* dwarf2read.c (dwarf2_cu): Enhance comment.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include "gdb_string.h"
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include <stdint.h>
56
57 #include "features/i386/i386.c"
58 #include "features/i386/i386-avx.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70
71 /* Register names. */
72
73 static const char *i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char *i386_ymm_names[] =
89 {
90 "ymm0", "ymm1", "ymm2", "ymm3",
91 "ymm4", "ymm5", "ymm6", "ymm7",
92 };
93
94 static const char *i386_ymmh_names[] =
95 {
96 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
97 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
98 };
99
100 /* Register names for MMX pseudo-registers. */
101
102 static const char *i386_mmx_names[] =
103 {
104 "mm0", "mm1", "mm2", "mm3",
105 "mm4", "mm5", "mm6", "mm7"
106 };
107
108 /* Register names for byte pseudo-registers. */
109
110 static const char *i386_byte_names[] =
111 {
112 "al", "cl", "dl", "bl",
113 "ah", "ch", "dh", "bh"
114 };
115
116 /* Register names for word pseudo-registers. */
117
118 static const char *i386_word_names[] =
119 {
120 "ax", "cx", "dx", "bx",
121 "", "bp", "si", "di"
122 };
123
124 /* MMX register? */
125
126 static int
127 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
128 {
129 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
130 int mm0_regnum = tdep->mm0_regnum;
131
132 if (mm0_regnum < 0)
133 return 0;
134
135 regnum -= mm0_regnum;
136 return regnum >= 0 && regnum < tdep->num_mmx_regs;
137 }
138
139 /* Byte register? */
140
141 int
142 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
143 {
144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
145
146 regnum -= tdep->al_regnum;
147 return regnum >= 0 && regnum < tdep->num_byte_regs;
148 }
149
150 /* Word register? */
151
152 int
153 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156
157 regnum -= tdep->ax_regnum;
158 return regnum >= 0 && regnum < tdep->num_word_regs;
159 }
160
161 /* Dword register? */
162
163 int
164 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
165 {
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int eax_regnum = tdep->eax_regnum;
168
169 if (eax_regnum < 0)
170 return 0;
171
172 regnum -= eax_regnum;
173 return regnum >= 0 && regnum < tdep->num_dword_regs;
174 }
175
176 static int
177 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
178 {
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180 int ymm0h_regnum = tdep->ymm0h_regnum;
181
182 if (ymm0h_regnum < 0)
183 return 0;
184
185 regnum -= ymm0h_regnum;
186 return regnum >= 0 && regnum < tdep->num_ymm_regs;
187 }
188
189 /* AVX register? */
190
191 int
192 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
193 {
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195 int ymm0_regnum = tdep->ymm0_regnum;
196
197 if (ymm0_regnum < 0)
198 return 0;
199
200 regnum -= ymm0_regnum;
201 return regnum >= 0 && regnum < tdep->num_ymm_regs;
202 }
203
204 /* SSE register? */
205
206 int
207 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
208 {
209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
210 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
211
212 if (num_xmm_regs == 0)
213 return 0;
214
215 regnum -= I387_XMM0_REGNUM (tdep);
216 return regnum >= 0 && regnum < num_xmm_regs;
217 }
218
219 static int
220 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
221 {
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223
224 if (I387_NUM_XMM_REGS (tdep) == 0)
225 return 0;
226
227 return (regnum == I387_MXCSR_REGNUM (tdep));
228 }
229
230 /* FP register? */
231
232 int
233 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
234 {
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236
237 if (I387_ST0_REGNUM (tdep) < 0)
238 return 0;
239
240 return (I387_ST0_REGNUM (tdep) <= regnum
241 && regnum < I387_FCTRL_REGNUM (tdep));
242 }
243
244 int
245 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
246 {
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248
249 if (I387_ST0_REGNUM (tdep) < 0)
250 return 0;
251
252 return (I387_FCTRL_REGNUM (tdep) <= regnum
253 && regnum < I387_XMM0_REGNUM (tdep));
254 }
255
256 /* Return the name of register REGNUM, or the empty string if it is
257 an anonymous register. */
258
259 static const char *
260 i386_register_name (struct gdbarch *gdbarch, int regnum)
261 {
262 /* Hide the upper YMM registers. */
263 if (i386_ymmh_regnum_p (gdbarch, regnum))
264 return "";
265
266 return tdesc_register_name (gdbarch, regnum);
267 }
268
269 /* Return the name of register REGNUM. */
270
271 const char *
272 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
273 {
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 if (i386_mmx_regnum_p (gdbarch, regnum))
276 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
277 else if (i386_ymm_regnum_p (gdbarch, regnum))
278 return i386_ymm_names[regnum - tdep->ymm0_regnum];
279 else if (i386_byte_regnum_p (gdbarch, regnum))
280 return i386_byte_names[regnum - tdep->al_regnum];
281 else if (i386_word_regnum_p (gdbarch, regnum))
282 return i386_word_names[regnum - tdep->ax_regnum];
283
284 internal_error (__FILE__, __LINE__, _("invalid regnum"));
285 }
286
287 /* Convert a dbx register number REG to the appropriate register
288 number used by GDB. */
289
290 static int
291 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
292 {
293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294
295 /* This implements what GCC calls the "default" register map
296 (dbx_register_map[]). */
297
298 if (reg >= 0 && reg <= 7)
299 {
300 /* General-purpose registers. The debug info calls %ebp
301 register 4, and %esp register 5. */
302 if (reg == 4)
303 return 5;
304 else if (reg == 5)
305 return 4;
306 else return reg;
307 }
308 else if (reg >= 12 && reg <= 19)
309 {
310 /* Floating-point registers. */
311 return reg - 12 + I387_ST0_REGNUM (tdep);
312 }
313 else if (reg >= 21 && reg <= 28)
314 {
315 /* SSE registers. */
316 int ymm0_regnum = tdep->ymm0_regnum;
317
318 if (ymm0_regnum >= 0
319 && i386_xmm_regnum_p (gdbarch, reg))
320 return reg - 21 + ymm0_regnum;
321 else
322 return reg - 21 + I387_XMM0_REGNUM (tdep);
323 }
324 else if (reg >= 29 && reg <= 36)
325 {
326 /* MMX registers. */
327 return reg - 29 + I387_MM0_REGNUM (tdep);
328 }
329
330 /* This will hopefully provoke a warning. */
331 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
332 }
333
334 /* Convert SVR4 register number REG to the appropriate register number
335 used by GDB. */
336
337 static int
338 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
339 {
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341
342 /* This implements the GCC register map that tries to be compatible
343 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
344
345 /* The SVR4 register numbering includes %eip and %eflags, and
346 numbers the floating point registers differently. */
347 if (reg >= 0 && reg <= 9)
348 {
349 /* General-purpose registers. */
350 return reg;
351 }
352 else if (reg >= 11 && reg <= 18)
353 {
354 /* Floating-point registers. */
355 return reg - 11 + I387_ST0_REGNUM (tdep);
356 }
357 else if (reg >= 21 && reg <= 36)
358 {
359 /* The SSE and MMX registers have the same numbers as with dbx. */
360 return i386_dbx_reg_to_regnum (gdbarch, reg);
361 }
362
363 switch (reg)
364 {
365 case 37: return I387_FCTRL_REGNUM (tdep);
366 case 38: return I387_FSTAT_REGNUM (tdep);
367 case 39: return I387_MXCSR_REGNUM (tdep);
368 case 40: return I386_ES_REGNUM;
369 case 41: return I386_CS_REGNUM;
370 case 42: return I386_SS_REGNUM;
371 case 43: return I386_DS_REGNUM;
372 case 44: return I386_FS_REGNUM;
373 case 45: return I386_GS_REGNUM;
374 }
375
376 /* This will hopefully provoke a warning. */
377 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
378 }
379
380 \f
381
382 /* This is the variable that is set with "set disassembly-flavor", and
383 its legitimate values. */
384 static const char att_flavor[] = "att";
385 static const char intel_flavor[] = "intel";
386 static const char *const valid_flavors[] =
387 {
388 att_flavor,
389 intel_flavor,
390 NULL
391 };
392 static const char *disassembly_flavor = att_flavor;
393 \f
394
395 /* Use the program counter to determine the contents and size of a
396 breakpoint instruction. Return a pointer to a string of bytes that
397 encode a breakpoint instruction, store the length of the string in
398 *LEN and optionally adjust *PC to point to the correct memory
399 location for inserting the breakpoint.
400
401 On the i386 we have a single breakpoint that fits in a single byte
402 and can be inserted anywhere.
403
404 This function is 64-bit safe. */
405
406 static const gdb_byte *
407 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
408 {
409 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
410
411 *len = sizeof (break_insn);
412 return break_insn;
413 }
414 \f
415 /* Displaced instruction handling. */
416
417 /* Skip the legacy instruction prefixes in INSN.
418 Not all prefixes are valid for any particular insn
419 but we needn't care, the insn will fault if it's invalid.
420 The result is a pointer to the first opcode byte,
421 or NULL if we run off the end of the buffer. */
422
423 static gdb_byte *
424 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
425 {
426 gdb_byte *end = insn + max_len;
427
428 while (insn < end)
429 {
430 switch (*insn)
431 {
432 case DATA_PREFIX_OPCODE:
433 case ADDR_PREFIX_OPCODE:
434 case CS_PREFIX_OPCODE:
435 case DS_PREFIX_OPCODE:
436 case ES_PREFIX_OPCODE:
437 case FS_PREFIX_OPCODE:
438 case GS_PREFIX_OPCODE:
439 case SS_PREFIX_OPCODE:
440 case LOCK_PREFIX_OPCODE:
441 case REPE_PREFIX_OPCODE:
442 case REPNE_PREFIX_OPCODE:
443 ++insn;
444 continue;
445 default:
446 return insn;
447 }
448 }
449
450 return NULL;
451 }
452
453 static int
454 i386_absolute_jmp_p (const gdb_byte *insn)
455 {
456 /* jmp far (absolute address in operand). */
457 if (insn[0] == 0xea)
458 return 1;
459
460 if (insn[0] == 0xff)
461 {
462 /* jump near, absolute indirect (/4). */
463 if ((insn[1] & 0x38) == 0x20)
464 return 1;
465
466 /* jump far, absolute indirect (/5). */
467 if ((insn[1] & 0x38) == 0x28)
468 return 1;
469 }
470
471 return 0;
472 }
473
474 static int
475 i386_absolute_call_p (const gdb_byte *insn)
476 {
477 /* call far, absolute. */
478 if (insn[0] == 0x9a)
479 return 1;
480
481 if (insn[0] == 0xff)
482 {
483 /* Call near, absolute indirect (/2). */
484 if ((insn[1] & 0x38) == 0x10)
485 return 1;
486
487 /* Call far, absolute indirect (/3). */
488 if ((insn[1] & 0x38) == 0x18)
489 return 1;
490 }
491
492 return 0;
493 }
494
495 static int
496 i386_ret_p (const gdb_byte *insn)
497 {
498 switch (insn[0])
499 {
500 case 0xc2: /* ret near, pop N bytes. */
501 case 0xc3: /* ret near */
502 case 0xca: /* ret far, pop N bytes. */
503 case 0xcb: /* ret far */
504 case 0xcf: /* iret */
505 return 1;
506
507 default:
508 return 0;
509 }
510 }
511
512 static int
513 i386_call_p (const gdb_byte *insn)
514 {
515 if (i386_absolute_call_p (insn))
516 return 1;
517
518 /* call near, relative. */
519 if (insn[0] == 0xe8)
520 return 1;
521
522 return 0;
523 }
524
525 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
526 length in bytes. Otherwise, return zero. */
527
528 static int
529 i386_syscall_p (const gdb_byte *insn, int *lengthp)
530 {
531 /* Is it 'int $0x80'? */
532 if ((insn[0] == 0xcd && insn[1] == 0x80)
533 /* Or is it 'sysenter'? */
534 || (insn[0] == 0x0f && insn[1] == 0x34)
535 /* Or is it 'syscall'? */
536 || (insn[0] == 0x0f && insn[1] == 0x05))
537 {
538 *lengthp = 2;
539 return 1;
540 }
541
542 return 0;
543 }
544
545 /* Some kernels may run one past a syscall insn, so we have to cope.
546 Otherwise this is just simple_displaced_step_copy_insn. */
547
548 struct displaced_step_closure *
549 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
550 CORE_ADDR from, CORE_ADDR to,
551 struct regcache *regs)
552 {
553 size_t len = gdbarch_max_insn_length (gdbarch);
554 gdb_byte *buf = xmalloc (len);
555
556 read_memory (from, buf, len);
557
558 /* GDB may get control back after the insn after the syscall.
559 Presumably this is a kernel bug.
560 If this is a syscall, make sure there's a nop afterwards. */
561 {
562 int syscall_length;
563 gdb_byte *insn;
564
565 insn = i386_skip_prefixes (buf, len);
566 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
567 insn[syscall_length] = NOP_OPCODE;
568 }
569
570 write_memory (to, buf, len);
571
572 if (debug_displaced)
573 {
574 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
575 paddress (gdbarch, from), paddress (gdbarch, to));
576 displaced_step_dump_bytes (gdb_stdlog, buf, len);
577 }
578
579 return (struct displaced_step_closure *) buf;
580 }
581
582 /* Fix up the state of registers and memory after having single-stepped
583 a displaced instruction. */
584
585 void
586 i386_displaced_step_fixup (struct gdbarch *gdbarch,
587 struct displaced_step_closure *closure,
588 CORE_ADDR from, CORE_ADDR to,
589 struct regcache *regs)
590 {
591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
592
593 /* The offset we applied to the instruction's address.
594 This could well be negative (when viewed as a signed 32-bit
595 value), but ULONGEST won't reflect that, so take care when
596 applying it. */
597 ULONGEST insn_offset = to - from;
598
599 /* Since we use simple_displaced_step_copy_insn, our closure is a
600 copy of the instruction. */
601 gdb_byte *insn = (gdb_byte *) closure;
602 /* The start of the insn, needed in case we see some prefixes. */
603 gdb_byte *insn_start = insn;
604
605 if (debug_displaced)
606 fprintf_unfiltered (gdb_stdlog,
607 "displaced: fixup (%s, %s), "
608 "insn = 0x%02x 0x%02x ...\n",
609 paddress (gdbarch, from), paddress (gdbarch, to),
610 insn[0], insn[1]);
611
612 /* The list of issues to contend with here is taken from
613 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
614 Yay for Free Software! */
615
616 /* Relocate the %eip, if necessary. */
617
618 /* The instruction recognizers we use assume any leading prefixes
619 have been skipped. */
620 {
621 /* This is the size of the buffer in closure. */
622 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
623 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
624 /* If there are too many prefixes, just ignore the insn.
625 It will fault when run. */
626 if (opcode != NULL)
627 insn = opcode;
628 }
629
630 /* Except in the case of absolute or indirect jump or call
631 instructions, or a return instruction, the new eip is relative to
632 the displaced instruction; make it relative. Well, signal
633 handler returns don't need relocation either, but we use the
634 value of %eip to recognize those; see below. */
635 if (! i386_absolute_jmp_p (insn)
636 && ! i386_absolute_call_p (insn)
637 && ! i386_ret_p (insn))
638 {
639 ULONGEST orig_eip;
640 int insn_len;
641
642 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
643
644 /* A signal trampoline system call changes the %eip, resuming
645 execution of the main program after the signal handler has
646 returned. That makes them like 'return' instructions; we
647 shouldn't relocate %eip.
648
649 But most system calls don't, and we do need to relocate %eip.
650
651 Our heuristic for distinguishing these cases: if stepping
652 over the system call instruction left control directly after
653 the instruction, the we relocate --- control almost certainly
654 doesn't belong in the displaced copy. Otherwise, we assume
655 the instruction has put control where it belongs, and leave
656 it unrelocated. Goodness help us if there are PC-relative
657 system calls. */
658 if (i386_syscall_p (insn, &insn_len)
659 && orig_eip != to + (insn - insn_start) + insn_len
660 /* GDB can get control back after the insn after the syscall.
661 Presumably this is a kernel bug.
662 i386_displaced_step_copy_insn ensures its a nop,
663 we add one to the length for it. */
664 && orig_eip != to + (insn - insn_start) + insn_len + 1)
665 {
666 if (debug_displaced)
667 fprintf_unfiltered (gdb_stdlog,
668 "displaced: syscall changed %%eip; "
669 "not relocating\n");
670 }
671 else
672 {
673 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
674
675 /* If we just stepped over a breakpoint insn, we don't backup
676 the pc on purpose; this is to match behaviour without
677 stepping. */
678
679 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
680
681 if (debug_displaced)
682 fprintf_unfiltered (gdb_stdlog,
683 "displaced: "
684 "relocated %%eip from %s to %s\n",
685 paddress (gdbarch, orig_eip),
686 paddress (gdbarch, eip));
687 }
688 }
689
690 /* If the instruction was PUSHFL, then the TF bit will be set in the
691 pushed value, and should be cleared. We'll leave this for later,
692 since GDB already messes up the TF flag when stepping over a
693 pushfl. */
694
695 /* If the instruction was a call, the return address now atop the
696 stack is the address following the copied instruction. We need
697 to make it the address following the original instruction. */
698 if (i386_call_p (insn))
699 {
700 ULONGEST esp;
701 ULONGEST retaddr;
702 const ULONGEST retaddr_len = 4;
703
704 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
705 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
706 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
707 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
711 "displaced: relocated return addr at %s to %s\n",
712 paddress (gdbarch, esp),
713 paddress (gdbarch, retaddr));
714 }
715 }
716
717 static void
718 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
719 {
720 target_write_memory (*to, buf, len);
721 *to += len;
722 }
723
724 static void
725 i386_relocate_instruction (struct gdbarch *gdbarch,
726 CORE_ADDR *to, CORE_ADDR oldloc)
727 {
728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
729 gdb_byte buf[I386_MAX_INSN_LEN];
730 int offset = 0, rel32, newrel;
731 int insn_length;
732 gdb_byte *insn = buf;
733
734 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
735
736 insn_length = gdb_buffered_insn_length (gdbarch, insn,
737 I386_MAX_INSN_LEN, oldloc);
738
739 /* Get past the prefixes. */
740 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
741
742 /* Adjust calls with 32-bit relative addresses as push/jump, with
743 the address pushed being the location where the original call in
744 the user program would return to. */
745 if (insn[0] == 0xe8)
746 {
747 gdb_byte push_buf[16];
748 unsigned int ret_addr;
749
750 /* Where "ret" in the original code will return to. */
751 ret_addr = oldloc + insn_length;
752 push_buf[0] = 0x68; /* pushq $... */
753 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
754 /* Push the push. */
755 append_insns (to, 5, push_buf);
756
757 /* Convert the relative call to a relative jump. */
758 insn[0] = 0xe9;
759
760 /* Adjust the destination offset. */
761 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
762 newrel = (oldloc - *to) + rel32;
763 store_signed_integer (insn + 1, 4, byte_order, newrel);
764
765 if (debug_displaced)
766 fprintf_unfiltered (gdb_stdlog,
767 "Adjusted insn rel32=%s at %s to"
768 " rel32=%s at %s\n",
769 hex_string (rel32), paddress (gdbarch, oldloc),
770 hex_string (newrel), paddress (gdbarch, *to));
771
772 /* Write the adjusted jump into its displaced location. */
773 append_insns (to, 5, insn);
774 return;
775 }
776
777 /* Adjust jumps with 32-bit relative addresses. Calls are already
778 handled above. */
779 if (insn[0] == 0xe9)
780 offset = 1;
781 /* Adjust conditional jumps. */
782 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
783 offset = 2;
784
785 if (offset)
786 {
787 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
788 newrel = (oldloc - *to) + rel32;
789 store_signed_integer (insn + offset, 4, byte_order, newrel);
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog,
792 "Adjusted insn rel32=%s at %s to"
793 " rel32=%s at %s\n",
794 hex_string (rel32), paddress (gdbarch, oldloc),
795 hex_string (newrel), paddress (gdbarch, *to));
796 }
797
798 /* Write the adjusted instructions into their displaced
799 location. */
800 append_insns (to, insn_length, buf);
801 }
802
803 \f
804 #ifdef I386_REGNO_TO_SYMMETRY
805 #error "The Sequent Symmetry is no longer supported."
806 #endif
807
808 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
809 and %esp "belong" to the calling function. Therefore these
810 registers should be saved if they're going to be modified. */
811
812 /* The maximum number of saved registers. This should include all
813 registers mentioned above, and %eip. */
814 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
815
816 struct i386_frame_cache
817 {
818 /* Base address. */
819 CORE_ADDR base;
820 int base_p;
821 LONGEST sp_offset;
822 CORE_ADDR pc;
823
824 /* Saved registers. */
825 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
826 CORE_ADDR saved_sp;
827 int saved_sp_reg;
828 int pc_in_eax;
829
830 /* Stack space reserved for local variables. */
831 long locals;
832 };
833
834 /* Allocate and initialize a frame cache. */
835
836 static struct i386_frame_cache *
837 i386_alloc_frame_cache (void)
838 {
839 struct i386_frame_cache *cache;
840 int i;
841
842 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
843
844 /* Base address. */
845 cache->base_p = 0;
846 cache->base = 0;
847 cache->sp_offset = -4;
848 cache->pc = 0;
849
850 /* Saved registers. We initialize these to -1 since zero is a valid
851 offset (that's where %ebp is supposed to be stored). */
852 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
853 cache->saved_regs[i] = -1;
854 cache->saved_sp = 0;
855 cache->saved_sp_reg = -1;
856 cache->pc_in_eax = 0;
857
858 /* Frameless until proven otherwise. */
859 cache->locals = -1;
860
861 return cache;
862 }
863
864 /* If the instruction at PC is a jump, return the address of its
865 target. Otherwise, return PC. */
866
867 static CORE_ADDR
868 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
869 {
870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
871 gdb_byte op;
872 long delta = 0;
873 int data16 = 0;
874
875 if (target_read_memory (pc, &op, 1))
876 return pc;
877
878 if (op == 0x66)
879 {
880 data16 = 1;
881 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
882 }
883
884 switch (op)
885 {
886 case 0xe9:
887 /* Relative jump: if data16 == 0, disp32, else disp16. */
888 if (data16)
889 {
890 delta = read_memory_integer (pc + 2, 2, byte_order);
891
892 /* Include the size of the jmp instruction (including the
893 0x66 prefix). */
894 delta += 4;
895 }
896 else
897 {
898 delta = read_memory_integer (pc + 1, 4, byte_order);
899
900 /* Include the size of the jmp instruction. */
901 delta += 5;
902 }
903 break;
904 case 0xeb:
905 /* Relative jump, disp8 (ignore data16). */
906 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
907
908 delta += data16 + 2;
909 break;
910 }
911
912 return pc + delta;
913 }
914
915 /* Check whether PC points at a prologue for a function returning a
916 structure or union. If so, it updates CACHE and returns the
917 address of the first instruction after the code sequence that
918 removes the "hidden" argument from the stack or CURRENT_PC,
919 whichever is smaller. Otherwise, return PC. */
920
921 static CORE_ADDR
922 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
923 struct i386_frame_cache *cache)
924 {
925 /* Functions that return a structure or union start with:
926
927 popl %eax 0x58
928 xchgl %eax, (%esp) 0x87 0x04 0x24
929 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
930
931 (the System V compiler puts out the second `xchg' instruction,
932 and the assembler doesn't try to optimize it, so the 'sib' form
933 gets generated). This sequence is used to get the address of the
934 return buffer for a function that returns a structure. */
935 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
936 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
937 gdb_byte buf[4];
938 gdb_byte op;
939
940 if (current_pc <= pc)
941 return pc;
942
943 if (target_read_memory (pc, &op, 1))
944 return pc;
945
946 if (op != 0x58) /* popl %eax */
947 return pc;
948
949 if (target_read_memory (pc + 1, buf, 4))
950 return pc;
951
952 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
953 return pc;
954
955 if (current_pc == pc)
956 {
957 cache->sp_offset += 4;
958 return current_pc;
959 }
960
961 if (current_pc == pc + 1)
962 {
963 cache->pc_in_eax = 1;
964 return current_pc;
965 }
966
967 if (buf[1] == proto1[1])
968 return pc + 4;
969 else
970 return pc + 5;
971 }
972
973 static CORE_ADDR
974 i386_skip_probe (CORE_ADDR pc)
975 {
976 /* A function may start with
977
978 pushl constant
979 call _probe
980 addl $4, %esp
981
982 followed by
983
984 pushl %ebp
985
986 etc. */
987 gdb_byte buf[8];
988 gdb_byte op;
989
990 if (target_read_memory (pc, &op, 1))
991 return pc;
992
993 if (op == 0x68 || op == 0x6a)
994 {
995 int delta;
996
997 /* Skip past the `pushl' instruction; it has either a one-byte or a
998 four-byte operand, depending on the opcode. */
999 if (op == 0x68)
1000 delta = 5;
1001 else
1002 delta = 2;
1003
1004 /* Read the following 8 bytes, which should be `call _probe' (6
1005 bytes) followed by `addl $4,%esp' (2 bytes). */
1006 read_memory (pc + delta, buf, sizeof (buf));
1007 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1008 pc += delta + sizeof (buf);
1009 }
1010
1011 return pc;
1012 }
1013
1014 /* GCC 4.1 and later, can put code in the prologue to realign the
1015 stack pointer. Check whether PC points to such code, and update
1016 CACHE accordingly. Return the first instruction after the code
1017 sequence or CURRENT_PC, whichever is smaller. If we don't
1018 recognize the code, return PC. */
1019
1020 static CORE_ADDR
1021 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1022 struct i386_frame_cache *cache)
1023 {
1024 /* There are 2 code sequences to re-align stack before the frame
1025 gets set up:
1026
1027 1. Use a caller-saved saved register:
1028
1029 leal 4(%esp), %reg
1030 andl $-XXX, %esp
1031 pushl -4(%reg)
1032
1033 2. Use a callee-saved saved register:
1034
1035 pushl %reg
1036 leal 8(%esp), %reg
1037 andl $-XXX, %esp
1038 pushl -4(%reg)
1039
1040 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1041
1042 0x83 0xe4 0xf0 andl $-16, %esp
1043 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1044 */
1045
1046 gdb_byte buf[14];
1047 int reg;
1048 int offset, offset_and;
1049 static int regnums[8] = {
1050 I386_EAX_REGNUM, /* %eax */
1051 I386_ECX_REGNUM, /* %ecx */
1052 I386_EDX_REGNUM, /* %edx */
1053 I386_EBX_REGNUM, /* %ebx */
1054 I386_ESP_REGNUM, /* %esp */
1055 I386_EBP_REGNUM, /* %ebp */
1056 I386_ESI_REGNUM, /* %esi */
1057 I386_EDI_REGNUM /* %edi */
1058 };
1059
1060 if (target_read_memory (pc, buf, sizeof buf))
1061 return pc;
1062
1063 /* Check caller-saved saved register. The first instruction has
1064 to be "leal 4(%esp), %reg". */
1065 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1066 {
1067 /* MOD must be binary 10 and R/M must be binary 100. */
1068 if ((buf[1] & 0xc7) != 0x44)
1069 return pc;
1070
1071 /* REG has register number. */
1072 reg = (buf[1] >> 3) & 7;
1073 offset = 4;
1074 }
1075 else
1076 {
1077 /* Check callee-saved saved register. The first instruction
1078 has to be "pushl %reg". */
1079 if ((buf[0] & 0xf8) != 0x50)
1080 return pc;
1081
1082 /* Get register. */
1083 reg = buf[0] & 0x7;
1084
1085 /* The next instruction has to be "leal 8(%esp), %reg". */
1086 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1087 return pc;
1088
1089 /* MOD must be binary 10 and R/M must be binary 100. */
1090 if ((buf[2] & 0xc7) != 0x44)
1091 return pc;
1092
1093 /* REG has register number. Registers in pushl and leal have to
1094 be the same. */
1095 if (reg != ((buf[2] >> 3) & 7))
1096 return pc;
1097
1098 offset = 5;
1099 }
1100
1101 /* Rigister can't be %esp nor %ebp. */
1102 if (reg == 4 || reg == 5)
1103 return pc;
1104
1105 /* The next instruction has to be "andl $-XXX, %esp". */
1106 if (buf[offset + 1] != 0xe4
1107 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1108 return pc;
1109
1110 offset_and = offset;
1111 offset += buf[offset] == 0x81 ? 6 : 3;
1112
1113 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1114 0xfc. REG must be binary 110 and MOD must be binary 01. */
1115 if (buf[offset] != 0xff
1116 || buf[offset + 2] != 0xfc
1117 || (buf[offset + 1] & 0xf8) != 0x70)
1118 return pc;
1119
1120 /* R/M has register. Registers in leal and pushl have to be the
1121 same. */
1122 if (reg != (buf[offset + 1] & 7))
1123 return pc;
1124
1125 if (current_pc > pc + offset_and)
1126 cache->saved_sp_reg = regnums[reg];
1127
1128 return min (pc + offset + 3, current_pc);
1129 }
1130
1131 /* Maximum instruction length we need to handle. */
1132 #define I386_MAX_MATCHED_INSN_LEN 6
1133
1134 /* Instruction description. */
1135 struct i386_insn
1136 {
1137 size_t len;
1138 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1139 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1140 };
1141
1142 /* Return whether instruction at PC matches PATTERN. */
1143
1144 static int
1145 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1146 {
1147 gdb_byte op;
1148
1149 if (target_read_memory (pc, &op, 1))
1150 return 0;
1151
1152 if ((op & pattern.mask[0]) == pattern.insn[0])
1153 {
1154 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1155 int insn_matched = 1;
1156 size_t i;
1157
1158 gdb_assert (pattern.len > 1);
1159 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1160
1161 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1162 return 0;
1163
1164 for (i = 1; i < pattern.len; i++)
1165 {
1166 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1167 insn_matched = 0;
1168 }
1169 return insn_matched;
1170 }
1171 return 0;
1172 }
1173
1174 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1175 the first instruction description that matches. Otherwise, return
1176 NULL. */
1177
1178 static struct i386_insn *
1179 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1180 {
1181 struct i386_insn *pattern;
1182
1183 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1184 {
1185 if (i386_match_pattern (pc, *pattern))
1186 return pattern;
1187 }
1188
1189 return NULL;
1190 }
1191
1192 /* Return whether PC points inside a sequence of instructions that
1193 matches INSN_PATTERNS. */
1194
1195 static int
1196 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1197 {
1198 CORE_ADDR current_pc;
1199 int ix, i;
1200 struct i386_insn *insn;
1201
1202 insn = i386_match_insn (pc, insn_patterns);
1203 if (insn == NULL)
1204 return 0;
1205
1206 current_pc = pc;
1207 ix = insn - insn_patterns;
1208 for (i = ix - 1; i >= 0; i--)
1209 {
1210 current_pc -= insn_patterns[i].len;
1211
1212 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1213 return 0;
1214 }
1215
1216 current_pc = pc + insn->len;
1217 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1218 {
1219 if (!i386_match_pattern (current_pc, *insn))
1220 return 0;
1221
1222 current_pc += insn->len;
1223 }
1224
1225 return 1;
1226 }
1227
1228 /* Some special instructions that might be migrated by GCC into the
1229 part of the prologue that sets up the new stack frame. Because the
1230 stack frame hasn't been setup yet, no registers have been saved
1231 yet, and only the scratch registers %eax, %ecx and %edx can be
1232 touched. */
1233
1234 struct i386_insn i386_frame_setup_skip_insns[] =
1235 {
1236 /* Check for `movb imm8, r' and `movl imm32, r'.
