2003-04-16 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "objfiles.h"
29 #include "target.h"
30 #include "floatformat.h"
31 #include "symfile.h"
32 #include "symtab.h"
33 #include "gdbcmd.h"
34 #include "command.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "doublest.h"
38 #include "value.h"
39 #include "gdb_assert.h"
40 #include "reggroups.h"
41 #include "dummy-frame.h"
42 #include "osabi.h"
43
44 #include "i386-tdep.h"
45 #include "i387-tdep.h"
46
47 /* Names of the registers. The first 10 registers match the register
48 numbering scheme used by GCC for stabs and DWARF. */
49 static char *i386_register_names[] =
50 {
51 "eax", "ecx", "edx", "ebx",
52 "esp", "ebp", "esi", "edi",
53 "eip", "eflags", "cs", "ss",
54 "ds", "es", "fs", "gs",
55 "st0", "st1", "st2", "st3",
56 "st4", "st5", "st6", "st7",
57 "fctrl", "fstat", "ftag", "fiseg",
58 "fioff", "foseg", "fooff", "fop",
59 "xmm0", "xmm1", "xmm2", "xmm3",
60 "xmm4", "xmm5", "xmm6", "xmm7",
61 "mxcsr"
62 };
63
64 /* MMX registers. */
65
66 static char *i386_mmx_names[] =
67 {
68 "mm0", "mm1", "mm2", "mm3",
69 "mm4", "mm5", "mm6", "mm7"
70 };
71 static const int mmx_num_regs = (sizeof (i386_mmx_names)
72 / sizeof (i386_mmx_names[0]));
73 #define MM0_REGNUM (NUM_REGS)
74
75 static int
76 i386_mmx_regnum_p (int reg)
77 {
78 return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
79 }
80
81 /* FP register? */
82
83 int
84 i386_fp_regnum_p (int regnum)
85 {
86 return (regnum < NUM_REGS
87 && (FP0_REGNUM && FP0_REGNUM <= (regnum) && (regnum) < FPC_REGNUM));
88 }
89
90 int
91 i386_fpc_regnum_p (int regnum)
92 {
93 return (regnum < NUM_REGS
94 && (FPC_REGNUM <= (regnum) && (regnum) < XMM0_REGNUM));
95 }
96
97 /* SSE register? */
98
99 int
100 i386_sse_regnum_p (int regnum)
101 {
102 return (regnum < NUM_REGS
103 && (XMM0_REGNUM <= (regnum) && (regnum) < MXCSR_REGNUM));
104 }
105
106 int
107 i386_mxcsr_regnum_p (int regnum)
108 {
109 return (regnum < NUM_REGS
110 && (regnum == MXCSR_REGNUM));
111 }
112
113 /* Return the name of register REG. */
114
115 const char *
116 i386_register_name (int reg)
117 {
118 if (reg < 0)
119 return NULL;
120 if (i386_mmx_regnum_p (reg))
121 return i386_mmx_names[reg - MM0_REGNUM];
122 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
123 return NULL;
124
125 return i386_register_names[reg];
126 }
127
128 /* Convert stabs register number REG to the appropriate register
129 number used by GDB. */
130
131 static int
132 i386_stab_reg_to_regnum (int reg)
133 {
134 /* This implements what GCC calls the "default" register map. */
135 if (reg >= 0 && reg <= 7)
136 {
137 /* General registers. */
138 return reg;
139 }
140 else if (reg >= 12 && reg <= 19)
141 {
142 /* Floating-point registers. */
143 return reg - 12 + FP0_REGNUM;
144 }
145 else if (reg >= 21 && reg <= 28)
146 {
147 /* SSE registers. */
148 return reg - 21 + XMM0_REGNUM;
149 }
150 else if (reg >= 29 && reg <= 36)
151 {
152 /* MMX registers. */
153 return reg - 29 + MM0_REGNUM;
154 }
155
156 /* This will hopefully provoke a warning. */
157 return NUM_REGS + NUM_PSEUDO_REGS;
158 }
159
160 /* Convert DWARF register number REG to the appropriate register
161 number used by GDB. */
162
163 static int
164 i386_dwarf_reg_to_regnum (int reg)
165 {
166 /* The DWARF register numbering includes %eip and %eflags, and
167 numbers the floating point registers differently. */
168 if (reg >= 0 && reg <= 9)
169 {
170 /* General registers. */
171 return reg;
172 }
173 else if (reg >= 11 && reg <= 18)
174 {
175 /* Floating-point registers. */
176 return reg - 11 + FP0_REGNUM;
177 }
178 else if (reg >= 21)
179 {
180 /* The SSE and MMX registers have identical numbers as in stabs. */
181 return i386_stab_reg_to_regnum (reg);
182 }
183
184 /* This will hopefully provoke a warning. */
185 return NUM_REGS + NUM_PSEUDO_REGS;
186 }
187 \f
188
189 /* This is the variable that is set with "set disassembly-flavor", and
190 its legitimate values. */
191 static const char att_flavor[] = "att";
192 static const char intel_flavor[] = "intel";
193 static const char *valid_flavors[] =
194 {
195 att_flavor,
196 intel_flavor,
197 NULL
198 };
199 static const char *disassembly_flavor = att_flavor;
200
201 /* Stdio style buffering was used to minimize calls to ptrace, but
202 this buffering did not take into account that the code section
203 being accessed may not be an even number of buffers long (even if
204 the buffer is only sizeof(int) long). In cases where the code
205 section size happened to be a non-integral number of buffers long,
206 attempting to read the last buffer would fail. Simply using
207 target_read_memory and ignoring errors, rather than read_memory, is
208 not the correct solution, since legitimate access errors would then
209 be totally ignored. To properly handle this situation and continue
210 to use buffering would require that this code be able to determine
211 the minimum code section size granularity (not the alignment of the
212 section itself, since the actual failing case that pointed out this
213 problem had a section alignment of 4 but was not a multiple of 4
214 bytes long), on a target by target basis, and then adjust it's
215 buffer size accordingly. This is messy, but potentially feasible.
