4035e93187daa67d46e96f273b83b346cdc646e7
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "floatformat.h"
30 #include "symtab.h"
31 #include "gdbcmd.h"
32 #include "command.h"
33 #include "arch-utils.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "value.h"
37
38 #include "gdb_assert.h"
39
40 /* Names of the registers. The first 10 registers match the register
41 numbering scheme used by GCC for stabs and DWARF. */
42 static char *i386_register_names[] =
43 {
44 "eax", "ecx", "edx", "ebx",
45 "esp", "ebp", "esi", "edi",
46 "eip", "eflags", "cs", "ss",
47 "ds", "es", "fs", "gs",
48 "st0", "st1", "st2", "st3",
49 "st4", "st5", "st6", "st7",
50 "fctrl", "fstat", "ftag", "fiseg",
51 "fioff", "foseg", "fooff", "fop",
52 "xmm0", "xmm1", "xmm2", "xmm3",
53 "xmm4", "xmm5", "xmm6", "xmm7",
54 "mxcsr"
55 };
56
57 /* i386_register_byte[i] is the offset into the register file of the
58 start of register number i. We initialize this from
59 i386_register_raw_size. */
60 int i386_register_byte[MAX_NUM_REGS];
61
62 /* i386_register_raw_size[i] is the number of bytes of storage in
63 GDB's register array occupied by register i. */
64 int i386_register_raw_size[MAX_NUM_REGS] = {
65 4, 4, 4, 4,
66 4, 4, 4, 4,
67 4, 4, 4, 4,
68 4, 4, 4, 4,
69 10, 10, 10, 10,
70 10, 10, 10, 10,
71 4, 4, 4, 4,
72 4, 4, 4, 4,
73 16, 16, 16, 16,
74 16, 16, 16, 16,
75 4
76 };
77
78 /* i386_register_virtual_size[i] is the size in bytes of the virtual
79 type of register i. */
80 int i386_register_virtual_size[MAX_NUM_REGS];
81
82 /* Return the name of register REG. */
83
84 char *
85 i386_register_name (int reg)
86 {
87 if (reg < 0)
88 return NULL;
89 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
90 return NULL;
91
92 return i386_register_names[reg];
93 }
94
95 /* Convert stabs register number REG to the appropriate register
96 number used by GDB. */
97
98 int
99 i386_stab_reg_to_regnum (int reg)
100 {
101 /* This implements what GCC calls the "default" register map. */
102 if (reg >= 0 && reg <= 7)
103 {
104 /* General registers. */
105 return reg;
106 }
107 else if (reg >= 12 && reg <= 19)
108 {
109 /* Floating-point registers. */
110 return reg - 12 + FP0_REGNUM;
111 }
112 else if (reg >= 21 && reg <= 28)
113 {
114 /* SSE registers. */
115 return reg - 21 + XMM0_REGNUM;
116 }
117 else if (reg >= 29 && reg <= 36)
118 {
119 /* MMX registers. */
120 /* FIXME: kettenis/2001-07-28: Should we have the MMX registers
121 as pseudo-registers? */
122 return reg - 29 + FP0_REGNUM;
123 }
124
125 /* This will hopefully provoke a warning. */
126 return NUM_REGS + NUM_PSEUDO_REGS;
127 }
128
129 /* Convert Dwarf register number REG to the appropriate register
130 number used by GDB. */
131
132 int
133 i386_dwarf_reg_to_regnum (int reg)
134 {
135 /* The DWARF register numbering includes %eip and %eflags, and
136 numbers the floating point registers differently. */
137 if (reg >= 0 && reg <= 9)
138 {
139 /* General registers. */
140 return reg;
141 }
142 else if (reg >= 11 && reg <= 18)
143 {
144 /* Floating-point registers. */
145 return reg - 11 + FP0_REGNUM;
146 }
147 else if (reg >= 21)
148 {
149 /* The SSE and MMX registers have identical numbers as in stabs. */
150 return i386_stab_reg_to_regnum (reg);
151 }
152
153 /* This will hopefully provoke a warning. */
154 return NUM_REGS + NUM_PSEUDO_REGS;
155 }
156 \f
157
158 /* This is the variable that is set with "set disassembly-flavor", and
159 its legitimate values. */
160 static const char att_flavor[] = "att";
161 static const char intel_flavor[] = "intel";
162 static const char *valid_flavors[] =
163 {
164 att_flavor,
165 intel_flavor,
166 NULL
167 };
168 static const char *disassembly_flavor = att_flavor;
169
170 /* This is used to keep the bfd arch_info in sync with the disassembly
171 flavor. */
172 static void set_disassembly_flavor_sfunc (char *, int,
173 struct cmd_list_element *);
174 static void set_disassembly_flavor (void);
175 \f
176
177 /* Stdio style buffering was used to minimize calls to ptrace, but
178 this buffering did not take into account that the code section
179 being accessed may not be an even number of buffers long (even if
180 the buffer is only sizeof(int) long). In cases where the code
181 section size happened to be a non-integral number of buffers long,
182 attempting to read the last buffer would fail. Simply using
183 target_read_memory and ignoring errors, rather than read_memory, is
184 not the correct solution, since legitimate access errors would then
185 be totally ignored. To properly handle this situation and continue
186 to use buffering would require that this code be able to determine
187 the minimum code section size granularity (not the alignment of the
188 section itself, since the actual failing case that pointed out this
189 problem had a section alignment of 4 but was not a multiple of 4
190 bytes long), on a target by target basis, and then adjust it's
191 buffer size accordingly. This is messy, but potentially feasible.
