
1370 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1371 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1372
1373 /* FIXME: kettenis/20020511: Why do we override this function here? */
1374 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
1375
1376 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1377 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1378 tdep->sc_pc_offset = 14 * 4;
1379 tdep->sc_sp_offset = 7 * 4;
1380
1381 tdep->jb_pc_offset = 20;
1382 }
1383
1384 /* DJGPP. */
1385
1386 static void
1387 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1388 {
1389 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1390
1391 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
1392
1393 tdep->jb_pc_offset = 36;
1394 }
1395
1396 /* NetWare. */
1397
1398 static void
1399 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1400 {
1401 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1402
1403 /* FIXME: kettenis/20020511: Why do we override this function here? */
1404 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
1405
1406 tdep->jb_pc_offset = 24;
1407 }
1408 \f
1409
1410 static struct gdbarch *
1411 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1412 {
1413 struct gdbarch_tdep *tdep;
1414 struct gdbarch *gdbarch;
1415 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
1416
1417 /* Try to determine the OS ABI of the object we're loading. */
1418 if (info.abfd != NULL)
1419 osabi = gdbarch_lookup_osabi (info.abfd);
1420
1421 /* Find a candidate among extant architectures. */
1422 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1423 arches != NULL;
1424 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1425 {
1426 /* Make sure the OS ABI selection matches. */
1427 tdep = gdbarch_tdep (arches->gdbarch);
1428 if (tdep && tdep->osabi == osabi)
1429 return arches->gdbarch;
1430 }
1431
1432 /* Allocate space for the new architecture. */
1433 tdep = XMALLOC (struct gdbarch_tdep);
1434 gdbarch = gdbarch_alloc (&info, tdep);
1435
1436 tdep->osabi = osabi;
1437
1438 /* The i386 default settings don't include the SSE registers.
1439 FIXME: kettenis/20020614: They do include the FPU registers for
1440 now, which probably is not quite right. */
1441 tdep->num_xmm_regs = 0;
1442
1443 tdep->jb_pc_offset = -1;
1444 tdep->struct_return = pcc_struct_return;
1445 tdep->sigtramp_start = 0;
1446 tdep->sigtramp_end = 0;
1447 tdep->sigcontext_addr = NULL;
1448 tdep->sc_pc_offset = -1;
1449 tdep->sc_sp_offset = -1;
1450
1451 /* The format used for `long double' on almost all i386 targets is
1452 the i387 extended floating-point format. In fact, of all targets
1453 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1454 on having a `long double' that's not `long' at all. */
1455 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1456
1457 /* Although the i387 extended floating-point has only 80 significant
1458 bits, a `long double' actually takes up 96, probably to enforce
1459 alignment. */
1460 set_gdbarch_long_double_bit (gdbarch, 96);
1461
1462 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1463 tm-symmetry.h currently override this. Sigh. */
1464 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
1465
1466 set_gdbarch_sp_regnum (gdbarch, 4); /* %esp */
1467 set_gdbarch_fp_regnum (gdbarch, 5); /* %ebp */
1468 set_gdbarch_pc_regnum (gdbarch, 8); /* %eip */
1469 set_gdbarch_ps_regnum (gdbarch, 9); /* %eflags */
1470 set_gdbarch_fp0_regnum (gdbarch, 16); /* %st(0) */
1471
1472 /* Use the "default" register numbering scheme for stabs and COFF. */
1473 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1474 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1475
1476 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1477 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1478 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1479
1480 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1481 be in use on any of the supported i386 targets. */
1482
1483 set_gdbarch_register_name (gdbarch, i386_register_name);
1484 set_gdbarch_register_size (gdbarch, 4);
1485 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
1486 set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE);
1487 set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE);
1488 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
1489
1490 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1491
1492 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
1493
1494 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1495
1496 /* Call dummy code. */
1497 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1498 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1499 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1500 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1501 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1502 set_gdbarch_call_dummy_length (gdbarch, 0);
1503 set_gdbarch_call_dummy_p (gdbarch, 1);
1504 set_gdbarch_call_dummy_words (gdbarch, NULL);
1505 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1506 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1507 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1508
1509 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1510 set_gdbarch_register_convert_to_virtual (gdbarch,
1511 i386_register_convert_to_virtual);
1512 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1513
1514 set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
1515
1516 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1517
1518 /* "An argument's size is increased, if necessary, to make it a
1519 multiple of [32-bit] words. This may require tail padding,
1520 depending on the size of the argument" -- from the x86 ABI. */
1521 set_gdbarch_parm_boundary (gdbarch, 32);
1522
1523 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
1524 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1525 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1526 set_gdbarch_push_return_address (gdbarch, i386_push_return_address);
1527 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1528 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
1529 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1530 set_gdbarch_extract_struct_value_address (gdbarch,
1531 i386_extract_struct_value_address);
1532 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1533
1534 set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
1535 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1536
1537 /* Stack grows downward. */
1538 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1539
1540 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1541 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1542 set_gdbarch_function_start_offset (gdbarch, 0);
1543
1544 /* The following redefines make backtracing through sigtramp work.
1545 They manufacture a fake sigtramp frame and obtain the saved pc in
1546 sigtramp from the sigcontext structure which is pushed by the
1547 kernel on the user stack, along with a pointer to it. */
1548
1549 set_gdbarch_frame_args_skip (gdbarch, 8);
1550 set_gdbarch_frameless_function_invocation (gdbarch,
1551 i386_frameless_function_invocation);
1552 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
1553 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1554 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
1555 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1556 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1557 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
1558 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
1559 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1560
1561 /* Wire in the MMX registers. */
1562 set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
1563 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1564 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1565
1566 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1567
1568 /* Hook in ABI-specific overrides, if they have been registered. */
1569 gdbarch_init_osabi (info, gdbarch, osabi);
1570
1571 return gdbarch;
1572 }
1573
1574 static enum gdb_osabi
1575 i386_coff_osabi_sniffer (bfd *abfd)
1576 {
1577 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1578 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
1579 return GDB_OSABI_GO32;
1580
1581 return GDB_OSABI_UNKNOWN;
1582 }
1583
1584 static enum gdb_osabi
1585 i386_nlm_osabi_sniffer (bfd *abfd)
1586 {
1587 return GDB_OSABI_NETWARE;
1588 }
1589 \f
1590
1591 /* Provide a prototype to silence -Wmissing-prototypes. */
1592 void _initialize_i386_tdep (void);
1593
1594 void
1595 _initialize_i386_tdep (void)
1596 {
1597 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1598
1599 /* Add the variable that controls the disassembly flavor. */
1600 {
1601 struct cmd_list_element *new_cmd;
1602
1603 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1604 valid_flavors,
1605 &disassembly_flavor,
1606 "\
1607 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1608 and the default value is \"att\".",
1609 &setlist);
1610 add_show_from_set (new_cmd, &showlist);
1611 }
1612
1613 /* Add the variable that controls the convention for returning
1614 structs. */
1615 {
1616 struct cmd_list_element *new_cmd;
1617
1618 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1619 valid_conventions,
1620 &struct_convention, "\
1621 Set the convention for returning small structs, valid values \
1622 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1623 &setlist);
1624 add_show_from_set (new_cmd, &showlist);
1625 }
1626
1627 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1628 i386_coff_osabi_sniffer);
1629 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1630 i386_nlm_osabi_sniffer);
1631
1632 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_SVR4,
1633 i386_svr4_init_abi);
1634 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_GO32,
1635 i386_go32_init_abi);
1636 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_NETWARE,
1637 i386_nw_init_abi);
1638 }
This page took 0.0632 seconds and 4 git commands to generate.