5e12cb53b171440bb378e048c3c623217af59d74
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include "gdb_string.h"
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include <stdint.h>
56
57 #include "features/i386/i386.c"
58 #include "features/i386/i386-avx.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70
71 /* Register names. */
72
73 static const char *i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char *i386_ymm_names[] =
89 {
90 "ymm0", "ymm1", "ymm2", "ymm3",
91 "ymm4", "ymm5", "ymm6", "ymm7",
92 };
93
94 static const char *i386_ymmh_names[] =
95 {
96 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
97 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
98 };
99
100 /* Register names for MMX pseudo-registers. */
101
102 static const char *i386_mmx_names[] =
103 {
104 "mm0", "mm1", "mm2", "mm3",
105 "mm4", "mm5", "mm6", "mm7"
106 };
107
108 /* Register names for byte pseudo-registers. */
109
110 static const char *i386_byte_names[] =
111 {
112 "al", "cl", "dl", "bl",
113 "ah", "ch", "dh", "bh"
114 };
115
116 /* Register names for word pseudo-registers. */
117
118 static const char *i386_word_names[] =
119 {
120 "ax", "cx", "dx", "bx",
121 "", "bp", "si", "di"
122 };
123
124 /* MMX register? */
125
126 static int
127 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
128 {
129 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
130 int mm0_regnum = tdep->mm0_regnum;
131
132 if (mm0_regnum < 0)
133 return 0;
134
135 regnum -= mm0_regnum;
136 return regnum >= 0 && regnum < tdep->num_mmx_regs;
137 }
138
139 /* Byte register? */
140
141 int
142 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
143 {
144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
145
146 regnum -= tdep->al_regnum;
147 return regnum >= 0 && regnum < tdep->num_byte_regs;
148 }
149
150 /* Word register? */
151
152 int
153 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156
157 regnum -= tdep->ax_regnum;
158 return regnum >= 0 && regnum < tdep->num_word_regs;
159 }
160
161 /* Dword register? */
162
163 int
164 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
165 {
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int eax_regnum = tdep->eax_regnum;
168
169 if (eax_regnum < 0)
170 return 0;
171
172 regnum -= eax_regnum;
173 return regnum >= 0 && regnum < tdep->num_dword_regs;
174 }
175
176 static int
177 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
178 {
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180 int ymm0h_regnum = tdep->ymm0h_regnum;
181
182 if (ymm0h_regnum < 0)
183 return 0;
184
185 regnum -= ymm0h_regnum;
186 return regnum >= 0 && regnum < tdep->num_ymm_regs;
187 }
188
189 /* AVX register? */
190
191 int
192 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
193 {
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195 int ymm0_regnum = tdep->ymm0_regnum;
196
197 if (ymm0_regnum < 0)
198 return 0;
199
200 regnum -= ymm0_regnum;
201 return regnum >= 0 && regnum < tdep->num_ymm_regs;
202 }
203
204 /* SSE register? */
205
206 int
207 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
208 {
209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
210 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
211
212 if (num_xmm_regs == 0)
213 return 0;
214
215 regnum -= I387_XMM0_REGNUM (tdep);
216 return regnum >= 0 && regnum < num_xmm_regs;
217 }
218
219 static int
220 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
221 {
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223
224 if (I387_NUM_XMM_REGS (tdep) == 0)
225 return 0;
226
227 return (regnum == I387_MXCSR_REGNUM (tdep));
228 }
229
230 /* FP register? */
231
232 int
233 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
234 {
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236
237 if (I387_ST0_REGNUM (tdep) < 0)
238 return 0;
239
240 return (I387_ST0_REGNUM (tdep) <= regnum
241 && regnum < I387_FCTRL_REGNUM (tdep));
242 }
243
244 int
245 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
246 {
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248
249 if (I387_ST0_REGNUM (tdep) < 0)
250 return 0;
251
252 return (I387_FCTRL_REGNUM (tdep) <= regnum
253 && regnum < I387_XMM0_REGNUM (tdep));
254 }
255
256 /* Return the name of register REGNUM, or the empty string if it is
257 an anonymous register. */
258
259 static const char *
260 i386_register_name (struct gdbarch *gdbarch, int regnum)
261 {
262 /* Hide the upper YMM registers. */
263 if (i386_ymmh_regnum_p (gdbarch, regnum))
264 return "";
265
266 return tdesc_register_name (gdbarch, regnum);
267 }
268
269 /* Return the name of register REGNUM. */
270
271 const char *
272 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
273 {
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 if (i386_mmx_regnum_p (gdbarch, regnum))
276 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
277 else if (i386_ymm_regnum_p (gdbarch, regnum))
278 return i386_ymm_names[regnum - tdep->ymm0_regnum];
279 else if (i386_byte_regnum_p (gdbarch, regnum))
280 return i386_byte_names[regnum - tdep->al_regnum];
281 else if (i386_word_regnum_p (gdbarch, regnum))
282 return i386_word_names[regnum - tdep->ax_regnum];
283
284 internal_error (__FILE__, __LINE__, _("invalid regnum"));
285 }
286
287 /* Convert a dbx register number REG to the appropriate register
288 number used by GDB. */
289
290 static int
291 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
292 {
293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294
295 /* This implements what GCC calls the "default" register map
296 (dbx_register_map[]). */
297
298 if (reg >= 0 && reg <= 7)
299 {
300 /* General-purpose registers. The debug info calls %ebp
301 register 4, and %esp register 5. */
302 if (reg == 4)
303 return 5;
304 else if (reg == 5)
305 return 4;
306 else return reg;
307 }
308 else if (reg >= 12 && reg <= 19)
309 {
310 /* Floating-point registers. */
311 return reg - 12 + I387_ST0_REGNUM (tdep);
312 }
313 else if (reg >= 21 && reg <= 28)
314 {
315 /* SSE registers. */
316 int ymm0_regnum = tdep->ymm0_regnum;
317
318 if (ymm0_regnum >= 0
319 && i386_xmm_regnum_p (gdbarch, reg))
320 return reg - 21 + ymm0_regnum;
321 else
322 return reg - 21 + I387_XMM0_REGNUM (tdep);
323 }
324 else if (reg >= 29 && reg <= 36)
325 {
326 /* MMX registers. */
327 return reg - 29 + I387_MM0_REGNUM (tdep);
328 }
329
330 /* This will hopefully provoke a warning. */
331 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
332 }
333
334 /* Convert SVR4 register number REG to the appropriate register number
335 used by GDB. */
336
337 static int
338 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
339 {
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341
342 /* This implements the GCC register map that tries to be compatible
343 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
344
345 /* The SVR4 register numbering includes %eip and %eflags, and
346 numbers the floating point registers differently. */
347 if (reg >= 0 && reg <= 9)
348 {
349 /* General-purpose registers. */
350 return reg;
351 }
352 else if (reg >= 11 && reg <= 18)
353 {
354 /* Floating-point registers. */
355 return reg - 11 + I387_ST0_REGNUM (tdep);
356 }
357 else if (reg >= 21 && reg <= 36)
358 {
359 /* The SSE and MMX registers have the same numbers as with dbx. */
360 return i386_dbx_reg_to_regnum (gdbarch, reg);
361 }
362
363 switch (reg)
364 {
365 case 37: return I387_FCTRL_REGNUM (tdep);
366 case 38: return I387_FSTAT_REGNUM (tdep);
367 case 39: return I387_MXCSR_REGNUM (tdep);
368 case 40: return I386_ES_REGNUM;
369 case 41: return I386_CS_REGNUM;
370 case 42: return I386_SS_REGNUM;
371 case 43: return I386_DS_REGNUM;
372 case 44: return I386_FS_REGNUM;
373 case 45: return I386_GS_REGNUM;
374 }
375
376 /* This will hopefully provoke a warning. */
377 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
378 }
379
380 \f
381
382 /* This is the variable that is set with "set disassembly-flavor", and
383 its legitimate values. */
384 static const char att_flavor[] = "att";
385 static const char intel_flavor[] = "intel";
386 static const char *const valid_flavors[] =
387 {
388 att_flavor,
389 intel_flavor,
390 NULL
391 };
392 static const char *disassembly_flavor = att_flavor;
393 \f
394
395 /* Use the program counter to determine the contents and size of a
396 breakpoint instruction. Return a pointer to a string of bytes that
397 encode a breakpoint instruction, store the length of the string in
398 *LEN and optionally adjust *PC to point to the correct memory
399 location for inserting the breakpoint.
400
401 On the i386 we have a single breakpoint that fits in a single byte
402 and can be inserted anywhere.
403
404 This function is 64-bit safe. */
405
406 static const gdb_byte *
407 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
408 {
409 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
410
411 *len = sizeof (break_insn);
412 return break_insn;
413 }
414 \f
415 /* Displaced instruction handling. */
416
417 /* Skip the legacy instruction prefixes in INSN.
418 Not all prefixes are valid for any particular insn
419 but we needn't care, the insn will fault if it's invalid.
420 The result is a pointer to the first opcode byte,
421 or NULL if we run off the end of the buffer. */
422
423 static gdb_byte *
424 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
425 {
426 gdb_byte *end = insn + max_len;
427
428 while (insn < end)
429 {
430 switch (*insn)
431 {
432 case DATA_PREFIX_OPCODE:
433 case ADDR_PREFIX_OPCODE:
434 case CS_PREFIX_OPCODE:
435 case DS_PREFIX_OPCODE:
436 case ES_PREFIX_OPCODE:
437 case FS_PREFIX_OPCODE:
438 case GS_PREFIX_OPCODE:
439 case SS_PREFIX_OPCODE:
440 case LOCK_PREFIX_OPCODE:
441 case REPE_PREFIX_OPCODE:
442 case REPNE_PREFIX_OPCODE:
443 ++insn;
444 continue;
445 default:
446 return insn;
447 }
448 }
449
450 return NULL;
451 }
452
453 static int
454 i386_absolute_jmp_p (const gdb_byte *insn)
455 {
456 /* jmp far (absolute address in operand). */
457 if (insn[0] == 0xea)
458 return 1;
459
460 if (insn[0] == 0xff)
461 {
462 /* jump near, absolute indirect (/4). */
463 if ((insn[1] & 0x38) == 0x20)
464 return 1;
465
466 /* jump far, absolute indirect (/5). */
467 if ((insn[1] & 0x38) == 0x28)
468 return 1;
469 }
470
471 return 0;
472 }
473
474 static int
475 i386_absolute_call_p (const gdb_byte *insn)
476 {
477 /* call far, absolute. */
478 if (insn[0] == 0x9a)
479 return 1;
480
481 if (insn[0] == 0xff)
482 {
483 /* Call near, absolute indirect (/2). */
484 if ((insn[1] & 0x38) == 0x10)
485 return 1;
486
487 /* Call far, absolute indirect (/3). */
488 if ((insn[1] & 0x38) == 0x18)
489 return 1;
490 }
491
492 return 0;
493 }
494
495 static int
496 i386_ret_p (const gdb_byte *insn)
497 {
498 switch (insn[0])
499 {
500 case 0xc2: /* ret near, pop N bytes. */
501 case 0xc3: /* ret near */
502 case 0xca: /* ret far, pop N bytes. */
503 case 0xcb: /* ret far */
504 case 0xcf: /* iret */
505 return 1;
506
507 default:
508 return 0;
509 }
510 }
511
512 static int
513 i386_call_p (const gdb_byte *insn)
514 {
515 if (i386_absolute_call_p (insn))
516 return 1;
517
518 /* call near, relative. */
519 if (insn[0] == 0xe8)
520 return 1;
521
522 return 0;
523 }
524
525 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
526 length in bytes. Otherwise, return zero. */
527
528 static int
529 i386_syscall_p (const gdb_byte *insn, int *lengthp)
530 {
531 /* Is it 'int $0x80'? */
532 if ((insn[0] == 0xcd && insn[1] == 0x80)
533 /* Or is it 'sysenter'? */
534 || (insn[0] == 0x0f && insn[1] == 0x34)
535 /* Or is it 'syscall'? */
536 || (insn[0] == 0x0f && insn[1] == 0x05))
537 {
538 *lengthp = 2;
539 return 1;
540 }
541
542 return 0;
543 }
544
545 /* Some kernels may run one past a syscall insn, so we have to cope.
546 Otherwise this is just simple_displaced_step_copy_insn. */
547
548 struct displaced_step_closure *
549 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
550 CORE_ADDR from, CORE_ADDR to,
551 struct regcache *regs)
552 {
553 size_t len = gdbarch_max_insn_length (gdbarch);
554 gdb_byte *buf = xmalloc (len);
555
556 read_memory (from, buf, len);
557
558 /* GDB may get control back after the insn after the syscall.
559 Presumably this is a kernel bug.
560 If this is a syscall, make sure there's a nop afterwards. */
561 {
562 int syscall_length;
563 gdb_byte *insn;
564
565 insn = i386_skip_prefixes (buf, len);
566 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
567 insn[syscall_length] = NOP_OPCODE;
568 }
569
570 write_memory (to, buf, len);
571
572 if (debug_displaced)
573 {
574 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
575 paddress (gdbarch, from), paddress (gdbarch, to));
576 displaced_step_dump_bytes (gdb_stdlog, buf, len);
577 }
578
579 return (struct displaced_step_closure *) buf;
580 }
581
582 /* Fix up the state of registers and memory after having single-stepped
583 a displaced instruction. */
584
585 void
586 i386_displaced_step_fixup (struct gdbarch *gdbarch,
587 struct displaced_step_closure *closure,
588 CORE_ADDR from, CORE_ADDR to,
589 struct regcache *regs)
590 {
591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
592
593 /* The offset we applied to the instruction's address.
594 This could well be negative (when viewed as a signed 32-bit
595 value), but ULONGEST won't reflect that, so take care when
596 applying it. */
597 ULONGEST insn_offset = to - from;
598
599 /* Since we use simple_displaced_step_copy_insn, our closure is a
600 copy of the instruction. */
601 gdb_byte *insn = (gdb_byte *) closure;
602 /* The start of the insn, needed in case we see some prefixes. */
603 gdb_byte *insn_start = insn;
604
605 if (debug_displaced)
606 fprintf_unfiltered (gdb_stdlog,
607 "displaced: fixup (%s, %s), "
608 "insn = 0x%02x 0x%02x ...\n",
609 paddress (gdbarch, from), paddress (gdbarch, to),
610 insn[0], insn[1]);
611
612 /* The list of issues to contend with here is taken from
613 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
614 Yay for Free Software! */
615
616 /* Relocate the %eip, if necessary. */
617
618 /* The instruction recognizers we use assume any leading prefixes
619 have been skipped. */
620 {
621 /* This is the size of the buffer in closure. */
622 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
623 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
624 /* If there are too many prefixes, just ignore the insn.
625 It will fault when run. */
626 if (opcode != NULL)
627 insn = opcode;
628 }
629
630 /* Except in the case of absolute or indirect jump or call
631 instructions, or a return instruction, the new eip is relative to
632 the displaced instruction; make it relative. Well, signal
633 handler returns don't need relocation either, but we use the
634 value of %eip to recognize those; see below. */
635 if (! i386_absolute_jmp_p (insn)
636 && ! i386_absolute_call_p (insn)
637 && ! i386_ret_p (insn))
638 {
639 ULONGEST orig_eip;
640 int insn_len;
641
642 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
643
644 /* A signal trampoline system call changes the %eip, resuming
645 execution of the main program after the signal handler has
646 returned. That makes them like 'return' instructions; we
647 shouldn't relocate %eip.
648
649 But most system calls don't, and we do need to relocate %eip.
650
651 Our heuristic for distinguishing these cases: if stepping
652 over the system call instruction left control directly after
653 the instruction, the we relocate --- control almost certainly
654 doesn't belong in the displaced copy. Otherwise, we assume
655 the instruction has put control where it belongs, and leave
656 it unrelocated. Goodness help us if there are PC-relative
657 system calls. */
658 if (i386_syscall_p (insn, &insn_len)
659 && orig_eip != to + (insn - insn_start) + insn_len
660 /* GDB can get control back after the insn after the syscall.
661 Presumably this is a kernel bug.
662 i386_displaced_step_copy_insn ensures its a nop,
663 we add one to the length for it. */
664 && orig_eip != to + (insn - insn_start) + insn_len + 1)
665 {
666 if (debug_displaced)
667 fprintf_unfiltered (gdb_stdlog,
668 "displaced: syscall changed %%eip; "
669 "not relocating\n");
670 }
671 else
672 {
673 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
674
675 /* If we just stepped over a breakpoint insn, we don't backup
676 the pc on purpose; this is to match behaviour without
677 stepping. */
678
679 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
680
681 if (debug_displaced)
682 fprintf_unfiltered (gdb_stdlog,
683 "displaced: "
684 "relocated %%eip from %s to %s\n",
685 paddress (gdbarch, orig_eip),
686 paddress (gdbarch, eip));
687 }
688 }
689
690 /* If the instruction was PUSHFL, then the TF bit will be set in the
691 pushed value, and should be cleared. We'll leave this for later,
692 since GDB already messes up the TF flag when stepping over a
693 pushfl. */
694
695 /* If the instruction was a call, the return address now atop the
696 stack is the address following the copied instruction. We need
697 to make it the address following the original instruction. */
698 if (i386_call_p (insn))
699 {
700 ULONGEST esp;
701 ULONGEST retaddr;
702 const ULONGEST retaddr_len = 4;
703
704 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
705 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
706 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
707 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
711 "displaced: relocated return addr at %s to %s\n",
712 paddress (gdbarch, esp),
713 paddress (gdbarch, retaddr));
714 }
715 }
716
717 static void
718 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
719 {
720 target_write_memory (*to, buf, len);
721 *to += len;
722 }
723
724 static void
725 i386_relocate_instruction (struct gdbarch *gdbarch,
726 CORE_ADDR *to, CORE_ADDR oldloc)
727 {
728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
729 gdb_byte buf[I386_MAX_INSN_LEN];
730 int offset = 0, rel32, newrel;
731 int insn_length;
732 gdb_byte *insn = buf;
733
734 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
735
736 insn_length = gdb_buffered_insn_length (gdbarch, insn,
737 I386_MAX_INSN_LEN, oldloc);
738
739 /* Get past the prefixes. */
740 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
741
742 /* Adjust calls with 32-bit relative addresses as push/jump, with
743 the address pushed being the location where the original call in
744 the user program would return to. */
745 if (insn[0] == 0xe8)
746 {
747 gdb_byte push_buf[16];
748 unsigned int ret_addr;
749
750 /* Where "ret" in the original code will return to. */
751 ret_addr = oldloc + insn_length;
752 push_buf[0] = 0x68; /* pushq $... */
753 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
754 /* Push the push. */
755 append_insns (to, 5, push_buf);
756
757 /* Convert the relative call to a relative jump. */
758 insn[0] = 0xe9;
759
760 /* Adjust the destination offset. */
761 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
762 newrel = (oldloc - *to) + rel32;
763 store_signed_integer (insn + 1, 4, byte_order, newrel);
764
765 if (debug_displaced)
766 fprintf_unfiltered (gdb_stdlog,
767 "Adjusted insn rel32=%s at %s to"
768 " rel32=%s at %s\n",
769 hex_string (rel32), paddress (gdbarch, oldloc),
770 hex_string (newrel), paddress (gdbarch, *to));
771
772 /* Write the adjusted jump into its displaced location. */
773 append_insns (to, 5, insn);
774 return;
775 }
776
777 /* Adjust jumps with 32-bit relative addresses. Calls are already
778 handled above. */
779 if (insn[0] == 0xe9)
780 offset = 1;
781 /* Adjust conditional jumps. */
782 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
783 offset = 2;
784
785 if (offset)
786 {
787 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
788 newrel = (oldloc - *to) + rel32;
789 store_signed_integer (insn + offset, 4, byte_order, newrel);
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog,
792 "Adjusted insn rel32=%s at %s to"
793 " rel32=%s at %s\n",
794 hex_string (rel32), paddress (gdbarch, oldloc),
795 hex_string (newrel), paddress (gdbarch, *to));
796 }
797
798 /* Write the adjusted instructions into their displaced
799 location. */
800 append_insns (to, insn_length, buf);
801 }
802
803 \f
804 #ifdef I386_REGNO_TO_SYMMETRY
805 #error "The Sequent Symmetry is no longer supported."