192 It probably needs the bfd library's help and support. For now, the
193 buffer size is set to 1. (FIXME -fnf) */
194
195 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
196 static CORE_ADDR codestream_next_addr;
197 static CORE_ADDR codestream_addr;
198 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
199 static int codestream_off;
200 static int codestream_cnt;
201
202 #define codestream_tell() (codestream_addr + codestream_off)
203 #define codestream_peek() \
204 (codestream_cnt == 0 ? \
205 codestream_fill(1) : codestream_buf[codestream_off])
206 #define codestream_get() \
207 (codestream_cnt-- == 0 ? \
208 codestream_fill(0) : codestream_buf[codestream_off++])
209
210 static unsigned char
211 codestream_fill (int peek_flag)
212 {
213 codestream_addr = codestream_next_addr;
214 codestream_next_addr += CODESTREAM_BUFSIZ;
215 codestream_off = 0;
216 codestream_cnt = CODESTREAM_BUFSIZ;
217 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
218
219 if (peek_flag)
220 return (codestream_peek ());
221 else
222 return (codestream_get ());
223 }
224
225 static void
226 codestream_seek (CORE_ADDR place)
227 {
228 codestream_next_addr = place / CODESTREAM_BUFSIZ;
229 codestream_next_addr *= CODESTREAM_BUFSIZ;
230 codestream_cnt = 0;
231 codestream_fill (1);
232 while (codestream_tell () != place)
233 codestream_get ();
234 }
235
236 static void
237 codestream_read (unsigned char *buf, int count)
238 {
239 unsigned char *p;
240 int i;
241 p = buf;
242 for (i = 0; i < count; i++)
243 *p++ = codestream_get ();
244 }
245 \f
246
247 /* If the next instruction is a jump, move to its target. */
248
249 static void
250 i386_follow_jump (void)
251 {
252 unsigned char buf[4];
253 long delta;
254
255 int data16;
256 CORE_ADDR pos;
257
258 pos = codestream_tell ();
259
260 data16 = 0;
261 if (codestream_peek () == 0x66)
262 {
263 codestream_get ();
264 data16 = 1;
265 }
266
267 switch (codestream_get ())
268 {
269 case 0xe9:
270 /* Relative jump: if data16 == 0, disp32, else disp16. */
271 if (data16)
272 {
273 codestream_read (buf, 2);
274 delta = extract_signed_integer (buf, 2);
275
276 /* Include the size of the jmp instruction (including the
277 0x66 prefix). */
278 pos += delta + 4;
279 }
280 else
281 {
282 codestream_read (buf, 4);
283 delta = extract_signed_integer (buf, 4);
284
285 pos += delta + 5;
286 }
287 break;
288 case 0xeb:
289 /* Relative jump, disp8 (ignore data16). */
290 codestream_read (buf, 1);
291 /* Sign-extend it. */
292 delta = extract_signed_integer (buf, 1);
293
294 pos += delta + 2;
295 break;
296 }
297 codestream_seek (pos);
298 }
299
300 /* Find & return the amount a local space allocated, and advance the
301 codestream to the first register push (if any).