216 It probably needs the bfd library's help and support. For now, the
217 buffer size is set to 1. (FIXME -fnf) */
218
219 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
220 static CORE_ADDR codestream_next_addr;
221 static CORE_ADDR codestream_addr;
222 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
223 static int codestream_off;
224 static int codestream_cnt;
225
226 #define codestream_tell() (codestream_addr + codestream_off)
227 #define codestream_peek() \
228 (codestream_cnt == 0 ? \
229 codestream_fill(1) : codestream_buf[codestream_off])
230 #define codestream_get() \
231 (codestream_cnt-- == 0 ? \
232 codestream_fill(0) : codestream_buf[codestream_off++])
233
234 static unsigned char
235 codestream_fill (int peek_flag)
236 {
237 codestream_addr = codestream_next_addr;
238 codestream_next_addr += CODESTREAM_BUFSIZ;
239 codestream_off = 0;
240 codestream_cnt = CODESTREAM_BUFSIZ;
241 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
242
243 if (peek_flag)
244 return (codestream_peek ());
245 else
246 return (codestream_get ());
247 }
248
249 static void
250 codestream_seek (CORE_ADDR place)
251 {
252 codestream_next_addr = place / CODESTREAM_BUFSIZ;
253 codestream_next_addr *= CODESTREAM_BUFSIZ;
254 codestream_cnt = 0;
255 codestream_fill (1);
256 while (codestream_tell () != place)
257 codestream_get ();
258 }
259
260 static void
261 codestream_read (unsigned char *buf, int count)
262 {
263 unsigned char *p;
264 int i;
265 p = buf;
266 for (i = 0; i < count; i++)
267 *p++ = codestream_get ();
268 }
269 \f
270
271 /* If the next instruction is a jump, move to its target. */
272
273 static void
274 i386_follow_jump (void)
275 {
276 unsigned char buf[4];
277 long delta;
278
279 int data16;
280 CORE_ADDR pos;
281
282 pos = codestream_tell ();
283
284 data16 = 0;
285 if (codestream_peek () == 0x66)
286 {
287 codestream_get ();
288 data16 = 1;
289 }
290
291 switch (codestream_get ())
292 {
293 case 0xe9:
294 /* Relative jump: if data16 == 0, disp32, else disp16. */
295 if (data16)
296 {
297 codestream_read (buf, 2);
298 delta = extract_signed_integer (buf, 2);
299
300 /* Include the size of the jmp instruction (including the
301 0x66 prefix). */
302 pos += delta + 4;
303 }
304 else
305 {
306 codestream_read (buf, 4);
307 delta = extract_signed_integer (buf, 4);
308
309 pos += delta + 5;
310 }
311 break;
312 case 0xeb:
313 /* Relative jump, disp8 (ignore data16). */
314 codestream_read (buf, 1);
315 /* Sign-extend it. */
316 delta = extract_signed_integer (buf, 1);
317
318 pos += delta + 2;
319 break;
320 }
321 codestream_seek (pos);
322 }
323
324 /* Find & return the amount a local space allocated, and advance the
325 codestream to the first register push (if any).
326
327 If the entry sequence doesn't make sense, return -1, and leave
328 codestream pointer at a random spot. */
329
330 static long
331 i386_get_frame_setup (CORE_ADDR pc)
332 {
333 unsigned char op;
334
335 codestream_seek (pc);
336
337 i386_follow_jump ();
338
339 op = codestream_get ();
340
341 if (op == 0x58) /* popl %eax */
342 {
343 /* This function must start with
344
345 popl %eax 0x58
346 xchgl %eax, (%esp) 0x87 0x04 0x24
347 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
348
349 (the System V compiler puts out the second `xchg'
350 instruction, and the assembler doesn't try to optimize it, so
351 the 'sib' form gets generated). This sequence is used to get
352 the address of the return buffer for a function that returns
353 a structure. */
354 int pos;
355 unsigned char buf[4];
356 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
357 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
358
359 pos = codestream_tell ();
360 codestream_read (buf, 4);
361 if (memcmp (buf, proto1, 3) == 0)
362 pos += 3;
363 else if (memcmp (buf, proto2, 4) == 0)
364 pos += 4;
365
366 codestream_seek (pos);
367 op = codestream_get (); /* Update next opcode. */
368 }
369
370 if (op == 0x68 || op == 0x6a)
371 {
372 /* This function may start with
373
374 pushl constant
375 call _probe
376 addl $4, %esp
377
378 followed by
379
380 pushl %ebp
381
382 etc. */
383 int pos;
384 unsigned char buf[8];
385
386 /* Skip past the `pushl' instruction; it has either a one-byte
387 or a four-byte operand, depending on the opcode. */
388 pos = codestream_tell ();
389 if (op == 0x68)
390 pos += 4;
391 else
392 pos += 1;
393 codestream_seek (pos);
394
395 /* Read the following 8 bytes, which should be "call _probe" (6
396 bytes) followed by "addl $4,%esp" (2 bytes). */
397 codestream_read (buf, sizeof (buf));
398 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
399 pos += sizeof (buf);
400 codestream_seek (pos);
401 op = codestream_get (); /* Update next opcode. */
402 }
403
404 if (op == 0x55) /* pushl %ebp */
405 {
406 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
407 switch (codestream_get ())
408 {
409 case 0x8b:
410 if (codestream_get () != 0xec)
411 return -1;
412 break;
413 case 0x89:
414 if (codestream_get () != 0xe5)
415 return -1;
416 break;
417 default:
418 return -1;
419 }
420 /* Check for stack adjustment
421
422 subl $XXX, %esp
423
424 NOTE: You can't subtract a 16 bit immediate from a 32 bit
425 reg, so we don't have to worry about a data16 prefix. */
426 op = codestream_peek ();
427 if (op == 0x83)
428 {
429 /* `subl' with 8 bit immediate. */
430 codestream_get ();
431 if (codestream_get () != 0xec)
432 /* Some instruction starting with 0x83 other than `subl'. */
433 {
434 codestream_seek (codestream_tell () - 2);
435 return 0;
436 }
437 /* `subl' with signed byte immediate (though it wouldn't
438 make sense to be negative). */
439 return (codestream_get ());
440 }
441 else if (op == 0x81)
442 {
443 char buf[4];
444 /* Maybe it is `subl' with a 32 bit immedediate. */
445 codestream_get ();
446 if (codestream_get () != 0xec)
447 /* Some instruction starting with 0x81 other than `subl'. */
448 {
449 codestream_seek (codestream_tell () - 2);
450 return 0;
451 }
452 /* It is `subl' with a 32 bit immediate. */
453 codestream_read ((unsigned char *) buf, 4);
454 return extract_signed_integer (buf, 4);
455 }
456 else
457 {
458 return 0;
459 }
460 }
461 else if (op == 0xc8)
462 {
463 char buf[2];
464 /* `enter' with 16 bit unsigned immediate. */
465 codestream_read ((unsigned char *) buf, 2);
466 codestream_get (); /* Flush final byte of enter instruction. */
467 return extract_unsigned_integer (buf, 2);
468 }
469 return (-1);
470 }
471
472 /* Signal trampolines don't have a meaningful frame. The frame
473 pointer value we use is actually the frame pointer of the calling
474 frame -- that is, the frame which was in progress when the signal
475 trampoline was entered. GDB mostly treats this frame pointer value
476 as a magic cookie. We detect the case of a signal trampoline by
477 testing for get_frame_type() == SIGTRAMP_FRAME, which is set based
478 on PC_IN_SIGTRAMP.