806 #endif
807
808 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
809 and %esp "belong" to the calling function. Therefore these
810 registers should be saved if they're going to be modified. */
811
812 /* The maximum number of saved registers. This should include all
813 registers mentioned above, and %eip. */
814 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
815
816 struct i386_frame_cache
817 {
818 /* Base address. */
819 CORE_ADDR base;
820 int base_p;
821 LONGEST sp_offset;
822 CORE_ADDR pc;
823
824 /* Saved registers. */
825 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
826 CORE_ADDR saved_sp;
827 int saved_sp_reg;
828 int pc_in_eax;
829
830 /* Stack space reserved for local variables. */
831 long locals;
832 };
833
834 /* Allocate and initialize a frame cache. */
835
836 static struct i386_frame_cache *
837 i386_alloc_frame_cache (void)
838 {
839 struct i386_frame_cache *cache;
840 int i;
841
842 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
843
844 /* Base address. */
845 cache->base_p = 0;
846 cache->base = 0;
847 cache->sp_offset = -4;
848 cache->pc = 0;
849
850 /* Saved registers. We initialize these to -1 since zero is a valid
851 offset (that's where %ebp is supposed to be stored). */
852 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
853 cache->saved_regs[i] = -1;
854 cache->saved_sp = 0;
855 cache->saved_sp_reg = -1;
856 cache->pc_in_eax = 0;
857
858 /* Frameless until proven otherwise. */
859 cache->locals = -1;
860
861 return cache;
862 }
863
864 /* If the instruction at PC is a jump, return the address of its
865 target. Otherwise, return PC. */
866
867 static CORE_ADDR
868 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
869 {
870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
871 gdb_byte op;
872 long delta = 0;
873 int data16 = 0;
874
875 if (target_read_memory (pc, &op, 1))
876 return pc;
877
878 if (op == 0x66)
879 {
880 data16 = 1;
881 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
882 }
883
884 switch (op)
885 {
886 case 0xe9:
887 /* Relative jump: if data16 == 0, disp32, else disp16. */
888 if (data16)
889 {
890 delta = read_memory_integer (pc + 2, 2, byte_order);
891
892 /* Include the size of the jmp instruction (including the
893 0x66 prefix). */
894 delta += 4;
895 }
896 else
897 {
898 delta = read_memory_integer (pc + 1, 4, byte_order);
899
900 /* Include the size of the jmp instruction. */
901 delta += 5;
902 }
903 break;
904 case 0xeb:
905 /* Relative jump, disp8 (ignore data16). */
906 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
907
908 delta += data16 + 2;
909 break;
910 }
911
912 return pc + delta;
913 }
914
915 /* Check whether PC points at a prologue for a function returning a
916 structure or union. If so, it updates CACHE and returns the
917 address of the first instruction after the code sequence that
918 removes the "hidden" argument from the stack or CURRENT_PC,
919 whichever is smaller. Otherwise, return PC. */
920
921 static CORE_ADDR
922 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
923 struct i386_frame_cache *cache)
924 {
925 /* Functions that return a structure or union start with:
926
927 popl %eax 0x58
928 xchgl %eax, (%esp) 0x87 0x04 0x24
929 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
930
931 (the System V compiler puts out the second `xchg' instruction,
932 and the assembler doesn't try to optimize it, so the 'sib' form
933 gets generated). This sequence is used to get the address of the
934 return buffer for a function that returns a structure. */
935 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
936 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
937 gdb_byte buf[4];
938 gdb_byte op;
939
940 if (current_pc <= pc)
941 return pc;
942
943 if (target_read_memory (pc, &op, 1))
944 return pc;
945
946 if (op != 0x58) /* popl %eax */
947 return pc;
948
949 if (target_read_memory (pc + 1, buf, 4))
950 return pc;
951
952 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
953 return pc;
954
955 if (current_pc == pc)
956 {
957 cache->sp_offset += 4;
958 return current_pc;
959 }
960
961 if (current_pc == pc + 1)
962 {
963 cache->pc_in_eax = 1;
964 return current_pc;
965 }
966
967 if (buf[1] == proto1[1])
968 return pc + 4;
969 else
970 return pc + 5;
971 }
972
973 static CORE_ADDR
974 i386_skip_probe (CORE_ADDR pc)
975 {
976 /* A function may start with
977
978 pushl constant
979 call _probe
980 addl $4, %esp
981
982 followed by
983
984 pushl %ebp
985
986 etc. */
987 gdb_byte buf[8];
988 gdb_byte op;
989
990 if (target_read_memory (pc, &op, 1))
991 return pc;
992
993 if (op == 0x68 || op == 0x6a)
994 {
995 int delta;
996
997 /* Skip past the `pushl' instruction; it has either a one-byte or a
998 four-byte operand, depending on the opcode. */
999 if (op == 0x68)
1000 delta = 5;
1001 else
1002 delta = 2;
1003
1004 /* Read the following 8 bytes, which should be `call _probe' (6
1005 bytes) followed by `addl $4,%esp' (2 bytes). */
1006 read_memory (pc + delta, buf, sizeof (buf));
1007 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1008 pc += delta + sizeof (buf);
1009 }
1010
1011 return pc;
1012 }
1013
1014 /* GCC 4.1 and later, can put code in the prologue to realign the
1015 stack pointer. Check whether PC points to such code, and update
1016 CACHE accordingly. Return the first instruction after the code
1017 sequence or CURRENT_PC, whichever is smaller. If we don't
1018 recognize the code, return PC. */
1019
1020 static CORE_ADDR
1021 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1022 struct i386_frame_cache *cache)
1023 {
1024 /* There are 2 code sequences to re-align stack before the frame
1025 gets set up:
1026
1027 1. Use a caller-saved saved register:
1028
1029 leal 4(%esp), %reg
1030 andl $-XXX, %esp
1031 pushl -4(%reg)
1032
1033 2. Use a callee-saved saved register:
1034
1035 pushl %reg
1036 leal 8(%esp), %reg
1037 andl $-XXX, %esp
1038 pushl -4(%reg)
1039
1040 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1041
1042 0x83 0xe4 0xf0 andl $-16, %esp
1043 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1044 */
1045
1046 gdb_byte buf[14];
1047 int reg;
1048 int offset, offset_and;
1049 static int regnums[8] = {
1050 I386_EAX_REGNUM, /* %eax */
1051 I386_ECX_REGNUM, /* %ecx */
1052 I386_EDX_REGNUM, /* %edx */
1053 I386_EBX_REGNUM, /* %ebx */
1054 I386_ESP_REGNUM, /* %esp */
1055 I386_EBP_REGNUM, /* %ebp */
1056 I386_ESI_REGNUM, /* %esi */
1057 I386_EDI_REGNUM /* %edi */
1058 };
1059
1060 if (target_read_memory (pc, buf, sizeof buf))
1061 return pc;
1062
1063 /* Check caller-saved saved register. The first instruction has
1064 to be "leal 4(%esp), %reg". */
1065 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1066 {
1067 /* MOD must be binary 10 and R/M must be binary 100. */
1068 if ((buf[1] & 0xc7) != 0x44)
1069 return pc;
1070
1071 /* REG has register number. */
1072 reg = (buf[1] >> 3) & 7;
1073 offset = 4;
1074 }
1075 else
1076 {
1077 /* Check callee-saved saved register. The first instruction
1078 has to be "pushl %reg". */
1079 if ((buf[0] & 0xf8) != 0x50)
1080 return pc;
1081
1082 /* Get register. */
1083 reg = buf[0] & 0x7;
1084
1085 /* The next instruction has to be "leal 8(%esp), %reg". */
1086 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1087 return pc;
1088
1089 /* MOD must be binary 10 and R/M must be binary 100. */
1090 if ((buf[2] & 0xc7) != 0x44)
1091 return pc;
1092
1093 /* REG has register number. Registers in pushl and leal have to
1094 be the same. */
1095 if (reg != ((buf[2] >> 3) & 7))
1096 return pc;
1097
1098 offset = 5;
1099 }
1100
1101 /* Rigister can't be %esp nor %ebp. */
1102 if (reg == 4 || reg == 5)
1103 return pc;
1104
1105 /* The next instruction has to be "andl $-XXX, %esp". */
1106 if (buf[offset + 1] != 0xe4
1107 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1108 return pc;
1109
1110 offset_and = offset;
1111 offset += buf[offset] == 0x81 ? 6 : 3;
1112
1113 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1114 0xfc. REG must be binary 110 and MOD must be binary 01. */
1115 if (buf[offset] != 0xff
1116 || buf[offset + 2] != 0xfc
1117 || (buf[offset + 1] & 0xf8) != 0x70)
1118 return pc;
1119
1120 /* R/M has register. Registers in leal and pushl have to be the
1121 same. */
1122 if (reg != (buf[offset + 1] & 7))
1123 return pc;
1124
1125 if (current_pc > pc + offset_and)
1126 cache->saved_sp_reg = regnums[reg];
1127
1128 return min (pc + offset + 3, current_pc);
1129 }
1130
1131 /* Maximum instruction length we need to handle. */
1132 #define I386_MAX_MATCHED_INSN_LEN 6
1133
1134 /* Instruction description. */
1135 struct i386_insn
1136 {
1137 size_t len;
1138 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1139 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1140 };
1141
1142 /* Return whether instruction at PC matches PATTERN. */
1143
1144 static int
1145 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1146 {
1147 gdb_byte op;
1148
1149 if (target_read_memory (pc, &op, 1))
1150 return 0;
1151
1152 if ((op & pattern.mask[0]) == pattern.insn[0])
1153 {
1154 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1155 int insn_matched = 1;
1156 size_t i;
1157
1158 gdb_assert (pattern.len > 1);
1159 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1160
1161 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1162 return 0;
1163
1164 for (i = 1; i < pattern.len; i++)
1165 {
1166 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1167 insn_matched = 0;
1168 }
1169 return insn_matched;
1170 }
1171 return 0;
1172 }
1173
1174 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1175 the first instruction description that matches. Otherwise, return
1176 NULL. */
1177
1178 static struct i386_insn *
1179 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1180 {
1181 struct i386_insn *pattern;
1182
1183 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1184 {
1185 if (i386_match_pattern (pc, *pattern))
1186 return pattern;
1187 }
1188
1189 return NULL;
1190 }
1191
1192 /* Return whether PC points inside a sequence of instructions that
1193 matches INSN_PATTERNS. */
1194
1195 static int
1196 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1197 {
1198 CORE_ADDR current_pc;
1199 int ix, i;
1200 struct i386_insn *insn;
1201
1202 insn = i386_match_insn (pc, insn_patterns);
1203 if (insn == NULL)
1204 return 0;
1205
1206 current_pc = pc;
1207 ix = insn - insn_patterns;
1208 for (i = ix - 1; i >= 0; i--)
1209 {
1210 current_pc -= insn_patterns[i].len;
1211
1212 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1213 return 0;
1214 }
1215
1216 current_pc = pc + insn->len;
1217 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1218 {
1219 if (!i386_match_pattern (current_pc, *insn))
1220 return 0;
1221
1222 current_pc += insn->len;
1223 }
1224
1225 return 1;
1226 }
1227
1228 /* Some special instructions that might be migrated by GCC into the
1229 part of the prologue that sets up the new stack frame. Because the
1230 stack frame hasn't been setup yet, no registers have been saved
1231 yet, and only the scratch registers %eax, %ecx and %edx can be
1232 touched. */
1233
1234 struct i386_insn i386_frame_setup_skip_insns[] =
1235 {
1236 /* Check for `movb imm8, r' and `movl imm32, r'.
1237
1238 ??? Should we handle 16-bit operand-sizes here? */
1239
1240 /* `movb imm8, %al' and `movb imm8, %ah' */
1241 /* `movb imm8, %cl' and `movb imm8, %ch' */
1242 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1243 /* `movb imm8, %dl' and `movb imm8, %dh' */
1244 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1245 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1246 { 5, { 0xb8 }, { 0xfe } },
1247 /* `movl imm32, %edx' */
1248 { 5, { 0xba }, { 0xff } },
1249
1250 /* Check for `mov imm32, r32'. Note that there is an alternative
1251 encoding for `mov m32, %eax'.
1252
1253 ??? Should we handle SIB adressing here?
1254 ??? Should we handle 16-bit operand-sizes here? */
1255
1256 /* `movl m32, %eax' */
1257 { 5, { 0xa1 }, { 0xff } },
1258 /* `movl m32, %eax' and `mov; m32, %ecx' */
1259 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1260 /* `movl m32, %edx' */
1261 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1262
1263 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1264 Because of the symmetry, there are actually two ways to encode
1265 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1266 opcode bytes 0x31 and 0x33 for `xorl'. */
1267
1268 /* `subl %eax, %eax' */
1269 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1270 /* `subl %ecx, %ecx' */
1271 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1272 /* `subl %edx, %edx' */
1273 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1274 /* `xorl %eax, %eax' */
1275 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1276 /* `xorl %ecx, %ecx' */
1277 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1278 /* `xorl %edx, %edx' */
1279 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1280 { 0 }
1281 };
1282
1283
1284 /* Check whether PC points to a no-op instruction. */
1285 static CORE_ADDR
1286 i386_skip_noop (CORE_ADDR pc)
1287 {
1288 gdb_byte op;
1289 int check = 1;
1290
1291 if (target_read_memory (pc, &op, 1))
1292 return pc;
1293
1294 while (check)
1295 {
1296 check = 0;
1297 /* Ignore `nop' instruction. */
1298 if (op == 0x90)
1299 {
1300 pc += 1;
1301 if (target_read_memory (pc, &op, 1))
1302 return pc;
1303 check = 1;
1304 }
1305 /* Ignore no-op instruction `mov %edi, %edi'.
1306 Microsoft system dlls often start with
1307 a `mov %edi,%edi' instruction.
1308 The 5 bytes before the function start are
1309 filled with `nop' instructions.
1310 This pattern can be used for hot-patching:
1311 The `mov %edi, %edi' instruction can be replaced by a
1312 near jump to the location of the 5 `nop' instructions
1313 which can be replaced by a 32-bit jump to anywhere
1314 in the 32-bit address space. */
1315
1316 else if (op == 0x8b)
1317 {
1318 if (target_read_memory (pc + 1, &op, 1))
1319 return pc;
1320
1321 if (op == 0xff)
1322 {
1323 pc += 2;
1324 if (target_read_memory (pc, &op, 1))
1325 return pc;
1326
1327 check = 1;
1328 }
1329 }
1330 }
1331 return pc;
1332 }
1333
1334 /* Check whether PC points at a code that sets up a new stack frame.
1335 If so, it updates CACHE and returns the address of the first
1336 instruction after the sequence that sets up the frame or LIMIT,
1337 whichever is smaller. If we don't recognize the code, return PC. */
1338
1339 static CORE_ADDR
1340 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1341 CORE_ADDR pc, CORE_ADDR limit,
1342 struct i386_frame_cache *cache)
1343 {
1344 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1345 struct i386_insn *insn;
1346 gdb_byte op;
1347 int skip = 0;
1348
1349 if (limit <= pc)
1350 return limit;
1351
1352 if (target_read_memory (pc, &op, 1))
1353 return pc;
1354
1355 if (op == 0x55) /* pushl %ebp */
1356 {
1357 /* Take into account that we've executed the `pushl %ebp' that
1358 starts this instruction sequence. */
1359 cache->saved_regs[I386_EBP_REGNUM] = 0;
1360 cache->sp_offset += 4;
1361 pc++;
1362
1363 /* If that's all, return now. */
1364 if (limit <= pc)
1365 return limit;
1366
1367 /* Check for some special instructions that might be migrated by
1368 GCC into the prologue and skip them. At this point in the
1369 prologue, code should only touch the scratch registers %eax,
1370 %ecx and %edx, so while the number of posibilities is sheer,
1371 it is limited.
1372
1373 Make sure we only skip these instructions if we later see the
1374 `movl %esp, %ebp' that actually sets up the frame. */
1375 while (pc + skip < limit)
1376 {
1377 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1378 if (insn == NULL)
1379 break;
1380
1381 skip += insn->len;
1382 }
1383
1384 /* If that's all, return now. */
1385 if (limit <= pc + skip)
1386 return limit;
1387
1388 if (target_read_memory (pc + skip, &op, 1))
1389 return pc + skip;
1390
1391 /* The i386 prologue looks like
1392
1393 push %ebp
1394 mov %esp,%ebp
1395 sub $0x10,%esp
1396
1397 and a different prologue can be generated for atom.
1398
1399 push %ebp
1400 lea (%esp),%ebp
1401 lea -0x10(%esp),%esp
1402
1403 We handle both of them here. */
1404
1405 switch (op)
1406 {
1407 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1408 case 0x8b:
1409 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1410 != 0xec)
1411 return pc;
1412 pc += (skip + 2);
1413 break;
1414 case 0x89:
1415 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1416 != 0xe5)
1417 return pc;
1418 pc += (skip + 2);
1419 break;
1420 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1421 if (read_memory_unsigned_integer (pc + skip + 1, 2, byte_order)
1422 != 0x242c)
1423 return pc;
1424 pc += (skip + 3);
1425 break;
1426 default:
1427 return pc;
1428 }
1429
1430 /* OK, we actually have a frame. We just don't know how large
1431 it is yet. Set its size to zero. We'll adjust it if
1432 necessary. We also now commit to skipping the special
1433 instructions mentioned before. */
1434 cache->locals = 0;
1435
1436 /* If that's all, return now. */
1437 if (limit <= pc)
1438 return limit;
1439
1440 /* Check for stack adjustment
1441
1442 subl $XXX, %esp
1443 or
1444 lea -XXX(%esp),%esp
1445
1446 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1447 reg, so we don't have to worry about a data16 prefix. */
1448 if (target_read_memory (pc, &op, 1))
1449 return pc;
1450 if (op == 0x83)
1451 {
1452 /* `subl' with 8-bit immediate. */
1453 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1454 /* Some instruction starting with 0x83 other than `subl'. */
1455 return pc;
1456
1457 /* `subl' with signed 8-bit immediate (though it wouldn't
1458 make sense to be negative). */
1459 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1460 return pc + 3;
1461 }
1462 else if (op == 0x81)
1463 {
1464 /* Maybe it is `subl' with a 32-bit immediate. */
1465 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1466 /* Some instruction starting with 0x81 other than `subl'. */
1467 return pc;
1468
1469 /* It is `subl' with a 32-bit immediate. */
1470 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1471 return pc + 6;
1472 }
1473 else if (op == 0x8d)
1474 {
1475 /* The ModR/M byte is 0x64. */
1476 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1477 return pc;
1478 /* 'lea' with 8-bit displacement. */
1479 cache->locals = -1 * read_memory_integer (pc + 3, 1, byte_order);
1480 return pc + 4;
1481 }
1482 else
1483 {
1484 /* Some instruction other than `subl' nor 'lea'. */
1485 return pc;
1486 }
1487 }
1488 else if (op == 0xc8) /* enter */
1489 {
1490 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1491 return pc + 4;
1492 }
1493
1494 return pc;
1495 }
1496
1497 /* Check whether PC points at code that saves registers on the stack.
1498 If so, it updates CACHE and returns the address of the first
1499 instruction after the register saves or CURRENT_PC, whichever is
1500 smaller. Otherwise, return PC. */
1501
1502 static CORE_ADDR
1503 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1504 struct i386_frame_cache *cache)
1505 {
1506 CORE_ADDR offset = 0;
1507 gdb_byte op;
1508 int i;
1509
1510 if (cache->locals > 0)
1511 offset -= cache->locals;
1512 for (i = 0; i < 8 && pc < current_pc; i++)
1513 {
1514 if (target_read_memory (pc, &op, 1))
1515 return pc;
1516 if (op < 0x50 || op > 0x57)
1517 break;
1518
1519 offset -= 4;
1520 cache->saved_regs[op - 0x50] = offset;
1521 cache->sp_offset += 4;
1522 pc++;
1523 }
1524
1525 return pc;
1526 }
1527
1528 /* Do a full analysis of the prologue at PC and update CACHE
1529 accordingly. Bail out early if CURRENT_PC is reached. Return the
1530 address where the analysis stopped.
1531
1532 We handle these cases:
1533
1534 The startup sequence can be at the start of the function, or the
1535 function can start with a branch to startup code at the end.
1536
1537 %ebp can be set up with either the 'enter' instruction, or "pushl
1538 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1539 once used in the System V compiler).
1540
1541 Local space is allocated just below the saved %ebp by either the
1542 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1543 16-bit unsigned argument for space to allocate, and the 'addl'
1544 instruction could have either a signed byte, or 32-bit immediate.
1545
1546 Next, the registers used by this function are pushed. With the
1547 System V compiler they will always be in the order: %edi, %esi,
1548 %ebx (and sometimes a harmless bug causes it to also save but not
1549 restore %eax); however, the code below is willing to see the pushes
1550 in any order, and will handle up to 8 of them.
1551
1552 If the setup sequence is at the end of the function, then the next
1553 instruction will be a branch back to the start. */
1554
1555 static CORE_ADDR
1556 i386_analyze_prologue (struct gdbarch *gdbarch,
1557 CORE_ADDR pc, CORE_ADDR current_pc,
1558 struct i386_frame_cache *cache)
1559 {
1560 pc = i386_skip_noop (pc);
1561 pc = i386_follow_jump (gdbarch, pc);
1562 pc = i386_analyze_struct_return (pc, current_pc, cache);
1563 pc = i386_skip_probe (pc);
1564 pc = i386_analyze_stack_align (pc, current_pc, cache);
1565 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1566 return i386_analyze_register_saves (pc, current_pc, cache);
1567 }
1568
1569 /* Return PC of first real instruction. */
1570
1571 static CORE_ADDR
1572 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1573 {
1574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1575
1576 static gdb_byte pic_pat[6] =
1577 {
1578 0xe8, 0, 0, 0, 0, /* call 0x0 */
1579 0x5b, /* popl %ebx */
1580 };
1581 struct i386_frame_cache cache;
1582 CORE_ADDR pc;
1583 gdb_byte op;
1584 int i;
1585 cache.locals = -1;
1586 CORE_ADDR func_addr;
1587 struct symtab *s = find_pc_symtab (func_addr);
1588
1589 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1590 {
1591 CORE_ADDR post_prologue_pc
1592 = skip_prologue_using_sal (gdbarch, func_addr);
1593
1594 /* GCC always emits a line note before the prologue and another
1595 one after, even if the two are at the same address or on the
1596 same line. Take advantage of this so that we do not need to
1597 know every instruction that might appear in the prologue. We
1598 will have producer information for most binaries; if it is
1599 missing (e.g. for -gstabs), assuming the GNU tools. */
1600 if (post_prologue_pc
1601 && (s == NULL
1602 || s->producer == NULL
1603 || strncmp (s->producer, "GNU ", sizeof ("GNU ") - 1) == 0
1604 || strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1605 return max (start_pc, post_prologue_pc);
1606 }
1607
1608
1609 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1610 if (cache.locals < 0)
1611 return start_pc;
1612
1613 /* Found valid frame setup. */
1614
1615 /* The native cc on SVR4 in -K PIC mode inserts the following code
1616 to get the address of the global offset table (GOT) into register
1617 %ebx:
1618
1619 call 0x0
1620 popl %ebx
1621 movl %ebx,x(%ebp) (optional)
1622 addl y,%ebx
1623
1624 This code is with the rest of the prologue (at the end of the
1625 function), so we have to skip it to get to the first real
1626 instruction at the start of the function. */
1627
1628 for (i = 0; i < 6; i++)
1629 {
1630 if (target_read_memory (pc + i, &op, 1))
1631 return pc;
1632
1633 if (pic_pat[i] != op)
1634 break;
1635 }
1636 if (i == 6)
1637 {
1638 int delta = 6;
1639
1640 if (target_read_memory (pc + delta, &op, 1))
1641 return pc;
1642
1643 if (op == 0x89) /* movl %ebx, x(%ebp) */
1644 {
1645 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1646
1647 if (op == 0x5d) /* One byte offset from %ebp. */
1648 delta += 3;
1649 else if (op == 0x9d) /* Four byte offset from %ebp. */
1650 delta += 6;
1651 else /* Unexpected instruction. */
1652 delta = 0;
1653
1654 if (target_read_memory (pc + delta, &op, 1))
1655 return pc;
1656 }
1657
1658 /* addl y,%ebx */
1659 if (delta > 0 && op == 0x81
1660 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1661 == 0xc3)
1662 {
1663 pc += delta + 6;
1664 }
1665 }
1666
1667 /* If the function starts with a branch (to startup code at the end)
1668 the last instruction should bring us back to the first
1669 instruction of the real code. */
1670 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1671 pc = i386_follow_jump (gdbarch, pc);
1672
1673 return pc;
1674 }
1675
1676 /* Check that the code pointed to by PC corresponds to a call to
1677 __main, skip it if so. Return PC otherwise. */
1678
1679 CORE_ADDR
1680 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1681 {
1682 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1683 gdb_byte op;
1684
1685 if (target_read_memory (pc, &op, 1))
1686 return pc;
1687 if (op == 0xe8)
1688 {
1689 gdb_byte buf[4];
1690
1691 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1692 {
1693 /* Make sure address is computed correctly as a 32bit
1694 integer even if CORE_ADDR is 64 bit wide. */
1695 struct minimal_symbol *s;
1696 CORE_ADDR call_dest;
1697
1698 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1699 call_dest = call_dest & 0xffffffffU;
1700 s = lookup_minimal_symbol_by_pc (call_dest);
1701 if (s != NULL
1702 && SYMBOL_LINKAGE_NAME (s) != NULL
1703 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1704 pc += 5;
1705 }
1706 }
1707
1708 return pc;
1709 }
1710
1711 /* This function is 64-bit safe. */
1712
1713 static CORE_ADDR
1714 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1715 {
1716 gdb_byte buf[8];
1717
1718 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1719 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1720 }
1721 \f
1722
1723 /* Normal frames. */
1724
1725 static void
1726 i386_frame_cache_1 (struct frame_info *this_frame,
1727 struct i386_frame_cache *cache)
1728 {
1729 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1730 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1731 gdb_byte buf[4];
1732 int i;
1733
1734 cache->pc = get_frame_func (this_frame);
1735
1736 /* In principle, for normal frames, %ebp holds the frame pointer,
1737 which holds the base address for the current stack frame.
