cris: Check UNDEFWEAK_NO_DYNAMIC_RELOC
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50
51 #include "record.h"
52 #include "record-full.h"
53 #include "target-descriptions.h"
54 #include "arch/i386.h"
55
56 #include "ax.h"
57 #include "ax-gdb.h"
58
59 #include "stap-probe.h"
60 #include "user-regs.h"
61 #include "cli/cli-utils.h"
62 #include "expression.h"
63 #include "parser-defs.h"
64 #include <ctype.h>
65 #include <algorithm>
66
67 /* Register names. */
68
69 static const char *i386_register_names[] =
70 {
71 "eax", "ecx", "edx", "ebx",
72 "esp", "ebp", "esi", "edi",
73 "eip", "eflags", "cs", "ss",
74 "ds", "es", "fs", "gs",
75 "st0", "st1", "st2", "st3",
76 "st4", "st5", "st6", "st7",
77 "fctrl", "fstat", "ftag", "fiseg",
78 "fioff", "foseg", "fooff", "fop",
79 "xmm0", "xmm1", "xmm2", "xmm3",
80 "xmm4", "xmm5", "xmm6", "xmm7",
81 "mxcsr"
82 };
83
84 static const char *i386_zmm_names[] =
85 {
86 "zmm0", "zmm1", "zmm2", "zmm3",
87 "zmm4", "zmm5", "zmm6", "zmm7"
88 };
89
90 static const char *i386_zmmh_names[] =
91 {
92 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
93 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
94 };
95
96 static const char *i386_k_names[] =
97 {
98 "k0", "k1", "k2", "k3",
99 "k4", "k5", "k6", "k7"
100 };
101
102 static const char *i386_ymm_names[] =
103 {
104 "ymm0", "ymm1", "ymm2", "ymm3",
105 "ymm4", "ymm5", "ymm6", "ymm7",
106 };
107
108 static const char *i386_ymmh_names[] =
109 {
110 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
111 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
112 };
113
114 static const char *i386_mpx_names[] =
115 {
116 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
117 };
118
119 static const char* i386_pkeys_names[] =
120 {
121 "pkru"
122 };
123
124 /* Register names for MPX pseudo-registers. */
125
126 static const char *i386_bnd_names[] =
127 {
128 "bnd0", "bnd1", "bnd2", "bnd3"
129 };
130
131 /* Register names for MMX pseudo-registers. */
132
133 static const char *i386_mmx_names[] =
134 {
135 "mm0", "mm1", "mm2", "mm3",
136 "mm4", "mm5", "mm6", "mm7"
137 };
138
139 /* Register names for byte pseudo-registers. */
140
141 static const char *i386_byte_names[] =
142 {
143 "al", "cl", "dl", "bl",
144 "ah", "ch", "dh", "bh"
145 };
146
147 /* Register names for word pseudo-registers. */
148
149 static const char *i386_word_names[] =
150 {
151 "ax", "cx", "dx", "bx",
152 "", "bp", "si", "di"
153 };
154
155 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
156 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
157 we have 16 upper ZMM regs that have to be handled differently. */
158
159 const int num_lower_zmm_regs = 16;
160
161 /* MMX register? */
162
163 static int
164 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
165 {
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int mm0_regnum = tdep->mm0_regnum;
168
169 if (mm0_regnum < 0)
170 return 0;
171
172 regnum -= mm0_regnum;
173 return regnum >= 0 && regnum < tdep->num_mmx_regs;
174 }
175
176 /* Byte register? */
177
178 int
179 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
180 {
181 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
182
183 regnum -= tdep->al_regnum;
184 return regnum >= 0 && regnum < tdep->num_byte_regs;
185 }
186
187 /* Word register? */
188
189 int
190 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
191 {
192 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
193
194 regnum -= tdep->ax_regnum;
195 return regnum >= 0 && regnum < tdep->num_word_regs;
196 }
197
198 /* Dword register? */
199
200 int
201 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
202 {
203 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
204 int eax_regnum = tdep->eax_regnum;
205
206 if (eax_regnum < 0)
207 return 0;
208
209 regnum -= eax_regnum;
210 return regnum >= 0 && regnum < tdep->num_dword_regs;
211 }
212
213 /* AVX512 register? */
214
215 int
216 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
217 {
218 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
219 int zmm0h_regnum = tdep->zmm0h_regnum;
220
221 if (zmm0h_regnum < 0)
222 return 0;
223
224 regnum -= zmm0h_regnum;
225 return regnum >= 0 && regnum < tdep->num_zmm_regs;
226 }
227
228 int
229 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
230 {
231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
232 int zmm0_regnum = tdep->zmm0_regnum;
233
234 if (zmm0_regnum < 0)
235 return 0;
236
237 regnum -= zmm0_regnum;
238 return regnum >= 0 && regnum < tdep->num_zmm_regs;
239 }
240
241 int
242 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
243 {
244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245 int k0_regnum = tdep->k0_regnum;
246
247 if (k0_regnum < 0)
248 return 0;
249
250 regnum -= k0_regnum;
251 return regnum >= 0 && regnum < I387_NUM_K_REGS;
252 }
253
254 static int
255 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
256 {
257 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
258 int ymm0h_regnum = tdep->ymm0h_regnum;
259
260 if (ymm0h_regnum < 0)
261 return 0;
262
263 regnum -= ymm0h_regnum;
264 return regnum >= 0 && regnum < tdep->num_ymm_regs;
265 }
266
267 /* AVX register? */
268
269 int
270 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
271 {
272 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
273 int ymm0_regnum = tdep->ymm0_regnum;
274
275 if (ymm0_regnum < 0)
276 return 0;
277
278 regnum -= ymm0_regnum;
279 return regnum >= 0 && regnum < tdep->num_ymm_regs;
280 }
281
282 static int
283 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
284 {
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286 int ymm16h_regnum = tdep->ymm16h_regnum;
287
288 if (ymm16h_regnum < 0)
289 return 0;
290
291 regnum -= ymm16h_regnum;
292 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
293 }
294
295 int
296 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
297 {
298 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
299 int ymm16_regnum = tdep->ymm16_regnum;
300
301 if (ymm16_regnum < 0)
302 return 0;
303
304 regnum -= ymm16_regnum;
305 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
306 }
307
308 /* BND register? */
309
310 int
311 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
312 {
313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
314 int bnd0_regnum = tdep->bnd0_regnum;
315
316 if (bnd0_regnum < 0)
317 return 0;
318
319 regnum -= bnd0_regnum;
320 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
321 }
322
323 /* SSE register? */
324
325 int
326 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
327 {
328 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
329 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
330
331 if (num_xmm_regs == 0)
332 return 0;
333
334 regnum -= I387_XMM0_REGNUM (tdep);
335 return regnum >= 0 && regnum < num_xmm_regs;
336 }
337
338 /* XMM_512 register? */
339
340 int
341 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
342 {
343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
345
346 if (num_xmm_avx512_regs == 0)
347 return 0;
348
349 regnum -= I387_XMM16_REGNUM (tdep);
350 return regnum >= 0 && regnum < num_xmm_avx512_regs;
351 }
352
353 static int
354 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
355 {
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357
358 if (I387_NUM_XMM_REGS (tdep) == 0)
359 return 0;
360
361 return (regnum == I387_MXCSR_REGNUM (tdep));
362 }
363
364 /* FP register? */
365
366 int
367 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
368 {
369 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
370
371 if (I387_ST0_REGNUM (tdep) < 0)
372 return 0;
373
374 return (I387_ST0_REGNUM (tdep) <= regnum
375 && regnum < I387_FCTRL_REGNUM (tdep));
376 }
377
378 int
379 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
380 {
381 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
382
383 if (I387_ST0_REGNUM (tdep) < 0)
384 return 0;
385
386 return (I387_FCTRL_REGNUM (tdep) <= regnum
387 && regnum < I387_XMM0_REGNUM (tdep));
388 }
389
390 /* BNDr (raw) register? */
391
392 static int
393 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
394 {
395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
396
397 if (I387_BND0R_REGNUM (tdep) < 0)
398 return 0;
399
400 regnum -= tdep->bnd0r_regnum;
401 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
402 }
403
404 /* BND control register? */
405
406 static int
407 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
408 {
409 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
410
411 if (I387_BNDCFGU_REGNUM (tdep) < 0)
412 return 0;
413
414 regnum -= I387_BNDCFGU_REGNUM (tdep);
415 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
416 }
417
418 /* PKRU register? */
419
420 bool
421 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
422 {
423 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
424 int pkru_regnum = tdep->pkru_regnum;
425
426 if (pkru_regnum < 0)
427 return false;
428
429 regnum -= pkru_regnum;
430 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
431 }
432
433 /* Return the name of register REGNUM, or the empty string if it is
434 an anonymous register. */
435
436 static const char *
437 i386_register_name (struct gdbarch *gdbarch, int regnum)
438 {
439 /* Hide the upper YMM registers. */
440 if (i386_ymmh_regnum_p (gdbarch, regnum))
441 return "";
442
443 /* Hide the upper YMM16-31 registers. */
444 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
445 return "";
446
447 /* Hide the upper ZMM registers. */
448 if (i386_zmmh_regnum_p (gdbarch, regnum))
449 return "";
450
451 return tdesc_register_name (gdbarch, regnum);
452 }
453
454 /* Return the name of register REGNUM. */
455
456 const char *
457 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
458 {
459 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
460 if (i386_bnd_regnum_p (gdbarch, regnum))
461 return i386_bnd_names[regnum - tdep->bnd0_regnum];
462 if (i386_mmx_regnum_p (gdbarch, regnum))
463 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
464 else if (i386_ymm_regnum_p (gdbarch, regnum))
465 return i386_ymm_names[regnum - tdep->ymm0_regnum];
466 else if (i386_zmm_regnum_p (gdbarch, regnum))
467 return i386_zmm_names[regnum - tdep->zmm0_regnum];
468 else if (i386_byte_regnum_p (gdbarch, regnum))
469 return i386_byte_names[regnum - tdep->al_regnum];
470 else if (i386_word_regnum_p (gdbarch, regnum))
471 return i386_word_names[regnum - tdep->ax_regnum];
472
473 internal_error (__FILE__, __LINE__, _("invalid regnum"));
474 }
475
476 /* Convert a dbx register number REG to the appropriate register
477 number used by GDB. */
478
479 static int
480 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
481 {
482 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
483
484 /* This implements what GCC calls the "default" register map
485 (dbx_register_map[]). */
486
487 if (reg >= 0 && reg <= 7)
488 {
489 /* General-purpose registers. The debug info calls %ebp
490 register 4, and %esp register 5. */
491 if (reg == 4)
492 return 5;
493 else if (reg == 5)
494 return 4;
495 else return reg;
496 }
497 else if (reg >= 12 && reg <= 19)
498 {
499 /* Floating-point registers. */
500 return reg - 12 + I387_ST0_REGNUM (tdep);
501 }
502 else if (reg >= 21 && reg <= 28)
503 {
504 /* SSE registers. */
505 int ymm0_regnum = tdep->ymm0_regnum;
506
507 if (ymm0_regnum >= 0
508 && i386_xmm_regnum_p (gdbarch, reg))
509 return reg - 21 + ymm0_regnum;
510 else
511 return reg - 21 + I387_XMM0_REGNUM (tdep);
512 }
513 else if (reg >= 29 && reg <= 36)
514 {
515 /* MMX registers. */
516 return reg - 29 + I387_MM0_REGNUM (tdep);
517 }
518
519 /* This will hopefully provoke a warning. */
520 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
521 }
522
523 /* Convert SVR4 DWARF register number REG to the appropriate register number
524 used by GDB. */
525
526 static int
527 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
528 {
529 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
530
531 /* This implements the GCC register map that tries to be compatible
532 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
533
534 /* The SVR4 register numbering includes %eip and %eflags, and
535 numbers the floating point registers differently. */
536 if (reg >= 0 && reg <= 9)
537 {
538 /* General-purpose registers. */
539 return reg;
540 }
541 else if (reg >= 11 && reg <= 18)
542 {
543 /* Floating-point registers. */
544 return reg - 11 + I387_ST0_REGNUM (tdep);
545 }
546 else if (reg >= 21 && reg <= 36)
547 {
548 /* The SSE and MMX registers have the same numbers as with dbx. */
549 return i386_dbx_reg_to_regnum (gdbarch, reg);
550 }
551
552 switch (reg)
553 {
554 case 37: return I387_FCTRL_REGNUM (tdep);
555 case 38: return I387_FSTAT_REGNUM (tdep);
556 case 39: return I387_MXCSR_REGNUM (tdep);
557 case 40: return I386_ES_REGNUM;
558 case 41: return I386_CS_REGNUM;
559 case 42: return I386_SS_REGNUM;
560 case 43: return I386_DS_REGNUM;
561 case 44: return I386_FS_REGNUM;
562 case 45: return I386_GS_REGNUM;
563 }
564
565 return -1;
566 }
567
568 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
569 num_regs + num_pseudo_regs for other debug formats. */
570
571 int
572 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
573 {
574 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
575
576 if (regnum == -1)
577 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
578 return regnum;
579 }
580
581 \f
582
583 /* This is the variable that is set with "set disassembly-flavor", and
584 its legitimate values. */
585 static const char att_flavor[] = "att";
586 static const char intel_flavor[] = "intel";
587 static const char *const valid_flavors[] =
588 {
589 att_flavor,
590 intel_flavor,
591 NULL
592 };
593 static const char *disassembly_flavor = att_flavor;
594 \f
595
596 /* Use the program counter to determine the contents and size of a
597 breakpoint instruction. Return a pointer to a string of bytes that
598 encode a breakpoint instruction, store the length of the string in
599 *LEN and optionally adjust *PC to point to the correct memory
600 location for inserting the breakpoint.
601
602 On the i386 we have a single breakpoint that fits in a single byte
603 and can be inserted anywhere.
604
605 This function is 64-bit safe. */
606
607 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
608
609 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
610
611 \f
612 /* Displaced instruction handling. */
613
614 /* Skip the legacy instruction prefixes in INSN.
615 Not all prefixes are valid for any particular insn
616 but we needn't care, the insn will fault if it's invalid.
617 The result is a pointer to the first opcode byte,
618 or NULL if we run off the end of the buffer. */
619
620 static gdb_byte *
621 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
622 {
623 gdb_byte *end = insn + max_len;
624
625 while (insn < end)
626 {
627 switch (*insn)
628 {
629 case DATA_PREFIX_OPCODE:
630 case ADDR_PREFIX_OPCODE:
631 case CS_PREFIX_OPCODE:
632 case DS_PREFIX_OPCODE:
633 case ES_PREFIX_OPCODE:
634 case FS_PREFIX_OPCODE:
635 case GS_PREFIX_OPCODE:
636 case SS_PREFIX_OPCODE:
637 case LOCK_PREFIX_OPCODE:
638 case REPE_PREFIX_OPCODE:
639 case REPNE_PREFIX_OPCODE:
640 ++insn;
641 continue;
642 default:
643 return insn;
644 }
645 }
646
647 return NULL;
648 }
649
650 static int
651 i386_absolute_jmp_p (const gdb_byte *insn)
652 {
653 /* jmp far (absolute address in operand). */
654 if (insn[0] == 0xea)
655 return 1;
656
657 if (insn[0] == 0xff)
658 {
659 /* jump near, absolute indirect (/4). */
660 if ((insn[1] & 0x38) == 0x20)
661 return 1;
662
663 /* jump far, absolute indirect (/5). */
664 if ((insn[1] & 0x38) == 0x28)
665 return 1;
666 }
667
668 return 0;
669 }
670
671 /* Return non-zero if INSN is a jump, zero otherwise. */
672
673 static int
674 i386_jmp_p (const gdb_byte *insn)
675 {
676 /* jump short, relative. */
677 if (insn[0] == 0xeb)
678 return 1;
679
680 /* jump near, relative. */
681 if (insn[0] == 0xe9)
682 return 1;
683
684 return i386_absolute_jmp_p (insn);
685 }
686
687 static int
688 i386_absolute_call_p (const gdb_byte *insn)
689 {
690 /* call far, absolute. */
691 if (insn[0] == 0x9a)
692 return 1;
693
694 if (insn[0] == 0xff)
695 {
696 /* Call near, absolute indirect (/2). */
697 if ((insn[1] & 0x38) == 0x10)
698 return 1;
699
700 /* Call far, absolute indirect (/3). */
701 if ((insn[1] & 0x38) == 0x18)
702 return 1;
703 }
704
705 return 0;
706 }
707
708 static int
709 i386_ret_p (const gdb_byte *insn)
710 {
711 switch (insn[0])
712 {
713 case 0xc2: /* ret near, pop N bytes. */
714 case 0xc3: /* ret near */
715 case 0xca: /* ret far, pop N bytes. */
716 case 0xcb: /* ret far */
717 case 0xcf: /* iret */
718 return 1;
719
720 default:
721 return 0;
722 }
723 }
724
725 static int
726 i386_call_p (const gdb_byte *insn)
727 {
728 if (i386_absolute_call_p (insn))
729 return 1;
730
731 /* call near, relative. */
732 if (insn[0] == 0xe8)
733 return 1;
734
735 return 0;
736 }
737
738 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
739 length in bytes. Otherwise, return zero. */
740
741 static int
742 i386_syscall_p (const gdb_byte *insn, int *lengthp)
743 {
744 /* Is it 'int $0x80'? */
745 if ((insn[0] == 0xcd && insn[1] == 0x80)
746 /* Or is it 'sysenter'? */
747 || (insn[0] == 0x0f && insn[1] == 0x34)
748 /* Or is it 'syscall'? */
749 || (insn[0] == 0x0f && insn[1] == 0x05))
750 {
751 *lengthp = 2;
752 return 1;
753 }
754
755 return 0;
756 }
757
758 /* The gdbarch insn_is_call method. */
759
760 static int
761 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
762 {
763 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
764
765 read_code (addr, buf, I386_MAX_INSN_LEN);
766 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
767
768 return i386_call_p (insn);
769 }
770
771 /* The gdbarch insn_is_ret method. */
772
773 static int
774 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
775 {
776 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
777
778 read_code (addr, buf, I386_MAX_INSN_LEN);
779 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
780
781 return i386_ret_p (insn);
782 }
783
784 /* The gdbarch insn_is_jump method. */
785
786 static int
787 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
788 {
789 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
790
791 read_code (addr, buf, I386_MAX_INSN_LEN);
792 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
793
794 return i386_jmp_p (insn);
795 }
796
797 /* Some kernels may run one past a syscall insn, so we have to cope. */
798
799 struct displaced_step_closure *
800 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
801 CORE_ADDR from, CORE_ADDR to,
802 struct regcache *regs)
803 {
804 size_t len = gdbarch_max_insn_length (gdbarch);
805 gdb_byte *buf = (gdb_byte *) xmalloc (len);
806
807 read_memory (from, buf, len);
808
809 /* GDB may get control back after the insn after the syscall.
810 Presumably this is a kernel bug.
811 If this is a syscall, make sure there's a nop afterwards. */
812 {
813 int syscall_length;
814 gdb_byte *insn;
815
816 insn = i386_skip_prefixes (buf, len);
817 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
818 insn[syscall_length] = NOP_OPCODE;
819 }
820
821 write_memory (to, buf, len);
822
823 if (debug_displaced)
824 {
825 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
826 paddress (gdbarch, from), paddress (gdbarch, to));
827 displaced_step_dump_bytes (gdb_stdlog, buf, len);
828 }
829
830 return (struct displaced_step_closure *) buf;
831 }
832
833 /* Fix up the state of registers and memory after having single-stepped
834 a displaced instruction. */
835
836 void
837 i386_displaced_step_fixup (struct gdbarch *gdbarch,
838 struct displaced_step_closure *closure,
839 CORE_ADDR from, CORE_ADDR to,
840 struct regcache *regs)
841 {
842 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
843
844 /* The offset we applied to the instruction's address.
845 This could well be negative (when viewed as a signed 32-bit
846 value), but ULONGEST won't reflect that, so take care when
847 applying it. */
848 ULONGEST insn_offset = to - from;
849
850 /* Our closure is a copy of the instruction. */
851 gdb_byte *insn = (gdb_byte *) closure;
852 /* The start of the insn, needed in case we see some prefixes. */
853 gdb_byte *insn_start = insn;
854
855 if (debug_displaced)
856 fprintf_unfiltered (gdb_stdlog,
857 "displaced: fixup (%s, %s), "
858 "insn = 0x%02x 0x%02x ...\n",
859 paddress (gdbarch, from), paddress (gdbarch, to),
860 insn[0], insn[1]);
861
862 /* The list of issues to contend with here is taken from
863 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
864 Yay for Free Software! */
865
866 /* Relocate the %eip, if necessary. */
867
868 /* The instruction recognizers we use assume any leading prefixes
869 have been skipped. */
870 {
871 /* This is the size of the buffer in closure. */
872 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
873 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
874 /* If there are too many prefixes, just ignore the insn.
875 It will fault when run. */
876 if (opcode != NULL)
877 insn = opcode;
878 }
879
880 /* Except in the case of absolute or indirect jump or call
881 instructions, or a return instruction, the new eip is relative to
882 the displaced instruction; make it relative. Well, signal
883 handler returns don't need relocation either, but we use the
884 value of %eip to recognize those; see below. */
885 if (! i386_absolute_jmp_p (insn)
886 && ! i386_absolute_call_p (insn)
887 && ! i386_ret_p (insn))
888 {
889 ULONGEST orig_eip;
890 int insn_len;
891
892 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
893
894 /* A signal trampoline system call changes the %eip, resuming
895 execution of the main program after the signal handler has
896 returned. That makes them like 'return' instructions; we
897 shouldn't relocate %eip.
898
899 But most system calls don't, and we do need to relocate %eip.
900
901 Our heuristic for distinguishing these cases: if stepping
902 over the system call instruction left control directly after
903 the instruction, the we relocate --- control almost certainly
904 doesn't belong in the displaced copy. Otherwise, we assume
905 the instruction has put control where it belongs, and leave
906 it unrelocated. Goodness help us if there are PC-relative
907 system calls. */
908 if (i386_syscall_p (insn, &insn_len)
909 && orig_eip != to + (insn - insn_start) + insn_len
910 /* GDB can get control back after the insn after the syscall.
911 Presumably this is a kernel bug.
912 i386_displaced_step_copy_insn ensures its a nop,
913 we add one to the length for it. */
914 && orig_eip != to + (insn - insn_start) + insn_len + 1)
915 {
916 if (debug_displaced)
917 fprintf_unfiltered (gdb_stdlog,
918 "displaced: syscall changed %%eip; "
919 "not relocating\n");
920 }
921 else
922 {
923 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
924
925 /* If we just stepped over a breakpoint insn, we don't backup
926 the pc on purpose; this is to match behaviour without
927 stepping. */
928
929 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
930
931 if (debug_displaced)
932 fprintf_unfiltered (gdb_stdlog,
933 "displaced: "
934 "relocated %%eip from %s to %s\n",
935 paddress (gdbarch, orig_eip),
936 paddress (gdbarch, eip));
937 }
938 }
939
940 /* If the instruction was PUSHFL, then the TF bit will be set in the
941 pushed value, and should be cleared. We'll leave this for later,
942 since GDB already messes up the TF flag when stepping over a
943 pushfl. */
944
945 /* If the instruction was a call, the return address now atop the
946 stack is the address following the copied instruction. We need
947 to make it the address following the original instruction. */
948 if (i386_call_p (insn))
949 {
950 ULONGEST esp;
951 ULONGEST retaddr;
952 const ULONGEST retaddr_len = 4;
953
954 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
955 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
956 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
957 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
958
959 if (debug_displaced)
960 fprintf_unfiltered (gdb_stdlog,
961 "displaced: relocated return addr at %s to %s\n",
962 paddress (gdbarch, esp),
963 paddress (gdbarch, retaddr));
964 }
965 }
966
967 static void
968 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
969 {
970 target_write_memory (*to, buf, len);
971 *to += len;
972 }
973
974 static void
975 i386_relocate_instruction (struct gdbarch *gdbarch,
976 CORE_ADDR *to, CORE_ADDR oldloc)
977 {
978 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
979 gdb_byte buf[I386_MAX_INSN_LEN];
980 int offset = 0, rel32, newrel;
981 int insn_length;
982 gdb_byte *insn = buf;
983
984 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
985
986 insn_length = gdb_buffered_insn_length (gdbarch, insn,
987 I386_MAX_INSN_LEN, oldloc);
988
989 /* Get past the prefixes. */
990 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
991
992 /* Adjust calls with 32-bit relative addresses as push/jump, with
993 the address pushed being the location where the original call in
994 the user program would return to. */
995 if (insn[0] == 0xe8)
996 {
997 gdb_byte push_buf[16];
998 unsigned int ret_addr;
999
1000 /* Where "ret" in the original code will return to. */
1001 ret_addr = oldloc + insn_length;
1002 push_buf[0] = 0x68; /* pushq $... */
1003 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1004 /* Push the push. */
1005 append_insns (to, 5, push_buf);
1006
1007 /* Convert the relative call to a relative jump. */
1008 insn[0] = 0xe9;
1009
1010 /* Adjust the destination offset. */
1011 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1012 newrel = (oldloc - *to) + rel32;
1013 store_signed_integer (insn + 1, 4, byte_order, newrel);
1014
1015 if (debug_displaced)
1016 fprintf_unfiltered (gdb_stdlog,
1017 "Adjusted insn rel32=%s at %s to"
1018 " rel32=%s at %s\n",
1019 hex_string (rel32), paddress (gdbarch, oldloc),
1020 hex_string (newrel), paddress (gdbarch, *to));
1021
1022 /* Write the adjusted jump into its displaced location. */
1023 append_insns (to, 5, insn);
1024 return;
1025 }
1026
1027 /* Adjust jumps with 32-bit relative addresses. Calls are already
1028 handled above. */
1029 if (insn[0] == 0xe9)
1030 offset = 1;
1031 /* Adjust conditional jumps. */
1032 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1033 offset = 2;
1034
1035 if (offset)
1036 {
1037 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1038 newrel = (oldloc - *to) + rel32;
1039 store_signed_integer (insn + offset, 4, byte_order, newrel);
1040 if (debug_displaced)
1041 fprintf_unfiltered (gdb_stdlog,
1042 "Adjusted insn rel32=%s at %s to"
1043 " rel32=%s at %s\n",
1044 hex_string (rel32), paddress (gdbarch, oldloc),
1045 hex_string (newrel), paddress (gdbarch, *to));
1046 }
1047
1048 /* Write the adjusted instructions into their displaced
1049 location. */
1050 append_insns (to, insn_length, buf);
1051 }
1052
1053 \f
1054 #ifdef I386_REGNO_TO_SYMMETRY
1055 #error "The Sequent Symmetry is no longer supported."