479
480 When a signal trampoline is invoked from a frameless function, we
481 essentially have two frameless functions in a row. In this case,
482 we use the same magic cookie for three frames in a row. We detect
483 this case by seeing whether the next frame is a SIGTRAMP_FRAME,
484 and, if it does, checking whether the current frame is actually
485 frameless. In this case, we need to get the PC by looking at the
486 SP register value stored in the signal context.
487
488 This should work in most cases except in horrible situations where
489 a signal occurs just as we enter a function but before the frame
490 has been set up. Incidentally, that's just what happens when we
491 call a function from GDB with a signal pending (there's a test in
492 the testsuite that makes this happen). Therefore we pretend that
493 we have a frameless function if we're stopped at the start of a
494 function. */
495
496 /* Return non-zero if we're dealing with a frameless signal, that is,
497 a signal trampoline invoked from a frameless function. */
498
499 int
500 i386_frameless_signal_p (struct frame_info *frame)
501 {
502 return (get_next_frame (frame)
503 && get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME
504 && (frameless_look_for_prologue (frame)
505 || get_frame_pc (frame) == get_frame_func (frame)));
506 }
507
508 /* Return the chain-pointer for FRAME. In the case of the i386, the
509 frame's nominal address is the address of a 4-byte word containing
510 the calling frame's address. */
511
512 static CORE_ADDR
513 i386_frame_chain (struct frame_info *frame)
514 {
515 if (pc_in_dummy_frame (get_frame_pc (frame)))
516 return get_frame_base (frame);
517
518 if (get_frame_type (frame) == SIGTRAMP_FRAME
519 || i386_frameless_signal_p (frame))
520 return get_frame_base (frame);
521
522 if (! inside_entry_file (get_frame_pc (frame)))
523 return read_memory_unsigned_integer (get_frame_base (frame), 4);
524
525 return 0;
526 }
527
528 /* Determine whether the function invocation represented by FRAME does
529 not have a from on the stack associated with it. If it does not,
530 return non-zero, otherwise return zero. */
531
532 static int
533 i386_frameless_function_invocation (struct frame_info *frame)
534 {
535 if (get_frame_type (frame) == SIGTRAMP_FRAME)
536 return 0;
537
538 return frameless_look_for_prologue (frame);
539 }
540
541 /* Assuming FRAME is for a sigtramp routine, return the saved program
542 counter. */
543
544 static CORE_ADDR
545 i386_sigtramp_saved_pc (struct frame_info *frame)
546 {
547 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
548 CORE_ADDR addr;
549
550 addr = tdep->sigcontext_addr (frame);
551 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
552 }
553
554 /* Assuming FRAME is for a sigtramp routine, return the saved stack
555 pointer. */
556
557 static CORE_ADDR
558 i386_sigtramp_saved_sp (struct frame_info *frame)
559 {
560 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
561 CORE_ADDR addr;
562
563 addr = tdep->sigcontext_addr (frame);
564 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
565 }
566
567 /* Return the saved program counter for FRAME. */
568
569 static CORE_ADDR
570 i386_frame_saved_pc (struct frame_info *frame)
571 {
572 if (pc_in_dummy_frame (get_frame_pc (frame)))
573 {
574 ULONGEST pc;
575
576 frame_unwind_unsigned_register (frame, PC_REGNUM, &pc);
577 return pc;
578 }
579
580 if (get_frame_type (frame) == SIGTRAMP_FRAME)
581 return i386_sigtramp_saved_pc (frame);
582
583 if (i386_frameless_signal_p (frame))
584 {
585 CORE_ADDR sp = i386_sigtramp_saved_sp (get_next_frame (frame));
586 return read_memory_unsigned_integer (sp, 4);
587 }
588
589 return read_memory_unsigned_integer (get_frame_base (frame) + 4, 4);
590 }
591
592 /* Immediately after a function call, return the saved pc. */
593
594 static CORE_ADDR
595 i386_saved_pc_after_call (struct frame_info *frame)
596 {
597 if (get_frame_type (frame) == SIGTRAMP_FRAME)
598 return i386_sigtramp_saved_pc (frame);
599
600 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
601 }
602
603 /* Return number of args passed to a frame.
604 Can return -1, meaning no way to tell. */
605
606 static int
607 i386_frame_num_args (struct frame_info *fi)
608 {
609 #if 1
610 return -1;
611 #else
612 /* This loses because not only might the compiler not be popping the
613 args right after the function call, it might be popping args from
614 both this call and a previous one, and we would say there are
615 more args than there really are. */
616
617 int retpc;
618 unsigned char op;
619 struct frame_info *pfi;
620
621 /* On the i386, the instruction following the call could be:
622 popl %ecx - one arg
623 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
624 anything else - zero args. */
625
626 int frameless;
627
628 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
629 if (frameless)
630 /* In the absence of a frame pointer, GDB doesn't get correct
631 values for nameless arguments. Return -1, so it doesn't print
632 any nameless arguments. */
633 return -1;
634
635 pfi = get_prev_frame (fi);
636 if (pfi == 0)
637 {
638 /* NOTE: This can happen if we are looking at the frame for
639 main, because DEPRECATED_FRAME_CHAIN_VALID won't let us go
640 into start. If we have debugging symbols, that's not really
641 a big deal; it just means it will only show as many arguments
642 to main as are declared. */
643 return -1;
644 }
645 else
646 {
647 retpc = pfi->pc;
648 op = read_memory_integer (retpc, 1);
649 if (op == 0x59) /* pop %ecx */
650 return 1;
651 else if (op == 0x83)
652 {
653 op = read_memory_integer (retpc + 1, 1);
654 if (op == 0xc4)
655 /* addl $<signed imm 8 bits>, %esp */
656 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
657 else
658 return 0;
659 }
660 else if (op == 0x81) /* `add' with 32 bit immediate. */
661 {
662 op = read_memory_integer (retpc + 1, 1);
663 if (op == 0xc4)
664 /* addl $<imm 32>, %esp */
665 return read_memory_integer (retpc + 2, 4) / 4;
666 else
667 return 0;
668 }
669 else
670 {
671 return 0;
672 }
673 }
674 #endif
675 }
676
677 /* Parse the first few instructions the function to see what registers
678 were stored.