1738 However, for functions that don't need it, the frame pointer is
1739 optional. For these "frameless" functions the frame pointer is
1740 actually the frame pointer of the calling frame. Signal
1741 trampolines are just a special case of a "frameless" function.
1742 They (usually) share their frame pointer with the frame that was
1743 in progress when the signal occurred. */
1744
1745 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1746 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1747 if (cache->base == 0)
1748 {
1749 cache->base_p = 1;
1750 return;
1751 }
1752
1753 /* For normal frames, %eip is stored at 4(%ebp). */
1754 cache->saved_regs[I386_EIP_REGNUM] = 4;
1755
1756 if (cache->pc != 0)
1757 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1758 cache);
1759
1760 if (cache->locals < 0)
1761 {
1762 /* We didn't find a valid frame, which means that CACHE->base
1763 currently holds the frame pointer for our calling frame. If
1764 we're at the start of a function, or somewhere half-way its
1765 prologue, the function's frame probably hasn't been fully
1766 setup yet. Try to reconstruct the base address for the stack
1767 frame by looking at the stack pointer. For truly "frameless"
1768 functions this might work too. */
1769
1770 if (cache->saved_sp_reg != -1)
1771 {
1772 /* Saved stack pointer has been saved. */
1773 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1774 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1775
1776 /* We're halfway aligning the stack. */
1777 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1778 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1779
1780 /* This will be added back below. */
1781 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1782 }
1783 else if (cache->pc != 0
1784 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1785 {
1786 /* We're in a known function, but did not find a frame
1787 setup. Assume that the function does not use %ebp.
1788 Alternatively, we may have jumped to an invalid
1789 address; in that case there is definitely no new
1790 frame in %ebp. */
1791 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1792 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1793 + cache->sp_offset;
1794 }
1795 else
1796 /* We're in an unknown function. We could not find the start
1797 of the function to analyze the prologue; our best option is
1798 to assume a typical frame layout with the caller's %ebp
1799 saved. */
1800 cache->saved_regs[I386_EBP_REGNUM] = 0;
1801 }
1802
1803 if (cache->saved_sp_reg != -1)
1804 {
1805 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1806 register may be unavailable). */
1807 if (cache->saved_sp == 0
1808 && deprecated_frame_register_read (this_frame,
1809 cache->saved_sp_reg, buf))
1810 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1811 }
1812 /* Now that we have the base address for the stack frame we can
1813 calculate the value of %esp in the calling frame. */
1814 else if (cache->saved_sp == 0)
1815 cache->saved_sp = cache->base + 8;
1816
1817 /* Adjust all the saved registers such that they contain addresses
1818 instead of offsets. */
1819 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1820 if (cache->saved_regs[i] != -1)
1821 cache->saved_regs[i] += cache->base;
1822
1823 cache->base_p = 1;
1824 }
1825
1826 static struct i386_frame_cache *
1827 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1828 {
1829 volatile struct gdb_exception ex;
1830 struct i386_frame_cache *cache;
1831
1832 if (*this_cache)
1833 return *this_cache;
1834
1835 cache = i386_alloc_frame_cache ();
1836 *this_cache = cache;
1837
1838 TRY_CATCH (ex, RETURN_MASK_ERROR)
1839 {
1840 i386_frame_cache_1 (this_frame, cache);
1841 }
1842 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1843 throw_exception (ex);
1844
1845 return cache;
1846 }
1847
1848 static void
1849 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1850 struct frame_id *this_id)
1851 {
1852 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1853
1854 /* This marks the outermost frame. */
1855 if (cache->base == 0)
1856 return;
1857
1858 /* See the end of i386_push_dummy_call. */
1859 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1860 }
1861
1862 static enum unwind_stop_reason
1863 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1864 void **this_cache)
1865 {
1866 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1867
1868 if (!cache->base_p)
1869 return UNWIND_UNAVAILABLE;
1870
1871 /* This marks the outermost frame. */
1872 if (cache->base == 0)
1873 return UNWIND_OUTERMOST;
1874
1875 return UNWIND_NO_REASON;
1876 }
1877
1878 static struct value *
1879 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1880 int regnum)
1881 {
1882 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1883
1884 gdb_assert (regnum >= 0);
1885
1886 /* The System V ABI says that:
1887
1888 "The flags register contains the system flags, such as the
1889 direction flag and the carry flag. The direction flag must be
1890 set to the forward (that is, zero) direction before entry and
1891 upon exit from a function. Other user flags have no specified
1892 role in the standard calling sequence and are not preserved."
1893
1894 To guarantee the "upon exit" part of that statement we fake a
1895 saved flags register that has its direction flag cleared.
1896
1897 Note that GCC doesn't seem to rely on the fact that the direction
1898 flag is cleared after a function return; it always explicitly
1899 clears the flag before operations where it matters.
1900
1901 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1902 right thing to do. The way we fake the flags register here makes
1903 it impossible to change it. */
1904
1905 if (regnum == I386_EFLAGS_REGNUM)
1906 {
1907 ULONGEST val;
1908
1909 val = get_frame_register_unsigned (this_frame, regnum);
1910 val &= ~(1 << 10);
1911 return frame_unwind_got_constant (this_frame, regnum, val);
1912 }
1913
1914 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1915 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1916
1917 if (regnum == I386_ESP_REGNUM
1918 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1919 {
1920 /* If the SP has been saved, but we don't know where, then this
1921 means that SAVED_SP_REG register was found unavailable back
1922 when we built the cache. */
1923 if (cache->saved_sp == 0)
1924 return frame_unwind_got_register (this_frame, regnum,
1925 cache->saved_sp_reg);
1926 else
1927 return frame_unwind_got_constant (this_frame, regnum,
1928 cache->saved_sp);
1929 }
1930
1931 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1932 return frame_unwind_got_memory (this_frame, regnum,
1933 cache->saved_regs[regnum]);
1934
1935 return frame_unwind_got_register (this_frame, regnum, regnum);
1936 }
1937
1938 static const struct frame_unwind i386_frame_unwind =
1939 {
1940 NORMAL_FRAME,
1941 i386_frame_unwind_stop_reason,
1942 i386_frame_this_id,
1943 i386_frame_prev_register,
1944 NULL,
1945 default_frame_sniffer
1946 };
1947
1948 /* Normal frames, but in a function epilogue. */
1949
1950 /* The epilogue is defined here as the 'ret' instruction, which will
1951 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1952 the function's stack frame. */
1953
1954 static int
1955 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1956 {
1957 gdb_byte insn;
1958 struct symtab *symtab;
1959
1960 symtab = find_pc_symtab (pc);
1961 if (symtab && symtab->epilogue_unwind_valid)
1962 return 0;
1963
1964 if (target_read_memory (pc, &insn, 1))
1965 return 0; /* Can't read memory at pc. */
1966
1967 if (insn != 0xc3) /* 'ret' instruction. */
1968 return 0;
1969
1970 return 1;
1971 }
1972
1973 static int
1974 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1975 struct frame_info *this_frame,
1976 void **this_prologue_cache)
1977 {
1978 if (frame_relative_level (this_frame) == 0)
1979 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1980 get_frame_pc (this_frame));
1981 else
1982 return 0;
1983 }
1984
1985 static struct i386_frame_cache *
1986 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1987 {
1988 volatile struct gdb_exception ex;
1989 struct i386_frame_cache *cache;
1990 CORE_ADDR sp;
1991
1992 if (*this_cache)
1993 return *this_cache;
1994
1995 cache = i386_alloc_frame_cache ();
1996 *this_cache = cache;
1997
1998 TRY_CATCH (ex, RETURN_MASK_ERROR)
1999 {
2000 cache->pc = get_frame_func (this_frame);
2001
2002 /* At this point the stack looks as if we just entered the
2003 function, with the return address at the top of the
2004 stack. */
2005 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2006 cache->base = sp + cache->sp_offset;
2007 cache->saved_sp = cache->base + 8;
2008 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2009
2010 cache->base_p = 1;
2011 }
2012 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2013 throw_exception (ex);
2014
2015 return cache;
2016 }
2017
2018 static enum unwind_stop_reason
2019 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2020 void **this_cache)
2021 {
2022 struct i386_frame_cache *cache =
2023 i386_epilogue_frame_cache (this_frame, this_cache);
2024
2025 if (!cache->base_p)
2026 return UNWIND_UNAVAILABLE;
2027
2028 return UNWIND_NO_REASON;
2029 }
2030
2031 static void
2032 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2033 void **this_cache,
2034 struct frame_id *this_id)
2035 {
2036 struct i386_frame_cache *cache =
2037 i386_epilogue_frame_cache (this_frame, this_cache);
2038
2039 if (!cache->base_p)
2040 return;
2041
2042 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2043 }
2044
2045 static struct value *
2046 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2047 void **this_cache, int regnum)
2048 {
2049 /* Make sure we've initialized the cache. */
2050 i386_epilogue_frame_cache (this_frame, this_cache);
2051
2052 return i386_frame_prev_register (this_frame, this_cache, regnum);
2053 }
2054
2055 static const struct frame_unwind i386_epilogue_frame_unwind =
2056 {
2057 NORMAL_FRAME,
2058 i386_epilogue_frame_unwind_stop_reason,
2059 i386_epilogue_frame_this_id,
2060 i386_epilogue_frame_prev_register,
2061 NULL,
2062 i386_epilogue_frame_sniffer
2063 };
2064 \f
2065
2066 /* Stack-based trampolines. */
2067
2068 /* These trampolines are used on cross x86 targets, when taking the
2069 address of a nested function. When executing these trampolines,
2070 no stack frame is set up, so we are in a similar situation as in
2071 epilogues and i386_epilogue_frame_this_id can be re-used. */
2072
2073 /* Static chain passed in register. */
2074
2075 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2076 {
2077 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2078 { 5, { 0xb8 }, { 0xfe } },
2079
2080 /* `jmp imm32' */
2081 { 5, { 0xe9 }, { 0xff } },
2082
2083 {0}
2084 };
2085
2086 /* Static chain passed on stack (when regparm=3). */
2087
2088 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2089 {
2090 /* `push imm32' */
2091 { 5, { 0x68 }, { 0xff } },
2092
2093 /* `jmp imm32' */
2094 { 5, { 0xe9 }, { 0xff } },
2095
2096 {0}
2097 };
2098
2099 /* Return whether PC points inside a stack trampoline. */
2100
2101 static int
2102 i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2103 {
2104 gdb_byte insn;
2105 const char *name;
2106
2107 /* A stack trampoline is detected if no name is associated
2108 to the current pc and if it points inside a trampoline
2109 sequence. */
2110
2111 find_pc_partial_function (pc, &name, NULL, NULL);
2112 if (name)
2113 return 0;
2114
2115 if (target_read_memory (pc, &insn, 1))
2116 return 0;
2117
2118 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2119 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2120 return 0;
2121
2122 return 1;
2123 }
2124
2125 static int
2126 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2127 struct frame_info *this_frame,
2128 void **this_cache)
2129 {
2130 if (frame_relative_level (this_frame) == 0)
2131 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2132 get_frame_pc (this_frame));
2133 else
2134 return 0;
2135 }
2136
2137 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2138 {
2139 NORMAL_FRAME,
2140 i386_epilogue_frame_unwind_stop_reason,
2141 i386_epilogue_frame_this_id,
2142 i386_epilogue_frame_prev_register,
2143 NULL,
2144 i386_stack_tramp_frame_sniffer
2145 };
2146 \f
2147 /* Generate a bytecode expression to get the value of the saved PC. */
2148
2149 static void
2150 i386_gen_return_address (struct gdbarch *gdbarch,
2151 struct agent_expr *ax, struct axs_value *value,
2152 CORE_ADDR scope)
2153 {
2154 /* The following sequence assumes the traditional use of the base
2155 register. */
2156 ax_reg (ax, I386_EBP_REGNUM);
2157 ax_const_l (ax, 4);
2158 ax_simple (ax, aop_add);
2159 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2160 value->kind = axs_lvalue_memory;
2161 }
2162 \f
2163
2164 /* Signal trampolines. */
2165
2166 static struct i386_frame_cache *
2167 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2168 {
2169 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2170 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2171 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2172 volatile struct gdb_exception ex;
2173 struct i386_frame_cache *cache;
2174 CORE_ADDR addr;
2175 gdb_byte buf[4];
2176
2177 if (*this_cache)
2178 return *this_cache;
2179
2180 cache = i386_alloc_frame_cache ();
2181
2182 TRY_CATCH (ex, RETURN_MASK_ERROR)
2183 {
2184 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2185 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2186
2187 addr = tdep->sigcontext_addr (this_frame);
2188 if (tdep->sc_reg_offset)
2189 {
2190 int i;
2191
2192 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2193
2194 for (i = 0; i < tdep->sc_num_regs; i++)
2195 if (tdep->sc_reg_offset[i] != -1)
2196 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2197 }
2198 else
2199 {
2200 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2201 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2202 }
2203
2204 cache->base_p = 1;
2205 }
2206 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2207 throw_exception (ex);
2208
2209 *this_cache = cache;
2210 return cache;
2211 }
2212
2213 static enum unwind_stop_reason
2214 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2215 void **this_cache)
2216 {
2217 struct i386_frame_cache *cache =
2218 i386_sigtramp_frame_cache (this_frame, this_cache);
2219
2220 if (!cache->base_p)
2221 return UNWIND_UNAVAILABLE;
2222
2223 return UNWIND_NO_REASON;
2224 }
2225
2226 static void
2227 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2228 struct frame_id *this_id)
2229 {
2230 struct i386_frame_cache *cache =
2231 i386_sigtramp_frame_cache (this_frame, this_cache);
2232
2233 if (!cache->base_p)
2234 return;
2235
2236 /* See the end of i386_push_dummy_call. */
2237 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2238 }
2239
2240 static struct value *
2241 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2242 void **this_cache, int regnum)
2243 {
2244 /* Make sure we've initialized the cache. */
2245 i386_sigtramp_frame_cache (this_frame, this_cache);
2246
2247 return i386_frame_prev_register (this_frame, this_cache, regnum);
2248 }
2249
2250 static int
2251 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2252 struct frame_info *this_frame,
2253 void **this_prologue_cache)
2254 {
2255 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2256
2257 /* We shouldn't even bother if we don't have a sigcontext_addr
2258 handler. */
2259 if (tdep->sigcontext_addr == NULL)
2260 return 0;
2261
2262 if (tdep->sigtramp_p != NULL)
2263 {
2264 if (tdep->sigtramp_p (this_frame))
2265 return 1;
2266 }
2267
2268 if (tdep->sigtramp_start != 0)
2269 {
2270 CORE_ADDR pc = get_frame_pc (this_frame);
2271
2272 gdb_assert (tdep->sigtramp_end != 0);
2273 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2274 return 1;
2275 }
2276
2277 return 0;
2278 }
2279
2280 static const struct frame_unwind i386_sigtramp_frame_unwind =
2281 {
2282 SIGTRAMP_FRAME,
2283 i386_sigtramp_frame_unwind_stop_reason,
2284 i386_sigtramp_frame_this_id,
2285 i386_sigtramp_frame_prev_register,
2286 NULL,
2287 i386_sigtramp_frame_sniffer
2288 };
2289 \f
2290
2291 static CORE_ADDR
2292 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2293 {
2294 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2295
2296 return cache->base;
2297 }
2298
2299 static const struct frame_base i386_frame_base =
2300 {
2301 &i386_frame_unwind,
2302 i386_frame_base_address,
2303 i386_frame_base_address,
2304 i386_frame_base_address
2305 };
2306
2307 static struct frame_id
2308 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2309 {
2310 CORE_ADDR fp;
2311
2312 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2313
2314 /* See the end of i386_push_dummy_call. */
2315 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2316 }
2317
2318 /* _Decimal128 function return values need 16-byte alignment on the
2319 stack. */
2320
2321 static CORE_ADDR
2322 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2323 {
2324 return sp & -(CORE_ADDR)16;
2325 }
2326 \f
2327
2328 /* Figure out where the longjmp will land. Slurp the args out of the
2329 stack. We expect the first arg to be a pointer to the jmp_buf
2330 structure from which we extract the address that we will land at.
2331 This address is copied into PC. This routine returns non-zero on
2332 success. */
2333
2334 static int
2335 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2336 {
2337 gdb_byte buf[4];
2338 CORE_ADDR sp, jb_addr;
2339 struct gdbarch *gdbarch = get_frame_arch (frame);
2340 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2341 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2342
2343 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2344 longjmp will land. */
2345 if (jb_pc_offset == -1)
2346 return 0;
2347
2348 get_frame_register (frame, I386_ESP_REGNUM, buf);
2349 sp = extract_unsigned_integer (buf, 4, byte_order);
2350 if (target_read_memory (sp + 4, buf, 4))
2351 return 0;
2352
2353 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2354 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2355 return 0;
2356
2357 *pc = extract_unsigned_integer (buf, 4, byte_order);
2358 return 1;
2359 }
2360 \f
2361
2362 /* Check whether TYPE must be 16-byte-aligned when passed as a
2363 function argument. 16-byte vectors, _Decimal128 and structures or
2364 unions containing such types must be 16-byte-aligned; other
2365 arguments are 4-byte-aligned. */
2366
2367 static int
2368 i386_16_byte_align_p (struct type *type)
2369 {
2370 type = check_typedef (type);
2371 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2372 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2373 && TYPE_LENGTH (type) == 16)
2374 return 1;
2375 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2376 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2377 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2378 || TYPE_CODE (type) == TYPE_CODE_UNION)
2379 {
2380 int i;
2381 for (i = 0; i < TYPE_NFIELDS (type); i++)
2382 {
2383 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2384 return 1;
2385 }
2386 }
2387 return 0;
2388 }
2389
2390 /* Implementation for set_gdbarch_push_dummy_code. */
2391
2392 static CORE_ADDR
2393 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2394 struct value **args, int nargs, struct type *value_type,
2395 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2396 struct regcache *regcache)
2397 {
2398 /* Use 0xcc breakpoint - 1 byte. */
2399 *bp_addr = sp - 1;
2400 *real_pc = funaddr;
2401
2402 /* Keep the stack aligned. */
2403 return sp - 16;
2404 }
2405
2406 static CORE_ADDR
2407 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2408 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2409 struct value **args, CORE_ADDR sp, int struct_return,
2410 CORE_ADDR struct_addr)
2411 {
2412 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2413 gdb_byte buf[4];
2414 int i;
2415 int write_pass;
2416 int args_space = 0;
2417
2418 /* Determine the total space required for arguments and struct
2419 return address in a first pass (allowing for 16-byte-aligned
2420 arguments), then push arguments in a second pass. */
2421
2422 for (write_pass = 0; write_pass < 2; write_pass++)
2423 {
2424 int args_space_used = 0;
2425
2426 if (struct_return)
2427 {
2428 if (write_pass)
2429 {
2430 /* Push value address. */
2431 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2432 write_memory (sp, buf, 4);
2433 args_space_used += 4;
2434 }
2435 else
2436 args_space += 4;
2437 }
2438
2439 for (i = 0; i < nargs; i++)
2440 {
2441 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2442
2443 if (write_pass)
2444 {
2445 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2446 args_space_used = align_up (args_space_used, 16);
2447
2448 write_memory (sp + args_space_used,
2449 value_contents_all (args[i]), len);
2450 /* The System V ABI says that:
2451
2452 "An argument's size is increased, if necessary, to make it a
2453 multiple of [32-bit] words. This may require tail padding,
2454 depending on the size of the argument."