1056 #endif
1057
1058 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1059 and %esp "belong" to the calling function. Therefore these
1060 registers should be saved if they're going to be modified. */
1061
1062 /* The maximum number of saved registers. This should include all
1063 registers mentioned above, and %eip. */
1064 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1065
1066 struct i386_frame_cache
1067 {
1068 /* Base address. */
1069 CORE_ADDR base;
1070 int base_p;
1071 LONGEST sp_offset;
1072 CORE_ADDR pc;
1073
1074 /* Saved registers. */
1075 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1076 CORE_ADDR saved_sp;
1077 int saved_sp_reg;
1078 int pc_in_eax;
1079
1080 /* Stack space reserved for local variables. */
1081 long locals;
1082 };
1083
1084 /* Allocate and initialize a frame cache. */
1085
1086 static struct i386_frame_cache *
1087 i386_alloc_frame_cache (void)
1088 {
1089 struct i386_frame_cache *cache;
1090 int i;
1091
1092 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1093
1094 /* Base address. */
1095 cache->base_p = 0;
1096 cache->base = 0;
1097 cache->sp_offset = -4;
1098 cache->pc = 0;
1099
1100 /* Saved registers. We initialize these to -1 since zero is a valid
1101 offset (that's where %ebp is supposed to be stored). */
1102 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1103 cache->saved_regs[i] = -1;
1104 cache->saved_sp = 0;
1105 cache->saved_sp_reg = -1;
1106 cache->pc_in_eax = 0;
1107
1108 /* Frameless until proven otherwise. */
1109 cache->locals = -1;
1110
1111 return cache;
1112 }
1113
1114 /* If the instruction at PC is a jump, return the address of its
1115 target. Otherwise, return PC. */
1116
1117 static CORE_ADDR
1118 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1119 {
1120 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1121 gdb_byte op;
1122 long delta = 0;
1123 int data16 = 0;
1124
1125 if (target_read_code (pc, &op, 1))
1126 return pc;
1127
1128 if (op == 0x66)
1129 {
1130 data16 = 1;
1131
1132 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1133 }
1134
1135 switch (op)
1136 {
1137 case 0xe9:
1138 /* Relative jump: if data16 == 0, disp32, else disp16. */
1139 if (data16)
1140 {
1141 delta = read_memory_integer (pc + 2, 2, byte_order);
1142
1143 /* Include the size of the jmp instruction (including the
1144 0x66 prefix). */
1145 delta += 4;
1146 }
1147 else
1148 {
1149 delta = read_memory_integer (pc + 1, 4, byte_order);
1150
1151 /* Include the size of the jmp instruction. */
1152 delta += 5;
1153 }
1154 break;
1155 case 0xeb:
1156 /* Relative jump, disp8 (ignore data16). */
1157 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1158
1159 delta += data16 + 2;
1160 break;
1161 }
1162
1163 return pc + delta;
1164 }
1165
1166 /* Check whether PC points at a prologue for a function returning a
1167 structure or union. If so, it updates CACHE and returns the
1168 address of the first instruction after the code sequence that
1169 removes the "hidden" argument from the stack or CURRENT_PC,
1170 whichever is smaller. Otherwise, return PC. */
1171
1172 static CORE_ADDR
1173 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1174 struct i386_frame_cache *cache)
1175 {
1176 /* Functions that return a structure or union start with:
1177
1178 popl %eax 0x58
1179 xchgl %eax, (%esp) 0x87 0x04 0x24
1180 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1181
1182 (the System V compiler puts out the second `xchg' instruction,
1183 and the assembler doesn't try to optimize it, so the 'sib' form
1184 gets generated). This sequence is used to get the address of the
1185 return buffer for a function that returns a structure. */
1186 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1187 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1188 gdb_byte buf[4];
1189 gdb_byte op;
1190
1191 if (current_pc <= pc)
1192 return pc;
1193
1194 if (target_read_code (pc, &op, 1))
1195 return pc;
1196
1197 if (op != 0x58) /* popl %eax */
1198 return pc;
1199
1200 if (target_read_code (pc + 1, buf, 4))
1201 return pc;
1202
1203 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1204 return pc;
1205
1206 if (current_pc == pc)
1207 {
1208 cache->sp_offset += 4;
1209 return current_pc;
1210 }
1211
1212 if (current_pc == pc + 1)
1213 {
1214 cache->pc_in_eax = 1;
1215 return current_pc;
1216 }
1217
1218 if (buf[1] == proto1[1])
1219 return pc + 4;
1220 else
1221 return pc + 5;
1222 }
1223
1224 static CORE_ADDR
1225 i386_skip_probe (CORE_ADDR pc)
1226 {
1227 /* A function may start with
1228
1229 pushl constant
1230 call _probe
1231 addl $4, %esp
1232
1233 followed by
1234
1235 pushl %ebp
1236
1237 etc. */
1238 gdb_byte buf[8];
1239 gdb_byte op;
1240
1241 if (target_read_code (pc, &op, 1))
1242 return pc;
1243
1244 if (op == 0x68 || op == 0x6a)
1245 {
1246 int delta;
1247
1248 /* Skip past the `pushl' instruction; it has either a one-byte or a
1249 four-byte operand, depending on the opcode. */
1250 if (op == 0x68)
1251 delta = 5;
1252 else
1253 delta = 2;
1254
1255 /* Read the following 8 bytes, which should be `call _probe' (6
1256 bytes) followed by `addl $4,%esp' (2 bytes). */
1257 read_memory (pc + delta, buf, sizeof (buf));
1258 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1259 pc += delta + sizeof (buf);
1260 }
1261
1262 return pc;
1263 }
1264
1265 /* GCC 4.1 and later, can put code in the prologue to realign the
1266 stack pointer. Check whether PC points to such code, and update
1267 CACHE accordingly. Return the first instruction after the code
1268 sequence or CURRENT_PC, whichever is smaller. If we don't
1269 recognize the code, return PC. */
1270
1271 static CORE_ADDR
1272 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1273 struct i386_frame_cache *cache)
1274 {
1275 /* There are 2 code sequences to re-align stack before the frame
1276 gets set up:
1277
1278 1. Use a caller-saved saved register:
1279
1280 leal 4(%esp), %reg
1281 andl $-XXX, %esp
1282 pushl -4(%reg)
1283
1284 2. Use a callee-saved saved register:
1285
1286 pushl %reg
1287 leal 8(%esp), %reg
1288 andl $-XXX, %esp
1289 pushl -4(%reg)
1290
1291 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1292
1293 0x83 0xe4 0xf0 andl $-16, %esp
1294 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1295 */
1296
1297 gdb_byte buf[14];
1298 int reg;
1299 int offset, offset_and;
1300 static int regnums[8] = {
1301 I386_EAX_REGNUM, /* %eax */
1302 I386_ECX_REGNUM, /* %ecx */
1303 I386_EDX_REGNUM, /* %edx */
1304 I386_EBX_REGNUM, /* %ebx */
1305 I386_ESP_REGNUM, /* %esp */
1306 I386_EBP_REGNUM, /* %ebp */
1307 I386_ESI_REGNUM, /* %esi */
1308 I386_EDI_REGNUM /* %edi */
1309 };
1310
1311 if (target_read_code (pc, buf, sizeof buf))
1312 return pc;
1313
1314 /* Check caller-saved saved register. The first instruction has
1315 to be "leal 4(%esp), %reg". */
1316 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1317 {
1318 /* MOD must be binary 10 and R/M must be binary 100. */
1319 if ((buf[1] & 0xc7) != 0x44)
1320 return pc;
1321
1322 /* REG has register number. */
1323 reg = (buf[1] >> 3) & 7;
1324 offset = 4;
1325 }
1326 else
1327 {
1328 /* Check callee-saved saved register. The first instruction
1329 has to be "pushl %reg". */
1330 if ((buf[0] & 0xf8) != 0x50)
1331 return pc;
1332
1333 /* Get register. */
1334 reg = buf[0] & 0x7;
1335
1336 /* The next instruction has to be "leal 8(%esp), %reg". */
1337 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1338 return pc;
1339
1340 /* MOD must be binary 10 and R/M must be binary 100. */
1341 if ((buf[2] & 0xc7) != 0x44)
1342 return pc;
1343
1344 /* REG has register number. Registers in pushl and leal have to
1345 be the same. */
1346 if (reg != ((buf[2] >> 3) & 7))
1347 return pc;
1348
1349 offset = 5;
1350 }
1351
1352 /* Rigister can't be %esp nor %ebp. */
1353 if (reg == 4 || reg == 5)
1354 return pc;
1355
1356 /* The next instruction has to be "andl $-XXX, %esp". */
1357 if (buf[offset + 1] != 0xe4
1358 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1359 return pc;
1360
1361 offset_and = offset;
1362 offset += buf[offset] == 0x81 ? 6 : 3;
1363
1364 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1365 0xfc. REG must be binary 110 and MOD must be binary 01. */
1366 if (buf[offset] != 0xff
1367 || buf[offset + 2] != 0xfc
1368 || (buf[offset + 1] & 0xf8) != 0x70)
1369 return pc;
1370
1371 /* R/M has register. Registers in leal and pushl have to be the
1372 same. */
1373 if (reg != (buf[offset + 1] & 7))
1374 return pc;
1375
1376 if (current_pc > pc + offset_and)
1377 cache->saved_sp_reg = regnums[reg];
1378
1379 return std::min (pc + offset + 3, current_pc);
1380 }
1381
1382 /* Maximum instruction length we need to handle. */
1383 #define I386_MAX_MATCHED_INSN_LEN 6
1384
1385 /* Instruction description. */
1386 struct i386_insn
1387 {
1388 size_t len;
1389 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1390 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1391 };
1392
1393 /* Return whether instruction at PC matches PATTERN. */
1394
1395 static int
1396 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1397 {
1398 gdb_byte op;
1399
1400 if (target_read_code (pc, &op, 1))
1401 return 0;
1402
1403 if ((op & pattern.mask[0]) == pattern.insn[0])
1404 {
1405 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1406 int insn_matched = 1;
1407 size_t i;
1408
1409 gdb_assert (pattern.len > 1);
1410 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1411
1412 if (target_read_code (pc + 1, buf, pattern.len - 1))
1413 return 0;
1414
1415 for (i = 1; i < pattern.len; i++)
1416 {
1417 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1418 insn_matched = 0;
1419 }
1420 return insn_matched;
1421 }
1422 return 0;
1423 }
1424
1425 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1426 the first instruction description that matches. Otherwise, return
1427 NULL. */
1428
1429 static struct i386_insn *
1430 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1431 {
1432 struct i386_insn *pattern;
1433
1434 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1435 {
1436 if (i386_match_pattern (pc, *pattern))
1437 return pattern;
1438 }
1439
1440 return NULL;
1441 }
1442
1443 /* Return whether PC points inside a sequence of instructions that
1444 matches INSN_PATTERNS. */
1445
1446 static int
1447 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1448 {
1449 CORE_ADDR current_pc;
1450 int ix, i;
1451 struct i386_insn *insn;
1452
1453 insn = i386_match_insn (pc, insn_patterns);
1454 if (insn == NULL)
1455 return 0;
1456
1457 current_pc = pc;
1458 ix = insn - insn_patterns;
1459 for (i = ix - 1; i >= 0; i--)
1460 {
1461 current_pc -= insn_patterns[i].len;
1462
1463 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1464 return 0;
1465 }
1466
1467 current_pc = pc + insn->len;
1468 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1469 {
1470 if (!i386_match_pattern (current_pc, *insn))
1471 return 0;
1472
1473 current_pc += insn->len;
1474 }
1475
1476 return 1;
1477 }
1478
1479 /* Some special instructions that might be migrated by GCC into the
1480 part of the prologue that sets up the new stack frame. Because the
1481 stack frame hasn't been setup yet, no registers have been saved
1482 yet, and only the scratch registers %eax, %ecx and %edx can be
1483 touched. */
1484
1485 struct i386_insn i386_frame_setup_skip_insns[] =
1486 {
1487 /* Check for `movb imm8, r' and `movl imm32, r'.
1488
1489 ??? Should we handle 16-bit operand-sizes here? */
1490
1491 /* `movb imm8, %al' and `movb imm8, %ah' */
1492 /* `movb imm8, %cl' and `movb imm8, %ch' */
1493 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1494 /* `movb imm8, %dl' and `movb imm8, %dh' */
1495 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1496 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1497 { 5, { 0xb8 }, { 0xfe } },
1498 /* `movl imm32, %edx' */
1499 { 5, { 0xba }, { 0xff } },
1500
1501 /* Check for `mov imm32, r32'. Note that there is an alternative
1502 encoding for `mov m32, %eax'.
1503
1504 ??? Should we handle SIB adressing here?
1505 ??? Should we handle 16-bit operand-sizes here? */
1506
1507 /* `movl m32, %eax' */
1508 { 5, { 0xa1 }, { 0xff } },
1509 /* `movl m32, %eax' and `mov; m32, %ecx' */
1510 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1511 /* `movl m32, %edx' */
1512 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1513
1514 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1515 Because of the symmetry, there are actually two ways to encode
1516 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1517 opcode bytes 0x31 and 0x33 for `xorl'. */
1518
1519 /* `subl %eax, %eax' */
1520 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1521 /* `subl %ecx, %ecx' */
1522 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1523 /* `subl %edx, %edx' */
1524 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1525 /* `xorl %eax, %eax' */
1526 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1527 /* `xorl %ecx, %ecx' */
1528 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1529 /* `xorl %edx, %edx' */
1530 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1531 { 0 }
1532 };
1533
1534
1535 /* Check whether PC points to a no-op instruction. */
1536 static CORE_ADDR
1537 i386_skip_noop (CORE_ADDR pc)
1538 {
1539 gdb_byte op;
1540 int check = 1;
1541
1542 if (target_read_code (pc, &op, 1))
1543 return pc;
1544
1545 while (check)
1546 {
1547 check = 0;
1548 /* Ignore `nop' instruction. */
1549 if (op == 0x90)
1550 {
1551 pc += 1;
1552 if (target_read_code (pc, &op, 1))
1553 return pc;
1554 check = 1;
1555 }
1556 /* Ignore no-op instruction `mov %edi, %edi'.
1557 Microsoft system dlls often start with
1558 a `mov %edi,%edi' instruction.
1559 The 5 bytes before the function start are
1560 filled with `nop' instructions.
1561 This pattern can be used for hot-patching:
1562 The `mov %edi, %edi' instruction can be replaced by a
1563 near jump to the location of the 5 `nop' instructions
1564 which can be replaced by a 32-bit jump to anywhere
1565 in the 32-bit address space. */
1566
1567 else if (op == 0x8b)
1568 {
1569 if (target_read_code (pc + 1, &op, 1))
1570 return pc;
1571
1572 if (op == 0xff)
1573 {
1574 pc += 2;
1575 if (target_read_code (pc, &op, 1))
1576 return pc;
1577
1578 check = 1;
1579 }
1580 }
1581 }
1582 return pc;
1583 }
1584
1585 /* Check whether PC points at a code that sets up a new stack frame.
1586 If so, it updates CACHE and returns the address of the first
1587 instruction after the sequence that sets up the frame or LIMIT,
1588 whichever is smaller. If we don't recognize the code, return PC. */
1589
1590 static CORE_ADDR
1591 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1592 CORE_ADDR pc, CORE_ADDR limit,
1593 struct i386_frame_cache *cache)
1594 {
1595 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1596 struct i386_insn *insn;
1597 gdb_byte op;
1598 int skip = 0;
1599
1600 if (limit <= pc)
1601 return limit;
1602
1603 if (target_read_code (pc, &op, 1))
1604 return pc;
1605
1606 if (op == 0x55) /* pushl %ebp */
1607 {
1608 /* Take into account that we've executed the `pushl %ebp' that
1609 starts this instruction sequence. */
1610 cache->saved_regs[I386_EBP_REGNUM] = 0;
1611 cache->sp_offset += 4;
1612 pc++;
1613
1614 /* If that's all, return now. */
1615 if (limit <= pc)
1616 return limit;
1617
1618 /* Check for some special instructions that might be migrated by
1619 GCC into the prologue and skip them. At this point in the
1620 prologue, code should only touch the scratch registers %eax,
1621 %ecx and %edx, so while the number of posibilities is sheer,
1622 it is limited.
1623
1624 Make sure we only skip these instructions if we later see the
1625 `movl %esp, %ebp' that actually sets up the frame. */
1626 while (pc + skip < limit)
1627 {
1628 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1629 if (insn == NULL)
1630 break;
1631
1632 skip += insn->len;
1633 }
1634
1635 /* If that's all, return now. */
1636 if (limit <= pc + skip)
1637 return limit;
1638
1639 if (target_read_code (pc + skip, &op, 1))
1640 return pc + skip;
1641
1642 /* The i386 prologue looks like
1643
1644 push %ebp
1645 mov %esp,%ebp
1646 sub $0x10,%esp
1647
1648 and a different prologue can be generated for atom.
1649
1650 push %ebp
1651 lea (%esp),%ebp
1652 lea -0x10(%esp),%esp
1653
1654 We handle both of them here. */
1655
1656 switch (op)
1657 {
1658 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1659 case 0x8b:
1660 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1661 != 0xec)
1662 return pc;
1663 pc += (skip + 2);
1664 break;
1665 case 0x89:
1666 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1667 != 0xe5)
1668 return pc;
1669 pc += (skip + 2);
1670 break;
1671 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1672 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1673 != 0x242c)
1674 return pc;
1675 pc += (skip + 3);
1676 break;
1677 default:
1678 return pc;
1679 }
1680
1681 /* OK, we actually have a frame. We just don't know how large
1682 it is yet. Set its size to zero. We'll adjust it if
1683 necessary. We also now commit to skipping the special
1684 instructions mentioned before. */
1685 cache->locals = 0;
1686
1687 /* If that's all, return now. */
1688 if (limit <= pc)
1689 return limit;
1690
1691 /* Check for stack adjustment
1692
1693 subl $XXX, %esp
1694 or
1695 lea -XXX(%esp),%esp
1696
1697 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1698 reg, so we don't have to worry about a data16 prefix. */
1699 if (target_read_code (pc, &op, 1))
1700 return pc;
1701 if (op == 0x83)
1702 {
1703 /* `subl' with 8-bit immediate. */
1704 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1705 /* Some instruction starting with 0x83 other than `subl'. */
1706 return pc;
1707
1708 /* `subl' with signed 8-bit immediate (though it wouldn't
1709 make sense to be negative). */
1710 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1711 return pc + 3;
1712 }
1713 else if (op == 0x81)
1714 {
1715 /* Maybe it is `subl' with a 32-bit immediate. */
1716 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1717 /* Some instruction starting with 0x81 other than `subl'. */
1718 return pc;
1719
1720 /* It is `subl' with a 32-bit immediate. */
1721 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1722 return pc + 6;
1723 }
1724 else if (op == 0x8d)
1725 {
1726 /* The ModR/M byte is 0x64. */
1727 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1728 return pc;
1729 /* 'lea' with 8-bit displacement. */
1730 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1731 return pc + 4;
1732 }
1733 else
1734 {
1735 /* Some instruction other than `subl' nor 'lea'. */
1736 return pc;
1737 }
1738 }
1739 else if (op == 0xc8) /* enter */
1740 {
1741 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1742 return pc + 4;
1743 }
1744
1745 return pc;
1746 }
1747
1748 /* Check whether PC points at code that saves registers on the stack.
1749 If so, it updates CACHE and returns the address of the first
1750 instruction after the register saves or CURRENT_PC, whichever is
1751 smaller. Otherwise, return PC. */
1752
1753 static CORE_ADDR
1754 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1755 struct i386_frame_cache *cache)
1756 {
1757 CORE_ADDR offset = 0;
1758 gdb_byte op;
1759 int i;
1760
1761 if (cache->locals > 0)
1762 offset -= cache->locals;
1763 for (i = 0; i < 8 && pc < current_pc; i++)
1764 {
1765 if (target_read_code (pc, &op, 1))
1766 return pc;
1767 if (op < 0x50 || op > 0x57)
1768 break;
1769
1770 offset -= 4;
1771 cache->saved_regs[op - 0x50] = offset;
1772 cache->sp_offset += 4;
1773 pc++;
1774 }
1775
1776 return pc;
1777 }
1778
1779 /* Do a full analysis of the prologue at PC and update CACHE
1780 accordingly. Bail out early if CURRENT_PC is reached. Return the
1781 address where the analysis stopped.
1782
1783 We handle these cases:
1784
1785 The startup sequence can be at the start of the function, or the
1786 function can start with a branch to startup code at the end.
1787
1788 %ebp can be set up with either the 'enter' instruction, or "pushl
1789 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1790 once used in the System V compiler).
1791
1792 Local space is allocated just below the saved %ebp by either the
1793 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1794 16-bit unsigned argument for space to allocate, and the 'addl'
1795 instruction could have either a signed byte, or 32-bit immediate.
1796
1797 Next, the registers used by this function are pushed. With the
1798 System V compiler they will always be in the order: %edi, %esi,
1799 %ebx (and sometimes a harmless bug causes it to also save but not
1800 restore %eax); however, the code below is willing to see the pushes
1801 in any order, and will handle up to 8 of them.
1802
1803 If the setup sequence is at the end of the function, then the next
1804 instruction will be a branch back to the start. */
1805
1806 static CORE_ADDR
1807 i386_analyze_prologue (struct gdbarch *gdbarch,
1808 CORE_ADDR pc, CORE_ADDR current_pc,
1809 struct i386_frame_cache *cache)
1810 {
1811 pc = i386_skip_noop (pc);
1812 pc = i386_follow_jump (gdbarch, pc);
1813 pc = i386_analyze_struct_return (pc, current_pc, cache);
1814 pc = i386_skip_probe (pc);
1815 pc = i386_analyze_stack_align (pc, current_pc, cache);
1816 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1817 return i386_analyze_register_saves (pc, current_pc, cache);
1818 }
1819
1820 /* Return PC of first real instruction. */
1821
1822 static CORE_ADDR
1823 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1824 {
1825 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1826
1827 static gdb_byte pic_pat[6] =
1828 {
1829 0xe8, 0, 0, 0, 0, /* call 0x0 */
1830 0x5b, /* popl %ebx */
1831 };
1832 struct i386_frame_cache cache;
1833 CORE_ADDR pc;
1834 gdb_byte op;
1835 int i;
1836 CORE_ADDR func_addr;
1837
1838 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1839 {
1840 CORE_ADDR post_prologue_pc
1841 = skip_prologue_using_sal (gdbarch, func_addr);
1842 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1843
1844 /* Clang always emits a line note before the prologue and another
1845 one after. We trust clang to emit usable line notes. */
1846 if (post_prologue_pc
1847 && (cust != NULL
1848 && COMPUNIT_PRODUCER (cust) != NULL
1849 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1850 return std::max (start_pc, post_prologue_pc);
1851 }
1852
1853 cache.locals = -1;
1854 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1855 if (cache.locals < 0)
1856 return start_pc;
1857
1858 /* Found valid frame setup. */
1859
1860 /* The native cc on SVR4 in -K PIC mode inserts the following code
1861 to get the address of the global offset table (GOT) into register
1862 %ebx:
1863
1864 call 0x0
1865 popl %ebx
1866 movl %ebx,x(%ebp) (optional)
1867 addl y,%ebx
1868
1869 This code is with the rest of the prologue (at the end of the
1870 function), so we have to skip it to get to the first real
1871 instruction at the start of the function. */
1872
1873 for (i = 0; i < 6; i++)
1874 {
1875 if (target_read_code (pc + i, &op, 1))
1876 return pc;
1877
1878 if (pic_pat[i] != op)
1879 break;
1880 }
1881 if (i == 6)
1882 {
1883 int delta = 6;
1884
1885 if (target_read_code (pc + delta, &op, 1))
1886 return pc;
1887
1888 if (op == 0x89) /* movl %ebx, x(%ebp) */
1889 {
1890 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1891
1892 if (op == 0x5d) /* One byte offset from %ebp. */
1893 delta += 3;
1894 else if (op == 0x9d) /* Four byte offset from %ebp. */
1895 delta += 6;
1896 else /* Unexpected instruction. */
1897 delta = 0;
1898
1899 if (target_read_code (pc + delta, &op, 1))
1900 return pc;
1901 }
1902
1903 /* addl y,%ebx */
1904 if (delta > 0 && op == 0x81
1905 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1906 == 0xc3)
1907 {
1908 pc += delta + 6;
1909 }
1910 }
1911
1912 /* If the function starts with a branch (to startup code at the end)
1913 the last instruction should bring us back to the first
1914 instruction of the real code. */
1915 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1916 pc = i386_follow_jump (gdbarch, pc);
1917
1918 return pc;
1919 }
1920
1921 /* Check that the code pointed to by PC corresponds to a call to
1922 __main, skip it if so. Return PC otherwise. */
1923
1924 CORE_ADDR
1925 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1926 {
1927 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1928 gdb_byte op;
1929
1930 if (target_read_code (pc, &op, 1))
1931 return pc;
1932 if (op == 0xe8)
1933 {
1934 gdb_byte buf[4];
1935
1936 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1937 {
1938 /* Make sure address is computed correctly as a 32bit
1939 integer even if CORE_ADDR is 64 bit wide. */
1940 struct bound_minimal_symbol s;
1941 CORE_ADDR call_dest;
1942
1943 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1944 call_dest = call_dest & 0xffffffffU;
1945 s = lookup_minimal_symbol_by_pc (call_dest);
1946 if (s.minsym != NULL
1947 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1948 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1949 pc += 5;
1950 }
1951 }
1952
1953 return pc;
1954 }
1955
1956 /* This function is 64-bit safe. */
1957
1958 static CORE_ADDR
1959 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1960 {
1961 gdb_byte buf[8];
1962
1963 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1964 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1965 }
1966 \f
1967
1968 /* Normal frames. */
1969
1970 static void
1971 i386_frame_cache_1 (struct frame_info *this_frame,
1972 struct i386_frame_cache *cache)
1973 {
1974 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1975 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1976 gdb_byte buf[4];
1977 int i;
1978
1979 cache->pc = get_frame_func (this_frame);
1980
1981 /* In principle, for normal frames, %ebp holds the frame pointer,
1982 which holds the base address for the current stack frame.
1983 However, for functions that don't need it, the frame pointer is
1984 optional. For these "frameless" functions the frame pointer is
1985 actually the frame pointer of the calling frame. Signal
1986 trampolines are just a special case of a "frameless" function.
1987 They (usually) share their frame pointer with the frame that was
1988 in progress when the signal occurred. */
1989
1990 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1991 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1992 if (cache->base == 0)
1993 {
1994 cache->base_p = 1;
1995 return;
1996 }
1997
1998 /* For normal frames, %eip is stored at 4(%ebp). */
1999 cache->saved_regs[I386_EIP_REGNUM] = 4;
2000
2001 if (cache->pc != 0)
2002 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2003 cache);
2004
2005 if (cache->locals < 0)
2006 {
2007 /* We didn't find a valid frame, which means that CACHE->base
2008 currently holds the frame pointer for our calling frame. If
2009 we're at the start of a function, or somewhere half-way its
2010 prologue, the function's frame probably hasn't been fully
2011 setup yet. Try to reconstruct the base address for the stack
2012 frame by looking at the stack pointer. For truly "frameless"
2013 functions this might work too. */
2014
2015 if (cache->saved_sp_reg != -1)
2016 {
2017 /* Saved stack pointer has been saved. */
2018 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2019 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2020
2021 /* We're halfway aligning the stack. */
2022 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2023 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2024
2025 /* This will be added back below. */
2026 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2027 }
2028 else if (cache->pc != 0
2029 || target_read_code (get_frame_pc (this_frame), buf, 1))
2030 {
2031 /* We're in a known function, but did not find a frame
2032 setup. Assume that the function does not use %ebp.
2033 Alternatively, we may have jumped to an invalid
2034 address; in that case there is definitely no new
2035 frame in %ebp. */
2036 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2037 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2038 + cache->sp_offset;
2039 }
2040 else
2041 /* We're in an unknown function. We could not find the start
2042 of the function to analyze the prologue; our best option is
2043 to assume a typical frame layout with the caller's %ebp
2044 saved. */
2045 cache->saved_regs[I386_EBP_REGNUM] = 0;
2046 }
2047
2048 if (cache->saved_sp_reg != -1)
2049 {
2050 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2051 register may be unavailable). */
2052 if (cache->saved_sp == 0
2053 && deprecated_frame_register_read (this_frame,
2054 cache->saved_sp_reg, buf))
2055 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2056 }
2057 /* Now that we have the base address for the stack frame we can
2058 calculate the value of %esp in the calling frame. */
2059 else if (cache->saved_sp == 0)
2060 cache->saved_sp = cache->base + 8;
2061
2062 /* Adjust all the saved registers such that they contain addresses
2063 instead of offsets. */
2064 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2065 if (cache->saved_regs[i] != -1)
2066 cache->saved_regs[i] += cache->base;
2067
2068 cache->base_p = 1;
2069 }
2070
2071 static struct i386_frame_cache *
2072 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2073 {
2074 struct i386_frame_cache *cache;
2075
2076 if (*this_cache)
2077 return (struct i386_frame_cache *) *this_cache;
2078
2079 cache = i386_alloc_frame_cache ();
2080 *this_cache = cache;
2081
2082 TRY
2083 {
2084 i386_frame_cache_1 (this_frame, cache);
2085 }
2086 CATCH (ex, RETURN_MASK_ERROR)
2087 {
2088 if (ex.error != NOT_AVAILABLE_ERROR)
2089 throw_exception (ex);
2090 }
2091 END_CATCH
2092
2093 return cache;
2094 }
2095
2096 static void
2097 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2098 struct frame_id *this_id)
2099 {
2100 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2101
2102 if (!cache->base_p)
2103 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2104 else if (cache->base == 0)
2105 {
2106 /* This marks the outermost frame. */
2107 }
2108 else
2109 {
2110 /* See the end of i386_push_dummy_call. */
2111 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2112 }
2113 }
2114
2115 static enum unwind_stop_reason
2116 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2117 void **this_cache)
2118 {
2119 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2120
2121 if (!cache->base_p)
2122 return UNWIND_UNAVAILABLE;
2123
2124 /* This marks the outermost frame. */
2125 if (cache->base == 0)
2126 return UNWIND_OUTERMOST;
2127
2128 return UNWIND_NO_REASON;
2129 }
2130
2131 static struct value *
2132 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2133 int regnum)
2134 {
2135 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2136
2137 gdb_assert (regnum >= 0);
2138
2139 /* The System V ABI says that:
2140
2141 "The flags register contains the system flags, such as the
2142 direction flag and the carry flag. The direction flag must be
2143 set to the forward (that is, zero) direction before entry and
2144 upon exit from a function. Other user flags have no specified
2145 role in the standard calling sequence and are not preserved."
2146
2147 To guarantee the "upon exit" part of that statement we fake a
2148 saved flags register that has its direction flag cleared.
2149
2150 Note that GCC doesn't seem to rely on the fact that the direction
2151 flag is cleared after a function return; it always explicitly
2152 clears the flag before operations where it matters.
2153
2154 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2155 right thing to do. The way we fake the flags register here makes
2156 it impossible to change it. */
2157
2158 if (regnum == I386_EFLAGS_REGNUM)
2159 {
2160 ULONGEST val;
2161
2162 val = get_frame_register_unsigned (this_frame, regnum);
2163 val &= ~(1 << 10);
2164 return frame_unwind_got_constant (this_frame, regnum, val);
2165 }
2166
2167 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2168 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2169
2170 if (regnum == I386_ESP_REGNUM
2171 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2172 {
2173 /* If the SP has been saved, but we don't know where, then this
2174 means that SAVED_SP_REG register was found unavailable back
2175 when we built the cache. */
2176 if (cache->saved_sp == 0)
2177 return frame_unwind_got_register (this_frame, regnum,
2178 cache->saved_sp_reg);
2179 else
2180 return frame_unwind_got_constant (this_frame, regnum,
2181 cache->saved_sp);
2182 }
2183
2184 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2185 return frame_unwind_got_memory (this_frame, regnum,
2186 cache->saved_regs[regnum]);
2187
2188 return frame_unwind_got_register (this_frame, regnum, regnum);
2189 }
2190
2191 static const struct frame_unwind i386_frame_unwind =
2192 {
2193 NORMAL_FRAME,
2194 i386_frame_unwind_stop_reason,
2195 i386_frame_this_id,
2196 i386_frame_prev_register,
2197 NULL,
2198 default_frame_sniffer
2199 };
2200
2201 /* Normal frames, but in a function epilogue. */
2202
2203 /* Implement the stack_frame_destroyed_p gdbarch method.
2204
2205 The epilogue is defined here as the 'ret' instruction, which will
2206 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2207 the function's stack frame. */
2208
2209 static int
2210 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2211 {
2212 gdb_byte insn;
2213 struct compunit_symtab *cust;
2214
2215 cust = find_pc_compunit_symtab (pc);
2216 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2217 return 0;
2218
2219 if (target_read_memory (pc, &insn, 1))
2220 return 0; /* Can't read memory at pc. */
2221
2222 if (insn != 0xc3) /* 'ret' instruction. */
2223 return 0;
2224
2225 return 1;
2226 }
2227
2228 static int
2229 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2230 struct frame_info *this_frame,
2231 void **this_prologue_cache)
2232 {
2233 if (frame_relative_level (this_frame) == 0)
2234 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2235 get_frame_pc (this_frame));
2236 else
2237 return 0;
2238 }
2239
2240 static struct i386_frame_cache *
2241 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2242 {
2243 struct i386_frame_cache *cache;
2244 CORE_ADDR sp;
2245
2246 if (*this_cache)
2247 return (struct i386_frame_cache *) *this_cache;
2248
2249 cache = i386_alloc_frame_cache ();
2250 *this_cache = cache;
2251
2252 TRY
2253 {
2254 cache->pc = get_frame_func (this_frame);
2255
2256 /* At this point the stack looks as if we just entered the
2257 function, with the return address at the top of the
2258 stack. */
2259 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2260 cache->base = sp + cache->sp_offset;
2261 cache->saved_sp = cache->base + 8;
2262 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2263
2264 cache->base_p = 1;
2265 }
2266 CATCH (ex, RETURN_MASK_ERROR)
2267 {
2268 if (ex.error != NOT_AVAILABLE_ERROR)
2269 throw_exception (ex);
2270 }
2271 END_CATCH
2272
2273 return cache;
2274 }
2275
2276 static enum unwind_stop_reason
2277 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2278 void **this_cache)
2279 {
2280 struct i386_frame_cache *cache =
2281 i386_epilogue_frame_cache (this_frame, this_cache);
2282
2283 if (!cache->base_p)
2284 return UNWIND_UNAVAILABLE;
2285
2286 return UNWIND_NO_REASON;
2287 }
2288
2289 static void
2290 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2291 void **this_cache,
2292 struct frame_id *this_id)
2293 {
2294 struct i386_frame_cache *cache =
2295 i386_epilogue_frame_cache (this_frame, this_cache);
2296
2297 if (!cache->base_p)
2298 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2299 else
2300 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2301 }
2302
2303 static struct value *
2304 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2305 void **this_cache, int regnum)
2306 {
2307 /* Make sure we've initialized the cache. */
2308 i386_epilogue_frame_cache (this_frame, this_cache);
2309
2310 return i386_frame_prev_register (this_frame, this_cache, regnum);
2311 }
2312
2313 static const struct frame_unwind i386_epilogue_frame_unwind =
2314 {
2315 NORMAL_FRAME,
2316 i386_epilogue_frame_unwind_stop_reason,
2317 i386_epilogue_frame_this_id,
2318 i386_epilogue_frame_prev_register,
2319 NULL,
2320 i386_epilogue_frame_sniffer
2321 };
2322 \f
2323
2324 /* Stack-based trampolines. */
2325
2326 /* These trampolines are used on cross x86 targets, when taking the
2327 address of a nested function. When executing these trampolines,
2328 no stack frame is set up, so we are in a similar situation as in
2329 epilogues and i386_epilogue_frame_this_id can be re-used. */
2330
2331 /* Static chain passed in register. */
2332
2333 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2334 {
2335 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2336 { 5, { 0xb8 }, { 0xfe } },
2337
2338 /* `jmp imm32' */
2339 { 5, { 0xe9 }, { 0xff } },
2340
2341 {0}
2342 };
2343
2344 /* Static chain passed on stack (when regparm=3). */
2345
2346 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2347 {
2348 /* `push imm32' */
2349 { 5, { 0x68 }, { 0xff } },
2350
2351 /* `jmp imm32' */
2352 { 5, { 0xe9 }, { 0xff } },
2353
2354 {0}
2355 };
2356
2357 /* Return whether PC points inside a stack trampoline. */
2358
2359 static int
2360 i386_in_stack_tramp_p (CORE_ADDR pc)
2361 {
2362 gdb_byte insn;
2363 const char *name;
2364
2365 /* A stack trampoline is detected if no name is associated
2366 to the current pc and if it points inside a trampoline
2367 sequence. */
2368
2369 find_pc_partial_function (pc, &name, NULL, NULL);
2370 if (name)
2371 return 0;
2372
2373 if (target_read_memory (pc, &insn, 1))
2374 return 0;
2375
2376 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2377 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2378 return 0;
2379
2380 return 1;
2381 }
2382
2383 static int
2384 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2385 struct frame_info *this_frame,
2386 void **this_cache)
2387 {
2388 if (frame_relative_level (this_frame) == 0)
2389 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2390 else
2391 return 0;
2392 }
2393
2394 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2395 {
2396 NORMAL_FRAME,
2397 i386_epilogue_frame_unwind_stop_reason,
2398 i386_epilogue_frame_this_id,
2399 i386_epilogue_frame_prev_register,
2400 NULL,
2401 i386_stack_tramp_frame_sniffer
2402 };
2403 \f
2404 /* Generate a bytecode expression to get the value of the saved PC. */
2405
2406 static void
2407 i386_gen_return_address (struct gdbarch *gdbarch,
2408 struct agent_expr *ax, struct axs_value *value,
2409 CORE_ADDR scope)
2410 {
2411 /* The following sequence assumes the traditional use of the base
2412 register. */
2413 ax_reg (ax, I386_EBP_REGNUM);
2414 ax_const_l (ax, 4);
2415 ax_simple (ax, aop_add);
2416 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2417 value->kind = axs_lvalue_memory;
2418 }
2419 \f
2420
2421 /* Signal trampolines. */
2422
2423 static struct i386_frame_cache *
2424 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2425 {
2426 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2427 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2428 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2429 struct i386_frame_cache *cache;
2430 CORE_ADDR addr;
2431 gdb_byte buf[4];
2432
2433 if (*this_cache)
2434 return (struct i386_frame_cache *) *this_cache;
2435
2436 cache = i386_alloc_frame_cache ();
2437
2438 TRY
2439 {
2440 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2441 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2442
2443 addr = tdep->sigcontext_addr (this_frame);
2444 if (tdep->sc_reg_offset)
2445 {
2446 int i;
2447
2448 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2449
2450 for (i = 0; i < tdep->sc_num_regs; i++)
2451 if (tdep->sc_reg_offset[i] != -1)
2452 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2453 }
2454 else
2455 {
2456 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2457 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2458 }
2459
2460 cache->base_p = 1;
2461 }
2462 CATCH (ex, RETURN_MASK_ERROR)
2463 {
2464 if (ex.error != NOT_AVAILABLE_ERROR)
2465 throw_exception (ex);
2466 }
2467 END_CATCH
2468
2469 *this_cache = cache;
2470 return cache;
2471 }
2472
2473 static enum unwind_stop_reason
2474 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2475 void **this_cache)
2476 {
2477 struct i386_frame_cache *cache =
2478 i386_sigtramp_frame_cache (this_frame, this_cache);
2479
2480 if (!cache->base_p)
2481 return UNWIND_UNAVAILABLE;
2482
2483 return UNWIND_NO_REASON;
2484 }
2485
2486 static void
2487 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2488 struct frame_id *this_id)
2489 {
2490 struct i386_frame_cache *cache =
2491 i386_sigtramp_frame_cache (this_frame, this_cache);
2492
2493 if (!cache->base_p)
2494 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2495 else
2496 {
2497 /* See the end of i386_push_dummy_call. */
2498 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2499 }
2500 }
2501
2502 static struct value *
2503 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2504 void **this_cache, int regnum)
2505 {
2506 /* Make sure we've initialized the cache. */
2507 i386_sigtramp_frame_cache (this_frame, this_cache);
2508
2509 return i386_frame_prev_register (this_frame, this_cache, regnum);
2510 }
2511
2512 static int
2513 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2514 struct frame_info *this_frame,
2515 void **this_prologue_cache)
2516 {
2517 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2518
2519 /* We shouldn't even bother if we don't have a sigcontext_addr
2520 handler. */
2521 if (tdep->sigcontext_addr == NULL)
2522 return 0;
2523
2524 if (tdep->sigtramp_p != NULL)
2525 {
2526 if (tdep->sigtramp_p (this_frame))
2527 return 1;
2528 }
2529
2530 if (tdep->sigtramp_start != 0)
2531 {
2532 CORE_ADDR pc = get_frame_pc (this_frame);
2533
2534 gdb_assert (tdep->sigtramp_end != 0);
2535 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2536 return 1;
2537 }
2538
2539 return 0;
2540 }
2541
2542 static const struct frame_unwind i386_sigtramp_frame_unwind =
2543 {
2544 SIGTRAMP_FRAME,
2545 i386_sigtramp_frame_unwind_stop_reason,
2546 i386_sigtramp_frame_this_id,
2547 i386_sigtramp_frame_prev_register,
2548 NULL,
2549 i386_sigtramp_frame_sniffer
2550 };
2551 \f
2552
2553 static CORE_ADDR
2554 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2555 {
2556 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2557
2558 return cache->base;
2559 }
2560
2561 static const struct frame_base i386_frame_base =
2562 {
2563 &i386_frame_unwind,
2564 i386_frame_base_address,
2565 i386_frame_base_address,
2566 i386_frame_base_address
2567 };
2568
2569 static struct frame_id
2570 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2571 {
2572 CORE_ADDR fp;
2573
2574 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2575
2576 /* See the end of i386_push_dummy_call. */
2577 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2578 }
2579
2580 /* _Decimal128 function return values need 16-byte alignment on the
2581 stack. */
2582
2583 static CORE_ADDR
2584 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2585 {
2586 return sp & -(CORE_ADDR)16;
2587 }
2588 \f
2589
2590 /* Figure out where the longjmp will land. Slurp the args out of the
2591 stack. We expect the first arg to be a pointer to the jmp_buf
2592 structure from which we extract the address that we will land at.