679
680 We handle these cases:
681
682 The startup sequence can be at the start of the function, or the
683 function can start with a branch to startup code at the end.
684
685 %ebp can be set up with either the 'enter' instruction, or "pushl
686 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
687 once used in the System V compiler).
688
689 Local space is allocated just below the saved %ebp by either the
690 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
691 bit unsigned argument for space to allocate, and the 'addl'
692 instruction could have either a signed byte, or 32 bit immediate.
693
694 Next, the registers used by this function are pushed. With the
695 System V compiler they will always be in the order: %edi, %esi,
696 %ebx (and sometimes a harmless bug causes it to also save but not
697 restore %eax); however, the code below is willing to see the pushes
698 in any order, and will handle up to 8 of them.
699
700 If the setup sequence is at the end of the function, then the next
701 instruction will be a branch back to the start. */
702
703 static void
704 i386_frame_init_saved_regs (struct frame_info *fip)
705 {
706 long locals = -1;
707 unsigned char op;
708 CORE_ADDR addr;
709 CORE_ADDR pc;
710 int i;
711
712 if (get_frame_saved_regs (fip))
713 return;
714
715 frame_saved_regs_zalloc (fip);
716
717 pc = get_frame_func (fip);
718 if (pc != 0)
719 locals = i386_get_frame_setup (pc);
720
721 if (locals >= 0)
722 {
723 addr = get_frame_base (fip) - 4 - locals;
724 for (i = 0; i < 8; i++)
725 {
726 op = codestream_get ();
727 if (op < 0x50 || op > 0x57)
728 break;
729 #ifdef I386_REGNO_TO_SYMMETRY
730 /* Dynix uses different internal numbering. Ick. */
731 get_frame_saved_regs (fip)[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
732 #else
733 get_frame_saved_regs (fip)[op - 0x50] = addr;
734 #endif
735 addr -= 4;
736 }
737 }
738
739 get_frame_saved_regs (fip)[PC_REGNUM] = get_frame_base (fip) + 4;
740 get_frame_saved_regs (fip)[FP_REGNUM] = get_frame_base (fip);
741 }
742
743 /* Return PC of first real instruction. */
744
745 static CORE_ADDR
746 i386_skip_prologue (CORE_ADDR pc)
747 {
748 unsigned char op;
749 int i;
750 static unsigned char pic_pat[6] =
751 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
752 0x5b, /* popl %ebx */
753 };
754 CORE_ADDR pos;
755
756 if (i386_get_frame_setup (pc) < 0)
757 return (pc);
758
759 /* Found valid frame setup -- codestream now points to start of push
760 instructions for saving registers. */
761
762 /* Skip over register saves. */
763 for (i = 0; i < 8; i++)
764 {
765 op = codestream_peek ();
766 /* Break if not `pushl' instrunction. */
767 if (op < 0x50 || op > 0x57)
768 break;
769 codestream_get ();
770 }
771
772 /* The native cc on SVR4 in -K PIC mode inserts the following code
773 to get the address of the global offset table (GOT) into register
774 %ebx
775
776 call 0x0
777 popl %ebx
778 movl %ebx,x(%ebp) (optional)
779 addl y,%ebx
780
781 This code is with the rest of the prologue (at the end of the
782 function), so we have to skip it to get to the first real
783 instruction at the start of the function. */
784
785 pos = codestream_tell ();
786 for (i = 0; i < 6; i++)
787 {
788 op = codestream_get ();
789 if (pic_pat[i] != op)
790 break;
791 }
792 if (i == 6)
793 {
794 unsigned char buf[4];
795 long delta = 6;
796
797 op = codestream_get ();
798 if (op == 0x89) /* movl %ebx, x(%ebp) */
799 {
800 op = codestream_get ();
801 if (op == 0x5d) /* One byte offset from %ebp. */
802 {
803 delta += 3;
804 codestream_read (buf, 1);
805 }
806 else if (op == 0x9d) /* Four byte offset from %ebp. */
807 {
808 delta += 6;
809 codestream_read (buf, 4);
810 }
811 else /* Unexpected instruction. */
812 delta = -1;
813 op = codestream_get ();
814 }
815 /* addl y,%ebx */
816 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
817 {
818 pos += delta + 6;
819 }
820 }
821 codestream_seek (pos);
822
823 i386_follow_jump ();
824
825 return (codestream_tell ());
826 }
827
828 /* Use the program counter to determine the contents and size of a
829 breakpoint instruction. Return a pointer to a string of bytes that
830 encode a breakpoint instruction, store the length of the string in
831 *LEN and optionally adjust *PC to point to the correct memory
832 location for inserting the breakpoint.