1237
1238 ??? Should we handle 16-bit operand-sizes here? */
1239
1240 /* `movb imm8, %al' and `movb imm8, %ah' */
1241 /* `movb imm8, %cl' and `movb imm8, %ch' */
1242 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1243 /* `movb imm8, %dl' and `movb imm8, %dh' */
1244 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1245 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1246 { 5, { 0xb8 }, { 0xfe } },
1247 /* `movl imm32, %edx' */
1248 { 5, { 0xba }, { 0xff } },
1249
1250 /* Check for `mov imm32, r32'. Note that there is an alternative
1251 encoding for `mov m32, %eax'.
1252
1253 ??? Should we handle SIB adressing here?
1254 ??? Should we handle 16-bit operand-sizes here? */
1255
1256 /* `movl m32, %eax' */
1257 { 5, { 0xa1 }, { 0xff } },
1258 /* `movl m32, %eax' and `mov; m32, %ecx' */
1259 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1260 /* `movl m32, %edx' */
1261 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1262
1263 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1264 Because of the symmetry, there are actually two ways to encode
1265 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1266 opcode bytes 0x31 and 0x33 for `xorl'. */
1267
1268 /* `subl %eax, %eax' */
1269 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1270 /* `subl %ecx, %ecx' */
1271 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1272 /* `subl %edx, %edx' */
1273 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1274 /* `xorl %eax, %eax' */
1275 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1276 /* `xorl %ecx, %ecx' */
1277 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1278 /* `xorl %edx, %edx' */
1279 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1280 { 0 }
1281 };
1282
1283
1284 /* Check whether PC points to a no-op instruction. */
1285 static CORE_ADDR
1286 i386_skip_noop (CORE_ADDR pc)
1287 {
1288 gdb_byte op;
1289 int check = 1;
1290
1291 if (target_read_memory (pc, &op, 1))
1292 return pc;
1293
1294 while (check)
1295 {
1296 check = 0;
1297 /* Ignore `nop' instruction. */
1298 if (op == 0x90)
1299 {
1300 pc += 1;
1301 if (target_read_memory (pc, &op, 1))
1302 return pc;
1303 check = 1;
1304 }
1305 /* Ignore no-op instruction `mov %edi, %edi'.
1306 Microsoft system dlls often start with
1307 a `mov %edi,%edi' instruction.
1308 The 5 bytes before the function start are
1309 filled with `nop' instructions.
1310 This pattern can be used for hot-patching:
1311 The `mov %edi, %edi' instruction can be replaced by a
1312 near jump to the location of the 5 `nop' instructions
1313 which can be replaced by a 32-bit jump to anywhere
1314 in the 32-bit address space. */
1315
1316 else if (op == 0x8b)
1317 {
1318 if (target_read_memory (pc + 1, &op, 1))
1319 return pc;
1320
1321 if (op == 0xff)
1322 {
1323 pc += 2;
1324 if (target_read_memory (pc, &op, 1))
1325 return pc;
1326
1327 check = 1;
1328 }
1329 }
1330 }
1331 return pc;
1332 }
1333
1334 /* Check whether PC points at a code that sets up a new stack frame.
1335 If so, it updates CACHE and returns the address of the first
1336 instruction after the sequence that sets up the frame or LIMIT,
1337 whichever is smaller. If we don't recognize the code, return PC. */
1338
1339 static CORE_ADDR
1340 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1341 CORE_ADDR pc, CORE_ADDR limit,
1342 struct i386_frame_cache *cache)
1343 {
1344 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1345 struct i386_insn *insn;
1346 gdb_byte op;
1347 int skip = 0;
1348
1349 if (limit <= pc)
1350 return limit;
1351
1352 if (target_read_memory (pc, &op, 1))
1353 return pc;
1354
1355 if (op == 0x55) /* pushl %ebp */
1356 {
1357 /* Take into account that we've executed the `pushl %ebp' that
1358 starts this instruction sequence. */
1359 cache->saved_regs[I386_EBP_REGNUM] = 0;
1360 cache->sp_offset += 4;
1361 pc++;
1362
1363 /* If that's all, return now. */
1364 if (limit <= pc)
1365 return limit;
1366
1367 /* Check for some special instructions that might be migrated by
1368 GCC into the prologue and skip them. At this point in the
1369 prologue, code should only touch the scratch registers %eax,
1370 %ecx and %edx, so while the number of posibilities is sheer,
1371 it is limited.
1372
1373 Make sure we only skip these instructions if we later see the
1374 `movl %esp, %ebp' that actually sets up the frame. */
1375 while (pc + skip < limit)
1376 {
1377 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1378 if (insn == NULL)
1379 break;
1380
1381 skip += insn->len;
1382 }
1383
1384 /* If that's all, return now. */
1385 if (limit <= pc + skip)
1386 return limit;
1387
1388 if (target_read_memory (pc + skip, &op, 1))
1389 return pc + skip;
1390
1391 /* The i386 prologue looks like
1392
1393 push %ebp
1394 mov %esp,%ebp
1395 sub $0x10,%esp
1396
1397 and a different prologue can be generated for atom.
1398
1399 push %ebp
1400 lea (%esp),%ebp
1401 lea -0x10(%esp),%esp
1402
1403 We handle both of them here. */
1404
1405 switch (op)
1406 {
1407 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1408 case 0x8b:
1409 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1410 != 0xec)
1411 return pc;
1412 pc += (skip + 2);
1413 break;
1414 case 0x89:
1415 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1416 != 0xe5)
1417 return pc;
1418 pc += (skip + 2);
1419 break;
1420 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1421 if (read_memory_unsigned_integer (pc + skip + 1, 2, byte_order)
1422 != 0x242c)
1423 return pc;
1424 pc += (skip + 3);
1425 break;
1426 default:
1427 return pc;
1428 }
1429
1430 /* OK, we actually have a frame. We just don't know how large
1431 it is yet. Set its size to zero. We'll adjust it if
1432 necessary. We also now commit to skipping the special
1433 instructions mentioned before. */
1434 cache->locals = 0;
1435
1436 /* If that's all, return now. */
1437 if (limit <= pc)
1438 return limit;
1439
1440 /* Check for stack adjustment
1441
1442 subl $XXX, %esp
1443 or
1444 lea -XXX(%esp),%esp
1445
1446 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1447 reg, so we don't have to worry about a data16 prefix. */
1448 if (target_read_memory (pc, &op, 1))
1449 return pc;
1450 if (op == 0x83)
1451 {
1452 /* `subl' with 8-bit immediate. */
1453 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1454 /* Some instruction starting with 0x83 other than `subl'. */
1455 return pc;
1456
1457 /* `subl' with signed 8-bit immediate (though it wouldn't
1458 make sense to be negative). */
1459 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1460 return pc + 3;
1461 }
1462 else if (op == 0x81)
1463 {
1464 /* Maybe it is `subl' with a 32-bit immediate. */
1465 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1466 /* Some instruction starting with 0x81 other than `subl'. */
1467 return pc;
1468
1469 /* It is `subl' with a 32-bit immediate. */
1470 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1471 return pc + 6;
1472 }
1473 else if (op == 0x8d)
1474 {
1475 /* The ModR/M byte is 0x64. */
1476 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1477 return pc;
1478 /* 'lea' with 8-bit displacement. */
1479 cache->locals = -1 * read_memory_integer (pc + 3, 1, byte_order);
1480 return pc + 4;
1481 }
1482 else
1483 {
1484 /* Some instruction other than `subl' nor 'lea'. */
1485 return pc;
1486 }
1487 }
1488 else if (op == 0xc8) /* enter */
1489 {
1490 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1491 return pc + 4;
1492 }
1493
1494 return pc;
1495 }
1496
1497 /* Check whether PC points at code that saves registers on the stack.
1498 If so, it updates CACHE and returns the address of the first
1499 instruction after the register saves or CURRENT_PC, whichever is
1500 smaller. Otherwise, return PC. */
1501
1502 static CORE_ADDR
1503 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1504 struct i386_frame_cache *cache)
1505 {
1506 CORE_ADDR offset = 0;
1507 gdb_byte op;
1508 int i;
1509
1510 if (cache->locals > 0)
1511 offset -= cache->locals;
1512 for (i = 0; i < 8 && pc < current_pc; i++)
1513 {
1514 if (target_read_memory (pc, &op, 1))
1515 return pc;
1516 if (op < 0x50 || op > 0x57)
1517 break;
1518
1519 offset -= 4;
1520 cache->saved_regs[op - 0x50] = offset;
1521 cache->sp_offset += 4;
1522 pc++;
1523 }
1524
1525 return pc;
1526 }
1527
1528 /* Do a full analysis of the prologue at PC and update CACHE
1529 accordingly. Bail out early if CURRENT_PC is reached. Return the
1530 address where the analysis stopped.
1531
1532 We handle these cases:
1533
1534 The startup sequence can be at the start of the function, or the
1535 function can start with a branch to startup code at the end.
1536
1537 %ebp can be set up with either the 'enter' instruction, or "pushl
1538 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1539 once used in the System V compiler).
1540
1541 Local space is allocated just below the saved %ebp by either the
1542 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1543 16-bit unsigned argument for space to allocate, and the 'addl'
1544 instruction could have either a signed byte, or 32-bit immediate.
1545
1546 Next, the registers used by this function are pushed. With the
1547 System V compiler they will always be in the order: %edi, %esi,
1548 %ebx (and sometimes a harmless bug causes it to also save but not
1549 restore %eax); however, the code below is willing to see the pushes
1550 in any order, and will handle up to 8 of them.
1551
1552 If the setup sequence is at the end of the function, then the next
1553 instruction will be a branch back to the start. */
1554
1555 static CORE_ADDR
1556 i386_analyze_prologue (struct gdbarch *gdbarch,
1557 CORE_ADDR pc, CORE_ADDR current_pc,
1558 struct i386_frame_cache *cache)
1559 {
1560 pc = i386_skip_noop (pc);
1561 pc = i386_follow_jump (gdbarch, pc);
1562 pc = i386_analyze_struct_return (pc, current_pc, cache);
1563 pc = i386_skip_probe (pc);
1564 pc = i386_analyze_stack_align (pc, current_pc, cache);
1565 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1566 return i386_analyze_register_saves (pc, current_pc, cache);
1567 }
1568
1569 /* Return PC of first real instruction. */
1570
1571 static CORE_ADDR
1572 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1573 {
1574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1575
1576 static gdb_byte pic_pat[6] =
1577 {
1578 0xe8, 0, 0, 0, 0, /* call 0x0 */
1579 0x5b, /* popl %ebx */
1580 };
1581 struct i386_frame_cache cache;
1582 CORE_ADDR pc;
1583 gdb_byte op;
1584 int i;
1585 CORE_ADDR func_addr;
1586
1587 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1588 {
1589 CORE_ADDR post_prologue_pc
1590 = skip_prologue_using_sal (gdbarch, func_addr);
1591 struct symtab *s = find_pc_symtab (func_addr);
1592
1593 /* Clang always emits a line note before the prologue and another
1594 one after. We trust clang to emit usable line notes. */
1595 if (post_prologue_pc
1596 && (s != NULL
1597 && s->producer != NULL
1598 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1599 return max (start_pc, post_prologue_pc);
1600 }
1601
1602 cache.locals = -1;
1603 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1604 if (cache.locals < 0)
1605 return start_pc;
1606
1607 /* Found valid frame setup. */
1608
1609 /* The native cc on SVR4 in -K PIC mode inserts the following code
1610 to get the address of the global offset table (GOT) into register
1611 %ebx:
1612
1613 call 0x0
1614 popl %ebx
1615 movl %ebx,x(%ebp) (optional)
1616 addl y,%ebx
1617
1618 This code is with the rest of the prologue (at the end of the
1619 function), so we have to skip it to get to the first real
1620 instruction at the start of the function. */
1621
1622 for (i = 0; i < 6; i++)
1623 {
1624 if (target_read_memory (pc + i, &op, 1))
1625 return pc;
1626
1627 if (pic_pat[i] != op)
1628 break;
1629 }
1630 if (i == 6)
1631 {
1632 int delta = 6;
1633
1634 if (target_read_memory (pc + delta, &op, 1))
1635 return pc;
1636
1637 if (op == 0x89) /* movl %ebx, x(%ebp) */
1638 {
1639 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1640
1641 if (op == 0x5d) /* One byte offset from %ebp. */
1642 delta += 3;
1643 else if (op == 0x9d) /* Four byte offset from %ebp. */
1644 delta += 6;
1645 else /* Unexpected instruction. */
1646 delta = 0;
1647
1648 if (target_read_memory (pc + delta, &op, 1))
1649 return pc;
1650 }
1651
1652 /* addl y,%ebx */
1653 if (delta > 0 && op == 0x81
1654 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1655 == 0xc3)
1656 {
1657 pc += delta + 6;
1658 }
1659 }
1660
1661 /* If the function starts with a branch (to startup code at the end)
1662 the last instruction should bring us back to the first
1663 instruction of the real code. */
1664 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1665 pc = i386_follow_jump (gdbarch, pc);
1666
1667 return pc;
1668 }
1669
1670 /* Check that the code pointed to by PC corresponds to a call to
1671 __main, skip it if so. Return PC otherwise. */
1672
1673 CORE_ADDR
1674 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1675 {
1676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1677 gdb_byte op;
1678
1679 if (target_read_memory (pc, &op, 1))
1680 return pc;
1681 if (op == 0xe8)
1682 {
1683 gdb_byte buf[4];
1684
1685 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1686 {
1687 /* Make sure address is computed correctly as a 32bit
1688 integer even if CORE_ADDR is 64 bit wide. */
1689 struct minimal_symbol *s;
1690 CORE_ADDR call_dest;
1691
1692 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1693 call_dest = call_dest & 0xffffffffU;
1694 s = lookup_minimal_symbol_by_pc (call_dest);
1695 if (s != NULL
1696 && SYMBOL_LINKAGE_NAME (s) != NULL
1697 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1698 pc += 5;
1699 }
1700 }
1701
1702 return pc;
1703 }
1704
1705 /* This function is 64-bit safe. */
1706
1707 static CORE_ADDR
1708 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1709 {
1710 gdb_byte buf[8];
1711
1712 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1713 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1714 }
1715 \f
1716
1717 /* Normal frames. */
1718
1719 static void
1720 i386_frame_cache_1 (struct frame_info *this_frame,
1721 struct i386_frame_cache *cache)
1722 {
1723 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1724 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1725 gdb_byte buf[4];
1726 int i;
1727
1728 cache->pc = get_frame_func (this_frame);
1729
1730 /* In principle, for normal frames, %ebp holds the frame pointer,
1731 which holds the base address for the current stack frame.
1732 However, for functions that don't need it, the frame pointer is
1733 optional. For these "frameless" functions the frame pointer is
1734 actually the frame pointer of the calling frame. Signal
1735 trampolines are just a special case of a "frameless" function.
1736 They (usually) share their frame pointer with the frame that was
1737 in progress when the signal occurred. */
1738
1739 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1740 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1741 if (cache->base == 0)
1742 {
1743 cache->base_p = 1;
1744 return;
1745 }
1746
1747 /* For normal frames, %eip is stored at 4(%ebp). */
1748 cache->saved_regs[I386_EIP_REGNUM] = 4;
1749
1750 if (cache->pc != 0)
1751 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1752 cache);
1753
1754 if (cache->locals < 0)
1755 {
1756 /* We didn't find a valid frame, which means that CACHE->base
1757 currently holds the frame pointer for our calling frame. If
1758 we're at the start of a function, or somewhere half-way its
1759 prologue, the function's frame probably hasn't been fully
1760 setup yet. Try to reconstruct the base address for the stack
1761 frame by looking at the stack pointer. For truly "frameless"
1762 functions this might work too. */
1763
1764 if (cache->saved_sp_reg != -1)
1765 {
1766 /* Saved stack pointer has been saved. */
1767 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1768 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1769
1770 /* We're halfway aligning the stack. */
1771 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1772 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1773
1774 /* This will be added back below. */
1775 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1776 }
1777 else if (cache->pc != 0
1778 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1779 {
1780 /* We're in a known function, but did not find a frame
1781 setup. Assume that the function does not use %ebp.
1782 Alternatively, we may have jumped to an invalid
1783 address; in that case there is definitely no new
1784 frame in %ebp. */
1785 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1786 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1787 + cache->sp_offset;
1788 }
1789 else
1790 /* We're in an unknown function. We could not find the start
1791 of the function to analyze the prologue; our best option is
1792 to assume a typical frame layout with the caller's %ebp
1793 saved. */
1794 cache->saved_regs[I386_EBP_REGNUM] = 0;
1795 }
1796
1797 if (cache->saved_sp_reg != -1)
1798 {
1799 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1800 register may be unavailable). */
1801 if (cache->saved_sp == 0
1802 && deprecated_frame_register_read (this_frame,
1803 cache->saved_sp_reg, buf))
1804 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1805 }
1806 /* Now that we have the base address for the stack frame we can
1807 calculate the value of %esp in the calling frame. */
1808 else if (cache->saved_sp == 0)
1809 cache->saved_sp = cache->base + 8;
1810
1811 /* Adjust all the saved registers such that they contain addresses
1812 instead of offsets. */
1813 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1814 if (cache->saved_regs[i] != -1)
1815 cache->saved_regs[i] += cache->base;
1816
1817 cache->base_p = 1;
1818 }
1819
1820 static struct i386_frame_cache *
1821 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1822 {
1823 volatile struct gdb_exception ex;
1824 struct i386_frame_cache *cache;
1825
1826 if (*this_cache)
1827 return *this_cache;
1828
1829 cache = i386_alloc_frame_cache ();
1830 *this_cache = cache;
1831
1832 TRY_CATCH (ex, RETURN_MASK_ERROR)
1833 {
1834 i386_frame_cache_1 (this_frame, cache);
1835 }
1836 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1837 throw_exception (ex);
1838
1839 return cache;
1840 }
1841
1842 static void
1843 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1844 struct frame_id *this_id)
1845 {
1846 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1847
1848 /* This marks the outermost frame. */
1849 if (cache->base == 0)
1850 return;
1851
1852 /* See the end of i386_push_dummy_call. */
1853 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1854 }
1855
1856 static enum unwind_stop_reason
1857 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1858 void **this_cache)
1859 {
1860 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1861
1862 if (!cache->base_p)
1863 return UNWIND_UNAVAILABLE;
1864
1865 /* This marks the outermost frame. */
1866 if (cache->base == 0)
1867 return UNWIND_OUTERMOST;
1868
1869 return UNWIND_NO_REASON;
1870 }
1871
1872 static struct value *
1873 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1874 int regnum)
1875 {
1876 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1877
1878 gdb_assert (regnum >= 0);
1879
1880 /* The System V ABI says that:
1881
1882 "The flags register contains the system flags, such as the
1883 direction flag and the carry flag. The direction flag must be
1884 set to the forward (that is, zero) direction before entry and
1885 upon exit from a function. Other user flags have no specified
1886 role in the standard calling sequence and are not preserved."
1887
1888 To guarantee the "upon exit" part of that statement we fake a
1889 saved flags register that has its direction flag cleared.
1890
1891 Note that GCC doesn't seem to rely on the fact that the direction
1892 flag is cleared after a function return; it always explicitly
1893 clears the flag before operations where it matters.
1894
1895 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1896 right thing to do. The way we fake the flags register here makes
1897 it impossible to change it. */
1898
1899 if (regnum == I386_EFLAGS_REGNUM)
1900 {
1901 ULONGEST val;
1902
1903 val = get_frame_register_unsigned (this_frame, regnum);
1904 val &= ~(1 << 10);
1905 return frame_unwind_got_constant (this_frame, regnum, val);
1906 }
1907
1908 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1909 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1910
1911 if (regnum == I386_ESP_REGNUM
1912 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1913 {
1914 /* If the SP has been saved, but we don't know where, then this
1915 means that SAVED_SP_REG register was found unavailable back
1916 when we built the cache. */
1917 if (cache->saved_sp == 0)
1918 return frame_unwind_got_register (this_frame, regnum,
1919 cache->saved_sp_reg);
1920 else
1921 return frame_unwind_got_constant (this_frame, regnum,
1922 cache->saved_sp);
1923 }
1924
1925 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1926 return frame_unwind_got_memory (this_frame, regnum,
1927 cache->saved_regs[regnum]);
1928
1929 return frame_unwind_got_register (this_frame, regnum, regnum);
1930 }
1931
1932 static const struct frame_unwind i386_frame_unwind =
1933 {
1934 NORMAL_FRAME,
1935 i386_frame_unwind_stop_reason,
1936 i386_frame_this_id,
1937 i386_frame_prev_register,
1938 NULL,
1939 default_frame_sniffer
1940 };
1941
1942 /* Normal frames, but in a function epilogue. */
1943
1944 /* The epilogue is defined here as the 'ret' instruction, which will
1945 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1946 the function's stack frame. */
1947
1948 static int
1949 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1950 {
1951 gdb_byte insn;
1952 struct symtab *symtab;
1953
1954 symtab = find_pc_symtab (pc);
1955 if (symtab && symtab->epilogue_unwind_valid)
1956 return 0;
1957
1958 if (target_read_memory (pc, &insn, 1))
1959 return 0; /* Can't read memory at pc. */
1960
1961 if (insn != 0xc3) /* 'ret' instruction. */
1962 return 0;
1963
1964 return 1;
1965 }
1966
1967 static int
1968 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1969 struct frame_info *this_frame,
1970 void **this_prologue_cache)
1971 {
1972 if (frame_relative_level (this_frame) == 0)
1973 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1974 get_frame_pc (this_frame));
1975 else
1976 return 0;
1977 }
1978
1979 static struct i386_frame_cache *
1980 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1981 {
1982 volatile struct gdb_exception ex;
1983 struct i386_frame_cache *cache;
1984 CORE_ADDR sp;
1985
1986 if (*this_cache)
1987 return *this_cache;
1988
1989 cache = i386_alloc_frame_cache ();
1990 *this_cache = cache;
1991
1992 TRY_CATCH (ex, RETURN_MASK_ERROR)
1993 {
1994 cache->pc = get_frame_func (this_frame);
1995
1996 /* At this point the stack looks as if we just entered the
1997 function, with the return address at the top of the
1998 stack. */
1999 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2000 cache->base = sp + cache->sp_offset;
2001 cache->saved_sp = cache->base + 8;
2002 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2003
2004 cache->base_p = 1;
2005 }
2006 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2007 throw_exception (ex);
2008
2009 return cache;
2010 }
2011
2012 static enum unwind_stop_reason
2013 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2014 void **this_cache)
2015 {
2016 struct i386_frame_cache *cache =
2017 i386_epilogue_frame_cache (this_frame, this_cache);
2018
2019 if (!cache->base_p)
2020 return UNWIND_UNAVAILABLE;
2021
2022 return UNWIND_NO_REASON;
2023 }
2024
2025 static void
2026 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2027 void **this_cache,
2028 struct frame_id *this_id)
2029 {
2030 struct i386_frame_cache *cache =
2031 i386_epilogue_frame_cache (this_frame, this_cache);
2032
2033 if (!cache->base_p)
2034 return;
2035
2036 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2037 }
2038
2039 static struct value *
2040 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2041 void **this_cache, int regnum)
2042 {
2043 /* Make sure we've initialized the cache. */
2044 i386_epilogue_frame_cache (this_frame, this_cache);
2045
2046 return i386_frame_prev_register (this_frame, this_cache, regnum);
2047 }
2048
2049 static const struct frame_unwind i386_epilogue_frame_unwind =
2050 {
2051 NORMAL_FRAME,
2052 i386_epilogue_frame_unwind_stop_reason,
2053 i386_epilogue_frame_this_id,
2054 i386_epilogue_frame_prev_register,
2055 NULL,
2056 i386_epilogue_frame_sniffer
2057 };
2058 \f
2059
2060 /* Stack-based trampolines. */
2061
2062 /* These trampolines are used on cross x86 targets, when taking the
2063 address of a nested function. When executing these trampolines,
2064 no stack frame is set up, so we are in a similar situation as in
2065 epilogues and i386_epilogue_frame_this_id can be re-used. */
2066
2067 /* Static chain passed in register. */
2068
2069 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2070 {
2071 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2072 { 5, { 0xb8 }, { 0xfe } },
2073
2074 /* `jmp imm32' */
2075 { 5, { 0xe9 }, { 0xff } },
2076
2077 {0}
2078 };
2079
2080 /* Static chain passed on stack (when regparm=3). */
2081
2082 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2083 {
2084 /* `push imm32' */
2085 { 5, { 0x68 }, { 0xff } },
2086
2087 /* `jmp imm32' */
2088 { 5, { 0xe9 }, { 0xff } },
2089
2090 {0}
2091 };
2092
2093 /* Return whether PC points inside a stack trampoline. */
2094
2095 static int
2096 i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2097 {
2098 gdb_byte insn;
2099 const char *name;
2100
2101 /* A stack trampoline is detected if no name is associated
2102 to the current pc and if it points inside a trampoline
2103 sequence. */
2104
2105 find_pc_partial_function (pc, &name, NULL, NULL);
2106 if (name)
2107 return 0;
2108
2109 if (target_read_memory (pc, &insn, 1))
2110 return 0;
2111
2112 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2113 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2114 return 0;
2115
2116 return 1;
2117 }
2118
2119 static int
2120 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2121 struct frame_info *this_frame,
2122 void **this_cache)
2123 {
2124 if (frame_relative_level (this_frame) == 0)
2125 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2126 get_frame_pc (this_frame));
2127 else
2128 return 0;
2129 }
2130
2131 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2132 {
2133 NORMAL_FRAME,
2134 i386_epilogue_frame_unwind_stop_reason,
2135 i386_epilogue_frame_this_id,
2136 i386_epilogue_frame_prev_register,
2137 NULL,
2138 i386_stack_tramp_frame_sniffer
2139 };
2140 \f
2141 /* Generate a bytecode expression to get the value of the saved PC. */
2142
2143 static void
2144 i386_gen_return_address (struct gdbarch *gdbarch,
2145 struct agent_expr *ax, struct axs_value *value,
2146 CORE_ADDR scope)
2147 {
2148 /* The following sequence assumes the traditional use of the base
2149 register. */
2150 ax_reg (ax, I386_EBP_REGNUM);
2151 ax_const_l (ax, 4);
2152 ax_simple (ax, aop_add);
2153 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2154 value->kind = axs_lvalue_memory;
2155 }
2156 \f
2157
2158 /* Signal trampolines. */
2159
2160 static struct i386_frame_cache *
2161 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2162 {
2163 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2165 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2166 volatile struct gdb_exception ex;
2167 struct i386_frame_cache *cache;
2168 CORE_ADDR addr;
2169 gdb_byte buf[4];
2170
2171 if (*this_cache)
2172 return *this_cache;
2173
2174 cache = i386_alloc_frame_cache ();
2175
2176 TRY_CATCH (ex, RETURN_MASK_ERROR)
2177 {
2178 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2179 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2180
2181 addr = tdep->sigcontext_addr (this_frame);
2182 if (tdep->sc_reg_offset)
2183 {
2184 int i;
2185
2186 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2187
2188 for (i = 0; i < tdep->sc_num_regs; i++)
2189 if (tdep->sc_reg_offset[i] != -1)
2190 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2191 }
2192 else
2193 {
2194 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2195 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2196 }
2197
2198 cache->base_p = 1;
2199 }
2200 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2201 throw_exception (ex);
2202
2203 *this_cache = cache;
2204 return cache;
2205 }
2206
2207 static enum unwind_stop_reason
2208 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2209 void **this_cache)
2210 {
2211 struct i386_frame_cache *cache =
2212 i386_sigtramp_frame_cache (this_frame, this_cache);
2213
2214 if (!cache->base_p)
2215 return UNWIND_UNAVAILABLE;
2216
2217 return UNWIND_NO_REASON;
2218 }
2219
2220 static void
2221 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2222 struct frame_id *this_id)
2223 {
2224 struct i386_frame_cache *cache =
2225 i386_sigtramp_frame_cache (this_frame, this_cache);
2226
2227 if (!cache->base_p)
2228 return;
2229
2230 /* See the end of i386_push_dummy_call. */
2231 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2232 }
2233
2234 static struct value *
2235 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2236 void **this_cache, int regnum)
2237 {
2238 /* Make sure we've initialized the cache. */
2239 i386_sigtramp_frame_cache (this_frame, this_cache);
2240
2241 return i386_frame_prev_register (this_frame, this_cache, regnum);
2242 }
2243
2244 static int
2245 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2246 struct frame_info *this_frame,
2247 void **this_prologue_cache)
2248 {
2249 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2250
2251 /* We shouldn't even bother if we don't have a sigcontext_addr
2252 handler. */
2253 if (tdep->sigcontext_addr == NULL)
2254 return 0;
2255
2256 if (tdep->sigtramp_p != NULL)
2257 {
2258 if (tdep->sigtramp_p (this_frame))
2259 return 1;
2260 }
2261
2262 if (tdep->sigtramp_start != 0)
2263 {
2264 CORE_ADDR pc = get_frame_pc (this_frame);
2265
2266 gdb_assert (tdep->sigtramp_end != 0);
2267 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2268 return 1;
2269 }
2270
2271 return 0;
2272 }
2273
2274 static const struct frame_unwind i386_sigtramp_frame_unwind =
2275 {
2276 SIGTRAMP_FRAME,
2277 i386_sigtramp_frame_unwind_stop_reason,
2278 i386_sigtramp_frame_this_id,
2279 i386_sigtramp_frame_prev_register,
2280 NULL,
2281 i386_sigtramp_frame_sniffer
2282 };
2283 \f
2284
2285 static CORE_ADDR
2286 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2287 {
2288 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2289
2290 return cache->base;
2291 }
2292
2293 static const struct frame_base i386_frame_base =
2294 {
2295 &i386_frame_unwind,
2296 i386_frame_base_address,
2297 i386_frame_base_address,
2298 i386_frame_base_address
2299 };
2300
2301 static struct frame_id
2302 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2303 {
2304 CORE_ADDR fp;
2305
2306 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2307
2308 /* See the end of i386_push_dummy_call. */
2309 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2310 }
2311
2312 /* _Decimal128 function return values need 16-byte alignment on the
2313 stack. */
2314
2315 static CORE_ADDR
2316 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2317 {
2318 return sp & -(CORE_ADDR)16;
2319 }
2320 \f
2321
2322 /* Figure out where the longjmp will land. Slurp the args out of the
2323 stack. We expect the first arg to be a pointer to the jmp_buf
2324 structure from which we extract the address that we will land at.