2593 This address is copied into PC. This routine returns non-zero on
2594 success. */
2595
2596 static int
2597 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2598 {
2599 gdb_byte buf[4];
2600 CORE_ADDR sp, jb_addr;
2601 struct gdbarch *gdbarch = get_frame_arch (frame);
2602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2603 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2604
2605 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2606 longjmp will land. */
2607 if (jb_pc_offset == -1)
2608 return 0;
2609
2610 get_frame_register (frame, I386_ESP_REGNUM, buf);
2611 sp = extract_unsigned_integer (buf, 4, byte_order);
2612 if (target_read_memory (sp + 4, buf, 4))
2613 return 0;
2614
2615 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2616 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2617 return 0;
2618
2619 *pc = extract_unsigned_integer (buf, 4, byte_order);
2620 return 1;
2621 }
2622 \f
2623
2624 /* Check whether TYPE must be 16-byte-aligned when passed as a
2625 function argument. 16-byte vectors, _Decimal128 and structures or
2626 unions containing such types must be 16-byte-aligned; other
2627 arguments are 4-byte-aligned. */
2628
2629 static int
2630 i386_16_byte_align_p (struct type *type)
2631 {
2632 type = check_typedef (type);
2633 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2634 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2635 && TYPE_LENGTH (type) == 16)
2636 return 1;
2637 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2638 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2639 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2640 || TYPE_CODE (type) == TYPE_CODE_UNION)
2641 {
2642 int i;
2643 for (i = 0; i < TYPE_NFIELDS (type); i++)
2644 {
2645 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2646 return 1;
2647 }
2648 }
2649 return 0;
2650 }
2651
2652 /* Implementation for set_gdbarch_push_dummy_code. */
2653
2654 static CORE_ADDR
2655 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2656 struct value **args, int nargs, struct type *value_type,
2657 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2658 struct regcache *regcache)
2659 {
2660 /* Use 0xcc breakpoint - 1 byte. */
2661 *bp_addr = sp - 1;
2662 *real_pc = funaddr;
2663
2664 /* Keep the stack aligned. */
2665 return sp - 16;
2666 }
2667
2668 static CORE_ADDR
2669 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2670 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2671 struct value **args, CORE_ADDR sp, int struct_return,
2672 CORE_ADDR struct_addr)
2673 {
2674 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2675 gdb_byte buf[4];
2676 int i;
2677 int write_pass;
2678 int args_space = 0;
2679
2680 /* BND registers can be in arbitrary values at the moment of the
2681 inferior call. This can cause boundary violations that are not
2682 due to a real bug or even desired by the user. The best to be done
2683 is set the BND registers to allow access to the whole memory, INIT
2684 state, before pushing the inferior call. */
2685 i387_reset_bnd_regs (gdbarch, regcache);
2686
2687 /* Determine the total space required for arguments and struct
2688 return address in a first pass (allowing for 16-byte-aligned
2689 arguments), then push arguments in a second pass. */
2690
2691 for (write_pass = 0; write_pass < 2; write_pass++)
2692 {
2693 int args_space_used = 0;
2694
2695 if (struct_return)
2696 {
2697 if (write_pass)
2698 {
2699 /* Push value address. */
2700 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2701 write_memory (sp, buf, 4);
2702 args_space_used += 4;
2703 }
2704 else
2705 args_space += 4;
2706 }
2707
2708 for (i = 0; i < nargs; i++)
2709 {
2710 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2711
2712 if (write_pass)
2713 {
2714 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2715 args_space_used = align_up (args_space_used, 16);
2716
2717 write_memory (sp + args_space_used,
2718 value_contents_all (args[i]), len);
2719 /* The System V ABI says that:
2720
2721 "An argument's size is increased, if necessary, to make it a
2722 multiple of [32-bit] words. This may require tail padding,
2723 depending on the size of the argument."
2724
2725 This makes sure the stack stays word-aligned. */
2726 args_space_used += align_up (len, 4);
2727 }
2728 else
2729 {
2730 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2731 args_space = align_up (args_space, 16);
2732 args_space += align_up (len, 4);
2733 }
2734 }
2735
2736 if (!write_pass)
2737 {
2738 sp -= args_space;
2739
2740 /* The original System V ABI only requires word alignment,
2741 but modern incarnations need 16-byte alignment in order
2742 to support SSE. Since wasting a few bytes here isn't
2743 harmful we unconditionally enforce 16-byte alignment. */
2744 sp &= ~0xf;
2745 }
2746 }
2747
2748 /* Store return address. */
2749 sp -= 4;
2750 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2751 write_memory (sp, buf, 4);
2752
2753 /* Finally, update the stack pointer... */
2754 store_unsigned_integer (buf, 4, byte_order, sp);
2755 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2756
2757 /* ...and fake a frame pointer. */
2758 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2759
2760 /* MarkK wrote: This "+ 8" is all over the place:
2761 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2762 i386_dummy_id). It's there, since all frame unwinders for
2763 a given target have to agree (within a certain margin) on the
2764 definition of the stack address of a frame. Otherwise frame id
2765 comparison might not work correctly. Since DWARF2/GCC uses the
2766 stack address *before* the function call as a frame's CFA. On
2767 the i386, when %ebp is used as a frame pointer, the offset
2768 between the contents %ebp and the CFA as defined by GCC. */
2769 return sp + 8;
2770 }
2771
2772 /* These registers are used for returning integers (and on some
2773 targets also for returning `struct' and `union' values when their
2774 size and alignment match an integer type). */
2775 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2776 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2777
2778 /* Read, for architecture GDBARCH, a function return value of TYPE
2779 from REGCACHE, and copy that into VALBUF. */
2780
2781 static void
2782 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2783 struct regcache *regcache, gdb_byte *valbuf)
2784 {
2785 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2786 int len = TYPE_LENGTH (type);
2787 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2788
2789 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2790 {
2791 if (tdep->st0_regnum < 0)
2792 {
2793 warning (_("Cannot find floating-point return value."));
2794 memset (valbuf, 0, len);
2795 return;
2796 }
2797
2798 /* Floating-point return values can be found in %st(0). Convert
2799 its contents to the desired type. This is probably not
2800 exactly how it would happen on the target itself, but it is
2801 the best we can do. */
2802 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2803 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2804 }
2805 else
2806 {
2807 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2808 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2809
2810 if (len <= low_size)
2811 {
2812 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2813 memcpy (valbuf, buf, len);
2814 }
2815 else if (len <= (low_size + high_size))
2816 {
2817 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2818 memcpy (valbuf, buf, low_size);
2819 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2820 memcpy (valbuf + low_size, buf, len - low_size);
2821 }
2822 else
2823 internal_error (__FILE__, __LINE__,
2824 _("Cannot extract return value of %d bytes long."),
2825 len);
2826 }
2827 }
2828
2829 /* Write, for architecture GDBARCH, a function return value of TYPE
2830 from VALBUF into REGCACHE. */
2831
2832 static void
2833 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2834 struct regcache *regcache, const gdb_byte *valbuf)
2835 {
2836 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2837 int len = TYPE_LENGTH (type);
2838
2839 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2840 {
2841 ULONGEST fstat;
2842 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2843
2844 if (tdep->st0_regnum < 0)
2845 {
2846 warning (_("Cannot set floating-point return value."));
2847 return;
2848 }
2849
2850 /* Returning floating-point values is a bit tricky. Apart from
2851 storing the return value in %st(0), we have to simulate the
2852 state of the FPU at function return point. */
2853
2854 /* Convert the value found in VALBUF to the extended
2855 floating-point format used by the FPU. This is probably
2856 not exactly how it would happen on the target itself, but
2857 it is the best we can do. */
2858 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2859 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2860
2861 /* Set the top of the floating-point register stack to 7. The
2862 actual value doesn't really matter, but 7 is what a normal
2863 function return would end up with if the program started out
2864 with a freshly initialized FPU. */
2865 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2866 fstat |= (7 << 11);
2867 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2868
2869 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2870 the floating-point register stack to 7, the appropriate value
2871 for the tag word is 0x3fff. */
2872 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2873 }
2874 else
2875 {
2876 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2877 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2878
2879 if (len <= low_size)
2880 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2881 else if (len <= (low_size + high_size))
2882 {
2883 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2884 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2885 len - low_size, valbuf + low_size);
2886 }
2887 else
2888 internal_error (__FILE__, __LINE__,
2889 _("Cannot store return value of %d bytes long."), len);
2890 }
2891 }
2892 \f
2893
2894 /* This is the variable that is set with "set struct-convention", and
2895 its legitimate values. */
2896 static const char default_struct_convention[] = "default";
2897 static const char pcc_struct_convention[] = "pcc";
2898 static const char reg_struct_convention[] = "reg";
2899 static const char *const valid_conventions[] =
2900 {
2901 default_struct_convention,
2902 pcc_struct_convention,
2903 reg_struct_convention,
2904 NULL
2905 };
2906 static const char *struct_convention = default_struct_convention;
2907
2908 /* Return non-zero if TYPE, which is assumed to be a structure,
2909 a union type, or an array type, should be returned in registers
2910 for architecture GDBARCH. */
2911
2912 static int
2913 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2914 {
2915 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2916 enum type_code code = TYPE_CODE (type);
2917 int len = TYPE_LENGTH (type);
2918
2919 gdb_assert (code == TYPE_CODE_STRUCT
2920 || code == TYPE_CODE_UNION
2921 || code == TYPE_CODE_ARRAY);
2922
2923 if (struct_convention == pcc_struct_convention
2924 || (struct_convention == default_struct_convention
2925 && tdep->struct_return == pcc_struct_return))
2926 return 0;
2927
2928 /* Structures consisting of a single `float', `double' or 'long
2929 double' member are returned in %st(0). */
2930 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2931 {
2932 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2933 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2934 return (len == 4 || len == 8 || len == 12);
2935 }
2936
2937 return (len == 1 || len == 2 || len == 4 || len == 8);
2938 }
2939
2940 /* Determine, for architecture GDBARCH, how a return value of TYPE
2941 should be returned. If it is supposed to be returned in registers,
2942 and READBUF is non-zero, read the appropriate value from REGCACHE,
2943 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2944 from WRITEBUF into REGCACHE. */
2945
2946 static enum return_value_convention
2947 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2948 struct type *type, struct regcache *regcache,
2949 gdb_byte *readbuf, const gdb_byte *writebuf)
2950 {
2951 enum type_code code = TYPE_CODE (type);
2952
2953 if (((code == TYPE_CODE_STRUCT
2954 || code == TYPE_CODE_UNION
2955 || code == TYPE_CODE_ARRAY)
2956 && !i386_reg_struct_return_p (gdbarch, type))
2957 /* Complex double and long double uses the struct return covention. */
2958 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2959 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2960 /* 128-bit decimal float uses the struct return convention. */
2961 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2962 {
2963 /* The System V ABI says that:
2964
2965 "A function that returns a structure or union also sets %eax
2966 to the value of the original address of the caller's area
2967 before it returns. Thus when the caller receives control
2968 again, the address of the returned object resides in register
2969 %eax and can be used to access the object."
2970
2971 So the ABI guarantees that we can always find the return
2972 value just after the function has returned. */
2973
2974 /* Note that the ABI doesn't mention functions returning arrays,
2975 which is something possible in certain languages such as Ada.
2976 In this case, the value is returned as if it was wrapped in
2977 a record, so the convention applied to records also applies
2978 to arrays. */
2979
2980 if (readbuf)
2981 {
2982 ULONGEST addr;
2983
2984 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2985 read_memory (addr, readbuf, TYPE_LENGTH (type));
2986 }
2987
2988 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2989 }
2990
2991 /* This special case is for structures consisting of a single
2992 `float', `double' or 'long double' member. These structures are
2993 returned in %st(0). For these structures, we call ourselves
2994 recursively, changing TYPE into the type of the first member of
2995 the structure. Since that should work for all structures that
2996 have only one member, we don't bother to check the member's type
2997 here. */
2998 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2999 {
3000 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3001 return i386_return_value (gdbarch, function, type, regcache,
3002 readbuf, writebuf);
3003 }
3004
3005 if (readbuf)
3006 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3007 if (writebuf)
3008 i386_store_return_value (gdbarch, type, regcache, writebuf);
3009
3010 return RETURN_VALUE_REGISTER_CONVENTION;
3011 }
3012 \f
3013
3014 struct type *
3015 i387_ext_type (struct gdbarch *gdbarch)
3016 {
3017 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3018
3019 if (!tdep->i387_ext_type)
3020 {
3021 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3022 gdb_assert (tdep->i387_ext_type != NULL);
3023 }
3024
3025 return tdep->i387_ext_type;
3026 }
3027
3028 /* Construct type for pseudo BND registers. We can't use
3029 tdesc_find_type since a complement of one value has to be used
3030 to describe the upper bound. */
3031
3032 static struct type *
3033 i386_bnd_type (struct gdbarch *gdbarch)
3034 {
3035 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3036
3037
3038 if (!tdep->i386_bnd_type)
3039 {
3040 struct type *t;
3041 const struct builtin_type *bt = builtin_type (gdbarch);
3042
3043 /* The type we're building is described bellow: */
3044 #if 0
3045 struct __bound128
3046 {
3047 void *lbound;
3048 void *ubound; /* One complement of raw ubound field. */
3049 };
3050 #endif
3051
3052 t = arch_composite_type (gdbarch,
3053 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3054
3055 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3056 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3057
3058 TYPE_NAME (t) = "builtin_type_bound128";
3059 tdep->i386_bnd_type = t;
3060 }
3061
3062 return tdep->i386_bnd_type;
3063 }
3064
3065 /* Construct vector type for pseudo ZMM registers. We can't use
3066 tdesc_find_type since ZMM isn't described in target description. */
3067
3068 static struct type *
3069 i386_zmm_type (struct gdbarch *gdbarch)
3070 {
3071 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3072
3073 if (!tdep->i386_zmm_type)
3074 {
3075 const struct builtin_type *bt = builtin_type (gdbarch);
3076
3077 /* The type we're building is this: */
3078 #if 0
3079 union __gdb_builtin_type_vec512i
3080 {
3081 int128_t uint128[4];
3082 int64_t v4_int64[8];
3083 int32_t v8_int32[16];
3084 int16_t v16_int16[32];
3085 int8_t v32_int8[64];
3086 double v4_double[8];
3087 float v8_float[16];
3088 };
3089 #endif
3090
3091 struct type *t;
3092
3093 t = arch_composite_type (gdbarch,
3094 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3095 append_composite_type_field (t, "v16_float",
3096 init_vector_type (bt->builtin_float, 16));
3097 append_composite_type_field (t, "v8_double",
3098 init_vector_type (bt->builtin_double, 8));
3099 append_composite_type_field (t, "v64_int8",
3100 init_vector_type (bt->builtin_int8, 64));
3101 append_composite_type_field (t, "v32_int16",
3102 init_vector_type (bt->builtin_int16, 32));
3103 append_composite_type_field (t, "v16_int32",
3104 init_vector_type (bt->builtin_int32, 16));
3105 append_composite_type_field (t, "v8_int64",
3106 init_vector_type (bt->builtin_int64, 8));
3107 append_composite_type_field (t, "v4_int128",
3108 init_vector_type (bt->builtin_int128, 4));
3109
3110 TYPE_VECTOR (t) = 1;
3111 TYPE_NAME (t) = "builtin_type_vec512i";
3112 tdep->i386_zmm_type = t;
3113 }
3114
3115 return tdep->i386_zmm_type;
3116 }
3117
3118 /* Construct vector type for pseudo YMM registers. We can't use
3119 tdesc_find_type since YMM isn't described in target description. */
3120
3121 static struct type *
3122 i386_ymm_type (struct gdbarch *gdbarch)
3123 {
3124 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3125
3126 if (!tdep->i386_ymm_type)
3127 {
3128 const struct builtin_type *bt = builtin_type (gdbarch);
3129
3130 /* The type we're building is this: */
3131 #if 0
3132 union __gdb_builtin_type_vec256i
3133 {
3134 int128_t uint128[2];
3135 int64_t v2_int64[4];
3136 int32_t v4_int32[8];
3137 int16_t v8_int16[16];
3138 int8_t v16_int8[32];
3139 double v2_double[4];
3140 float v4_float[8];
3141 };
3142 #endif
3143
3144 struct type *t;
3145
3146 t = arch_composite_type (gdbarch,
3147 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3148 append_composite_type_field (t, "v8_float",
3149 init_vector_type (bt->builtin_float, 8));
3150 append_composite_type_field (t, "v4_double",
3151 init_vector_type (bt->builtin_double, 4));
3152 append_composite_type_field (t, "v32_int8",
3153 init_vector_type (bt->builtin_int8, 32));
3154 append_composite_type_field (t, "v16_int16",
3155 init_vector_type (bt->builtin_int16, 16));
3156 append_composite_type_field (t, "v8_int32",
3157 init_vector_type (bt->builtin_int32, 8));
3158 append_composite_type_field (t, "v4_int64",
3159 init_vector_type (bt->builtin_int64, 4));
3160 append_composite_type_field (t, "v2_int128",
3161 init_vector_type (bt->builtin_int128, 2));
3162
3163 TYPE_VECTOR (t) = 1;
3164 TYPE_NAME (t) = "builtin_type_vec256i";
3165 tdep->i386_ymm_type = t;
3166 }
3167
3168 return tdep->i386_ymm_type;
3169 }
3170
3171 /* Construct vector type for MMX registers. */
3172 static struct type *
3173 i386_mmx_type (struct gdbarch *gdbarch)
3174 {
3175 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3176
3177 if (!tdep->i386_mmx_type)
3178 {
3179 const struct builtin_type *bt = builtin_type (gdbarch);
3180
3181 /* The type we're building is this: */
3182 #if 0
3183 union __gdb_builtin_type_vec64i
3184 {
3185 int64_t uint64;
3186 int32_t v2_int32[2];
3187 int16_t v4_int16[4];
3188 int8_t v8_int8[8];
3189 };
3190 #endif
3191
3192 struct type *t;
3193
3194 t = arch_composite_type (gdbarch,
3195 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3196
3197 append_composite_type_field (t, "uint64", bt->builtin_int64);
3198 append_composite_type_field (t, "v2_int32",
3199 init_vector_type (bt->builtin_int32, 2));
3200 append_composite_type_field (t, "v4_int16",
3201 init_vector_type (bt->builtin_int16, 4));
3202 append_composite_type_field (t, "v8_int8",
3203 init_vector_type (bt->builtin_int8, 8));
3204
3205 TYPE_VECTOR (t) = 1;
3206 TYPE_NAME (t) = "builtin_type_vec64i";
3207 tdep->i386_mmx_type = t;
3208 }
3209
3210 return tdep->i386_mmx_type;
3211 }
3212
3213 /* Return the GDB type object for the "standard" data type of data in
3214 register REGNUM. */
3215
3216 struct type *
3217 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3218 {
3219 if (i386_bnd_regnum_p (gdbarch, regnum))
3220 return i386_bnd_type (gdbarch);
3221 if (i386_mmx_regnum_p (gdbarch, regnum))
3222 return i386_mmx_type (gdbarch);
3223 else if (i386_ymm_regnum_p (gdbarch, regnum))
3224 return i386_ymm_type (gdbarch);
3225 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3226 return i386_ymm_type (gdbarch);
3227 else if (i386_zmm_regnum_p (gdbarch, regnum))
3228 return i386_zmm_type (gdbarch);
3229 else
3230 {
3231 const struct builtin_type *bt = builtin_type (gdbarch);
3232 if (i386_byte_regnum_p (gdbarch, regnum))
3233 return bt->builtin_int8;
3234 else if (i386_word_regnum_p (gdbarch, regnum))
3235 return bt->builtin_int16;
3236 else if (i386_dword_regnum_p (gdbarch, regnum))
3237 return bt->builtin_int32;
3238 else if (i386_k_regnum_p (gdbarch, regnum))
3239 return bt->builtin_int64;
3240 }
3241
3242 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3243 }
3244
3245 /* Map a cooked register onto a raw register or memory. For the i386,
3246 the MMX registers need to be mapped onto floating point registers. */
3247
3248 static int
3249 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3250 {
3251 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3252 int mmxreg, fpreg;
3253 ULONGEST fstat;
3254 int tos;
3255
3256 mmxreg = regnum - tdep->mm0_regnum;
3257 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3258 tos = (fstat >> 11) & 0x7;
3259 fpreg = (mmxreg + tos) % 8;
3260
3261 return (I387_ST0_REGNUM (tdep) + fpreg);
3262 }
3263
3264 /* A helper function for us by i386_pseudo_register_read_value and
3265 amd64_pseudo_register_read_value. It does all the work but reads
3266 the data into an already-allocated value. */
3267
3268 void
3269 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3270 struct regcache *regcache,
3271 int regnum,
3272 struct value *result_value)
3273 {
3274 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3275 enum register_status status;
3276 gdb_byte *buf = value_contents_raw (result_value);
3277
3278 if (i386_mmx_regnum_p (gdbarch, regnum))
3279 {
3280 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3281
3282 /* Extract (always little endian). */
3283 status = regcache_raw_read (regcache, fpnum, raw_buf);
3284 if (status != REG_VALID)
3285 mark_value_bytes_unavailable (result_value, 0,
3286 TYPE_LENGTH (value_type (result_value)));
3287 else
3288 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3289 }
3290 else
3291 {
3292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3293 if (i386_bnd_regnum_p (gdbarch, regnum))
3294 {
3295 regnum -= tdep->bnd0_regnum;
3296
3297 /* Extract (always little endian). Read lower 128bits. */
3298 status = regcache_raw_read (regcache,
3299 I387_BND0R_REGNUM (tdep) + regnum,
3300 raw_buf);
3301 if (status != REG_VALID)
3302 mark_value_bytes_unavailable (result_value, 0, 16);
3303 else
3304 {
3305 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3306 LONGEST upper, lower;
3307 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3308
3309 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3310 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3311 upper = ~upper;
3312
3313 memcpy (buf, &lower, size);
3314 memcpy (buf + size, &upper, size);
3315 }
3316 }
3317 else if (i386_k_regnum_p (gdbarch, regnum))
3318 {
3319 regnum -= tdep->k0_regnum;
3320
3321 /* Extract (always little endian). */
3322 status = regcache_raw_read (regcache,
3323 tdep->k0_regnum + regnum,
3324 raw_buf);
3325 if (status != REG_VALID)
3326 mark_value_bytes_unavailable (result_value, 0, 8);
3327 else
3328 memcpy (buf, raw_buf, 8);
3329 }
3330 else if (i386_zmm_regnum_p (gdbarch, regnum))
3331 {
3332 regnum -= tdep->zmm0_regnum;
3333
3334 if (regnum < num_lower_zmm_regs)
3335 {
3336 /* Extract (always little endian). Read lower 128bits. */
3337 status = regcache_raw_read (regcache,
3338 I387_XMM0_REGNUM (tdep) + regnum,
3339 raw_buf);
3340 if (status != REG_VALID)
3341 mark_value_bytes_unavailable (result_value, 0, 16);
3342 else
3343 memcpy (buf, raw_buf, 16);
3344
3345 /* Extract (always little endian). Read upper 128bits. */
3346 status = regcache_raw_read (regcache,
3347 tdep->ymm0h_regnum + regnum,
3348 raw_buf);
3349 if (status != REG_VALID)
3350 mark_value_bytes_unavailable (result_value, 16, 16);
3351 else
3352 memcpy (buf + 16, raw_buf, 16);
3353 }
3354 else
3355 {
3356 /* Extract (always little endian). Read lower 128bits. */
3357 status = regcache_raw_read (regcache,
3358 I387_XMM16_REGNUM (tdep) + regnum
3359 - num_lower_zmm_regs,
3360 raw_buf);
3361 if (status != REG_VALID)
3362 mark_value_bytes_unavailable (result_value, 0, 16);
3363 else
3364 memcpy (buf, raw_buf, 16);
3365
3366 /* Extract (always little endian). Read upper 128bits. */
3367 status = regcache_raw_read (regcache,
3368 I387_YMM16H_REGNUM (tdep) + regnum
3369 - num_lower_zmm_regs,
3370 raw_buf);
3371 if (status != REG_VALID)
3372 mark_value_bytes_unavailable (result_value, 16, 16);
3373 else
3374 memcpy (buf + 16, raw_buf, 16);
3375 }
3376
3377 /* Read upper 256bits. */
3378 status = regcache_raw_read (regcache,
3379 tdep->zmm0h_regnum + regnum,
3380 raw_buf);
3381 if (status != REG_VALID)
3382 mark_value_bytes_unavailable (result_value, 32, 32);
3383 else
3384 memcpy (buf + 32, raw_buf, 32);
3385 }
3386 else if (i386_ymm_regnum_p (gdbarch, regnum))
3387 {
3388 regnum -= tdep->ymm0_regnum;
3389
3390 /* Extract (always little endian). Read lower 128bits. */
3391 status = regcache_raw_read (regcache,
3392 I387_XMM0_REGNUM (tdep) + regnum,
3393 raw_buf);
3394 if (status != REG_VALID)
3395 mark_value_bytes_unavailable (result_value, 0, 16);
3396 else
3397 memcpy (buf, raw_buf, 16);
3398 /* Read upper 128bits. */
3399 status = regcache_raw_read (regcache,
3400 tdep->ymm0h_regnum + regnum,
3401 raw_buf);
3402 if (status != REG_VALID)
3403 mark_value_bytes_unavailable (result_value, 16, 32);
3404 else
3405 memcpy (buf + 16, raw_buf, 16);
3406 }
3407 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3408 {
3409 regnum -= tdep->ymm16_regnum;
3410 /* Extract (always little endian). Read lower 128bits. */
3411 status = regcache_raw_read (regcache,
3412 I387_XMM16_REGNUM (tdep) + regnum,
3413 raw_buf);
3414 if (status != REG_VALID)
3415 mark_value_bytes_unavailable (result_value, 0, 16);
3416 else
3417 memcpy (buf, raw_buf, 16);
3418 /* Read upper 128bits. */
3419 status = regcache_raw_read (regcache,
3420 tdep->ymm16h_regnum + regnum,
3421 raw_buf);
3422 if (status != REG_VALID)
3423 mark_value_bytes_unavailable (result_value, 16, 16);
3424 else
3425 memcpy (buf + 16, raw_buf, 16);
3426 }
3427 else if (i386_word_regnum_p (gdbarch, regnum))
3428 {
3429 int gpnum = regnum - tdep->ax_regnum;
3430
3431 /* Extract (always little endian). */
3432 status = regcache_raw_read (regcache, gpnum, raw_buf);
3433 if (status != REG_VALID)
3434 mark_value_bytes_unavailable (result_value, 0,
3435 TYPE_LENGTH (value_type (result_value)));
3436 else
3437 memcpy (buf, raw_buf, 2);
3438 }
3439 else if (i386_byte_regnum_p (gdbarch, regnum))
3440 {
3441 int gpnum = regnum - tdep->al_regnum;
3442
3443 /* Extract (always little endian). We read both lower and
3444 upper registers. */
3445 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3446 if (status != REG_VALID)
3447 mark_value_bytes_unavailable (result_value, 0,
3448 TYPE_LENGTH (value_type (result_value)));
3449 else if (gpnum >= 4)
3450 memcpy (buf, raw_buf + 1, 1);
3451 else
3452 memcpy (buf, raw_buf, 1);
3453 }
3454 else
3455 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3456 }
3457 }
3458
3459 static struct value *
3460 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3461 struct regcache *regcache,
3462 int regnum)
3463 {
3464 struct value *result;
3465
3466 result = allocate_value (register_type (gdbarch, regnum));
3467 VALUE_LVAL (result) = lval_register;
3468 VALUE_REGNUM (result) = regnum;
3469
3470 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3471
3472 return result;
3473 }
3474
3475 void
3476 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3477 int regnum, const gdb_byte *buf)
3478 {
3479 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3480
3481 if (i386_mmx_regnum_p (gdbarch, regnum))
3482 {
3483 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3484
3485 /* Read ... */
3486 regcache_raw_read (regcache, fpnum, raw_buf);
3487 /* ... Modify ... (always little endian). */
3488 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3489 /* ... Write. */
3490 regcache_raw_write (regcache, fpnum, raw_buf);
3491 }
3492 else
3493 {
3494 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3495
3496 if (i386_bnd_regnum_p (gdbarch, regnum))
3497 {
3498 ULONGEST upper, lower;
3499 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3500 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3501
3502 /* New values from input value. */
3503 regnum -= tdep->bnd0_regnum;
3504 lower = extract_unsigned_integer (buf, size, byte_order);
3505 upper = extract_unsigned_integer (buf + size, size, byte_order);
3506
3507 /* Fetching register buffer. */
3508 regcache_raw_read (regcache,
3509 I387_BND0R_REGNUM (tdep) + regnum,
3510 raw_buf);
3511
3512 upper = ~upper;
3513
3514 /* Set register bits. */
3515 memcpy (raw_buf, &lower, 8);
3516 memcpy (raw_buf + 8, &upper, 8);
3517
3518
3519 regcache_raw_write (regcache,
3520 I387_BND0R_REGNUM (tdep) + regnum,
3521 raw_buf);
3522 }
3523 else if (i386_k_regnum_p (gdbarch, regnum))
3524 {
3525 regnum -= tdep->k0_regnum;
3526
3527 regcache_raw_write (regcache,
3528 tdep->k0_regnum + regnum,
3529 buf);
3530 }
3531 else if (i386_zmm_regnum_p (gdbarch, regnum))
3532 {
3533 regnum -= tdep->zmm0_regnum;
3534
3535 if (regnum < num_lower_zmm_regs)
3536 {
3537 /* Write lower 128bits. */
3538 regcache_raw_write (regcache,
3539 I387_XMM0_REGNUM (tdep) + regnum,
3540 buf);
3541 /* Write upper 128bits. */
3542 regcache_raw_write (regcache,
3543 I387_YMM0_REGNUM (tdep) + regnum,
3544 buf + 16);
3545 }
3546 else
3547 {
3548 /* Write lower 128bits. */
3549 regcache_raw_write (regcache,
3550 I387_XMM16_REGNUM (tdep) + regnum
3551 - num_lower_zmm_regs,
3552 buf);
3553 /* Write upper 128bits. */
3554 regcache_raw_write (regcache,
3555 I387_YMM16H_REGNUM (tdep) + regnum
3556 - num_lower_zmm_regs,
3557 buf + 16);
3558 }
3559 /* Write upper 256bits. */
3560 regcache_raw_write (regcache,
3561 tdep->zmm0h_regnum + regnum,
3562 buf + 32);
3563 }
3564 else if (i386_ymm_regnum_p (gdbarch, regnum))