302
303 If the entry sequence doesn't make sense, return -1, and leave
304 codestream pointer at a random spot. */
305
306 static long
307 i386_get_frame_setup (CORE_ADDR pc)
308 {
309 unsigned char op;
310
311 codestream_seek (pc);
312
313 i386_follow_jump ();
314
315 op = codestream_get ();
316
317 if (op == 0x58) /* popl %eax */
318 {
319 /* This function must start with
320
321 popl %eax 0x58
322 xchgl %eax, (%esp) 0x87 0x04 0x24
323 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
324
325 (the System V compiler puts out the second `xchg'
326 instruction, and the assembler doesn't try to optimize it, so
327 the 'sib' form gets generated). This sequence is used to get
328 the address of the return buffer for a function that returns
329 a structure. */
330 int pos;
331 unsigned char buf[4];
332 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
333 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
334
335 pos = codestream_tell ();
336 codestream_read (buf, 4);
337 if (memcmp (buf, proto1, 3) == 0)
338 pos += 3;
339 else if (memcmp (buf, proto2, 4) == 0)
340 pos += 4;
341
342 codestream_seek (pos);
343 op = codestream_get (); /* Update next opcode. */
344 }
345
346 if (op == 0x68 || op == 0x6a)
347 {
348 /* This function may start with
349
350 pushl constant
351 call _probe
352 addl $4, %esp
353
354 followed by
355
356 pushl %ebp
357
358 etc. */
359 int pos;
360 unsigned char buf[8];
361
362 /* Skip past the `pushl' instruction; it has either a one-byte
363 or a four-byte operand, depending on the opcode. */
364 pos = codestream_tell ();
365 if (op == 0x68)
366 pos += 4;
367 else
368 pos += 1;
369 codestream_seek (pos);
370
371 /* Read the following 8 bytes, which should be "call _probe" (6
372 bytes) followed by "addl $4,%esp" (2 bytes). */
373 codestream_read (buf, sizeof (buf));
374 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
375 pos += sizeof (buf);
376 codestream_seek (pos);
377 op = codestream_get (); /* Update next opcode. */
378 }
379
380 if (op == 0x55) /* pushl %ebp */
381 {
382 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
383 switch (codestream_get ())
384 {
385 case 0x8b:
386 if (codestream_get () != 0xec)
387 return -1;
388 break;
389 case 0x89:
390 if (codestream_get () != 0xe5)
391 return -1;
392 break;
393 default:
394 return -1;
395 }
396 /* Check for stack adjustment
397
398 subl $XXX, %esp
399
400 NOTE: You can't subtract a 16 bit immediate from a 32 bit
401 reg, so we don't have to worry about a data16 prefix. */
402 op = codestream_peek ();
403 if (op == 0x83)
404 {
405 /* `subl' with 8 bit immediate. */
406 codestream_get ();
407 if (codestream_get () != 0xec)
408 /* Some instruction starting with 0x83 other than `subl'. */
409 {
410 codestream_seek (codestream_tell () - 2);
411 return 0;
412 }
413 /* `subl' with signed byte immediate (though it wouldn't
414 make sense to be negative). */
415 return (codestream_get ());
416 }
417 else if (op == 0x81)
418 {
419 char buf[4];
420 /* Maybe it is `subl' with a 32 bit immedediate. */
421 codestream_get ();
422 if (codestream_get () != 0xec)
423 /* Some instruction starting with 0x81 other than `subl'. */
424 {
425 codestream_seek (codestream_tell () - 2);
426 return 0;
427 }
428 /* It is `subl' with a 32 bit immediate. */
429 codestream_read ((unsigned char *) buf, 4);
430 return extract_signed_integer (buf, 4);
431 }
432 else
433 {
434 return 0;
435 }
436 }
437 else if (op == 0xc8)
438 {
439 char buf[2];
440 /* `enter' with 16 bit unsigned immediate. */
441 codestream_read ((unsigned char *) buf, 2);
442 codestream_get (); /* Flush final byte of enter instruction. */
443 return extract_unsigned_integer (buf, 2);
444 }
445 return (-1);
446 }
447
448 /* Return the chain-pointer for FRAME. In the case of the i386, the
449 frame's nominal address is the address of a 4-byte word containing
450 the calling frame's address. */
451
452 CORE_ADDR
453 i386_frame_chain (struct frame_info *frame)
454 {
455 if (frame->signal_handler_caller)
456 return frame->frame;
457
458 if (! inside_entry_file (frame->pc))
459 return read_memory_unsigned_integer (frame->frame, 4);
460
461 return 0;
462 }
463
464 /* Determine whether the function invocation represented by FRAME does
465 not have a from on the stack associated with it. If it does not,
466 return non-zero, otherwise return zero. */
467
468 int
469 i386_frameless_function_invocation (struct frame_info *frame)
470 {
471 if (frame->signal_handler_caller)
472 return 0;
473
474 return frameless_look_for_prologue (frame);
475 }
476
477 /* Return the saved program counter for FRAME. */
478
479 CORE_ADDR
480 i386_frame_saved_pc (struct frame_info *frame)
481 {
482 /* FIXME: kettenis/2001-05-09: Conditionalizing the next bit of code
483 on SIGCONTEXT_PC_OFFSET and I386V4_SIGTRAMP_SAVED_PC should be
484 considered a temporary hack. I plan to come up with something
485 better when we go multi-arch. */
486 #if defined (SIGCONTEXT_PC_OFFSET) || defined (I386V4_SIGTRAMP_SAVED_PC)
487 if (frame->signal_handler_caller)
488 return sigtramp_saved_pc (frame);
489 #endif
490
491 return read_memory_unsigned_integer (frame->frame + 4, 4);
492 }
493
494 /* Immediately after a function call, return the saved pc. */
495
496 CORE_ADDR
497 i386_saved_pc_after_call (struct frame_info *frame)
498 {
499 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
500 }
501
502 /* Return number of args passed to a frame.