833
834 On the i386 we have a single breakpoint that fits in a single byte
835 and can be inserted anywhere. */
836
837 static const unsigned char *
838 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
839 {
840 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
841
842 *len = sizeof (break_insn);
843 return break_insn;
844 }
845
846 /* Push the return address (pointing to the call dummy) onto the stack
847 and return the new value for the stack pointer. */
848
849 static CORE_ADDR
850 i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
851 {
852 char buf[4];
853
854 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
855 write_memory (sp - 4, buf, 4);
856 return sp - 4;
857 }
858
859 static void
860 i386_do_pop_frame (struct frame_info *frame)
861 {
862 CORE_ADDR fp;
863 int regnum;
864 char regbuf[I386_MAX_REGISTER_SIZE];
865
866 fp = get_frame_base (frame);
867 i386_frame_init_saved_regs (frame);
868
869 for (regnum = 0; regnum < NUM_REGS; regnum++)
870 {
871 CORE_ADDR addr;
872 addr = get_frame_saved_regs (frame)[regnum];
873 if (addr)
874 {
875 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
876 deprecated_write_register_gen (regnum, regbuf);
877 }
878 }
879 write_register (FP_REGNUM, read_memory_integer (fp, 4));
880 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
881 write_register (SP_REGNUM, fp + 8);
882 flush_cached_frames ();
883 }
884
885 static void
886 i386_pop_frame (void)
887 {
888 generic_pop_current_frame (i386_do_pop_frame);
889 }
890 \f
891
892 /* Figure out where the longjmp will land. Slurp the args out of the
893 stack. We expect the first arg to be a pointer to the jmp_buf
894 structure from which we extract the address that we will land at.
895 This address is copied into PC. This routine returns non-zero on
896 success. */
897
898 static int
899 i386_get_longjmp_target (CORE_ADDR *pc)
900 {
901 char buf[8];
902 CORE_ADDR sp, jb_addr;
903 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
904 int len = TARGET_PTR_BIT / TARGET_CHAR_BIT;
905
906 /* If JB_PC_OFFSET is -1, we have no way to find out where the
907 longjmp will land. */
908 if (jb_pc_offset == -1)
909 return 0;
910
911 sp = read_register (SP_REGNUM);
912 if (target_read_memory (sp + len, buf, len))
913 return 0;
914
915 jb_addr = extract_address (buf, len);
916 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
917 return 0;
918
919 *pc = extract_address (buf, len);
920 return 1;
921 }
922 \f
923
924 static CORE_ADDR
925 i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
926 int struct_return, CORE_ADDR struct_addr)
927 {
928 sp = legacy_push_arguments (nargs, args, sp, struct_return, struct_addr);
929
930 if (struct_return)
931 {
932 char buf[4];
933
934 sp -= 4;
935 store_address (buf, 4, struct_addr);
936 write_memory (sp, buf, 4);
937 }
938
939 return sp;
940 }
941
942 /* These registers are used for returning integers (and on some
943 targets also for returning `struct' and `union' values when their
944 size and alignment match an integer type). */
945 #define LOW_RETURN_REGNUM 0 /* %eax */
946 #define HIGH_RETURN_REGNUM 2 /* %edx */
947
948 /* Extract from an array REGBUF containing the (raw) register state, a
949 function return value of TYPE, and copy that, in virtual format,
950 into VALBUF. */
951
952 static void
953 i386_extract_return_value (struct type *type, struct regcache *regcache,
954 void *dst)
955 {
956 bfd_byte *valbuf = dst;
957 int len = TYPE_LENGTH (type);
958 char buf[I386_MAX_REGISTER_SIZE];
959
960 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
961 && TYPE_NFIELDS (type) == 1)
962 {
963 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
964 return;
965 }
966
967 if (TYPE_CODE (type) == TYPE_CODE_FLT)
968 {
969 if (FP0_REGNUM == 0)
970 {
971 warning ("Cannot find floating-point return value.");
972 memset (valbuf, 0, len);
973 return;
974 }
975
976 /* Floating-point return values can be found in %st(0). Convert
977 its contents to the desired type. This is probably not
978 exactly how it would happen on the target itself, but it is
979 the best we can do. */
980 regcache_raw_read (regcache, FP0_REGNUM, buf);
981 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
982 }
983 else
984 {
985 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
986 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
987
988 if (len <= low_size)
989 {
990 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
991 memcpy (valbuf, buf, len);
992 }
993 else if (len <= (low_size + high_size))
994 {
995 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
996 memcpy (valbuf, buf, low_size);
997 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
998 memcpy (valbuf + low_size, buf, len - low_size);
999 }
1000 else
1001 internal_error (__FILE__, __LINE__,
1002 "Cannot extract return value of %d bytes long.", len);
1003 }
1004 }
1005
1006 /* Write into the appropriate registers a function return value stored
1007 in VALBUF of type TYPE, given in virtual format. */
1008
1009 static void
1010 i386_store_return_value (struct type *type, struct regcache *regcache,
1011 const void *valbuf)
1012 {
1013 int len = TYPE_LENGTH (type);
1014
1015 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1016 && TYPE_NFIELDS (type) == 1)
1017 {
1018 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
1019 return;
1020 }
1021
1022 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1023 {
1024 ULONGEST fstat;
1025 char buf[FPU_REG_RAW_SIZE];
1026
1027 if (FP0_REGNUM == 0)
1028 {
1029 warning ("Cannot set floating-point return value.");
1030 return;
1031 }
1032
1033 /* Returning floating-point values is a bit tricky. Apart from
1034 storing the return value in %st(0), we have to simulate the
1035 state of the FPU at function return point. */
1036
1037 /* Convert the value found in VALBUF to the extended
1038 floating-point format used by the FPU. This is probably
1039 not exactly how it would happen on the target itself, but
1040 it is the best we can do. */
1041 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1042 regcache_raw_write (regcache, FP0_REGNUM, buf);
1043
1044 /* Set the top of the floating-point register stack to 7. The
1045 actual value doesn't really matter, but 7 is what a normal
1046 function return would end up with if the program started out
1047 with a freshly initialized FPU. */
1048 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1049 fstat |= (7 << 11);
1050 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
1051
1052 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1053 the floating-point register stack to 7, the appropriate value
1054 for the tag word is 0x3fff. */
1055 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
1056 }
1057 else
1058 {
1059 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1060 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1061
1062 if (len <= low_size)