2325 This address is copied into PC. This routine returns non-zero on
2326 success. */
2327
2328 static int
2329 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2330 {
2331 gdb_byte buf[4];
2332 CORE_ADDR sp, jb_addr;
2333 struct gdbarch *gdbarch = get_frame_arch (frame);
2334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2335 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2336
2337 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2338 longjmp will land. */
2339 if (jb_pc_offset == -1)
2340 return 0;
2341
2342 get_frame_register (frame, I386_ESP_REGNUM, buf);
2343 sp = extract_unsigned_integer (buf, 4, byte_order);
2344 if (target_read_memory (sp + 4, buf, 4))
2345 return 0;
2346
2347 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2348 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2349 return 0;
2350
2351 *pc = extract_unsigned_integer (buf, 4, byte_order);
2352 return 1;
2353 }
2354 \f
2355
2356 /* Check whether TYPE must be 16-byte-aligned when passed as a
2357 function argument. 16-byte vectors, _Decimal128 and structures or
2358 unions containing such types must be 16-byte-aligned; other
2359 arguments are 4-byte-aligned. */
2360
2361 static int
2362 i386_16_byte_align_p (struct type *type)
2363 {
2364 type = check_typedef (type);
2365 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2366 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2367 && TYPE_LENGTH (type) == 16)
2368 return 1;
2369 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2370 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2371 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2372 || TYPE_CODE (type) == TYPE_CODE_UNION)
2373 {
2374 int i;
2375 for (i = 0; i < TYPE_NFIELDS (type); i++)
2376 {
2377 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2378 return 1;
2379 }
2380 }
2381 return 0;
2382 }
2383
2384 /* Implementation for set_gdbarch_push_dummy_code. */
2385
2386 static CORE_ADDR
2387 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2388 struct value **args, int nargs, struct type *value_type,
2389 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2390 struct regcache *regcache)
2391 {
2392 /* Use 0xcc breakpoint - 1 byte. */
2393 *bp_addr = sp - 1;
2394 *real_pc = funaddr;
2395
2396 /* Keep the stack aligned. */
2397 return sp - 16;
2398 }
2399
2400 static CORE_ADDR
2401 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2402 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2403 struct value **args, CORE_ADDR sp, int struct_return,
2404 CORE_ADDR struct_addr)
2405 {
2406 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2407 gdb_byte buf[4];
2408 int i;
2409 int write_pass;
2410 int args_space = 0;
2411
2412 /* Determine the total space required for arguments and struct
2413 return address in a first pass (allowing for 16-byte-aligned
2414 arguments), then push arguments in a second pass. */
2415
2416 for (write_pass = 0; write_pass < 2; write_pass++)
2417 {
2418 int args_space_used = 0;
2419
2420 if (struct_return)
2421 {
2422 if (write_pass)
2423 {
2424 /* Push value address. */
2425 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2426 write_memory (sp, buf, 4);
2427 args_space_used += 4;
2428 }
2429 else
2430 args_space += 4;
2431 }
2432
2433 for (i = 0; i < nargs; i++)
2434 {
2435 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2436
2437 if (write_pass)
2438 {
2439 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2440 args_space_used = align_up (args_space_used, 16);
2441
2442 write_memory (sp + args_space_used,
2443 value_contents_all (args[i]), len);
2444 /* The System V ABI says that:
2445
2446 "An argument's size is increased, if necessary, to make it a
2447 multiple of [32-bit] words. This may require tail padding,
2448 depending on the size of the argument."
2449
2450 This makes sure the stack stays word-aligned. */
2451 args_space_used += align_up (len, 4);
2452 }
2453 else
2454 {
2455 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2456 args_space = align_up (args_space, 16);
2457 args_space += align_up (len, 4);
2458 }
2459 }
2460
2461 if (!write_pass)
2462 {
2463 sp -= args_space;
2464
2465 /* The original System V ABI only requires word alignment,
2466 but modern incarnations need 16-byte alignment in order
2467 to support SSE. Since wasting a few bytes here isn't
2468 harmful we unconditionally enforce 16-byte alignment. */
2469 sp &= ~0xf;
2470 }
2471 }
2472
2473 /* Store return address. */
2474 sp -= 4;
2475 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2476 write_memory (sp, buf, 4);
2477
2478 /* Finally, update the stack pointer... */
2479 store_unsigned_integer (buf, 4, byte_order, sp);
2480 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2481
2482 /* ...and fake a frame pointer. */
2483 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2484
2485 /* MarkK wrote: This "+ 8" is all over the place:
2486 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2487 i386_dummy_id). It's there, since all frame unwinders for
2488 a given target have to agree (within a certain margin) on the
2489 definition of the stack address of a frame. Otherwise frame id
2490 comparison might not work correctly. Since DWARF2/GCC uses the
2491 stack address *before* the function call as a frame's CFA. On
2492 the i386, when %ebp is used as a frame pointer, the offset
2493 between the contents %ebp and the CFA as defined by GCC. */
2494 return sp + 8;
2495 }
2496
2497 /* These registers are used for returning integers (and on some
2498 targets also for returning `struct' and `union' values when their
2499 size and alignment match an integer type). */
2500 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2501 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2502
2503 /* Read, for architecture GDBARCH, a function return value of TYPE
2504 from REGCACHE, and copy that into VALBUF. */
2505
2506 static void
2507 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2508 struct regcache *regcache, gdb_byte *valbuf)
2509 {
2510 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2511 int len = TYPE_LENGTH (type);
2512 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2513
2514 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2515 {
2516 if (tdep->st0_regnum < 0)
2517 {
2518 warning (_("Cannot find floating-point return value."));
2519 memset (valbuf, 0, len);
2520 return;
2521 }
2522
2523 /* Floating-point return values can be found in %st(0). Convert
2524 its contents to the desired type. This is probably not
2525 exactly how it would happen on the target itself, but it is
2526 the best we can do. */
2527 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2528 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2529 }
2530 else
2531 {
2532 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2533 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2534
2535 if (len <= low_size)
2536 {
2537 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2538 memcpy (valbuf, buf, len);
2539 }
2540 else if (len <= (low_size + high_size))
2541 {
2542 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2543 memcpy (valbuf, buf, low_size);
2544 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2545 memcpy (valbuf + low_size, buf, len - low_size);
2546 }
2547 else
2548 internal_error (__FILE__, __LINE__,
2549 _("Cannot extract return value of %d bytes long."),
2550 len);
2551 }
2552 }
2553
2554 /* Write, for architecture GDBARCH, a function return value of TYPE
2555 from VALBUF into REGCACHE. */
2556
2557 static void
2558 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2559 struct regcache *regcache, const gdb_byte *valbuf)
2560 {
2561 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2562 int len = TYPE_LENGTH (type);
2563
2564 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2565 {
2566 ULONGEST fstat;
2567 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2568
2569 if (tdep->st0_regnum < 0)
2570 {
2571 warning (_("Cannot set floating-point return value."));
2572 return;
2573 }
2574
2575 /* Returning floating-point values is a bit tricky. Apart from
2576 storing the return value in %st(0), we have to simulate the
2577 state of the FPU at function return point. */
2578
2579 /* Convert the value found in VALBUF to the extended
2580 floating-point format used by the FPU. This is probably
2581 not exactly how it would happen on the target itself, but
2582 it is the best we can do. */
2583 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2584 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2585
2586 /* Set the top of the floating-point register stack to 7. The
2587 actual value doesn't really matter, but 7 is what a normal
2588 function return would end up with if the program started out
2589 with a freshly initialized FPU. */
2590 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2591 fstat |= (7 << 11);
2592 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2593
2594 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2595 the floating-point register stack to 7, the appropriate value
2596 for the tag word is 0x3fff. */
2597 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2598 }
2599 else
2600 {
2601 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2602 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2603
2604 if (len <= low_size)
2605 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2606 else if (len <= (low_size + high_size))
2607 {
2608 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2609 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2610 len - low_size, valbuf + low_size);
2611 }
2612 else
2613 internal_error (__FILE__, __LINE__,
2614 _("Cannot store return value of %d bytes long."), len);
2615 }
2616 }
2617 \f
2618
2619 /* This is the variable that is set with "set struct-convention", and
2620 its legitimate values. */
2621 static const char default_struct_convention[] = "default";
2622 static const char pcc_struct_convention[] = "pcc";
2623 static const char reg_struct_convention[] = "reg";
2624 static const char *const valid_conventions[] =
2625 {
2626 default_struct_convention,
2627 pcc_struct_convention,
2628 reg_struct_convention,
2629 NULL
2630 };
2631 static const char *struct_convention = default_struct_convention;
2632
2633 /* Return non-zero if TYPE, which is assumed to be a structure,
2634 a union type, or an array type, should be returned in registers
2635 for architecture GDBARCH. */
2636
2637 static int
2638 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2639 {
2640 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2641 enum type_code code = TYPE_CODE (type);
2642 int len = TYPE_LENGTH (type);
2643
2644 gdb_assert (code == TYPE_CODE_STRUCT
2645 || code == TYPE_CODE_UNION
2646 || code == TYPE_CODE_ARRAY);
2647
2648 if (struct_convention == pcc_struct_convention
2649 || (struct_convention == default_struct_convention
2650 && tdep->struct_return == pcc_struct_return))
2651 return 0;
2652
2653 /* Structures consisting of a single `float', `double' or 'long
2654 double' member are returned in %st(0). */
2655 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2656 {
2657 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2658 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2659 return (len == 4 || len == 8 || len == 12);
2660 }
2661
2662 return (len == 1 || len == 2 || len == 4 || len == 8);
2663 }
2664
2665 /* Determine, for architecture GDBARCH, how a return value of TYPE
2666 should be returned. If it is supposed to be returned in registers,
2667 and READBUF is non-zero, read the appropriate value from REGCACHE,
2668 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2669 from WRITEBUF into REGCACHE. */
2670
2671 static enum return_value_convention
2672 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2673 struct type *type, struct regcache *regcache,
2674 gdb_byte *readbuf, const gdb_byte *writebuf)
2675 {
2676 enum type_code code = TYPE_CODE (type);
2677
2678 if (((code == TYPE_CODE_STRUCT
2679 || code == TYPE_CODE_UNION
2680 || code == TYPE_CODE_ARRAY)
2681 && !i386_reg_struct_return_p (gdbarch, type))
2682 /* Complex double and long double uses the struct return covention. */
2683 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2684 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2685 /* 128-bit decimal float uses the struct return convention. */
2686 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2687 {
2688 /* The System V ABI says that:
2689
2690 "A function that returns a structure or union also sets %eax
2691 to the value of the original address of the caller's area
2692 before it returns. Thus when the caller receives control
2693 again, the address of the returned object resides in register
2694 %eax and can be used to access the object."
2695
2696 So the ABI guarantees that we can always find the return
2697 value just after the function has returned. */
2698
2699 /* Note that the ABI doesn't mention functions returning arrays,
2700 which is something possible in certain languages such as Ada.
2701 In this case, the value is returned as if it was wrapped in
2702 a record, so the convention applied to records also applies
2703 to arrays. */
2704
2705 if (readbuf)
2706 {
2707 ULONGEST addr;
2708
2709 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2710 read_memory (addr, readbuf, TYPE_LENGTH (type));
2711 }
2712
2713 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2714 }
2715
2716 /* This special case is for structures consisting of a single
2717 `float', `double' or 'long double' member. These structures are
2718 returned in %st(0). For these structures, we call ourselves
2719 recursively, changing TYPE into the type of the first member of
2720 the structure. Since that should work for all structures that
2721 have only one member, we don't bother to check the member's type
2722 here. */
2723 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2724 {
2725 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2726 return i386_return_value (gdbarch, function, type, regcache,
2727 readbuf, writebuf);
2728 }
2729
2730 if (readbuf)
2731 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2732 if (writebuf)
2733 i386_store_return_value (gdbarch, type, regcache, writebuf);
2734
2735 return RETURN_VALUE_REGISTER_CONVENTION;
2736 }
2737 \f
2738
2739 struct type *
2740 i387_ext_type (struct gdbarch *gdbarch)
2741 {
2742 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2743
2744 if (!tdep->i387_ext_type)
2745 {
2746 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2747 gdb_assert (tdep->i387_ext_type != NULL);
2748 }
2749
2750 return tdep->i387_ext_type;
2751 }
2752
2753 /* Construct vector type for pseudo YMM registers. We can't use
2754 tdesc_find_type since YMM isn't described in target description. */
2755
2756 static struct type *
2757 i386_ymm_type (struct gdbarch *gdbarch)
2758 {
2759 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2760
2761 if (!tdep->i386_ymm_type)
2762 {
2763 const struct builtin_type *bt = builtin_type (gdbarch);
2764
2765 /* The type we're building is this: */
2766 #if 0
2767 union __gdb_builtin_type_vec256i
2768 {
2769 int128_t uint128[2];
2770 int64_t v2_int64[4];
2771 int32_t v4_int32[8];
2772 int16_t v8_int16[16];
2773 int8_t v16_int8[32];
2774 double v2_double[4];
2775 float v4_float[8];
2776 };
2777 #endif
2778
2779 struct type *t;
2780
2781 t = arch_composite_type (gdbarch,
2782 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2783 append_composite_type_field (t, "v8_float",
2784 init_vector_type (bt->builtin_float, 8));
2785 append_composite_type_field (t, "v4_double",
2786 init_vector_type (bt->builtin_double, 4));
2787 append_composite_type_field (t, "v32_int8",
2788 init_vector_type (bt->builtin_int8, 32));
2789 append_composite_type_field (t, "v16_int16",
2790 init_vector_type (bt->builtin_int16, 16));
2791 append_composite_type_field (t, "v8_int32",
2792 init_vector_type (bt->builtin_int32, 8));
2793 append_composite_type_field (t, "v4_int64",
2794 init_vector_type (bt->builtin_int64, 4));
2795 append_composite_type_field (t, "v2_int128",
2796 init_vector_type (bt->builtin_int128, 2));
2797
2798 TYPE_VECTOR (t) = 1;
2799 TYPE_NAME (t) = "builtin_type_vec256i";
2800 tdep->i386_ymm_type = t;
2801 }
2802
2803 return tdep->i386_ymm_type;
2804 }
2805
2806 /* Construct vector type for MMX registers. */
2807 static struct type *
2808 i386_mmx_type (struct gdbarch *gdbarch)
2809 {
2810 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2811
2812 if (!tdep->i386_mmx_type)
2813 {
2814 const struct builtin_type *bt = builtin_type (gdbarch);
2815
2816 /* The type we're building is this: */
2817 #if 0
2818 union __gdb_builtin_type_vec64i
2819 {
2820 int64_t uint64;
2821 int32_t v2_int32[2];
2822 int16_t v4_int16[4];
2823 int8_t v8_int8[8];
2824 };
2825 #endif
2826
2827 struct type *t;
2828
2829 t = arch_composite_type (gdbarch,
2830 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2831
2832 append_composite_type_field (t, "uint64", bt->builtin_int64);
2833 append_composite_type_field (t, "v2_int32",
2834 init_vector_type (bt->builtin_int32, 2));
2835 append_composite_type_field (t, "v4_int16",
2836 init_vector_type (bt->builtin_int16, 4));
2837 append_composite_type_field (t, "v8_int8",
2838 init_vector_type (bt->builtin_int8, 8));
2839
2840 TYPE_VECTOR (t) = 1;
2841 TYPE_NAME (t) = "builtin_type_vec64i";
2842 tdep->i386_mmx_type = t;
2843 }
2844
2845 return tdep->i386_mmx_type;
2846 }
2847
2848 /* Return the GDB type object for the "standard" data type of data in
2849 register REGNUM. */
2850
2851 struct type *
2852 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2853 {
2854 if (i386_mmx_regnum_p (gdbarch, regnum))
2855 return i386_mmx_type (gdbarch);
2856 else if (i386_ymm_regnum_p (gdbarch, regnum))
2857 return i386_ymm_type (gdbarch);
2858 else
2859 {
2860 const struct builtin_type *bt = builtin_type (gdbarch);
2861 if (i386_byte_regnum_p (gdbarch, regnum))
2862 return bt->builtin_int8;
2863 else if (i386_word_regnum_p (gdbarch, regnum))
2864 return bt->builtin_int16;
2865 else if (i386_dword_regnum_p (gdbarch, regnum))
2866 return bt->builtin_int32;
2867 }
2868
2869 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2870 }
2871
2872 /* Map a cooked register onto a raw register or memory. For the i386,
2873 the MMX registers need to be mapped onto floating point registers. */
2874
2875 static int
2876 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2877 {
2878 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2879 int mmxreg, fpreg;
2880 ULONGEST fstat;
2881 int tos;
2882
2883 mmxreg = regnum - tdep->mm0_regnum;
2884 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2885 tos = (fstat >> 11) & 0x7;
2886 fpreg = (mmxreg + tos) % 8;
2887
2888 return (I387_ST0_REGNUM (tdep) + fpreg);
2889 }
2890
2891 /* A helper function for us by i386_pseudo_register_read_value and
2892 amd64_pseudo_register_read_value. It does all the work but reads
2893 the data into an already-allocated value. */
2894
2895 void
2896 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2897 struct regcache *regcache,
2898 int regnum,
2899 struct value *result_value)
2900 {
2901 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2902 enum register_status status;
2903 gdb_byte *buf = value_contents_raw (result_value);
2904
2905 if (i386_mmx_regnum_p (gdbarch, regnum))
2906 {
2907 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2908
2909 /* Extract (always little endian). */
2910 status = regcache_raw_read (regcache, fpnum, raw_buf);
2911 if (status != REG_VALID)
2912 mark_value_bytes_unavailable (result_value, 0,
2913 TYPE_LENGTH (value_type (result_value)));
2914 else
2915 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2916 }
2917 else
2918 {
2919 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2920
2921 if (i386_ymm_regnum_p (gdbarch, regnum))
2922 {
2923 regnum -= tdep->ymm0_regnum;
2924
2925 /* Extract (always little endian). Read lower 128bits. */
2926 status = regcache_raw_read (regcache,
2927 I387_XMM0_REGNUM (tdep) + regnum,
2928 raw_buf);
2929 if (status != REG_VALID)
2930 mark_value_bytes_unavailable (result_value, 0, 16);
2931 else
2932 memcpy (buf, raw_buf, 16);
2933 /* Read upper 128bits. */
2934 status = regcache_raw_read (regcache,
2935 tdep->ymm0h_regnum + regnum,
2936 raw_buf);
2937 if (status != REG_VALID)
2938 mark_value_bytes_unavailable (result_value, 16, 32);
2939 else
2940 memcpy (buf + 16, raw_buf, 16);
2941 }
2942 else if (i386_word_regnum_p (gdbarch, regnum))
2943 {
2944 int gpnum = regnum - tdep->ax_regnum;
2945
2946 /* Extract (always little endian). */
2947 status = regcache_raw_read (regcache, gpnum, raw_buf);
2948 if (status != REG_VALID)
2949 mark_value_bytes_unavailable (result_value, 0,
2950 TYPE_LENGTH (value_type (result_value)));
2951 else
2952 memcpy (buf, raw_buf, 2);
2953 }
2954 else if (i386_byte_regnum_p (gdbarch, regnum))
2955 {
2956 /* Check byte pseudo registers last since this function will
2957 be called from amd64_pseudo_register_read, which handles
2958 byte pseudo registers differently. */
2959 int gpnum = regnum - tdep->al_regnum;
2960
2961 /* Extract (always little endian). We read both lower and
2962 upper registers. */
2963 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2964 if (status != REG_VALID)
2965 mark_value_bytes_unavailable (result_value, 0,
2966 TYPE_LENGTH (value_type (result_value)));
2967 else if (gpnum >= 4)
2968 memcpy (buf, raw_buf + 1, 1);
2969 else
2970 memcpy (buf, raw_buf, 1);
2971 }
2972 else
2973 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2974 }
2975 }
2976
2977 static struct value *
2978 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2979 struct regcache *regcache,
2980 int regnum)
2981 {
2982 struct value *result;
2983
2984 result = allocate_value (register_type (gdbarch, regnum));
2985 VALUE_LVAL (result) = lval_register;
2986 VALUE_REGNUM (result) = regnum;
2987
2988 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
2989
2990 return result;
2991 }
2992
2993 void
2994 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2995 int regnum, const gdb_byte *buf)
2996 {
2997 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2998
2999 if (i386_mmx_regnum_p (gdbarch, regnum))
3000 {
3001 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3002
3003 /* Read ... */
3004 regcache_raw_read (regcache, fpnum, raw_buf);
3005 /* ... Modify ... (always little endian). */
3006 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3007 /* ... Write. */
3008 regcache_raw_write (regcache, fpnum, raw_buf);
3009 }
3010 else
3011 {
3012 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3013
3014 if (i386_ymm_regnum_p (gdbarch, regnum))
3015 {
3016 regnum -= tdep->ymm0_regnum;
3017
3018 /* ... Write lower 128bits. */
3019 regcache_raw_write (regcache,
3020 I387_XMM0_REGNUM (tdep) + regnum,
3021 buf);
3022 /* ... Write upper 128bits. */
3023 regcache_raw_write (regcache,
3024 tdep->ymm0h_regnum + regnum,
3025 buf + 16);
3026 }
3027 else if (i386_word_regnum_p (gdbarch, regnum))
3028 {
3029 int gpnum = regnum - tdep->ax_regnum;
3030
3031 /* Read ... */
3032 regcache_raw_read (regcache, gpnum, raw_buf);
3033 /* ... Modify ... (always little endian). */
3034 memcpy (raw_buf, buf, 2);
3035 /* ... Write. */
3036 regcache_raw_write (regcache, gpnum, raw_buf);
3037 }
3038 else if (i386_byte_regnum_p (gdbarch, regnum))
3039 {
3040 /* Check byte pseudo registers last since this function will
3041 be called from amd64_pseudo_register_read, which handles
3042 byte pseudo registers differently. */
3043 int gpnum = regnum - tdep->al_regnum;
3044
3045 /* Read ... We read both lower and upper registers. */
3046 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3047 /* ... Modify ... (always little endian). */
3048 if (gpnum >= 4)
3049 memcpy (raw_buf + 1, buf, 1);
3050 else
3051 memcpy (raw_buf, buf, 1);
3052 /* ... Write. */
3053 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3054 }
3055 else
3056 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3057 }
3058 }
3059 \f
3060
3061 /* Return the register number of the register allocated by GCC after
3062 REGNUM, or -1 if there is no such register. */
3063
3064 static int
3065 i386_next_regnum (int regnum)
3066 {
3067 /* GCC allocates the registers in the order:
3068
3069 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3070
3071 Since storing a variable in %esp doesn't make any sense we return
3072 -1 for %ebp and for %esp itself. */
3073 static int next_regnum[] =