503 Can return -1, meaning no way to tell. */
504
505 int
506 i386_frame_num_args (struct frame_info *fi)
507 {
508 #if 1
509 return -1;
510 #else
511 /* This loses because not only might the compiler not be popping the
512 args right after the function call, it might be popping args from
513 both this call and a previous one, and we would say there are
514 more args than there really are. */
515
516 int retpc;
517 unsigned char op;
518 struct frame_info *pfi;
519
520 /* On the i386, the instruction following the call could be:
521 popl %ecx - one arg
522 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
523 anything else - zero args. */
524
525 int frameless;
526
527 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
528 if (frameless)
529 /* In the absence of a frame pointer, GDB doesn't get correct
530 values for nameless arguments. Return -1, so it doesn't print
531 any nameless arguments. */
532 return -1;
533
534 pfi = get_prev_frame (fi);
535 if (pfi == 0)
536 {
537 /* NOTE: This can happen if we are looking at the frame for
538 main, because FRAME_CHAIN_VALID won't let us go into start.
539 If we have debugging symbols, that's not really a big deal;
540 it just means it will only show as many arguments to main as
541 are declared. */
542 return -1;
543 }
544 else
545 {
546 retpc = pfi->pc;
547 op = read_memory_integer (retpc, 1);
548 if (op == 0x59) /* pop %ecx */
549 return 1;
550 else if (op == 0x83)
551 {
552 op = read_memory_integer (retpc + 1, 1);
553 if (op == 0xc4)
554 /* addl $<signed imm 8 bits>, %esp */
555 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
556 else
557 return 0;
558 }
559 else if (op == 0x81) /* `add' with 32 bit immediate. */
560 {
561 op = read_memory_integer (retpc + 1, 1);
562 if (op == 0xc4)
563 /* addl $<imm 32>, %esp */
564 return read_memory_integer (retpc + 2, 4) / 4;
565 else
566 return 0;
567 }
568 else
569 {
570 return 0;
571 }
572 }
573 #endif
574 }
575
576 /* Parse the first few instructions the function to see what registers
577 were stored.
578
579 We handle these cases:
580
581 The startup sequence can be at the start of the function, or the
582 function can start with a branch to startup code at the end.
583
584 %ebp can be set up with either the 'enter' instruction, or "pushl
585 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
586 once used in the System V compiler).
587
588 Local space is allocated just below the saved %ebp by either the
589 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
590 bit unsigned argument for space to allocate, and the 'addl'
591 instruction could have either a signed byte, or 32 bit immediate.
592
593 Next, the registers used by this function are pushed. With the
594 System V compiler they will always be in the order: %edi, %esi,
595 %ebx (and sometimes a harmless bug causes it to also save but not
596 restore %eax); however, the code below is willing to see the pushes
597 in any order, and will handle up to 8 of them.