2455
2456 This makes sure the stack stays word-aligned. */
2457 args_space_used += align_up (len, 4);
2458 }
2459 else
2460 {
2461 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2462 args_space = align_up (args_space, 16);
2463 args_space += align_up (len, 4);
2464 }
2465 }
2466
2467 if (!write_pass)
2468 {
2469 sp -= args_space;
2470
2471 /* The original System V ABI only requires word alignment,
2472 but modern incarnations need 16-byte alignment in order
2473 to support SSE. Since wasting a few bytes here isn't
2474 harmful we unconditionally enforce 16-byte alignment. */
2475 sp &= ~0xf;
2476 }
2477 }
2478
2479 /* Store return address. */
2480 sp -= 4;
2481 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2482 write_memory (sp, buf, 4);
2483
2484 /* Finally, update the stack pointer... */
2485 store_unsigned_integer (buf, 4, byte_order, sp);
2486 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2487
2488 /* ...and fake a frame pointer. */
2489 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2490
2491 /* MarkK wrote: This "+ 8" is all over the place:
2492 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2493 i386_dummy_id). It's there, since all frame unwinders for
2494 a given target have to agree (within a certain margin) on the
2495 definition of the stack address of a frame. Otherwise frame id
2496 comparison might not work correctly. Since DWARF2/GCC uses the
2497 stack address *before* the function call as a frame's CFA. On
2498 the i386, when %ebp is used as a frame pointer, the offset
2499 between the contents %ebp and the CFA as defined by GCC. */
2500 return sp + 8;
2501 }
2502
2503 /* These registers are used for returning integers (and on some
2504 targets also for returning `struct' and `union' values when their
2505 size and alignment match an integer type). */
2506 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2507 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2508
2509 /* Read, for architecture GDBARCH, a function return value of TYPE
2510 from REGCACHE, and copy that into VALBUF. */
2511
2512 static void
2513 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2514 struct regcache *regcache, gdb_byte *valbuf)
2515 {
2516 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2517 int len = TYPE_LENGTH (type);
2518 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2519
2520 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2521 {
2522 if (tdep->st0_regnum < 0)
2523 {
2524 warning (_("Cannot find floating-point return value."));
2525 memset (valbuf, 0, len);
2526 return;
2527 }
2528
2529 /* Floating-point return values can be found in %st(0). Convert
2530 its contents to the desired type. This is probably not
2531 exactly how it would happen on the target itself, but it is
2532 the best we can do. */
2533 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2534 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2535 }
2536 else
2537 {
2538 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2539 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2540
2541 if (len <= low_size)
2542 {
2543 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2544 memcpy (valbuf, buf, len);
2545 }
2546 else if (len <= (low_size + high_size))
2547 {
2548 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2549 memcpy (valbuf, buf, low_size);
2550 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2551 memcpy (valbuf + low_size, buf, len - low_size);
2552 }
2553 else
2554 internal_error (__FILE__, __LINE__,
2555 _("Cannot extract return value of %d bytes long."),
2556 len);
2557 }
2558 }
2559
2560 /* Write, for architecture GDBARCH, a function return value of TYPE
2561 from VALBUF into REGCACHE. */
2562
2563 static void
2564 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2565 struct regcache *regcache, const gdb_byte *valbuf)
2566 {
2567 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2568 int len = TYPE_LENGTH (type);
2569
2570 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2571 {
2572 ULONGEST fstat;
2573 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2574
2575 if (tdep->st0_regnum < 0)
2576 {
2577 warning (_("Cannot set floating-point return value."));
2578 return;
2579 }
2580
2581 /* Returning floating-point values is a bit tricky. Apart from
2582 storing the return value in %st(0), we have to simulate the
2583 state of the FPU at function return point. */
2584
2585 /* Convert the value found in VALBUF to the extended
2586 floating-point format used by the FPU. This is probably
2587 not exactly how it would happen on the target itself, but
2588 it is the best we can do. */
2589 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2590 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2591
2592 /* Set the top of the floating-point register stack to 7. The
2593 actual value doesn't really matter, but 7 is what a normal
2594 function return would end up with if the program started out
2595 with a freshly initialized FPU. */
2596 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2597 fstat |= (7 << 11);
2598 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2599
2600 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2601 the floating-point register stack to 7, the appropriate value
2602 for the tag word is 0x3fff. */
2603 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2604 }
2605 else
2606 {
2607 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2608 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2609
2610 if (len <= low_size)
2611 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2612 else if (len <= (low_size + high_size))
2613 {
2614 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2615 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2616 len - low_size, valbuf + low_size);
2617 }
2618 else
2619 internal_error (__FILE__, __LINE__,
2620 _("Cannot store return value of %d bytes long."), len);
2621 }
2622 }
2623 \f
2624
2625 /* This is the variable that is set with "set struct-convention", and
2626 its legitimate values. */
2627 static const char default_struct_convention[] = "default";
2628 static const char pcc_struct_convention[] = "pcc";
2629 static const char reg_struct_convention[] = "reg";
2630 static const char *const valid_conventions[] =
2631 {
2632 default_struct_convention,
2633 pcc_struct_convention,
2634 reg_struct_convention,
2635 NULL
2636 };
2637 static const char *struct_convention = default_struct_convention;
2638
2639 /* Return non-zero if TYPE, which is assumed to be a structure,
2640 a union type, or an array type, should be returned in registers
2641 for architecture GDBARCH. */
2642
2643 static int
2644 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2645 {
2646 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2647 enum type_code code = TYPE_CODE (type);
2648 int len = TYPE_LENGTH (type);
2649
2650 gdb_assert (code == TYPE_CODE_STRUCT
2651 || code == TYPE_CODE_UNION
2652 || code == TYPE_CODE_ARRAY);
2653
2654 if (struct_convention == pcc_struct_convention
2655 || (struct_convention == default_struct_convention
2656 && tdep->struct_return == pcc_struct_return))
2657 return 0;
2658
2659 /* Structures consisting of a single `float', `double' or 'long
2660 double' member are returned in %st(0). */
2661 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2662 {
2663 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2664 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2665 return (len == 4 || len == 8 || len == 12);
2666 }
2667
2668 return (len == 1 || len == 2 || len == 4 || len == 8);
2669 }
2670
2671 /* Determine, for architecture GDBARCH, how a return value of TYPE
2672 should be returned. If it is supposed to be returned in registers,
2673 and READBUF is non-zero, read the appropriate value from REGCACHE,
2674 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2675 from WRITEBUF into REGCACHE. */
2676
2677 static enum return_value_convention
2678 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2679 struct type *type, struct regcache *regcache,
2680 gdb_byte *readbuf, const gdb_byte *writebuf)
2681 {
2682 enum type_code code = TYPE_CODE (type);
2683
2684 if (((code == TYPE_CODE_STRUCT
2685 || code == TYPE_CODE_UNION
2686 || code == TYPE_CODE_ARRAY)
2687 && !i386_reg_struct_return_p (gdbarch, type))
2688 /* Complex double and long double uses the struct return covention. */
2689 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2690 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2691 /* 128-bit decimal float uses the struct return convention. */
2692 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2693 {
2694 /* The System V ABI says that:
2695
2696 "A function that returns a structure or union also sets %eax
2697 to the value of the original address of the caller's area
2698 before it returns. Thus when the caller receives control
2699 again, the address of the returned object resides in register
2700 %eax and can be used to access the object."
2701
2702 So the ABI guarantees that we can always find the return
2703 value just after the function has returned. */
2704
2705 /* Note that the ABI doesn't mention functions returning arrays,
2706 which is something possible in certain languages such as Ada.
2707 In this case, the value is returned as if it was wrapped in
2708 a record, so the convention applied to records also applies
2709 to arrays. */
2710
2711 if (readbuf)
2712 {
2713 ULONGEST addr;
2714
2715 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2716 read_memory (addr, readbuf, TYPE_LENGTH (type));
2717 }
2718
2719 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2720 }
2721
2722 /* This special case is for structures consisting of a single
2723 `float', `double' or 'long double' member. These structures are
2724 returned in %st(0). For these structures, we call ourselves
2725 recursively, changing TYPE into the type of the first member of
2726 the structure. Since that should work for all structures that
2727 have only one member, we don't bother to check the member's type
2728 here. */
2729 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2730 {
2731 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2732 return i386_return_value (gdbarch, function, type, regcache,
2733 readbuf, writebuf);
2734 }
2735
2736 if (readbuf)
2737 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2738 if (writebuf)
2739 i386_store_return_value (gdbarch, type, regcache, writebuf);
2740
2741 return RETURN_VALUE_REGISTER_CONVENTION;
2742 }
2743 \f
2744
2745 struct type *
2746 i387_ext_type (struct gdbarch *gdbarch)
2747 {
2748 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2749
2750 if (!tdep->i387_ext_type)
2751 {
2752 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2753 gdb_assert (tdep->i387_ext_type != NULL);
2754 }
2755
2756 return tdep->i387_ext_type;
2757 }
2758
2759 /* Construct vector type for pseudo YMM registers. We can't use
2760 tdesc_find_type since YMM isn't described in target description. */
2761
2762 static struct type *
2763 i386_ymm_type (struct gdbarch *gdbarch)
2764 {
2765 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2766
2767 if (!tdep->i386_ymm_type)
2768 {
2769 const struct builtin_type *bt = builtin_type (gdbarch);
2770
2771 /* The type we're building is this: */
2772 #if 0
2773 union __gdb_builtin_type_vec256i
2774 {
2775 int128_t uint128[2];
2776 int64_t v2_int64[4];
2777 int32_t v4_int32[8];
2778 int16_t v8_int16[16];
2779 int8_t v16_int8[32];
2780 double v2_double[4];
2781 float v4_float[8];
2782 };
2783 #endif
2784
2785 struct type *t;
2786
2787 t = arch_composite_type (gdbarch,
2788 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2789 append_composite_type_field (t, "v8_float",
2790 init_vector_type (bt->builtin_float, 8));
2791 append_composite_type_field (t, "v4_double",
2792 init_vector_type (bt->builtin_double, 4));
2793 append_composite_type_field (t, "v32_int8",
2794 init_vector_type (bt->builtin_int8, 32));
2795 append_composite_type_field (t, "v16_int16",
2796 init_vector_type (bt->builtin_int16, 16));
2797 append_composite_type_field (t, "v8_int32",
2798 init_vector_type (bt->builtin_int32, 8));
2799 append_composite_type_field (t, "v4_int64",
2800 init_vector_type (bt->builtin_int64, 4));
2801 append_composite_type_field (t, "v2_int128",
2802 init_vector_type (bt->builtin_int128, 2));
2803
2804 TYPE_VECTOR (t) = 1;
2805 TYPE_NAME (t) = "builtin_type_vec256i";
2806 tdep->i386_ymm_type = t;
2807 }
2808
2809 return tdep->i386_ymm_type;
2810 }
2811
2812 /* Construct vector type for MMX registers. */
2813 static struct type *
2814 i386_mmx_type (struct gdbarch *gdbarch)
2815 {
2816 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2817
2818 if (!tdep->i386_mmx_type)
2819 {
2820 const struct builtin_type *bt = builtin_type (gdbarch);
2821
2822 /* The type we're building is this: */
2823 #if 0
2824 union __gdb_builtin_type_vec64i
2825 {
2826 int64_t uint64;
2827 int32_t v2_int32[2];
2828 int16_t v4_int16[4];
2829 int8_t v8_int8[8];
2830 };
2831 #endif
2832
2833 struct type *t;
2834
2835 t = arch_composite_type (gdbarch,
2836 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2837
2838 append_composite_type_field (t, "uint64", bt->builtin_int64);
2839 append_composite_type_field (t, "v2_int32",
2840 init_vector_type (bt->builtin_int32, 2));
2841 append_composite_type_field (t, "v4_int16",
2842 init_vector_type (bt->builtin_int16, 4));
2843 append_composite_type_field (t, "v8_int8",
2844 init_vector_type (bt->builtin_int8, 8));
2845
2846 TYPE_VECTOR (t) = 1;
2847 TYPE_NAME (t) = "builtin_type_vec64i";
2848 tdep->i386_mmx_type = t;
2849 }
2850
2851 return tdep->i386_mmx_type;
2852 }
2853
2854 /* Return the GDB type object for the "standard" data type of data in
2855 register REGNUM. */
2856
2857 struct type *
2858 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2859 {
2860 if (i386_mmx_regnum_p (gdbarch, regnum))
2861 return i386_mmx_type (gdbarch);
2862 else if (i386_ymm_regnum_p (gdbarch, regnum))
2863 return i386_ymm_type (gdbarch);
2864 else
2865 {
2866 const struct builtin_type *bt = builtin_type (gdbarch);
2867 if (i386_byte_regnum_p (gdbarch, regnum))
2868 return bt->builtin_int8;
2869 else if (i386_word_regnum_p (gdbarch, regnum))
2870 return bt->builtin_int16;
2871 else if (i386_dword_regnum_p (gdbarch, regnum))
2872 return bt->builtin_int32;
2873 }
2874
2875 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2876 }
2877
2878 /* Map a cooked register onto a raw register or memory. For the i386,
2879 the MMX registers need to be mapped onto floating point registers. */
2880
2881 static int
2882 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2883 {
2884 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2885 int mmxreg, fpreg;
2886 ULONGEST fstat;
2887 int tos;
2888
2889 mmxreg = regnum - tdep->mm0_regnum;
2890 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2891 tos = (fstat >> 11) & 0x7;
2892 fpreg = (mmxreg + tos) % 8;
2893
2894 return (I387_ST0_REGNUM (tdep) + fpreg);
2895 }
2896
2897 /* A helper function for us by i386_pseudo_register_read_value and
2898 amd64_pseudo_register_read_value. It does all the work but reads
2899 the data into an already-allocated value. */
2900
2901 void
2902 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2903 struct regcache *regcache,
2904 int regnum,
2905 struct value *result_value)
2906 {
2907 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2908 enum register_status status;
2909 gdb_byte *buf = value_contents_raw (result_value);
2910
2911 if (i386_mmx_regnum_p (gdbarch, regnum))
2912 {
2913 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2914
2915 /* Extract (always little endian). */
2916 status = regcache_raw_read (regcache, fpnum, raw_buf);
2917 if (status != REG_VALID)
2918 mark_value_bytes_unavailable (result_value, 0,
2919 TYPE_LENGTH (value_type (result_value)));
2920 else
2921 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2922 }
2923 else
2924 {
2925 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2926
2927 if (i386_ymm_regnum_p (gdbarch, regnum))
2928 {
2929 regnum -= tdep->ymm0_regnum;
2930
2931 /* Extract (always little endian). Read lower 128bits. */
2932 status = regcache_raw_read (regcache,
2933 I387_XMM0_REGNUM (tdep) + regnum,
2934 raw_buf);
2935 if (status != REG_VALID)
2936 mark_value_bytes_unavailable (result_value, 0, 16);
2937 else
2938 memcpy (buf, raw_buf, 16);
2939 /* Read upper 128bits. */
2940 status = regcache_raw_read (regcache,
2941 tdep->ymm0h_regnum + regnum,
2942 raw_buf);
2943 if (status != REG_VALID)
2944 mark_value_bytes_unavailable (result_value, 16, 32);
2945 else
2946 memcpy (buf + 16, raw_buf, 16);
2947 }
2948 else if (i386_word_regnum_p (gdbarch, regnum))
2949 {
2950 int gpnum = regnum - tdep->ax_regnum;
2951
2952 /* Extract (always little endian). */
2953 status = regcache_raw_read (regcache, gpnum, raw_buf);
2954 if (status != REG_VALID)
2955 mark_value_bytes_unavailable (result_value, 0,
2956 TYPE_LENGTH (value_type (result_value)));
2957 else
2958 memcpy (buf, raw_buf, 2);
2959 }
2960 else if (i386_byte_regnum_p (gdbarch, regnum))
2961 {
2962 /* Check byte pseudo registers last since this function will
2963 be called from amd64_pseudo_register_read, which handles
2964 byte pseudo registers differently. */
2965 int gpnum = regnum - tdep->al_regnum;
2966
2967 /* Extract (always little endian). We read both lower and
2968 upper registers. */
2969 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2970 if (status != REG_VALID)
2971 mark_value_bytes_unavailable (result_value, 0,
2972 TYPE_LENGTH (value_type (result_value)));
2973 else if (gpnum >= 4)
2974 memcpy (buf, raw_buf + 1, 1);
2975 else
2976 memcpy (buf, raw_buf, 1);
2977 }
2978 else
2979 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2980 }
2981 }
2982
2983 static struct value *
2984 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2985 struct regcache *regcache,
2986 int regnum)
2987 {
2988 struct value *result;
2989
2990 result = allocate_value (register_type (gdbarch, regnum));
2991 VALUE_LVAL (result) = lval_register;
2992 VALUE_REGNUM (result) = regnum;
2993
2994 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
2995
2996 return result;
2997 }
2998
2999 void
3000 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3001 int regnum, const gdb_byte *buf)
3002 {
3003 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3004
3005 if (i386_mmx_regnum_p (gdbarch, regnum))
3006 {
3007 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3008
3009 /* Read ... */
3010 regcache_raw_read (regcache, fpnum, raw_buf);
3011 /* ... Modify ... (always little endian). */
3012 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3013 /* ... Write. */
3014 regcache_raw_write (regcache, fpnum, raw_buf);
3015 }
3016 else
3017 {
3018 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3019
3020 if (i386_ymm_regnum_p (gdbarch, regnum))
3021 {
3022 regnum -= tdep->ymm0_regnum;
3023
3024 /* ... Write lower 128bits. */
3025 regcache_raw_write (regcache,
3026 I387_XMM0_REGNUM (tdep) + regnum,
3027 buf);
3028 /* ... Write upper 128bits. */
3029 regcache_raw_write (regcache,
3030 tdep->ymm0h_regnum + regnum,
3031 buf + 16);
3032 }
3033 else if (i386_word_regnum_p (gdbarch, regnum))
3034 {
3035 int gpnum = regnum - tdep->ax_regnum;
3036
3037 /* Read ... */
3038 regcache_raw_read (regcache, gpnum, raw_buf);
3039 /* ... Modify ... (always little endian). */
3040 memcpy (raw_buf, buf, 2);
3041 /* ... Write. */
3042 regcache_raw_write (regcache, gpnum, raw_buf);
3043 }
3044 else if (i386_byte_regnum_p (gdbarch, regnum))
3045 {
3046 /* Check byte pseudo registers last since this function will
3047 be called from amd64_pseudo_register_read, which handles
3048 byte pseudo registers differently. */
3049 int gpnum = regnum - tdep->al_regnum;
3050
3051 /* Read ... We read both lower and upper registers. */
3052 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3053 /* ... Modify ... (always little endian). */
3054 if (gpnum >= 4)
3055 memcpy (raw_buf + 1, buf, 1);
3056 else
3057 memcpy (raw_buf, buf, 1);
3058 /* ... Write. */
3059 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3060 }
3061 else
3062 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3063 }
3064 }
3065 \f
3066
3067 /* Return the register number of the register allocated by GCC after
3068 REGNUM, or -1 if there is no such register. */
3069
3070 static int
3071 i386_next_regnum (int regnum)
3072 {
3073 /* GCC allocates the registers in the order:
3074
3075 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3076
3077 Since storing a variable in %esp doesn't make any sense we return
3078 -1 for %ebp and for %esp itself. */
3079 static int next_regnum[] =
3080 {
3081 I386_EDX_REGNUM, /* Slot for %eax. */
3082 I386_EBX_REGNUM, /* Slot for %ecx. */
3083 I386_ECX_REGNUM, /* Slot for %edx. */
3084 I386_ESI_REGNUM, /* Slot for %ebx. */
3085 -1, -1, /* Slots for %esp and %ebp. */
3086 I386_EDI_REGNUM, /* Slot for %esi. */
3087 I386_EBP_REGNUM /* Slot for %edi. */
3088 };
3089
3090 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3091 return next_regnum[regnum];
3092
3093 return -1;
3094 }
3095
3096 /* Return nonzero if a value of type TYPE stored in register REGNUM
3097 needs any special handling. */
3098
3099 static int
3100 i386_convert_register_p (struct gdbarch *gdbarch,
3101 int regnum, struct type *type)
3102 {
3103 int len = TYPE_LENGTH (type);
3104
3105 /* Values may be spread across multiple registers. Most debugging
3106 formats aren't expressive enough to specify the locations, so
3107 some heuristics is involved. Right now we only handle types that
3108 have a length that is a multiple of the word size, since GCC
3109 doesn't seem to put any other types into registers. */
3110 if (len > 4 && len % 4 == 0)
3111 {
3112 int last_regnum = regnum;
3113
3114 while (len > 4)
3115 {
3116 last_regnum = i386_next_regnum (last_regnum);
3117 len -= 4;
3118 }
3119
3120 if (last_regnum != -1)
3121 return 1;
3122 }
3123
3124 return i387_convert_register_p (gdbarch, regnum, type);
3125 }
3126
3127 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3128 return its contents in TO. */
3129
3130 static int
3131 i386_register_to_value (struct frame_info *frame, int regnum,
3132 struct type *type, gdb_byte *to,
3133 int *optimizedp, int *unavailablep)
3134 {
3135 struct gdbarch *gdbarch = get_frame_arch (frame);
3136 int len = TYPE_LENGTH (type);
3137
3138 if (i386_fp_regnum_p (gdbarch, regnum))
3139 return i387_register_to_value (frame, regnum, type, to,
3140 optimizedp, unavailablep);
3141