3074 {
3075 I386_EDX_REGNUM, /* Slot for %eax. */
3076 I386_EBX_REGNUM, /* Slot for %ecx. */
3077 I386_ECX_REGNUM, /* Slot for %edx. */
3078 I386_ESI_REGNUM, /* Slot for %ebx. */
3079 -1, -1, /* Slots for %esp and %ebp. */
3080 I386_EDI_REGNUM, /* Slot for %esi. */
3081 I386_EBP_REGNUM /* Slot for %edi. */
3082 };
3083
3084 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3085 return next_regnum[regnum];
3086
3087 return -1;
3088 }
3089
3090 /* Return nonzero if a value of type TYPE stored in register REGNUM
3091 needs any special handling. */
3092
3093 static int
3094 i386_convert_register_p (struct gdbarch *gdbarch,
3095 int regnum, struct type *type)
3096 {
3097 int len = TYPE_LENGTH (type);
3098
3099 /* Values may be spread across multiple registers. Most debugging
3100 formats aren't expressive enough to specify the locations, so
3101 some heuristics is involved. Right now we only handle types that
3102 have a length that is a multiple of the word size, since GCC
3103 doesn't seem to put any other types into registers. */
3104 if (len > 4 && len % 4 == 0)
3105 {
3106 int last_regnum = regnum;
3107
3108 while (len > 4)
3109 {
3110 last_regnum = i386_next_regnum (last_regnum);
3111 len -= 4;
3112 }
3113
3114 if (last_regnum != -1)
3115 return 1;
3116 }
3117
3118 return i387_convert_register_p (gdbarch, regnum, type);
3119 }
3120
3121 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3122 return its contents in TO. */
3123
3124 static int
3125 i386_register_to_value (struct frame_info *frame, int regnum,
3126 struct type *type, gdb_byte *to,
3127 int *optimizedp, int *unavailablep)
3128 {
3129 struct gdbarch *gdbarch = get_frame_arch (frame);
3130 int len = TYPE_LENGTH (type);
3131
3132 if (i386_fp_regnum_p (gdbarch, regnum))
3133 return i387_register_to_value (frame, regnum, type, to,
3134 optimizedp, unavailablep);
3135
3136 /* Read a value spread across multiple registers. */
3137
3138 gdb_assert (len > 4 && len % 4 == 0);
3139
3140 while (len > 0)
3141 {
3142 gdb_assert (regnum != -1);
3143 gdb_assert (register_size (gdbarch, regnum) == 4);
3144
3145 if (!get_frame_register_bytes (frame, regnum, 0,
3146 register_size (gdbarch, regnum),
3147 to, optimizedp, unavailablep))
3148 return 0;
3149
3150 regnum = i386_next_regnum (regnum);
3151 len -= 4;
3152 to += 4;
3153 }
3154
3155 *optimizedp = *unavailablep = 0;
3156 return 1;
3157 }
3158
3159 /* Write the contents FROM of a value of type TYPE into register
3160 REGNUM in frame FRAME. */
3161
3162 static void
3163 i386_value_to_register (struct frame_info *frame, int regnum,
3164 struct type *type, const gdb_byte *from)
3165 {
3166 int len = TYPE_LENGTH (type);
3167
3168 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3169 {
3170 i387_value_to_register (frame, regnum, type, from);
3171 return;
3172 }
3173
3174 /* Write a value spread across multiple registers. */
3175
3176 gdb_assert (len > 4 && len % 4 == 0);
3177
3178 while (len > 0)
3179 {
3180 gdb_assert (regnum != -1);
3181 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3182
3183 put_frame_register (frame, regnum, from);
3184 regnum = i386_next_regnum (regnum);
3185 len -= 4;
3186 from += 4;
3187 }
3188 }
3189 \f
3190 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3191 in the general-purpose register set REGSET to register cache
3192 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3193
3194 void
3195 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3196 int regnum, const void *gregs, size_t len)
3197 {
3198 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3199 const gdb_byte *regs = gregs;
3200 int i;
3201
3202 gdb_assert (len == tdep->sizeof_gregset);
3203
3204 for (i = 0; i < tdep->gregset_num_regs; i++)
3205 {
3206 if ((regnum == i || regnum == -1)
3207 && tdep->gregset_reg_offset[i] != -1)
3208 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3209 }
3210 }
3211
3212 /* Collect register REGNUM from the register cache REGCACHE and store
3213 it in the buffer specified by GREGS and LEN as described by the
3214 general-purpose register set REGSET. If REGNUM is -1, do this for
3215 all registers in REGSET. */
3216
3217 void
3218 i386_collect_gregset (const struct regset *regset,
3219 const struct regcache *regcache,
3220 int regnum, void *gregs, size_t len)
3221 {
3222 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3223 gdb_byte *regs = gregs;
3224 int i;
3225
3226 gdb_assert (len == tdep->sizeof_gregset);
3227
3228 for (i = 0; i < tdep->gregset_num_regs; i++)
3229 {
3230 if ((regnum == i || regnum == -1)
3231 && tdep->gregset_reg_offset[i] != -1)
3232 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3233 }
3234 }
3235
3236 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3237 in the floating-point register set REGSET to register cache
3238 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3239
3240 static void
3241 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3242 int regnum, const void *fpregs, size_t len)
3243 {
3244 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3245
3246 if (len == I387_SIZEOF_FXSAVE)
3247 {
3248 i387_supply_fxsave (regcache, regnum, fpregs);
3249 return;
3250 }
3251
3252 gdb_assert (len == tdep->sizeof_fpregset);
3253 i387_supply_fsave (regcache, regnum, fpregs);
3254 }
3255
3256 /* Collect register REGNUM from the register cache REGCACHE and store
3257 it in the buffer specified by FPREGS and LEN as described by the
3258 floating-point register set REGSET. If REGNUM is -1, do this for
3259 all registers in REGSET. */
3260
3261 static void
3262 i386_collect_fpregset (const struct regset *regset,
3263 const struct regcache *regcache,
3264 int regnum, void *fpregs, size_t len)
3265 {
3266 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3267
3268 if (len == I387_SIZEOF_FXSAVE)
3269 {
3270 i387_collect_fxsave (regcache, regnum, fpregs);
3271 return;
3272 }
3273
3274 gdb_assert (len == tdep->sizeof_fpregset);
3275 i387_collect_fsave (regcache, regnum, fpregs);
3276 }
3277
3278 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3279
3280 static void
3281 i386_supply_xstateregset (const struct regset *regset,
3282 struct regcache *regcache, int regnum,
3283 const void *xstateregs, size_t len)
3284 {
3285 i387_supply_xsave (regcache, regnum, xstateregs);
3286 }
3287
3288 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3289
3290 static void
3291 i386_collect_xstateregset (const struct regset *regset,
3292 const struct regcache *regcache,
3293 int regnum, void *xstateregs, size_t len)
3294 {
3295 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3296 }
3297
3298 /* Return the appropriate register set for the core section identified
3299 by SECT_NAME and SECT_SIZE. */
3300
3301 const struct regset *
3302 i386_regset_from_core_section (struct gdbarch *gdbarch,
3303 const char *sect_name, size_t sect_size)
3304 {
3305 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3306
3307 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3308 {
3309 if (tdep->gregset == NULL)
3310 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3311 i386_collect_gregset);
3312 return tdep->gregset;
3313 }
3314
3315 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3316 || (strcmp (sect_name, ".reg-xfp") == 0
3317 && sect_size == I387_SIZEOF_FXSAVE))
3318 {
3319 if (tdep->fpregset == NULL)
3320 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3321 i386_collect_fpregset);
3322 return tdep->fpregset;
3323 }
3324
3325 if (strcmp (sect_name, ".reg-xstate") == 0)
3326 {
3327 if (tdep->xstateregset == NULL)
3328 tdep->xstateregset = regset_alloc (gdbarch,
3329 i386_supply_xstateregset,
3330 i386_collect_xstateregset);
3331
3332 return tdep->xstateregset;
3333 }
3334
3335 return NULL;
3336 }
3337 \f
3338
3339 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3340
3341 CORE_ADDR
3342 i386_pe_skip_trampoline_code (struct frame_info *frame,
3343 CORE_ADDR pc, char *name)
3344 {
3345 struct gdbarch *gdbarch = get_frame_arch (frame);
3346 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3347
3348 /* jmp *(dest) */
3349 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3350 {
3351 unsigned long indirect =
3352 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3353 struct minimal_symbol *indsym =
3354 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
3355 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3356
3357 if (symname)
3358 {
3359 if (strncmp (symname, "__imp_", 6) == 0
3360 || strncmp (symname, "_imp_", 5) == 0)
3361 return name ? 1 :
3362 read_memory_unsigned_integer (indirect, 4, byte_order);
3363 }
3364 }
3365 return 0; /* Not a trampoline. */
3366 }
3367 \f
3368
3369 /* Return whether the THIS_FRAME corresponds to a sigtramp
3370 routine. */
3371
3372 int
3373 i386_sigtramp_p (struct frame_info *this_frame)
3374 {
3375 CORE_ADDR pc = get_frame_pc (this_frame);
3376 const char *name;
3377
3378 find_pc_partial_function (pc, &name, NULL, NULL);
3379 return (name && strcmp ("_sigtramp", name) == 0);
3380 }
3381 \f
3382
3383 /* We have two flavours of disassembly. The machinery on this page
3384 deals with switching between those. */
3385
3386 static int
3387 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3388 {
3389 gdb_assert (disassembly_flavor == att_flavor
3390 || disassembly_flavor == intel_flavor);
3391
3392 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3393 constified, cast to prevent a compiler warning. */
3394 info->disassembler_options = (char *) disassembly_flavor;
3395
3396 return print_insn_i386 (pc, info);
3397 }
3398 \f
3399
3400 /* There are a few i386 architecture variants that differ only
3401 slightly from the generic i386 target. For now, we don't give them
3402 their own source file, but include them here. As a consequence,
3403 they'll always be included. */
3404
3405 /* System V Release 4 (SVR4). */
3406
3407 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3408 routine. */
3409
3410 static int
3411 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3412 {
3413 CORE_ADDR pc = get_frame_pc (this_frame);
3414 const char *name;
3415
3416 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3417 currently unknown. */
3418 find_pc_partial_function (pc, &name, NULL, NULL);
3419 return (name && (strcmp ("_sigreturn", name) == 0
3420 || strcmp ("_sigacthandler", name) == 0
3421 || strcmp ("sigvechandler", name) == 0));
3422 }
3423
3424 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3425 address of the associated sigcontext (ucontext) structure. */
3426
3427 static CORE_ADDR
3428 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3429 {
3430 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3431 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3432 gdb_byte buf[4];
3433 CORE_ADDR sp;
3434
3435 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3436 sp = extract_unsigned_integer (buf, 4, byte_order);
3437
3438 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3439 }
3440
3441 \f
3442
3443 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3444 gdbarch.h. */
3445
3446 int
3447 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3448 {
3449 return (*s == '$' /* Literal number. */
3450 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3451 || (*s == '(' && s[1] == '%') /* Register indirection. */
3452 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3453 }
3454
3455 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3456 gdbarch.h. */
3457
3458 int
3459 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3460 struct stap_parse_info *p)
3461 {
3462 /* In order to parse special tokens, we use a state-machine that go
3463 through every known token and try to get a match. */
3464 enum
3465 {
3466 TRIPLET,
3467 THREE_ARG_DISPLACEMENT,
3468 DONE
3469 } current_state;
3470
3471 current_state = TRIPLET;
3472
3473 /* The special tokens to be parsed here are:
3474
3475 - `register base + (register index * size) + offset', as represented
3476 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3477
3478 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3479 `*(-8 + 3 - 1 + (void *) $eax)'. */
3480
3481 while (current_state != DONE)
3482 {
3483 const char *s = p->arg;
3484
3485 switch (current_state)
3486 {
3487 case TRIPLET:
3488 {
3489 if (isdigit (*s) || *s == '-' || *s == '+')
3490 {
3491 int got_minus[3];
3492 int i;
3493 long displacements[3];
3494 const char *start;
3495 char *regname;
3496 int len;
3497 struct stoken str;
3498
3499 got_minus[0] = 0;
3500 if (*s == '+')
3501 ++s;
3502 else if (*s == '-')
3503 {
3504 ++s;
3505 got_minus[0] = 1;
3506 }
3507
3508 displacements[0] = strtol (s, (char **) &s, 10);
3509
3510 if (*s != '+' && *s != '-')
3511 {
3512 /* We are not dealing with a triplet. */
3513 break;
3514 }
3515
3516 got_minus[1] = 0;
3517 if (*s == '+')
3518 ++s;
3519 else
3520 {
3521 ++s;
3522 got_minus[1] = 1;
3523 }
3524
3525 displacements[1] = strtol (s, (char **) &s, 10);
3526
3527 if (*s != '+' && *s != '-')
3528 {
3529 /* We are not dealing with a triplet. */
3530 break;
3531 }
3532
3533 got_minus[2] = 0;
3534 if (*s == '+')
3535 ++s;
3536 else
3537 {
3538 ++s;
3539 got_minus[2] = 1;
3540 }
3541
3542 displacements[2] = strtol (s, (char **) &s, 10);
3543
3544 if (*s != '(' || s[1] != '%')
3545 break;
3546
3547 s += 2;
3548 start = s;
3549
3550 while (isalnum (*s))
3551 ++s;
3552
3553 if (*s++ != ')')
3554 break;
3555
3556 len = s - start;
3557 regname = alloca (len + 1);
3558
3559 strncpy (regname, start, len);
3560 regname[len] = '\0';
3561
3562 if (user_reg_map_name_to_regnum (gdbarch,
3563 regname, len) == -1)
3564 error (_("Invalid register name `%s' "
3565 "on expression `%s'."),
3566 regname, p->saved_arg);
3567
3568 for (i = 0; i < 3; i++)
3569 {
3570 write_exp_elt_opcode (OP_LONG);
3571 write_exp_elt_type
3572 (builtin_type (gdbarch)->builtin_long);
3573 write_exp_elt_longcst (displacements[i]);
3574 write_exp_elt_opcode (OP_LONG);
3575 if (got_minus[i])
3576 write_exp_elt_opcode (UNOP_NEG);
3577 }
3578
3579 write_exp_elt_opcode (OP_REGISTER);
3580 str.ptr = regname;
3581 str.length = len;
3582 write_exp_string (str);
3583 write_exp_elt_opcode (OP_REGISTER);
3584
3585 write_exp_elt_opcode (UNOP_CAST);
3586 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3587 write_exp_elt_opcode (UNOP_CAST);
3588
3589 write_exp_elt_opcode (BINOP_ADD);
3590 write_exp_elt_opcode (BINOP_ADD);
3591 write_exp_elt_opcode (BINOP_ADD);
3592
3593 write_exp_elt_opcode (UNOP_CAST);
3594 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3595 write_exp_elt_opcode (UNOP_CAST);
3596
3597 write_exp_elt_opcode (UNOP_IND);
3598
3599 p->arg = s;
3600
3601 return 1;
3602 }
3603 break;
3604 }
3605 case THREE_ARG_DISPLACEMENT:
3606 {
3607 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3608 {
3609 int offset_minus = 0;
3610 long offset = 0;
3611 int size_minus = 0;
3612 long size = 0;
3613 const char *start;
3614 char *base;
3615 int len_base;
3616 char *index;
3617 int len_index;
3618 struct stoken base_token, index_token;
3619
3620 if (*s == '+')
3621 ++s;
3622 else if (*s == '-')
3623 {
3624 ++s;
3625 offset_minus = 1;
3626 }
3627
3628 if (offset_minus && !isdigit (*s))
3629 break;
3630
3631 if (isdigit (*s))
3632 offset = strtol (s, (char **) &s, 10);
3633
3634 if (*s != '(' || s[1] != '%')
3635 break;
3636
3637 s += 2;
3638 start = s;
3639
3640 while (isalnum (*s))
3641 ++s;
3642
3643 if (*s != ',' || s[1] != '%')
3644 break;
3645
3646 len_base = s - start;
3647 base = alloca (len_base + 1);
3648 strncpy (base, start, len_base);
3649 base[len_base] = '\0';
3650
3651 if (user_reg_map_name_to_regnum (gdbarch,
3652 base, len_base) == -1)
3653 error (_("Invalid register name `%s' "
3654 "on expression `%s'."),
3655 base, p->saved_arg);
3656
3657 s += 2;
3658 start = s;
3659
3660 while (isalnum (*s))
3661 ++s;
3662
3663 len_index = s - start;
3664 index = alloca (len_index + 1);
3665 strncpy (index, start, len_index);
3666 index[len_index] = '\0';
3667
3668 if (user_reg_map_name_to_regnum (gdbarch,
3669 index, len_index) == -1)
3670 error (_("Invalid register name `%s' "
3671 "on expression `%s'."),
3672 index, p->saved_arg);
3673
3674 if (*s != ',' && *s != ')')
3675 break;
3676
3677 if (*s == ',')
3678 {
3679 ++s;
3680 if (*s == '+')
3681 ++s;
3682 else if (*s == '-')
3683 {
3684 ++s;
3685 size_minus = 1;
3686 }
3687
3688 size = strtol (s, (char **) &s, 10);
3689
3690 if (*s != ')')
3691 break;
3692 }
3693
3694 ++s;
3695
3696 if (offset)
3697 {
3698 write_exp_elt_opcode (OP_LONG);
3699 write_exp_elt_type
3700 (builtin_type (gdbarch)->builtin_long);
3701 write_exp_elt_longcst (offset);
3702 write_exp_elt_opcode (OP_LONG);
3703 if (offset_minus)
3704 write_exp_elt_opcode (UNOP_NEG);
3705 }
3706
3707 write_exp_elt_opcode (OP_REGISTER);
3708 base_token.ptr = base;
3709 base_token.length = len_base;
3710 write_exp_string (base_token);
3711 write_exp_elt_opcode (OP_REGISTER);
3712
3713 if (offset)
3714 write_exp_elt_opcode (BINOP_ADD);
3715
3716 write_exp_elt_opcode (OP_REGISTER);
3717 index_token.ptr = index;
3718 index_token.length = len_index;
3719 write_exp_string (index_token);
3720 write_exp_elt_opcode (OP_REGISTER);
3721
3722 if (size)
3723 {
3724 write_exp_elt_opcode (OP_LONG);
3725 write_exp_elt_type
3726 (builtin_type (gdbarch)->builtin_long);
3727 write_exp_elt_longcst (size);
3728 write_exp_elt_opcode (OP_LONG);
3729 if (size_minus)
3730 write_exp_elt_opcode (UNOP_NEG);
3731 write_exp_elt_opcode (BINOP_MUL);
3732 }
3733
3734 write_exp_elt_opcode (BINOP_ADD);
3735
3736 write_exp_elt_opcode (UNOP_CAST);
3737 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3738 write_exp_elt_opcode (UNOP_CAST);
3739
3740 write_exp_elt_opcode (UNOP_IND);
3741
3742 p->arg = s;
3743
3744 return 1;
3745 }
3746 break;
3747 }
3748 }
3749
3750 /* Advancing to the next state. */
3751 ++current_state;
3752 }
3753
3754 return 0;
3755 }
3756
3757 \f
3758
3759 /* Generic ELF. */
3760
3761 void
3762 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3763 {
3764 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3765 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3766
3767 /* Registering SystemTap handlers. */
3768 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3769 set_gdbarch_stap_register_prefix (gdbarch, "%");
3770 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3771 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3772 set_gdbarch_stap_is_single_operand (gdbarch,
3773 i386_stap_is_single_operand);
3774 set_gdbarch_stap_parse_special_token (gdbarch,
3775 i386_stap_parse_special_token);
3776 }
3777
3778 /* System V Release 4 (SVR4). */
3779
3780 void
3781 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3782 {
3783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3784
3785 /* System V Release 4 uses ELF. */
3786 i386_elf_init_abi (info, gdbarch);
3787
3788 /* System V Release 4 has shared libraries. */
3789 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3790
3791 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3792 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3793 tdep->sc_pc_offset = 36 + 14 * 4;
3794 tdep->sc_sp_offset = 36 + 17 * 4;
3795
3796 tdep->jb_pc_offset = 20;
3797 }
3798
3799 /* DJGPP. */
3800
3801 static void
3802 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3803 {
3804 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3805
3806 /* DJGPP doesn't have any special frames for signal handlers. */
3807 tdep->sigtramp_p = NULL;
3808
3809 tdep->jb_pc_offset = 36;
3810
3811 /* DJGPP does not support the SSE registers. */
3812 if (! tdesc_has_registers (info.target_desc))
3813 tdep->tdesc = tdesc_i386_mmx;
3814
3815 /* Native compiler is GCC, which uses the SVR4 register numbering
3816 even in COFF and STABS. See the comment in i386_gdbarch_init,
3817 before the calls to set_gdbarch_stab_reg_to_regnum and
3818 set_gdbarch_sdb_reg_to_regnum. */
3819 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3820 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3821
3822 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3823 }
3824 \f
3825
3826 /* i386 register groups. In addition to the normal groups, add "mmx"
3827 and "sse". */
3828
3829 static struct reggroup *i386_sse_reggroup;
3830 static struct reggroup *i386_mmx_reggroup;
3831
3832 static void
3833 i386_init_reggroups (void)
3834 {
3835 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3836 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3837 }
3838
3839 static void
3840 i386_add_reggroups (struct gdbarch *gdbarch)
3841 {
3842 reggroup_add (gdbarch, i386_sse_reggroup);
3843 reggroup_add (gdbarch, i386_mmx_reggroup);
3844 reggroup_add (gdbarch, general_reggroup);
3845 reggroup_add (gdbarch, float_reggroup);
3846 reggroup_add (gdbarch, all_reggroup);
3847 reggroup_add (gdbarch, save_reggroup);
3848 reggroup_add (gdbarch, restore_reggroup);
3849 reggroup_add (gdbarch, vector_reggroup);
3850 reggroup_add (gdbarch, system_reggroup);
3851 }
3852
3853 int
3854 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3855 struct reggroup *group)
3856 {
3857 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3858 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3859 ymm_regnum_p, ymmh_regnum_p;
3860
3861 /* Don't include pseudo registers, except for MMX, in any register
3862 groups. */
3863 if (i386_byte_regnum_p (gdbarch, regnum))
3864 return 0;
3865
3866 if (i386_word_regnum_p (gdbarch, regnum))
3867 return 0;
3868
3869 if (i386_dword_regnum_p (gdbarch, regnum))
3870 return 0;
3871
3872 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3873 if (group == i386_mmx_reggroup)
3874 return mmx_regnum_p;
3875
3876 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3877 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3878 if (group == i386_sse_reggroup)
3879 return xmm_regnum_p || mxcsr_regnum_p;
3880
3881 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3882 if (group == vector_reggroup)
3883 return (mmx_regnum_p
3884 || ymm_regnum_p
3885 || mxcsr_regnum_p
3886 || (xmm_regnum_p
3887 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3888 == I386_XSTATE_SSE_MASK)));
3889
3890 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3891 || i386_fpc_regnum_p (gdbarch, regnum));
3892 if (group == float_reggroup)
3893 return fp_regnum_p;
3894
3895 /* For "info reg all", don't include upper YMM registers nor XMM
3896 registers when AVX is supported. */
3897 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3898 if (group == all_reggroup
3899 && ((xmm_regnum_p
3900 && (tdep->xcr0 & I386_XSTATE_AVX))
3901 || ymmh_regnum_p))
3902 return 0;
3903
3904 if (group == general_reggroup)
3905 return (!fp_regnum_p
3906 && !mmx_regnum_p
3907 && !mxcsr_regnum_p
3908 && !xmm_regnum_p
3909 && !ymm_regnum_p
3910 && !ymmh_regnum_p);
3911
3912 return default_register_reggroup_p (gdbarch, regnum, group);
3913 }
3914 \f
3915
3916 /* Get the ARGIth function argument for the current function. */
3917
3918 static CORE_ADDR
3919 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3920 struct type *type)
3921 {
3922 struct gdbarch *gdbarch = get_frame_arch (frame);
3923 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3924 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3925 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3926 }
3927
3928 static void
3929 i386_skip_permanent_breakpoint (struct regcache *regcache)
3930 {
3931 CORE_ADDR current_pc = regcache_read_pc (regcache);
3932
3933 /* On i386, breakpoint is exactly 1 byte long, so we just
3934 adjust the PC in the regcache. */
3935 current_pc += 1;
3936 regcache_write_pc (regcache, current_pc);
3937 }
3938
3939
3940 #define PREFIX_REPZ 0x01
3941 #define PREFIX_REPNZ 0x02
3942 #define PREFIX_LOCK 0x04
3943 #define PREFIX_DATA 0x08
3944 #define PREFIX_ADDR 0x10
3945
3946 /* operand size */
3947 enum
3948 {
3949 OT_BYTE = 0,
3950 OT_WORD,
3951 OT_LONG,
3952 OT_QUAD,
3953 OT_DQUAD,
3954 };
3955
3956 /* i386 arith/logic operations */
3957 enum
3958 {
3959 OP_ADDL,
3960 OP_ORL,
3961 OP_ADCL,
3962 OP_SBBL,
3963 OP_ANDL,
3964 OP_SUBL,
3965 OP_XORL,
3966 OP_CMPL,
3967 };
3968
3969 struct i386_record_s
3970 {
3971 struct gdbarch *gdbarch;
3972 struct regcache *regcache;
3973 CORE_ADDR orig_addr;
3974 CORE_ADDR addr;
3975 int aflag;
3976 int dflag;
3977 int override;
3978 uint8_t modrm;
3979 uint8_t mod, reg, rm;
3980 int ot;
3981 uint8_t rex_x;
3982 uint8_t rex_b;
3983 int rip_offset;
3984 int popl_esp_hack;
3985 const int *regmap;
3986 };
3987
3988 /* Parse the "modrm" part of the memory address irp->addr points at.