598
599 If the setup sequence is at the end of the function, then the next
600 instruction will be a branch back to the start. */
601
602 void
603 i386_frame_init_saved_regs (struct frame_info *fip)
604 {
605 long locals = -1;
606 unsigned char op;
607 CORE_ADDR dummy_bottom;
608 CORE_ADDR addr;
609 CORE_ADDR pc;
610 int i;
611
612 if (fip->saved_regs)
613 return;
614
615 frame_saved_regs_zalloc (fip);
616
617 /* If the frame is the end of a dummy, compute where the beginning
618 would be. */
619 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
620
621 /* Check if the PC points in the stack, in a dummy frame. */
622 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
623 {
624 /* All registers were saved by push_call_dummy. */
625 addr = fip->frame;
626 for (i = 0; i < NUM_REGS; i++)
627 {
628 addr -= REGISTER_RAW_SIZE (i);
629 fip->saved_regs[i] = addr;
630 }
631 return;
632 }
633
634 pc = get_pc_function_start (fip->pc);
635 if (pc != 0)
636 locals = i386_get_frame_setup (pc);
637
638 if (locals >= 0)
639 {
640 addr = fip->frame - 4 - locals;
641 for (i = 0; i < 8; i++)
642 {
643 op = codestream_get ();
644 if (op < 0x50 || op > 0x57)
645 break;
646 #ifdef I386_REGNO_TO_SYMMETRY
647 /* Dynix uses different internal numbering. Ick. */
648 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
649 #else
650 fip->saved_regs[op - 0x50] = addr;
651 #endif
652 addr -= 4;
653 }
654 }
655
656 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
657 fip->saved_regs[FP_REGNUM] = fip->frame;
658 }
659
660 /* Return PC of first real instruction. */
661
662 int
663 i386_skip_prologue (int pc)
664 {
665 unsigned char op;
666 int i;
667 static unsigned char pic_pat[6] =
668 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
669 0x5b, /* popl %ebx */
670 };
671 CORE_ADDR pos;
672
673 if (i386_get_frame_setup (pc) < 0)
674 return (pc);
675
676 /* Found valid frame setup -- codestream now points to start of push
677 instructions for saving registers. */
678
679 /* Skip over register saves. */
680 for (i = 0; i < 8; i++)
681 {
682 op = codestream_peek ();
683 /* Break if not `pushl' instrunction. */
684 if (op < 0x50 || op > 0x57)
685 break;
686 codestream_get ();
687 }
688
689 /* The native cc on SVR4 in -K PIC mode inserts the following code
690 to get the address of the global offset table (GOT) into register
691 %ebx
692
693 call 0x0
694 popl %ebx
695 movl %ebx,x(%ebp) (optional)
696 addl y,%ebx
697
698 This code is with the rest of the prologue (at the end of the
699 function), so we have to skip it to get to the first real
700 instruction at the start of the function. */
701
702 pos = codestream_tell ();
703 for (i = 0; i < 6; i++)
704 {
705 op = codestream_get ();
706 if (pic_pat[i] != op)
707 break;
708 }
709 if (i == 6)
710 {
711 unsigned char buf[4];
712 long delta = 6;
713
714 op = codestream_get ();
715 if (op == 0x89) /* movl %ebx, x(%ebp) */
716 {
717 op = codestream_get ();
718 if (op == 0x5d) /* One byte offset from %ebp. */
719 {
720 delta += 3;
721 codestream_read (buf, 1);
722 }
723 else if (op == 0x9d) /* Four byte offset from %ebp. */
724 {
725 delta += 6;
726 codestream_read (buf, 4);
727 }
728 else /* Unexpected instruction. */
729 delta = -1;
730 op = codestream_get ();
731 }
732 /* addl y,%ebx */
733 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
734 {
735 pos += delta + 6;
736 }
737 }
738 codestream_seek (pos);
739
740 i386_follow_jump ();
741
742 return (codestream_tell ());
743 }
744
745 void
746 i386_push_dummy_frame (void)
747 {
748 CORE_ADDR sp = read_register (SP_REGNUM);
749 int regnum;
750 char regbuf[MAX_REGISTER_RAW_SIZE];
751
752 sp = push_word (sp, read_register (PC_REGNUM));
753 sp = push_word (sp, read_register (FP_REGNUM));
754 write_register (FP_REGNUM, sp);
755 for (regnum = 0; regnum < NUM_REGS; regnum++)
756 {
757 read_register_gen (regnum, regbuf);
758 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
759 }
760 write_register (SP_REGNUM, sp);
761 }
762
763 /* Insert the (relative) function address into the call sequence
764 stored at DYMMY. */
765
766 void
767 i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
768 struct value **args, struct type *type, int gcc_p)
769 {
770 int from, to, delta, loc;
771
772 loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH);
773 from = loc + 5;
774 to = (int)(fun);
775 delta = to - from;
776
777 *((char *)(dummy) + 1) = (delta & 0xff);
778 *((char *)(dummy) + 2) = ((delta >> 8) & 0xff);
779 *((char *)(dummy) + 3) = ((delta >> 16) & 0xff);
780 *((char *)(dummy) + 4) = ((delta >> 24) & 0xff);
781 }
782
783 void
784 i386_pop_frame (void)
785 {
786 struct frame_info *frame = get_current_frame ();
787 CORE_ADDR fp;
788 int regnum;
789 char regbuf[MAX_REGISTER_RAW_SIZE];