3142 /* Read a value spread across multiple registers. */
3143
3144 gdb_assert (len > 4 && len % 4 == 0);
3145
3146 while (len > 0)
3147 {
3148 gdb_assert (regnum != -1);
3149 gdb_assert (register_size (gdbarch, regnum) == 4);
3150
3151 if (!get_frame_register_bytes (frame, regnum, 0,
3152 register_size (gdbarch, regnum),
3153 to, optimizedp, unavailablep))
3154 return 0;
3155
3156 regnum = i386_next_regnum (regnum);
3157 len -= 4;
3158 to += 4;
3159 }
3160
3161 *optimizedp = *unavailablep = 0;
3162 return 1;
3163 }
3164
3165 /* Write the contents FROM of a value of type TYPE into register
3166 REGNUM in frame FRAME. */
3167
3168 static void
3169 i386_value_to_register (struct frame_info *frame, int regnum,
3170 struct type *type, const gdb_byte *from)
3171 {
3172 int len = TYPE_LENGTH (type);
3173
3174 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3175 {
3176 i387_value_to_register (frame, regnum, type, from);
3177 return;
3178 }
3179
3180 /* Write a value spread across multiple registers. */
3181
3182 gdb_assert (len > 4 && len % 4 == 0);
3183
3184 while (len > 0)
3185 {
3186 gdb_assert (regnum != -1);
3187 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3188
3189 put_frame_register (frame, regnum, from);
3190 regnum = i386_next_regnum (regnum);
3191 len -= 4;
3192 from += 4;
3193 }
3194 }
3195 \f
3196 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3197 in the general-purpose register set REGSET to register cache
3198 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3199
3200 void
3201 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3202 int regnum, const void *gregs, size_t len)
3203 {
3204 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3205 const gdb_byte *regs = gregs;
3206 int i;
3207
3208 gdb_assert (len == tdep->sizeof_gregset);
3209
3210 for (i = 0; i < tdep->gregset_num_regs; i++)
3211 {
3212 if ((regnum == i || regnum == -1)
3213 && tdep->gregset_reg_offset[i] != -1)
3214 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3215 }
3216 }
3217
3218 /* Collect register REGNUM from the register cache REGCACHE and store
3219 it in the buffer specified by GREGS and LEN as described by the
3220 general-purpose register set REGSET. If REGNUM is -1, do this for
3221 all registers in REGSET. */
3222
3223 void
3224 i386_collect_gregset (const struct regset *regset,
3225 const struct regcache *regcache,
3226 int regnum, void *gregs, size_t len)
3227 {
3228 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3229 gdb_byte *regs = gregs;
3230 int i;
3231
3232 gdb_assert (len == tdep->sizeof_gregset);
3233
3234 for (i = 0; i < tdep->gregset_num_regs; i++)
3235 {
3236 if ((regnum == i || regnum == -1)
3237 && tdep->gregset_reg_offset[i] != -1)
3238 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3239 }
3240 }
3241
3242 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3243 in the floating-point register set REGSET to register cache
3244 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3245
3246 static void
3247 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3248 int regnum, const void *fpregs, size_t len)
3249 {
3250 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3251
3252 if (len == I387_SIZEOF_FXSAVE)
3253 {
3254 i387_supply_fxsave (regcache, regnum, fpregs);
3255 return;
3256 }
3257
3258 gdb_assert (len == tdep->sizeof_fpregset);
3259 i387_supply_fsave (regcache, regnum, fpregs);
3260 }
3261
3262 /* Collect register REGNUM from the register cache REGCACHE and store
3263 it in the buffer specified by FPREGS and LEN as described by the
3264 floating-point register set REGSET. If REGNUM is -1, do this for
3265 all registers in REGSET. */
3266
3267 static void
3268 i386_collect_fpregset (const struct regset *regset,
3269 const struct regcache *regcache,
3270 int regnum, void *fpregs, size_t len)
3271 {
3272 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3273
3274 if (len == I387_SIZEOF_FXSAVE)
3275 {
3276 i387_collect_fxsave (regcache, regnum, fpregs);
3277 return;
3278 }
3279
3280 gdb_assert (len == tdep->sizeof_fpregset);
3281 i387_collect_fsave (regcache, regnum, fpregs);
3282 }
3283
3284 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3285
3286 static void
3287 i386_supply_xstateregset (const struct regset *regset,
3288 struct regcache *regcache, int regnum,
3289 const void *xstateregs, size_t len)
3290 {
3291 i387_supply_xsave (regcache, regnum, xstateregs);
3292 }
3293
3294 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3295
3296 static void
3297 i386_collect_xstateregset (const struct regset *regset,
3298 const struct regcache *regcache,
3299 int regnum, void *xstateregs, size_t len)
3300 {
3301 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3302 }
3303
3304 /* Return the appropriate register set for the core section identified
3305 by SECT_NAME and SECT_SIZE. */
3306
3307 const struct regset *
3308 i386_regset_from_core_section (struct gdbarch *gdbarch,
3309 const char *sect_name, size_t sect_size)
3310 {
3311 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3312
3313 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3314 {
3315 if (tdep->gregset == NULL)
3316 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3317 i386_collect_gregset);
3318 return tdep->gregset;
3319 }
3320
3321 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3322 || (strcmp (sect_name, ".reg-xfp") == 0
3323 && sect_size == I387_SIZEOF_FXSAVE))
3324 {
3325 if (tdep->fpregset == NULL)
3326 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3327 i386_collect_fpregset);
3328 return tdep->fpregset;
3329 }
3330
3331 if (strcmp (sect_name, ".reg-xstate") == 0)
3332 {
3333 if (tdep->xstateregset == NULL)
3334 tdep->xstateregset = regset_alloc (gdbarch,
3335 i386_supply_xstateregset,
3336 i386_collect_xstateregset);
3337
3338 return tdep->xstateregset;
3339 }
3340
3341 return NULL;
3342 }
3343 \f
3344
3345 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3346
3347 CORE_ADDR
3348 i386_pe_skip_trampoline_code (struct frame_info *frame,
3349 CORE_ADDR pc, char *name)
3350 {
3351 struct gdbarch *gdbarch = get_frame_arch (frame);
3352 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3353
3354 /* jmp *(dest) */
3355 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3356 {
3357 unsigned long indirect =
3358 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3359 struct minimal_symbol *indsym =
3360 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
3361 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3362
3363 if (symname)
3364 {
3365 if (strncmp (symname, "__imp_", 6) == 0
3366 || strncmp (symname, "_imp_", 5) == 0)
3367 return name ? 1 :
3368 read_memory_unsigned_integer (indirect, 4, byte_order);
3369 }
3370 }
3371 return 0; /* Not a trampoline. */
3372 }
3373 \f
3374
3375 /* Return whether the THIS_FRAME corresponds to a sigtramp
3376 routine. */
3377
3378 int
3379 i386_sigtramp_p (struct frame_info *this_frame)
3380 {
3381 CORE_ADDR pc = get_frame_pc (this_frame);
3382 const char *name;
3383
3384 find_pc_partial_function (pc, &name, NULL, NULL);
3385 return (name && strcmp ("_sigtramp", name) == 0);
3386 }
3387 \f
3388
3389 /* We have two flavours of disassembly. The machinery on this page
3390 deals with switching between those. */
3391
3392 static int
3393 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3394 {
3395 gdb_assert (disassembly_flavor == att_flavor
3396 || disassembly_flavor == intel_flavor);
3397
3398 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3399 constified, cast to prevent a compiler warning. */
3400 info->disassembler_options = (char *) disassembly_flavor;
3401
3402 return print_insn_i386 (pc, info);
3403 }
3404 \f
3405
3406 /* There are a few i386 architecture variants that differ only
3407 slightly from the generic i386 target. For now, we don't give them
3408 their own source file, but include them here. As a consequence,
3409 they'll always be included. */
3410
3411 /* System V Release 4 (SVR4). */
3412
3413 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3414 routine. */
3415
3416 static int
3417 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3418 {
3419 CORE_ADDR pc = get_frame_pc (this_frame);
3420 const char *name;
3421
3422 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3423 currently unknown. */
3424 find_pc_partial_function (pc, &name, NULL, NULL);
3425 return (name && (strcmp ("_sigreturn", name) == 0
3426 || strcmp ("_sigacthandler", name) == 0
3427 || strcmp ("sigvechandler", name) == 0));
3428 }
3429
3430 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3431 address of the associated sigcontext (ucontext) structure. */
3432
3433 static CORE_ADDR
3434 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3435 {
3436 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3437 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3438 gdb_byte buf[4];
3439 CORE_ADDR sp;
3440
3441 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3442 sp = extract_unsigned_integer (buf, 4, byte_order);
3443
3444 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3445 }
3446
3447 \f
3448
3449 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3450 gdbarch.h. */
3451
3452 int
3453 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3454 {
3455 return (*s == '$' /* Literal number. */
3456 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3457 || (*s == '(' && s[1] == '%') /* Register indirection. */
3458 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3459 }
3460
3461 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3462 gdbarch.h. */
3463
3464 int
3465 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3466 struct stap_parse_info *p)
3467 {
3468 /* In order to parse special tokens, we use a state-machine that go
3469 through every known token and try to get a match. */
3470 enum
3471 {
3472 TRIPLET,
3473 THREE_ARG_DISPLACEMENT,
3474 DONE
3475 } current_state;
3476
3477 current_state = TRIPLET;
3478
3479 /* The special tokens to be parsed here are:
3480
3481 - `register base + (register index * size) + offset', as represented
3482 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3483
3484 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3485 `*(-8 + 3 - 1 + (void *) $eax)'. */
3486
3487 while (current_state != DONE)
3488 {
3489 const char *s = p->arg;
3490
3491 switch (current_state)
3492 {
3493 case TRIPLET:
3494 {
3495 if (isdigit (*s) || *s == '-' || *s == '+')
3496 {
3497 int got_minus[3];
3498 int i;
3499 long displacements[3];
3500 const char *start;
3501 char *regname;
3502 int len;
3503 struct stoken str;
3504
3505 got_minus[0] = 0;
3506 if (*s == '+')
3507 ++s;
3508 else if (*s == '-')
3509 {
3510 ++s;
3511 got_minus[0] = 1;
3512 }
3513
3514 displacements[0] = strtol (s, (char **) &s, 10);
3515
3516 if (*s != '+' && *s != '-')
3517 {
3518 /* We are not dealing with a triplet. */
3519 break;
3520 }
3521
3522 got_minus[1] = 0;
3523 if (*s == '+')
3524 ++s;
3525 else
3526 {
3527 ++s;
3528 got_minus[1] = 1;
3529 }
3530
3531 displacements[1] = strtol (s, (char **) &s, 10);
3532
3533 if (*s != '+' && *s != '-')
3534 {
3535 /* We are not dealing with a triplet. */
3536 break;
3537 }
3538
3539 got_minus[2] = 0;
3540 if (*s == '+')
3541 ++s;
3542 else
3543 {
3544 ++s;
3545 got_minus[2] = 1;
3546 }
3547
3548 displacements[2] = strtol (s, (char **) &s, 10);
3549
3550 if (*s != '(' || s[1] != '%')
3551 break;
3552
3553 s += 2;
3554 start = s;
3555
3556 while (isalnum (*s))
3557 ++s;
3558
3559 if (*s++ != ')')
3560 break;
3561
3562 len = s - start;
3563 regname = alloca (len + 1);
3564
3565 strncpy (regname, start, len);
3566 regname[len] = '\0';
3567
3568 if (user_reg_map_name_to_regnum (gdbarch,
3569 regname, len) == -1)
3570 error (_("Invalid register name `%s' "
3571 "on expression `%s'."),
3572 regname, p->saved_arg);
3573
3574 for (i = 0; i < 3; i++)
3575 {
3576 write_exp_elt_opcode (OP_LONG);
3577 write_exp_elt_type
3578 (builtin_type (gdbarch)->builtin_long);
3579 write_exp_elt_longcst (displacements[i]);
3580 write_exp_elt_opcode (OP_LONG);
3581 if (got_minus[i])
3582 write_exp_elt_opcode (UNOP_NEG);
3583 }
3584
3585 write_exp_elt_opcode (OP_REGISTER);
3586 str.ptr = regname;
3587 str.length = len;
3588 write_exp_string (str);
3589 write_exp_elt_opcode (OP_REGISTER);
3590
3591 write_exp_elt_opcode (UNOP_CAST);
3592 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3593 write_exp_elt_opcode (UNOP_CAST);
3594
3595 write_exp_elt_opcode (BINOP_ADD);
3596 write_exp_elt_opcode (BINOP_ADD);
3597 write_exp_elt_opcode (BINOP_ADD);
3598
3599 write_exp_elt_opcode (UNOP_CAST);
3600 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3601 write_exp_elt_opcode (UNOP_CAST);
3602
3603 write_exp_elt_opcode (UNOP_IND);
3604
3605 p->arg = s;
3606
3607 return 1;
3608 }
3609 break;
3610 }
3611 case THREE_ARG_DISPLACEMENT:
3612 {
3613 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3614 {
3615 int offset_minus = 0;
3616 long offset = 0;
3617 int size_minus = 0;
3618 long size = 0;
3619 const char *start;
3620 char *base;
3621 int len_base;
3622 char *index;
3623 int len_index;
3624 struct stoken base_token, index_token;
3625
3626 if (*s == '+')
3627 ++s;
3628 else if (*s == '-')
3629 {
3630 ++s;
3631 offset_minus = 1;
3632 }
3633
3634 if (offset_minus && !isdigit (*s))
3635 break;
3636
3637 if (isdigit (*s))
3638 offset = strtol (s, (char **) &s, 10);
3639
3640 if (*s != '(' || s[1] != '%')
3641 break;
3642
3643 s += 2;
3644 start = s;
3645
3646 while (isalnum (*s))
3647 ++s;
3648
3649 if (*s != ',' || s[1] != '%')
3650 break;
3651
3652 len_base = s - start;
3653 base = alloca (len_base + 1);
3654 strncpy (base, start, len_base);
3655 base[len_base] = '\0';
3656
3657 if (user_reg_map_name_to_regnum (gdbarch,
3658 base, len_base) == -1)
3659 error (_("Invalid register name `%s' "
3660 "on expression `%s'."),
3661 base, p->saved_arg);
3662
3663 s += 2;
3664 start = s;
3665
3666 while (isalnum (*s))
3667 ++s;
3668
3669 len_index = s - start;
3670 index = alloca (len_index + 1);
3671 strncpy (index, start, len_index);
3672 index[len_index] = '\0';
3673
3674 if (user_reg_map_name_to_regnum (gdbarch,
3675 index, len_index) == -1)
3676 error (_("Invalid register name `%s' "
3677 "on expression `%s'."),
3678 index, p->saved_arg);
3679
3680 if (*s != ',' && *s != ')')
3681 break;
3682
3683 if (*s == ',')
3684 {
3685 ++s;
3686 if (*s == '+')
3687 ++s;
3688 else if (*s == '-')
3689 {
3690 ++s;
3691 size_minus = 1;
3692 }
3693
3694 size = strtol (s, (char **) &s, 10);
3695
3696 if (*s != ')')
3697 break;
3698 }
3699
3700 ++s;
3701
3702 if (offset)
3703 {
3704 write_exp_elt_opcode (OP_LONG);
3705 write_exp_elt_type
3706 (builtin_type (gdbarch)->builtin_long);
3707 write_exp_elt_longcst (offset);
3708 write_exp_elt_opcode (OP_LONG);
3709 if (offset_minus)
3710 write_exp_elt_opcode (UNOP_NEG);
3711 }
3712
3713 write_exp_elt_opcode (OP_REGISTER);
3714 base_token.ptr = base;
3715 base_token.length = len_base;
3716 write_exp_string (base_token);
3717 write_exp_elt_opcode (OP_REGISTER);
3718
3719 if (offset)
3720 write_exp_elt_opcode (BINOP_ADD);
3721
3722 write_exp_elt_opcode (OP_REGISTER);
3723 index_token.ptr = index;
3724 index_token.length = len_index;
3725 write_exp_string (index_token);
3726 write_exp_elt_opcode (OP_REGISTER);
3727
3728 if (size)
3729 {
3730 write_exp_elt_opcode (OP_LONG);
3731 write_exp_elt_type
3732 (builtin_type (gdbarch)->builtin_long);
3733 write_exp_elt_longcst (size);
3734 write_exp_elt_opcode (OP_LONG);
3735 if (size_minus)
3736 write_exp_elt_opcode (UNOP_NEG);
3737 write_exp_elt_opcode (BINOP_MUL);
3738 }
3739
3740 write_exp_elt_opcode (BINOP_ADD);
3741
3742 write_exp_elt_opcode (UNOP_CAST);
3743 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3744 write_exp_elt_opcode (UNOP_CAST);
3745
3746 write_exp_elt_opcode (UNOP_IND);
3747
3748 p->arg = s;
3749
3750 return 1;
3751 }
3752 break;
3753 }
3754 }
3755
3756 /* Advancing to the next state. */
3757 ++current_state;
3758 }
3759
3760 return 0;
3761 }
3762
3763 \f
3764
3765 /* Generic ELF. */
3766
3767 void
3768 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3769 {
3770 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3771 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3772
3773 /* Registering SystemTap handlers. */
3774 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3775 set_gdbarch_stap_register_prefix (gdbarch, "%");
3776 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3777 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3778 set_gdbarch_stap_is_single_operand (gdbarch,
3779 i386_stap_is_single_operand);
3780 set_gdbarch_stap_parse_special_token (gdbarch,
3781 i386_stap_parse_special_token);
3782 }
3783
3784 /* System V Release 4 (SVR4). */
3785
3786 void
3787 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3788 {
3789 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3790
3791 /* System V Release 4 uses ELF. */
3792 i386_elf_init_abi (info, gdbarch);
3793
3794 /* System V Release 4 has shared libraries. */
3795 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3796
3797 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3798 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3799 tdep->sc_pc_offset = 36 + 14 * 4;
3800 tdep->sc_sp_offset = 36 + 17 * 4;
3801
3802 tdep->jb_pc_offset = 20;
3803 }
3804
3805 /* DJGPP. */
3806
3807 static void
3808 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3809 {
3810 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3811
3812 /* DJGPP doesn't have any special frames for signal handlers. */
3813 tdep->sigtramp_p = NULL;
3814
3815 tdep->jb_pc_offset = 36;
3816
3817 /* DJGPP does not support the SSE registers. */
3818 if (! tdesc_has_registers (info.target_desc))
3819 tdep->tdesc = tdesc_i386_mmx;
3820
3821 /* Native compiler is GCC, which uses the SVR4 register numbering
3822 even in COFF and STABS. See the comment in i386_gdbarch_init,
3823 before the calls to set_gdbarch_stab_reg_to_regnum and
3824 set_gdbarch_sdb_reg_to_regnum. */
3825 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3826 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3827
3828 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3829 }
3830 \f
3831
3832 /* i386 register groups. In addition to the normal groups, add "mmx"
3833 and "sse". */
3834
3835 static struct reggroup *i386_sse_reggroup;
3836 static struct reggroup *i386_mmx_reggroup;
3837
3838 static void
3839 i386_init_reggroups (void)
3840 {
3841 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3842 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3843 }
3844
3845 static void
3846 i386_add_reggroups (struct gdbarch *gdbarch)
3847 {
3848 reggroup_add (gdbarch, i386_sse_reggroup);
3849 reggroup_add (gdbarch, i386_mmx_reggroup);
3850 reggroup_add (gdbarch, general_reggroup);
3851 reggroup_add (gdbarch, float_reggroup);
3852 reggroup_add (gdbarch, all_reggroup);
3853 reggroup_add (gdbarch, save_reggroup);
3854 reggroup_add (gdbarch, restore_reggroup);
3855 reggroup_add (gdbarch, vector_reggroup);
3856 reggroup_add (gdbarch, system_reggroup);
3857 }
3858
3859 int
3860 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3861 struct reggroup *group)
3862 {
3863 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3864 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3865 ymm_regnum_p, ymmh_regnum_p;
3866
3867 /* Don't include pseudo registers, except for MMX, in any register
3868 groups. */
3869 if (i386_byte_regnum_p (gdbarch, regnum))
3870 return 0;
3871
3872 if (i386_word_regnum_p (gdbarch, regnum))
3873 return 0;
3874
3875 if (i386_dword_regnum_p (gdbarch, regnum))
3876 return 0;
3877
3878 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3879 if (group == i386_mmx_reggroup)
3880 return mmx_regnum_p;
3881
3882 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3883 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3884 if (group == i386_sse_reggroup)
3885 return xmm_regnum_p || mxcsr_regnum_p;
3886
3887 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3888 if (group == vector_reggroup)
3889 return (mmx_regnum_p
3890 || ymm_regnum_p
3891 || mxcsr_regnum_p
3892 || (xmm_regnum_p
3893 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3894 == I386_XSTATE_SSE_MASK)));
3895
3896 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3897 || i386_fpc_regnum_p (gdbarch, regnum));
3898 if (group == float_reggroup)
3899 return fp_regnum_p;
3900
3901 /* For "info reg all", don't include upper YMM registers nor XMM
3902 registers when AVX is supported. */
3903 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3904 if (group == all_reggroup
3905 && ((xmm_regnum_p
3906 && (tdep->xcr0 & I386_XSTATE_AVX))
3907 || ymmh_regnum_p))
3908 return 0;
3909
3910 if (group == general_reggroup)
3911 return (!fp_regnum_p
3912 && !mmx_regnum_p
3913 && !mxcsr_regnum_p
3914 && !xmm_regnum_p
3915 && !ymm_regnum_p
3916 && !ymmh_regnum_p);
3917
3918 return default_register_reggroup_p (gdbarch, regnum, group);
3919 }
3920 \f
3921
3922 /* Get the ARGIth function argument for the current function. */
3923
3924 static CORE_ADDR
3925 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3926 struct type *type)
3927 {
3928 struct gdbarch *gdbarch = get_frame_arch (frame);
3929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3930 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3931 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3932 }
3933
3934 static void
3935 i386_skip_permanent_breakpoint (struct regcache *regcache)
3936 {
3937 CORE_ADDR current_pc = regcache_read_pc (regcache);
3938
3939 /* On i386, breakpoint is exactly 1 byte long, so we just
3940 adjust the PC in the regcache. */
3941 current_pc += 1;
3942 regcache_write_pc (regcache, current_pc);
3943 }
3944
3945
3946 #define PREFIX_REPZ 0x01
3947 #define PREFIX_REPNZ 0x02
3948 #define PREFIX_LOCK 0x04
3949 #define PREFIX_DATA 0x08
3950 #define PREFIX_ADDR 0x10
3951
3952 /* operand size */
3953 enum
3954 {
3955 OT_BYTE = 0,
3956 OT_WORD,
3957 OT_LONG,
3958 OT_QUAD,
3959 OT_DQUAD,
3960 };
3961
3962 /* i386 arith/logic operations */
3963 enum
3964 {
3965 OP_ADDL,
3966 OP_ORL,
3967 OP_ADCL,
3968 OP_SBBL,
3969 OP_ANDL,
3970 OP_SUBL,
3971 OP_XORL,
3972 OP_CMPL,
3973 };
3974
3975 struct i386_record_s
3976 {
3977 struct gdbarch *gdbarch;
3978 struct regcache *regcache;
3979 CORE_ADDR orig_addr;
3980 CORE_ADDR addr;
3981 int aflag;
3982 int dflag;
3983 int override;
3984 uint8_t modrm;
3985 uint8_t mod, reg, rm;
3986 int ot;
3987 uint8_t rex_x;
3988 uint8_t rex_b;
3989 int rip_offset;
3990 int popl_esp_hack;
3991 const int *regmap;
3992 };
3993
3994 /* Parse the "modrm" part of the memory address irp->addr points at.