3989 Returns -1 if something goes wrong, 0 otherwise. */
3990
3991 static int
3992 i386_record_modrm (struct i386_record_s *irp)
3993 {
3994 struct gdbarch *gdbarch = irp->gdbarch;
3995
3996 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
3997 return -1;
3998
3999 irp->addr++;
4000 irp->mod = (irp->modrm >> 6) & 3;
4001 irp->reg = (irp->modrm >> 3) & 7;
4002 irp->rm = irp->modrm & 7;
4003
4004 return 0;
4005 }
4006
4007 /* Extract the memory address that the current instruction writes to,
4008 and return it in *ADDR. Return -1 if something goes wrong. */
4009
4010 static int
4011 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4012 {
4013 struct gdbarch *gdbarch = irp->gdbarch;
4014 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4015 gdb_byte buf[4];
4016 ULONGEST offset64;
4017
4018 *addr = 0;
4019 if (irp->aflag)
4020 {
4021 /* 32 bits */
4022 int havesib = 0;
4023 uint8_t scale = 0;
4024 uint8_t byte;
4025 uint8_t index = 0;
4026 uint8_t base = irp->rm;
4027
4028 if (base == 4)
4029 {
4030 havesib = 1;
4031 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4032 return -1;
4033 irp->addr++;
4034 scale = (byte >> 6) & 3;
4035 index = ((byte >> 3) & 7) | irp->rex_x;
4036 base = (byte & 7);
4037 }
4038 base |= irp->rex_b;
4039
4040 switch (irp->mod)
4041 {
4042 case 0:
4043 if ((base & 7) == 5)
4044 {
4045 base = 0xff;
4046 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4047 return -1;
4048 irp->addr += 4;
4049 *addr = extract_signed_integer (buf, 4, byte_order);
4050 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4051 *addr += irp->addr + irp->rip_offset;
4052 }
4053 break;
4054 case 1:
4055 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4056 return -1;
4057 irp->addr++;
4058 *addr = (int8_t) buf[0];
4059 break;
4060 case 2:
4061 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4062 return -1;
4063 *addr = extract_signed_integer (buf, 4, byte_order);
4064 irp->addr += 4;
4065 break;
4066 }
4067
4068 offset64 = 0;
4069 if (base != 0xff)
4070 {
4071 if (base == 4 && irp->popl_esp_hack)
4072 *addr += irp->popl_esp_hack;
4073 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4074 &offset64);
4075 }
4076 if (irp->aflag == 2)
4077 {
4078 *addr += offset64;
4079 }
4080 else
4081 *addr = (uint32_t) (offset64 + *addr);
4082
4083 if (havesib && (index != 4 || scale != 0))
4084 {
4085 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4086 &offset64);
4087 if (irp->aflag == 2)
4088 *addr += offset64 << scale;
4089 else
4090 *addr = (uint32_t) (*addr + (offset64 << scale));
4091 }
4092 }
4093 else
4094 {
4095 /* 16 bits */
4096 switch (irp->mod)
4097 {
4098 case 0:
4099 if (irp->rm == 6)
4100 {
4101 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4102 return -1;
4103 irp->addr += 2;
4104 *addr = extract_signed_integer (buf, 2, byte_order);
4105 irp->rm = 0;
4106 goto no_rm;
4107 }
4108 break;
4109 case 1:
4110 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4111 return -1;
4112 irp->addr++;
4113 *addr = (int8_t) buf[0];
4114 break;
4115 case 2:
4116 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4117 return -1;
4118 irp->addr += 2;
4119 *addr = extract_signed_integer (buf, 2, byte_order);
4120 break;
4121 }
4122
4123 switch (irp->rm)
4124 {
4125 case 0:
4126 regcache_raw_read_unsigned (irp->regcache,
4127 irp->regmap[X86_RECORD_REBX_REGNUM],
4128 &offset64);
4129 *addr = (uint32_t) (*addr + offset64);
4130 regcache_raw_read_unsigned (irp->regcache,
4131 irp->regmap[X86_RECORD_RESI_REGNUM],
4132 &offset64);
4133 *addr = (uint32_t) (*addr + offset64);
4134 break;
4135 case 1:
4136 regcache_raw_read_unsigned (irp->regcache,
4137 irp->regmap[X86_RECORD_REBX_REGNUM],
4138 &offset64);
4139 *addr = (uint32_t) (*addr + offset64);
4140 regcache_raw_read_unsigned (irp->regcache,
4141 irp->regmap[X86_RECORD_REDI_REGNUM],
4142 &offset64);
4143 *addr = (uint32_t) (*addr + offset64);
4144 break;
4145 case 2:
4146 regcache_raw_read_unsigned (irp->regcache,
4147 irp->regmap[X86_RECORD_REBP_REGNUM],
4148 &offset64);
4149 *addr = (uint32_t) (*addr + offset64);
4150 regcache_raw_read_unsigned (irp->regcache,
4151 irp->regmap[X86_RECORD_RESI_REGNUM],
4152 &offset64);
4153 *addr = (uint32_t) (*addr + offset64);
4154 break;
4155 case 3:
4156 regcache_raw_read_unsigned (irp->regcache,
4157 irp->regmap[X86_RECORD_REBP_REGNUM],
4158 &offset64);
4159 *addr = (uint32_t) (*addr + offset64);
4160 regcache_raw_read_unsigned (irp->regcache,
4161 irp->regmap[X86_RECORD_REDI_REGNUM],
4162 &offset64);
4163 *addr = (uint32_t) (*addr + offset64);
4164 break;
4165 case 4:
4166 regcache_raw_read_unsigned (irp->regcache,
4167 irp->regmap[X86_RECORD_RESI_REGNUM],
4168 &offset64);
4169 *addr = (uint32_t) (*addr + offset64);
4170 break;
4171 case 5:
4172 regcache_raw_read_unsigned (irp->regcache,
4173 irp->regmap[X86_RECORD_REDI_REGNUM],
4174 &offset64);
4175 *addr = (uint32_t) (*addr + offset64);
4176 break;
4177 case 6:
4178 regcache_raw_read_unsigned (irp->regcache,
4179 irp->regmap[X86_RECORD_REBP_REGNUM],
4180 &offset64);
4181 *addr = (uint32_t) (*addr + offset64);
4182 break;
4183 case 7:
4184 regcache_raw_read_unsigned (irp->regcache,
4185 irp->regmap[X86_RECORD_REBX_REGNUM],
4186 &offset64);
4187 *addr = (uint32_t) (*addr + offset64);
4188 break;
4189 }
4190 *addr &= 0xffff;
4191 }
4192
4193 no_rm:
4194 return 0;
4195 }
4196
4197 /* Record the address and contents of the memory that will be changed
4198 by the current instruction. Return -1 if something goes wrong, 0
4199 otherwise. */
4200
4201 static int
4202 i386_record_lea_modrm (struct i386_record_s *irp)
4203 {
4204 struct gdbarch *gdbarch = irp->gdbarch;
4205 uint64_t addr;
4206
4207 if (irp->override >= 0)
4208 {
4209 if (record_memory_query)
4210 {
4211 int q;
4212
4213 target_terminal_ours ();
4214 q = yquery (_("\
4215 Process record ignores the memory change of instruction at address %s\n\
4216 because it can't get the value of the segment register.\n\
4217 Do you want to stop the program?"),
4218 paddress (gdbarch, irp->orig_addr));
4219 target_terminal_inferior ();
4220 if (q)
4221 return -1;
4222 }
4223
4224 return 0;
4225 }
4226
4227 if (i386_record_lea_modrm_addr (irp, &addr))
4228 return -1;
4229
4230 if (record_arch_list_add_mem (addr, 1 << irp->ot))
4231 return -1;
4232
4233 return 0;
4234 }
4235
4236 /* Record the effects of a push operation. Return -1 if something
4237 goes wrong, 0 otherwise. */
4238
4239 static int
4240 i386_record_push (struct i386_record_s *irp, int size)
4241 {
4242 ULONGEST addr;
4243
4244 if (record_arch_list_add_reg (irp->regcache,
4245 irp->regmap[X86_RECORD_RESP_REGNUM]))
4246 return -1;
4247 regcache_raw_read_unsigned (irp->regcache,
4248 irp->regmap[X86_RECORD_RESP_REGNUM],
4249 &addr);
4250 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4251 return -1;
4252
4253 return 0;
4254 }
4255
4256
4257 /* Defines contents to record. */
4258 #define I386_SAVE_FPU_REGS 0xfffd
4259 #define I386_SAVE_FPU_ENV 0xfffe
4260 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4261
4262 /* Record the values of the floating point registers which will be
4263 changed by the current instruction. Returns -1 if something is
4264 wrong, 0 otherwise. */
4265
4266 static int i386_record_floats (struct gdbarch *gdbarch,
4267 struct i386_record_s *ir,
4268 uint32_t iregnum)
4269 {
4270 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4271 int i;
4272
4273 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4274 happen. Currently we store st0-st7 registers, but we need not store all
4275 registers all the time, in future we use ftag register and record only
4276 those who are not marked as an empty. */
4277
4278 if (I386_SAVE_FPU_REGS == iregnum)
4279 {
4280 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4281 {
4282 if (record_arch_list_add_reg (ir->regcache, i))
4283 return -1;
4284 }
4285 }
4286 else if (I386_SAVE_FPU_ENV == iregnum)
4287 {
4288 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4289 {
4290 if (record_arch_list_add_reg (ir->regcache, i))
4291 return -1;
4292 }
4293 }
4294 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4295 {
4296 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4297 {
4298 if (record_arch_list_add_reg (ir->regcache, i))
4299 return -1;
4300 }
4301 }
4302 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4303 (iregnum <= I387_FOP_REGNUM (tdep)))
4304 {
4305 if (record_arch_list_add_reg (ir->regcache,iregnum))
4306 return -1;
4307 }
4308 else
4309 {
4310 /* Parameter error. */
4311 return -1;
4312 }
4313 if(I386_SAVE_FPU_ENV != iregnum)
4314 {
4315 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4316 {
4317 if (record_arch_list_add_reg (ir->regcache, i))
4318 return -1;
4319 }
4320 }
4321 return 0;
4322 }
4323
4324 /* Parse the current instruction, and record the values of the
4325 registers and memory that will be changed by the current
4326 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4327
4328 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
4329 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4330
4331 int
4332 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4333 CORE_ADDR input_addr)
4334 {
4335 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4336 int prefixes = 0;
4337 int regnum = 0;
4338 uint32_t opcode;
4339 uint8_t opcode8;
4340 ULONGEST addr;
4341 gdb_byte buf[MAX_REGISTER_SIZE];
4342 struct i386_record_s ir;
4343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4344 int rex = 0;
4345 uint8_t rex_w = -1;
4346 uint8_t rex_r = 0;
4347
4348 memset (&ir, 0, sizeof (struct i386_record_s));
4349 ir.regcache = regcache;
4350 ir.addr = input_addr;
4351 ir.orig_addr = input_addr;
4352 ir.aflag = 1;
4353 ir.dflag = 1;
4354 ir.override = -1;
4355 ir.popl_esp_hack = 0;
4356 ir.regmap = tdep->record_regmap;
4357 ir.gdbarch = gdbarch;
4358
4359 if (record_debug > 1)
4360 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4361 "addr = %s\n",
4362 paddress (gdbarch, ir.addr));
4363
4364 /* prefixes */
4365 while (1)
4366 {
4367 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4368 return -1;
4369 ir.addr++;
4370 switch (opcode8) /* Instruction prefixes */
4371 {
4372 case REPE_PREFIX_OPCODE:
4373 prefixes |= PREFIX_REPZ;
4374 break;
4375 case REPNE_PREFIX_OPCODE:
4376 prefixes |= PREFIX_REPNZ;
4377 break;
4378 case LOCK_PREFIX_OPCODE:
4379 prefixes |= PREFIX_LOCK;
4380 break;
4381 case CS_PREFIX_OPCODE:
4382 ir.override = X86_RECORD_CS_REGNUM;
4383 break;
4384 case SS_PREFIX_OPCODE:
4385 ir.override = X86_RECORD_SS_REGNUM;
4386 break;
4387 case DS_PREFIX_OPCODE:
4388 ir.override = X86_RECORD_DS_REGNUM;
4389 break;
4390 case ES_PREFIX_OPCODE:
4391 ir.override = X86_RECORD_ES_REGNUM;
4392 break;
4393 case FS_PREFIX_OPCODE:
4394 ir.override = X86_RECORD_FS_REGNUM;
4395 break;
4396 case GS_PREFIX_OPCODE:
4397 ir.override = X86_RECORD_GS_REGNUM;
4398 break;
4399 case DATA_PREFIX_OPCODE:
4400 prefixes |= PREFIX_DATA;
4401 break;
4402 case ADDR_PREFIX_OPCODE:
4403 prefixes |= PREFIX_ADDR;
4404 break;
4405 case 0x40: /* i386 inc %eax */
4406 case 0x41: /* i386 inc %ecx */
4407 case 0x42: /* i386 inc %edx */
4408 case 0x43: /* i386 inc %ebx */
4409 case 0x44: /* i386 inc %esp */
4410 case 0x45: /* i386 inc %ebp */
4411 case 0x46: /* i386 inc %esi */
4412 case 0x47: /* i386 inc %edi */
4413 case 0x48: /* i386 dec %eax */
4414 case 0x49: /* i386 dec %ecx */
4415 case 0x4a: /* i386 dec %edx */
4416 case 0x4b: /* i386 dec %ebx */
4417 case 0x4c: /* i386 dec %esp */
4418 case 0x4d: /* i386 dec %ebp */
4419 case 0x4e: /* i386 dec %esi */
4420 case 0x4f: /* i386 dec %edi */
4421 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4422 {
4423 /* REX */
4424 rex = 1;
4425 rex_w = (opcode8 >> 3) & 1;
4426 rex_r = (opcode8 & 0x4) << 1;
4427 ir.rex_x = (opcode8 & 0x2) << 2;
4428 ir.rex_b = (opcode8 & 0x1) << 3;
4429 }
4430 else /* 32 bit target */
4431 goto out_prefixes;
4432 break;
4433 default:
4434 goto out_prefixes;
4435 break;
4436 }
4437 }
4438 out_prefixes:
4439 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4440 {
4441 ir.dflag = 2;
4442 }
4443 else
4444 {
4445 if (prefixes & PREFIX_DATA)
4446 ir.dflag ^= 1;
4447 }
4448 if (prefixes & PREFIX_ADDR)
4449 ir.aflag ^= 1;
4450 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4451 ir.aflag = 2;
4452
4453 /* Now check op code. */
4454 opcode = (uint32_t) opcode8;
4455 reswitch:
4456 switch (opcode)
4457 {
4458 case 0x0f:
4459 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4460 return -1;
4461 ir.addr++;
4462 opcode = (uint32_t) opcode8 | 0x0f00;
4463 goto reswitch;
4464 break;
4465
4466 case 0x00: /* arith & logic */
4467 case 0x01:
4468 case 0x02:
4469 case 0x03:
4470 case 0x04:
4471 case 0x05:
4472 case 0x08:
4473 case 0x09:
4474 case 0x0a:
4475 case 0x0b:
4476 case 0x0c:
4477 case 0x0d:
4478 case 0x10:
4479 case 0x11:
4480 case 0x12:
4481 case 0x13:
4482 case 0x14:
4483 case 0x15:
4484 case 0x18:
4485 case 0x19:
4486 case 0x1a:
4487 case 0x1b:
4488 case 0x1c:
4489 case 0x1d:
4490 case 0x20:
4491 case 0x21:
4492 case 0x22:
4493 case 0x23:
4494 case 0x24:
4495 case 0x25:
4496 case 0x28:
4497 case 0x29:
4498 case 0x2a:
4499 case 0x2b:
4500 case 0x2c:
4501 case 0x2d:
4502 case 0x30:
4503 case 0x31:
4504 case 0x32:
4505 case 0x33:
4506 case 0x34:
4507 case 0x35:
4508 case 0x38:
4509 case 0x39:
4510 case 0x3a:
4511 case 0x3b:
4512 case 0x3c:
4513 case 0x3d:
4514 if (((opcode >> 3) & 7) != OP_CMPL)
4515 {
4516 if ((opcode & 1) == 0)
4517 ir.ot = OT_BYTE;
4518 else
4519 ir.ot = ir.dflag + OT_WORD;
4520
4521 switch ((opcode >> 1) & 3)
4522 {
4523 case 0: /* OP Ev, Gv */
4524 if (i386_record_modrm (&ir))
4525 return -1;
4526 if (ir.mod != 3)
4527 {
4528 if (i386_record_lea_modrm (&ir))
4529 return -1;
4530 }
4531 else
4532 {
4533 ir.rm |= ir.rex_b;
4534 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4535 ir.rm &= 0x3;
4536 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4537 }
4538 break;
4539 case 1: /* OP Gv, Ev */
4540 if (i386_record_modrm (&ir))
4541 return -1;
4542 ir.reg |= rex_r;
4543 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4544 ir.reg &= 0x3;
4545 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4546 break;
4547 case 2: /* OP A, Iv */
4548 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4549 break;
4550 }
4551 }
4552 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4553 break;
4554
4555 case 0x80: /* GRP1 */
4556 case 0x81:
4557 case 0x82:
4558 case 0x83:
4559 if (i386_record_modrm (&ir))
4560 return -1;
4561
4562 if (ir.reg != OP_CMPL)
4563 {
4564 if ((opcode & 1) == 0)
4565 ir.ot = OT_BYTE;
4566 else
4567 ir.ot = ir.dflag + OT_WORD;
4568
4569 if (ir.mod != 3)
4570 {
4571 if (opcode == 0x83)
4572 ir.rip_offset = 1;
4573 else
4574 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4575 if (i386_record_lea_modrm (&ir))
4576 return -1;
4577 }
4578 else
4579 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4580 }
4581 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4582 break;
4583
4584 case 0x40: /* inc */
4585 case 0x41:
4586 case 0x42:
4587 case 0x43:
4588 case 0x44:
4589 case 0x45:
4590 case 0x46:
4591 case 0x47:
4592
4593 case 0x48: /* dec */
4594 case 0x49:
4595 case 0x4a:
4596 case 0x4b:
4597 case 0x4c:
4598 case 0x4d:
4599 case 0x4e:
4600 case 0x4f:
4601
4602 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4603 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4604 break;
4605
4606 case 0xf6: /* GRP3 */
4607 case 0xf7:
4608 if ((opcode & 1) == 0)
4609 ir.ot = OT_BYTE;
4610 else
4611 ir.ot = ir.dflag + OT_WORD;
4612 if (i386_record_modrm (&ir))
4613 return -1;
4614
4615 if (ir.mod != 3 && ir.reg == 0)
4616 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4617
4618 switch (ir.reg)
4619 {
4620 case 0: /* test */
4621 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4622 break;
4623 case 2: /* not */
4624 case 3: /* neg */
4625 if (ir.mod != 3)
4626 {
4627 if (i386_record_lea_modrm (&ir))
4628 return -1;
4629 }
4630 else
4631 {
4632 ir.rm |= ir.rex_b;
4633 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4634 ir.rm &= 0x3;
4635 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4636 }
4637 if (ir.reg == 3) /* neg */
4638 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4639 break;
4640 case 4: /* mul */
4641 case 5: /* imul */
4642 case 6: /* div */
4643 case 7: /* idiv */
4644 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4645 if (ir.ot != OT_BYTE)
4646 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4647 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4648 break;
4649 default:
4650 ir.addr -= 2;
4651 opcode = opcode << 8 | ir.modrm;
4652 goto no_support;
4653 break;
4654 }
4655 break;
4656
4657 case 0xfe: /* GRP4 */
4658 case 0xff: /* GRP5 */
4659 if (i386_record_modrm (&ir))
4660 return -1;
4661 if (ir.reg >= 2 && opcode == 0xfe)
4662 {
4663 ir.addr -= 2;
4664 opcode = opcode << 8 | ir.modrm;
4665 goto no_support;
4666 }
4667 switch (ir.reg)
4668 {
4669 case 0: /* inc */
4670 case 1: /* dec */
4671 if ((opcode & 1) == 0)
4672 ir.ot = OT_BYTE;
4673 else
4674 ir.ot = ir.dflag + OT_WORD;
4675 if (ir.mod != 3)
4676 {
4677 if (i386_record_lea_modrm (&ir))
4678 return -1;
4679 }
4680 else
4681 {
4682 ir.rm |= ir.rex_b;
4683 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4684 ir.rm &= 0x3;
4685 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4686 }
4687 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4688 break;
4689 case 2: /* call */
4690 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4691 ir.dflag = 2;
4692 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4693 return -1;
4694 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4695 break;
4696 case 3: /* lcall */
4697 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4698 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4699 return -1;
4700 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4701 break;
4702 case 4: /* jmp */
4703 case 5: /* ljmp */
4704 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4705 break;
4706 case 6: /* push */
4707 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4708 ir.dflag = 2;
4709 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4710 return -1;
4711 break;
4712 default:
4713 ir.addr -= 2;
4714 opcode = opcode << 8 | ir.modrm;
4715 goto no_support;
4716 break;
4717 }
4718 break;
4719
4720 case 0x84: /* test */
4721 case 0x85:
4722 case 0xa8:
4723 case 0xa9:
4724 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4725 break;
4726
4727 case 0x98: /* CWDE/CBW */
4728 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4729 break;
4730
4731 case 0x99: /* CDQ/CWD */
4732 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4733 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4734 break;
4735
4736 case 0x0faf: /* imul */
4737 case 0x69:
4738 case 0x6b:
4739 ir.ot = ir.dflag + OT_WORD;
4740 if (i386_record_modrm (&ir))
4741 return -1;
4742 if (opcode == 0x69)
4743 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4744 else if (opcode == 0x6b)
4745 ir.rip_offset = 1;
4746 ir.reg |= rex_r;
4747 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4748 ir.reg &= 0x3;
4749 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4750 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4751 break;
4752
4753 case 0x0fc0: /* xadd */
4754 case 0x0fc1:
4755 if ((opcode & 1) == 0)
4756 ir.ot = OT_BYTE;
4757 else
4758 ir.ot = ir.dflag + OT_WORD;
4759 if (i386_record_modrm (&ir))
4760 return -1;
4761 ir.reg |= rex_r;
4762 if (ir.mod == 3)
4763 {
4764 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4765 ir.reg &= 0x3;
4766 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4767 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4768 ir.rm &= 0x3;
4769 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4770 }
4771 else
4772 {
4773 if (i386_record_lea_modrm (&ir))
4774 return -1;
4775 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4776 ir.reg &= 0x3;
4777 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4778 }
4779 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4780 break;
4781
4782 case 0x0fb0: /* cmpxchg */
4783 case 0x0fb1:
4784 if ((opcode & 1) == 0)
4785 ir.ot = OT_BYTE;
4786 else
4787 ir.ot = ir.dflag + OT_WORD;
4788 if (i386_record_modrm (&ir))
4789 return -1;
4790 if (ir.mod == 3)
4791 {
4792 ir.reg |= rex_r;
4793 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4794 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4795 ir.reg &= 0x3;
4796 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4797 }
4798 else
4799 {
4800 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4801 if (i386_record_lea_modrm (&ir))
4802 return -1;
4803 }
4804 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4805 break;
4806
4807 case 0x0fc7: /* cmpxchg8b */
4808 if (i386_record_modrm (&ir))
4809 return -1;
4810 if (ir.mod == 3)
4811 {
4812 ir.addr -= 2;
4813 opcode = opcode << 8 | ir.modrm;
4814 goto no_support;
4815 }
4816 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4817 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4818 if (i386_record_lea_modrm (&ir))
4819 return -1;
4820 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4821 break;
4822
4823 case 0x50: /* push */
4824 case 0x51:
4825 case 0x52:
4826 case 0x53:
4827 case 0x54:
4828 case 0x55:
4829 case 0x56:
4830 case 0x57:
4831 case 0x68:
4832 case 0x6a:
4833 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4834 ir.dflag = 2;
4835 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4836 return -1;
4837 break;
4838
4839 case 0x06: /* push es */
4840 case 0x0e: /* push cs */
4841 case 0x16: /* push ss */
4842 case 0x1e: /* push ds */
4843 if (ir.regmap[X86_RECORD_R8_REGNUM])
4844 {
4845 ir.addr -= 1;
4846 goto no_support;
4847 }
4848 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4849 return -1;
4850 break;
4851
4852 case 0x0fa0: /* push fs */
4853 case 0x0fa8: /* push gs */
4854 if (ir.regmap[X86_RECORD_R8_REGNUM])
4855 {
4856 ir.addr -= 2;
4857 goto no_support;
4858 }
4859 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4860 return -1;
4861 break;
4862
4863 case 0x60: /* pusha */
4864 if (ir.regmap[X86_RECORD_R8_REGNUM])
4865 {
4866 ir.addr -= 1;
4867 goto no_support;
4868 }
4869 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4870 return -1;
4871 break;
4872
4873 case 0x58: /* pop */
4874 case 0x59:
4875 case 0x5a:
4876 case 0x5b:
4877 case 0x5c:
4878 case 0x5d:
4879 case 0x5e:
4880 case 0x5f:
4881 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4882 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4883 break;
4884
4885 case 0x61: /* popa */
4886 if (ir.regmap[X86_RECORD_R8_REGNUM])
4887 {
4888 ir.addr -= 1;
4889 goto no_support;
4890 }
4891 for (regnum = X86_RECORD_REAX_REGNUM;
4892 regnum <= X86_RECORD_REDI_REGNUM;
4893 regnum++)
4894 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4895 break;
4896
4897 case 0x8f: /* pop */
4898 if (ir.regmap[X86_RECORD_R8_REGNUM])
4899 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4900 else
4901 ir.ot = ir.dflag + OT_WORD;
4902 if (i386_record_modrm (&ir))
4903 return -1;
4904 if (ir.mod == 3)
4905 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4906 else
4907 {
4908 ir.popl_esp_hack = 1 << ir.ot;
4909 if (i386_record_lea_modrm (&ir))
4910 return -1;
4911 }
4912 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4913 break;
4914
4915 case 0xc8: /* enter */
4916 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4917 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4918 ir.dflag = 2;
4919 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4920 return -1;
4921 break;
4922
4923 case 0xc9: /* leave */
4924 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4925 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4926 break;
4927
4928 case 0x07: /* pop es */
4929 if (ir.regmap[X86_RECORD_R8_REGNUM])
4930 {
4931 ir.addr -= 1;
4932 goto no_support;
4933 }
4934 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4935 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4936 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4937 break;
4938
4939 case 0x17: /* pop ss */
4940 if (ir.regmap[X86_RECORD_R8_REGNUM])
4941 {
4942 ir.addr -= 1;
4943 goto no_support;
4944 }
4945 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4946 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4947 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4948 break;
4949
4950 case 0x1f: /* pop ds */
4951 if (ir.regmap[X86_RECORD_R8_REGNUM])
4952 {
4953 ir.addr -= 1;
4954 goto no_support;
4955 }
4956 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4957 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4958 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4959 break;
4960
4961 case 0x0fa1: /* pop fs */
4962 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4963 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4964 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4965 break;
4966
4967 case 0x0fa9: /* pop gs */
4968 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4969 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4970 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4971 break;
4972
4973 case 0x88: /* mov */
4974 case 0x89:
4975 case 0xc6:
4976 case 0xc7:
4977 if ((opcode & 1) == 0)
4978 ir.ot = OT_BYTE;
4979 else
4980 ir.ot = ir.dflag + OT_WORD;
4981
4982 if (i386_record_modrm (&ir))
4983 return -1;
4984
4985 if (ir.mod != 3)
4986 {
4987 if (opcode == 0xc6 || opcode == 0xc7)
4988 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4989 if (i386_record_lea_modrm (&ir))
4990 return -1;
4991 }
4992 else
4993 {
4994 if (opcode == 0xc6 || opcode == 0xc7)
4995 ir.rm |= ir.rex_b;