790
791 fp = FRAME_FP (frame);
792 i386_frame_init_saved_regs (frame);
793
794 for (regnum = 0; regnum < NUM_REGS; regnum++)
795 {
796 CORE_ADDR addr;
797 addr = frame->saved_regs[regnum];
798 if (addr)
799 {
800 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
801 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
802 REGISTER_RAW_SIZE (regnum));
803 }
804 }
805 write_register (FP_REGNUM, read_memory_integer (fp, 4));
806 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
807 write_register (SP_REGNUM, fp + 8);
808 flush_cached_frames ();
809 }
810 \f
811
812 #ifdef GET_LONGJMP_TARGET
813
814 /* Figure out where the longjmp will land. Slurp the args out of the
815 stack. We expect the first arg to be a pointer to the jmp_buf
816 structure from which we extract the pc (JB_PC) that we will land
817 at. The pc is copied into PC. This routine returns true on
818 success. */
819
820 int
821 get_longjmp_target (CORE_ADDR *pc)
822 {
823 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
824 CORE_ADDR sp, jb_addr;
825
826 sp = read_register (SP_REGNUM);
827
828 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
829 buf,
830 TARGET_PTR_BIT / TARGET_CHAR_BIT))
831 return 0;
832
833 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
834
835 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
836 TARGET_PTR_BIT / TARGET_CHAR_BIT))
837 return 0;
838
839 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
840
841 return 1;
842 }
843
844 #endif /* GET_LONGJMP_TARGET */
845 \f
846
847 CORE_ADDR
848 i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
849 int struct_return, CORE_ADDR struct_addr)
850 {
851 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
852
853 if (struct_return)
854 {
855 char buf[4];
856
857 sp -= 4;
858 store_address (buf, 4, struct_addr);
859 write_memory (sp, buf, 4);
860 }
861
862 return sp;
863 }
864
865 void
866 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
867 {
868 /* Do nothing. Everything was already done by i386_push_arguments. */
869 }
870
871 /* These registers are used for returning integers (and on some
872 targets also for returning `struct' and `union' values when their
873 size and alignment match an integer type). */
874 #define LOW_RETURN_REGNUM 0 /* %eax */
875 #define HIGH_RETURN_REGNUM 2 /* %edx */
876
877 /* Extract from an array REGBUF containing the (raw) register state, a
878 function return value of TYPE, and copy that, in virtual format,
879 into VALBUF. */
880
881 void
882 i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
883 {
884 int len = TYPE_LENGTH (type);
885
886 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
887 && TYPE_NFIELDS (type) == 1)
888 {
889 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regbuf, valbuf);
890 return;
891 }
892
893 if (TYPE_CODE (type) == TYPE_CODE_FLT)
894 {
895 if (NUM_FREGS == 0)
896 {
897 warning ("Cannot find floating-point return value.");
898 memset (valbuf, 0, len);
899 return;
900 }
901
902 /* Floating-point return values can be found in %st(0). Convert
903 its contents to the desired type. This is probably not
904 exactly how it would happen on the target itself, but it is
905 the best we can do. */
906 convert_typed_floating (&regbuf[REGISTER_BYTE (FP0_REGNUM)],
907 builtin_type_i387_ext, valbuf, type);
908 }
909 else
910 {
911 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
912 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
913
914 if (len <= low_size)
915 memcpy (valbuf, &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
916 else if (len <= (low_size + high_size))
917 {
918 memcpy (valbuf,
919 &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
920 memcpy (valbuf + low_size,
921 &regbuf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
922 }
923 else
924 internal_error (__FILE__, __LINE__,
925 "Cannot extract return value of %d bytes long.", len);
926 }
927 }
928
929 /* Write into the appropriate registers a function return value stored
930 in VALBUF of type TYPE, given in virtual format. */
931
932 void
933 i386_store_return_value (struct type *type, char *valbuf)
934 {
935 int len = TYPE_LENGTH (type);
936
937 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
938 && TYPE_NFIELDS (type) == 1)
939 {
940 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
941 return;
942 }
943
944 if (TYPE_CODE (type) == TYPE_CODE_FLT)
945 {
946 unsigned int fstat;
947 char buf[FPU_REG_RAW_SIZE];
948
949 if (NUM_FREGS == 0)
950 {
951 warning ("Cannot set floating-point return value.");
952 return;
953 }
954
955 /* Returning floating-point values is a bit tricky. Apart from
956 storing the return value in %st(0), we have to simulate the
957 state of the FPU at function return point. */
958