3995 Returns -1 if something goes wrong, 0 otherwise. */
3996
3997 static int
3998 i386_record_modrm (struct i386_record_s *irp)
3999 {
4000 struct gdbarch *gdbarch = irp->gdbarch;
4001
4002 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4003 return -1;
4004
4005 irp->addr++;
4006 irp->mod = (irp->modrm >> 6) & 3;
4007 irp->reg = (irp->modrm >> 3) & 7;
4008 irp->rm = irp->modrm & 7;
4009
4010 return 0;
4011 }
4012
4013 /* Extract the memory address that the current instruction writes to,
4014 and return it in *ADDR. Return -1 if something goes wrong. */
4015
4016 static int
4017 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4018 {
4019 struct gdbarch *gdbarch = irp->gdbarch;
4020 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4021 gdb_byte buf[4];
4022 ULONGEST offset64;
4023
4024 *addr = 0;
4025 if (irp->aflag)
4026 {
4027 /* 32 bits */
4028 int havesib = 0;
4029 uint8_t scale = 0;
4030 uint8_t byte;
4031 uint8_t index = 0;
4032 uint8_t base = irp->rm;
4033
4034 if (base == 4)
4035 {
4036 havesib = 1;
4037 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4038 return -1;
4039 irp->addr++;
4040 scale = (byte >> 6) & 3;
4041 index = ((byte >> 3) & 7) | irp->rex_x;
4042 base = (byte & 7);
4043 }
4044 base |= irp->rex_b;
4045
4046 switch (irp->mod)
4047 {
4048 case 0:
4049 if ((base & 7) == 5)
4050 {
4051 base = 0xff;
4052 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4053 return -1;
4054 irp->addr += 4;
4055 *addr = extract_signed_integer (buf, 4, byte_order);
4056 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4057 *addr += irp->addr + irp->rip_offset;
4058 }
4059 break;
4060 case 1:
4061 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4062 return -1;
4063 irp->addr++;
4064 *addr = (int8_t) buf[0];
4065 break;
4066 case 2:
4067 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4068 return -1;
4069 *addr = extract_signed_integer (buf, 4, byte_order);
4070 irp->addr += 4;
4071 break;
4072 }
4073
4074 offset64 = 0;
4075 if (base != 0xff)
4076 {
4077 if (base == 4 && irp->popl_esp_hack)
4078 *addr += irp->popl_esp_hack;
4079 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4080 &offset64);
4081 }
4082 if (irp->aflag == 2)
4083 {
4084 *addr += offset64;
4085 }
4086 else
4087 *addr = (uint32_t) (offset64 + *addr);
4088
4089 if (havesib && (index != 4 || scale != 0))
4090 {
4091 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4092 &offset64);
4093 if (irp->aflag == 2)
4094 *addr += offset64 << scale;
4095 else
4096 *addr = (uint32_t) (*addr + (offset64 << scale));
4097 }
4098 }
4099 else
4100 {
4101 /* 16 bits */
4102 switch (irp->mod)
4103 {
4104 case 0:
4105 if (irp->rm == 6)
4106 {
4107 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4108 return -1;
4109 irp->addr += 2;
4110 *addr = extract_signed_integer (buf, 2, byte_order);
4111 irp->rm = 0;
4112 goto no_rm;
4113 }
4114 break;
4115 case 1:
4116 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4117 return -1;
4118 irp->addr++;
4119 *addr = (int8_t) buf[0];
4120 break;
4121 case 2:
4122 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4123 return -1;
4124 irp->addr += 2;
4125 *addr = extract_signed_integer (buf, 2, byte_order);
4126 break;
4127 }
4128
4129 switch (irp->rm)
4130 {
4131 case 0:
4132 regcache_raw_read_unsigned (irp->regcache,
4133 irp->regmap[X86_RECORD_REBX_REGNUM],
4134 &offset64);
4135 *addr = (uint32_t) (*addr + offset64);
4136 regcache_raw_read_unsigned (irp->regcache,
4137 irp->regmap[X86_RECORD_RESI_REGNUM],
4138 &offset64);
4139 *addr = (uint32_t) (*addr + offset64);
4140 break;
4141 case 1:
4142 regcache_raw_read_unsigned (irp->regcache,
4143 irp->regmap[X86_RECORD_REBX_REGNUM],
4144 &offset64);
4145 *addr = (uint32_t) (*addr + offset64);
4146 regcache_raw_read_unsigned (irp->regcache,
4147 irp->regmap[X86_RECORD_REDI_REGNUM],
4148 &offset64);
4149 *addr = (uint32_t) (*addr + offset64);
4150 break;
4151 case 2:
4152 regcache_raw_read_unsigned (irp->regcache,
4153 irp->regmap[X86_RECORD_REBP_REGNUM],
4154 &offset64);
4155 *addr = (uint32_t) (*addr + offset64);
4156 regcache_raw_read_unsigned (irp->regcache,
4157 irp->regmap[X86_RECORD_RESI_REGNUM],
4158 &offset64);
4159 *addr = (uint32_t) (*addr + offset64);
4160 break;
4161 case 3:
4162 regcache_raw_read_unsigned (irp->regcache,
4163 irp->regmap[X86_RECORD_REBP_REGNUM],
4164 &offset64);
4165 *addr = (uint32_t) (*addr + offset64);
4166 regcache_raw_read_unsigned (irp->regcache,
4167 irp->regmap[X86_RECORD_REDI_REGNUM],
4168 &offset64);
4169 *addr = (uint32_t) (*addr + offset64);
4170 break;
4171 case 4:
4172 regcache_raw_read_unsigned (irp->regcache,
4173 irp->regmap[X86_RECORD_RESI_REGNUM],
4174 &offset64);
4175 *addr = (uint32_t) (*addr + offset64);
4176 break;
4177 case 5:
4178 regcache_raw_read_unsigned (irp->regcache,
4179 irp->regmap[X86_RECORD_REDI_REGNUM],
4180 &offset64);
4181 *addr = (uint32_t) (*addr + offset64);
4182 break;
4183 case 6:
4184 regcache_raw_read_unsigned (irp->regcache,
4185 irp->regmap[X86_RECORD_REBP_REGNUM],
4186 &offset64);
4187 *addr = (uint32_t) (*addr + offset64);
4188 break;
4189 case 7:
4190 regcache_raw_read_unsigned (irp->regcache,
4191 irp->regmap[X86_RECORD_REBX_REGNUM],
4192 &offset64);
4193 *addr = (uint32_t) (*addr + offset64);
4194 break;
4195 }
4196 *addr &= 0xffff;
4197 }
4198
4199 no_rm:
4200 return 0;
4201 }
4202
4203 /* Record the address and contents of the memory that will be changed
4204 by the current instruction. Return -1 if something goes wrong, 0
4205 otherwise. */
4206
4207 static int
4208 i386_record_lea_modrm (struct i386_record_s *irp)
4209 {
4210 struct gdbarch *gdbarch = irp->gdbarch;
4211 uint64_t addr;
4212
4213 if (irp->override >= 0)
4214 {
4215 if (record_memory_query)
4216 {
4217 int q;
4218
4219 target_terminal_ours ();
4220 q = yquery (_("\
4221 Process record ignores the memory change of instruction at address %s\n\
4222 because it can't get the value of the segment register.\n\
4223 Do you want to stop the program?"),
4224 paddress (gdbarch, irp->orig_addr));
4225 target_terminal_inferior ();
4226 if (q)
4227 return -1;
4228 }
4229
4230 return 0;
4231 }
4232
4233 if (i386_record_lea_modrm_addr (irp, &addr))
4234 return -1;
4235
4236 if (record_arch_list_add_mem (addr, 1 << irp->ot))
4237 return -1;
4238
4239 return 0;
4240 }
4241
4242 /* Record the effects of a push operation. Return -1 if something
4243 goes wrong, 0 otherwise. */
4244
4245 static int
4246 i386_record_push (struct i386_record_s *irp, int size)
4247 {
4248 ULONGEST addr;
4249
4250 if (record_arch_list_add_reg (irp->regcache,
4251 irp->regmap[X86_RECORD_RESP_REGNUM]))
4252 return -1;
4253 regcache_raw_read_unsigned (irp->regcache,
4254 irp->regmap[X86_RECORD_RESP_REGNUM],
4255 &addr);
4256 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4257 return -1;
4258
4259 return 0;
4260 }
4261
4262
4263 /* Defines contents to record. */
4264 #define I386_SAVE_FPU_REGS 0xfffd
4265 #define I386_SAVE_FPU_ENV 0xfffe
4266 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4267
4268 /* Record the values of the floating point registers which will be
4269 changed by the current instruction. Returns -1 if something is
4270 wrong, 0 otherwise. */
4271
4272 static int i386_record_floats (struct gdbarch *gdbarch,
4273 struct i386_record_s *ir,
4274 uint32_t iregnum)
4275 {
4276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4277 int i;
4278
4279 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4280 happen. Currently we store st0-st7 registers, but we need not store all
4281 registers all the time, in future we use ftag register and record only
4282 those who are not marked as an empty. */
4283
4284 if (I386_SAVE_FPU_REGS == iregnum)
4285 {
4286 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4287 {
4288 if (record_arch_list_add_reg (ir->regcache, i))
4289 return -1;
4290 }
4291 }
4292 else if (I386_SAVE_FPU_ENV == iregnum)
4293 {
4294 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4295 {
4296 if (record_arch_list_add_reg (ir->regcache, i))
4297 return -1;
4298 }
4299 }
4300 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4301 {
4302 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4303 {
4304 if (record_arch_list_add_reg (ir->regcache, i))
4305 return -1;
4306 }
4307 }
4308 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4309 (iregnum <= I387_FOP_REGNUM (tdep)))
4310 {
4311 if (record_arch_list_add_reg (ir->regcache,iregnum))
4312 return -1;
4313 }
4314 else
4315 {
4316 /* Parameter error. */
4317 return -1;
4318 }
4319 if(I386_SAVE_FPU_ENV != iregnum)
4320 {
4321 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4322 {
4323 if (record_arch_list_add_reg (ir->regcache, i))
4324 return -1;
4325 }
4326 }
4327 return 0;
4328 }
4329
4330 /* Parse the current instruction, and record the values of the
4331 registers and memory that will be changed by the current
4332 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4333
4334 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
4335 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4336
4337 int
4338 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4339 CORE_ADDR input_addr)
4340 {
4341 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4342 int prefixes = 0;
4343 int regnum = 0;
4344 uint32_t opcode;
4345 uint8_t opcode8;
4346 ULONGEST addr;
4347 gdb_byte buf[MAX_REGISTER_SIZE];
4348 struct i386_record_s ir;
4349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4350 int rex = 0;
4351 uint8_t rex_w = -1;
4352 uint8_t rex_r = 0;
4353
4354 memset (&ir, 0, sizeof (struct i386_record_s));
4355 ir.regcache = regcache;
4356 ir.addr = input_addr;
4357 ir.orig_addr = input_addr;
4358 ir.aflag = 1;
4359 ir.dflag = 1;
4360 ir.override = -1;
4361 ir.popl_esp_hack = 0;
4362 ir.regmap = tdep->record_regmap;
4363 ir.gdbarch = gdbarch;
4364
4365 if (record_debug > 1)
4366 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4367 "addr = %s\n",
4368 paddress (gdbarch, ir.addr));
4369
4370 /* prefixes */
4371 while (1)
4372 {
4373 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4374 return -1;
4375 ir.addr++;
4376 switch (opcode8) /* Instruction prefixes */
4377 {
4378 case REPE_PREFIX_OPCODE:
4379 prefixes |= PREFIX_REPZ;
4380 break;
4381 case REPNE_PREFIX_OPCODE:
4382 prefixes |= PREFIX_REPNZ;
4383 break;
4384 case LOCK_PREFIX_OPCODE:
4385 prefixes |= PREFIX_LOCK;
4386 break;
4387 case CS_PREFIX_OPCODE:
4388 ir.override = X86_RECORD_CS_REGNUM;
4389 break;
4390 case SS_PREFIX_OPCODE:
4391 ir.override = X86_RECORD_SS_REGNUM;
4392 break;
4393 case DS_PREFIX_OPCODE:
4394 ir.override = X86_RECORD_DS_REGNUM;
4395 break;
4396 case ES_PREFIX_OPCODE:
4397 ir.override = X86_RECORD_ES_REGNUM;
4398 break;
4399 case FS_PREFIX_OPCODE:
4400 ir.override = X86_RECORD_FS_REGNUM;
4401 break;
4402 case GS_PREFIX_OPCODE:
4403 ir.override = X86_RECORD_GS_REGNUM;
4404 break;
4405 case DATA_PREFIX_OPCODE:
4406 prefixes |= PREFIX_DATA;
4407 break;
4408 case ADDR_PREFIX_OPCODE:
4409 prefixes |= PREFIX_ADDR;
4410 break;
4411 case 0x40: /* i386 inc %eax */
4412 case 0x41: /* i386 inc %ecx */
4413 case 0x42: /* i386 inc %edx */
4414 case 0x43: /* i386 inc %ebx */
4415 case 0x44: /* i386 inc %esp */
4416 case 0x45: /* i386 inc %ebp */
4417 case 0x46: /* i386 inc %esi */
4418 case 0x47: /* i386 inc %edi */
4419 case 0x48: /* i386 dec %eax */
4420 case 0x49: /* i386 dec %ecx */
4421 case 0x4a: /* i386 dec %edx */
4422 case 0x4b: /* i386 dec %ebx */
4423 case 0x4c: /* i386 dec %esp */
4424 case 0x4d: /* i386 dec %ebp */
4425 case 0x4e: /* i386 dec %esi */
4426 case 0x4f: /* i386 dec %edi */
4427 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4428 {
4429 /* REX */
4430 rex = 1;
4431 rex_w = (opcode8 >> 3) & 1;
4432 rex_r = (opcode8 & 0x4) << 1;
4433 ir.rex_x = (opcode8 & 0x2) << 2;
4434 ir.rex_b = (opcode8 & 0x1) << 3;
4435 }
4436 else /* 32 bit target */
4437 goto out_prefixes;
4438 break;
4439 default:
4440 goto out_prefixes;
4441 break;
4442 }
4443 }
4444 out_prefixes:
4445 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4446 {
4447 ir.dflag = 2;
4448 }
4449 else
4450 {
4451 if (prefixes & PREFIX_DATA)
4452 ir.dflag ^= 1;
4453 }
4454 if (prefixes & PREFIX_ADDR)
4455 ir.aflag ^= 1;
4456 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4457 ir.aflag = 2;
4458
4459 /* Now check op code. */
4460 opcode = (uint32_t) opcode8;
4461 reswitch:
4462 switch (opcode)
4463 {
4464 case 0x0f:
4465 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4466 return -1;
4467 ir.addr++;
4468 opcode = (uint32_t) opcode8 | 0x0f00;
4469 goto reswitch;
4470 break;
4471
4472 case 0x00: /* arith & logic */
4473 case 0x01:
4474 case 0x02:
4475 case 0x03:
4476 case 0x04:
4477 case 0x05:
4478 case 0x08:
4479 case 0x09:
4480 case 0x0a:
4481 case 0x0b:
4482 case 0x0c:
4483 case 0x0d:
4484 case 0x10:
4485 case 0x11:
4486 case 0x12:
4487 case 0x13:
4488 case 0x14:
4489 case 0x15:
4490 case 0x18:
4491 case 0x19:
4492 case 0x1a:
4493 case 0x1b:
4494 case 0x1c:
4495 case 0x1d:
4496 case 0x20:
4497 case 0x21:
4498 case 0x22:
4499 case 0x23:
4500 case 0x24:
4501 case 0x25:
4502 case 0x28:
4503 case 0x29:
4504 case 0x2a:
4505 case 0x2b:
4506 case 0x2c:
4507 case 0x2d:
4508 case 0x30:
4509 case 0x31:
4510 case 0x32:
4511 case 0x33:
4512 case 0x34:
4513 case 0x35:
4514 case 0x38:
4515 case 0x39:
4516 case 0x3a:
4517 case 0x3b:
4518 case 0x3c:
4519 case 0x3d:
4520 if (((opcode >> 3) & 7) != OP_CMPL)
4521 {
4522 if ((opcode & 1) == 0)
4523 ir.ot = OT_BYTE;
4524 else
4525 ir.ot = ir.dflag + OT_WORD;
4526
4527 switch ((opcode >> 1) & 3)
4528 {
4529 case 0: /* OP Ev, Gv */
4530 if (i386_record_modrm (&ir))
4531 return -1;
4532 if (ir.mod != 3)
4533 {
4534 if (i386_record_lea_modrm (&ir))
4535 return -1;
4536 }
4537 else
4538 {
4539 ir.rm |= ir.rex_b;
4540 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4541 ir.rm &= 0x3;
4542 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4543 }
4544 break;
4545 case 1: /* OP Gv, Ev */
4546 if (i386_record_modrm (&ir))
4547 return -1;
4548 ir.reg |= rex_r;
4549 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4550 ir.reg &= 0x3;
4551 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4552 break;
4553 case 2: /* OP A, Iv */
4554 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4555 break;
4556 }
4557 }
4558 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4559 break;
4560
4561 case 0x80: /* GRP1 */
4562 case 0x81:
4563 case 0x82:
4564 case 0x83:
4565 if (i386_record_modrm (&ir))
4566 return -1;
4567
4568 if (ir.reg != OP_CMPL)
4569 {
4570 if ((opcode & 1) == 0)
4571 ir.ot = OT_BYTE;
4572 else
4573 ir.ot = ir.dflag + OT_WORD;
4574
4575 if (ir.mod != 3)
4576 {
4577 if (opcode == 0x83)
4578 ir.rip_offset = 1;
4579 else
4580 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4581 if (i386_record_lea_modrm (&ir))
4582 return -1;
4583 }
4584 else
4585 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4586 }
4587 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4588 break;
4589
4590 case 0x40: /* inc */
4591 case 0x41:
4592 case 0x42:
4593 case 0x43:
4594 case 0x44:
4595 case 0x45:
4596 case 0x46:
4597 case 0x47:
4598
4599 case 0x48: /* dec */
4600 case 0x49:
4601 case 0x4a:
4602 case 0x4b:
4603 case 0x4c:
4604 case 0x4d:
4605 case 0x4e:
4606 case 0x4f:
4607
4608 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4609 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4610 break;
4611
4612 case 0xf6: /* GRP3 */
4613 case 0xf7:
4614 if ((opcode & 1) == 0)
4615 ir.ot = OT_BYTE;
4616 else
4617 ir.ot = ir.dflag + OT_WORD;
4618 if (i386_record_modrm (&ir))
4619 return -1;
4620
4621 if (ir.mod != 3 && ir.reg == 0)
4622 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4623
4624 switch (ir.reg)
4625 {
4626 case 0: /* test */
4627 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4628 break;
4629 case 2: /* not */
4630 case 3: /* neg */
4631 if (ir.mod != 3)
4632 {
4633 if (i386_record_lea_modrm (&ir))
4634 return -1;
4635 }
4636 else
4637 {
4638 ir.rm |= ir.rex_b;
4639 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4640 ir.rm &= 0x3;
4641 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4642 }
4643 if (ir.reg == 3) /* neg */
4644 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4645 break;
4646 case 4: /* mul */
4647 case 5: /* imul */
4648 case 6: /* div */
4649 case 7: /* idiv */
4650 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4651 if (ir.ot != OT_BYTE)
4652 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4653 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4654 break;
4655 default:
4656 ir.addr -= 2;
4657 opcode = opcode << 8 | ir.modrm;
4658 goto no_support;
4659 break;
4660 }
4661 break;
4662
4663 case 0xfe: /* GRP4 */
4664 case 0xff: /* GRP5 */
4665 if (i386_record_modrm (&ir))
4666 return -1;
4667 if (ir.reg >= 2 && opcode == 0xfe)
4668 {
4669 ir.addr -= 2;
4670 opcode = opcode << 8 | ir.modrm;
4671 goto no_support;
4672 }
4673 switch (ir.reg)
4674 {
4675 case 0: /* inc */
4676 case 1: /* dec */
4677 if ((opcode & 1) == 0)
4678 ir.ot = OT_BYTE;
4679 else
4680 ir.ot = ir.dflag + OT_WORD;
4681 if (ir.mod != 3)
4682 {
4683 if (i386_record_lea_modrm (&ir))
4684 return -1;
4685 }
4686 else
4687 {
4688 ir.rm |= ir.rex_b;
4689 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4690 ir.rm &= 0x3;
4691 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4692 }
4693 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4694 break;
4695 case 2: /* call */
4696 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4697 ir.dflag = 2;
4698 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4699 return -1;
4700 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4701 break;
4702 case 3: /* lcall */
4703 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4704 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4705 return -1;
4706 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4707 break;
4708 case 4: /* jmp */
4709 case 5: /* ljmp */
4710 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4711 break;
4712 case 6: /* push */
4713 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4714 ir.dflag = 2;
4715 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4716 return -1;
4717 break;
4718 default:
4719 ir.addr -= 2;
4720 opcode = opcode << 8 | ir.modrm;
4721 goto no_support;
4722 break;
4723 }
4724 break;
4725
4726 case 0x84: /* test */
4727 case 0x85:
4728 case 0xa8:
4729 case 0xa9:
4730 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4731 break;
4732
4733 case 0x98: /* CWDE/CBW */
4734 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4735 break;
4736
4737 case 0x99: /* CDQ/CWD */
4738 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4739 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4740 break;
4741
4742 case 0x0faf: /* imul */
4743 case 0x69:
4744 case 0x6b:
4745 ir.ot = ir.dflag + OT_WORD;
4746 if (i386_record_modrm (&ir))
4747 return -1;
4748 if (opcode == 0x69)
4749 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4750 else if (opcode == 0x6b)
4751 ir.rip_offset = 1;
4752 ir.reg |= rex_r;
4753 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4754 ir.reg &= 0x3;
4755 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4756 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4757 break;
4758
4759 case 0x0fc0: /* xadd */
4760 case 0x0fc1:
4761 if ((opcode & 1) == 0)
4762 ir.ot = OT_BYTE;
4763 else
4764 ir.ot = ir.dflag + OT_WORD;
4765 if (i386_record_modrm (&ir))
4766 return -1;
4767 ir.reg |= rex_r;
4768 if (ir.mod == 3)
4769 {
4770 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4771 ir.reg &= 0x3;
4772 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4773 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4774 ir.rm &= 0x3;
4775 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4776 }
4777 else
4778 {
4779 if (i386_record_lea_modrm (&ir))
4780 return -1;
4781 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4782 ir.reg &= 0x3;
4783 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4784 }
4785 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4786 break;
4787
4788 case 0x0fb0: /* cmpxchg */
4789 case 0x0fb1:
4790 if ((opcode & 1) == 0)
4791 ir.ot = OT_BYTE;
4792 else
4793 ir.ot = ir.dflag + OT_WORD;
4794 if (i386_record_modrm (&ir))
4795 return -1;
4796 if (ir.mod == 3)
4797 {
4798 ir.reg |= rex_r;
4799 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4800 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4801 ir.reg &= 0x3;
4802 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4803 }
4804 else
4805 {
4806 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4807 if (i386_record_lea_modrm (&ir))
4808 return -1;
4809 }
4810 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4811 break;
4812
4813 case 0x0fc7: /* cmpxchg8b */
4814 if (i386_record_modrm (&ir))
4815 return -1;
4816 if (ir.mod == 3)
4817 {
4818 ir.addr -= 2;
4819 opcode = opcode << 8 | ir.modrm;
4820 goto no_support;
4821 }
4822 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4823 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4824 if (i386_record_lea_modrm (&ir))
4825 return -1;
4826 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4827 break;
4828
4829 case 0x50: /* push */
4830 case 0x51:
4831 case 0x52:
4832 case 0x53:
4833 case 0x54:
4834 case 0x55:
4835 case 0x56:
4836 case 0x57:
4837 case 0x68:
4838 case 0x6a:
4839 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4840 ir.dflag = 2;