4996 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4997 ir.rm &= 0x3;
4998 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4999 }
5000 break;
5001
5002 case 0x8a: /* mov */
5003 case 0x8b:
5004 if ((opcode & 1) == 0)
5005 ir.ot = OT_BYTE;
5006 else
5007 ir.ot = ir.dflag + OT_WORD;
5008 if (i386_record_modrm (&ir))
5009 return -1;
5010 ir.reg |= rex_r;
5011 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5012 ir.reg &= 0x3;
5013 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5014 break;
5015
5016 case 0x8c: /* mov seg */
5017 if (i386_record_modrm (&ir))
5018 return -1;
5019 if (ir.reg > 5)
5020 {
5021 ir.addr -= 2;
5022 opcode = opcode << 8 | ir.modrm;
5023 goto no_support;
5024 }
5025
5026 if (ir.mod == 3)
5027 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5028 else
5029 {
5030 ir.ot = OT_WORD;
5031 if (i386_record_lea_modrm (&ir))
5032 return -1;
5033 }
5034 break;
5035
5036 case 0x8e: /* mov seg */
5037 if (i386_record_modrm (&ir))
5038 return -1;
5039 switch (ir.reg)
5040 {
5041 case 0:
5042 regnum = X86_RECORD_ES_REGNUM;
5043 break;
5044 case 2:
5045 regnum = X86_RECORD_SS_REGNUM;
5046 break;
5047 case 3:
5048 regnum = X86_RECORD_DS_REGNUM;
5049 break;
5050 case 4:
5051 regnum = X86_RECORD_FS_REGNUM;
5052 break;
5053 case 5:
5054 regnum = X86_RECORD_GS_REGNUM;
5055 break;
5056 default:
5057 ir.addr -= 2;
5058 opcode = opcode << 8 | ir.modrm;
5059 goto no_support;
5060 break;
5061 }
5062 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
5063 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5064 break;
5065
5066 case 0x0fb6: /* movzbS */
5067 case 0x0fb7: /* movzwS */
5068 case 0x0fbe: /* movsbS */
5069 case 0x0fbf: /* movswS */
5070 if (i386_record_modrm (&ir))
5071 return -1;
5072 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5073 break;
5074
5075 case 0x8d: /* lea */
5076 if (i386_record_modrm (&ir))
5077 return -1;
5078 if (ir.mod == 3)
5079 {
5080 ir.addr -= 2;
5081 opcode = opcode << 8 | ir.modrm;
5082 goto no_support;
5083 }
5084 ir.ot = ir.dflag;
5085 ir.reg |= rex_r;
5086 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5087 ir.reg &= 0x3;
5088 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5089 break;
5090
5091 case 0xa0: /* mov EAX */
5092 case 0xa1:
5093
5094 case 0xd7: /* xlat */
5095 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5096 break;
5097
5098 case 0xa2: /* mov EAX */
5099 case 0xa3:
5100 if (ir.override >= 0)
5101 {
5102 if (record_memory_query)
5103 {
5104 int q;
5105
5106 target_terminal_ours ();
5107 q = yquery (_("\
5108 Process record ignores the memory change of instruction at address %s\n\
5109 because it can't get the value of the segment register.\n\
5110 Do you want to stop the program?"),
5111 paddress (gdbarch, ir.orig_addr));
5112 target_terminal_inferior ();
5113 if (q)
5114 return -1;
5115 }
5116 }
5117 else
5118 {
5119 if ((opcode & 1) == 0)
5120 ir.ot = OT_BYTE;
5121 else
5122 ir.ot = ir.dflag + OT_WORD;
5123 if (ir.aflag == 2)
5124 {
5125 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5126 return -1;
5127 ir.addr += 8;
5128 addr = extract_unsigned_integer (buf, 8, byte_order);
5129 }
5130 else if (ir.aflag)
5131 {
5132 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5133 return -1;
5134 ir.addr += 4;
5135 addr = extract_unsigned_integer (buf, 4, byte_order);
5136 }
5137 else
5138 {
5139 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5140 return -1;
5141 ir.addr += 2;
5142 addr = extract_unsigned_integer (buf, 2, byte_order);
5143 }
5144 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5145 return -1;
5146 }
5147 break;
5148
5149 case 0xb0: /* mov R, Ib */
5150 case 0xb1:
5151 case 0xb2:
5152 case 0xb3:
5153 case 0xb4:
5154 case 0xb5:
5155 case 0xb6:
5156 case 0xb7:
5157 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5158 ? ((opcode & 0x7) | ir.rex_b)
5159 : ((opcode & 0x7) & 0x3));
5160 break;
5161
5162 case 0xb8: /* mov R, Iv */
5163 case 0xb9:
5164 case 0xba:
5165 case 0xbb:
5166 case 0xbc:
5167 case 0xbd:
5168 case 0xbe:
5169 case 0xbf:
5170 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5171 break;
5172
5173 case 0x91: /* xchg R, EAX */
5174 case 0x92:
5175 case 0x93:
5176 case 0x94:
5177 case 0x95:
5178 case 0x96:
5179 case 0x97:
5180 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5181 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
5182 break;
5183
5184 case 0x86: /* xchg Ev, Gv */
5185 case 0x87:
5186 if ((opcode & 1) == 0)
5187 ir.ot = OT_BYTE;
5188 else
5189 ir.ot = ir.dflag + OT_WORD;
5190 if (i386_record_modrm (&ir))
5191 return -1;
5192 if (ir.mod == 3)
5193 {
5194 ir.rm |= ir.rex_b;
5195 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5196 ir.rm &= 0x3;
5197 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5198 }
5199 else
5200 {
5201 if (i386_record_lea_modrm (&ir))
5202 return -1;
5203 }
5204 ir.reg |= rex_r;
5205 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5206 ir.reg &= 0x3;
5207 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5208 break;
5209
5210 case 0xc4: /* les Gv */
5211 case 0xc5: /* lds Gv */
5212 if (ir.regmap[X86_RECORD_R8_REGNUM])
5213 {
5214 ir.addr -= 1;
5215 goto no_support;
5216 }
5217 /* FALLTHROUGH */
5218 case 0x0fb2: /* lss Gv */
5219 case 0x0fb4: /* lfs Gv */
5220 case 0x0fb5: /* lgs Gv */
5221 if (i386_record_modrm (&ir))
5222 return -1;
5223 if (ir.mod == 3)
5224 {
5225 if (opcode > 0xff)
5226 ir.addr -= 3;
5227 else
5228 ir.addr -= 2;
5229 opcode = opcode << 8 | ir.modrm;
5230 goto no_support;
5231 }
5232 switch (opcode)
5233 {
5234 case 0xc4: /* les Gv */
5235 regnum = X86_RECORD_ES_REGNUM;
5236 break;
5237 case 0xc5: /* lds Gv */
5238 regnum = X86_RECORD_DS_REGNUM;
5239 break;
5240 case 0x0fb2: /* lss Gv */
5241 regnum = X86_RECORD_SS_REGNUM;
5242 break;
5243 case 0x0fb4: /* lfs Gv */
5244 regnum = X86_RECORD_FS_REGNUM;
5245 break;
5246 case 0x0fb5: /* lgs Gv */
5247 regnum = X86_RECORD_GS_REGNUM;
5248 break;
5249 }
5250 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
5251 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5252 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5253 break;
5254
5255 case 0xc0: /* shifts */
5256 case 0xc1:
5257 case 0xd0:
5258 case 0xd1:
5259 case 0xd2:
5260 case 0xd3:
5261 if ((opcode & 1) == 0)
5262 ir.ot = OT_BYTE;
5263 else
5264 ir.ot = ir.dflag + OT_WORD;
5265 if (i386_record_modrm (&ir))
5266 return -1;
5267 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5268 {
5269 if (i386_record_lea_modrm (&ir))
5270 return -1;
5271 }
5272 else
5273 {
5274 ir.rm |= ir.rex_b;
5275 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5276 ir.rm &= 0x3;
5277 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5278 }
5279 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5280 break;
5281
5282 case 0x0fa4:
5283 case 0x0fa5:
5284 case 0x0fac:
5285 case 0x0fad:
5286 if (i386_record_modrm (&ir))
5287 return -1;
5288 if (ir.mod == 3)
5289 {
5290 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5291 return -1;
5292 }
5293 else
5294 {
5295 if (i386_record_lea_modrm (&ir))
5296 return -1;
5297 }
5298 break;
5299
5300 case 0xd8: /* Floats. */
5301 case 0xd9:
5302 case 0xda:
5303 case 0xdb:
5304 case 0xdc:
5305 case 0xdd:
5306 case 0xde:
5307 case 0xdf:
5308 if (i386_record_modrm (&ir))
5309 return -1;
5310 ir.reg |= ((opcode & 7) << 3);
5311 if (ir.mod != 3)
5312 {
5313 /* Memory. */
5314 uint64_t addr64;
5315
5316 if (i386_record_lea_modrm_addr (&ir, &addr64))
5317 return -1;
5318 switch (ir.reg)
5319 {
5320 case 0x02:
5321 case 0x12:
5322 case 0x22:
5323 case 0x32:
5324 /* For fcom, ficom nothing to do. */
5325 break;
5326 case 0x03:
5327 case 0x13:
5328 case 0x23:
5329 case 0x33:
5330 /* For fcomp, ficomp pop FPU stack, store all. */
5331 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5332 return -1;
5333 break;
5334 case 0x00:
5335 case 0x01:
5336 case 0x04:
5337 case 0x05:
5338 case 0x06:
5339 case 0x07:
5340 case 0x10:
5341 case 0x11:
5342 case 0x14:
5343 case 0x15:
5344 case 0x16:
5345 case 0x17:
5346 case 0x20:
5347 case 0x21:
5348 case 0x24:
5349 case 0x25:
5350 case 0x26:
5351 case 0x27:
5352 case 0x30:
5353 case 0x31:
5354 case 0x34:
5355 case 0x35:
5356 case 0x36:
5357 case 0x37:
5358 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5359 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5360 of code, always affects st(0) register. */
5361 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5362 return -1;
5363 break;
5364 case 0x08:
5365 case 0x0a:
5366 case 0x0b:
5367 case 0x18:
5368 case 0x19:
5369 case 0x1a:
5370 case 0x1b:
5371 case 0x1d:
5372 case 0x28:
5373 case 0x29:
5374 case 0x2a:
5375 case 0x2b:
5376 case 0x38:
5377 case 0x39:
5378 case 0x3a:
5379 case 0x3b:
5380 case 0x3c:
5381 case 0x3d:
5382 switch (ir.reg & 7)
5383 {
5384 case 0:
5385 /* Handling fld, fild. */
5386 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5387 return -1;
5388 break;
5389 case 1:
5390 switch (ir.reg >> 4)
5391 {
5392 case 0:
5393 if (record_arch_list_add_mem (addr64, 4))
5394 return -1;
5395 break;
5396 case 2:
5397 if (record_arch_list_add_mem (addr64, 8))
5398 return -1;
5399 break;
5400 case 3:
5401 break;
5402 default:
5403 if (record_arch_list_add_mem (addr64, 2))
5404 return -1;
5405 break;
5406 }
5407 break;
5408 default:
5409 switch (ir.reg >> 4)
5410 {
5411 case 0:
5412 if (record_arch_list_add_mem (addr64, 4))
5413 return -1;
5414 if (3 == (ir.reg & 7))
5415 {
5416 /* For fstp m32fp. */
5417 if (i386_record_floats (gdbarch, &ir,
5418 I386_SAVE_FPU_REGS))
5419 return -1;
5420 }
5421 break;
5422 case 1:
5423 if (record_arch_list_add_mem (addr64, 4))
5424 return -1;
5425 if ((3 == (ir.reg & 7))
5426 || (5 == (ir.reg & 7))
5427 || (7 == (ir.reg & 7)))
5428 {
5429 /* For fstp insn. */
5430 if (i386_record_floats (gdbarch, &ir,
5431 I386_SAVE_FPU_REGS))
5432 return -1;
5433 }
5434 break;
5435 case 2:
5436 if (record_arch_list_add_mem (addr64, 8))
5437 return -1;
5438 if (3 == (ir.reg & 7))
5439 {
5440 /* For fstp m64fp. */
5441 if (i386_record_floats (gdbarch, &ir,
5442 I386_SAVE_FPU_REGS))
5443 return -1;
5444 }
5445 break;
5446 case 3:
5447 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5448 {
5449 /* For fistp, fbld, fild, fbstp. */
5450 if (i386_record_floats (gdbarch, &ir,
5451 I386_SAVE_FPU_REGS))
5452 return -1;
5453 }
5454 /* Fall through */
5455 default:
5456 if (record_arch_list_add_mem (addr64, 2))
5457 return -1;
5458 break;
5459 }
5460 break;
5461 }
5462 break;
5463 case 0x0c:
5464 /* Insn fldenv. */
5465 if (i386_record_floats (gdbarch, &ir,
5466 I386_SAVE_FPU_ENV_REG_STACK))
5467 return -1;
5468 break;
5469 case 0x0d:
5470 /* Insn fldcw. */
5471 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5472 return -1;
5473 break;
5474 case 0x2c:
5475 /* Insn frstor. */
5476 if (i386_record_floats (gdbarch, &ir,
5477 I386_SAVE_FPU_ENV_REG_STACK))
5478 return -1;
5479 break;
5480 case 0x0e:
5481 if (ir.dflag)
5482 {
5483 if (record_arch_list_add_mem (addr64, 28))
5484 return -1;
5485 }
5486 else
5487 {
5488 if (record_arch_list_add_mem (addr64, 14))
5489 return -1;
5490 }
5491 break;
5492 case 0x0f:
5493 case 0x2f:
5494 if (record_arch_list_add_mem (addr64, 2))
5495 return -1;
5496 /* Insn fstp, fbstp. */
5497 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5498 return -1;
5499 break;
5500 case 0x1f:
5501 case 0x3e:
5502 if (record_arch_list_add_mem (addr64, 10))
5503 return -1;
5504 break;
5505 case 0x2e:
5506 if (ir.dflag)
5507 {
5508 if (record_arch_list_add_mem (addr64, 28))
5509 return -1;
5510 addr64 += 28;
5511 }
5512 else
5513 {
5514 if (record_arch_list_add_mem (addr64, 14))
5515 return -1;
5516 addr64 += 14;
5517 }
5518 if (record_arch_list_add_mem (addr64, 80))
5519 return -1;
5520 /* Insn fsave. */
5521 if (i386_record_floats (gdbarch, &ir,
5522 I386_SAVE_FPU_ENV_REG_STACK))
5523 return -1;
5524 break;
5525 case 0x3f:
5526 if (record_arch_list_add_mem (addr64, 8))
5527 return -1;
5528 /* Insn fistp. */
5529 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5530 return -1;
5531 break;
5532 default:
5533 ir.addr -= 2;
5534 opcode = opcode << 8 | ir.modrm;
5535 goto no_support;
5536 break;
5537 }
5538 }
5539 /* Opcode is an extension of modR/M byte. */
5540 else
5541 {
5542 switch (opcode)
5543 {
5544 case 0xd8:
5545 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5546 return -1;
5547 break;
5548 case 0xd9:
5549 if (0x0c == (ir.modrm >> 4))
5550 {
5551 if ((ir.modrm & 0x0f) <= 7)
5552 {
5553 if (i386_record_floats (gdbarch, &ir,
5554 I386_SAVE_FPU_REGS))
5555 return -1;
5556 }
5557 else
5558 {
5559 if (i386_record_floats (gdbarch, &ir,
5560 I387_ST0_REGNUM (tdep)))
5561 return -1;
5562 /* If only st(0) is changing, then we have already
5563 recorded. */
5564 if ((ir.modrm & 0x0f) - 0x08)
5565 {
5566 if (i386_record_floats (gdbarch, &ir,
5567 I387_ST0_REGNUM (tdep) +
5568 ((ir.modrm & 0x0f) - 0x08)))
5569 return -1;
5570 }
5571 }
5572 }
5573 else
5574 {
5575 switch (ir.modrm)
5576 {
5577 case 0xe0:
5578 case 0xe1:
5579 case 0xf0:
5580 case 0xf5:
5581 case 0xf8:
5582 case 0xfa:
5583 case 0xfc:
5584 case 0xfe:
5585 case 0xff:
5586 if (i386_record_floats (gdbarch, &ir,
5587 I387_ST0_REGNUM (tdep)))
5588 return -1;
5589 break;
5590 case 0xf1:
5591 case 0xf2:
5592 case 0xf3:
5593 case 0xf4:
5594 case 0xf6:
5595 case 0xf7:
5596 case 0xe8:
5597 case 0xe9:
5598 case 0xea:
5599 case 0xeb:
5600 case 0xec:
5601 case 0xed:
5602 case 0xee:
5603 case 0xf9:
5604 case 0xfb:
5605 if (i386_record_floats (gdbarch, &ir,
5606 I386_SAVE_FPU_REGS))
5607 return -1;
5608 break;
5609 case 0xfd:
5610 if (i386_record_floats (gdbarch, &ir,
5611 I387_ST0_REGNUM (tdep)))
5612 return -1;
5613 if (i386_record_floats (gdbarch, &ir,
5614 I387_ST0_REGNUM (tdep) + 1))
5615 return -1;
5616 break;
5617 }
5618 }
5619 break;
5620 case 0xda:
5621 if (0xe9 == ir.modrm)
5622 {
5623 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5624 return -1;
5625 }
5626 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5627 {
5628 if (i386_record_floats (gdbarch, &ir,
5629 I387_ST0_REGNUM (tdep)))
5630 return -1;
5631 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5632 {
5633 if (i386_record_floats (gdbarch, &ir,
5634 I387_ST0_REGNUM (tdep) +
5635 (ir.modrm & 0x0f)))
5636 return -1;
5637 }
5638 else if ((ir.modrm & 0x0f) - 0x08)
5639 {
5640 if (i386_record_floats (gdbarch, &ir,
5641 I387_ST0_REGNUM (tdep) +
5642 ((ir.modrm & 0x0f) - 0x08)))
5643 return -1;
5644 }
5645 }
5646 break;
5647 case 0xdb:
5648 if (0xe3 == ir.modrm)
5649 {
5650 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5651 return -1;
5652 }
5653 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5654 {
5655 if (i386_record_floats (gdbarch, &ir,
5656 I387_ST0_REGNUM (tdep)))
5657 return -1;
5658 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5659 {
5660 if (i386_record_floats (gdbarch, &ir,
5661 I387_ST0_REGNUM (tdep) +
5662 (ir.modrm & 0x0f)))
5663 return -1;
5664 }
5665 else if ((ir.modrm & 0x0f) - 0x08)
5666 {
5667 if (i386_record_floats (gdbarch, &ir,
5668 I387_ST0_REGNUM (tdep) +
5669 ((ir.modrm & 0x0f) - 0x08)))
5670 return -1;
5671 }
5672 }
5673 break;
5674 case 0xdc:
5675 if ((0x0c == ir.modrm >> 4)
5676 || (0x0d == ir.modrm >> 4)
5677 || (0x0f == ir.modrm >> 4))
5678 {
5679 if ((ir.modrm & 0x0f) <= 7)
5680 {
5681 if (i386_record_floats (gdbarch, &ir,
5682 I387_ST0_REGNUM (tdep) +
5683 (ir.modrm & 0x0f)))
5684 return -1;
5685 }
5686 else
5687 {
5688 if (i386_record_floats (gdbarch, &ir,
5689 I387_ST0_REGNUM (tdep) +
5690 ((ir.modrm & 0x0f) - 0x08)))
5691 return -1;
5692 }
5693 }
5694 break;
5695 case 0xdd:
5696 if (0x0c == ir.modrm >> 4)
5697 {
5698 if (i386_record_floats (gdbarch, &ir,
5699 I387_FTAG_REGNUM (tdep)))
5700 return -1;
5701 }
5702 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5703 {
5704 if ((ir.modrm & 0x0f) <= 7)
5705 {
5706 if (i386_record_floats (gdbarch, &ir,
5707 I387_ST0_REGNUM (tdep) +
5708 (ir.modrm & 0x0f)))
5709 return -1;
5710 }
5711 else
5712 {
5713 if (i386_record_floats (gdbarch, &ir,
5714 I386_SAVE_FPU_REGS))
5715 return -1;
5716 }
5717 }
5718 break;
5719 case 0xde:
5720 if ((0x0c == ir.modrm >> 4)
5721 || (0x0e == ir.modrm >> 4)
5722 || (0x0f == ir.modrm >> 4)
5723 || (0xd9 == ir.modrm))
5724 {
5725 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5726 return -1;
5727 }
5728 break;
5729 case 0xdf:
5730 if (0xe0 == ir.modrm)
5731 {
5732 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5733 return -1;
5734 }
5735 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5736 {
5737 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5738 return -1;
5739 }
5740 break;
5741 }
5742 }
5743 break;
5744 /* string ops */
5745 case 0xa4: /* movsS */
5746 case 0xa5:
5747 case 0xaa: /* stosS */
5748 case 0xab:
5749 case 0x6c: /* insS */
5750 case 0x6d:
5751 regcache_raw_read_unsigned (ir.regcache,
5752 ir.regmap[X86_RECORD_RECX_REGNUM],
5753 &addr);
5754 if (addr)
5755 {
5756 ULONGEST es, ds;
5757
5758 if ((opcode & 1) == 0)
5759 ir.ot = OT_BYTE;
5760 else
5761 ir.ot = ir.dflag + OT_WORD;
5762 regcache_raw_read_unsigned (ir.regcache,
5763 ir.regmap[X86_RECORD_REDI_REGNUM],
5764 &addr);
5765
5766 regcache_raw_read_unsigned (ir.regcache,
5767 ir.regmap[X86_RECORD_ES_REGNUM],
5768 &es);
5769 regcache_raw_read_unsigned (ir.regcache,
5770 ir.regmap[X86_RECORD_DS_REGNUM],
5771 &ds);
5772 if (ir.aflag && (es != ds))
5773 {
5774 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5775 if (record_memory_query)
5776 {
5777 int q;
5778
5779 target_terminal_ours ();
5780 q = yquery (_("\
5781 Process record ignores the memory change of instruction at address %s\n\
5782 because it can't get the value of the segment register.\n\
5783 Do you want to stop the program?"),
5784 paddress (gdbarch, ir.orig_addr));
5785 target_terminal_inferior ();
5786 if (q)
5787 return -1;
5788 }
5789 }
5790 else
5791 {
5792 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5793 return -1;
5794 }
5795
5796 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5797 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5798 if (opcode == 0xa4 || opcode == 0xa5)
5799 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5800 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5801 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5802 }
5803 break;
5804
5805 case 0xa6: /* cmpsS */
5806 case 0xa7:
5807 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5808 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5809 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5810 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5811 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5812 break;
5813
5814 case 0xac: /* lodsS */
5815 case 0xad:
5816 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5817 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5818 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5819 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5820 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5821 break;
5822
5823 case 0xae: /* scasS */
5824 case 0xaf:
5825 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5826 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5827 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5828 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5829 break;
5830
5831 case 0x6e: /* outsS */
5832 case 0x6f:
5833 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5834 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5835 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5836 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5837 break;
5838
5839 case 0xe4: /* port I/O */
5840 case 0xe5:
5841 case 0xec:
5842 case 0xed:
5843 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5844 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5845 break;
5846
5847 case 0xe6:
5848 case 0xe7:
5849 case 0xee:
5850 case 0xef:
5851 break;
5852
5853 /* control */
5854 case 0xc2: /* ret im */
5855 case 0xc3: /* ret */
5856 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5857 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5858 break;
5859
5860 case 0xca: /* lret im */
5861 case 0xcb: /* lret */
5862 case 0xcf: /* iret */
5863 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5864 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5865 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5866 break;
5867
5868 case 0xe8: /* call im */
5869 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5870 ir.dflag = 2;
5871 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5872 return -1;
5873 break;
5874
5875 case 0x9a: /* lcall im */
5876 if (ir.regmap[X86_RECORD_R8_REGNUM])
5877 {
5878 ir.addr -= 1;
5879 goto no_support;
5880 }
5881 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5882 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5883 return -1;
5884 break;
5885
5886 case 0xe9: /* jmp im */
5887 case 0xea: /* ljmp im */
5888 case 0xeb: /* jmp Jb */
5889 case 0x70: /* jcc Jb */
5890 case 0x71:
5891 case 0x72:
5892 case 0x73:
5893 case 0x74:
5894 case 0x75:
5895 case 0x76:
5896 case 0x77:
5897 case 0x78:
5898 case 0x79:
5899 case 0x7a:
5900 case 0x7b:
5901 case 0x7c:
5902 case 0x7d:
5903 case 0x7e:
5904 case 0x7f:
5905 case 0x0f80: /* jcc Jv */
5906 case 0x0f81:
5907 case 0x0f82:
5908 case 0x0f83:
5909 case 0x0f84:
5910 case 0x0f85:
5911 case 0x0f86:
5912 case 0x0f87:
5913 case 0x0f88:
5914 case 0x0f89:
5915 case 0x0f8a:
5916 case 0x0f8b:
5917 case 0x0f8c:
5918 case 0x0f8d:
5919 case 0x0f8e:
5920 case 0x0f8f:
5921 break;
5922
5923 case 0x0f90: /* setcc Gv */
5924 case 0x0f91:
5925 case 0x0f92:
5926 case 0x0f93:
5927 case 0x0f94:
5928 case 0x0f95:
5929 case 0x0f96:
5930 case 0x0f97:
5931 case 0x0f98:
5932 case 0x0f99:
5933 case 0x0f9a:
5934 case 0x0f9b:
5935 case 0x0f9c:
5936 case 0x0f9d:
5937 case 0x0f9e:
5938 case 0x0f9f:
5939 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5940 ir.ot = OT_BYTE;
5941 if (i386_record_modrm (&ir))
5942 return -1;
5943 if (ir.mod == 3)
5944 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5945 : (ir.rm & 0x3));
5946 else
5947 {
5948 if (i386_record_lea_modrm (&ir))
5949 return -1;
5950 }
5951 break;
5952
5953 case 0x0f40: /* cmov Gv, Ev */
5954 case 0x0f41:
5955 case 0x0f42:
5956 case 0x0f43:
5957 case 0x0f44:
5958 case 0x0f45:
5959 case 0x0f46:
5960 case 0x0f47:
5961 case 0x0f48:
5962 case 0x0f49:
5963 case 0x0f4a:
5964 case 0x0f4b:
5965 case 0x0f4c:
5966 case 0x0f4d:
5967 case 0x0f4e:
5968 case 0x0f4f:
5969 if (i386_record_modrm (&ir))
5970 return -1;
5971 ir.reg |= rex_r;
5972 if (ir.dflag == OT_BYTE)
5973 ir.reg &= 0x3;
5974 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5975 break;
5976
5977 /* flags */
5978 case 0x9c: /* pushf */
5979 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5980 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5981 ir.dflag = 2;
5982 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5983 return -1;
5984 break;
5985
5986 case 0x9d: /* popf */
5987 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5988 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5989 break;
5990
5991 case 0x9e: /* sahf */
5992 if (ir.regmap[X86_RECORD_R8_REGNUM])
5993 {
5994 ir.addr -= 1;
5995 goto no_support;
5996 }
5997 /* FALLTHROUGH */
5998 case 0xf5: /* cmc */
5999 case 0xf8: /* clc */
6000 case 0xf9: /* stc */
6001 case 0xfc: /* cld */
6002 case 0xfd: /* std */
6003 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6004 break;
6005
6006 case 0x9f: /* lahf */
6007 if (ir.regmap[X86_RECORD_R8_REGNUM])
6008 {
6009 ir.addr -= 1;
6010 goto no_support;
6011 }
6012 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6013 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6014 break;
6015
6016 /* bit operations */
6017 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6018 ir.ot = ir.dflag + OT_WORD;
6019 if (i386_record_modrm (&ir))
6020 return -1;
6021 if (ir.reg < 4)
6022 {
6023 ir.addr -= 2;
6024 opcode = opcode << 8 | ir.modrm;
6025 goto no_support;
6026 }
6027 if (ir.reg != 4)
6028 {
6029 if (ir.mod == 3)
6030 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6031 else
6032 {
6033 if (i386_record_lea_modrm (&ir))
6034 return -1;
6035 }
6036 }
6037 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6038 break;
6039
6040 case 0x0fa3: /* bt Gv, Ev */
6041 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6042 break;
6043
6044 case 0x0fab: /* bts */
6045 case 0x0fb3: /* btr */
6046 case 0x0fbb: /* btc */
6047 ir.ot = ir.dflag + OT_WORD;
6048 if (i386_record_modrm (&ir))
6049 return -1;
6050 if (ir.mod == 3)
6051 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6052 else
6053 {
6054 uint64_t addr64;
6055 if (i386_record_lea_modrm_addr (&ir, &addr64))
6056 return -1;
6057 regcache_raw_read_unsigned (ir.regcache,
6058 ir.regmap[ir.reg | rex_r],
6059 &addr);
6060 switch (ir.dflag)
6061 {
6062 case 0:
6063 addr64 += ((int16_t) addr >> 4) << 4;
6064 break;
6065 case 1:
6066 addr64 += ((int32_t) addr >> 5) << 5;
6067 break;
6068 case 2:
6069 addr64 += ((int64_t) addr >> 6) << 6;
6070 break;
6071 }
6072 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
6073 return -1;
6074 if (i386_record_lea_modrm (&ir))
6075 return -1;
6076 }
6077 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6078 break;
6079
6080 case 0x0fbc: /* bsf */
6081 case 0x0fbd: /* bsr */
6082 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6083 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6084 break;
6085
6086 /* bcd */
6087 case 0x27: /* daa */
6088 case 0x2f: /* das */
6089 case 0x37: /* aaa */
6090 case 0x3f: /* aas */
6091 case 0xd4: /* aam */
6092 case 0xd5: /* aad */
6093 if (ir.regmap[X86_RECORD_R8_REGNUM])
6094 {
6095 ir.addr -= 1;
6096 goto no_support;
6097 }