1063 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1064 else if (len <= (low_size + high_size))
1065 {
1066 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1067 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1068 len - low_size, (char *) valbuf + low_size);
1069 }
1070 else
1071 internal_error (__FILE__, __LINE__,
1072 "Cannot store return value of %d bytes long.", len);
1073 }
1074 }
1075
1076 /* Extract from REGCACHE, which contains the (raw) register state, the
1077 address in which a function should return its structure value, as a
1078 CORE_ADDR. */
1079
1080 static CORE_ADDR
1081 i386_extract_struct_value_address (struct regcache *regcache)
1082 {
1083 ULONGEST addr;
1084
1085 regcache_raw_read_unsigned (regcache, LOW_RETURN_REGNUM, &addr);
1086 return addr;
1087 }
1088 \f
1089
1090 /* This is the variable that is set with "set struct-convention", and
1091 its legitimate values. */
1092 static const char default_struct_convention[] = "default";
1093 static const char pcc_struct_convention[] = "pcc";
1094 static const char reg_struct_convention[] = "reg";
1095 static const char *valid_conventions[] =
1096 {
1097 default_struct_convention,
1098 pcc_struct_convention,
1099 reg_struct_convention,
1100 NULL
1101 };
1102 static const char *struct_convention = default_struct_convention;
1103
1104 static int
1105 i386_use_struct_convention (int gcc_p, struct type *type)
1106 {
1107 enum struct_return struct_return;
1108
1109 if (struct_convention == default_struct_convention)
1110 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1111 else if (struct_convention == pcc_struct_convention)
1112 struct_return = pcc_struct_return;
1113 else
1114 struct_return = reg_struct_return;
1115
1116 return generic_use_struct_convention (struct_return == reg_struct_return,
1117 type);
1118 }
1119 \f
1120
1121 /* Return the GDB type object for the "standard" data type of data in
1122 register REGNUM. Perhaps %esi and %edi should go here, but
1123 potentially they could be used for things other than address. */
1124
1125 static struct type *
1126 i386_register_type (struct gdbarch *gdbarch, int regnum)
1127 {
1128 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1129 return lookup_pointer_type (builtin_type_void);
1130
1131 if (i386_fp_regnum_p (regnum))
1132 return builtin_type_i387_ext;
1133
1134 if (i386_sse_regnum_p (regnum))
1135 return builtin_type_vec128i;
1136
1137 if (i386_mmx_regnum_p (regnum))
1138 return builtin_type_vec64i;
1139
1140 return builtin_type_int;
1141 }
1142
1143 /* Map a cooked register onto a raw register or memory. For the i386,
1144 the MMX registers need to be mapped onto floating point registers. */
1145
1146 static int
1147 mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1148 {
1149 int mmxi;
1150 ULONGEST fstat;
1151 int tos;
1152 int fpi;
1153 mmxi = regnum - MM0_REGNUM;
1154 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1155 tos = (fstat >> 11) & 0x7;
1156 fpi = (mmxi + tos) % 8;
1157 return (FP0_REGNUM + fpi);
1158 }
1159
1160 static void
1161 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1162 int regnum, void *buf)
1163 {
1164 if (i386_mmx_regnum_p (regnum))
1165 {
1166 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1167 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1168 regcache_raw_read (regcache, fpnum, mmx_buf);
1169 /* Extract (always little endian). */
1170 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1171 }
1172 else
1173 regcache_raw_read (regcache, regnum, buf);
1174 }
1175
1176 static void
1177 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1178 int regnum, const void *buf)
1179 {
1180 if (i386_mmx_regnum_p (regnum))
1181 {
1182 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1183 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1184 /* Read ... */
1185 regcache_raw_read (regcache, fpnum, mmx_buf);
1186 /* ... Modify ... (always little endian). */
1187 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1188 /* ... Write. */
1189 regcache_raw_write (regcache, fpnum, mmx_buf);
1190 }
1191 else
1192 regcache_raw_write (regcache, regnum, buf);
1193 }
1194
1195 /* Return true iff register REGNUM's virtual format is different from
1196 its raw format. Note that this definition assumes that the host
1197 supports IEEE 32-bit floats, since it doesn't say that SSE
1198 registers need conversion. Even if we can't find a counterexample,
1199 this is still sloppy. */
1200
1201 static int
1202 i386_register_convertible (int regnum)
1203 {
1204 return i386_fp_regnum_p (regnum);
1205 }
1206
1207 /* Convert data from raw format for register REGNUM in buffer FROM to
1208 virtual format with type TYPE in buffer TO. */
1209
1210 static void
1211 i386_register_convert_to_virtual (int regnum, struct type *type,
1212 char *from, char *to)
1213 {
1214 gdb_assert (i386_fp_regnum_p (regnum));
1215
1216 /* We only support floating-point values. */
1217 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1218 {
1219 warning ("Cannot convert floating-point register value "
1220 "to non-floating-point type.");
1221 memset (to, 0, TYPE_LENGTH (type));
1222 return;
1223 }
1224
1225 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1226 the extended floating-point format used by the FPU. */
1227 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1228 }
1229
1230 /* Convert data from virtual format with type TYPE in buffer FROM to
1231 raw format for register REGNUM in buffer TO. */
1232
1233 static void
1234 i386_register_convert_to_raw (struct type *type, int regnum,
1235 char *from, char *to)
1236 {
1237 gdb_assert (i386_fp_regnum_p (regnum));
1238
1239 /* We only support floating-point values. */
1240 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1241 {
1242 warning ("Cannot convert non-floating-point type "
1243 "to floating-point register value.");
1244 memset (to, 0, TYPE_LENGTH (type));
1245 return;
1246 }
1247
1248 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1249 to the extended floating-point format used by the FPU. */
1250 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1251 }
1252 \f
1253
1254 #ifdef STATIC_TRANSFORM_NAME
1255 /* SunPRO encodes the static variables. This is not related to C++
1256 mangling, it is done for C too. */
1257
1258 char *
1259 sunpro_static_transform_name (char *name)
1260 {
1261 char *p;
1262 if (IS_STATIC_TRANSFORM_NAME (name))
1263 {
1264 /* For file-local statics there will be a period, a bunch of
1265 junk (the contents of which match a string given in the
1266 N_OPT), a period and the name. For function-local statics
1267 there will be a bunch of junk (which seems to change the
1268 second character from 'A' to 'B'), a period, the name of the
1269 function, and the name. So just skip everything before the
1270 last period. */
1271 p = strrchr (name, '.');
1272 if (p != NULL)
1273 name = p + 1;
1274 }
1275 return name;
1276 }
1277 #endif /* STATIC_TRANSFORM_NAME */