3565 {
3566 regnum -= tdep->ymm0_regnum;
3567
3568 /* ... Write lower 128bits. */
3569 regcache_raw_write (regcache,
3570 I387_XMM0_REGNUM (tdep) + regnum,
3571 buf);
3572 /* ... Write upper 128bits. */
3573 regcache_raw_write (regcache,
3574 tdep->ymm0h_regnum + regnum,
3575 buf + 16);
3576 }
3577 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3578 {
3579 regnum -= tdep->ymm16_regnum;
3580
3581 /* ... Write lower 128bits. */
3582 regcache_raw_write (regcache,
3583 I387_XMM16_REGNUM (tdep) + regnum,
3584 buf);
3585 /* ... Write upper 128bits. */
3586 regcache_raw_write (regcache,
3587 tdep->ymm16h_regnum + regnum,
3588 buf + 16);
3589 }
3590 else if (i386_word_regnum_p (gdbarch, regnum))
3591 {
3592 int gpnum = regnum - tdep->ax_regnum;
3593
3594 /* Read ... */
3595 regcache_raw_read (regcache, gpnum, raw_buf);
3596 /* ... Modify ... (always little endian). */
3597 memcpy (raw_buf, buf, 2);
3598 /* ... Write. */
3599 regcache_raw_write (regcache, gpnum, raw_buf);
3600 }
3601 else if (i386_byte_regnum_p (gdbarch, regnum))
3602 {
3603 int gpnum = regnum - tdep->al_regnum;
3604
3605 /* Read ... We read both lower and upper registers. */
3606 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3607 /* ... Modify ... (always little endian). */
3608 if (gpnum >= 4)
3609 memcpy (raw_buf + 1, buf, 1);
3610 else
3611 memcpy (raw_buf, buf, 1);
3612 /* ... Write. */
3613 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3614 }
3615 else
3616 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3617 }
3618 }
3619
3620 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3621
3622 int
3623 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3624 struct agent_expr *ax, int regnum)
3625 {
3626 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3627
3628 if (i386_mmx_regnum_p (gdbarch, regnum))
3629 {
3630 /* MMX to FPU register mapping depends on current TOS. Let's just
3631 not care and collect everything... */
3632 int i;
3633
3634 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3635 for (i = 0; i < 8; i++)
3636 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3637 return 0;
3638 }
3639 else if (i386_bnd_regnum_p (gdbarch, regnum))
3640 {
3641 regnum -= tdep->bnd0_regnum;
3642 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3643 return 0;
3644 }
3645 else if (i386_k_regnum_p (gdbarch, regnum))
3646 {
3647 regnum -= tdep->k0_regnum;
3648 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3649 return 0;
3650 }
3651 else if (i386_zmm_regnum_p (gdbarch, regnum))
3652 {
3653 regnum -= tdep->zmm0_regnum;
3654 if (regnum < num_lower_zmm_regs)
3655 {
3656 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3657 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3658 }
3659 else
3660 {
3661 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3662 - num_lower_zmm_regs);
3663 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3664 - num_lower_zmm_regs);
3665 }
3666 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3667 return 0;
3668 }
3669 else if (i386_ymm_regnum_p (gdbarch, regnum))
3670 {
3671 regnum -= tdep->ymm0_regnum;
3672 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3673 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3674 return 0;
3675 }
3676 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3677 {
3678 regnum -= tdep->ymm16_regnum;
3679 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3680 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3681 return 0;
3682 }
3683 else if (i386_word_regnum_p (gdbarch, regnum))
3684 {
3685 int gpnum = regnum - tdep->ax_regnum;
3686
3687 ax_reg_mask (ax, gpnum);
3688 return 0;
3689 }
3690 else if (i386_byte_regnum_p (gdbarch, regnum))
3691 {
3692 int gpnum = regnum - tdep->al_regnum;
3693
3694 ax_reg_mask (ax, gpnum % 4);
3695 return 0;
3696 }
3697 else
3698 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3699 return 1;
3700 }
3701 \f
3702
3703 /* Return the register number of the register allocated by GCC after
3704 REGNUM, or -1 if there is no such register. */
3705
3706 static int
3707 i386_next_regnum (int regnum)
3708 {
3709 /* GCC allocates the registers in the order:
3710
3711 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3712
3713 Since storing a variable in %esp doesn't make any sense we return
3714 -1 for %ebp and for %esp itself. */
3715 static int next_regnum[] =
3716 {
3717 I386_EDX_REGNUM, /* Slot for %eax. */
3718 I386_EBX_REGNUM, /* Slot for %ecx. */
3719 I386_ECX_REGNUM, /* Slot for %edx. */
3720 I386_ESI_REGNUM, /* Slot for %ebx. */
3721 -1, -1, /* Slots for %esp and %ebp. */
3722 I386_EDI_REGNUM, /* Slot for %esi. */
3723 I386_EBP_REGNUM /* Slot for %edi. */
3724 };
3725
3726 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3727 return next_regnum[regnum];
3728
3729 return -1;
3730 }
3731
3732 /* Return nonzero if a value of type TYPE stored in register REGNUM
3733 needs any special handling. */
3734
3735 static int
3736 i386_convert_register_p (struct gdbarch *gdbarch,
3737 int regnum, struct type *type)
3738 {
3739 int len = TYPE_LENGTH (type);
3740
3741 /* Values may be spread across multiple registers. Most debugging
3742 formats aren't expressive enough to specify the locations, so
3743 some heuristics is involved. Right now we only handle types that
3744 have a length that is a multiple of the word size, since GCC
3745 doesn't seem to put any other types into registers. */
3746 if (len > 4 && len % 4 == 0)
3747 {
3748 int last_regnum = regnum;
3749
3750 while (len > 4)
3751 {
3752 last_regnum = i386_next_regnum (last_regnum);
3753 len -= 4;
3754 }
3755
3756 if (last_regnum != -1)
3757 return 1;
3758 }
3759
3760 return i387_convert_register_p (gdbarch, regnum, type);
3761 }
3762
3763 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3764 return its contents in TO. */
3765
3766 static int
3767 i386_register_to_value (struct frame_info *frame, int regnum,
3768 struct type *type, gdb_byte *to,
3769 int *optimizedp, int *unavailablep)
3770 {
3771 struct gdbarch *gdbarch = get_frame_arch (frame);
3772 int len = TYPE_LENGTH (type);
3773
3774 if (i386_fp_regnum_p (gdbarch, regnum))
3775 return i387_register_to_value (frame, regnum, type, to,
3776 optimizedp, unavailablep);
3777
3778 /* Read a value spread across multiple registers. */
3779
3780 gdb_assert (len > 4 && len % 4 == 0);
3781
3782 while (len > 0)
3783 {
3784 gdb_assert (regnum != -1);
3785 gdb_assert (register_size (gdbarch, regnum) == 4);
3786
3787 if (!get_frame_register_bytes (frame, regnum, 0,
3788 register_size (gdbarch, regnum),
3789 to, optimizedp, unavailablep))
3790 return 0;
3791
3792 regnum = i386_next_regnum (regnum);
3793 len -= 4;
3794 to += 4;
3795 }
3796
3797 *optimizedp = *unavailablep = 0;
3798 return 1;
3799 }
3800
3801 /* Write the contents FROM of a value of type TYPE into register
3802 REGNUM in frame FRAME. */
3803
3804 static void
3805 i386_value_to_register (struct frame_info *frame, int regnum,
3806 struct type *type, const gdb_byte *from)
3807 {
3808 int len = TYPE_LENGTH (type);
3809
3810 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3811 {
3812 i387_value_to_register (frame, regnum, type, from);
3813 return;
3814 }
3815
3816 /* Write a value spread across multiple registers. */
3817
3818 gdb_assert (len > 4 && len % 4 == 0);
3819
3820 while (len > 0)
3821 {
3822 gdb_assert (regnum != -1);
3823 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3824
3825 put_frame_register (frame, regnum, from);
3826 regnum = i386_next_regnum (regnum);
3827 len -= 4;
3828 from += 4;
3829 }
3830 }
3831 \f
3832 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3833 in the general-purpose register set REGSET to register cache
3834 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3835
3836 void
3837 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3838 int regnum, const void *gregs, size_t len)
3839 {
3840 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3841 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3842 const gdb_byte *regs = (const gdb_byte *) gregs;
3843 int i;
3844
3845 gdb_assert (len >= tdep->sizeof_gregset);
3846
3847 for (i = 0; i < tdep->gregset_num_regs; i++)
3848 {
3849 if ((regnum == i || regnum == -1)
3850 && tdep->gregset_reg_offset[i] != -1)
3851 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3852 }
3853 }
3854
3855 /* Collect register REGNUM from the register cache REGCACHE and store
3856 it in the buffer specified by GREGS and LEN as described by the
3857 general-purpose register set REGSET. If REGNUM is -1, do this for
3858 all registers in REGSET. */
3859
3860 static void
3861 i386_collect_gregset (const struct regset *regset,
3862 const struct regcache *regcache,
3863 int regnum, void *gregs, size_t len)
3864 {
3865 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3866 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3867 gdb_byte *regs = (gdb_byte *) gregs;
3868 int i;
3869
3870 gdb_assert (len >= tdep->sizeof_gregset);
3871
3872 for (i = 0; i < tdep->gregset_num_regs; i++)
3873 {
3874 if ((regnum == i || regnum == -1)
3875 && tdep->gregset_reg_offset[i] != -1)
3876 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3877 }
3878 }
3879
3880 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3881 in the floating-point register set REGSET to register cache
3882 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3883
3884 static void
3885 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3886 int regnum, const void *fpregs, size_t len)
3887 {
3888 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3889 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3890
3891 if (len == I387_SIZEOF_FXSAVE)
3892 {
3893 i387_supply_fxsave (regcache, regnum, fpregs);
3894 return;
3895 }
3896
3897 gdb_assert (len >= tdep->sizeof_fpregset);
3898 i387_supply_fsave (regcache, regnum, fpregs);
3899 }
3900
3901 /* Collect register REGNUM from the register cache REGCACHE and store
3902 it in the buffer specified by FPREGS and LEN as described by the
3903 floating-point register set REGSET. If REGNUM is -1, do this for
3904 all registers in REGSET. */
3905
3906 static void
3907 i386_collect_fpregset (const struct regset *regset,
3908 const struct regcache *regcache,
3909 int regnum, void *fpregs, size_t len)
3910 {
3911 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3912 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3913
3914 if (len == I387_SIZEOF_FXSAVE)
3915 {
3916 i387_collect_fxsave (regcache, regnum, fpregs);
3917 return;
3918 }
3919
3920 gdb_assert (len >= tdep->sizeof_fpregset);
3921 i387_collect_fsave (regcache, regnum, fpregs);
3922 }
3923
3924 /* Register set definitions. */
3925
3926 const struct regset i386_gregset =
3927 {
3928 NULL, i386_supply_gregset, i386_collect_gregset
3929 };
3930
3931 const struct regset i386_fpregset =
3932 {
3933 NULL, i386_supply_fpregset, i386_collect_fpregset
3934 };
3935
3936 /* Default iterator over core file register note sections. */
3937
3938 void
3939 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3940 iterate_over_regset_sections_cb *cb,
3941 void *cb_data,
3942 const struct regcache *regcache)
3943 {
3944 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3945
3946 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3947 if (tdep->sizeof_fpregset)
3948 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3949 }
3950 \f
3951
3952 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3953
3954 CORE_ADDR
3955 i386_pe_skip_trampoline_code (struct frame_info *frame,
3956 CORE_ADDR pc, char *name)
3957 {
3958 struct gdbarch *gdbarch = get_frame_arch (frame);
3959 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3960
3961 /* jmp *(dest) */
3962 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3963 {
3964 unsigned long indirect =
3965 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3966 struct minimal_symbol *indsym =
3967 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3968 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3969
3970 if (symname)
3971 {
3972 if (startswith (symname, "__imp_")
3973 || startswith (symname, "_imp_"))
3974 return name ? 1 :
3975 read_memory_unsigned_integer (indirect, 4, byte_order);
3976 }
3977 }
3978 return 0; /* Not a trampoline. */
3979 }
3980 \f
3981
3982 /* Return whether the THIS_FRAME corresponds to a sigtramp
3983 routine. */
3984
3985 int
3986 i386_sigtramp_p (struct frame_info *this_frame)
3987 {
3988 CORE_ADDR pc = get_frame_pc (this_frame);
3989 const char *name;
3990
3991 find_pc_partial_function (pc, &name, NULL, NULL);
3992 return (name && strcmp ("_sigtramp", name) == 0);
3993 }
3994 \f
3995
3996 /* We have two flavours of disassembly. The machinery on this page
3997 deals with switching between those. */
3998
3999 static int
4000 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4001 {
4002 gdb_assert (disassembly_flavor == att_flavor
4003 || disassembly_flavor == intel_flavor);
4004
4005 info->disassembler_options = disassembly_flavor;
4006
4007 return default_print_insn (pc, info);
4008 }
4009 \f
4010
4011 /* There are a few i386 architecture variants that differ only
4012 slightly from the generic i386 target. For now, we don't give them
4013 their own source file, but include them here. As a consequence,
4014 they'll always be included. */
4015
4016 /* System V Release 4 (SVR4). */
4017
4018 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4019 routine. */
4020
4021 static int
4022 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4023 {
4024 CORE_ADDR pc = get_frame_pc (this_frame);
4025 const char *name;
4026
4027 /* The origin of these symbols is currently unknown. */
4028 find_pc_partial_function (pc, &name, NULL, NULL);
4029 return (name && (strcmp ("_sigreturn", name) == 0
4030 || strcmp ("sigvechandler", name) == 0));
4031 }
4032
4033 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4034 address of the associated sigcontext (ucontext) structure. */
4035
4036 static CORE_ADDR
4037 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4038 {
4039 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4040 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4041 gdb_byte buf[4];
4042 CORE_ADDR sp;
4043
4044 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4045 sp = extract_unsigned_integer (buf, 4, byte_order);
4046
4047 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4048 }
4049
4050 \f
4051
4052 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4053 gdbarch.h. */
4054
4055 int
4056 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4057 {
4058 return (*s == '$' /* Literal number. */
4059 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4060 || (*s == '(' && s[1] == '%') /* Register indirection. */
4061 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4062 }
4063
4064 /* Helper function for i386_stap_parse_special_token.
4065
4066 This function parses operands of the form `-8+3+1(%rbp)', which
4067 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4068
4069 Return 1 if the operand was parsed successfully, zero
4070 otherwise. */
4071
4072 static int
4073 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4074 struct stap_parse_info *p)
4075 {
4076 const char *s = p->arg;
4077
4078 if (isdigit (*s) || *s == '-' || *s == '+')
4079 {
4080 int got_minus[3];
4081 int i;
4082 long displacements[3];
4083 const char *start;
4084 char *regname;
4085 int len;
4086 struct stoken str;
4087 char *endp;
4088
4089 got_minus[0] = 0;
4090 if (*s == '+')
4091 ++s;
4092 else if (*s == '-')
4093 {
4094 ++s;
4095 got_minus[0] = 1;
4096 }
4097
4098 if (!isdigit ((unsigned char) *s))
4099 return 0;
4100
4101 displacements[0] = strtol (s, &endp, 10);
4102 s = endp;
4103
4104 if (*s != '+' && *s != '-')
4105 {
4106 /* We are not dealing with a triplet. */
4107 return 0;
4108 }
4109
4110 got_minus[1] = 0;
4111 if (*s == '+')
4112 ++s;
4113 else
4114 {
4115 ++s;
4116 got_minus[1] = 1;
4117 }
4118
4119 if (!isdigit ((unsigned char) *s))
4120 return 0;
4121
4122 displacements[1] = strtol (s, &endp, 10);
4123 s = endp;
4124
4125 if (*s != '+' && *s != '-')
4126 {
4127 /* We are not dealing with a triplet. */
4128 return 0;
4129 }
4130
4131 got_minus[2] = 0;
4132 if (*s == '+')
4133 ++s;
4134 else
4135 {
4136 ++s;
4137 got_minus[2] = 1;
4138 }
4139
4140 if (!isdigit ((unsigned char) *s))
4141 return 0;
4142
4143 displacements[2] = strtol (s, &endp, 10);
4144 s = endp;
4145
4146 if (*s != '(' || s[1] != '%')
4147 return 0;
4148
4149 s += 2;
4150 start = s;
4151
4152 while (isalnum (*s))
4153 ++s;
4154
4155 if (*s++ != ')')
4156 return 0;
4157
4158 len = s - start - 1;
4159 regname = (char *) alloca (len + 1);
4160
4161 strncpy (regname, start, len);
4162 regname[len] = '\0';
4163
4164 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4165 error (_("Invalid register name `%s' on expression `%s'."),
4166 regname, p->saved_arg);
4167
4168 for (i = 0; i < 3; i++)
4169 {
4170 write_exp_elt_opcode (&p->pstate, OP_LONG);
4171 write_exp_elt_type
4172 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4173 write_exp_elt_longcst (&p->pstate, displacements[i]);
4174 write_exp_elt_opcode (&p->pstate, OP_LONG);
4175 if (got_minus[i])
4176 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4177 }
4178
4179 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4180 str.ptr = regname;
4181 str.length = len;
4182 write_exp_string (&p->pstate, str);
4183 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4184
4185 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4186 write_exp_elt_type (&p->pstate,
4187 builtin_type (gdbarch)->builtin_data_ptr);
4188 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4189
4190 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4191 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4192 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4193
4194 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4195 write_exp_elt_type (&p->pstate,
4196 lookup_pointer_type (p->arg_type));
4197 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4198
4199 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4200
4201 p->arg = s;
4202
4203 return 1;
4204 }
4205
4206 return 0;
4207 }
4208
4209 /* Helper function for i386_stap_parse_special_token.
4210
4211 This function parses operands of the form `register base +
4212 (register index * size) + offset', as represented in
4213 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4214
4215 Return 1 if the operand was parsed successfully, zero
4216 otherwise. */
4217
4218 static int
4219 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4220 struct stap_parse_info *p)
4221 {
4222 const char *s = p->arg;
4223
4224 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4225 {
4226 int offset_minus = 0;
4227 long offset = 0;
4228 int size_minus = 0;
4229 long size = 0;
4230 const char *start;
4231 char *base;
4232 int len_base;
4233 char *index;
4234 int len_index;
4235 struct stoken base_token, index_token;
4236
4237 if (*s == '+')
4238 ++s;
4239 else if (*s == '-')
4240 {
4241 ++s;
4242 offset_minus = 1;
4243 }
4244
4245 if (offset_minus && !isdigit (*s))
4246 return 0;
4247
4248 if (isdigit (*s))
4249 {
4250 char *endp;
4251
4252 offset = strtol (s, &endp, 10);
4253 s = endp;
4254 }
4255
4256 if (*s != '(' || s[1] != '%')
4257 return 0;
4258
4259 s += 2;
4260 start = s;
4261
4262 while (isalnum (*s))
4263 ++s;
4264
4265 if (*s != ',' || s[1] != '%')
4266 return 0;
4267
4268 len_base = s - start;
4269 base = (char *) alloca (len_base + 1);
4270 strncpy (base, start, len_base);
4271 base[len_base] = '\0';
4272
4273 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4274 error (_("Invalid register name `%s' on expression `%s'."),
4275 base, p->saved_arg);
4276
4277 s += 2;
4278 start = s;
4279
4280 while (isalnum (*s))
4281 ++s;
4282
4283 len_index = s - start;
4284 index = (char *) alloca (len_index + 1);
4285 strncpy (index, start, len_index);
4286 index[len_index] = '\0';
4287
4288 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4289 error (_("Invalid register name `%s' on expression `%s'."),
4290 index, p->saved_arg);
4291
4292 if (*s != ',' && *s != ')')
4293 return 0;
4294
4295 if (*s == ',')
4296 {
4297 char *endp;
4298
4299 ++s;
4300 if (*s == '+')
4301 ++s;
4302 else if (*s == '-')
4303 {
4304 ++s;
4305 size_minus = 1;
4306 }
4307
4308 size = strtol (s, &endp, 10);
4309 s = endp;
4310
4311 if (*s != ')')
4312 return 0;
4313 }
4314
4315 ++s;
4316
4317 if (offset)
4318 {
4319 write_exp_elt_opcode (&p->pstate, OP_LONG);
4320 write_exp_elt_type (&p->pstate,
4321 builtin_type (gdbarch)->builtin_long);
4322 write_exp_elt_longcst (&p->pstate, offset);
4323 write_exp_elt_opcode (&p->pstate, OP_LONG);
4324 if (offset_minus)
4325 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4326 }
4327
4328 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4329 base_token.ptr = base;
4330 base_token.length = len_base;
4331 write_exp_string (&p->pstate, base_token);
4332 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4333
4334 if (offset)
4335 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4336
4337 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4338 index_token.ptr = index;
4339 index_token.length = len_index;
4340 write_exp_string (&p->pstate, index_token);
4341 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4342
4343 if (size)
4344 {
4345 write_exp_elt_opcode (&p->pstate, OP_LONG);
4346 write_exp_elt_type (&p->pstate,
4347 builtin_type (gdbarch)->builtin_long);
4348 write_exp_elt_longcst (&p->pstate, size);
4349 write_exp_elt_opcode (&p->pstate, OP_LONG);
4350 if (size_minus)
4351 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4352 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4353 }
4354
4355 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4356
4357 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4358 write_exp_elt_type (&p->pstate,
4359 lookup_pointer_type (p->arg_type));
4360 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4361
4362 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4363
4364 p->arg = s;
4365
4366 return 1;
4367 }
4368
4369 return 0;
4370 }
4371
4372 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4373 gdbarch.h. */
4374
4375 int
4376 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4377 struct stap_parse_info *p)
4378 {
4379 /* In order to parse special tokens, we use a state-machine that go
4380 through every known token and try to get a match. */
4381 enum
4382 {
4383 TRIPLET,
4384 THREE_ARG_DISPLACEMENT,
4385 DONE
4386 };
4387 int current_state;
4388
4389 current_state = TRIPLET;
4390
4391 /* The special tokens to be parsed here are:
4392
4393 - `register base + (register index * size) + offset', as represented
4394 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4395
4396 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4397 `*(-8 + 3 - 1 + (void *) $eax)'. */
4398
4399 while (current_state != DONE)
4400 {
4401 switch (current_state)
4402 {
4403 case TRIPLET:
4404 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4405 return 1;
4406 break;
4407
4408 case THREE_ARG_DISPLACEMENT:
4409 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4410 return 1;
4411 break;
4412 }
4413
4414 /* Advancing to the next state. */
4415 ++current_state;
4416 }
4417
4418 return 0;
4419 }
4420
4421 \f
4422
4423 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4424 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4425
4426 static const char *
4427 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4428 {
4429 return "(x86_64|i.86)";
4430 }
4431
4432 \f
4433
4434 /* Generic ELF. */
4435
4436 void
4437 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4438 {
4439 static const char *const stap_integer_prefixes[] = { "$", NULL };
4440 static const char *const stap_register_prefixes[] = { "%", NULL };
4441 static const char *const stap_register_indirection_prefixes[] = { "(",
4442 NULL };
4443 static const char *const stap_register_indirection_suffixes[] = { ")",
4444 NULL };
4445
4446 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4447 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4448
4449 /* Registering SystemTap handlers. */
4450 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4451 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4452 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4453 stap_register_indirection_prefixes);
4454 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4455 stap_register_indirection_suffixes);
4456 set_gdbarch_stap_is_single_operand (gdbarch,
4457 i386_stap_is_single_operand);
4458 set_gdbarch_stap_parse_special_token (gdbarch,
4459 i386_stap_parse_special_token);
4460 }
4461
4462 /* System V Release 4 (SVR4). */
4463
4464 void
4465 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4466 {
4467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4468
4469 /* System V Release 4 uses ELF. */
4470 i386_elf_init_abi (info, gdbarch);
4471
4472 /* System V Release 4 has shared libraries. */
4473 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4474
4475 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4476 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4477 tdep->sc_pc_offset = 36 + 14 * 4;
4478 tdep->sc_sp_offset = 36 + 17 * 4;
4479
4480 tdep->jb_pc_offset = 20;
4481 }
4482
4483 \f
4484
4485 /* i386 register groups. In addition to the normal groups, add "mmx"
4486 and "sse". */
4487
4488 static struct reggroup *i386_sse_reggroup;
4489 static struct reggroup *i386_mmx_reggroup;
4490
4491 static void
4492 i386_init_reggroups (void)
4493 {
4494 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4495 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4496 }
4497
4498 static void
4499 i386_add_reggroups (struct gdbarch *gdbarch)
4500 {
4501 reggroup_add (gdbarch, i386_sse_reggroup);
4502 reggroup_add (gdbarch, i386_mmx_reggroup);
4503 reggroup_add (gdbarch, general_reggroup);
4504 reggroup_add (gdbarch, float_reggroup);
4505 reggroup_add (gdbarch, all_reggroup);
4506 reggroup_add (gdbarch, save_reggroup);
4507 reggroup_add (gdbarch, restore_reggroup);
4508 reggroup_add (gdbarch, vector_reggroup);
4509 reggroup_add (gdbarch, system_reggroup);
4510 }
4511
4512 int
4513 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4514 struct reggroup *group)
4515 {
4516 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4517 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4518 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4519 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4520 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4521 avx512_p, avx_p, sse_p, pkru_regnum_p;
4522
4523 /* Don't include pseudo registers, except for MMX, in any register
4524 groups. */
4525 if (i386_byte_regnum_p (gdbarch, regnum))
4526 return 0;
4527
4528 if (i386_word_regnum_p (gdbarch, regnum))
4529 return 0;
4530
4531 if (i386_dword_regnum_p (gdbarch, regnum))
4532 return 0;
4533
4534 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4535 if (group == i386_mmx_reggroup)
4536 return mmx_regnum_p;
4537
4538 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4539 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4540 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4541 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4542 if (group == i386_sse_reggroup)
4543 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4544
4545 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4546 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4547 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4548
4549 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4550 == X86_XSTATE_AVX_AVX512_MASK);
4551 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4552 == X86_XSTATE_AVX_MASK) && !avx512_p;
4553 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4554 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4555
4556 if (group == vector_reggroup)
4557 return (mmx_regnum_p
4558 || (zmm_regnum_p && avx512_p)
4559 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4560 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4561 || mxcsr_regnum_p);
4562
4563 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4564 || i386_fpc_regnum_p (gdbarch, regnum));
4565 if (group == float_reggroup)
4566 return fp_regnum_p;
4567
4568 /* For "info reg all", don't include upper YMM registers nor XMM
4569 registers when AVX is supported. */
4570 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4571 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4572 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4573 if (group == all_reggroup
4574 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4575 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4576 || ymmh_regnum_p
4577 || ymmh_avx512_regnum_p
4578 || zmmh_regnum_p))
4579 return 0;
4580
4581 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4582 if (group == all_reggroup
4583 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4584 return bnd_regnum_p;
4585
4586 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4587 if (group == all_reggroup
4588 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4589 return 0;
4590
4591 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4592 if (group == all_reggroup
4593 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4594 return mpx_ctrl_regnum_p;
4595
4596 if (group == general_reggroup)
4597 return (!fp_regnum_p
4598 && !mmx_regnum_p
4599 && !mxcsr_regnum_p
4600 && !xmm_regnum_p
4601 && !xmm_avx512_regnum_p
4602 && !ymm_regnum_p
4603 && !ymmh_regnum_p
4604 && !ymm_avx512_regnum_p
4605 && !ymmh_avx512_regnum_p
4606 && !bndr_regnum_p
4607 && !bnd_regnum_p
4608 && !mpx_ctrl_regnum_p
4609 && !zmm_regnum_p
4610 && !zmmh_regnum_p
4611 && !pkru_regnum_p);
4612
4613 return default_register_reggroup_p (gdbarch, regnum, group);
4614 }
4615 \f
4616
4617 /* Get the ARGIth function argument for the current function. */
4618
4619 static CORE_ADDR
4620 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4621 struct type *type)
4622 {
4623 struct gdbarch *gdbarch = get_frame_arch (frame);
4624 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4625 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4626 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4627 }
4628
4629 #define PREFIX_REPZ 0x01
4630 #define PREFIX_REPNZ 0x02
4631 #define PREFIX_LOCK 0x04
4632 #define PREFIX_DATA 0x08
4633 #define PREFIX_ADDR 0x10
4634
4635 /* operand size */
4636 enum
4637 {
4638 OT_BYTE = 0,
4639 OT_WORD,
4640 OT_LONG,
4641 OT_QUAD,
4642 OT_DQUAD,
4643 };
4644
4645 /* i386 arith/logic operations */
4646 enum
4647 {
4648 OP_ADDL,
4649 OP_ORL,
4650 OP_ADCL,
4651 OP_SBBL,
4652 OP_ANDL,
4653 OP_SUBL,
4654 OP_XORL,
4655 OP_CMPL,
4656 };
4657
4658 struct i386_record_s
4659 {
4660 struct gdbarch *gdbarch;
4661 struct regcache *regcache;
4662 CORE_ADDR orig_addr;
4663 CORE_ADDR addr;
4664 int aflag;
4665 int dflag;
4666 int override;
4667 uint8_t modrm;
4668 uint8_t mod, reg, rm;
4669 int ot;
4670 uint8_t rex_x;
4671 uint8_t rex_b;
4672 int rip_offset;
4673 int popl_esp_hack;
4674 const int *regmap;
4675 };
4676
4677 /* Parse the "modrm" part of the memory address irp->addr points at.