6098 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6099 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6100 break;
6101
6102 /* misc */
6103 case 0x90: /* nop */
6104 if (prefixes & PREFIX_LOCK)
6105 {
6106 ir.addr -= 1;
6107 goto no_support;
6108 }
6109 break;
6110
6111 case 0x9b: /* fwait */
6112 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6113 return -1;
6114 opcode = (uint32_t) opcode8;
6115 ir.addr++;
6116 goto reswitch;
6117 break;
6118
6119 /* XXX */
6120 case 0xcc: /* int3 */
6121 printf_unfiltered (_("Process record does not support instruction "
6122 "int3.\n"));
6123 ir.addr -= 1;
6124 goto no_support;
6125 break;
6126
6127 /* XXX */
6128 case 0xcd: /* int */
6129 {
6130 int ret;
6131 uint8_t interrupt;
6132 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6133 return -1;
6134 ir.addr++;
6135 if (interrupt != 0x80
6136 || tdep->i386_intx80_record == NULL)
6137 {
6138 printf_unfiltered (_("Process record does not support "
6139 "instruction int 0x%02x.\n"),
6140 interrupt);
6141 ir.addr -= 2;
6142 goto no_support;
6143 }
6144 ret = tdep->i386_intx80_record (ir.regcache);
6145 if (ret)
6146 return ret;
6147 }
6148 break;
6149
6150 /* XXX */
6151 case 0xce: /* into */
6152 printf_unfiltered (_("Process record does not support "
6153 "instruction into.\n"));
6154 ir.addr -= 1;
6155 goto no_support;
6156 break;
6157
6158 case 0xfa: /* cli */
6159 case 0xfb: /* sti */
6160 break;
6161
6162 case 0x62: /* bound */
6163 printf_unfiltered (_("Process record does not support "
6164 "instruction bound.\n"));
6165 ir.addr -= 1;
6166 goto no_support;
6167 break;
6168
6169 case 0x0fc8: /* bswap reg */
6170 case 0x0fc9:
6171 case 0x0fca:
6172 case 0x0fcb:
6173 case 0x0fcc:
6174 case 0x0fcd:
6175 case 0x0fce:
6176 case 0x0fcf:
6177 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6178 break;
6179
6180 case 0xd6: /* salc */
6181 if (ir.regmap[X86_RECORD_R8_REGNUM])
6182 {
6183 ir.addr -= 1;
6184 goto no_support;
6185 }
6186 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6187 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6188 break;
6189
6190 case 0xe0: /* loopnz */
6191 case 0xe1: /* loopz */
6192 case 0xe2: /* loop */
6193 case 0xe3: /* jecxz */
6194 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6195 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6196 break;
6197
6198 case 0x0f30: /* wrmsr */
6199 printf_unfiltered (_("Process record does not support "
6200 "instruction wrmsr.\n"));
6201 ir.addr -= 2;
6202 goto no_support;
6203 break;
6204
6205 case 0x0f32: /* rdmsr */
6206 printf_unfiltered (_("Process record does not support "
6207 "instruction rdmsr.\n"));
6208 ir.addr -= 2;
6209 goto no_support;
6210 break;
6211
6212 case 0x0f31: /* rdtsc */
6213 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6214 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6215 break;
6216
6217 case 0x0f34: /* sysenter */
6218 {
6219 int ret;
6220 if (ir.regmap[X86_RECORD_R8_REGNUM])
6221 {
6222 ir.addr -= 2;
6223 goto no_support;
6224 }
6225 if (tdep->i386_sysenter_record == NULL)
6226 {
6227 printf_unfiltered (_("Process record does not support "
6228 "instruction sysenter.\n"));
6229 ir.addr -= 2;
6230 goto no_support;
6231 }
6232 ret = tdep->i386_sysenter_record (ir.regcache);
6233 if (ret)
6234 return ret;
6235 }
6236 break;
6237
6238 case 0x0f35: /* sysexit */
6239 printf_unfiltered (_("Process record does not support "
6240 "instruction sysexit.\n"));
6241 ir.addr -= 2;
6242 goto no_support;
6243 break;
6244
6245 case 0x0f05: /* syscall */
6246 {
6247 int ret;
6248 if (tdep->i386_syscall_record == NULL)
6249 {
6250 printf_unfiltered (_("Process record does not support "
6251 "instruction syscall.\n"));
6252 ir.addr -= 2;
6253 goto no_support;
6254 }
6255 ret = tdep->i386_syscall_record (ir.regcache);
6256 if (ret)
6257 return ret;
6258 }
6259 break;
6260
6261 case 0x0f07: /* sysret */
6262 printf_unfiltered (_("Process record does not support "
6263 "instruction sysret.\n"));
6264 ir.addr -= 2;
6265 goto no_support;
6266 break;
6267
6268 case 0x0fa2: /* cpuid */
6269 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6270 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6271 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6272 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6273 break;
6274
6275 case 0xf4: /* hlt */
6276 printf_unfiltered (_("Process record does not support "
6277 "instruction hlt.\n"));
6278 ir.addr -= 1;
6279 goto no_support;
6280 break;
6281
6282 case 0x0f00:
6283 if (i386_record_modrm (&ir))
6284 return -1;
6285 switch (ir.reg)
6286 {
6287 case 0: /* sldt */
6288 case 1: /* str */
6289 if (ir.mod == 3)
6290 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6291 else
6292 {
6293 ir.ot = OT_WORD;
6294 if (i386_record_lea_modrm (&ir))
6295 return -1;
6296 }
6297 break;
6298 case 2: /* lldt */
6299 case 3: /* ltr */
6300 break;
6301 case 4: /* verr */
6302 case 5: /* verw */
6303 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6304 break;
6305 default:
6306 ir.addr -= 3;
6307 opcode = opcode << 8 | ir.modrm;
6308 goto no_support;
6309 break;
6310 }
6311 break;
6312
6313 case 0x0f01:
6314 if (i386_record_modrm (&ir))
6315 return -1;
6316 switch (ir.reg)
6317 {
6318 case 0: /* sgdt */
6319 {
6320 uint64_t addr64;
6321
6322 if (ir.mod == 3)
6323 {
6324 ir.addr -= 3;
6325 opcode = opcode << 8 | ir.modrm;
6326 goto no_support;
6327 }
6328 if (ir.override >= 0)
6329 {
6330 if (record_memory_query)
6331 {
6332 int q;
6333
6334 target_terminal_ours ();
6335 q = yquery (_("\
6336 Process record ignores the memory change of instruction at address %s\n\
6337 because it can't get the value of the segment register.\n\
6338 Do you want to stop the program?"),
6339 paddress (gdbarch, ir.orig_addr));
6340 target_terminal_inferior ();
6341 if (q)
6342 return -1;
6343 }
6344 }
6345 else
6346 {
6347 if (i386_record_lea_modrm_addr (&ir, &addr64))
6348 return -1;
6349 if (record_arch_list_add_mem (addr64, 2))
6350 return -1;
6351 addr64 += 2;
6352 if (ir.regmap[X86_RECORD_R8_REGNUM])
6353 {
6354 if (record_arch_list_add_mem (addr64, 8))
6355 return -1;
6356 }
6357 else
6358 {
6359 if (record_arch_list_add_mem (addr64, 4))
6360 return -1;
6361 }
6362 }
6363 }
6364 break;
6365 case 1:
6366 if (ir.mod == 3)
6367 {
6368 switch (ir.rm)
6369 {
6370 case 0: /* monitor */
6371 break;
6372 case 1: /* mwait */
6373 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6374 break;
6375 default:
6376 ir.addr -= 3;
6377 opcode = opcode << 8 | ir.modrm;
6378 goto no_support;
6379 break;
6380 }
6381 }
6382 else
6383 {
6384 /* sidt */
6385 if (ir.override >= 0)
6386 {
6387 if (record_memory_query)
6388 {
6389 int q;
6390
6391 target_terminal_ours ();
6392 q = yquery (_("\
6393 Process record ignores the memory change of instruction at address %s\n\
6394 because it can't get the value of the segment register.\n\
6395 Do you want to stop the program?"),
6396 paddress (gdbarch, ir.orig_addr));
6397 target_terminal_inferior ();
6398 if (q)
6399 return -1;
6400 }
6401 }
6402 else
6403 {
6404 uint64_t addr64;
6405
6406 if (i386_record_lea_modrm_addr (&ir, &addr64))
6407 return -1;
6408 if (record_arch_list_add_mem (addr64, 2))
6409 return -1;
6410 addr64 += 2;
6411 if (ir.regmap[X86_RECORD_R8_REGNUM])
6412 {
6413 if (record_arch_list_add_mem (addr64, 8))
6414 return -1;
6415 }
6416 else
6417 {
6418 if (record_arch_list_add_mem (addr64, 4))
6419 return -1;
6420 }
6421 }
6422 }
6423 break;
6424 case 2: /* lgdt */
6425 if (ir.mod == 3)
6426 {
6427 /* xgetbv */
6428 if (ir.rm == 0)
6429 {
6430 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6431 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6432 break;
6433 }
6434 /* xsetbv */
6435 else if (ir.rm == 1)
6436 break;
6437 }
6438 case 3: /* lidt */
6439 if (ir.mod == 3)
6440 {
6441 ir.addr -= 3;
6442 opcode = opcode << 8 | ir.modrm;
6443 goto no_support;
6444 }
6445 break;
6446 case 4: /* smsw */
6447 if (ir.mod == 3)
6448 {
6449 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6450 return -1;
6451 }
6452 else
6453 {
6454 ir.ot = OT_WORD;
6455 if (i386_record_lea_modrm (&ir))
6456 return -1;
6457 }
6458 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6459 break;
6460 case 6: /* lmsw */
6461 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6462 break;
6463 case 7: /* invlpg */
6464 if (ir.mod == 3)
6465 {
6466 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6467 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6468 else
6469 {
6470 ir.addr -= 3;
6471 opcode = opcode << 8 | ir.modrm;
6472 goto no_support;
6473 }
6474 }
6475 else
6476 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6477 break;
6478 default:
6479 ir.addr -= 3;
6480 opcode = opcode << 8 | ir.modrm;
6481 goto no_support;
6482 break;
6483 }
6484 break;
6485
6486 case 0x0f08: /* invd */
6487 case 0x0f09: /* wbinvd */
6488 break;
6489
6490 case 0x63: /* arpl */
6491 if (i386_record_modrm (&ir))
6492 return -1;
6493 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6494 {
6495 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6496 ? (ir.reg | rex_r) : ir.rm);
6497 }
6498 else
6499 {
6500 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6501 if (i386_record_lea_modrm (&ir))
6502 return -1;
6503 }
6504 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6505 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6506 break;
6507
6508 case 0x0f02: /* lar */
6509 case 0x0f03: /* lsl */
6510 if (i386_record_modrm (&ir))
6511 return -1;
6512 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6513 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6514 break;
6515
6516 case 0x0f18:
6517 if (i386_record_modrm (&ir))
6518 return -1;
6519 if (ir.mod == 3 && ir.reg == 3)
6520 {
6521 ir.addr -= 3;
6522 opcode = opcode << 8 | ir.modrm;
6523 goto no_support;
6524 }
6525 break;
6526
6527 case 0x0f19:
6528 case 0x0f1a:
6529 case 0x0f1b:
6530 case 0x0f1c:
6531 case 0x0f1d:
6532 case 0x0f1e:
6533 case 0x0f1f:
6534 /* nop (multi byte) */
6535 break;
6536
6537 case 0x0f20: /* mov reg, crN */
6538 case 0x0f22: /* mov crN, reg */
6539 if (i386_record_modrm (&ir))
6540 return -1;
6541 if ((ir.modrm & 0xc0) != 0xc0)
6542 {
6543 ir.addr -= 3;
6544 opcode = opcode << 8 | ir.modrm;
6545 goto no_support;
6546 }
6547 switch (ir.reg)
6548 {
6549 case 0:
6550 case 2:
6551 case 3:
6552 case 4:
6553 case 8:
6554 if (opcode & 2)
6555 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6556 else
6557 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6558 break;
6559 default:
6560 ir.addr -= 3;
6561 opcode = opcode << 8 | ir.modrm;
6562 goto no_support;
6563 break;
6564 }
6565 break;
6566
6567 case 0x0f21: /* mov reg, drN */
6568 case 0x0f23: /* mov drN, reg */
6569 if (i386_record_modrm (&ir))
6570 return -1;
6571 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6572 || ir.reg == 5 || ir.reg >= 8)
6573 {
6574 ir.addr -= 3;
6575 opcode = opcode << 8 | ir.modrm;
6576 goto no_support;
6577 }
6578 if (opcode & 2)
6579 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6580 else
6581 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6582 break;
6583
6584 case 0x0f06: /* clts */
6585 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6586 break;
6587
6588 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6589
6590 case 0x0f0d: /* 3DNow! prefetch */
6591 break;
6592
6593 case 0x0f0e: /* 3DNow! femms */
6594 case 0x0f77: /* emms */
6595 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6596 goto no_support;
6597 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6598 break;
6599
6600 case 0x0f0f: /* 3DNow! data */
6601 if (i386_record_modrm (&ir))
6602 return -1;
6603 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6604 return -1;
6605 ir.addr++;
6606 switch (opcode8)
6607 {
6608 case 0x0c: /* 3DNow! pi2fw */
6609 case 0x0d: /* 3DNow! pi2fd */
6610 case 0x1c: /* 3DNow! pf2iw */
6611 case 0x1d: /* 3DNow! pf2id */
6612 case 0x8a: /* 3DNow! pfnacc */
6613 case 0x8e: /* 3DNow! pfpnacc */
6614 case 0x90: /* 3DNow! pfcmpge */
6615 case 0x94: /* 3DNow! pfmin */
6616 case 0x96: /* 3DNow! pfrcp */
6617 case 0x97: /* 3DNow! pfrsqrt */
6618 case 0x9a: /* 3DNow! pfsub */
6619 case 0x9e: /* 3DNow! pfadd */
6620 case 0xa0: /* 3DNow! pfcmpgt */
6621 case 0xa4: /* 3DNow! pfmax */
6622 case 0xa6: /* 3DNow! pfrcpit1 */
6623 case 0xa7: /* 3DNow! pfrsqit1 */
6624 case 0xaa: /* 3DNow! pfsubr */
6625 case 0xae: /* 3DNow! pfacc */
6626 case 0xb0: /* 3DNow! pfcmpeq */
6627 case 0xb4: /* 3DNow! pfmul */
6628 case 0xb6: /* 3DNow! pfrcpit2 */
6629 case 0xb7: /* 3DNow! pmulhrw */
6630 case 0xbb: /* 3DNow! pswapd */
6631 case 0xbf: /* 3DNow! pavgusb */
6632 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6633 goto no_support_3dnow_data;
6634 record_arch_list_add_reg (ir.regcache, ir.reg);
6635 break;
6636
6637 default:
6638 no_support_3dnow_data:
6639 opcode = (opcode << 8) | opcode8;
6640 goto no_support;
6641 break;
6642 }
6643 break;
6644
6645 case 0x0faa: /* rsm */
6646 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6647 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6648 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6649 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6650 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6651 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6652 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6653 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6654 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6655 break;
6656
6657 case 0x0fae:
6658 if (i386_record_modrm (&ir))
6659 return -1;
6660 switch(ir.reg)
6661 {
6662 case 0: /* fxsave */
6663 {
6664 uint64_t tmpu64;
6665
6666 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6667 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6668 return -1;
6669 if (record_arch_list_add_mem (tmpu64, 512))
6670 return -1;
6671 }
6672 break;
6673
6674 case 1: /* fxrstor */
6675 {
6676 int i;
6677
6678 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6679
6680 for (i = I387_MM0_REGNUM (tdep);
6681 i386_mmx_regnum_p (gdbarch, i); i++)
6682 record_arch_list_add_reg (ir.regcache, i);
6683
6684 for (i = I387_XMM0_REGNUM (tdep);
6685 i386_xmm_regnum_p (gdbarch, i); i++)
6686 record_arch_list_add_reg (ir.regcache, i);
6687
6688 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6689 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6690
6691 for (i = I387_ST0_REGNUM (tdep);
6692 i386_fp_regnum_p (gdbarch, i); i++)
6693 record_arch_list_add_reg (ir.regcache, i);
6694
6695 for (i = I387_FCTRL_REGNUM (tdep);
6696 i386_fpc_regnum_p (gdbarch, i); i++)
6697 record_arch_list_add_reg (ir.regcache, i);
6698 }
6699 break;
6700
6701 case 2: /* ldmxcsr */
6702 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6703 goto no_support;
6704 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6705 break;
6706
6707 case 3: /* stmxcsr */
6708 ir.ot = OT_LONG;
6709 if (i386_record_lea_modrm (&ir))
6710 return -1;
6711 break;
6712
6713 case 5: /* lfence */
6714 case 6: /* mfence */
6715 case 7: /* sfence clflush */
6716 break;
6717
6718 default:
6719 opcode = (opcode << 8) | ir.modrm;
6720 goto no_support;
6721 break;
6722 }
6723 break;
6724
6725 case 0x0fc3: /* movnti */
6726 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6727 if (i386_record_modrm (&ir))
6728 return -1;
6729 if (ir.mod == 3)
6730 goto no_support;
6731 ir.reg |= rex_r;
6732 if (i386_record_lea_modrm (&ir))
6733 return -1;
6734 break;
6735
6736 /* Add prefix to opcode. */
6737 case 0x0f10:
6738 case 0x0f11:
6739 case 0x0f12:
6740 case 0x0f13:
6741 case 0x0f14:
6742 case 0x0f15:
6743 case 0x0f16:
6744 case 0x0f17:
6745 case 0x0f28:
6746 case 0x0f29:
6747 case 0x0f2a:
6748 case 0x0f2b:
6749 case 0x0f2c:
6750 case 0x0f2d:
6751 case 0x0f2e:
6752 case 0x0f2f:
6753 case 0x0f38:
6754 case 0x0f39:
6755 case 0x0f3a:
6756 case 0x0f50:
6757 case 0x0f51:
6758 case 0x0f52:
6759 case 0x0f53:
6760 case 0x0f54:
6761 case 0x0f55:
6762 case 0x0f56:
6763 case 0x0f57:
6764 case 0x0f58:
6765 case 0x0f59:
6766 case 0x0f5a:
6767 case 0x0f5b:
6768 case 0x0f5c:
6769 case 0x0f5d:
6770 case 0x0f5e:
6771 case 0x0f5f:
6772 case 0x0f60:
6773 case 0x0f61:
6774 case 0x0f62:
6775 case 0x0f63:
6776 case 0x0f64:
6777 case 0x0f65:
6778 case 0x0f66:
6779 case 0x0f67:
6780 case 0x0f68:
6781 case 0x0f69:
6782 case 0x0f6a:
6783 case 0x0f6b:
6784 case 0x0f6c:
6785 case 0x0f6d:
6786 case 0x0f6e:
6787 case 0x0f6f:
6788 case 0x0f70:
6789 case 0x0f71:
6790 case 0x0f72:
6791 case 0x0f73:
6792 case 0x0f74:
6793 case 0x0f75:
6794 case 0x0f76:
6795 case 0x0f7c:
6796 case 0x0f7d:
6797 case 0x0f7e:
6798 case 0x0f7f:
6799 case 0x0fb8:
6800 case 0x0fc2:
6801 case 0x0fc4:
6802 case 0x0fc5:
6803 case 0x0fc6:
6804 case 0x0fd0:
6805 case 0x0fd1:
6806 case 0x0fd2:
6807 case 0x0fd3:
6808 case 0x0fd4:
6809 case 0x0fd5:
6810 case 0x0fd6:
6811 case 0x0fd7:
6812 case 0x0fd8:
6813 case 0x0fd9:
6814 case 0x0fda:
6815 case 0x0fdb:
6816 case 0x0fdc:
6817 case 0x0fdd:
6818 case 0x0fde:
6819 case 0x0fdf:
6820 case 0x0fe0:
6821 case 0x0fe1:
6822 case 0x0fe2:
6823 case 0x0fe3:
6824 case 0x0fe4:
6825 case 0x0fe5:
6826 case 0x0fe6:
6827 case 0x0fe7:
6828 case 0x0fe8:
6829 case 0x0fe9:
6830 case 0x0fea:
6831 case 0x0feb:
6832 case 0x0fec:
6833 case 0x0fed:
6834 case 0x0fee:
6835 case 0x0fef:
6836 case 0x0ff0:
6837 case 0x0ff1:
6838 case 0x0ff2:
6839 case 0x0ff3:
6840 case 0x0ff4:
6841 case 0x0ff5:
6842 case 0x0ff6:
6843 case 0x0ff7:
6844 case 0x0ff8:
6845 case 0x0ff9:
6846 case 0x0ffa:
6847 case 0x0ffb:
6848 case 0x0ffc:
6849 case 0x0ffd:
6850 case 0x0ffe:
6851 switch (prefixes)
6852 {
6853 case PREFIX_REPNZ:
6854 opcode |= 0xf20000;
6855 break;
6856 case PREFIX_DATA:
6857 opcode |= 0x660000;
6858 break;
6859 case PREFIX_REPZ:
6860 opcode |= 0xf30000;
6861 break;
6862 }
6863 reswitch_prefix_add:
6864 switch (opcode)
6865 {
6866 case 0x0f38:
6867 case 0x660f38:
6868 case 0xf20f38:
6869 case 0x0f3a:
6870 case 0x660f3a:
6871 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6872 return -1;
6873 ir.addr++;
6874 opcode = (uint32_t) opcode8 | opcode << 8;
6875 goto reswitch_prefix_add;
6876 break;
6877
6878 case 0x0f10: /* movups */
6879 case 0x660f10: /* movupd */
6880 case 0xf30f10: /* movss */
6881 case 0xf20f10: /* movsd */
6882 case 0x0f12: /* movlps */
6883 case 0x660f12: /* movlpd */
6884 case 0xf30f12: /* movsldup */
6885 case 0xf20f12: /* movddup */
6886 case 0x0f14: /* unpcklps */
6887 case 0x660f14: /* unpcklpd */
6888 case 0x0f15: /* unpckhps */
6889 case 0x660f15: /* unpckhpd */
6890 case 0x0f16: /* movhps */
6891 case 0x660f16: /* movhpd */
6892 case 0xf30f16: /* movshdup */
6893 case 0x0f28: /* movaps */
6894 case 0x660f28: /* movapd */
6895 case 0x0f2a: /* cvtpi2ps */
6896 case 0x660f2a: /* cvtpi2pd */
6897 case 0xf30f2a: /* cvtsi2ss */
6898 case 0xf20f2a: /* cvtsi2sd */
6899 case 0x0f2c: /* cvttps2pi */
6900 case 0x660f2c: /* cvttpd2pi */
6901 case 0x0f2d: /* cvtps2pi */
6902 case 0x660f2d: /* cvtpd2pi */
6903 case 0x660f3800: /* pshufb */
6904 case 0x660f3801: /* phaddw */
6905 case 0x660f3802: /* phaddd */
6906 case 0x660f3803: /* phaddsw */
6907 case 0x660f3804: /* pmaddubsw */
6908 case 0x660f3805: /* phsubw */
6909 case 0x660f3806: /* phsubd */
6910 case 0x660f3807: /* phsubsw */
6911 case 0x660f3808: /* psignb */
6912 case 0x660f3809: /* psignw */
6913 case 0x660f380a: /* psignd */
6914 case 0x660f380b: /* pmulhrsw */
6915 case 0x660f3810: /* pblendvb */
6916 case 0x660f3814: /* blendvps */
6917 case 0x660f3815: /* blendvpd */
6918 case 0x660f381c: /* pabsb */
6919 case 0x660f381d: /* pabsw */
6920 case 0x660f381e: /* pabsd */
6921 case 0x660f3820: /* pmovsxbw */
6922 case 0x660f3821: /* pmovsxbd */
6923 case 0x660f3822: /* pmovsxbq */
6924 case 0x660f3823: /* pmovsxwd */
6925 case 0x660f3824: /* pmovsxwq */
6926 case 0x660f3825: /* pmovsxdq */
6927 case 0x660f3828: /* pmuldq */
6928 case 0x660f3829: /* pcmpeqq */
6929 case 0x660f382a: /* movntdqa */
6930 case 0x660f3a08: /* roundps */
6931 case 0x660f3a09: /* roundpd */
6932 case 0x660f3a0a: /* roundss */
6933 case 0x660f3a0b: /* roundsd */
6934 case 0x660f3a0c: /* blendps */
6935 case 0x660f3a0d: /* blendpd */
6936 case 0x660f3a0e: /* pblendw */
6937 case 0x660f3a0f: /* palignr */
6938 case 0x660f3a20: /* pinsrb */
6939 case 0x660f3a21: /* insertps */
6940 case 0x660f3a22: /* pinsrd pinsrq */
6941 case 0x660f3a40: /* dpps */
6942 case 0x660f3a41: /* dppd */
6943 case 0x660f3a42: /* mpsadbw */
6944 case 0x660f3a60: /* pcmpestrm */
6945 case 0x660f3a61: /* pcmpestri */
6946 case 0x660f3a62: /* pcmpistrm */
6947 case 0x660f3a63: /* pcmpistri */
6948 case 0x0f51: /* sqrtps */
6949 case 0x660f51: /* sqrtpd */
6950 case 0xf20f51: /* sqrtsd */
6951 case 0xf30f51: /* sqrtss */
6952 case 0x0f52: /* rsqrtps */
6953 case 0xf30f52: /* rsqrtss */
6954 case 0x0f53: /* rcpps */
6955 case 0xf30f53: /* rcpss */
6956 case 0x0f54: /* andps */
6957 case 0x660f54: /* andpd */
6958 case 0x0f55: /* andnps */
6959 case 0x660f55: /* andnpd */
6960 case 0x0f56: /* orps */
6961 case 0x660f56: /* orpd */
6962 case 0x0f57: /* xorps */
6963 case 0x660f57: /* xorpd */
6964 case 0x0f58: /* addps */
6965 case 0x660f58: /* addpd */
6966 case 0xf20f58: /* addsd */
6967 case 0xf30f58: /* addss */
6968 case 0x0f59: /* mulps */
6969 case 0x660f59: /* mulpd */
6970 case 0xf20f59: /* mulsd */
6971 case 0xf30f59: /* mulss */
6972 case 0x0f5a: /* cvtps2pd */
6973 case 0x660f5a: /* cvtpd2ps */
6974 case 0xf20f5a: /* cvtsd2ss */
6975 case 0xf30f5a: /* cvtss2sd */
6976 case 0x0f5b: /* cvtdq2ps */
6977 case 0x660f5b: /* cvtps2dq */
6978 case 0xf30f5b: /* cvttps2dq */
6979 case 0x0f5c: /* subps */
6980 case 0x660f5c: /* subpd */
6981 case 0xf20f5c: /* subsd */
6982 case 0xf30f5c: /* subss */
6983 case 0x0f5d: /* minps */
6984 case 0x660f5d: /* minpd */
6985 case 0xf20f5d: /* minsd */
6986 case 0xf30f5d: /* minss */
6987 case 0x0f5e: /* divps */
6988 case 0x660f5e: /* divpd */
6989 case 0xf20f5e: /* divsd */
6990 case 0xf30f5e: /* divss */
6991 case 0x0f5f: /* maxps */
6992 case 0x660f5f: /* maxpd */
6993 case 0xf20f5f: /* maxsd */
6994 case 0xf30f5f: /* maxss */
6995 case 0x660f60: /* punpcklbw */
6996 case 0x660f61: /* punpcklwd */
6997 case 0x660f62: /* punpckldq */
6998 case 0x660f63: /* packsswb */
6999 case 0x660f64: /* pcmpgtb */
7000 case 0x660f65: /* pcmpgtw */
7001 case 0x660f66: /* pcmpgtd */
7002 case 0x660f67: /* packuswb */
7003 case 0x660f68: /* punpckhbw */
7004 case 0x660f69: /* punpckhwd */
7005 case 0x660f6a: /* punpckhdq */
7006 case 0x660f6b: /* packssdw */
7007 case 0x660f6c: /* punpcklqdq */
7008 case 0x660f6d: /* punpckhqdq */
7009 case 0x660f6e: /* movd */
7010 case 0x660f6f: /* movdqa */
7011 case 0xf30f6f: /* movdqu */
7012 case 0x660f70: /* pshufd */
7013 case 0xf20f70: /* pshuflw */
7014 case 0xf30f70: /* pshufhw */
7015 case 0x660f74: /* pcmpeqb */
7016 case 0x660f75: /* pcmpeqw */
7017 case 0x660f76: /* pcmpeqd */
7018 case 0x660f7c: /* haddpd */
7019 case 0xf20f7c: /* haddps */
7020 case 0x660f7d: /* hsubpd */
7021 case 0xf20f7d: /* hsubps */
7022 case 0xf30f7e: /* movq */
7023 case 0x0fc2: /* cmpps */
7024 case 0x660fc2: /* cmppd */
7025 case 0xf20fc2: /* cmpsd */
7026 case 0xf30fc2: /* cmpss */
7027 case 0x660fc4: /* pinsrw */
7028 case 0x0fc6: /* shufps */
7029 case 0x660fc6: /* shufpd */
7030 case 0x660fd0: /* addsubpd */
7031 case 0xf20fd0: /* addsubps */
7032 case 0x660fd1: /* psrlw */
7033 case 0x660fd2: /* psrld */
7034 case 0x660fd3: /* psrlq */
7035 case 0x660fd4: /* paddq */
7036 case 0x660fd5: /* pmullw */
7037 case 0xf30fd6: /* movq2dq */
7038 case 0x660fd8: /* psubusb */
7039 case 0x660fd9: /* psubusw */
7040 case 0x660fda: /* pminub */
7041 case 0x660fdb: /* pand */
7042 case 0x660fdc: /* paddusb */
7043 case 0x660fdd: /* paddusw */
7044 case 0x660fde: /* pmaxub */
7045 case 0x660fdf: /* pandn */
7046 case 0x660fe0: /* pavgb */
7047 case 0x660fe1: /* psraw */
7048 case 0x660fe2: /* psrad */
7049 case 0x660fe3: /* pavgw */
7050 case 0x660fe4: /* pmulhuw */
7051 case 0x660fe5: /* pmulhw */
7052 case 0x660fe6: /* cvttpd2dq */
7053 case 0xf20fe6: /* cvtpd2dq */
7054 case 0xf30fe6: /* cvtdq2pd */
7055 case 0x660fe8: /* psubsb */
7056 case 0x660fe9: /* psubsw */
7057 case 0x660fea: /* pminsw */
7058 case 0x660feb: /* por */
7059 case 0x660fec: /* paddsb */
7060 case 0x660fed: /* paddsw */
7061 case 0x660fee: /* pmaxsw */
7062 case 0x660fef: /* pxor */
7063 case 0xf20ff0: /* lddqu */
7064 case 0x660ff1: /* psllw */
7065 case 0x660ff2: /* pslld */
7066 case 0x660ff3: /* psllq */
7067 case 0x660ff4: /* pmuludq */
7068 case 0x660ff5: /* pmaddwd */
7069 case 0x660ff6: /* psadbw */
7070 case 0x660ff8: /* psubb */
7071 case 0x660ff9: /* psubw */
7072 case 0x660ffa: /* psubd */
7073 case 0x660ffb: /* psubq */
7074 case 0x660ffc: /* paddb */
7075 case 0x660ffd: /* paddw */
7076 case 0x660ffe: /* paddd */
7077 if (i386_record_modrm (&ir))
7078 return -1;
7079 ir.reg |= rex_r;
7080 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7081 goto no_support;
7082 record_arch_list_add_reg (ir.regcache,
7083 I387_XMM0_REGNUM (tdep) + ir.reg);
7084 if ((opcode & 0xfffffffc) == 0x660f3a60)
7085 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7086 break;
7087
7088 case 0x0f11: /* movups */
7089 case 0x660f11: /* movupd */
7090 case 0xf30f11: /* movss */
7091 case 0xf20f11: /* movsd */
7092 case 0x0f13: /* movlps */
7093 case 0x660f13: /* movlpd */
7094 case 0x0f17: /* movhps */
7095 case 0x660f17: /* movhpd */
7096 case 0x0f29: /* movaps */
7097 case 0x660f29: /* movapd */
7098 case 0x660f3a14: /* pextrb */
7099 case 0x660f3a15: /* pextrw */
7100 case 0x660f3a16: /* pextrd pextrq */
7101 case 0x660f3a17: /* extractps */
7102 case 0x660f7f: /* movdqa */
7103 case 0xf30f7f: /* movdqu */