959 /* Convert the value found in VALBUF to the extended
960 floating-point format used by the FPU. This is probably
961 not exactly how it would happen on the target itself, but
962 it is the best we can do. */
963 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
964 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
965 FPU_REG_RAW_SIZE);
966
967 /* Set the top of the floating-point register stack to 7. The
968 actual value doesn't really matter, but 7 is what a normal
969 function return would end up with if the program started out
970 with a freshly initialized FPU. */
971 fstat = read_register (FSTAT_REGNUM);
972 fstat |= (7 << 11);
973 write_register (FSTAT_REGNUM, fstat);
974
975 /* Mark %st(1) through %st(7) as empty. Since we set the top of
976 the floating-point register stack to 7, the appropriate value
977 for the tag word is 0x3fff. */
978 write_register (FTAG_REGNUM, 0x3fff);
979 }
980 else
981 {
982 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
983 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
984
985 if (len <= low_size)
986 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
987 else if (len <= (low_size + high_size))
988 {
989 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
990 valbuf, low_size);
991 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
992 valbuf + low_size, len - low_size);
993 }
994 else
995 internal_error (__FILE__, __LINE__,
996 "Cannot store return value of %d bytes long.", len);
997 }
998 }
999
1000 /* Extract from an array REGBUF containing the (raw) register state
1001 the address in which a function should return its structure value,
1002 as a CORE_ADDR. */
1003
1004 CORE_ADDR
1005 i386_extract_struct_value_address (char *regbuf)
1006 {
1007 return extract_address (&regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)],
1008 REGISTER_RAW_SIZE (LOW_RETURN_REGNUM));
1009 }
1010 \f
1011
1012 /* Return the GDB type object for the "standard" data type of data in
1013 register REGNUM. Perhaps %esi and %edi should go here, but
1014 potentially they could be used for things other than address. */
1015
1016 struct type *
1017 i386_register_virtual_type (int regnum)
1018 {
1019 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1020 return lookup_pointer_type (builtin_type_void);
1021
1022 if (IS_FP_REGNUM (regnum))
1023 return builtin_type_i387_ext;
1024
1025 if (IS_SSE_REGNUM (regnum))
1026 return builtin_type_v4sf;
1027
1028 return builtin_type_int;
1029 }
1030
1031 /* Return true iff register REGNUM's virtual format is different from
1032 its raw format. Note that this definition assumes that the host
1033 supports IEEE 32-bit floats, since it doesn't say that SSE
1034 registers need conversion. Even if we can't find a counterexample,
1035 this is still sloppy. */
1036
1037 int
1038 i386_register_convertible (int regnum)
1039 {
1040 return IS_FP_REGNUM (regnum);
1041 }
1042
1043 /* Convert data from raw format for register REGNUM in buffer FROM to
1044 virtual format with type TYPE in buffer TO. */
1045
1046 void
1047 i386_register_convert_to_virtual (int regnum, struct type *type,
1048 char *from, char *to)
1049 {
1050 gdb_assert (IS_FP_REGNUM (regnum));
1051
1052 /* We only support floating-point values. */
1053 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1054 {
1055 warning ("Cannot convert floating-point register value "
1056 "to non-floating-point type.");
1057 memset (to, 0, TYPE_LENGTH (type));
1058 return;
1059 }
1060
1061 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1062 the extended floating-point format used by the FPU. */
1063 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1064 }
1065
1066 /* Convert data from virtual format with type TYPE in buffer FROM to
1067 raw format for register REGNUM in buffer TO. */
1068
1069 void
1070 i386_register_convert_to_raw (struct type *type, int regnum,
1071 char *from, char *to)
1072 {
1073 gdb_assert (IS_FP_REGNUM (regnum));
1074
1075 /* We only support floating-point values. */
1076 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1077 {
1078 warning ("Cannot convert non-floating-point type "
1079 "to floating-point register value.");
1080 memset (to, 0, TYPE_LENGTH (type));
1081 return;
1082 }
1083
1084 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1085 to the extended floating-point format used by the FPU. */
1086 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1087 }
1088 \f
1089
1090 #ifdef I386V4_SIGTRAMP_SAVED_PC
1091 /* Get saved user PC for sigtramp from the pushed ucontext on the
1092 stack for all three variants of SVR4 sigtramps. */
1093
1094 CORE_ADDR
1095 i386v4_sigtramp_saved_pc (struct frame_info *frame)
1096 {
1097 CORE_ADDR saved_pc_offset = 4;
1098 char *name = NULL;
1099