4678 Returns -1 if something goes wrong, 0 otherwise. */
4679
4680 static int
4681 i386_record_modrm (struct i386_record_s *irp)
4682 {
4683 struct gdbarch *gdbarch = irp->gdbarch;
4684
4685 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4686 return -1;
4687
4688 irp->addr++;
4689 irp->mod = (irp->modrm >> 6) & 3;
4690 irp->reg = (irp->modrm >> 3) & 7;
4691 irp->rm = irp->modrm & 7;
4692
4693 return 0;
4694 }
4695
4696 /* Extract the memory address that the current instruction writes to,
4697 and return it in *ADDR. Return -1 if something goes wrong. */
4698
4699 static int
4700 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4701 {
4702 struct gdbarch *gdbarch = irp->gdbarch;
4703 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4704 gdb_byte buf[4];
4705 ULONGEST offset64;
4706
4707 *addr = 0;
4708 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4709 {
4710 /* 32/64 bits */
4711 int havesib = 0;
4712 uint8_t scale = 0;
4713 uint8_t byte;
4714 uint8_t index = 0;
4715 uint8_t base = irp->rm;
4716
4717 if (base == 4)
4718 {
4719 havesib = 1;
4720 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4721 return -1;
4722 irp->addr++;
4723 scale = (byte >> 6) & 3;
4724 index = ((byte >> 3) & 7) | irp->rex_x;
4725 base = (byte & 7);
4726 }
4727 base |= irp->rex_b;
4728
4729 switch (irp->mod)
4730 {
4731 case 0:
4732 if ((base & 7) == 5)
4733 {
4734 base = 0xff;
4735 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4736 return -1;
4737 irp->addr += 4;
4738 *addr = extract_signed_integer (buf, 4, byte_order);
4739 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4740 *addr += irp->addr + irp->rip_offset;
4741 }
4742 break;
4743 case 1:
4744 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4745 return -1;
4746 irp->addr++;
4747 *addr = (int8_t) buf[0];
4748 break;
4749 case 2:
4750 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4751 return -1;
4752 *addr = extract_signed_integer (buf, 4, byte_order);
4753 irp->addr += 4;
4754 break;
4755 }
4756
4757 offset64 = 0;
4758 if (base != 0xff)
4759 {
4760 if (base == 4 && irp->popl_esp_hack)
4761 *addr += irp->popl_esp_hack;
4762 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4763 &offset64);
4764 }
4765 if (irp->aflag == 2)
4766 {
4767 *addr += offset64;
4768 }
4769 else
4770 *addr = (uint32_t) (offset64 + *addr);
4771
4772 if (havesib && (index != 4 || scale != 0))
4773 {
4774 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4775 &offset64);
4776 if (irp->aflag == 2)
4777 *addr += offset64 << scale;
4778 else
4779 *addr = (uint32_t) (*addr + (offset64 << scale));
4780 }
4781
4782 if (!irp->aflag)
4783 {
4784 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4785 address from 32-bit to 64-bit. */
4786 *addr = (uint32_t) *addr;
4787 }
4788 }
4789 else
4790 {
4791 /* 16 bits */
4792 switch (irp->mod)
4793 {
4794 case 0:
4795 if (irp->rm == 6)
4796 {
4797 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4798 return -1;
4799 irp->addr += 2;
4800 *addr = extract_signed_integer (buf, 2, byte_order);
4801 irp->rm = 0;
4802 goto no_rm;
4803 }
4804 break;
4805 case 1:
4806 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4807 return -1;
4808 irp->addr++;
4809 *addr = (int8_t) buf[0];
4810 break;
4811 case 2:
4812 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4813 return -1;
4814 irp->addr += 2;
4815 *addr = extract_signed_integer (buf, 2, byte_order);
4816 break;
4817 }
4818
4819 switch (irp->rm)
4820 {
4821 case 0:
4822 regcache_raw_read_unsigned (irp->regcache,
4823 irp->regmap[X86_RECORD_REBX_REGNUM],
4824 &offset64);
4825 *addr = (uint32_t) (*addr + offset64);
4826 regcache_raw_read_unsigned (irp->regcache,
4827 irp->regmap[X86_RECORD_RESI_REGNUM],
4828 &offset64);
4829 *addr = (uint32_t) (*addr + offset64);
4830 break;
4831 case 1:
4832 regcache_raw_read_unsigned (irp->regcache,
4833 irp->regmap[X86_RECORD_REBX_REGNUM],
4834 &offset64);
4835 *addr = (uint32_t) (*addr + offset64);
4836 regcache_raw_read_unsigned (irp->regcache,
4837 irp->regmap[X86_RECORD_REDI_REGNUM],
4838 &offset64);
4839 *addr = (uint32_t) (*addr + offset64);
4840 break;
4841 case 2:
4842 regcache_raw_read_unsigned (irp->regcache,
4843 irp->regmap[X86_RECORD_REBP_REGNUM],
4844 &offset64);
4845 *addr = (uint32_t) (*addr + offset64);
4846 regcache_raw_read_unsigned (irp->regcache,
4847 irp->regmap[X86_RECORD_RESI_REGNUM],
4848 &offset64);
4849 *addr = (uint32_t) (*addr + offset64);
4850 break;
4851 case 3:
4852 regcache_raw_read_unsigned (irp->regcache,
4853 irp->regmap[X86_RECORD_REBP_REGNUM],
4854 &offset64);
4855 *addr = (uint32_t) (*addr + offset64);
4856 regcache_raw_read_unsigned (irp->regcache,
4857 irp->regmap[X86_RECORD_REDI_REGNUM],
4858 &offset64);
4859 *addr = (uint32_t) (*addr + offset64);
4860 break;
4861 case 4:
4862 regcache_raw_read_unsigned (irp->regcache,
4863 irp->regmap[X86_RECORD_RESI_REGNUM],
4864 &offset64);
4865 *addr = (uint32_t) (*addr + offset64);
4866 break;
4867 case 5:
4868 regcache_raw_read_unsigned (irp->regcache,
4869 irp->regmap[X86_RECORD_REDI_REGNUM],
4870 &offset64);
4871 *addr = (uint32_t) (*addr + offset64);
4872 break;
4873 case 6:
4874 regcache_raw_read_unsigned (irp->regcache,
4875 irp->regmap[X86_RECORD_REBP_REGNUM],
4876 &offset64);
4877 *addr = (uint32_t) (*addr + offset64);
4878 break;
4879 case 7:
4880 regcache_raw_read_unsigned (irp->regcache,
4881 irp->regmap[X86_RECORD_REBX_REGNUM],
4882 &offset64);
4883 *addr = (uint32_t) (*addr + offset64);
4884 break;
4885 }
4886 *addr &= 0xffff;
4887 }
4888
4889 no_rm:
4890 return 0;
4891 }
4892
4893 /* Record the address and contents of the memory that will be changed
4894 by the current instruction. Return -1 if something goes wrong, 0
4895 otherwise. */
4896
4897 static int
4898 i386_record_lea_modrm (struct i386_record_s *irp)
4899 {
4900 struct gdbarch *gdbarch = irp->gdbarch;
4901 uint64_t addr;
4902
4903 if (irp->override >= 0)
4904 {
4905 if (record_full_memory_query)
4906 {
4907 if (yquery (_("\
4908 Process record ignores the memory change of instruction at address %s\n\
4909 because it can't get the value of the segment register.\n\
4910 Do you want to stop the program?"),
4911 paddress (gdbarch, irp->orig_addr)))
4912 return -1;
4913 }
4914
4915 return 0;
4916 }
4917
4918 if (i386_record_lea_modrm_addr (irp, &addr))
4919 return -1;
4920
4921 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4922 return -1;
4923
4924 return 0;
4925 }
4926
4927 /* Record the effects of a push operation. Return -1 if something
4928 goes wrong, 0 otherwise. */
4929
4930 static int
4931 i386_record_push (struct i386_record_s *irp, int size)
4932 {
4933 ULONGEST addr;
4934
4935 if (record_full_arch_list_add_reg (irp->regcache,
4936 irp->regmap[X86_RECORD_RESP_REGNUM]))
4937 return -1;
4938 regcache_raw_read_unsigned (irp->regcache,
4939 irp->regmap[X86_RECORD_RESP_REGNUM],
4940 &addr);
4941 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4942 return -1;
4943
4944 return 0;
4945 }
4946
4947
4948 /* Defines contents to record. */
4949 #define I386_SAVE_FPU_REGS 0xfffd
4950 #define I386_SAVE_FPU_ENV 0xfffe
4951 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4952
4953 /* Record the values of the floating point registers which will be
4954 changed by the current instruction. Returns -1 if something is
4955 wrong, 0 otherwise. */
4956
4957 static int i386_record_floats (struct gdbarch *gdbarch,
4958 struct i386_record_s *ir,
4959 uint32_t iregnum)
4960 {
4961 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4962 int i;
4963
4964 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4965 happen. Currently we store st0-st7 registers, but we need not store all
4966 registers all the time, in future we use ftag register and record only
4967 those who are not marked as an empty. */
4968
4969 if (I386_SAVE_FPU_REGS == iregnum)
4970 {
4971 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4972 {
4973 if (record_full_arch_list_add_reg (ir->regcache, i))
4974 return -1;
4975 }
4976 }
4977 else if (I386_SAVE_FPU_ENV == iregnum)
4978 {
4979 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4980 {
4981 if (record_full_arch_list_add_reg (ir->regcache, i))
4982 return -1;
4983 }
4984 }
4985 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4986 {
4987 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4988 {
4989 if (record_full_arch_list_add_reg (ir->regcache, i))
4990 return -1;
4991 }
4992 }
4993 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4994 (iregnum <= I387_FOP_REGNUM (tdep)))
4995 {
4996 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4997 return -1;
4998 }
4999 else
5000 {
5001 /* Parameter error. */
5002 return -1;
5003 }
5004 if(I386_SAVE_FPU_ENV != iregnum)
5005 {
5006 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5007 {
5008 if (record_full_arch_list_add_reg (ir->regcache, i))
5009 return -1;
5010 }
5011 }
5012 return 0;
5013 }
5014
5015 /* Parse the current instruction, and record the values of the
5016 registers and memory that will be changed by the current
5017 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5018
5019 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5020 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5021
5022 int
5023 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5024 CORE_ADDR input_addr)
5025 {
5026 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5027 int prefixes = 0;
5028 int regnum = 0;
5029 uint32_t opcode;
5030 uint8_t opcode8;
5031 ULONGEST addr;
5032 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5033 struct i386_record_s ir;
5034 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5035 uint8_t rex_w = -1;
5036 uint8_t rex_r = 0;
5037
5038 memset (&ir, 0, sizeof (struct i386_record_s));
5039 ir.regcache = regcache;
5040 ir.addr = input_addr;
5041 ir.orig_addr = input_addr;
5042 ir.aflag = 1;
5043 ir.dflag = 1;
5044 ir.override = -1;
5045 ir.popl_esp_hack = 0;
5046 ir.regmap = tdep->record_regmap;
5047 ir.gdbarch = gdbarch;
5048
5049 if (record_debug > 1)
5050 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5051 "addr = %s\n",
5052 paddress (gdbarch, ir.addr));
5053
5054 /* prefixes */
5055 while (1)
5056 {
5057 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5058 return -1;
5059 ir.addr++;
5060 switch (opcode8) /* Instruction prefixes */
5061 {
5062 case REPE_PREFIX_OPCODE:
5063 prefixes |= PREFIX_REPZ;
5064 break;
5065 case REPNE_PREFIX_OPCODE:
5066 prefixes |= PREFIX_REPNZ;
5067 break;
5068 case LOCK_PREFIX_OPCODE:
5069 prefixes |= PREFIX_LOCK;
5070 break;
5071 case CS_PREFIX_OPCODE:
5072 ir.override = X86_RECORD_CS_REGNUM;
5073 break;
5074 case SS_PREFIX_OPCODE:
5075 ir.override = X86_RECORD_SS_REGNUM;
5076 break;
5077 case DS_PREFIX_OPCODE:
5078 ir.override = X86_RECORD_DS_REGNUM;
5079 break;
5080 case ES_PREFIX_OPCODE:
5081 ir.override = X86_RECORD_ES_REGNUM;
5082 break;
5083 case FS_PREFIX_OPCODE:
5084 ir.override = X86_RECORD_FS_REGNUM;
5085 break;
5086 case GS_PREFIX_OPCODE:
5087 ir.override = X86_RECORD_GS_REGNUM;
5088 break;
5089 case DATA_PREFIX_OPCODE:
5090 prefixes |= PREFIX_DATA;
5091 break;
5092 case ADDR_PREFIX_OPCODE:
5093 prefixes |= PREFIX_ADDR;
5094 break;
5095 case 0x40: /* i386 inc %eax */
5096 case 0x41: /* i386 inc %ecx */
5097 case 0x42: /* i386 inc %edx */
5098 case 0x43: /* i386 inc %ebx */
5099 case 0x44: /* i386 inc %esp */
5100 case 0x45: /* i386 inc %ebp */
5101 case 0x46: /* i386 inc %esi */
5102 case 0x47: /* i386 inc %edi */
5103 case 0x48: /* i386 dec %eax */
5104 case 0x49: /* i386 dec %ecx */
5105 case 0x4a: /* i386 dec %edx */
5106 case 0x4b: /* i386 dec %ebx */
5107 case 0x4c: /* i386 dec %esp */
5108 case 0x4d: /* i386 dec %ebp */
5109 case 0x4e: /* i386 dec %esi */
5110 case 0x4f: /* i386 dec %edi */
5111 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5112 {
5113 /* REX */
5114 rex_w = (opcode8 >> 3) & 1;
5115 rex_r = (opcode8 & 0x4) << 1;
5116 ir.rex_x = (opcode8 & 0x2) << 2;
5117 ir.rex_b = (opcode8 & 0x1) << 3;
5118 }
5119 else /* 32 bit target */
5120 goto out_prefixes;
5121 break;
5122 default:
5123 goto out_prefixes;
5124 break;
5125 }
5126 }
5127 out_prefixes:
5128 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5129 {
5130 ir.dflag = 2;
5131 }
5132 else
5133 {
5134 if (prefixes & PREFIX_DATA)
5135 ir.dflag ^= 1;
5136 }
5137 if (prefixes & PREFIX_ADDR)
5138 ir.aflag ^= 1;
5139 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5140 ir.aflag = 2;
5141
5142 /* Now check op code. */
5143 opcode = (uint32_t) opcode8;
5144 reswitch:
5145 switch (opcode)
5146 {
5147 case 0x0f:
5148 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5149 return -1;
5150 ir.addr++;
5151 opcode = (uint32_t) opcode8 | 0x0f00;
5152 goto reswitch;
5153 break;
5154
5155 case 0x00: /* arith & logic */
5156 case 0x01:
5157 case 0x02:
5158 case 0x03:
5159 case 0x04:
5160 case 0x05:
5161 case 0x08:
5162 case 0x09:
5163 case 0x0a:
5164 case 0x0b:
5165 case 0x0c:
5166 case 0x0d:
5167 case 0x10:
5168 case 0x11:
5169 case 0x12:
5170 case 0x13:
5171 case 0x14:
5172 case 0x15:
5173 case 0x18:
5174 case 0x19:
5175 case 0x1a:
5176 case 0x1b:
5177 case 0x1c:
5178 case 0x1d:
5179 case 0x20:
5180 case 0x21:
5181 case 0x22:
5182 case 0x23:
5183 case 0x24:
5184 case 0x25:
5185 case 0x28:
5186 case 0x29:
5187 case 0x2a:
5188 case 0x2b:
5189 case 0x2c:
5190 case 0x2d:
5191 case 0x30:
5192 case 0x31:
5193 case 0x32:
5194 case 0x33:
5195 case 0x34:
5196 case 0x35:
5197 case 0x38:
5198 case 0x39:
5199 case 0x3a:
5200 case 0x3b:
5201 case 0x3c:
5202 case 0x3d:
5203 if (((opcode >> 3) & 7) != OP_CMPL)
5204 {
5205 if ((opcode & 1) == 0)
5206 ir.ot = OT_BYTE;
5207 else
5208 ir.ot = ir.dflag + OT_WORD;
5209
5210 switch ((opcode >> 1) & 3)
5211 {
5212 case 0: /* OP Ev, Gv */
5213 if (i386_record_modrm (&ir))
5214 return -1;
5215 if (ir.mod != 3)
5216 {
5217 if (i386_record_lea_modrm (&ir))
5218 return -1;
5219 }
5220 else
5221 {
5222 ir.rm |= ir.rex_b;
5223 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5224 ir.rm &= 0x3;
5225 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5226 }
5227 break;
5228 case 1: /* OP Gv, Ev */
5229 if (i386_record_modrm (&ir))
5230 return -1;
5231 ir.reg |= rex_r;
5232 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5233 ir.reg &= 0x3;
5234 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5235 break;
5236 case 2: /* OP A, Iv */
5237 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5238 break;
5239 }
5240 }
5241 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5242 break;
5243
5244 case 0x80: /* GRP1 */
5245 case 0x81:
5246 case 0x82:
5247 case 0x83:
5248 if (i386_record_modrm (&ir))
5249 return -1;
5250
5251 if (ir.reg != OP_CMPL)
5252 {
5253 if ((opcode & 1) == 0)
5254 ir.ot = OT_BYTE;
5255 else
5256 ir.ot = ir.dflag + OT_WORD;
5257
5258 if (ir.mod != 3)
5259 {
5260 if (opcode == 0x83)
5261 ir.rip_offset = 1;
5262 else
5263 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5264 if (i386_record_lea_modrm (&ir))
5265 return -1;
5266 }
5267 else
5268 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5269 }
5270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5271 break;
5272
5273 case 0x40: /* inc */
5274 case 0x41:
5275 case 0x42:
5276 case 0x43:
5277 case 0x44:
5278 case 0x45:
5279 case 0x46:
5280 case 0x47:
5281
5282 case 0x48: /* dec */
5283 case 0x49:
5284 case 0x4a:
5285 case 0x4b:
5286 case 0x4c:
5287 case 0x4d:
5288 case 0x4e:
5289 case 0x4f:
5290
5291 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5292 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5293 break;
5294
5295 case 0xf6: /* GRP3 */
5296 case 0xf7:
5297 if ((opcode & 1) == 0)
5298 ir.ot = OT_BYTE;
5299 else
5300 ir.ot = ir.dflag + OT_WORD;
5301 if (i386_record_modrm (&ir))
5302 return -1;
5303
5304 if (ir.mod != 3 && ir.reg == 0)
5305 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5306
5307 switch (ir.reg)
5308 {
5309 case 0: /* test */
5310 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5311 break;
5312 case 2: /* not */
5313 case 3: /* neg */
5314 if (ir.mod != 3)
5315 {
5316 if (i386_record_lea_modrm (&ir))
5317 return -1;
5318 }
5319 else
5320 {
5321 ir.rm |= ir.rex_b;
5322 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5323 ir.rm &= 0x3;
5324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5325 }
5326 if (ir.reg == 3) /* neg */
5327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5328 break;
5329 case 4: /* mul */
5330 case 5: /* imul */
5331 case 6: /* div */
5332 case 7: /* idiv */
5333 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5334 if (ir.ot != OT_BYTE)
5335 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5336 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5337 break;
5338 default:
5339 ir.addr -= 2;
5340 opcode = opcode << 8 | ir.modrm;
5341 goto no_support;
5342 break;
5343 }
5344 break;
5345
5346 case 0xfe: /* GRP4 */
5347 case 0xff: /* GRP5 */
5348 if (i386_record_modrm (&ir))
5349 return -1;
5350 if (ir.reg >= 2 && opcode == 0xfe)
5351 {
5352 ir.addr -= 2;
5353 opcode = opcode << 8 | ir.modrm;
5354 goto no_support;
5355 }
5356 switch (ir.reg)
5357 {
5358 case 0: /* inc */
5359 case 1: /* dec */
5360 if ((opcode & 1) == 0)
5361 ir.ot = OT_BYTE;
5362 else
5363 ir.ot = ir.dflag + OT_WORD;
5364 if (ir.mod != 3)
5365 {
5366 if (i386_record_lea_modrm (&ir))
5367 return -1;
5368 }
5369 else
5370 {
5371 ir.rm |= ir.rex_b;
5372 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5373 ir.rm &= 0x3;
5374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5375 }
5376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5377 break;
5378 case 2: /* call */
5379 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5380 ir.dflag = 2;
5381 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5382 return -1;
5383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5384 break;
5385 case 3: /* lcall */
5386 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5387 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5388 return -1;
5389 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5390 break;
5391 case 4: /* jmp */
5392 case 5: /* ljmp */
5393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5394 break;
5395 case 6: /* push */
5396 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5397 ir.dflag = 2;
5398 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5399 return -1;
5400 break;
5401 default:
5402 ir.addr -= 2;
5403 opcode = opcode << 8 | ir.modrm;
5404 goto no_support;
5405 break;
5406 }
5407 break;
5408
5409 case 0x84: /* test */
5410 case 0x85:
5411 case 0xa8:
5412 case 0xa9:
5413 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5414 break;
5415
5416 case 0x98: /* CWDE/CBW */
5417 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5418 break;
5419
5420 case 0x99: /* CDQ/CWD */
5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5423 break;
5424
5425 case 0x0faf: /* imul */
5426 case 0x69:
5427 case 0x6b:
5428 ir.ot = ir.dflag + OT_WORD;
5429 if (i386_record_modrm (&ir))
5430 return -1;
5431 if (opcode == 0x69)
5432 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5433 else if (opcode == 0x6b)
5434 ir.rip_offset = 1;
5435 ir.reg |= rex_r;
5436 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5437 ir.reg &= 0x3;
5438 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5439 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5440 break;
5441
5442 case 0x0fc0: /* xadd */
5443 case 0x0fc1:
5444 if ((opcode & 1) == 0)
5445 ir.ot = OT_BYTE;
5446 else
5447 ir.ot = ir.dflag + OT_WORD;
5448 if (i386_record_modrm (&ir))
5449 return -1;
5450 ir.reg |= rex_r;
5451 if (ir.mod == 3)
5452 {
5453 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5454 ir.reg &= 0x3;
5455 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5456 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5457 ir.rm &= 0x3;
5458 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5459 }
5460 else
5461 {
5462 if (i386_record_lea_modrm (&ir))
5463 return -1;
5464 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5465 ir.reg &= 0x3;
5466 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5467 }
5468 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5469 break;
5470
5471 case 0x0fb0: /* cmpxchg */
5472 case 0x0fb1:
5473 if ((opcode & 1) == 0)
5474 ir.ot = OT_BYTE;
5475 else
5476 ir.ot = ir.dflag + OT_WORD;
5477 if (i386_record_modrm (&ir))
5478 return -1;
5479 if (ir.mod == 3)
5480 {
5481 ir.reg |= rex_r;
5482 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5483 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5484 ir.reg &= 0x3;
5485 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5486 }
5487 else
5488 {
5489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5490 if (i386_record_lea_modrm (&ir))
5491 return -1;
5492 }
5493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5494 break;
5495
5496 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5497 if (i386_record_modrm (&ir))
5498 return -1;
5499 if (ir.mod == 3)
5500 {
5501 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5502 an extended opcode. rdrand has bits 110 (/6) and rdseed
5503 has bits 111 (/7). */
5504 if (ir.reg == 6 || ir.reg == 7)
5505 {
5506 /* The storage register is described by the 3 R/M bits, but the
5507 REX.B prefix may be used to give access to registers
5508 R8~R15. In this case ir.rex_b + R/M will give us the register
5509 in the range R8~R15.