1278 \f
1279
1280 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1281
1282 CORE_ADDR
1283 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1284 {
1285 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1286 {
1287 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1288 struct minimal_symbol *indsym =
1289 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1290 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
1291
1292 if (symname)
1293 {
1294 if (strncmp (symname, "__imp_", 6) == 0
1295 || strncmp (symname, "_imp_", 5) == 0)
1296 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1297 }
1298 }
1299 return 0; /* Not a trampoline. */
1300 }
1301 \f
1302
1303 /* Return non-zero if PC and NAME show that we are in a signal
1304 trampoline. */
1305
1306 static int
1307 i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1308 {
1309 return (name && strcmp ("_sigtramp", name) == 0);
1310 }
1311 \f
1312
1313 /* We have two flavours of disassembly. The machinery on this page
1314 deals with switching between those. */
1315
1316 static int
1317 i386_print_insn (bfd_vma pc, disassemble_info *info)
1318 {
1319 gdb_assert (disassembly_flavor == att_flavor
1320 || disassembly_flavor == intel_flavor);
1321
1322 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1323 constified, cast to prevent a compiler warning. */
1324 info->disassembler_options = (char *) disassembly_flavor;
1325 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1326
1327 return print_insn_i386 (pc, info);
1328 }
1329 \f
1330
1331 /* There are a few i386 architecture variants that differ only
1332 slightly from the generic i386 target. For now, we don't give them
1333 their own source file, but include them here. As a consequence,
1334 they'll always be included. */
1335
1336 /* System V Release 4 (SVR4). */
1337
1338 static int
1339 i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
1340 {
1341 return (name && (strcmp ("_sigreturn", name) == 0
1342 || strcmp ("_sigacthandler", name) == 0
1343 || strcmp ("sigvechandler", name) == 0));
1344 }
1345
1346 /* Get address of the pushed ucontext (sigcontext) on the stack for
1347 all three variants of SVR4 sigtramps. */
1348
1349 static CORE_ADDR
1350 i386_svr4_sigcontext_addr (struct frame_info *frame)
1351 {
1352 int sigcontext_offset = -1;
1353 char *name = NULL;
1354
1355 find_pc_partial_function (get_frame_pc (frame), &name, NULL, NULL);
1356 if (name)
1357 {
1358 if (strcmp (name, "_sigreturn") == 0)
1359 sigcontext_offset = 132;
1360 else if (strcmp (name, "_sigacthandler") == 0)
1361 sigcontext_offset = 80;
1362 else if (strcmp (name, "sigvechandler") == 0)
1363 sigcontext_offset = 120;
1364 }
1365
1366 gdb_assert (sigcontext_offset != -1);
1367
1368 if (get_next_frame (frame))
1369 return get_frame_base (get_next_frame (frame)) + sigcontext_offset;
1370 return read_register (SP_REGNUM) + sigcontext_offset;
1371 }
1372 \f
1373
1374 /* DJGPP. */
1375
1376 static int
1377 i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1378 {
1379 /* DJGPP doesn't have any special frames for signal handlers. */
1380 return 0;
1381 }
1382 \f
1383
1384 /* Generic ELF. */
1385
1386 void
1387 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1388 {
1389 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1390 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1391 }
1392
1393 /* System V Release 4 (SVR4). */
1394
1395 void
1396 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1397 {
1398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1399
1400 /* System V Release 4 uses ELF. */
1401 i386_elf_init_abi (info, gdbarch);
1402
1403 /* System V Release 4 has shared libraries. */
1404 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1405 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1406
1407 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1408 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1409 tdep->sc_pc_offset = 14 * 4;
1410 tdep->sc_sp_offset = 7 * 4;
1411
1412 tdep->jb_pc_offset = 20;
1413 }
1414
1415 /* DJGPP. */
1416
1417 static void
1418 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1419 {
1420 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1421
1422 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
1423
1424 tdep->jb_pc_offset = 36;
1425 }
1426
1427 /* NetWare. */
1428
1429 static void
1430 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1431 {
1432 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1433
1434 tdep->jb_pc_offset = 24;
1435 }
1436 \f
1437
1438 /* i386 register groups. In addition to the normal groups, add "mmx"
1439 and "sse". */
1440
1441 static struct reggroup *i386_sse_reggroup;
1442 static struct reggroup *i386_mmx_reggroup;
1443
1444 static void
1445 i386_init_reggroups (void)
1446 {
1447 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1448 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1449 }
1450
1451 static void
1452 i386_add_reggroups (struct gdbarch *gdbarch)
1453 {
1454 reggroup_add (gdbarch, i386_sse_reggroup);
1455 reggroup_add (gdbarch, i386_mmx_reggroup);
1456 reggroup_add (gdbarch, general_reggroup);
1457 reggroup_add (gdbarch, float_reggroup);
1458 reggroup_add (gdbarch, all_reggroup);
1459 reggroup_add (gdbarch, save_reggroup);
1460 reggroup_add (gdbarch, restore_reggroup);
1461 reggroup_add (gdbarch, vector_reggroup);
1462 reggroup_add (gdbarch, system_reggroup);
1463 }
1464
1465 int
1466 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1467 struct reggroup *group)
1468 {
1469 int sse_regnum_p = (i386_sse_regnum_p (regnum)
1470 || i386_mxcsr_regnum_p (regnum));
1471 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1472 || i386_fpc_regnum_p (regnum));
1473 int mmx_regnum_p = (i386_mmx_regnum_p (regnum));
1474 if (group == i386_mmx_reggroup)
1475 return mmx_regnum_p;
1476 if (group == i386_sse_reggroup)
1477 return sse_regnum_p;
1478 if (group == vector_reggroup)
1479 return (mmx_regnum_p || sse_regnum_p);
1480 if (group == float_reggroup)
1481 return fp_regnum_p;
1482 if (group == general_reggroup)
1483 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
1484 return default_register_reggroup_p (gdbarch, regnum, group);
1485 }
1486
1487 \f
1488 static struct gdbarch *
1489 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1490 {
1491 struct gdbarch_tdep *tdep;
1492 struct gdbarch *gdbarch;
1493
1494 /* If there is already a candidate, use it. */
1495 arches = gdbarch_list_lookup_by_info (arches, &info);
1496 if (arches != NULL)
1497 return arches->gdbarch;
1498
1499 /* Allocate space for the new architecture. */
1500 tdep = XMALLOC (struct gdbarch_tdep);
1501 gdbarch = gdbarch_alloc (&info, tdep);
1502
1503 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1504 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1505 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1506
1507 /* The i386 default settings don't include the SSE registers.