4841 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4842 return -1;
4843 break;
4844
4845 case 0x06: /* push es */
4846 case 0x0e: /* push cs */
4847 case 0x16: /* push ss */
4848 case 0x1e: /* push ds */
4849 if (ir.regmap[X86_RECORD_R8_REGNUM])
4850 {
4851 ir.addr -= 1;
4852 goto no_support;
4853 }
4854 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4855 return -1;
4856 break;
4857
4858 case 0x0fa0: /* push fs */
4859 case 0x0fa8: /* push gs */
4860 if (ir.regmap[X86_RECORD_R8_REGNUM])
4861 {
4862 ir.addr -= 2;
4863 goto no_support;
4864 }
4865 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4866 return -1;
4867 break;
4868
4869 case 0x60: /* pusha */
4870 if (ir.regmap[X86_RECORD_R8_REGNUM])
4871 {
4872 ir.addr -= 1;
4873 goto no_support;
4874 }
4875 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4876 return -1;
4877 break;
4878
4879 case 0x58: /* pop */
4880 case 0x59:
4881 case 0x5a:
4882 case 0x5b:
4883 case 0x5c:
4884 case 0x5d:
4885 case 0x5e:
4886 case 0x5f:
4887 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4888 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4889 break;
4890
4891 case 0x61: /* popa */
4892 if (ir.regmap[X86_RECORD_R8_REGNUM])
4893 {
4894 ir.addr -= 1;
4895 goto no_support;
4896 }
4897 for (regnum = X86_RECORD_REAX_REGNUM;
4898 regnum <= X86_RECORD_REDI_REGNUM;
4899 regnum++)
4900 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4901 break;
4902
4903 case 0x8f: /* pop */
4904 if (ir.regmap[X86_RECORD_R8_REGNUM])
4905 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4906 else
4907 ir.ot = ir.dflag + OT_WORD;
4908 if (i386_record_modrm (&ir))
4909 return -1;
4910 if (ir.mod == 3)
4911 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4912 else
4913 {
4914 ir.popl_esp_hack = 1 << ir.ot;
4915 if (i386_record_lea_modrm (&ir))
4916 return -1;
4917 }
4918 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4919 break;
4920
4921 case 0xc8: /* enter */
4922 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4923 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4924 ir.dflag = 2;
4925 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4926 return -1;
4927 break;
4928
4929 case 0xc9: /* leave */
4930 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4931 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4932 break;
4933
4934 case 0x07: /* pop es */
4935 if (ir.regmap[X86_RECORD_R8_REGNUM])
4936 {
4937 ir.addr -= 1;
4938 goto no_support;
4939 }
4940 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4941 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4942 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4943 break;
4944
4945 case 0x17: /* pop ss */
4946 if (ir.regmap[X86_RECORD_R8_REGNUM])
4947 {
4948 ir.addr -= 1;
4949 goto no_support;
4950 }
4951 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4952 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4953 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4954 break;
4955
4956 case 0x1f: /* pop ds */
4957 if (ir.regmap[X86_RECORD_R8_REGNUM])
4958 {
4959 ir.addr -= 1;
4960 goto no_support;
4961 }
4962 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4963 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4964 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4965 break;
4966
4967 case 0x0fa1: /* pop fs */
4968 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4969 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4970 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4971 break;
4972
4973 case 0x0fa9: /* pop gs */
4974 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4975 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4976 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4977 break;
4978
4979 case 0x88: /* mov */
4980 case 0x89:
4981 case 0xc6:
4982 case 0xc7:
4983 if ((opcode & 1) == 0)
4984 ir.ot = OT_BYTE;
4985 else
4986 ir.ot = ir.dflag + OT_WORD;
4987
4988 if (i386_record_modrm (&ir))
4989 return -1;
4990
4991 if (ir.mod != 3)
4992 {
4993 if (opcode == 0xc6 || opcode == 0xc7)
4994 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4995 if (i386_record_lea_modrm (&ir))
4996 return -1;
4997 }
4998 else
4999 {
5000 if (opcode == 0xc6 || opcode == 0xc7)
5001 ir.rm |= ir.rex_b;
5002 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5003 ir.rm &= 0x3;
5004 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5005 }
5006 break;
5007
5008 case 0x8a: /* mov */
5009 case 0x8b:
5010 if ((opcode & 1) == 0)
5011 ir.ot = OT_BYTE;
5012 else
5013 ir.ot = ir.dflag + OT_WORD;
5014 if (i386_record_modrm (&ir))
5015 return -1;
5016 ir.reg |= rex_r;
5017 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5018 ir.reg &= 0x3;
5019 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5020 break;
5021
5022 case 0x8c: /* mov seg */
5023 if (i386_record_modrm (&ir))
5024 return -1;
5025 if (ir.reg > 5)
5026 {
5027 ir.addr -= 2;
5028 opcode = opcode << 8 | ir.modrm;
5029 goto no_support;
5030 }
5031
5032 if (ir.mod == 3)
5033 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5034 else
5035 {
5036 ir.ot = OT_WORD;
5037 if (i386_record_lea_modrm (&ir))
5038 return -1;
5039 }
5040 break;
5041
5042 case 0x8e: /* mov seg */
5043 if (i386_record_modrm (&ir))
5044 return -1;
5045 switch (ir.reg)
5046 {
5047 case 0:
5048 regnum = X86_RECORD_ES_REGNUM;
5049 break;
5050 case 2:
5051 regnum = X86_RECORD_SS_REGNUM;
5052 break;
5053 case 3:
5054 regnum = X86_RECORD_DS_REGNUM;
5055 break;
5056 case 4:
5057 regnum = X86_RECORD_FS_REGNUM;
5058 break;
5059 case 5:
5060 regnum = X86_RECORD_GS_REGNUM;
5061 break;
5062 default:
5063 ir.addr -= 2;
5064 opcode = opcode << 8 | ir.modrm;
5065 goto no_support;
5066 break;
5067 }
5068 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
5069 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5070 break;
5071
5072 case 0x0fb6: /* movzbS */
5073 case 0x0fb7: /* movzwS */
5074 case 0x0fbe: /* movsbS */
5075 case 0x0fbf: /* movswS */
5076 if (i386_record_modrm (&ir))
5077 return -1;
5078 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5079 break;
5080
5081 case 0x8d: /* lea */
5082 if (i386_record_modrm (&ir))
5083 return -1;
5084 if (ir.mod == 3)
5085 {
5086 ir.addr -= 2;
5087 opcode = opcode << 8 | ir.modrm;
5088 goto no_support;
5089 }
5090 ir.ot = ir.dflag;
5091 ir.reg |= rex_r;
5092 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5093 ir.reg &= 0x3;
5094 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5095 break;
5096
5097 case 0xa0: /* mov EAX */
5098 case 0xa1:
5099
5100 case 0xd7: /* xlat */
5101 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5102 break;
5103
5104 case 0xa2: /* mov EAX */
5105 case 0xa3:
5106 if (ir.override >= 0)
5107 {
5108 if (record_memory_query)
5109 {
5110 int q;
5111
5112 target_terminal_ours ();
5113 q = yquery (_("\
5114 Process record ignores the memory change of instruction at address %s\n\
5115 because it can't get the value of the segment register.\n\
5116 Do you want to stop the program?"),
5117 paddress (gdbarch, ir.orig_addr));
5118 target_terminal_inferior ();
5119 if (q)
5120 return -1;
5121 }
5122 }
5123 else
5124 {
5125 if ((opcode & 1) == 0)
5126 ir.ot = OT_BYTE;
5127 else
5128 ir.ot = ir.dflag + OT_WORD;
5129 if (ir.aflag == 2)
5130 {
5131 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5132 return -1;
5133 ir.addr += 8;
5134 addr = extract_unsigned_integer (buf, 8, byte_order);
5135 }
5136 else if (ir.aflag)
5137 {
5138 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5139 return -1;
5140 ir.addr += 4;
5141 addr = extract_unsigned_integer (buf, 4, byte_order);
5142 }
5143 else
5144 {
5145 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5146 return -1;
5147 ir.addr += 2;
5148 addr = extract_unsigned_integer (buf, 2, byte_order);
5149 }
5150 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5151 return -1;
5152 }
5153 break;
5154
5155 case 0xb0: /* mov R, Ib */
5156 case 0xb1:
5157 case 0xb2:
5158 case 0xb3:
5159 case 0xb4:
5160 case 0xb5:
5161 case 0xb6:
5162 case 0xb7:
5163 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5164 ? ((opcode & 0x7) | ir.rex_b)
5165 : ((opcode & 0x7) & 0x3));
5166 break;
5167
5168 case 0xb8: /* mov R, Iv */
5169 case 0xb9:
5170 case 0xba:
5171 case 0xbb:
5172 case 0xbc:
5173 case 0xbd:
5174 case 0xbe:
5175 case 0xbf:
5176 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5177 break;
5178
5179 case 0x91: /* xchg R, EAX */
5180 case 0x92:
5181 case 0x93:
5182 case 0x94:
5183 case 0x95:
5184 case 0x96:
5185 case 0x97:
5186 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5187 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
5188 break;
5189
5190 case 0x86: /* xchg Ev, Gv */
5191 case 0x87:
5192 if ((opcode & 1) == 0)
5193 ir.ot = OT_BYTE;
5194 else
5195 ir.ot = ir.dflag + OT_WORD;
5196 if (i386_record_modrm (&ir))
5197 return -1;
5198 if (ir.mod == 3)
5199 {
5200 ir.rm |= ir.rex_b;
5201 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5202 ir.rm &= 0x3;
5203 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5204 }
5205 else
5206 {
5207 if (i386_record_lea_modrm (&ir))
5208 return -1;
5209 }
5210 ir.reg |= rex_r;
5211 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5212 ir.reg &= 0x3;
5213 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5214 break;
5215
5216 case 0xc4: /* les Gv */
5217 case 0xc5: /* lds Gv */
5218 if (ir.regmap[X86_RECORD_R8_REGNUM])
5219 {
5220 ir.addr -= 1;
5221 goto no_support;
5222 }
5223 /* FALLTHROUGH */
5224 case 0x0fb2: /* lss Gv */
5225 case 0x0fb4: /* lfs Gv */
5226 case 0x0fb5: /* lgs Gv */
5227 if (i386_record_modrm (&ir))
5228 return -1;
5229 if (ir.mod == 3)
5230 {
5231 if (opcode > 0xff)
5232 ir.addr -= 3;
5233 else
5234 ir.addr -= 2;
5235 opcode = opcode << 8 | ir.modrm;
5236 goto no_support;
5237 }
5238 switch (opcode)
5239 {
5240 case 0xc4: /* les Gv */
5241 regnum = X86_RECORD_ES_REGNUM;
5242 break;
5243 case 0xc5: /* lds Gv */
5244 regnum = X86_RECORD_DS_REGNUM;
5245 break;
5246 case 0x0fb2: /* lss Gv */
5247 regnum = X86_RECORD_SS_REGNUM;
5248 break;
5249 case 0x0fb4: /* lfs Gv */
5250 regnum = X86_RECORD_FS_REGNUM;
5251 break;
5252 case 0x0fb5: /* lgs Gv */
5253 regnum = X86_RECORD_GS_REGNUM;
5254 break;
5255 }
5256 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
5257 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5258 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5259 break;
5260
5261 case 0xc0: /* shifts */
5262 case 0xc1:
5263 case 0xd0:
5264 case 0xd1:
5265 case 0xd2:
5266 case 0xd3:
5267 if ((opcode & 1) == 0)
5268 ir.ot = OT_BYTE;
5269 else
5270 ir.ot = ir.dflag + OT_WORD;
5271 if (i386_record_modrm (&ir))
5272 return -1;
5273 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5274 {
5275 if (i386_record_lea_modrm (&ir))
5276 return -1;
5277 }
5278 else
5279 {
5280 ir.rm |= ir.rex_b;
5281 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5282 ir.rm &= 0x3;
5283 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5284 }
5285 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5286 break;
5287
5288 case 0x0fa4:
5289 case 0x0fa5:
5290 case 0x0fac:
5291 case 0x0fad:
5292 if (i386_record_modrm (&ir))
5293 return -1;
5294 if (ir.mod == 3)
5295 {
5296 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5297 return -1;
5298 }
5299 else
5300 {
5301 if (i386_record_lea_modrm (&ir))
5302 return -1;
5303 }
5304 break;
5305
5306 case 0xd8: /* Floats. */
5307 case 0xd9:
5308 case 0xda:
5309 case 0xdb:
5310 case 0xdc:
5311 case 0xdd:
5312 case 0xde:
5313 case 0xdf:
5314 if (i386_record_modrm (&ir))
5315 return -1;
5316 ir.reg |= ((opcode & 7) << 3);
5317 if (ir.mod != 3)
5318 {
5319 /* Memory. */
5320 uint64_t addr64;
5321
5322 if (i386_record_lea_modrm_addr (&ir, &addr64))
5323 return -1;
5324 switch (ir.reg)
5325 {
5326 case 0x02:
5327 case 0x12:
5328 case 0x22:
5329 case 0x32:
5330 /* For fcom, ficom nothing to do. */
5331 break;
5332 case 0x03:
5333 case 0x13:
5334 case 0x23:
5335 case 0x33:
5336 /* For fcomp, ficomp pop FPU stack, store all. */
5337 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5338 return -1;
5339 break;
5340 case 0x00:
5341 case 0x01:
5342 case 0x04:
5343 case 0x05:
5344 case 0x06:
5345 case 0x07:
5346 case 0x10:
5347 case 0x11:
5348 case 0x14:
5349 case 0x15:
5350 case 0x16:
5351 case 0x17:
5352 case 0x20:
5353 case 0x21:
5354 case 0x24:
5355 case 0x25:
5356 case 0x26:
5357 case 0x27:
5358 case 0x30:
5359 case 0x31:
5360 case 0x34:
5361 case 0x35:
5362 case 0x36:
5363 case 0x37:
5364 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5365 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5366 of code, always affects st(0) register. */
5367 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5368 return -1;
5369 break;
5370 case 0x08:
5371 case 0x0a:
5372 case 0x0b:
5373 case 0x18:
5374 case 0x19:
5375 case 0x1a:
5376 case 0x1b:
5377 case 0x1d:
5378 case 0x28:
5379 case 0x29:
5380 case 0x2a:
5381 case 0x2b:
5382 case 0x38:
5383 case 0x39:
5384 case 0x3a:
5385 case 0x3b:
5386 case 0x3c:
5387 case 0x3d:
5388 switch (ir.reg & 7)
5389 {
5390 case 0:
5391 /* Handling fld, fild. */
5392 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5393 return -1;
5394 break;
5395 case 1:
5396 switch (ir.reg >> 4)
5397 {
5398 case 0:
5399 if (record_arch_list_add_mem (addr64, 4))
5400 return -1;
5401 break;
5402 case 2:
5403 if (record_arch_list_add_mem (addr64, 8))
5404 return -1;
5405 break;
5406 case 3:
5407 break;
5408 default:
5409 if (record_arch_list_add_mem (addr64, 2))
5410 return -1;
5411 break;
5412 }
5413 break;
5414 default:
5415 switch (ir.reg >> 4)
5416 {
5417 case 0:
5418 if (record_arch_list_add_mem (addr64, 4))
5419 return -1;
5420 if (3 == (ir.reg & 7))
5421 {
5422 /* For fstp m32fp. */
5423 if (i386_record_floats (gdbarch, &ir,
5424 I386_SAVE_FPU_REGS))
5425 return -1;
5426 }
5427 break;
5428 case 1:
5429 if (record_arch_list_add_mem (addr64, 4))
5430 return -1;
5431 if ((3 == (ir.reg & 7))
5432 || (5 == (ir.reg & 7))
5433 || (7 == (ir.reg & 7)))
5434 {
5435 /* For fstp insn. */
5436 if (i386_record_floats (gdbarch, &ir,
5437 I386_SAVE_FPU_REGS))
5438 return -1;
5439 }
5440 break;
5441 case 2:
5442 if (record_arch_list_add_mem (addr64, 8))
5443 return -1;
5444 if (3 == (ir.reg & 7))
5445 {
5446 /* For fstp m64fp. */
5447 if (i386_record_floats (gdbarch, &ir,
5448 I386_SAVE_FPU_REGS))
5449 return -1;
5450 }
5451 break;
5452 case 3:
5453 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5454 {
5455 /* For fistp, fbld, fild, fbstp. */
5456 if (i386_record_floats (gdbarch, &ir,
5457 I386_SAVE_FPU_REGS))
5458 return -1;
5459 }
5460 /* Fall through */
5461 default:
5462 if (record_arch_list_add_mem (addr64, 2))
5463 return -1;
5464 break;
5465 }
5466 break;
5467 }
5468 break;
5469 case 0x0c:
5470 /* Insn fldenv. */
5471 if (i386_record_floats (gdbarch, &ir,
5472 I386_SAVE_FPU_ENV_REG_STACK))
5473 return -1;
5474 break;
5475 case 0x0d:
5476 /* Insn fldcw. */
5477 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5478 return -1;
5479 break;
5480 case 0x2c:
5481 /* Insn frstor. */
5482 if (i386_record_floats (gdbarch, &ir,
5483 I386_SAVE_FPU_ENV_REG_STACK))
5484 return -1;
5485 break;
5486 case 0x0e:
5487 if (ir.dflag)
5488 {
5489 if (record_arch_list_add_mem (addr64, 28))
5490 return -1;
5491 }
5492 else
5493 {
5494 if (record_arch_list_add_mem (addr64, 14))
5495 return -1;
5496 }
5497 break;
5498 case 0x0f:
5499 case 0x2f:
5500 if (record_arch_list_add_mem (addr64, 2))
5501 return -1;
5502 /* Insn fstp, fbstp. */
5503 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5504 return -1;
5505 break;
5506 case 0x1f:
5507 case 0x3e:
5508 if (record_arch_list_add_mem (addr64, 10))
5509 return -1;
5510 break;
5511 case 0x2e:
5512 if (ir.dflag)
5513 {
5514 if (record_arch_list_add_mem (addr64, 28))
5515 return -1;
5516 addr64 += 28;
5517 }
5518 else
5519 {
5520 if (record_arch_list_add_mem (addr64, 14))
5521 return -1;
5522 addr64 += 14;
5523 }
5524 if (record_arch_list_add_mem (addr64, 80))
5525 return -1;
5526 /* Insn fsave. */
5527 if (i386_record_floats (gdbarch, &ir,
5528 I386_SAVE_FPU_ENV_REG_STACK))
5529 return -1;
5530 break;
5531 case 0x3f:
5532 if (record_arch_list_add_mem (addr64, 8))
5533 return -1;
5534 /* Insn fistp. */
5535 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5536 return -1;
5537 break;
5538 default:
5539 ir.addr -= 2;
5540 opcode = opcode << 8 | ir.modrm;
5541 goto no_support;
5542 break;
5543 }
5544 }
5545 /* Opcode is an extension of modR/M byte. */
5546 else
5547 {
5548 switch (opcode)
5549 {
5550 case 0xd8:
5551 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5552 return -1;
5553 break;
5554 case 0xd9:
5555 if (0x0c == (ir.modrm >> 4))
5556 {
5557 if ((ir.modrm & 0x0f) <= 7)
5558 {
5559 if (i386_record_floats (gdbarch, &ir,
5560 I386_SAVE_FPU_REGS))
5561 return -1;
5562 }
5563 else
5564 {
5565 if (i386_record_floats (gdbarch, &ir,
5566 I387_ST0_REGNUM (tdep)))
5567 return -1;
5568 /* If only st(0) is changing, then we have already
5569 recorded. */
5570 if ((ir.modrm & 0x0f) - 0x08)
5571 {
5572 if (i386_record_floats (gdbarch, &ir,
5573 I387_ST0_REGNUM (tdep) +
5574 ((ir.modrm & 0x0f) - 0x08)))
5575 return -1;
5576 }
5577 }
5578 }
5579 else
5580 {
5581 switch (ir.modrm)
5582 {
5583 case 0xe0:
5584 case 0xe1:
5585 case 0xf0:
5586 case 0xf5:
5587 case 0xf8:
5588 case 0xfa:
5589 case 0xfc:
5590 case 0xfe:
5591 case 0xff:
5592 if (i386_record_floats (gdbarch, &ir,
5593 I387_ST0_REGNUM (tdep)))
5594 return -1;
5595 break;
5596 case 0xf1:
5597 case 0xf2:
5598 case 0xf3:
5599 case 0xf4:
5600 case 0xf6:
5601 case 0xf7:
5602 case 0xe8:
5603 case 0xe9:
5604 case 0xea:
5605 case 0xeb:
5606 case 0xec:
5607 case 0xed:
5608 case 0xee:
5609 case 0xf9:
5610 case 0xfb:
5611 if (i386_record_floats (gdbarch, &ir,
5612 I386_SAVE_FPU_REGS))
5613 return -1;
5614 break;
5615 case 0xfd:
5616 if (i386_record_floats (gdbarch, &ir,
5617 I387_ST0_REGNUM (tdep)))
5618 return -1;
5619 if (i386_record_floats (gdbarch, &ir,
5620 I387_ST0_REGNUM (tdep) + 1))
5621 return -1;
5622 break;
5623 }
5624 }
5625 break;
5626 case 0xda:
5627 if (0xe9 == ir.modrm)
5628 {
5629 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5630 return -1;
5631 }
5632 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5633 {
5634 if (i386_record_floats (gdbarch, &ir,
5635 I387_ST0_REGNUM (tdep)))
5636 return -1;
5637 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5638 {
5639 if (i386_record_floats (gdbarch, &ir,
5640 I387_ST0_REGNUM (tdep) +
5641 (ir.modrm & 0x0f)))
5642 return -1;
5643 }
5644 else if ((ir.modrm & 0x0f) - 0x08)
5645 {
5646 if (i386_record_floats (gdbarch, &ir,
5647 I387_ST0_REGNUM (tdep) +
5648 ((ir.modrm & 0x0f) - 0x08)))
5649 return -1;
5650 }
5651 }
5652 break;
5653 case 0xdb:
5654 if (0xe3 == ir.modrm)
5655 {
5656 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5657 return -1;
5658 }
5659 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5660 {
5661 if (i386_record_floats (gdbarch, &ir,
5662 I387_ST0_REGNUM (tdep)))
5663 return -1;
5664 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5665 {
5666 if (i386_record_floats (gdbarch, &ir,
5667 I387_ST0_REGNUM (tdep) +
5668 (ir.modrm & 0x0f)))
5669 return -1;
5670 }
5671 else if ((ir.modrm & 0x0f) - 0x08)
5672 {
5673 if (i386_record_floats (gdbarch, &ir,
5674 I387_ST0_REGNUM (tdep) +
5675 ((ir.modrm & 0x0f) - 0x08)))
5676 return -1;
5677 }
5678 }
5679 break;
5680 case 0xdc:
5681 if ((0x0c == ir.modrm >> 4)
5682 || (0x0d == ir.modrm >> 4)
5683 || (0x0f == ir.modrm >> 4))
5684 {
5685 if ((ir.modrm & 0x0f) <= 7)
5686 {
5687 if (i386_record_floats (gdbarch, &ir,
5688 I387_ST0_REGNUM (tdep) +
5689 (ir.modrm & 0x0f)))
5690 return -1;
5691 }
5692 else
5693 {
5694 if (i386_record_floats (gdbarch, &ir,
5695 I387_ST0_REGNUM (tdep) +
5696 ((ir.modrm & 0x0f) - 0x08)))
5697 return -1;
5698 }
5699 }
5700 break;
5701 case 0xdd:
5702 if (0x0c == ir.modrm >> 4)
5703 {
5704 if (i386_record_floats (gdbarch, &ir,
5705 I387_FTAG_REGNUM (tdep)))
5706 return -1;
5707 }
5708 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5709 {
5710 if ((ir.modrm & 0x0f) <= 7)
5711 {
5712 if (i386_record_floats (gdbarch, &ir,
5713 I387_ST0_REGNUM (tdep) +
5714 (ir.modrm & 0x0f)))
5715 return -1;
5716 }
5717 else
5718 {
5719 if (i386_record_floats (gdbarch, &ir,
5720 I386_SAVE_FPU_REGS))
5721 return -1;
5722 }
5723 }
5724 break;
5725 case 0xde:
5726 if ((0x0c == ir.modrm >> 4)
5727 || (0x0e == ir.modrm >> 4)
5728 || (0x0f == ir.modrm >> 4)
5729 || (0xd9 == ir.modrm))
5730 {
5731 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5732 return -1;
5733 }
5734 break;
5735 case 0xdf:
5736 if (0xe0 == ir.modrm)
5737 {
5738 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5739 return -1;
5740 }
5741 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5742 {
5743 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5744 return -1;
5745 }
5746 break;
5747 }
5748 }
5749 break;
5750 /* string ops */
5751 case 0xa4: /* movsS */
5752 case 0xa5:
5753 case 0xaa: /* stosS */
5754 case 0xab:
5755 case 0x6c: /* insS */
5756 case 0x6d:
5757 regcache_raw_read_unsigned (ir.regcache,
5758 ir.regmap[X86_RECORD_RECX_REGNUM],
5759 &addr);
5760 if (addr)
5761 {
5762 ULONGEST es, ds;
5763
5764 if ((opcode & 1) == 0)
5765 ir.ot = OT_BYTE;
5766 else
5767 ir.ot = ir.dflag + OT_WORD;
5768 regcache_raw_read_unsigned (ir.regcache,
5769 ir.regmap[X86_RECORD_REDI_REGNUM],