5510
5511 REX.W may also be used to access 64-bit registers, but we
5512 already record entire registers and not just partial bits
5513 of them. */
5514 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5515 /* These instructions also set conditional bits. */
5516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5517 break;
5518 }
5519 else
5520 {
5521 /* We don't handle this particular instruction yet. */
5522 ir.addr -= 2;
5523 opcode = opcode << 8 | ir.modrm;
5524 goto no_support;
5525 }
5526 }
5527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5529 if (i386_record_lea_modrm (&ir))
5530 return -1;
5531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5532 break;
5533
5534 case 0x50: /* push */
5535 case 0x51:
5536 case 0x52:
5537 case 0x53:
5538 case 0x54:
5539 case 0x55:
5540 case 0x56:
5541 case 0x57:
5542 case 0x68:
5543 case 0x6a:
5544 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5545 ir.dflag = 2;
5546 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5547 return -1;
5548 break;
5549
5550 case 0x06: /* push es */
5551 case 0x0e: /* push cs */
5552 case 0x16: /* push ss */
5553 case 0x1e: /* push ds */
5554 if (ir.regmap[X86_RECORD_R8_REGNUM])
5555 {
5556 ir.addr -= 1;
5557 goto no_support;
5558 }
5559 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5560 return -1;
5561 break;
5562
5563 case 0x0fa0: /* push fs */
5564 case 0x0fa8: /* push gs */
5565 if (ir.regmap[X86_RECORD_R8_REGNUM])
5566 {
5567 ir.addr -= 2;
5568 goto no_support;
5569 }
5570 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5571 return -1;
5572 break;
5573
5574 case 0x60: /* pusha */
5575 if (ir.regmap[X86_RECORD_R8_REGNUM])
5576 {
5577 ir.addr -= 1;
5578 goto no_support;
5579 }
5580 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5581 return -1;
5582 break;
5583
5584 case 0x58: /* pop */
5585 case 0x59:
5586 case 0x5a:
5587 case 0x5b:
5588 case 0x5c:
5589 case 0x5d:
5590 case 0x5e:
5591 case 0x5f:
5592 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5593 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5594 break;
5595
5596 case 0x61: /* popa */
5597 if (ir.regmap[X86_RECORD_R8_REGNUM])
5598 {
5599 ir.addr -= 1;
5600 goto no_support;
5601 }
5602 for (regnum = X86_RECORD_REAX_REGNUM;
5603 regnum <= X86_RECORD_REDI_REGNUM;
5604 regnum++)
5605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5606 break;
5607
5608 case 0x8f: /* pop */
5609 if (ir.regmap[X86_RECORD_R8_REGNUM])
5610 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5611 else
5612 ir.ot = ir.dflag + OT_WORD;
5613 if (i386_record_modrm (&ir))
5614 return -1;
5615 if (ir.mod == 3)
5616 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5617 else
5618 {
5619 ir.popl_esp_hack = 1 << ir.ot;
5620 if (i386_record_lea_modrm (&ir))
5621 return -1;
5622 }
5623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5624 break;
5625
5626 case 0xc8: /* enter */
5627 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5628 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5629 ir.dflag = 2;
5630 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5631 return -1;
5632 break;
5633
5634 case 0xc9: /* leave */
5635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5637 break;
5638
5639 case 0x07: /* pop es */
5640 if (ir.regmap[X86_RECORD_R8_REGNUM])
5641 {
5642 ir.addr -= 1;
5643 goto no_support;
5644 }
5645 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5648 break;
5649
5650 case 0x17: /* pop ss */
5651 if (ir.regmap[X86_RECORD_R8_REGNUM])
5652 {
5653 ir.addr -= 1;
5654 goto no_support;
5655 }
5656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5659 break;
5660
5661 case 0x1f: /* pop ds */
5662 if (ir.regmap[X86_RECORD_R8_REGNUM])
5663 {
5664 ir.addr -= 1;
5665 goto no_support;
5666 }
5667 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5668 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5670 break;
5671
5672 case 0x0fa1: /* pop fs */
5673 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5676 break;
5677
5678 case 0x0fa9: /* pop gs */
5679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5682 break;
5683
5684 case 0x88: /* mov */
5685 case 0x89:
5686 case 0xc6:
5687 case 0xc7:
5688 if ((opcode & 1) == 0)
5689 ir.ot = OT_BYTE;
5690 else
5691 ir.ot = ir.dflag + OT_WORD;
5692
5693 if (i386_record_modrm (&ir))
5694 return -1;
5695
5696 if (ir.mod != 3)
5697 {
5698 if (opcode == 0xc6 || opcode == 0xc7)
5699 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5700 if (i386_record_lea_modrm (&ir))
5701 return -1;
5702 }
5703 else
5704 {
5705 if (opcode == 0xc6 || opcode == 0xc7)
5706 ir.rm |= ir.rex_b;
5707 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5708 ir.rm &= 0x3;
5709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5710 }
5711 break;
5712
5713 case 0x8a: /* mov */
5714 case 0x8b:
5715 if ((opcode & 1) == 0)
5716 ir.ot = OT_BYTE;
5717 else
5718 ir.ot = ir.dflag + OT_WORD;
5719 if (i386_record_modrm (&ir))
5720 return -1;
5721 ir.reg |= rex_r;
5722 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5723 ir.reg &= 0x3;
5724 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5725 break;
5726
5727 case 0x8c: /* mov seg */
5728 if (i386_record_modrm (&ir))
5729 return -1;
5730 if (ir.reg > 5)
5731 {
5732 ir.addr -= 2;
5733 opcode = opcode << 8 | ir.modrm;
5734 goto no_support;
5735 }
5736
5737 if (ir.mod == 3)
5738 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5739 else
5740 {
5741 ir.ot = OT_WORD;
5742 if (i386_record_lea_modrm (&ir))
5743 return -1;
5744 }
5745 break;
5746
5747 case 0x8e: /* mov seg */
5748 if (i386_record_modrm (&ir))
5749 return -1;
5750 switch (ir.reg)
5751 {
5752 case 0:
5753 regnum = X86_RECORD_ES_REGNUM;
5754 break;
5755 case 2:
5756 regnum = X86_RECORD_SS_REGNUM;
5757 break;
5758 case 3:
5759 regnum = X86_RECORD_DS_REGNUM;
5760 break;
5761 case 4:
5762 regnum = X86_RECORD_FS_REGNUM;
5763 break;
5764 case 5:
5765 regnum = X86_RECORD_GS_REGNUM;
5766 break;
5767 default:
5768 ir.addr -= 2;
5769 opcode = opcode << 8 | ir.modrm;
5770 goto no_support;
5771 break;
5772 }
5773 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5774 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5775 break;
5776
5777 case 0x0fb6: /* movzbS */
5778 case 0x0fb7: /* movzwS */
5779 case 0x0fbe: /* movsbS */
5780 case 0x0fbf: /* movswS */
5781 if (i386_record_modrm (&ir))
5782 return -1;
5783 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5784 break;
5785
5786 case 0x8d: /* lea */
5787 if (i386_record_modrm (&ir))
5788 return -1;
5789 if (ir.mod == 3)
5790 {
5791 ir.addr -= 2;
5792 opcode = opcode << 8 | ir.modrm;
5793 goto no_support;
5794 }
5795 ir.ot = ir.dflag;
5796 ir.reg |= rex_r;
5797 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5798 ir.reg &= 0x3;
5799 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5800 break;
5801
5802 case 0xa0: /* mov EAX */
5803 case 0xa1:
5804
5805 case 0xd7: /* xlat */
5806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5807 break;
5808
5809 case 0xa2: /* mov EAX */
5810 case 0xa3:
5811 if (ir.override >= 0)
5812 {
5813 if (record_full_memory_query)
5814 {
5815 if (yquery (_("\
5816 Process record ignores the memory change of instruction at address %s\n\
5817 because it can't get the value of the segment register.\n\
5818 Do you want to stop the program?"),
5819 paddress (gdbarch, ir.orig_addr)))
5820 return -1;
5821 }
5822 }
5823 else
5824 {
5825 if ((opcode & 1) == 0)
5826 ir.ot = OT_BYTE;
5827 else
5828 ir.ot = ir.dflag + OT_WORD;
5829 if (ir.aflag == 2)
5830 {
5831 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5832 return -1;
5833 ir.addr += 8;
5834 addr = extract_unsigned_integer (buf, 8, byte_order);
5835 }
5836 else if (ir.aflag)
5837 {
5838 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5839 return -1;
5840 ir.addr += 4;
5841 addr = extract_unsigned_integer (buf, 4, byte_order);
5842 }
5843 else
5844 {
5845 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5846 return -1;
5847 ir.addr += 2;
5848 addr = extract_unsigned_integer (buf, 2, byte_order);
5849 }
5850 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5851 return -1;
5852 }
5853 break;
5854
5855 case 0xb0: /* mov R, Ib */
5856 case 0xb1:
5857 case 0xb2:
5858 case 0xb3:
5859 case 0xb4:
5860 case 0xb5:
5861 case 0xb6:
5862 case 0xb7:
5863 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5864 ? ((opcode & 0x7) | ir.rex_b)
5865 : ((opcode & 0x7) & 0x3));
5866 break;
5867
5868 case 0xb8: /* mov R, Iv */
5869 case 0xb9:
5870 case 0xba:
5871 case 0xbb:
5872 case 0xbc:
5873 case 0xbd:
5874 case 0xbe:
5875 case 0xbf:
5876 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5877 break;
5878
5879 case 0x91: /* xchg R, EAX */
5880 case 0x92:
5881 case 0x93:
5882 case 0x94:
5883 case 0x95:
5884 case 0x96:
5885 case 0x97:
5886 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5887 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5888 break;
5889
5890 case 0x86: /* xchg Ev, Gv */
5891 case 0x87:
5892 if ((opcode & 1) == 0)
5893 ir.ot = OT_BYTE;
5894 else
5895 ir.ot = ir.dflag + OT_WORD;
5896 if (i386_record_modrm (&ir))
5897 return -1;
5898 if (ir.mod == 3)
5899 {
5900 ir.rm |= ir.rex_b;
5901 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5902 ir.rm &= 0x3;
5903 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5904 }
5905 else
5906 {
5907 if (i386_record_lea_modrm (&ir))
5908 return -1;
5909 }
5910 ir.reg |= rex_r;
5911 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5912 ir.reg &= 0x3;
5913 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5914 break;
5915
5916 case 0xc4: /* les Gv */
5917 case 0xc5: /* lds Gv */
5918 if (ir.regmap[X86_RECORD_R8_REGNUM])
5919 {
5920 ir.addr -= 1;
5921 goto no_support;
5922 }
5923 /* FALLTHROUGH */
5924 case 0x0fb2: /* lss Gv */
5925 case 0x0fb4: /* lfs Gv */
5926 case 0x0fb5: /* lgs Gv */
5927 if (i386_record_modrm (&ir))
5928 return -1;
5929 if (ir.mod == 3)
5930 {
5931 if (opcode > 0xff)
5932 ir.addr -= 3;
5933 else
5934 ir.addr -= 2;
5935 opcode = opcode << 8 | ir.modrm;
5936 goto no_support;
5937 }
5938 switch (opcode)
5939 {
5940 case 0xc4: /* les Gv */
5941 regnum = X86_RECORD_ES_REGNUM;
5942 break;
5943 case 0xc5: /* lds Gv */
5944 regnum = X86_RECORD_DS_REGNUM;
5945 break;
5946 case 0x0fb2: /* lss Gv */
5947 regnum = X86_RECORD_SS_REGNUM;
5948 break;
5949 case 0x0fb4: /* lfs Gv */
5950 regnum = X86_RECORD_FS_REGNUM;
5951 break;
5952 case 0x0fb5: /* lgs Gv */
5953 regnum = X86_RECORD_GS_REGNUM;
5954 break;
5955 }
5956 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5957 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5958 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5959 break;
5960
5961 case 0xc0: /* shifts */
5962 case 0xc1:
5963 case 0xd0:
5964 case 0xd1:
5965 case 0xd2:
5966 case 0xd3:
5967 if ((opcode & 1) == 0)
5968 ir.ot = OT_BYTE;
5969 else
5970 ir.ot = ir.dflag + OT_WORD;
5971 if (i386_record_modrm (&ir))
5972 return -1;
5973 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5974 {
5975 if (i386_record_lea_modrm (&ir))
5976 return -1;
5977 }
5978 else
5979 {
5980 ir.rm |= ir.rex_b;
5981 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5982 ir.rm &= 0x3;
5983 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5984 }
5985 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5986 break;
5987
5988 case 0x0fa4:
5989 case 0x0fa5:
5990 case 0x0fac:
5991 case 0x0fad:
5992 if (i386_record_modrm (&ir))
5993 return -1;
5994 if (ir.mod == 3)
5995 {
5996 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5997 return -1;
5998 }
5999 else
6000 {
6001 if (i386_record_lea_modrm (&ir))
6002 return -1;
6003 }
6004 break;
6005
6006 case 0xd8: /* Floats. */
6007 case 0xd9:
6008 case 0xda:
6009 case 0xdb:
6010 case 0xdc:
6011 case 0xdd:
6012 case 0xde:
6013 case 0xdf:
6014 if (i386_record_modrm (&ir))
6015 return -1;
6016 ir.reg |= ((opcode & 7) << 3);
6017 if (ir.mod != 3)
6018 {
6019 /* Memory. */
6020 uint64_t addr64;
6021
6022 if (i386_record_lea_modrm_addr (&ir, &addr64))
6023 return -1;
6024 switch (ir.reg)
6025 {
6026 case 0x02:
6027 case 0x12:
6028 case 0x22:
6029 case 0x32:
6030 /* For fcom, ficom nothing to do. */
6031 break;
6032 case 0x03:
6033 case 0x13:
6034 case 0x23:
6035 case 0x33:
6036 /* For fcomp, ficomp pop FPU stack, store all. */
6037 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6038 return -1;
6039 break;
6040 case 0x00:
6041 case 0x01:
6042 case 0x04:
6043 case 0x05:
6044 case 0x06:
6045 case 0x07:
6046 case 0x10:
6047 case 0x11:
6048 case 0x14:
6049 case 0x15:
6050 case 0x16:
6051 case 0x17:
6052 case 0x20:
6053 case 0x21:
6054 case 0x24:
6055 case 0x25:
6056 case 0x26:
6057 case 0x27:
6058 case 0x30:
6059 case 0x31:
6060 case 0x34:
6061 case 0x35:
6062 case 0x36:
6063 case 0x37:
6064 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6065 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6066 of code, always affects st(0) register. */
6067 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6068 return -1;
6069 break;
6070 case 0x08:
6071 case 0x0a:
6072 case 0x0b:
6073 case 0x18:
6074 case 0x19:
6075 case 0x1a:
6076 case 0x1b:
6077 case 0x1d:
6078 case 0x28:
6079 case 0x29:
6080 case 0x2a:
6081 case 0x2b:
6082 case 0x38:
6083 case 0x39:
6084 case 0x3a:
6085 case 0x3b:
6086 case 0x3c:
6087 case 0x3d:
6088 switch (ir.reg & 7)
6089 {
6090 case 0:
6091 /* Handling fld, fild. */
6092 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6093 return -1;
6094 break;
6095 case 1:
6096 switch (ir.reg >> 4)
6097 {
6098 case 0:
6099 if (record_full_arch_list_add_mem (addr64, 4))
6100 return -1;
6101 break;
6102 case 2:
6103 if (record_full_arch_list_add_mem (addr64, 8))
6104 return -1;
6105 break;
6106 case 3:
6107 break;
6108 default:
6109 if (record_full_arch_list_add_mem (addr64, 2))
6110 return -1;
6111 break;
6112 }
6113 break;
6114 default:
6115 switch (ir.reg >> 4)
6116 {
6117 case 0:
6118 if (record_full_arch_list_add_mem (addr64, 4))
6119 return -1;
6120 if (3 == (ir.reg & 7))
6121 {
6122 /* For fstp m32fp. */
6123 if (i386_record_floats (gdbarch, &ir,
6124 I386_SAVE_FPU_REGS))
6125 return -1;
6126 }
6127 break;
6128 case 1:
6129 if (record_full_arch_list_add_mem (addr64, 4))
6130 return -1;
6131 if ((3 == (ir.reg & 7))
6132 || (5 == (ir.reg & 7))
6133 || (7 == (ir.reg & 7)))
6134 {
6135 /* For fstp insn. */
6136 if (i386_record_floats (gdbarch, &ir,
6137 I386_SAVE_FPU_REGS))
6138 return -1;
6139 }
6140 break;
6141 case 2:
6142 if (record_full_arch_list_add_mem (addr64, 8))
6143 return -1;
6144 if (3 == (ir.reg & 7))
6145 {
6146 /* For fstp m64fp. */
6147 if (i386_record_floats (gdbarch, &ir,
6148 I386_SAVE_FPU_REGS))
6149 return -1;
6150 }
6151 break;
6152 case 3:
6153 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6154 {
6155 /* For fistp, fbld, fild, fbstp. */
6156 if (i386_record_floats (gdbarch, &ir,
6157 I386_SAVE_FPU_REGS))
6158 return -1;
6159 }
6160 /* Fall through */
6161 default:
6162 if (record_full_arch_list_add_mem (addr64, 2))
6163 return -1;
6164 break;
6165 }
6166 break;
6167 }
6168 break;
6169 case 0x0c:
6170 /* Insn fldenv. */
6171 if (i386_record_floats (gdbarch, &ir,
6172 I386_SAVE_FPU_ENV_REG_STACK))
6173 return -1;
6174 break;
6175 case 0x0d:
6176 /* Insn fldcw. */
6177 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6178 return -1;
6179 break;
6180 case 0x2c:
6181 /* Insn frstor. */
6182 if (i386_record_floats (gdbarch, &ir,
6183 I386_SAVE_FPU_ENV_REG_STACK))
6184 return -1;
6185 break;
6186 case 0x0e:
6187 if (ir.dflag)
6188 {
6189 if (record_full_arch_list_add_mem (addr64, 28))
6190 return -1;
6191 }
6192 else
6193 {
6194 if (record_full_arch_list_add_mem (addr64, 14))
6195 return -1;
6196 }
6197 break;
6198 case 0x0f:
6199 case 0x2f:
6200 if (record_full_arch_list_add_mem (addr64, 2))
6201 return -1;
6202 /* Insn fstp, fbstp. */
6203 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6204 return -1;
6205 break;
6206 case 0x1f:
6207 case 0x3e:
6208 if (record_full_arch_list_add_mem (addr64, 10))
6209 return -1;
6210 break;
6211 case 0x2e:
6212 if (ir.dflag)
6213 {
6214 if (record_full_arch_list_add_mem (addr64, 28))
6215 return -1;
6216 addr64 += 28;
6217 }
6218 else
6219 {
6220 if (record_full_arch_list_add_mem (addr64, 14))
6221 return -1;
6222 addr64 += 14;
6223 }
6224 if (record_full_arch_list_add_mem (addr64, 80))
6225 return -1;
6226 /* Insn fsave. */
6227 if (i386_record_floats (gdbarch, &ir,
6228 I386_SAVE_FPU_ENV_REG_STACK))
6229 return -1;
6230 break;
6231 case 0x3f:
6232 if (record_full_arch_list_add_mem (addr64, 8))
6233 return -1;
6234 /* Insn fistp. */
6235 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6236 return -1;
6237 break;
6238 default:
6239 ir.addr -= 2;
6240 opcode = opcode << 8 | ir.modrm;
6241 goto no_support;
6242 break;
6243 }
6244 }
6245 /* Opcode is an extension of modR/M byte. */
6246 else
6247 {
6248 switch (opcode)
6249 {
6250 case 0xd8:
6251 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6252 return -1;
6253 break;
6254 case 0xd9:
6255 if (0x0c == (ir.modrm >> 4))
6256 {
6257 if ((ir.modrm & 0x0f) <= 7)
6258 {
6259 if (i386_record_floats (gdbarch, &ir,
6260 I386_SAVE_FPU_REGS))
6261 return -1;
6262 }
6263 else
6264 {
6265 if (i386_record_floats (gdbarch, &ir,
6266 I387_ST0_REGNUM (tdep)))
6267 return -1;
6268 /* If only st(0) is changing, then we have already
6269 recorded. */
6270 if ((ir.modrm & 0x0f) - 0x08)
6271 {
6272 if (i386_record_floats (gdbarch, &ir,
6273 I387_ST0_REGNUM (tdep) +
6274 ((ir.modrm & 0x0f) - 0x08)))
6275 return -1;
6276 }
6277 }
6278 }
6279 else
6280 {
6281 switch (ir.modrm)
6282 {
6283 case 0xe0:
6284 case 0xe1:
6285 case 0xf0:
6286 case 0xf5:
6287 case 0xf8:
6288 case 0xfa:
6289 case 0xfc:
6290 case 0xfe:
6291 case 0xff:
6292 if (i386_record_floats (gdbarch, &ir,
6293 I387_ST0_REGNUM (tdep)))
6294 return -1;
6295 break;
6296 case 0xf1:
6297 case 0xf2:
6298 case 0xf3:
6299 case 0xf4:
6300 case 0xf6:
6301 case 0xf7:
6302 case 0xe8:
6303 case 0xe9:
6304 case 0xea:
6305 case 0xeb:
6306 case 0xec:
6307 case 0xed:
6308 case 0xee:
6309 case 0xf9:
6310 case 0xfb:
6311 if (i386_record_floats (gdbarch, &ir,
6312 I386_SAVE_FPU_REGS))
6313 return -1;
6314 break;
6315 case 0xfd:
6316 if (i386_record_floats (gdbarch, &ir,
6317 I387_ST0_REGNUM (tdep)))
6318 return -1;
6319 if (i386_record_floats (gdbarch, &ir,
6320 I387_ST0_REGNUM (tdep) + 1))
6321 return -1;
6322 break;
6323 }
6324 }
6325 break;
6326 case 0xda:
6327 if (0xe9 == ir.modrm)
6328 {
6329 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6330 return -1;
6331 }
6332 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6333 {
6334 if (i386_record_floats (gdbarch, &ir,
6335 I387_ST0_REGNUM (tdep)))
6336 return -1;
6337 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6338 {
6339 if (i386_record_floats (gdbarch, &ir,
6340 I387_ST0_REGNUM (tdep) +
6341 (ir.modrm & 0x0f)))
6342 return -1;
6343 }
6344 else if ((ir.modrm & 0x0f) - 0x08)
6345 {
6346 if (i386_record_floats (gdbarch, &ir,
6347 I387_ST0_REGNUM (tdep) +
6348 ((ir.modrm & 0x0f) - 0x08)))
6349 return -1;
6350 }
6351 }
6352 break;
6353 case 0xdb:
6354 if (0xe3 == ir.modrm)
6355 {
6356 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6357 return -1;
6358 }
6359 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6360 {
6361 if (i386_record_floats (gdbarch, &ir,
6362 I387_ST0_REGNUM (tdep)))
6363 return -1;
6364 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6365 {
6366 if (i386_record_floats (gdbarch, &ir,
6367 I387_ST0_REGNUM (tdep) +
6368 (ir.modrm & 0x0f)))
6369 return -1;
6370 }
6371 else if ((ir.modrm & 0x0f) - 0x08)
6372 {
6373 if (i386_record_floats (gdbarch, &ir,
6374 I387_ST0_REGNUM (tdep) +
6375 ((ir.modrm & 0x0f) - 0x08)))
6376 return -1;
6377 }
6378 }
6379 break;
6380 case 0xdc:
6381 if ((0x0c == ir.modrm >> 4)
6382 || (0x0d == ir.modrm >> 4)
6383 || (0x0f == ir.modrm >> 4))
6384 {
6385 if ((ir.modrm & 0x0f) <= 7)
6386 {
6387 if (i386_record_floats (gdbarch, &ir,
6388 I387_ST0_REGNUM (tdep) +
6389 (ir.modrm & 0x0f)))
6390 return -1;
6391 }
6392 else
6393 {
6394 if (i386_record_floats (gdbarch, &ir,
6395 I387_ST0_REGNUM (tdep) +
6396 ((ir.modrm & 0x0f) - 0x08)))
6397 return -1;
6398 }
6399 }
6400 break;
6401 case 0xdd:
6402 if (0x0c == ir.modrm >> 4)
6403 {
6404 if (i386_record_floats (gdbarch, &ir,
6405 I387_FTAG_REGNUM (tdep)))
6406 return -1;
6407 }
6408 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6409 {
6410 if ((ir.modrm & 0x0f) <= 7)
6411 {
6412 if (i386_record_floats (gdbarch, &ir,
6413 I387_ST0_REGNUM (tdep) +
6414 (ir.modrm & 0x0f)))
6415 return -1;
6416 }
6417 else
6418 {
6419 if (i386_record_floats (gdbarch, &ir,
6420 I386_SAVE_FPU_REGS))
6421 return -1;
6422 }
6423 }
6424 break;
6425 case 0xde:
6426 if ((0x0c == ir.modrm >> 4)
6427 || (0x0e == ir.modrm >> 4)
6428 || (0x0f == ir.modrm >> 4)
6429 || (0xd9 == ir.modrm))
6430 {
6431 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6432 return -1;
6433 }
6434 break;
6435 case 0xdf:
6436 if (0xe0 == ir.modrm)
6437 {
6438 if (record_full_arch_list_add_reg (ir.regcache,
6439 I386_EAX_REGNUM))
6440 return -1;
6441 }
6442 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6443 {
6444 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6445 return -1;
6446 }
6447 break;
6448 }
6449 }
6450 break;
6451 /* string ops */
6452 case 0xa4: /* movsS */
6453 case 0xa5:
6454 case 0xaa: /* stosS */
6455 case 0xab:
6456 case 0x6c: /* insS */
6457 case 0x6d:
6458 regcache_raw_read_unsigned (ir.regcache,
6459 ir.regmap[X86_RECORD_RECX_REGNUM],
6460 &addr);
6461 if (addr)
6462 {
6463 ULONGEST es, ds;
6464
6465 if ((opcode & 1) == 0)
6466 ir.ot = OT_BYTE;
6467 else
6468 ir.ot = ir.dflag + OT_WORD;
6469 regcache_raw_read_unsigned (ir.regcache,
6470 ir.regmap[X86_RECORD_REDI_REGNUM],
6471 &addr);
6472
6473 regcache_raw_read_unsigned (ir.regcache,
6474 ir.regmap[X86_RECORD_ES_REGNUM],
6475 &es);
6476 regcache_raw_read_unsigned (ir.regcache,
6477 ir.regmap[X86_RECORD_DS_REGNUM],
6478 &ds);
6479 if (ir.aflag && (es != ds))
6480 {
6481 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6482 if (record_full_memory_query)
6483 {
6484 if (yquery (_("\
6485 Process record ignores the memory change of instruction at address %s\n\
6486 because it can't get the value of the segment register.\n\
6487 Do you want to stop the program?"),
6488 paddress (gdbarch, ir.orig_addr)))
6489 return -1;
6490 }
6491 }
6492 else
6493 {
6494 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6495 return -1;
6496 }
6497
6498 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6500 if (opcode == 0xa4 || opcode == 0xa5)
6501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6504 }
6505 break;
6506
6507 case 0xa6: /* cmpsS */
6508 case 0xa7:
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6511 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6514 break;
6515
6516 case 0xac: /* lodsS */
6517 case 0xad:
6518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6520 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6523 break;
6524
6525 case 0xae: /* scasS */
6526 case 0xaf:
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6528 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6531 break;
6532
6533 case 0x6e: /* outsS */
6534 case 0x6f:
6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6536 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6539 break;
6540
6541 case 0xe4: /* port I/O */
6542 case 0xe5:
6543 case 0xec:
6544 case 0xed:
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6547 break;
6548
6549 case 0xe6:
6550 case 0xe7:
6551 case 0xee:
6552 case 0xef:
6553 break;
6554
6555 /* control */
6556 case 0xc2: /* ret im */
6557 case 0xc3: /* ret */
6558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6560 break;
6561
6562 case 0xca: /* lret im */
6563 case 0xcb: /* lret */
6564 case 0xcf: /* iret */
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6568 break;
6569
6570 case 0xe8: /* call im */
6571 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6572 ir.dflag = 2;
6573 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6574 return -1;
6575 break;
6576
6577 case 0x9a: /* lcall im */
6578 if (ir.regmap[X86_RECORD_R8_REGNUM])
6579 {
6580 ir.addr -= 1;
6581 goto no_support;
6582 }
6583 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6584 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6585 return -1;
6586 break;
6587
6588 case 0xe9: /* jmp im */
6589 case 0xea: /* ljmp im */
6590 case 0xeb: /* jmp Jb */
6591 case 0x70: /* jcc Jb */
6592 case 0x71:
6593 case 0x72:
6594 case 0x73:
6595 case 0x74:
6596 case 0x75:
6597 case 0x76:
6598 case 0x77:
6599 case 0x78:
6600 case 0x79:
6601 case 0x7a:
6602 case 0x7b:
6603 case 0x7c:
6604 case 0x7d:
6605 case 0x7e:
6606 case 0x7f:
6607 case 0x0f80: /* jcc Jv */
6608 case 0x0f81:
6609 case 0x0f82:
6610 case 0x0f83:
6611 case 0x0f84:
6612 case 0x0f85:
6613 case 0x0f86:
6614 case 0x0f87:
6615 case 0x0f88:
6616 case 0x0f89:
6617 case 0x0f8a:
6618 case 0x0f8b:
6619 case 0x0f8c:
6620 case 0x0f8d:
6621 case 0x0f8e:
6622 case 0x0f8f:
6623 break;
6624
6625 case 0x0f90: /* setcc Gv */
6626 case 0x0f91:
6627 case 0x0f92:
6628 case 0x0f93:
6629 case 0x0f94:
6630 case 0x0f95:
6631 case 0x0f96:
6632 case 0x0f97:
6633 case 0x0f98:
6634 case 0x0f99:
6635 case 0x0f9a:
6636 case 0x0f9b:
6637 case 0x0f9c:
6638 case 0x0f9d:
6639 case 0x0f9e:
6640 case 0x0f9f:
6641 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6642 ir.ot = OT_BYTE;
6643 if (i386_record_modrm (&ir))
6644 return -1;
6645 if (ir.mod == 3)
6646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6647 : (ir.rm & 0x3));
6648 else
6649 {
6650 if (i386_record_lea_modrm (&ir))
6651 return -1;
6652 }
6653 break;
6654
6655 case 0x0f40: /* cmov Gv, Ev */
6656 case 0x0f41:
6657 case 0x0f42:
6658 case 0x0f43:
6659 case 0x0f44:
6660 case 0x0f45:
6661 case 0x0f46:
6662 case 0x0f47:
6663 case 0x0f48:
6664 case 0x0f49:
6665 case 0x0f4a:
6666 case 0x0f4b:
6667 case 0x0f4c:
6668 case 0x0f4d:
6669 case 0x0f4e:
6670 case 0x0f4f:
6671 if (i386_record_modrm (&ir))
6672 return -1;
6673 ir.reg |= rex_r;
6674 if (ir.dflag == OT_BYTE)
6675 ir.reg &= 0x3;
6676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6677 break;
6678
6679 /* flags */
6680 case 0x9c: /* pushf */
6681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6682 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6683 ir.dflag = 2;
6684 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6685 return -1;
6686 break;
6687
6688 case 0x9d: /* popf */
6689 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6690 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6691 break;
6692
6693 case 0x9e: /* sahf */
6694 if (ir.regmap[X86_RECORD_R8_REGNUM])
6695 {
6696 ir.addr -= 1;
6697 goto no_support;
6698 }
6699 /* FALLTHROUGH */
6700 case 0xf5: /* cmc */
6701 case 0xf8: /* clc */
6702 case 0xf9: /* stc */
6703 case 0xfc: /* cld */
6704 case 0xfd: /* std */
6705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6706 break;
6707
6708 case 0x9f: /* lahf */
6709 if (ir.regmap[X86_RECORD_R8_REGNUM])
6710 {
6711 ir.addr -= 1;
6712 goto no_support;
6713 }
6714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6715 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6716 break;
6717
6718 /* bit operations */
6719 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6720 ir.ot = ir.dflag + OT_WORD;
6721 if (i386_record_modrm (&ir))
6722 return -1;
6723 if (ir.reg < 4)
6724 {
6725 ir.addr -= 2;
6726 opcode = opcode << 8 | ir.modrm;
6727 goto no_support;
6728 }
6729 if (ir.reg != 4)
6730 {
6731 if (ir.mod == 3)
6732 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6733 else
6734 {
6735 if (i386_record_lea_modrm (&ir))
6736 return -1;
6737 }
6738 }
6739 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6740 break;
6741
6742 case 0x0fa3: /* bt Gv, Ev */
6743 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6744 break;
6745
6746 case 0x0fab: /* bts */
6747 case 0x0fb3: /* btr */
6748 case 0x0fbb: /* btc */
6749 ir.ot = ir.dflag + OT_WORD;
6750 if (i386_record_modrm (&ir))
6751 return -1;
6752 if (ir.mod == 3)
6753 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6754 else
6755 {
6756 uint64_t addr64;
6757 if (i386_record_lea_modrm_addr (&ir, &addr64))
6758 return -1;
6759 regcache_raw_read_unsigned (ir.regcache,
6760 ir.regmap[ir.reg | rex_r],
6761 &addr);
6762 switch (ir.dflag)
6763 {
6764 case 0:
6765 addr64 += ((int16_t) addr >> 4) << 4;
6766 break;
6767 case 1:
6768 addr64 += ((int32_t) addr >> 5) << 5;
6769 break;
6770 case 2:
6771 addr64 += ((int64_t) addr >> 6) << 6;
6772 break;
6773 }
6774 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6775 return -1;
6776 if (i386_record_lea_modrm (&ir))
6777 return -1;
6778 }
6779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6780 break;
6781
6782 case 0x0fbc: /* bsf */
6783 case 0x0fbd: /* bsr */
6784 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6785 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6786 break;
6787
6788 /* bcd */
6789 case 0x27: /* daa */
6790 case 0x2f: /* das */
6791 case 0x37: /* aaa */
6792 case 0x3f: /* aas */
6793 case 0xd4: /* aam */
6794 case 0xd5: /* aad */
6795 if (ir.regmap[X86_RECORD_R8_REGNUM])
6796 {
6797 ir.addr -= 1;
6798 goto no_support;
6799 }
6800 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6801 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6802 break;
6803
6804 /* misc */
6805 case 0x90: /* nop */
6806 if (prefixes & PREFIX_LOCK)
6807 {
6808 ir.addr -= 1;
6809 goto no_support;
6810 }
6811 break;
6812
6813 case 0x9b: /* fwait */
6814 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6815 return -1;
6816 opcode = (uint32_t) opcode8;
6817 ir.addr++;
6818 goto reswitch;
6819 break;
6820
6821 /* XXX */
6822 case 0xcc: /* int3 */
6823 printf_unfiltered (_("Process record does not support instruction "
6824 "int3.\n"));
6825 ir.addr -= 1;
6826 goto no_support;
6827 break;
6828
6829 /* XXX */
6830 case 0xcd: /* int */
6831 {
6832 int ret;
6833 uint8_t interrupt;
6834 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6835 return -1;
6836 ir.addr++;
6837 if (interrupt != 0x80
6838 || tdep->i386_intx80_record == NULL)
6839 {
6840 printf_unfiltered (_("Process record does not support "
6841 "instruction int 0x%02x.\n"),
6842 interrupt);
6843 ir.addr -= 2;
6844 goto no_support;
6845 }
6846 ret = tdep->i386_intx80_record (ir.regcache);
6847 if (ret)
6848 return ret;
6849 }
6850 break;
6851
6852 /* XXX */
6853 case 0xce: /* into */
6854 printf_unfiltered (_("Process record does not support "
6855 "instruction into.\n"));
6856 ir.addr -= 1;
6857 goto no_support;
6858 break;
6859
6860 case 0xfa: /* cli */
6861 case 0xfb: /* sti */
6862 break;
6863
6864 case 0x62: /* bound */
6865 printf_unfiltered (_("Process record does not support "
6866 "instruction bound.\n"));
6867 ir.addr -= 1;
6868 goto no_support;
6869 break;
6870
6871 case 0x0fc8: /* bswap reg */
6872 case 0x0fc9:
6873 case 0x0fca:
6874 case 0x0fcb:
6875 case 0x0fcc:
6876 case 0x0fcd:
6877 case 0x0fce:
6878 case 0x0fcf:
6879 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6880 break;
6881
6882 case 0xd6: /* salc */
6883 if (ir.regmap[X86_RECORD_R8_REGNUM])
6884 {
6885 ir.addr -= 1;
6886 goto no_support;
6887 }
6888 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6889 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6890 break;
6891
6892 case 0xe0: /* loopnz */
6893 case 0xe1: /* loopz */
6894 case 0xe2: /* loop */
6895 case 0xe3: /* jecxz */
6896 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6897 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6898 break;
6899
6900 case 0x0f30: /* wrmsr */
6901 printf_unfiltered (_("Process record does not support "
6902 "instruction wrmsr.\n"));
6903 ir.addr -= 2;
6904 goto no_support;
6905 break;
6906
6907 case 0x0f32: /* rdmsr */
6908 printf_unfiltered (_("Process record does not support "
6909 "instruction rdmsr.\n"));
6910 ir.addr -= 2;
6911 goto no_support;
6912 break;
6913
6914 case 0x0f31: /* rdtsc */
6915 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6916 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6917 break;
6918
6919 case 0x0f34: /* sysenter */
6920 {
6921 int ret;
6922 if (ir.regmap[X86_RECORD_R8_REGNUM])
6923 {
6924 ir.addr -= 2;
6925 goto no_support;
6926 }
6927 if (tdep->i386_sysenter_record == NULL)
6928 {
6929 printf_unfiltered (_("Process record does not support "
6930 "instruction sysenter.\n"));
6931 ir.addr -= 2;
6932 goto no_support;
6933 }
6934 ret = tdep->i386_sysenter_record (ir.regcache);
6935 if (ret)
6936 return ret;
6937 }
6938 break;
6939
6940 case 0x0f35: /* sysexit */
6941 printf_unfiltered (_("Process record does not support "