1100 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1101 if (name)
1102 {
1103 if (STREQ (name, "_sigreturn"))
1104 saved_pc_offset = 132 + 14 * 4;
1105 else if (STREQ (name, "_sigacthandler"))
1106 saved_pc_offset = 80 + 14 * 4;
1107 else if (STREQ (name, "sigvechandler"))
1108 saved_pc_offset = 120 + 14 * 4;
1109 }
1110
1111 if (frame->next)
1112 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
1113 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
1114 }
1115 #endif /* I386V4_SIGTRAMP_SAVED_PC */
1116 \f
1117
1118 #ifdef STATIC_TRANSFORM_NAME
1119 /* SunPRO encodes the static variables. This is not related to C++
1120 mangling, it is done for C too. */
1121
1122 char *
1123 sunpro_static_transform_name (char *name)
1124 {
1125 char *p;
1126 if (IS_STATIC_TRANSFORM_NAME (name))
1127 {
1128 /* For file-local statics there will be a period, a bunch of
1129 junk (the contents of which match a string given in the
1130 N_OPT), a period and the name. For function-local statics
1131 there will be a bunch of junk (which seems to change the
1132 second character from 'A' to 'B'), a period, the name of the
1133 function, and the name. So just skip everything before the
1134 last period. */
1135 p = strrchr (name, '.');
1136 if (p != NULL)
1137 name = p + 1;
1138 }
1139 return name;
1140 }
1141 #endif /* STATIC_TRANSFORM_NAME */
1142 \f
1143
1144 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1145
1146 CORE_ADDR
1147 skip_trampoline_code (CORE_ADDR pc, char *name)
1148 {
1149 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1150 {
1151 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1152 struct minimal_symbol *indsym =
1153 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1154 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
1155
1156 if (symname)
1157 {
1158 if (strncmp (symname, "__imp_", 6) == 0
1159 || strncmp (symname, "_imp_", 5) == 0)
1160 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1161 }
1162 }
1163 return 0; /* Not a trampoline. */
1164 }
1165 \f
1166
1167 /* We have two flavours of disassembly. The machinery on this page
1168 deals with switching between those. */
1169
1170 static int
1171 gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
1172 {
1173 if (disassembly_flavor == att_flavor)
1174 return print_insn_i386_att (memaddr, info);
1175 else if (disassembly_flavor == intel_flavor)
1176 return print_insn_i386_intel (memaddr, info);
1177 /* Never reached -- disassembly_flavour is always either att_flavor
1178 or intel_flavor. */
1179 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1180 }
1181
1182 /* If the disassembly mode is intel, we have to also switch the bfd
1183 mach_type. This function is run in the set disassembly_flavor
1184 command, and does that. */
1185
1186 static void
1187 set_disassembly_flavor_sfunc (char *args, int from_tty,
1188 struct cmd_list_element *c)
1189 {
1190 set_disassembly_flavor ();
1191 }
1192
1193 static void
1194 set_disassembly_flavor (void)
1195 {
1196 if (disassembly_flavor == att_flavor)
1197 set_architecture_from_arch_mach (bfd_arch_i386, bfd_mach_i386_i386);
1198 else if (disassembly_flavor == intel_flavor)
1199 set_architecture_from_arch_mach (bfd_arch_i386,
1200 bfd_mach_i386_i386_intel_syntax);
1201 }
1202 \f
1203
1204 /* Provide a prototype to silence -Wmissing-prototypes. */
1205 void _initialize_i386_tdep (void);
1206
1207 void
1208 _initialize_i386_tdep (void)
1209 {
1210 /* Initialize the table saying where each register starts in the
1211 register file. */
1212 {
1213 int i, offset;
1214
1215 offset = 0;
1216 for (i = 0; i < MAX_NUM_REGS; i++)
1217 {
1218 i386_register_byte[i] = offset;
1219 offset += i386_register_raw_size[i];
1220 }
1221 }
1222
1223 /* Initialize the table of virtual register sizes. */
1224 {
1225 int i;
1226
1227 for (i = 0; i < MAX_NUM_REGS; i++)
1228 i386_register_virtual_size[i] = TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (i));
1229 }
1230
1231 tm_print_insn = gdb_print_insn_i386;
1232 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1233
1234 /* Add the variable that controls the disassembly flavor. */
1235 {
1236 struct cmd_list_element *new_cmd;
1237
1238 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1239 valid_flavors,
1240 &disassembly_flavor,
1241 "\
1242 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1243 and the default value is \"att\".",
1244 &setlist);
1245 new_cmd->function.sfunc = set_disassembly_flavor_sfunc;
1246 add_show_from_set (new_cmd, &showlist);
1247 }
1248
1249 /* Finally, initialize the disassembly flavor to the default given
1250 in the disassembly_flavor variable. */
1251 set_disassembly_flavor ();
1252 }
This page took 0.056961 seconds and 4 git commands to generate.