7104 if (i386_record_modrm (&ir))
7105 return -1;
7106 if (ir.mod == 3)
7107 {
7108 if (opcode == 0x0f13 || opcode == 0x660f13
7109 || opcode == 0x0f17 || opcode == 0x660f17)
7110 goto no_support;
7111 ir.rm |= ir.rex_b;
7112 if (!i386_xmm_regnum_p (gdbarch,
7113 I387_XMM0_REGNUM (tdep) + ir.rm))
7114 goto no_support;
7115 record_arch_list_add_reg (ir.regcache,
7116 I387_XMM0_REGNUM (tdep) + ir.rm);
7117 }
7118 else
7119 {
7120 switch (opcode)
7121 {
7122 case 0x660f3a14:
7123 ir.ot = OT_BYTE;
7124 break;
7125 case 0x660f3a15:
7126 ir.ot = OT_WORD;
7127 break;
7128 case 0x660f3a16:
7129 ir.ot = OT_LONG;
7130 break;
7131 case 0x660f3a17:
7132 ir.ot = OT_QUAD;
7133 break;
7134 default:
7135 ir.ot = OT_DQUAD;
7136 break;
7137 }
7138 if (i386_record_lea_modrm (&ir))
7139 return -1;
7140 }
7141 break;
7142
7143 case 0x0f2b: /* movntps */
7144 case 0x660f2b: /* movntpd */
7145 case 0x0fe7: /* movntq */
7146 case 0x660fe7: /* movntdq */
7147 if (ir.mod == 3)
7148 goto no_support;
7149 if (opcode == 0x0fe7)
7150 ir.ot = OT_QUAD;
7151 else
7152 ir.ot = OT_DQUAD;
7153 if (i386_record_lea_modrm (&ir))
7154 return -1;
7155 break;
7156
7157 case 0xf30f2c: /* cvttss2si */
7158 case 0xf20f2c: /* cvttsd2si */
7159 case 0xf30f2d: /* cvtss2si */
7160 case 0xf20f2d: /* cvtsd2si */
7161 case 0xf20f38f0: /* crc32 */
7162 case 0xf20f38f1: /* crc32 */
7163 case 0x0f50: /* movmskps */
7164 case 0x660f50: /* movmskpd */
7165 case 0x0fc5: /* pextrw */
7166 case 0x660fc5: /* pextrw */
7167 case 0x0fd7: /* pmovmskb */
7168 case 0x660fd7: /* pmovmskb */
7169 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7170 break;
7171
7172 case 0x0f3800: /* pshufb */
7173 case 0x0f3801: /* phaddw */
7174 case 0x0f3802: /* phaddd */
7175 case 0x0f3803: /* phaddsw */
7176 case 0x0f3804: /* pmaddubsw */
7177 case 0x0f3805: /* phsubw */
7178 case 0x0f3806: /* phsubd */
7179 case 0x0f3807: /* phsubsw */
7180 case 0x0f3808: /* psignb */
7181 case 0x0f3809: /* psignw */
7182 case 0x0f380a: /* psignd */
7183 case 0x0f380b: /* pmulhrsw */
7184 case 0x0f381c: /* pabsb */
7185 case 0x0f381d: /* pabsw */
7186 case 0x0f381e: /* pabsd */
7187 case 0x0f382b: /* packusdw */
7188 case 0x0f3830: /* pmovzxbw */
7189 case 0x0f3831: /* pmovzxbd */
7190 case 0x0f3832: /* pmovzxbq */
7191 case 0x0f3833: /* pmovzxwd */
7192 case 0x0f3834: /* pmovzxwq */
7193 case 0x0f3835: /* pmovzxdq */
7194 case 0x0f3837: /* pcmpgtq */
7195 case 0x0f3838: /* pminsb */
7196 case 0x0f3839: /* pminsd */
7197 case 0x0f383a: /* pminuw */
7198 case 0x0f383b: /* pminud */
7199 case 0x0f383c: /* pmaxsb */
7200 case 0x0f383d: /* pmaxsd */
7201 case 0x0f383e: /* pmaxuw */
7202 case 0x0f383f: /* pmaxud */
7203 case 0x0f3840: /* pmulld */
7204 case 0x0f3841: /* phminposuw */
7205 case 0x0f3a0f: /* palignr */
7206 case 0x0f60: /* punpcklbw */
7207 case 0x0f61: /* punpcklwd */
7208 case 0x0f62: /* punpckldq */
7209 case 0x0f63: /* packsswb */
7210 case 0x0f64: /* pcmpgtb */
7211 case 0x0f65: /* pcmpgtw */
7212 case 0x0f66: /* pcmpgtd */
7213 case 0x0f67: /* packuswb */
7214 case 0x0f68: /* punpckhbw */
7215 case 0x0f69: /* punpckhwd */
7216 case 0x0f6a: /* punpckhdq */
7217 case 0x0f6b: /* packssdw */
7218 case 0x0f6e: /* movd */
7219 case 0x0f6f: /* movq */
7220 case 0x0f70: /* pshufw */
7221 case 0x0f74: /* pcmpeqb */
7222 case 0x0f75: /* pcmpeqw */
7223 case 0x0f76: /* pcmpeqd */
7224 case 0x0fc4: /* pinsrw */
7225 case 0x0fd1: /* psrlw */
7226 case 0x0fd2: /* psrld */
7227 case 0x0fd3: /* psrlq */
7228 case 0x0fd4: /* paddq */
7229 case 0x0fd5: /* pmullw */
7230 case 0xf20fd6: /* movdq2q */
7231 case 0x0fd8: /* psubusb */
7232 case 0x0fd9: /* psubusw */
7233 case 0x0fda: /* pminub */
7234 case 0x0fdb: /* pand */
7235 case 0x0fdc: /* paddusb */
7236 case 0x0fdd: /* paddusw */
7237 case 0x0fde: /* pmaxub */
7238 case 0x0fdf: /* pandn */
7239 case 0x0fe0: /* pavgb */
7240 case 0x0fe1: /* psraw */
7241 case 0x0fe2: /* psrad */
7242 case 0x0fe3: /* pavgw */
7243 case 0x0fe4: /* pmulhuw */
7244 case 0x0fe5: /* pmulhw */
7245 case 0x0fe8: /* psubsb */
7246 case 0x0fe9: /* psubsw */
7247 case 0x0fea: /* pminsw */
7248 case 0x0feb: /* por */
7249 case 0x0fec: /* paddsb */
7250 case 0x0fed: /* paddsw */
7251 case 0x0fee: /* pmaxsw */
7252 case 0x0fef: /* pxor */
7253 case 0x0ff1: /* psllw */
7254 case 0x0ff2: /* pslld */
7255 case 0x0ff3: /* psllq */
7256 case 0x0ff4: /* pmuludq */
7257 case 0x0ff5: /* pmaddwd */
7258 case 0x0ff6: /* psadbw */
7259 case 0x0ff8: /* psubb */
7260 case 0x0ff9: /* psubw */
7261 case 0x0ffa: /* psubd */
7262 case 0x0ffb: /* psubq */
7263 case 0x0ffc: /* paddb */
7264 case 0x0ffd: /* paddw */
7265 case 0x0ffe: /* paddd */
7266 if (i386_record_modrm (&ir))
7267 return -1;
7268 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7269 goto no_support;
7270 record_arch_list_add_reg (ir.regcache,
7271 I387_MM0_REGNUM (tdep) + ir.reg);
7272 break;
7273
7274 case 0x0f71: /* psllw */
7275 case 0x0f72: /* pslld */
7276 case 0x0f73: /* psllq */
7277 if (i386_record_modrm (&ir))
7278 return -1;
7279 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7280 goto no_support;
7281 record_arch_list_add_reg (ir.regcache,
7282 I387_MM0_REGNUM (tdep) + ir.rm);
7283 break;
7284
7285 case 0x660f71: /* psllw */
7286 case 0x660f72: /* pslld */
7287 case 0x660f73: /* psllq */
7288 if (i386_record_modrm (&ir))
7289 return -1;
7290 ir.rm |= ir.rex_b;
7291 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7292 goto no_support;
7293 record_arch_list_add_reg (ir.regcache,
7294 I387_XMM0_REGNUM (tdep) + ir.rm);
7295 break;
7296
7297 case 0x0f7e: /* movd */
7298 case 0x660f7e: /* movd */
7299 if (i386_record_modrm (&ir))
7300 return -1;
7301 if (ir.mod == 3)
7302 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7303 else
7304 {
7305 if (ir.dflag == 2)
7306 ir.ot = OT_QUAD;
7307 else
7308 ir.ot = OT_LONG;
7309 if (i386_record_lea_modrm (&ir))
7310 return -1;
7311 }
7312 break;
7313
7314 case 0x0f7f: /* movq */
7315 if (i386_record_modrm (&ir))
7316 return -1;
7317 if (ir.mod == 3)
7318 {
7319 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7320 goto no_support;
7321 record_arch_list_add_reg (ir.regcache,
7322 I387_MM0_REGNUM (tdep) + ir.rm);
7323 }
7324 else
7325 {
7326 ir.ot = OT_QUAD;
7327 if (i386_record_lea_modrm (&ir))
7328 return -1;
7329 }
7330 break;
7331
7332 case 0xf30fb8: /* popcnt */
7333 if (i386_record_modrm (&ir))
7334 return -1;
7335 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7336 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7337 break;
7338
7339 case 0x660fd6: /* movq */
7340 if (i386_record_modrm (&ir))
7341 return -1;
7342 if (ir.mod == 3)
7343 {
7344 ir.rm |= ir.rex_b;
7345 if (!i386_xmm_regnum_p (gdbarch,
7346 I387_XMM0_REGNUM (tdep) + ir.rm))
7347 goto no_support;
7348 record_arch_list_add_reg (ir.regcache,
7349 I387_XMM0_REGNUM (tdep) + ir.rm);
7350 }
7351 else
7352 {
7353 ir.ot = OT_QUAD;
7354 if (i386_record_lea_modrm (&ir))
7355 return -1;
7356 }
7357 break;
7358
7359 case 0x660f3817: /* ptest */
7360 case 0x0f2e: /* ucomiss */
7361 case 0x660f2e: /* ucomisd */
7362 case 0x0f2f: /* comiss */
7363 case 0x660f2f: /* comisd */
7364 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7365 break;
7366
7367 case 0x0ff7: /* maskmovq */
7368 regcache_raw_read_unsigned (ir.regcache,
7369 ir.regmap[X86_RECORD_REDI_REGNUM],
7370 &addr);
7371 if (record_arch_list_add_mem (addr, 64))
7372 return -1;
7373 break;
7374
7375 case 0x660ff7: /* maskmovdqu */
7376 regcache_raw_read_unsigned (ir.regcache,
7377 ir.regmap[X86_RECORD_REDI_REGNUM],
7378 &addr);
7379 if (record_arch_list_add_mem (addr, 128))
7380 return -1;
7381 break;
7382
7383 default:
7384 goto no_support;
7385 break;
7386 }
7387 break;
7388
7389 default:
7390 goto no_support;
7391 break;
7392 }
7393
7394 /* In the future, maybe still need to deal with need_dasm. */
7395 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7396 if (record_arch_list_add_end ())
7397 return -1;
7398
7399 return 0;
7400
7401 no_support:
7402 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7403 "at address %s.\n"),
7404 (unsigned int) (opcode),
7405 paddress (gdbarch, ir.orig_addr));
7406 return -1;
7407 }
7408
7409 static const int i386_record_regmap[] =
7410 {
7411 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7412 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7413 0, 0, 0, 0, 0, 0, 0, 0,
7414 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7415 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7416 };
7417
7418 /* Check that the given address appears suitable for a fast
7419 tracepoint, which on x86-64 means that we need an instruction of at
7420 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7421 jump and not have to worry about program jumps to an address in the
7422 middle of the tracepoint jump. On x86, it may be possible to use
7423 4-byte jumps with a 2-byte offset to a trampoline located in the
7424 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7425 of instruction to replace, and 0 if not, plus an explanatory
7426 string. */
7427
7428 static int
7429 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7430 CORE_ADDR addr, int *isize, char **msg)
7431 {
7432 int len, jumplen;
7433 static struct ui_file *gdb_null = NULL;
7434
7435 /* Ask the target for the minimum instruction length supported. */
7436 jumplen = target_get_min_fast_tracepoint_insn_len ();
7437
7438 if (jumplen < 0)
7439 {
7440 /* If the target does not support the get_min_fast_tracepoint_insn_len
7441 operation, assume that fast tracepoints will always be implemented
7442 using 4-byte relative jumps on both x86 and x86-64. */
7443 jumplen = 5;
7444 }
7445 else if (jumplen == 0)
7446 {
7447 /* If the target does support get_min_fast_tracepoint_insn_len but
7448 returns zero, then the IPA has not loaded yet. In this case,
7449 we optimistically assume that truncated 2-byte relative jumps
7450 will be available on x86, and compensate later if this assumption
7451 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7452 jumps will always be used. */
7453 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7454 }
7455
7456 /* Dummy file descriptor for the disassembler. */
7457 if (!gdb_null)
7458 gdb_null = ui_file_new ();
7459
7460 /* Check for fit. */
7461 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7462 if (isize)
7463 *isize = len;
7464
7465 if (len < jumplen)
7466 {
7467 /* Return a bit of target-specific detail to add to the caller's
7468 generic failure message. */
7469 if (msg)
7470 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7471 "need at least %d bytes for the jump"),
7472 len, jumplen);
7473 return 0;
7474 }
7475 else
7476 {
7477 if (msg)
7478 *msg = NULL;
7479 return 1;
7480 }
7481 }
7482
7483 static int
7484 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7485 struct tdesc_arch_data *tdesc_data)
7486 {
7487 const struct target_desc *tdesc = tdep->tdesc;
7488 const struct tdesc_feature *feature_core;
7489 const struct tdesc_feature *feature_sse, *feature_avx;
7490 int i, num_regs, valid_p;
7491
7492 if (! tdesc_has_registers (tdesc))
7493 return 0;
7494
7495 /* Get core registers. */
7496 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7497 if (feature_core == NULL)
7498 return 0;
7499
7500 /* Get SSE registers. */
7501 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7502
7503 /* Try AVX registers. */
7504 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7505
7506 valid_p = 1;
7507
7508 /* The XCR0 bits. */
7509 if (feature_avx)
7510 {
7511 /* AVX register description requires SSE register description. */
7512 if (!feature_sse)
7513 return 0;
7514
7515 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7516
7517 /* It may have been set by OSABI initialization function. */
7518 if (tdep->num_ymm_regs == 0)
7519 {
7520 tdep->ymmh_register_names = i386_ymmh_names;
7521 tdep->num_ymm_regs = 8;
7522 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7523 }
7524
7525 for (i = 0; i < tdep->num_ymm_regs; i++)
7526 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7527 tdep->ymm0h_regnum + i,
7528 tdep->ymmh_register_names[i]);
7529 }
7530 else if (feature_sse)
7531 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7532 else
7533 {
7534 tdep->xcr0 = I386_XSTATE_X87_MASK;
7535 tdep->num_xmm_regs = 0;
7536 }
7537
7538 num_regs = tdep->num_core_regs;
7539 for (i = 0; i < num_regs; i++)
7540 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7541 tdep->register_names[i]);
7542
7543 if (feature_sse)
7544 {
7545 /* Need to include %mxcsr, so add one. */
7546 num_regs += tdep->num_xmm_regs + 1;
7547 for (; i < num_regs; i++)
7548 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7549 tdep->register_names[i]);
7550 }
7551
7552 return valid_p;
7553 }
7554
7555 \f
7556 static struct gdbarch *
7557 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7558 {
7559 struct gdbarch_tdep *tdep;
7560 struct gdbarch *gdbarch;
7561 struct tdesc_arch_data *tdesc_data;
7562 const struct target_desc *tdesc;
7563 int mm0_regnum;
7564 int ymm0_regnum;
7565
7566 /* If there is already a candidate, use it. */
7567 arches = gdbarch_list_lookup_by_info (arches, &info);
7568 if (arches != NULL)
7569 return arches->gdbarch;
7570
7571 /* Allocate space for the new architecture. */
7572 tdep = XCALLOC (1, struct gdbarch_tdep);
7573 gdbarch = gdbarch_alloc (&info, tdep);
7574
7575 /* General-purpose registers. */
7576 tdep->gregset = NULL;
7577 tdep->gregset_reg_offset = NULL;
7578 tdep->gregset_num_regs = I386_NUM_GREGS;
7579 tdep->sizeof_gregset = 0;
7580
7581 /* Floating-point registers. */
7582 tdep->fpregset = NULL;
7583 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7584
7585 tdep->xstateregset = NULL;
7586
7587 /* The default settings include the FPU registers, the MMX registers
7588 and the SSE registers. This can be overridden for a specific ABI
7589 by adjusting the members `st0_regnum', `mm0_regnum' and
7590 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7591 will show up in the output of "info all-registers". */
7592
7593 tdep->st0_regnum = I386_ST0_REGNUM;
7594
7595 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7596 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7597
7598 tdep->jb_pc_offset = -1;
7599 tdep->struct_return = pcc_struct_return;
7600 tdep->sigtramp_start = 0;
7601 tdep->sigtramp_end = 0;
7602 tdep->sigtramp_p = i386_sigtramp_p;
7603 tdep->sigcontext_addr = NULL;
7604 tdep->sc_reg_offset = NULL;
7605 tdep->sc_pc_offset = -1;
7606 tdep->sc_sp_offset = -1;
7607
7608 tdep->xsave_xcr0_offset = -1;
7609
7610 tdep->record_regmap = i386_record_regmap;
7611
7612 set_gdbarch_long_long_align_bit (gdbarch, 32);
7613
7614 /* The format used for `long double' on almost all i386 targets is
7615 the i387 extended floating-point format. In fact, of all targets
7616 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7617 on having a `long double' that's not `long' at all. */
7618 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7619
7620 /* Although the i387 extended floating-point has only 80 significant
7621 bits, a `long double' actually takes up 96, probably to enforce
7622 alignment. */
7623 set_gdbarch_long_double_bit (gdbarch, 96);
7624
7625 /* Register numbers of various important registers. */
7626 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7627 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7628 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7629 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7630
7631 /* NOTE: kettenis/20040418: GCC does have two possible register
7632 numbering schemes on the i386: dbx and SVR4. These schemes
7633 differ in how they number %ebp, %esp, %eflags, and the
7634 floating-point registers, and are implemented by the arrays
7635 dbx_register_map[] and svr4_dbx_register_map in
7636 gcc/config/i386.c. GCC also defines a third numbering scheme in
7637 gcc/config/i386.c, which it designates as the "default" register
7638 map used in 64bit mode. This last register numbering scheme is
7639 implemented in dbx64_register_map, and is used for AMD64; see
7640 amd64-tdep.c.
7641
7642 Currently, each GCC i386 target always uses the same register
7643 numbering scheme across all its supported debugging formats
7644 i.e. SDB (COFF), stabs and DWARF 2. This is because
7645 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7646 DBX_REGISTER_NUMBER macro which is defined by each target's
7647 respective config header in a manner independent of the requested
7648 output debugging format.
7649
7650 This does not match the arrangement below, which presumes that
7651 the SDB and stabs numbering schemes differ from the DWARF and
7652 DWARF 2 ones. The reason for this arrangement is that it is
7653 likely to get the numbering scheme for the target's
7654 default/native debug format right. For targets where GCC is the
7655 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7656 targets where the native toolchain uses a different numbering
7657 scheme for a particular debug format (stabs-in-ELF on Solaris)
7658 the defaults below will have to be overridden, like
7659 i386_elf_init_abi() does. */
7660
7661 /* Use the dbx register numbering scheme for stabs and COFF. */
7662 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7663 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7664
7665 /* Use the SVR4 register numbering scheme for DWARF 2. */
7666 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7667
7668 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7669 be in use on any of the supported i386 targets. */
7670
7671 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7672
7673 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7674
7675 /* Call dummy code. */
7676 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7677 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7678 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7679 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7680
7681 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7682 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7683 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7684
7685 set_gdbarch_return_value (gdbarch, i386_return_value);
7686
7687 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7688
7689 /* Stack grows downward. */
7690 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7691
7692 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7693 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7694 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7695
7696 set_gdbarch_frame_args_skip (gdbarch, 8);
7697
7698 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7699
7700 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7701
7702 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7703
7704 /* Add the i386 register groups. */
7705 i386_add_reggroups (gdbarch);
7706 tdep->register_reggroup_p = i386_register_reggroup_p;
7707
7708 /* Helper for function argument information. */
7709 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7710
7711 /* Hook the function epilogue frame unwinder. This unwinder is
7712 appended to the list first, so that it supercedes the DWARF
7713 unwinder in function epilogues (where the DWARF unwinder
7714 currently fails). */
7715 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7716
7717 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7718 to the list before the prologue-based unwinders, so that DWARF
7719 CFI info will be used if it is available. */
7720 dwarf2_append_unwinders (gdbarch);
7721
7722 frame_base_set_default (gdbarch, &i386_frame_base);
7723
7724 /* Pseudo registers may be changed by amd64_init_abi. */
7725 set_gdbarch_pseudo_register_read_value (gdbarch,
7726 i386_pseudo_register_read_value);
7727 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7728
7729 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7730 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7731
7732 /* Override the normal target description method to make the AVX
7733 upper halves anonymous. */
7734 set_gdbarch_register_name (gdbarch, i386_register_name);
7735
7736 /* Even though the default ABI only includes general-purpose registers,
7737 floating-point registers and the SSE registers, we have to leave a
7738 gap for the upper AVX registers. */
7739 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7740
7741 /* Get the x86 target description from INFO. */
7742 tdesc = info.target_desc;
7743 if (! tdesc_has_registers (tdesc))
7744 tdesc = tdesc_i386;
7745 tdep->tdesc = tdesc;
7746
7747 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7748 tdep->register_names = i386_register_names;
7749
7750 /* No upper YMM registers. */
7751 tdep->ymmh_register_names = NULL;
7752 tdep->ymm0h_regnum = -1;
7753
7754 tdep->num_byte_regs = 8;
7755 tdep->num_word_regs = 8;
7756 tdep->num_dword_regs = 0;
7757 tdep->num_mmx_regs = 8;
7758 tdep->num_ymm_regs = 0;
7759
7760 tdesc_data = tdesc_data_alloc ();
7761
7762 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7763
7764 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7765
7766 /* Hook in ABI-specific overrides, if they have been registered. */
7767 info.tdep_info = (void *) tdesc_data;
7768 gdbarch_init_osabi (info, gdbarch);
7769
7770 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7771 {
7772 tdesc_data_cleanup (tdesc_data);
7773 xfree (tdep);
7774 gdbarch_free (gdbarch);
7775 return NULL;
7776 }
7777
7778 /* Wire in pseudo registers. Number of pseudo registers may be
7779 changed. */
7780 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7781 + tdep->num_word_regs
7782 + tdep->num_dword_regs
7783 + tdep->num_mmx_regs
7784 + tdep->num_ymm_regs));
7785
7786 /* Target description may be changed. */
7787 tdesc = tdep->tdesc;
7788
7789 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7790
7791 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7792 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7793
7794 /* Make %al the first pseudo-register. */
7795 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7796 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7797
7798 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7799 if (tdep->num_dword_regs)
7800 {
7801 /* Support dword pseudo-register if it hasn't been disabled. */
7802 tdep->eax_regnum = ymm0_regnum;
7803 ymm0_regnum += tdep->num_dword_regs;
7804 }
7805 else
7806 tdep->eax_regnum = -1;
7807
7808 mm0_regnum = ymm0_regnum;
7809 if (tdep->num_ymm_regs)
7810 {
7811 /* Support YMM pseudo-register if it is available. */
7812 tdep->ymm0_regnum = ymm0_regnum;
7813 mm0_regnum += tdep->num_ymm_regs;
7814 }
7815 else
7816 tdep->ymm0_regnum = -1;
7817
7818 if (tdep->num_mmx_regs != 0)
7819 {
7820 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7821 tdep->mm0_regnum = mm0_regnum;
7822 }
7823 else
7824 tdep->mm0_regnum = -1;
7825
7826 /* Hook in the legacy prologue-based unwinders last (fallback). */
7827 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
7828 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7829 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7830
7831 /* If we have a register mapping, enable the generic core file
7832 support, unless it has already been enabled. */
7833 if (tdep->gregset_reg_offset
7834 && !gdbarch_regset_from_core_section_p (gdbarch))
7835 set_gdbarch_regset_from_core_section (gdbarch,
7836 i386_regset_from_core_section);
7837
7838 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7839 i386_skip_permanent_breakpoint);
7840
7841 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7842 i386_fast_tracepoint_valid_at);
7843
7844 return gdbarch;
7845 }
7846
7847 static enum gdb_osabi
7848 i386_coff_osabi_sniffer (bfd *abfd)
7849 {
7850 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7851 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7852 return GDB_OSABI_GO32;
7853
7854 return GDB_OSABI_UNKNOWN;
7855 }
7856 \f
7857
7858 /* Provide a prototype to silence -Wmissing-prototypes. */
7859 void _initialize_i386_tdep (void);
7860
7861 void
7862 _initialize_i386_tdep (void)
7863 {
7864 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7865
7866 /* Add the variable that controls the disassembly flavor. */
7867 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7868 &disassembly_flavor, _("\
7869 Set the disassembly flavor."), _("\
7870 Show the disassembly flavor."), _("\
7871 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7872 NULL,
7873 NULL, /* FIXME: i18n: */
7874 &setlist, &showlist);
7875
7876 /* Add the variable that controls the convention for returning
7877 structs. */
7878 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7879 &struct_convention, _("\
7880 Set the convention for returning small structs."), _("\
7881 Show the convention for returning small structs."), _("\
7882 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7883 is \"default\"."),
7884 NULL,
7885 NULL, /* FIXME: i18n: */
7886 &setlist, &showlist);
7887
7888 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7889 i386_coff_osabi_sniffer);
7890
7891 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7892 i386_svr4_init_abi);
7893 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7894 i386_go32_init_abi);
7895
7896 /* Initialize the i386-specific register groups. */
7897 i386_init_reggroups ();
7898
7899 /* Initialize the standard target descriptions. */
7900 initialize_tdesc_i386 ();
7901 initialize_tdesc_i386_mmx ();
7902 initialize_tdesc_i386_avx ();
7903
7904 /* Tell remote stub that we support XML target description. */
7905 register_remote_support_xml ("i386");
7906 }
This page took 0.211172 seconds and 4 git commands to generate.