6942 "instruction sysexit.\n"));
6943 ir.addr -= 2;
6944 goto no_support;
6945 break;
6946
6947 case 0x0f05: /* syscall */
6948 {
6949 int ret;
6950 if (tdep->i386_syscall_record == NULL)
6951 {
6952 printf_unfiltered (_("Process record does not support "
6953 "instruction syscall.\n"));
6954 ir.addr -= 2;
6955 goto no_support;
6956 }
6957 ret = tdep->i386_syscall_record (ir.regcache);
6958 if (ret)
6959 return ret;
6960 }
6961 break;
6962
6963 case 0x0f07: /* sysret */
6964 printf_unfiltered (_("Process record does not support "
6965 "instruction sysret.\n"));
6966 ir.addr -= 2;
6967 goto no_support;
6968 break;
6969
6970 case 0x0fa2: /* cpuid */
6971 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6972 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6973 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6974 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6975 break;
6976
6977 case 0xf4: /* hlt */
6978 printf_unfiltered (_("Process record does not support "
6979 "instruction hlt.\n"));
6980 ir.addr -= 1;
6981 goto no_support;
6982 break;
6983
6984 case 0x0f00:
6985 if (i386_record_modrm (&ir))
6986 return -1;
6987 switch (ir.reg)
6988 {
6989 case 0: /* sldt */
6990 case 1: /* str */
6991 if (ir.mod == 3)
6992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6993 else
6994 {
6995 ir.ot = OT_WORD;
6996 if (i386_record_lea_modrm (&ir))
6997 return -1;
6998 }
6999 break;
7000 case 2: /* lldt */
7001 case 3: /* ltr */
7002 break;
7003 case 4: /* verr */
7004 case 5: /* verw */
7005 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7006 break;
7007 default:
7008 ir.addr -= 3;
7009 opcode = opcode << 8 | ir.modrm;
7010 goto no_support;
7011 break;
7012 }
7013 break;
7014
7015 case 0x0f01:
7016 if (i386_record_modrm (&ir))
7017 return -1;
7018 switch (ir.reg)
7019 {
7020 case 0: /* sgdt */
7021 {
7022 uint64_t addr64;
7023
7024 if (ir.mod == 3)
7025 {
7026 ir.addr -= 3;
7027 opcode = opcode << 8 | ir.modrm;
7028 goto no_support;
7029 }
7030 if (ir.override >= 0)
7031 {
7032 if (record_full_memory_query)
7033 {
7034 if (yquery (_("\
7035 Process record ignores the memory change of instruction at address %s\n\
7036 because it can't get the value of the segment register.\n\
7037 Do you want to stop the program?"),
7038 paddress (gdbarch, ir.orig_addr)))
7039 return -1;
7040 }
7041 }
7042 else
7043 {
7044 if (i386_record_lea_modrm_addr (&ir, &addr64))
7045 return -1;
7046 if (record_full_arch_list_add_mem (addr64, 2))
7047 return -1;
7048 addr64 += 2;
7049 if (ir.regmap[X86_RECORD_R8_REGNUM])
7050 {
7051 if (record_full_arch_list_add_mem (addr64, 8))
7052 return -1;
7053 }
7054 else
7055 {
7056 if (record_full_arch_list_add_mem (addr64, 4))
7057 return -1;
7058 }
7059 }
7060 }
7061 break;
7062 case 1:
7063 if (ir.mod == 3)
7064 {
7065 switch (ir.rm)
7066 {
7067 case 0: /* monitor */
7068 break;
7069 case 1: /* mwait */
7070 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7071 break;
7072 default:
7073 ir.addr -= 3;
7074 opcode = opcode << 8 | ir.modrm;
7075 goto no_support;
7076 break;
7077 }
7078 }
7079 else
7080 {
7081 /* sidt */
7082 if (ir.override >= 0)
7083 {
7084 if (record_full_memory_query)
7085 {
7086 if (yquery (_("\
7087 Process record ignores the memory change of instruction at address %s\n\
7088 because it can't get the value of the segment register.\n\
7089 Do you want to stop the program?"),
7090 paddress (gdbarch, ir.orig_addr)))
7091 return -1;
7092 }
7093 }
7094 else
7095 {
7096 uint64_t addr64;
7097
7098 if (i386_record_lea_modrm_addr (&ir, &addr64))
7099 return -1;
7100 if (record_full_arch_list_add_mem (addr64, 2))
7101 return -1;
7102 addr64 += 2;
7103 if (ir.regmap[X86_RECORD_R8_REGNUM])
7104 {
7105 if (record_full_arch_list_add_mem (addr64, 8))
7106 return -1;
7107 }
7108 else
7109 {
7110 if (record_full_arch_list_add_mem (addr64, 4))
7111 return -1;
7112 }
7113 }
7114 }
7115 break;
7116 case 2: /* lgdt */
7117 if (ir.mod == 3)
7118 {
7119 /* xgetbv */
7120 if (ir.rm == 0)
7121 {
7122 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7123 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7124 break;
7125 }
7126 /* xsetbv */
7127 else if (ir.rm == 1)
7128 break;
7129 }
7130 case 3: /* lidt */
7131 if (ir.mod == 3)
7132 {
7133 ir.addr -= 3;
7134 opcode = opcode << 8 | ir.modrm;
7135 goto no_support;
7136 }
7137 break;
7138 case 4: /* smsw */
7139 if (ir.mod == 3)
7140 {
7141 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7142 return -1;
7143 }
7144 else
7145 {
7146 ir.ot = OT_WORD;
7147 if (i386_record_lea_modrm (&ir))
7148 return -1;
7149 }
7150 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7151 break;
7152 case 6: /* lmsw */
7153 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7154 break;
7155 case 7: /* invlpg */
7156 if (ir.mod == 3)
7157 {
7158 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7160 else
7161 {
7162 ir.addr -= 3;
7163 opcode = opcode << 8 | ir.modrm;
7164 goto no_support;
7165 }
7166 }
7167 else
7168 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7169 break;
7170 default:
7171 ir.addr -= 3;
7172 opcode = opcode << 8 | ir.modrm;
7173 goto no_support;
7174 break;
7175 }
7176 break;
7177
7178 case 0x0f08: /* invd */
7179 case 0x0f09: /* wbinvd */
7180 break;
7181
7182 case 0x63: /* arpl */
7183 if (i386_record_modrm (&ir))
7184 return -1;
7185 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7186 {
7187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7188 ? (ir.reg | rex_r) : ir.rm);
7189 }
7190 else
7191 {
7192 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7193 if (i386_record_lea_modrm (&ir))
7194 return -1;
7195 }
7196 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7197 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7198 break;
7199
7200 case 0x0f02: /* lar */
7201 case 0x0f03: /* lsl */
7202 if (i386_record_modrm (&ir))
7203 return -1;
7204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7205 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7206 break;
7207
7208 case 0x0f18:
7209 if (i386_record_modrm (&ir))
7210 return -1;
7211 if (ir.mod == 3 && ir.reg == 3)
7212 {
7213 ir.addr -= 3;
7214 opcode = opcode << 8 | ir.modrm;
7215 goto no_support;
7216 }
7217 break;
7218
7219 case 0x0f19:
7220 case 0x0f1a:
7221 case 0x0f1b:
7222 case 0x0f1c:
7223 case 0x0f1d:
7224 case 0x0f1e:
7225 case 0x0f1f:
7226 /* nop (multi byte) */
7227 break;
7228
7229 case 0x0f20: /* mov reg, crN */
7230 case 0x0f22: /* mov crN, reg */
7231 if (i386_record_modrm (&ir))
7232 return -1;
7233 if ((ir.modrm & 0xc0) != 0xc0)
7234 {
7235 ir.addr -= 3;
7236 opcode = opcode << 8 | ir.modrm;
7237 goto no_support;
7238 }
7239 switch (ir.reg)
7240 {
7241 case 0:
7242 case 2:
7243 case 3:
7244 case 4:
7245 case 8:
7246 if (opcode & 2)
7247 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7248 else
7249 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7250 break;
7251 default:
7252 ir.addr -= 3;
7253 opcode = opcode << 8 | ir.modrm;
7254 goto no_support;
7255 break;
7256 }
7257 break;
7258
7259 case 0x0f21: /* mov reg, drN */
7260 case 0x0f23: /* mov drN, reg */
7261 if (i386_record_modrm (&ir))
7262 return -1;
7263 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7264 || ir.reg == 5 || ir.reg >= 8)
7265 {
7266 ir.addr -= 3;
7267 opcode = opcode << 8 | ir.modrm;
7268 goto no_support;
7269 }
7270 if (opcode & 2)
7271 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7272 else
7273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7274 break;
7275
7276 case 0x0f06: /* clts */
7277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7278 break;
7279
7280 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7281
7282 case 0x0f0d: /* 3DNow! prefetch */
7283 break;
7284
7285 case 0x0f0e: /* 3DNow! femms */
7286 case 0x0f77: /* emms */
7287 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7288 goto no_support;
7289 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7290 break;
7291
7292 case 0x0f0f: /* 3DNow! data */
7293 if (i386_record_modrm (&ir))
7294 return -1;
7295 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7296 return -1;
7297 ir.addr++;
7298 switch (opcode8)
7299 {
7300 case 0x0c: /* 3DNow! pi2fw */
7301 case 0x0d: /* 3DNow! pi2fd */
7302 case 0x1c: /* 3DNow! pf2iw */
7303 case 0x1d: /* 3DNow! pf2id */
7304 case 0x8a: /* 3DNow! pfnacc */
7305 case 0x8e: /* 3DNow! pfpnacc */
7306 case 0x90: /* 3DNow! pfcmpge */
7307 case 0x94: /* 3DNow! pfmin */
7308 case 0x96: /* 3DNow! pfrcp */
7309 case 0x97: /* 3DNow! pfrsqrt */
7310 case 0x9a: /* 3DNow! pfsub */
7311 case 0x9e: /* 3DNow! pfadd */
7312 case 0xa0: /* 3DNow! pfcmpgt */
7313 case 0xa4: /* 3DNow! pfmax */
7314 case 0xa6: /* 3DNow! pfrcpit1 */
7315 case 0xa7: /* 3DNow! pfrsqit1 */
7316 case 0xaa: /* 3DNow! pfsubr */
7317 case 0xae: /* 3DNow! pfacc */
7318 case 0xb0: /* 3DNow! pfcmpeq */
7319 case 0xb4: /* 3DNow! pfmul */
7320 case 0xb6: /* 3DNow! pfrcpit2 */
7321 case 0xb7: /* 3DNow! pmulhrw */
7322 case 0xbb: /* 3DNow! pswapd */
7323 case 0xbf: /* 3DNow! pavgusb */
7324 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7325 goto no_support_3dnow_data;
7326 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7327 break;
7328
7329 default:
7330 no_support_3dnow_data:
7331 opcode = (opcode << 8) | opcode8;
7332 goto no_support;
7333 break;
7334 }
7335 break;
7336
7337 case 0x0faa: /* rsm */
7338 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7339 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7342 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7344 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7347 break;
7348
7349 case 0x0fae:
7350 if (i386_record_modrm (&ir))
7351 return -1;
7352 switch(ir.reg)
7353 {
7354 case 0: /* fxsave */
7355 {
7356 uint64_t tmpu64;
7357
7358 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7359 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7360 return -1;
7361 if (record_full_arch_list_add_mem (tmpu64, 512))
7362 return -1;
7363 }
7364 break;
7365
7366 case 1: /* fxrstor */
7367 {
7368 int i;
7369
7370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7371
7372 for (i = I387_MM0_REGNUM (tdep);
7373 i386_mmx_regnum_p (gdbarch, i); i++)
7374 record_full_arch_list_add_reg (ir.regcache, i);
7375
7376 for (i = I387_XMM0_REGNUM (tdep);
7377 i386_xmm_regnum_p (gdbarch, i); i++)
7378 record_full_arch_list_add_reg (ir.regcache, i);
7379
7380 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7381 record_full_arch_list_add_reg (ir.regcache,
7382 I387_MXCSR_REGNUM(tdep));
7383
7384 for (i = I387_ST0_REGNUM (tdep);
7385 i386_fp_regnum_p (gdbarch, i); i++)
7386 record_full_arch_list_add_reg (ir.regcache, i);
7387
7388 for (i = I387_FCTRL_REGNUM (tdep);
7389 i386_fpc_regnum_p (gdbarch, i); i++)
7390 record_full_arch_list_add_reg (ir.regcache, i);
7391 }
7392 break;
7393
7394 case 2: /* ldmxcsr */
7395 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7396 goto no_support;
7397 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7398 break;
7399
7400 case 3: /* stmxcsr */
7401 ir.ot = OT_LONG;
7402 if (i386_record_lea_modrm (&ir))
7403 return -1;
7404 break;
7405
7406 case 5: /* lfence */
7407 case 6: /* mfence */
7408 case 7: /* sfence clflush */
7409 break;
7410
7411 default:
7412 opcode = (opcode << 8) | ir.modrm;
7413 goto no_support;
7414 break;
7415 }
7416 break;
7417
7418 case 0x0fc3: /* movnti */
7419 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7420 if (i386_record_modrm (&ir))
7421 return -1;
7422 if (ir.mod == 3)
7423 goto no_support;
7424 ir.reg |= rex_r;
7425 if (i386_record_lea_modrm (&ir))
7426 return -1;
7427 break;
7428
7429 /* Add prefix to opcode. */
7430 case 0x0f10:
7431 case 0x0f11:
7432 case 0x0f12:
7433 case 0x0f13:
7434 case 0x0f14:
7435 case 0x0f15:
7436 case 0x0f16:
7437 case 0x0f17:
7438 case 0x0f28:
7439 case 0x0f29:
7440 case 0x0f2a:
7441 case 0x0f2b:
7442 case 0x0f2c:
7443 case 0x0f2d:
7444 case 0x0f2e:
7445 case 0x0f2f:
7446 case 0x0f38:
7447 case 0x0f39:
7448 case 0x0f3a:
7449 case 0x0f50:
7450 case 0x0f51:
7451 case 0x0f52:
7452 case 0x0f53:
7453 case 0x0f54:
7454 case 0x0f55:
7455 case 0x0f56:
7456 case 0x0f57:
7457 case 0x0f58:
7458 case 0x0f59:
7459 case 0x0f5a:
7460 case 0x0f5b:
7461 case 0x0f5c:
7462 case 0x0f5d:
7463 case 0x0f5e:
7464 case 0x0f5f:
7465 case 0x0f60:
7466 case 0x0f61:
7467 case 0x0f62:
7468 case 0x0f63:
7469 case 0x0f64:
7470 case 0x0f65:
7471 case 0x0f66:
7472 case 0x0f67:
7473 case 0x0f68:
7474 case 0x0f69:
7475 case 0x0f6a:
7476 case 0x0f6b:
7477 case 0x0f6c:
7478 case 0x0f6d:
7479 case 0x0f6e:
7480 case 0x0f6f:
7481 case 0x0f70:
7482 case 0x0f71:
7483 case 0x0f72:
7484 case 0x0f73:
7485 case 0x0f74:
7486 case 0x0f75:
7487 case 0x0f76:
7488 case 0x0f7c:
7489 case 0x0f7d:
7490 case 0x0f7e:
7491 case 0x0f7f:
7492 case 0x0fb8:
7493 case 0x0fc2:
7494 case 0x0fc4:
7495 case 0x0fc5:
7496 case 0x0fc6:
7497 case 0x0fd0:
7498 case 0x0fd1:
7499 case 0x0fd2:
7500 case 0x0fd3:
7501 case 0x0fd4:
7502 case 0x0fd5:
7503 case 0x0fd6:
7504 case 0x0fd7:
7505 case 0x0fd8:
7506 case 0x0fd9:
7507 case 0x0fda:
7508 case 0x0fdb:
7509 case 0x0fdc:
7510 case 0x0fdd:
7511 case 0x0fde:
7512 case 0x0fdf:
7513 case 0x0fe0:
7514 case 0x0fe1:
7515 case 0x0fe2:
7516 case 0x0fe3:
7517 case 0x0fe4:
7518 case 0x0fe5:
7519 case 0x0fe6:
7520 case 0x0fe7:
7521 case 0x0fe8:
7522 case 0x0fe9:
7523 case 0x0fea:
7524 case 0x0feb:
7525 case 0x0fec:
7526 case 0x0fed:
7527 case 0x0fee:
7528 case 0x0fef:
7529 case 0x0ff0:
7530 case 0x0ff1:
7531 case 0x0ff2:
7532 case 0x0ff3:
7533 case 0x0ff4:
7534 case 0x0ff5:
7535 case 0x0ff6:
7536 case 0x0ff7:
7537 case 0x0ff8:
7538 case 0x0ff9:
7539 case 0x0ffa:
7540 case 0x0ffb:
7541 case 0x0ffc:
7542 case 0x0ffd:
7543 case 0x0ffe:
7544 /* Mask out PREFIX_ADDR. */
7545 switch ((prefixes & ~PREFIX_ADDR))
7546 {
7547 case PREFIX_REPNZ:
7548 opcode |= 0xf20000;
7549 break;
7550 case PREFIX_DATA:
7551 opcode |= 0x660000;
7552 break;
7553 case PREFIX_REPZ:
7554 opcode |= 0xf30000;
7555 break;
7556 }
7557 reswitch_prefix_add:
7558 switch (opcode)
7559 {
7560 case 0x0f38:
7561 case 0x660f38:
7562 case 0xf20f38:
7563 case 0x0f3a:
7564 case 0x660f3a:
7565 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7566 return -1;
7567 ir.addr++;
7568 opcode = (uint32_t) opcode8 | opcode << 8;
7569 goto reswitch_prefix_add;
7570 break;
7571
7572 case 0x0f10: /* movups */
7573 case 0x660f10: /* movupd */
7574 case 0xf30f10: /* movss */
7575 case 0xf20f10: /* movsd */
7576 case 0x0f12: /* movlps */
7577 case 0x660f12: /* movlpd */
7578 case 0xf30f12: /* movsldup */
7579 case 0xf20f12: /* movddup */
7580 case 0x0f14: /* unpcklps */
7581 case 0x660f14: /* unpcklpd */
7582 case 0x0f15: /* unpckhps */
7583 case 0x660f15: /* unpckhpd */
7584 case 0x0f16: /* movhps */
7585 case 0x660f16: /* movhpd */
7586 case 0xf30f16: /* movshdup */
7587 case 0x0f28: /* movaps */
7588 case 0x660f28: /* movapd */
7589 case 0x0f2a: /* cvtpi2ps */
7590 case 0x660f2a: /* cvtpi2pd */
7591 case 0xf30f2a: /* cvtsi2ss */
7592 case 0xf20f2a: /* cvtsi2sd */
7593 case 0x0f2c: /* cvttps2pi */
7594 case 0x660f2c: /* cvttpd2pi */
7595 case 0x0f2d: /* cvtps2pi */
7596 case 0x660f2d: /* cvtpd2pi */
7597 case 0x660f3800: /* pshufb */
7598 case 0x660f3801: /* phaddw */
7599 case 0x660f3802: /* phaddd */
7600 case 0x660f3803: /* phaddsw */
7601 case 0x660f3804: /* pmaddubsw */
7602 case 0x660f3805: /* phsubw */
7603 case 0x660f3806: /* phsubd */
7604 case 0x660f3807: /* phsubsw */
7605 case 0x660f3808: /* psignb */
7606 case 0x660f3809: /* psignw */
7607 case 0x660f380a: /* psignd */
7608 case 0x660f380b: /* pmulhrsw */
7609 case 0x660f3810: /* pblendvb */
7610 case 0x660f3814: /* blendvps */
7611 case 0x660f3815: /* blendvpd */
7612 case 0x660f381c: /* pabsb */
7613 case 0x660f381d: /* pabsw */
7614 case 0x660f381e: /* pabsd */
7615 case 0x660f3820: /* pmovsxbw */
7616 case 0x660f3821: /* pmovsxbd */
7617 case 0x660f3822: /* pmovsxbq */
7618 case 0x660f3823: /* pmovsxwd */
7619 case 0x660f3824: /* pmovsxwq */
7620 case 0x660f3825: /* pmovsxdq */
7621 case 0x660f3828: /* pmuldq */
7622 case 0x660f3829: /* pcmpeqq */
7623 case 0x660f382a: /* movntdqa */
7624 case 0x660f3a08: /* roundps */
7625 case 0x660f3a09: /* roundpd */
7626 case 0x660f3a0a: /* roundss */
7627 case 0x660f3a0b: /* roundsd */
7628 case 0x660f3a0c: /* blendps */
7629 case 0x660f3a0d: /* blendpd */
7630 case 0x660f3a0e: /* pblendw */
7631 case 0x660f3a0f: /* palignr */
7632 case 0x660f3a20: /* pinsrb */
7633 case 0x660f3a21: /* insertps */
7634 case 0x660f3a22: /* pinsrd pinsrq */
7635 case 0x660f3a40: /* dpps */
7636 case 0x660f3a41: /* dppd */
7637 case 0x660f3a42: /* mpsadbw */
7638 case 0x660f3a60: /* pcmpestrm */
7639 case 0x660f3a61: /* pcmpestri */
7640 case 0x660f3a62: /* pcmpistrm */
7641 case 0x660f3a63: /* pcmpistri */
7642 case 0x0f51: /* sqrtps */
7643 case 0x660f51: /* sqrtpd */
7644 case 0xf20f51: /* sqrtsd */
7645 case 0xf30f51: /* sqrtss */
7646 case 0x0f52: /* rsqrtps */
7647 case 0xf30f52: /* rsqrtss */
7648 case 0x0f53: /* rcpps */
7649 case 0xf30f53: /* rcpss */
7650 case 0x0f54: /* andps */
7651 case 0x660f54: /* andpd */
7652 case 0x0f55: /* andnps */
7653 case 0x660f55: /* andnpd */
7654 case 0x0f56: /* orps */
7655 case 0x660f56: /* orpd */
7656 case 0x0f57: /* xorps */
7657 case 0x660f57: /* xorpd */
7658 case 0x0f58: /* addps */
7659 case 0x660f58: /* addpd */
7660 case 0xf20f58: /* addsd */
7661 case 0xf30f58: /* addss */
7662 case 0x0f59: /* mulps */
7663 case 0x660f59: /* mulpd */
7664 case 0xf20f59: /* mulsd */
7665 case 0xf30f59: /* mulss */
7666 case 0x0f5a: /* cvtps2pd */
7667 case 0x660f5a: /* cvtpd2ps */
7668 case 0xf20f5a: /* cvtsd2ss */
7669 case 0xf30f5a: /* cvtss2sd */
7670 case 0x0f5b: /* cvtdq2ps */
7671 case 0x660f5b: /* cvtps2dq */
7672 case 0xf30f5b: /* cvttps2dq */
7673 case 0x0f5c: /* subps */
7674 case 0x660f5c: /* subpd */
7675 case 0xf20f5c: /* subsd */
7676 case 0xf30f5c: /* subss */
7677 case 0x0f5d: /* minps */
7678 case 0x660f5d: /* minpd */
7679 case 0xf20f5d: /* minsd */
7680 case 0xf30f5d: /* minss */
7681 case 0x0f5e: /* divps */
7682 case 0x660f5e: /* divpd */
7683 case 0xf20f5e: /* divsd */
7684 case 0xf30f5e: /* divss */
7685 case 0x0f5f: /* maxps */
7686 case 0x660f5f: /* maxpd */
7687 case 0xf20f5f: /* maxsd */
7688 case 0xf30f5f: /* maxss */
7689 case 0x660f60: /* punpcklbw */
7690 case 0x660f61: /* punpcklwd */
7691 case 0x660f62: /* punpckldq */
7692 case 0x660f63: /* packsswb */
7693 case 0x660f64: /* pcmpgtb */
7694 case 0x660f65: /* pcmpgtw */
7695 case 0x660f66: /* pcmpgtd */
7696 case 0x660f67: /* packuswb */
7697 case 0x660f68: /* punpckhbw */
7698 case 0x660f69: /* punpckhwd */
7699 case 0x660f6a: /* punpckhdq */
7700 case 0x660f6b: /* packssdw */
7701 case 0x660f6c: /* punpcklqdq */
7702 case 0x660f6d: /* punpckhqdq */
7703 case 0x660f6e: /* movd */
7704 case 0x660f6f: /* movdqa */
7705 case 0xf30f6f: /* movdqu */
7706 case 0x660f70: /* pshufd */
7707 case 0xf20f70: /* pshuflw */
7708 case 0xf30f70: /* pshufhw */
7709 case 0x660f74: /* pcmpeqb */
7710 case 0x660f75: /* pcmpeqw */
7711 case 0x660f76: /* pcmpeqd */
7712 case 0x660f7c: /* haddpd */
7713 case 0xf20f7c: /* haddps */
7714 case 0x660f7d: /* hsubpd */
7715 case 0xf20f7d: /* hsubps */
7716 case 0xf30f7e: /* movq */
7717 case 0x0fc2: /* cmpps */
7718 case 0x660fc2: /* cmppd */
7719 case 0xf20fc2: /* cmpsd */
7720 case 0xf30fc2: /* cmpss */
7721 case 0x660fc4: /* pinsrw */
7722 case 0x0fc6: /* shufps */
7723 case 0x660fc6: /* shufpd */
7724 case 0x660fd0: /* addsubpd */
7725 case 0xf20fd0: /* addsubps */
7726 case 0x660fd1: /* psrlw */
7727 case 0x660fd2: /* psrld */
7728 case 0x660fd3: /* psrlq */
7729 case 0x660fd4: /* paddq */
7730 case 0x660fd5: /* pmullw */
7731 case 0xf30fd6: /* movq2dq */
7732 case 0x660fd8: /* psubusb */
7733 case 0x660fd9: /* psubusw */
7734 case 0x660fda: /* pminub */
7735 case 0x660fdb: /* pand */
7736 case 0x660fdc: /* paddusb */
7737 case 0x660fdd: /* paddusw */
7738 case 0x660fde: /* pmaxub */
7739 case 0x660fdf: /* pandn */
7740 case 0x660fe0: /* pavgb */
7741 case 0x660fe1: /* psraw */
7742 case 0x660fe2: /* psrad */
7743 case 0x660fe3: /* pavgw */
7744 case 0x660fe4: /* pmulhuw */
7745 case 0x660fe5: /* pmulhw */
7746 case 0x660fe6: /* cvttpd2dq */
7747 case 0xf20fe6: /* cvtpd2dq */
7748 case 0xf30fe6: /* cvtdq2pd */
7749 case 0x660fe8: /* psubsb */
7750 case 0x660fe9: /* psubsw */
7751 case 0x660fea: /* pminsw */
7752 case 0x660feb: /* por */
7753 case 0x660fec: /* paddsb */
7754 case 0x660fed: /* paddsw */
7755 case 0x660fee: /* pmaxsw */
7756 case 0x660fef: /* pxor */
7757 case 0xf20ff0: /* lddqu */
7758 case 0x660ff1: /* psllw */
7759 case 0x660ff2: /* pslld */
7760 case 0x660ff3: /* psllq */
7761 case 0x660ff4: /* pmuludq */
7762 case 0x660ff5: /* pmaddwd */
7763 case 0x660ff6: /* psadbw */
7764 case 0x660ff8: /* psubb */
7765 case 0x660ff9: /* psubw */
7766 case 0x660ffa: /* psubd */
7767 case 0x660ffb: /* psubq */
7768 case 0x660ffc: /* paddb */
7769 case 0x660ffd: /* paddw */
7770 case 0x660ffe: /* paddd */
7771 if (i386_record_modrm (&ir))
7772 return -1;
7773 ir.reg |= rex_r;
7774 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7775 goto no_support;
7776 record_full_arch_list_add_reg (ir.regcache,
7777 I387_XMM0_REGNUM (tdep) + ir.reg);
7778 if ((opcode & 0xfffffffc) == 0x660f3a60)
7779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7780 break;
7781
7782 case 0x0f11: /* movups */
7783 case 0x660f11: /* movupd */
7784 case 0xf30f11: /* movss */
7785 case 0xf20f11: /* movsd */
7786 case 0x0f13: /* movlps */
7787 case 0x660f13: /* movlpd */
7788 case 0x0f17: /* movhps */
7789 case 0x660f17: /* movhpd */
7790 case 0x0f29: /* movaps */
7791 case 0x660f29: /* movapd */
7792 case 0x660f3a14: /* pextrb */
7793 case 0x660f3a15: /* pextrw */
7794 case 0x660f3a16: /* pextrd pextrq */
7795 case 0x660f3a17: /* extractps */
7796 case 0x660f7f: /* movdqa */
7797 case 0xf30f7f: /* movdqu */
7798 if (i386_record_modrm (&ir))
7799 return -1;
7800 if (ir.mod == 3)
7801 {
7802 if (opcode == 0x0f13 || opcode == 0x660f13
7803 || opcode == 0x0f17 || opcode == 0x660f17)
7804 goto no_support;
7805 ir.rm |= ir.rex_b;
7806 if (!i386_xmm_regnum_p (gdbarch,
7807 I387_XMM0_REGNUM (tdep) + ir.rm))
7808 goto no_support;
7809 record_full_arch_list_add_reg (ir.regcache,
7810 I387_XMM0_REGNUM (tdep) + ir.rm);
7811 }
7812 else
7813 {
7814 switch (opcode)
7815 {
7816 case 0x660f3a14:
7817 ir.ot = OT_BYTE;
7818 break;
7819 case 0x660f3a15:
7820 ir.ot = OT_WORD;
7821 break;
7822 case 0x660f3a16:
7823 ir.ot = OT_LONG;
7824 break;
7825 case 0x660f3a17:
7826 ir.ot = OT_QUAD;
7827 break;
7828 default:
7829 ir.ot = OT_DQUAD;
7830 break;
7831 }
7832 if (i386_record_lea_modrm (&ir))
7833 return -1;
7834 }
7835 break;
7836
7837 case 0x0f2b: /* movntps */
7838 case 0x660f2b: /* movntpd */
7839 case 0x0fe7: /* movntq */
7840 case 0x660fe7: /* movntdq */
7841 if (ir.mod == 3)
7842 goto no_support;
7843 if (opcode == 0x0fe7)
7844 ir.ot = OT_QUAD;
7845 else
7846 ir.ot = OT_DQUAD;
7847 if (i386_record_lea_modrm (&ir))
7848 return -1;
7849 break;
7850
7851 case 0xf30f2c: /* cvttss2si */
7852 case 0xf20f2c: /* cvttsd2si */
7853 case 0xf30f2d: /* cvtss2si */
7854 case 0xf20f2d: /* cvtsd2si */
7855 case 0xf20f38f0: /* crc32 */
7856 case 0xf20f38f1: /* crc32 */
7857 case 0x0f50: /* movmskps */
7858 case 0x660f50: /* movmskpd */
7859 case 0x0fc5: /* pextrw */
7860 case 0x660fc5: /* pextrw */
7861 case 0x0fd7: /* pmovmskb */
7862 case 0x660fd7: /* pmovmskb */
7863 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7864 break;
7865
7866 case 0x0f3800: /* pshufb */
7867 case 0x0f3801: /* phaddw */
7868 case 0x0f3802: /* phaddd */
7869 case 0x0f3803: /* phaddsw */
7870 case 0x0f3804: /* pmaddubsw */
7871 case 0x0f3805: /* phsubw */
7872 case 0x0f3806: /* phsubd */
7873 case 0x0f3807: /* phsubsw */
7874 case 0x0f3808: /* psignb */
7875 case 0x0f3809: /* psignw */
7876 case 0x0f380a: /* psignd */
7877 case 0x0f380b: /* pmulhrsw */
7878 case 0x0f381c: /* pabsb */
7879 case 0x0f381d: /* pabsw */
7880 case 0x0f381e: /* pabsd */
7881 case 0x0f382b: /* packusdw */
7882 case 0x0f3830: /* pmovzxbw */
7883 case 0x0f3831: /* pmovzxbd */
7884 case 0x0f3832: /* pmovzxbq */
7885 case 0x0f3833: /* pmovzxwd */
7886 case 0x0f3834: /* pmovzxwq */
7887 case 0x0f3835: /* pmovzxdq */
7888 case 0x0f3837: /* pcmpgtq */
7889 case 0x0f3838: /* pminsb */
7890 case 0x0f3839: /* pminsd */
7891 case 0x0f383a: /* pminuw */
7892 case 0x0f383b: /* pminud */
7893 case 0x0f383c: /* pmaxsb */
7894 case 0x0f383d: /* pmaxsd */
7895 case 0x0f383e: /* pmaxuw */
7896 case 0x0f383f: /* pmaxud */
7897 case 0x0f3840: /* pmulld */
7898 case 0x0f3841: /* phminposuw */
7899 case 0x0f3a0f: /* palignr */
7900 case 0x0f60: /* punpcklbw */
7901 case 0x0f61: /* punpcklwd */
7902 case 0x0f62: /* punpckldq */
7903 case 0x0f63: /* packsswb */
7904 case 0x0f64: /* pcmpgtb */
7905 case 0x0f65: /* pcmpgtw */
7906 case 0x0f66: /* pcmpgtd */
7907 case 0x0f67: /* packuswb */
7908 case 0x0f68: /* punpckhbw */
7909 case 0x0f69: /* punpckhwd */
7910 case 0x0f6a: /* punpckhdq */
7911 case 0x0f6b: /* packssdw */
7912 case 0x0f6e: /* movd */
7913 case 0x0f6f: /* movq */
7914 case 0x0f70: /* pshufw */
7915 case 0x0f74: /* pcmpeqb */
7916 case 0x0f75: /* pcmpeqw */
7917 case 0x0f76: /* pcmpeqd */
7918 case 0x0fc4: /* pinsrw */
7919 case 0x0fd1: /* psrlw */
7920 case 0x0fd2: /* psrld */
7921 case 0x0fd3: /* psrlq */
7922 case 0x0fd4: /* paddq */
7923 case 0x0fd5: /* pmullw */
7924 case 0xf20fd6: /* movdq2q */
7925 case 0x0fd8: /* psubusb */
7926 case 0x0fd9: /* psubusw */
7927 case 0x0fda: /* pminub */
7928 case 0x0fdb: /* pand */
7929 case 0x0fdc: /* paddusb */
7930 case 0x0fdd: /* paddusw */
7931 case 0x0fde: /* pmaxub */
7932 case 0x0fdf: /* pandn */
7933 case 0x0fe0: /* pavgb */
7934 case 0x0fe1: /* psraw */
7935 case 0x0fe2: /* psrad */
7936 case 0x0fe3: /* pavgw */
7937 case 0x0fe4: /* pmulhuw */
7938 case 0x0fe5: /* pmulhw */
7939 case 0x0fe8: /* psubsb */
7940 case 0x0fe9: /* psubsw */
7941 case 0x0fea: /* pminsw */
7942 case 0x0feb: /* por */
7943 case 0x0fec: /* paddsb */
7944 case 0x0fed: /* paddsw */
7945 case 0x0fee: /* pmaxsw */
7946 case 0x0fef: /* pxor */
7947 case 0x0ff1: /* psllw */
7948 case 0x0ff2: /* pslld */
7949 case 0x0ff3: /* psllq */
7950 case 0x0ff4: /* pmuludq */
7951 case 0x0ff5: /* pmaddwd */
7952 case 0x0ff6: /* psadbw */
7953 case 0x0ff8: /* psubb */
7954 case 0x0ff9: /* psubw */
7955 case 0x0ffa: /* psubd */
7956 case 0x0ffb: /* psubq */
7957 case 0x0ffc: /* paddb */
7958 case 0x0ffd: /* paddw */
7959 case 0x0ffe: /* paddd */
7960 if (i386_record_modrm (&ir))
7961 return -1;
7962 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7963 goto no_support;
7964 record_full_arch_list_add_reg (ir.regcache,
7965 I387_MM0_REGNUM (tdep) + ir.reg);
7966 break;
7967
7968 case 0x0f71: /* psllw */
7969 case 0x0f72: /* pslld */
7970 case 0x0f73: /* psllq */
7971 if (i386_record_modrm (&ir))
7972 return -1;
7973 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7974 goto no_support;
7975 record_full_arch_list_add_reg (ir.regcache,
7976 I387_MM0_REGNUM (tdep) + ir.rm);
7977 break;
7978
7979 case 0x660f71: /* psllw */
7980 case 0x660f72: /* pslld */
7981 case 0x660f73: /* psllq */
7982 if (i386_record_modrm (&ir))
7983 return -1;
7984 ir.rm |= ir.rex_b;
7985 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7986 goto no_support;
7987 record_full_arch_list_add_reg (ir.regcache,
7988 I387_XMM0_REGNUM (tdep) + ir.rm);
7989 break;
7990
7991 case 0x0f7e: /* movd */
7992 case 0x660f7e: /* movd */
7993 if (i386_record_modrm (&ir))
7994 return -1;
7995 if (ir.mod == 3)
7996 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7997 else
7998 {
7999 if (ir.dflag == 2)
8000 ir.ot = OT_QUAD;
8001 else
8002 ir.ot = OT_LONG;
8003 if (i386_record_lea_modrm (&ir))
8004 return -1;
8005 }
8006 break;
8007
8008 case 0x0f7f: /* movq */
8009 if (i386_record_modrm (&ir))
8010 return -1;
8011 if (ir.mod == 3)
8012 {
8013 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8014 goto no_support;
8015 record_full_arch_list_add_reg (ir.regcache,
8016 I387_MM0_REGNUM (tdep) + ir.rm);
8017 }
8018 else
8019 {
8020 ir.ot = OT_QUAD;
8021 if (i386_record_lea_modrm (&ir))
8022 return -1;
8023 }
8024 break;
8025
8026 case 0xf30fb8: /* popcnt */
8027 if (i386_record_modrm (&ir))
8028 return -1;
8029 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8030 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8031 break;
8032
8033 case 0x660fd6: /* movq */
8034 if (i386_record_modrm (&ir))
8035 return -1;
8036 if (ir.mod == 3)
8037 {
8038 ir.rm |= ir.rex_b;
8039 if (!i386_xmm_regnum_p (gdbarch,
8040 I387_XMM0_REGNUM (tdep) + ir.rm))
8041 goto no_support;
8042 record_full_arch_list_add_reg (ir.regcache,
8043 I387_XMM0_REGNUM (tdep) + ir.rm);
8044 }
8045 else
8046 {
8047 ir.ot = OT_QUAD;
8048 if (i386_record_lea_modrm (&ir))
8049 return -1;
8050 }
8051 break;
8052
8053 case 0x660f3817: /* ptest */
8054 case 0x0f2e: /* ucomiss */
8055 case 0x660f2e: /* ucomisd */
8056 case 0x0f2f: /* comiss */
8057 case 0x660f2f: /* comisd */
8058 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8059 break;
8060
8061 case 0x0ff7: /* maskmovq */
8062 regcache_raw_read_unsigned (ir.regcache,
8063 ir.regmap[X86_RECORD_REDI_REGNUM],
8064 &addr);
8065 if (record_full_arch_list_add_mem (addr, 64))
8066 return -1;
8067 break;
8068
8069 case 0x660ff7: /* maskmovdqu */
8070 regcache_raw_read_unsigned (ir.regcache,
8071 ir.regmap[X86_RECORD_REDI_REGNUM],
8072 &addr);
8073 if (record_full_arch_list_add_mem (addr, 128))
8074 return -1;
8075 break;
8076
8077 default:
8078 goto no_support;
8079 break;
8080 }
8081 break;
8082
8083 default:
8084 goto no_support;
8085 break;
8086 }
8087
8088 /* In the future, maybe still need to deal with need_dasm. */
8089 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8090 if (record_full_arch_list_add_end ())
8091 return -1;
8092
8093 return 0;
8094
8095 no_support:
8096 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8097 "at address %s.\n"),
8098 (unsigned int) (opcode),
8099 paddress (gdbarch, ir.orig_addr));
8100 return -1;
8101 }
8102
8103 static const int i386_record_regmap[] =
8104 {
8105 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8106 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8107 0, 0, 0, 0, 0, 0, 0, 0,
8108 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8109 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8110 };
8111
8112 /* Check that the given address appears suitable for a fast
8113 tracepoint, which on x86-64 means that we need an instruction of at
8114 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8115 jump and not have to worry about program jumps to an address in the
8116 middle of the tracepoint jump. On x86, it may be possible to use
8117 4-byte jumps with a 2-byte offset to a trampoline located in the
8118 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8119 of instruction to replace, and 0 if not, plus an explanatory
8120 string. */
8121
8122 static int
8123 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8124 char **msg)
8125 {
8126 int len, jumplen;
8127
8128 /* Ask the target for the minimum instruction length supported. */
8129 jumplen = target_get_min_fast_tracepoint_insn_len ();
8130
8131 if (jumplen < 0)
8132 {
8133 /* If the target does not support the get_min_fast_tracepoint_insn_len
8134 operation, assume that fast tracepoints will always be implemented
8135 using 4-byte relative jumps on both x86 and x86-64. */
8136 jumplen = 5;
8137 }
8138 else if (jumplen == 0)
8139 {
8140 /* If the target does support get_min_fast_tracepoint_insn_len but
8141 returns zero, then the IPA has not loaded yet. In this case,
8142 we optimistically assume that truncated 2-byte relative jumps
8143 will be available on x86, and compensate later if this assumption
8144 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8145 jumps will always be used. */
8146 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8147 }
8148
8149 /* Check for fit. */
8150 len = gdb_insn_length (gdbarch, addr);
8151
8152 if (len < jumplen)
8153 {
8154 /* Return a bit of target-specific detail to add to the caller's
8155 generic failure message. */
8156 if (msg)
8157 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8158 "need at least %d bytes for the jump"),
8159 len, jumplen);
8160 return 0;
8161 }
8162 else
8163 {
8164 if (msg)
8165 *msg = NULL;
8166 return 1;
8167 }
8168 }
8169
8170 /* Return a floating-point format for a floating-point variable of
8171 length LEN in bits. If non-NULL, NAME is the name of its type.