1508 FIXME: kettenis/20020614: They do include the FPU registers for
1509 now, which probably is not quite right. */
1510 tdep->num_xmm_regs = 0;
1511
1512 tdep->jb_pc_offset = -1;
1513 tdep->struct_return = pcc_struct_return;
1514 tdep->sigtramp_start = 0;
1515 tdep->sigtramp_end = 0;
1516 tdep->sigcontext_addr = NULL;
1517 tdep->sc_pc_offset = -1;
1518 tdep->sc_sp_offset = -1;
1519
1520 /* The format used for `long double' on almost all i386 targets is
1521 the i387 extended floating-point format. In fact, of all targets
1522 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1523 on having a `long double' that's not `long' at all. */
1524 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1525
1526 /* Although the i387 extended floating-point has only 80 significant
1527 bits, a `long double' actually takes up 96, probably to enforce
1528 alignment. */
1529 set_gdbarch_long_double_bit (gdbarch, 96);
1530
1531 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1532 tm-symmetry.h currently override this. Sigh. */
1533 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
1534
1535 set_gdbarch_sp_regnum (gdbarch, 4); /* %esp */
1536 set_gdbarch_fp_regnum (gdbarch, 5); /* %ebp */
1537 set_gdbarch_pc_regnum (gdbarch, 8); /* %eip */
1538 set_gdbarch_ps_regnum (gdbarch, 9); /* %eflags */
1539 set_gdbarch_fp0_regnum (gdbarch, 16); /* %st(0) */
1540
1541 /* Use the "default" register numbering scheme for stabs and COFF. */
1542 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1543 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1544
1545 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1546 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1547 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1548
1549 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1550 be in use on any of the supported i386 targets. */
1551
1552 set_gdbarch_register_name (gdbarch, i386_register_name);
1553 set_gdbarch_register_size (gdbarch, 4);
1554 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
1555 set_gdbarch_register_type (gdbarch, i386_register_type);
1556
1557 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1558
1559 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
1560
1561 /* Call dummy code. */
1562 set_gdbarch_call_dummy_words (gdbarch, NULL);
1563 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1564
1565 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1566 set_gdbarch_register_convert_to_virtual (gdbarch,
1567 i386_register_convert_to_virtual);
1568 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1569
1570 /* "An argument's size is increased, if necessary, to make it a
1571 multiple of [32-bit] words. This may require tail padding,
1572 depending on the size of the argument" -- from the x86 ABI. */
1573 set_gdbarch_parm_boundary (gdbarch, 32);
1574
1575 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
1576 set_gdbarch_deprecated_push_arguments (gdbarch, i386_push_arguments);
1577 set_gdbarch_deprecated_push_return_address (gdbarch, i386_push_return_address);
1578 set_gdbarch_deprecated_pop_frame (gdbarch, i386_pop_frame);
1579 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1580 set_gdbarch_extract_struct_value_address (gdbarch,
1581 i386_extract_struct_value_address);
1582 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1583
1584 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
1585 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1586
1587 /* Stack grows downward. */
1588 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1589
1590 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1591 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1592 set_gdbarch_function_start_offset (gdbarch, 0);
1593
1594 /* The following redefines make backtracing through sigtramp work.
1595 They manufacture a fake sigtramp frame and obtain the saved pc in
1596 sigtramp from the sigcontext structure which is pushed by the
1597 kernel on the user stack, along with a pointer to it. */
1598
1599 set_gdbarch_frame_args_skip (gdbarch, 8);
1600 set_gdbarch_frameless_function_invocation (gdbarch,
1601 i386_frameless_function_invocation);
1602 set_gdbarch_deprecated_frame_chain (gdbarch, i386_frame_chain);
1603 set_gdbarch_deprecated_frame_saved_pc (gdbarch, i386_frame_saved_pc);
1604 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
1605 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
1606 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1607
1608 /* Wire in the MMX registers. */
1609 set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
1610 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1611 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1612
1613 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1614
1615 /* Add the i386 register groups. */
1616 i386_add_reggroups (gdbarch);
1617 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
1618
1619 /* Should be using push_dummy_call. */
1620 set_gdbarch_deprecated_dummy_write_sp (gdbarch, generic_target_write_sp);
1621
1622 /* Hook in ABI-specific overrides, if they have been registered. */
1623 gdbarch_init_osabi (info, gdbarch);
1624
1625 return gdbarch;
1626 }
1627
1628 static enum gdb_osabi
1629 i386_coff_osabi_sniffer (bfd *abfd)
1630 {
1631 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1632 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
1633 return GDB_OSABI_GO32;
1634
1635 return GDB_OSABI_UNKNOWN;
1636 }
1637
1638 static enum gdb_osabi
1639 i386_nlm_osabi_sniffer (bfd *abfd)
1640 {
1641 return GDB_OSABI_NETWARE;
1642 }
1643 \f
1644
1645 /* Provide a prototype to silence -Wmissing-prototypes. */
1646 void _initialize_i386_tdep (void);
1647
1648 void
1649 _initialize_i386_tdep (void)
1650 {
1651 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1652
1653 /* Add the variable that controls the disassembly flavor. */
1654 {
1655 struct cmd_list_element *new_cmd;
1656
1657 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1658 valid_flavors,
1659 &disassembly_flavor,
1660 "\
1661 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1662 and the default value is \"att\".",
1663 &setlist);
1664 add_show_from_set (new_cmd, &showlist);
1665 }
1666
1667 /* Add the variable that controls the convention for returning
1668 structs. */
1669 {
1670 struct cmd_list_element *new_cmd;
1671
1672 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1673 valid_conventions,
1674 &struct_convention, "\
1675 Set the convention for returning small structs, valid values \
1676 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1677 &setlist);
1678 add_show_from_set (new_cmd, &showlist);
1679 }
1680
1681 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1682 i386_coff_osabi_sniffer);
1683 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1684 i386_nlm_osabi_sniffer);
1685
1686 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
1687 i386_svr4_init_abi);
1688 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
1689 i386_go32_init_abi);
1690 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
1691 i386_nw_init_abi);
1692
1693 /* Initialize the i386 specific register groups. */
1694 i386_init_reggroups ();
1695 }
This page took 0.067899 seconds and 4 git commands to generate.