8172 If no suitable type is found, return NULL. */
8173
8174 const struct floatformat **
8175 i386_floatformat_for_type (struct gdbarch *gdbarch,
8176 const char *name, int len)
8177 {
8178 if (len == 128 && name)
8179 if (strcmp (name, "__float128") == 0
8180 || strcmp (name, "_Float128") == 0
8181 || strcmp (name, "complex _Float128") == 0)
8182 return floatformats_ia64_quad;
8183
8184 return default_floatformat_for_type (gdbarch, name, len);
8185 }
8186
8187 static int
8188 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8189 struct tdesc_arch_data *tdesc_data)
8190 {
8191 const struct target_desc *tdesc = tdep->tdesc;
8192 const struct tdesc_feature *feature_core;
8193
8194 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8195 *feature_avx512, *feature_pkeys;
8196 int i, num_regs, valid_p;
8197
8198 if (! tdesc_has_registers (tdesc))
8199 return 0;
8200
8201 /* Get core registers. */
8202 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8203 if (feature_core == NULL)
8204 return 0;
8205
8206 /* Get SSE registers. */
8207 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8208
8209 /* Try AVX registers. */
8210 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8211
8212 /* Try MPX registers. */
8213 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8214
8215 /* Try AVX512 registers. */
8216 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8217
8218 /* Try PKEYS */
8219 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8220
8221 valid_p = 1;
8222
8223 /* The XCR0 bits. */
8224 if (feature_avx512)
8225 {
8226 /* AVX512 register description requires AVX register description. */
8227 if (!feature_avx)
8228 return 0;
8229
8230 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8231
8232 /* It may have been set by OSABI initialization function. */
8233 if (tdep->k0_regnum < 0)
8234 {
8235 tdep->k_register_names = i386_k_names;
8236 tdep->k0_regnum = I386_K0_REGNUM;
8237 }
8238
8239 for (i = 0; i < I387_NUM_K_REGS; i++)
8240 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8241 tdep->k0_regnum + i,
8242 i386_k_names[i]);
8243
8244 if (tdep->num_zmm_regs == 0)
8245 {
8246 tdep->zmmh_register_names = i386_zmmh_names;
8247 tdep->num_zmm_regs = 8;
8248 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8249 }
8250
8251 for (i = 0; i < tdep->num_zmm_regs; i++)
8252 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8253 tdep->zmm0h_regnum + i,
8254 tdep->zmmh_register_names[i]);
8255
8256 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8257 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8258 tdep->xmm16_regnum + i,
8259 tdep->xmm_avx512_register_names[i]);
8260
8261 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8262 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8263 tdep->ymm16h_regnum + i,
8264 tdep->ymm16h_register_names[i]);
8265 }
8266 if (feature_avx)
8267 {
8268 /* AVX register description requires SSE register description. */
8269 if (!feature_sse)
8270 return 0;
8271
8272 if (!feature_avx512)
8273 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8274
8275 /* It may have been set by OSABI initialization function. */
8276 if (tdep->num_ymm_regs == 0)
8277 {
8278 tdep->ymmh_register_names = i386_ymmh_names;
8279 tdep->num_ymm_regs = 8;
8280 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8281 }
8282
8283 for (i = 0; i < tdep->num_ymm_regs; i++)
8284 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8285 tdep->ymm0h_regnum + i,
8286 tdep->ymmh_register_names[i]);
8287 }
8288 else if (feature_sse)
8289 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8290 else
8291 {
8292 tdep->xcr0 = X86_XSTATE_X87_MASK;
8293 tdep->num_xmm_regs = 0;
8294 }
8295
8296 num_regs = tdep->num_core_regs;
8297 for (i = 0; i < num_regs; i++)
8298 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8299 tdep->register_names[i]);
8300
8301 if (feature_sse)
8302 {
8303 /* Need to include %mxcsr, so add one. */
8304 num_regs += tdep->num_xmm_regs + 1;
8305 for (; i < num_regs; i++)
8306 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8307 tdep->register_names[i]);
8308 }
8309
8310 if (feature_mpx)
8311 {
8312 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8313
8314 if (tdep->bnd0r_regnum < 0)
8315 {
8316 tdep->mpx_register_names = i386_mpx_names;
8317 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8318 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8319 }
8320
8321 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8322 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8323 I387_BND0R_REGNUM (tdep) + i,
8324 tdep->mpx_register_names[i]);
8325 }
8326
8327 if (feature_pkeys)
8328 {
8329 tdep->xcr0 |= X86_XSTATE_PKRU;
8330 if (tdep->pkru_regnum < 0)
8331 {
8332 tdep->pkeys_register_names = i386_pkeys_names;
8333 tdep->pkru_regnum = I386_PKRU_REGNUM;
8334 tdep->num_pkeys_regs = 1;
8335 }
8336
8337 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8338 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8339 I387_PKRU_REGNUM (tdep) + i,
8340 tdep->pkeys_register_names[i]);
8341 }
8342
8343 return valid_p;
8344 }
8345
8346 \f
8347 /* Note: This is called for both i386 and amd64. */
8348
8349 static struct gdbarch *
8350 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8351 {
8352 struct gdbarch_tdep *tdep;
8353 struct gdbarch *gdbarch;
8354 struct tdesc_arch_data *tdesc_data;
8355 const struct target_desc *tdesc;
8356 int mm0_regnum;
8357 int ymm0_regnum;
8358 int bnd0_regnum;
8359 int num_bnd_cooked;
8360
8361 /* If there is already a candidate, use it. */
8362 arches = gdbarch_list_lookup_by_info (arches, &info);
8363 if (arches != NULL)
8364 return arches->gdbarch;
8365
8366 /* Allocate space for the new architecture. Assume i386 for now. */
8367 tdep = XCNEW (struct gdbarch_tdep);
8368 gdbarch = gdbarch_alloc (&info, tdep);
8369
8370 /* General-purpose registers. */
8371 tdep->gregset_reg_offset = NULL;
8372 tdep->gregset_num_regs = I386_NUM_GREGS;
8373 tdep->sizeof_gregset = 0;
8374
8375 /* Floating-point registers. */
8376 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8377 tdep->fpregset = &i386_fpregset;
8378
8379 /* The default settings include the FPU registers, the MMX registers
8380 and the SSE registers. This can be overridden for a specific ABI
8381 by adjusting the members `st0_regnum', `mm0_regnum' and
8382 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8383 will show up in the output of "info all-registers". */
8384
8385 tdep->st0_regnum = I386_ST0_REGNUM;
8386
8387 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8388 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8389
8390 tdep->jb_pc_offset = -1;
8391 tdep->struct_return = pcc_struct_return;
8392 tdep->sigtramp_start = 0;
8393 tdep->sigtramp_end = 0;
8394 tdep->sigtramp_p = i386_sigtramp_p;
8395 tdep->sigcontext_addr = NULL;
8396 tdep->sc_reg_offset = NULL;
8397 tdep->sc_pc_offset = -1;
8398 tdep->sc_sp_offset = -1;
8399
8400 tdep->xsave_xcr0_offset = -1;
8401
8402 tdep->record_regmap = i386_record_regmap;
8403
8404 set_gdbarch_long_long_align_bit (gdbarch, 32);
8405
8406 /* The format used for `long double' on almost all i386 targets is
8407 the i387 extended floating-point format. In fact, of all targets
8408 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8409 on having a `long double' that's not `long' at all. */
8410 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8411
8412 /* Although the i387 extended floating-point has only 80 significant
8413 bits, a `long double' actually takes up 96, probably to enforce
8414 alignment. */
8415 set_gdbarch_long_double_bit (gdbarch, 96);
8416
8417 /* Support for floating-point data type variants. */
8418 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8419
8420 /* Register numbers of various important registers. */
8421 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8422 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8423 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8424 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8425
8426 /* NOTE: kettenis/20040418: GCC does have two possible register
8427 numbering schemes on the i386: dbx and SVR4. These schemes
8428 differ in how they number %ebp, %esp, %eflags, and the
8429 floating-point registers, and are implemented by the arrays
8430 dbx_register_map[] and svr4_dbx_register_map in
8431 gcc/config/i386.c. GCC also defines a third numbering scheme in
8432 gcc/config/i386.c, which it designates as the "default" register
8433 map used in 64bit mode. This last register numbering scheme is
8434 implemented in dbx64_register_map, and is used for AMD64; see
8435 amd64-tdep.c.
8436
8437 Currently, each GCC i386 target always uses the same register
8438 numbering scheme across all its supported debugging formats
8439 i.e. SDB (COFF), stabs and DWARF 2. This is because
8440 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8441 DBX_REGISTER_NUMBER macro which is defined by each target's
8442 respective config header in a manner independent of the requested
8443 output debugging format.
8444
8445 This does not match the arrangement below, which presumes that
8446 the SDB and stabs numbering schemes differ from the DWARF and
8447 DWARF 2 ones. The reason for this arrangement is that it is
8448 likely to get the numbering scheme for the target's
8449 default/native debug format right. For targets where GCC is the
8450 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8451 targets where the native toolchain uses a different numbering
8452 scheme for a particular debug format (stabs-in-ELF on Solaris)
8453 the defaults below will have to be overridden, like
8454 i386_elf_init_abi() does. */
8455
8456 /* Use the dbx register numbering scheme for stabs and COFF. */
8457 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8458 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8459
8460 /* Use the SVR4 register numbering scheme for DWARF 2. */
8461 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8462
8463 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8464 be in use on any of the supported i386 targets. */
8465
8466 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8467
8468 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8469
8470 /* Call dummy code. */
8471 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8472 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8473 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8474 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8475
8476 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8477 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8478 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8479
8480 set_gdbarch_return_value (gdbarch, i386_return_value);
8481
8482 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8483
8484 /* Stack grows downward. */
8485 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8486
8487 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8488 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8489
8490 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8491 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8492
8493 set_gdbarch_frame_args_skip (gdbarch, 8);
8494
8495 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8496
8497 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8498
8499 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8500
8501 /* Add the i386 register groups. */
8502 i386_add_reggroups (gdbarch);
8503 tdep->register_reggroup_p = i386_register_reggroup_p;
8504
8505 /* Helper for function argument information. */
8506 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8507
8508 /* Hook the function epilogue frame unwinder. This unwinder is
8509 appended to the list first, so that it supercedes the DWARF
8510 unwinder in function epilogues (where the DWARF unwinder
8511 currently fails). */
8512 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8513
8514 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8515 to the list before the prologue-based unwinders, so that DWARF
8516 CFI info will be used if it is available. */
8517 dwarf2_append_unwinders (gdbarch);
8518
8519 frame_base_set_default (gdbarch, &i386_frame_base);
8520
8521 /* Pseudo registers may be changed by amd64_init_abi. */
8522 set_gdbarch_pseudo_register_read_value (gdbarch,
8523 i386_pseudo_register_read_value);
8524 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8525 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8526 i386_ax_pseudo_register_collect);
8527
8528 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8529 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8530
8531 /* Override the normal target description method to make the AVX
8532 upper halves anonymous. */
8533 set_gdbarch_register_name (gdbarch, i386_register_name);
8534
8535 /* Even though the default ABI only includes general-purpose registers,
8536 floating-point registers and the SSE registers, we have to leave a
8537 gap for the upper AVX, MPX and AVX512 registers. */
8538 set_gdbarch_num_regs (gdbarch, I386_PKEYS_NUM_REGS);
8539
8540 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8541
8542 /* Get the x86 target description from INFO. */
8543 tdesc = info.target_desc;
8544 if (! tdesc_has_registers (tdesc))
8545 tdesc = i386_target_description (X86_XSTATE_SSE_MASK);
8546 tdep->tdesc = tdesc;
8547
8548 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8549 tdep->register_names = i386_register_names;
8550
8551 /* No upper YMM registers. */
8552 tdep->ymmh_register_names = NULL;
8553 tdep->ymm0h_regnum = -1;
8554
8555 /* No upper ZMM registers. */
8556 tdep->zmmh_register_names = NULL;
8557 tdep->zmm0h_regnum = -1;
8558
8559 /* No high XMM registers. */
8560 tdep->xmm_avx512_register_names = NULL;
8561 tdep->xmm16_regnum = -1;
8562
8563 /* No upper YMM16-31 registers. */
8564 tdep->ymm16h_register_names = NULL;
8565 tdep->ymm16h_regnum = -1;
8566
8567 tdep->num_byte_regs = 8;
8568 tdep->num_word_regs = 8;
8569 tdep->num_dword_regs = 0;
8570 tdep->num_mmx_regs = 8;
8571 tdep->num_ymm_regs = 0;
8572
8573 /* No MPX registers. */
8574 tdep->bnd0r_regnum = -1;
8575 tdep->bndcfgu_regnum = -1;
8576
8577 /* No AVX512 registers. */
8578 tdep->k0_regnum = -1;
8579 tdep->num_zmm_regs = 0;
8580 tdep->num_ymm_avx512_regs = 0;
8581 tdep->num_xmm_avx512_regs = 0;
8582
8583 /* No PKEYS registers */
8584 tdep->pkru_regnum = -1;
8585 tdep->num_pkeys_regs = 0;
8586
8587 tdesc_data = tdesc_data_alloc ();
8588
8589 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8590
8591 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8592
8593 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8594 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8595 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8596
8597 /* Hook in ABI-specific overrides, if they have been registered.
8598 Note: If INFO specifies a 64 bit arch, this is where we turn
8599 a 32-bit i386 into a 64-bit amd64. */
8600 info.tdesc_data = tdesc_data;
8601 gdbarch_init_osabi (info, gdbarch);
8602
8603 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8604 {
8605 tdesc_data_cleanup (tdesc_data);
8606 xfree (tdep);
8607 gdbarch_free (gdbarch);
8608 return NULL;
8609 }
8610
8611 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8612
8613 /* Wire in pseudo registers. Number of pseudo registers may be
8614 changed. */
8615 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8616 + tdep->num_word_regs
8617 + tdep->num_dword_regs
8618 + tdep->num_mmx_regs
8619 + tdep->num_ymm_regs
8620 + num_bnd_cooked
8621 + tdep->num_ymm_avx512_regs
8622 + tdep->num_zmm_regs));
8623
8624 /* Target description may be changed. */
8625 tdesc = tdep->tdesc;
8626
8627 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8628
8629 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8630 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8631
8632 /* Make %al the first pseudo-register. */
8633 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8634 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8635
8636 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8637 if (tdep->num_dword_regs)
8638 {
8639 /* Support dword pseudo-register if it hasn't been disabled. */
8640 tdep->eax_regnum = ymm0_regnum;
8641 ymm0_regnum += tdep->num_dword_regs;
8642 }
8643 else
8644 tdep->eax_regnum = -1;
8645
8646 mm0_regnum = ymm0_regnum;
8647 if (tdep->num_ymm_regs)
8648 {
8649 /* Support YMM pseudo-register if it is available. */
8650 tdep->ymm0_regnum = ymm0_regnum;
8651 mm0_regnum += tdep->num_ymm_regs;
8652 }
8653 else
8654 tdep->ymm0_regnum = -1;
8655
8656 if (tdep->num_ymm_avx512_regs)
8657 {
8658 /* Support YMM16-31 pseudo registers if available. */
8659 tdep->ymm16_regnum = mm0_regnum;
8660 mm0_regnum += tdep->num_ymm_avx512_regs;
8661 }
8662 else
8663 tdep->ymm16_regnum = -1;
8664
8665 if (tdep->num_zmm_regs)
8666 {
8667 /* Support ZMM pseudo-register if it is available. */
8668 tdep->zmm0_regnum = mm0_regnum;
8669 mm0_regnum += tdep->num_zmm_regs;
8670 }
8671 else
8672 tdep->zmm0_regnum = -1;
8673
8674 bnd0_regnum = mm0_regnum;
8675 if (tdep->num_mmx_regs != 0)
8676 {
8677 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8678 tdep->mm0_regnum = mm0_regnum;
8679 bnd0_regnum += tdep->num_mmx_regs;
8680 }
8681 else
8682 tdep->mm0_regnum = -1;
8683
8684 if (tdep->bnd0r_regnum > 0)
8685 tdep->bnd0_regnum = bnd0_regnum;
8686 else
8687 tdep-> bnd0_regnum = -1;
8688
8689 /* Hook in the legacy prologue-based unwinders last (fallback). */
8690 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8691 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8692 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8693
8694 /* If we have a register mapping, enable the generic core file
8695 support, unless it has already been enabled. */
8696 if (tdep->gregset_reg_offset
8697 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8698 set_gdbarch_iterate_over_regset_sections
8699 (gdbarch, i386_iterate_over_regset_sections);
8700
8701 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8702 i386_fast_tracepoint_valid_at);
8703
8704 return gdbarch;
8705 }
8706
8707 \f
8708
8709 /* Return the target description for a specified XSAVE feature mask. */
8710
8711 const struct target_desc *
8712 i386_target_description (uint64_t xcr0)
8713 {
8714 static target_desc *i386_tdescs \
8715 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
8716 target_desc **tdesc;
8717
8718 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8719 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8720 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8721 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8722 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
8723
8724 if (*tdesc == NULL)
8725 *tdesc = i386_create_target_description (xcr0, false);
8726
8727 return *tdesc;
8728 }
8729
8730 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8731
8732 /* Find the bound directory base address. */
8733
8734 static unsigned long
8735 i386_mpx_bd_base (void)
8736 {
8737 struct regcache *rcache;
8738 struct gdbarch_tdep *tdep;
8739 ULONGEST ret;
8740 enum register_status regstatus;
8741
8742 rcache = get_current_regcache ();
8743 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8744
8745 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8746
8747 if (regstatus != REG_VALID)
8748 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8749
8750 return ret & MPX_BASE_MASK;
8751 }
8752
8753 int
8754 i386_mpx_enabled (void)
8755 {
8756 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8757 const struct target_desc *tdesc = tdep->tdesc;
8758
8759 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8760 }
8761
8762 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8763 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8764 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8765 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8766
8767 /* Find the bound table entry given the pointer location and the base
8768 address of the table. */
8769
8770 static CORE_ADDR
8771 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8772 {
8773 CORE_ADDR offset1;
8774 CORE_ADDR offset2;
8775 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8776 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8777 CORE_ADDR bd_entry_addr;
8778 CORE_ADDR bt_addr;
8779 CORE_ADDR bd_entry;
8780 struct gdbarch *gdbarch = get_current_arch ();
8781 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8782
8783
8784 if (gdbarch_ptr_bit (gdbarch) == 64)
8785 {
8786 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8787 bd_ptr_r_shift = 20;
8788 bd_ptr_l_shift = 3;
8789 bt_select_r_shift = 3;
8790 bt_select_l_shift = 5;
8791 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8792
8793 if ( sizeof (CORE_ADDR) == 4)
8794 error (_("bound table examination not supported\
8795 for 64-bit process with 32-bit GDB"));
8796 }
8797 else
8798 {
8799 mpx_bd_mask = MPX_BD_MASK_32;
8800 bd_ptr_r_shift = 12;
8801 bd_ptr_l_shift = 2;
8802 bt_select_r_shift = 2;
8803 bt_select_l_shift = 4;
8804 bt_mask = MPX_BT_MASK_32;
8805 }
8806
8807 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8808 bd_entry_addr = bd_base + offset1;
8809 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8810
8811 if ((bd_entry & 0x1) == 0)
8812 error (_("Invalid bounds directory entry at %s."),
8813 paddress (get_current_arch (), bd_entry_addr));
8814
8815 /* Clearing status bit. */
8816 bd_entry--;
8817 bt_addr = bd_entry & ~bt_select_r_shift;
8818 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8819
8820 return bt_addr + offset2;
8821 }
8822
8823 /* Print routine for the mpx bounds. */
8824
8825 static void
8826 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8827 {
8828 struct ui_out *uiout = current_uiout;
8829 LONGEST size;
8830 struct gdbarch *gdbarch = get_current_arch ();
8831 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8832 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8833
8834 if (bounds_in_map == 1)
8835 {
8836 uiout->text ("Null bounds on map:");
8837 uiout->text (" pointer value = ");
8838 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8839 uiout->text (".");
8840 uiout->text ("\n");
8841 }
8842 else
8843 {
8844 uiout->text ("{lbound = ");
8845 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8846 uiout->text (", ubound = ");
8847
8848 /* The upper bound is stored in 1's complement. */
8849 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8850 uiout->text ("}: pointer value = ");
8851 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8852
8853 if (gdbarch_ptr_bit (gdbarch) == 64)
8854 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8855 else
8856 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8857
8858 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8859 -1 represents in this sense full memory access, and there is no need
8860 one to the size. */
8861
8862 size = (size > -1 ? size + 1 : size);
8863 uiout->text (", size = ");
8864 uiout->field_fmt ("size", "%s", plongest (size));
8865
8866 uiout->text (", metadata = ");
8867 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8868 uiout->text ("\n");
8869 }
8870 }
8871
8872 /* Implement the command "show mpx bound". */
8873
8874 static void
8875 i386_mpx_info_bounds (const char *args, int from_tty)
8876 {
8877 CORE_ADDR bd_base = 0;
8878 CORE_ADDR addr;
8879 CORE_ADDR bt_entry_addr = 0;
8880 CORE_ADDR bt_entry[4];
8881 int i;
8882 struct gdbarch *gdbarch = get_current_arch ();
8883 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8884
8885 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8886 || !i386_mpx_enabled ())
8887 {
8888 printf_unfiltered (_("Intel Memory Protection Extensions not "
8889 "supported on this target.\n"));
8890 return;
8891 }
8892
8893 if (args == NULL)
8894 {
8895 printf_unfiltered (_("Address of pointer variable expected.\n"));
8896 return;
8897 }
8898
8899 addr = parse_and_eval_address (args);
8900
8901 bd_base = i386_mpx_bd_base ();
8902 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8903
8904 memset (bt_entry, 0, sizeof (bt_entry));
8905
8906 for (i = 0; i < 4; i++)
8907 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8908 + i * TYPE_LENGTH (data_ptr_type),
8909 data_ptr_type);
8910
8911 i386_mpx_print_bounds (bt_entry);
8912 }
8913
8914 /* Implement the command "set mpx bound". */
8915
8916 static void
8917 i386_mpx_set_bounds (const char *args, int from_tty)
8918 {
8919 CORE_ADDR bd_base = 0;
8920 CORE_ADDR addr, lower, upper;
8921 CORE_ADDR bt_entry_addr = 0;
8922 CORE_ADDR bt_entry[2];
8923 const char *input = args;
8924 int i;
8925 struct gdbarch *gdbarch = get_current_arch ();
8926 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8927 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8928
8929 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8930 || !i386_mpx_enabled ())
8931 error (_("Intel Memory Protection Extensions not supported\
8932 on this target."));
8933
8934 if (args == NULL)
8935 error (_("Pointer value expected."));
8936
8937 addr = value_as_address (parse_to_comma_and_eval (&input));
8938
8939 if (input[0] == ',')
8940 ++input;
8941 if (input[0] == '\0')
8942 error (_("wrong number of arguments: missing lower and upper bound."));
8943 lower = value_as_address (parse_to_comma_and_eval (&input));
8944
8945 if (input[0] == ',')
8946 ++input;
8947 if (input[0] == '\0')
8948 error (_("Wrong number of arguments; Missing upper bound."));
8949 upper = value_as_address (parse_to_comma_and_eval (&input));
8950
8951 bd_base = i386_mpx_bd_base ();
8952 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8953 for (i = 0; i < 2; i++)
8954 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8955 + i * TYPE_LENGTH (data_ptr_type),
8956 data_ptr_type);
8957 bt_entry[0] = (uint64_t) lower;
8958 bt_entry[1] = ~(uint64_t) upper;
8959
8960 for (i = 0; i < 2; i++)
8961 write_memory_unsigned_integer (bt_entry_addr
8962 + i * TYPE_LENGTH (data_ptr_type),
8963 TYPE_LENGTH (data_ptr_type), byte_order,
8964 bt_entry[i]);
8965 }
8966
8967 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8968
8969 /* Helper function for the CLI commands. */
8970
8971 static void
8972 set_mpx_cmd (const char *args, int from_tty)
8973 {
8974 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
8975 }
8976
8977 /* Helper function for the CLI commands. */
8978
8979 static void
8980 show_mpx_cmd (const char *args, int from_tty)
8981 {
8982 cmd_show_list (mpx_show_cmdlist, from_tty, "");
8983 }
8984
8985 void
8986 _initialize_i386_tdep (void)
8987 {
8988 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8989
8990 /* Add the variable that controls the disassembly flavor. */
8991 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8992 &disassembly_flavor, _("\
8993 Set the disassembly flavor."), _("\
8994 Show the disassembly flavor."), _("\
8995 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8996 NULL,
8997 NULL, /* FIXME: i18n: */
8998 &setlist, &showlist);
8999
9000 /* Add the variable that controls the convention for returning
9001 structs. */
9002 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9003 &struct_convention, _("\
9004 Set the convention for returning small structs."), _("\
9005 Show the convention for returning small structs."), _("\
9006 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9007 is \"default\"."),
9008 NULL,
9009 NULL, /* FIXME: i18n: */
9010 &setlist, &showlist);
9011
9012 /* Add "mpx" prefix for the set commands. */
9013
9014 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9015 Set Intel Memory Protection Extensions specific variables."),
9016 &mpx_set_cmdlist, "set mpx ",
9017 0 /* allow-unknown */, &setlist);
9018
9019 /* Add "mpx" prefix for the show commands. */
9020
9021 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9022 Show Intel Memory Protection Extensions specific variables."),
9023 &mpx_show_cmdlist, "show mpx ",
9024 0 /* allow-unknown */, &showlist);
9025
9026 /* Add "bound" command for the show mpx commands list. */
9027
9028 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9029 "Show the memory bounds for a given array/pointer storage\
9030 in the bound table.",
9031 &mpx_show_cmdlist);
9032
9033 /* Add "bound" command for the set mpx commands list. */
9034
9035 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9036 "Set the memory bounds for a given array/pointer storage\
9037 in the bound table.",
9038 &mpx_set_cmdlist);
9039
9040 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9041 i386_svr4_init_abi);
9042
9043 /* Initialize the i386-specific register groups. */
9044 i386_init_reggroups ();
9045
9046 /* Tell remote stub that we support XML target description. */
9047 register_remote_support_xml ("i386");
9048
9049 #if GDB_SELF_TEST
9050 struct
9051 {
9052 const char *xml;
9053 uint64_t mask;
9054 } xml_masks[] = {
9055 { "i386/i386.xml", X86_XSTATE_SSE_MASK },
9056 { "i386/i386-mmx.xml", X86_XSTATE_X87_MASK },
9057 { "i386/i386-avx.xml", X86_XSTATE_AVX_MASK },
9058 { "i386/i386-mpx.xml", X86_XSTATE_MPX_MASK },
9059 { "i386/i386-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
9060 { "i386/i386-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
9061 { "i386/i386-avx-mpx-avx512-pku.xml",
9062 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
9063 };
9064
9065 for (auto &a : xml_masks)
9066 {
9067 auto tdesc = i386_target_description (a.mask);
9068
9069 selftests::record_xml_tdesc (a.xml, tdesc);
9070 }
9071 #endif /* GDB_SELF_TEST */
9072 }
This page took 0.218047 seconds and 4 git commands to generate.