5770 &addr);
5771
5772 regcache_raw_read_unsigned (ir.regcache,
5773 ir.regmap[X86_RECORD_ES_REGNUM],
5774 &es);
5775 regcache_raw_read_unsigned (ir.regcache,
5776 ir.regmap[X86_RECORD_DS_REGNUM],
5777 &ds);
5778 if (ir.aflag && (es != ds))
5779 {
5780 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5781 if (record_memory_query)
5782 {
5783 int q;
5784
5785 target_terminal_ours ();
5786 q = yquery (_("\
5787 Process record ignores the memory change of instruction at address %s\n\
5788 because it can't get the value of the segment register.\n\
5789 Do you want to stop the program?"),
5790 paddress (gdbarch, ir.orig_addr));
5791 target_terminal_inferior ();
5792 if (q)
5793 return -1;
5794 }
5795 }
5796 else
5797 {
5798 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5799 return -1;
5800 }
5801
5802 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5803 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5804 if (opcode == 0xa4 || opcode == 0xa5)
5805 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5806 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5807 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5808 }
5809 break;
5810
5811 case 0xa6: /* cmpsS */
5812 case 0xa7:
5813 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5814 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5815 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5816 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5817 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5818 break;
5819
5820 case 0xac: /* lodsS */
5821 case 0xad:
5822 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5823 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5824 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5825 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5826 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5827 break;
5828
5829 case 0xae: /* scasS */
5830 case 0xaf:
5831 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5832 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5833 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5834 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5835 break;
5836
5837 case 0x6e: /* outsS */
5838 case 0x6f:
5839 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5840 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5841 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5842 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5843 break;
5844
5845 case 0xe4: /* port I/O */
5846 case 0xe5:
5847 case 0xec:
5848 case 0xed:
5849 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5850 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5851 break;
5852
5853 case 0xe6:
5854 case 0xe7:
5855 case 0xee:
5856 case 0xef:
5857 break;
5858
5859 /* control */
5860 case 0xc2: /* ret im */
5861 case 0xc3: /* ret */
5862 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5863 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5864 break;
5865
5866 case 0xca: /* lret im */
5867 case 0xcb: /* lret */
5868 case 0xcf: /* iret */
5869 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5870 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5871 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5872 break;
5873
5874 case 0xe8: /* call im */
5875 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5876 ir.dflag = 2;
5877 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5878 return -1;
5879 break;
5880
5881 case 0x9a: /* lcall im */
5882 if (ir.regmap[X86_RECORD_R8_REGNUM])
5883 {
5884 ir.addr -= 1;
5885 goto no_support;
5886 }
5887 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5888 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5889 return -1;
5890 break;
5891
5892 case 0xe9: /* jmp im */
5893 case 0xea: /* ljmp im */
5894 case 0xeb: /* jmp Jb */
5895 case 0x70: /* jcc Jb */
5896 case 0x71:
5897 case 0x72:
5898 case 0x73:
5899 case 0x74:
5900 case 0x75:
5901 case 0x76:
5902 case 0x77:
5903 case 0x78:
5904 case 0x79:
5905 case 0x7a:
5906 case 0x7b:
5907 case 0x7c:
5908 case 0x7d:
5909 case 0x7e:
5910 case 0x7f:
5911 case 0x0f80: /* jcc Jv */
5912 case 0x0f81:
5913 case 0x0f82:
5914 case 0x0f83:
5915 case 0x0f84:
5916 case 0x0f85:
5917 case 0x0f86:
5918 case 0x0f87:
5919 case 0x0f88:
5920 case 0x0f89:
5921 case 0x0f8a:
5922 case 0x0f8b:
5923 case 0x0f8c:
5924 case 0x0f8d:
5925 case 0x0f8e:
5926 case 0x0f8f:
5927 break;
5928
5929 case 0x0f90: /* setcc Gv */
5930 case 0x0f91:
5931 case 0x0f92:
5932 case 0x0f93:
5933 case 0x0f94:
5934 case 0x0f95:
5935 case 0x0f96:
5936 case 0x0f97:
5937 case 0x0f98:
5938 case 0x0f99:
5939 case 0x0f9a:
5940 case 0x0f9b:
5941 case 0x0f9c:
5942 case 0x0f9d:
5943 case 0x0f9e:
5944 case 0x0f9f:
5945 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5946 ir.ot = OT_BYTE;
5947 if (i386_record_modrm (&ir))
5948 return -1;
5949 if (ir.mod == 3)
5950 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5951 : (ir.rm & 0x3));
5952 else
5953 {
5954 if (i386_record_lea_modrm (&ir))
5955 return -1;
5956 }
5957 break;
5958
5959 case 0x0f40: /* cmov Gv, Ev */
5960 case 0x0f41:
5961 case 0x0f42:
5962 case 0x0f43:
5963 case 0x0f44:
5964 case 0x0f45:
5965 case 0x0f46:
5966 case 0x0f47:
5967 case 0x0f48:
5968 case 0x0f49:
5969 case 0x0f4a:
5970 case 0x0f4b:
5971 case 0x0f4c:
5972 case 0x0f4d:
5973 case 0x0f4e:
5974 case 0x0f4f:
5975 if (i386_record_modrm (&ir))
5976 return -1;
5977 ir.reg |= rex_r;
5978 if (ir.dflag == OT_BYTE)
5979 ir.reg &= 0x3;
5980 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5981 break;
5982
5983 /* flags */
5984 case 0x9c: /* pushf */
5985 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5986 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5987 ir.dflag = 2;
5988 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5989 return -1;
5990 break;
5991
5992 case 0x9d: /* popf */
5993 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5994 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5995 break;
5996
5997 case 0x9e: /* sahf */
5998 if (ir.regmap[X86_RECORD_R8_REGNUM])
5999 {
6000 ir.addr -= 1;
6001 goto no_support;
6002 }
6003 /* FALLTHROUGH */
6004 case 0xf5: /* cmc */
6005 case 0xf8: /* clc */
6006 case 0xf9: /* stc */
6007 case 0xfc: /* cld */
6008 case 0xfd: /* std */
6009 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6010 break;
6011
6012 case 0x9f: /* lahf */
6013 if (ir.regmap[X86_RECORD_R8_REGNUM])
6014 {
6015 ir.addr -= 1;
6016 goto no_support;
6017 }
6018 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6019 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6020 break;
6021
6022 /* bit operations */
6023 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6024 ir.ot = ir.dflag + OT_WORD;
6025 if (i386_record_modrm (&ir))
6026 return -1;
6027 if (ir.reg < 4)
6028 {
6029 ir.addr -= 2;
6030 opcode = opcode << 8 | ir.modrm;
6031 goto no_support;
6032 }
6033 if (ir.reg != 4)
6034 {
6035 if (ir.mod == 3)
6036 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6037 else
6038 {
6039 if (i386_record_lea_modrm (&ir))
6040 return -1;
6041 }
6042 }
6043 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6044 break;
6045
6046 case 0x0fa3: /* bt Gv, Ev */
6047 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6048 break;
6049
6050 case 0x0fab: /* bts */
6051 case 0x0fb3: /* btr */
6052 case 0x0fbb: /* btc */
6053 ir.ot = ir.dflag + OT_WORD;
6054 if (i386_record_modrm (&ir))
6055 return -1;
6056 if (ir.mod == 3)
6057 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6058 else
6059 {
6060 uint64_t addr64;
6061 if (i386_record_lea_modrm_addr (&ir, &addr64))
6062 return -1;
6063 regcache_raw_read_unsigned (ir.regcache,
6064 ir.regmap[ir.reg | rex_r],
6065 &addr);
6066 switch (ir.dflag)
6067 {
6068 case 0:
6069 addr64 += ((int16_t) addr >> 4) << 4;
6070 break;
6071 case 1:
6072 addr64 += ((int32_t) addr >> 5) << 5;
6073 break;
6074 case 2:
6075 addr64 += ((int64_t) addr >> 6) << 6;
6076 break;
6077 }
6078 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
6079 return -1;
6080 if (i386_record_lea_modrm (&ir))
6081 return -1;
6082 }
6083 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6084 break;
6085
6086 case 0x0fbc: /* bsf */
6087 case 0x0fbd: /* bsr */
6088 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6089 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6090 break;
6091
6092 /* bcd */
6093 case 0x27: /* daa */
6094 case 0x2f: /* das */
6095 case 0x37: /* aaa */
6096 case 0x3f: /* aas */
6097 case 0xd4: /* aam */
6098 case 0xd5: /* aad */
6099 if (ir.regmap[X86_RECORD_R8_REGNUM])
6100 {
6101 ir.addr -= 1;
6102 goto no_support;
6103 }
6104 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6105 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6106 break;
6107
6108 /* misc */
6109 case 0x90: /* nop */
6110 if (prefixes & PREFIX_LOCK)
6111 {
6112 ir.addr -= 1;
6113 goto no_support;
6114 }
6115 break;
6116
6117 case 0x9b: /* fwait */
6118 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6119 return -1;
6120 opcode = (uint32_t) opcode8;
6121 ir.addr++;
6122 goto reswitch;
6123 break;
6124
6125 /* XXX */
6126 case 0xcc: /* int3 */
6127 printf_unfiltered (_("Process record does not support instruction "
6128 "int3.\n"));
6129 ir.addr -= 1;
6130 goto no_support;
6131 break;
6132
6133 /* XXX */
6134 case 0xcd: /* int */
6135 {
6136 int ret;
6137 uint8_t interrupt;
6138 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6139 return -1;
6140 ir.addr++;
6141 if (interrupt != 0x80
6142 || tdep->i386_intx80_record == NULL)
6143 {
6144 printf_unfiltered (_("Process record does not support "
6145 "instruction int 0x%02x.\n"),
6146 interrupt);
6147 ir.addr -= 2;
6148 goto no_support;
6149 }
6150 ret = tdep->i386_intx80_record (ir.regcache);
6151 if (ret)
6152 return ret;
6153 }
6154 break;
6155
6156 /* XXX */
6157 case 0xce: /* into */
6158 printf_unfiltered (_("Process record does not support "
6159 "instruction into.\n"));
6160 ir.addr -= 1;
6161 goto no_support;
6162 break;
6163
6164 case 0xfa: /* cli */
6165 case 0xfb: /* sti */
6166 break;
6167
6168 case 0x62: /* bound */
6169 printf_unfiltered (_("Process record does not support "
6170 "instruction bound.\n"));
6171 ir.addr -= 1;
6172 goto no_support;
6173 break;
6174
6175 case 0x0fc8: /* bswap reg */
6176 case 0x0fc9:
6177 case 0x0fca:
6178 case 0x0fcb:
6179 case 0x0fcc:
6180 case 0x0fcd:
6181 case 0x0fce:
6182 case 0x0fcf:
6183 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6184 break;
6185
6186 case 0xd6: /* salc */
6187 if (ir.regmap[X86_RECORD_R8_REGNUM])
6188 {
6189 ir.addr -= 1;
6190 goto no_support;
6191 }
6192 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6193 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6194 break;
6195
6196 case 0xe0: /* loopnz */
6197 case 0xe1: /* loopz */
6198 case 0xe2: /* loop */
6199 case 0xe3: /* jecxz */
6200 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6201 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6202 break;
6203
6204 case 0x0f30: /* wrmsr */
6205 printf_unfiltered (_("Process record does not support "
6206 "instruction wrmsr.\n"));
6207 ir.addr -= 2;
6208 goto no_support;
6209 break;
6210
6211 case 0x0f32: /* rdmsr */
6212 printf_unfiltered (_("Process record does not support "
6213 "instruction rdmsr.\n"));
6214 ir.addr -= 2;
6215 goto no_support;
6216 break;
6217
6218 case 0x0f31: /* rdtsc */
6219 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6220 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6221 break;
6222
6223 case 0x0f34: /* sysenter */
6224 {
6225 int ret;
6226 if (ir.regmap[X86_RECORD_R8_REGNUM])
6227 {
6228 ir.addr -= 2;
6229 goto no_support;
6230 }
6231 if (tdep->i386_sysenter_record == NULL)
6232 {
6233 printf_unfiltered (_("Process record does not support "
6234 "instruction sysenter.\n"));
6235 ir.addr -= 2;
6236 goto no_support;
6237 }
6238 ret = tdep->i386_sysenter_record (ir.regcache);
6239 if (ret)
6240 return ret;
6241 }
6242 break;
6243
6244 case 0x0f35: /* sysexit */
6245 printf_unfiltered (_("Process record does not support "
6246 "instruction sysexit.\n"));
6247 ir.addr -= 2;
6248 goto no_support;
6249 break;
6250
6251 case 0x0f05: /* syscall */
6252 {
6253 int ret;
6254 if (tdep->i386_syscall_record == NULL)
6255 {
6256 printf_unfiltered (_("Process record does not support "
6257 "instruction syscall.\n"));
6258 ir.addr -= 2;
6259 goto no_support;
6260 }
6261 ret = tdep->i386_syscall_record (ir.regcache);
6262 if (ret)
6263 return ret;
6264 }
6265 break;
6266
6267 case 0x0f07: /* sysret */
6268 printf_unfiltered (_("Process record does not support "
6269 "instruction sysret.\n"));
6270 ir.addr -= 2;
6271 goto no_support;
6272 break;
6273
6274 case 0x0fa2: /* cpuid */
6275 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6276 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6277 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6278 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6279 break;
6280
6281 case 0xf4: /* hlt */
6282 printf_unfiltered (_("Process record does not support "
6283 "instruction hlt.\n"));
6284 ir.addr -= 1;
6285 goto no_support;
6286 break;
6287
6288 case 0x0f00:
6289 if (i386_record_modrm (&ir))
6290 return -1;
6291 switch (ir.reg)
6292 {
6293 case 0: /* sldt */
6294 case 1: /* str */
6295 if (ir.mod == 3)
6296 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6297 else
6298 {
6299 ir.ot = OT_WORD;
6300 if (i386_record_lea_modrm (&ir))
6301 return -1;
6302 }
6303 break;
6304 case 2: /* lldt */
6305 case 3: /* ltr */
6306 break;
6307 case 4: /* verr */
6308 case 5: /* verw */
6309 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6310 break;
6311 default:
6312 ir.addr -= 3;
6313 opcode = opcode << 8 | ir.modrm;
6314 goto no_support;
6315 break;
6316 }
6317 break;
6318
6319 case 0x0f01:
6320 if (i386_record_modrm (&ir))
6321 return -1;
6322 switch (ir.reg)
6323 {
6324 case 0: /* sgdt */
6325 {
6326 uint64_t addr64;
6327
6328 if (ir.mod == 3)
6329 {
6330 ir.addr -= 3;
6331 opcode = opcode << 8 | ir.modrm;
6332 goto no_support;
6333 }
6334 if (ir.override >= 0)
6335 {
6336 if (record_memory_query)
6337 {
6338 int q;
6339
6340 target_terminal_ours ();
6341 q = yquery (_("\
6342 Process record ignores the memory change of instruction at address %s\n\
6343 because it can't get the value of the segment register.\n\
6344 Do you want to stop the program?"),
6345 paddress (gdbarch, ir.orig_addr));
6346 target_terminal_inferior ();
6347 if (q)
6348 return -1;
6349 }
6350 }
6351 else
6352 {
6353 if (i386_record_lea_modrm_addr (&ir, &addr64))
6354 return -1;
6355 if (record_arch_list_add_mem (addr64, 2))
6356 return -1;
6357 addr64 += 2;
6358 if (ir.regmap[X86_RECORD_R8_REGNUM])
6359 {
6360 if (record_arch_list_add_mem (addr64, 8))
6361 return -1;
6362 }
6363 else
6364 {
6365 if (record_arch_list_add_mem (addr64, 4))
6366 return -1;
6367 }
6368 }
6369 }
6370 break;
6371 case 1:
6372 if (ir.mod == 3)
6373 {
6374 switch (ir.rm)
6375 {
6376 case 0: /* monitor */
6377 break;
6378 case 1: /* mwait */
6379 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6380 break;
6381 default:
6382 ir.addr -= 3;
6383 opcode = opcode << 8 | ir.modrm;
6384 goto no_support;
6385 break;
6386 }
6387 }
6388 else
6389 {
6390 /* sidt */
6391 if (ir.override >= 0)
6392 {
6393 if (record_memory_query)
6394 {
6395 int q;
6396
6397 target_terminal_ours ();
6398 q = yquery (_("\
6399 Process record ignores the memory change of instruction at address %s\n\
6400 because it can't get the value of the segment register.\n\
6401 Do you want to stop the program?"),
6402 paddress (gdbarch, ir.orig_addr));
6403 target_terminal_inferior ();
6404 if (q)
6405 return -1;
6406 }
6407 }
6408 else
6409 {
6410 uint64_t addr64;
6411
6412 if (i386_record_lea_modrm_addr (&ir, &addr64))
6413 return -1;
6414 if (record_arch_list_add_mem (addr64, 2))
6415 return -1;
6416 addr64 += 2;
6417 if (ir.regmap[X86_RECORD_R8_REGNUM])
6418 {
6419 if (record_arch_list_add_mem (addr64, 8))
6420 return -1;
6421 }
6422 else
6423 {
6424 if (record_arch_list_add_mem (addr64, 4))
6425 return -1;
6426 }
6427 }
6428 }
6429 break;
6430 case 2: /* lgdt */
6431 if (ir.mod == 3)
6432 {
6433 /* xgetbv */
6434 if (ir.rm == 0)
6435 {
6436 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6437 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6438 break;
6439 }
6440 /* xsetbv */
6441 else if (ir.rm == 1)
6442 break;
6443 }
6444 case 3: /* lidt */
6445 if (ir.mod == 3)
6446 {
6447 ir.addr -= 3;
6448 opcode = opcode << 8 | ir.modrm;
6449 goto no_support;
6450 }
6451 break;
6452 case 4: /* smsw */
6453 if (ir.mod == 3)
6454 {
6455 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6456 return -1;
6457 }
6458 else
6459 {
6460 ir.ot = OT_WORD;
6461 if (i386_record_lea_modrm (&ir))
6462 return -1;
6463 }
6464 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6465 break;
6466 case 6: /* lmsw */
6467 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6468 break;
6469 case 7: /* invlpg */
6470 if (ir.mod == 3)
6471 {
6472 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6473 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6474 else
6475 {
6476 ir.addr -= 3;
6477 opcode = opcode << 8 | ir.modrm;
6478 goto no_support;
6479 }
6480 }
6481 else
6482 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6483 break;
6484 default:
6485 ir.addr -= 3;
6486 opcode = opcode << 8 | ir.modrm;
6487 goto no_support;
6488 break;
6489 }
6490 break;
6491
6492 case 0x0f08: /* invd */
6493 case 0x0f09: /* wbinvd */
6494 break;
6495
6496 case 0x63: /* arpl */
6497 if (i386_record_modrm (&ir))
6498 return -1;
6499 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6500 {
6501 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6502 ? (ir.reg | rex_r) : ir.rm);
6503 }
6504 else
6505 {
6506 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6507 if (i386_record_lea_modrm (&ir))
6508 return -1;
6509 }
6510 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6511 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6512 break;
6513
6514 case 0x0f02: /* lar */
6515 case 0x0f03: /* lsl */
6516 if (i386_record_modrm (&ir))
6517 return -1;
6518 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6519 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6520 break;
6521
6522 case 0x0f18:
6523 if (i386_record_modrm (&ir))
6524 return -1;
6525 if (ir.mod == 3 && ir.reg == 3)
6526 {
6527 ir.addr -= 3;
6528 opcode = opcode << 8 | ir.modrm;
6529 goto no_support;
6530 }
6531 break;
6532
6533 case 0x0f19:
6534 case 0x0f1a:
6535 case 0x0f1b:
6536 case 0x0f1c:
6537 case 0x0f1d:
6538 case 0x0f1e:
6539 case 0x0f1f:
6540 /* nop (multi byte) */
6541 break;
6542
6543 case 0x0f20: /* mov reg, crN */
6544 case 0x0f22: /* mov crN, reg */
6545 if (i386_record_modrm (&ir))
6546 return -1;
6547 if ((ir.modrm & 0xc0) != 0xc0)
6548 {
6549 ir.addr -= 3;
6550 opcode = opcode << 8 | ir.modrm;
6551 goto no_support;
6552 }
6553 switch (ir.reg)
6554 {
6555 case 0:
6556 case 2:
6557 case 3:
6558 case 4:
6559 case 8:
6560 if (opcode & 2)
6561 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6562 else
6563 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6564 break;
6565 default:
6566 ir.addr -= 3;
6567 opcode = opcode << 8 | ir.modrm;
6568 goto no_support;
6569 break;
6570 }
6571 break;
6572
6573 case 0x0f21: /* mov reg, drN */
6574 case 0x0f23: /* mov drN, reg */
6575 if (i386_record_modrm (&ir))
6576 return -1;
6577 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6578 || ir.reg == 5 || ir.reg >= 8)
6579 {
6580 ir.addr -= 3;
6581 opcode = opcode << 8 | ir.modrm;
6582 goto no_support;
6583 }
6584 if (opcode & 2)
6585 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6586 else
6587 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6588 break;
6589
6590 case 0x0f06: /* clts */
6591 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6592 break;
6593
6594 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6595
6596 case 0x0f0d: /* 3DNow! prefetch */
6597 break;
6598
6599 case 0x0f0e: /* 3DNow! femms */
6600 case 0x0f77: /* emms */
6601 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6602 goto no_support;
6603 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6604 break;
6605
6606 case 0x0f0f: /* 3DNow! data */
6607 if (i386_record_modrm (&ir))
6608 return -1;
6609 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6610 return -1;
6611 ir.addr++;
6612 switch (opcode8)
6613 {
6614 case 0x0c: /* 3DNow! pi2fw */
6615 case 0x0d: /* 3DNow! pi2fd */
6616 case 0x1c: /* 3DNow! pf2iw */
6617 case 0x1d: /* 3DNow! pf2id */
6618 case 0x8a: /* 3DNow! pfnacc */
6619 case 0x8e: /* 3DNow! pfpnacc */
6620 case 0x90: /* 3DNow! pfcmpge */
6621 case 0x94: /* 3DNow! pfmin */
6622 case 0x96: /* 3DNow! pfrcp */
6623 case 0x97: /* 3DNow! pfrsqrt */
6624 case 0x9a: /* 3DNow! pfsub */
6625 case 0x9e: /* 3DNow! pfadd */
6626 case 0xa0: /* 3DNow! pfcmpgt */
6627 case 0xa4: /* 3DNow! pfmax */
6628 case 0xa6: /* 3DNow! pfrcpit1 */
6629 case 0xa7: /* 3DNow! pfrsqit1 */
6630 case 0xaa: /* 3DNow! pfsubr */
6631 case 0xae: /* 3DNow! pfacc */
6632 case 0xb0: /* 3DNow! pfcmpeq */
6633 case 0xb4: /* 3DNow! pfmul */
6634 case 0xb6: /* 3DNow! pfrcpit2 */
6635 case 0xb7: /* 3DNow! pmulhrw */
6636 case 0xbb: /* 3DNow! pswapd */
6637 case 0xbf: /* 3DNow! pavgusb */
6638 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6639 goto no_support_3dnow_data;
6640 record_arch_list_add_reg (ir.regcache, ir.reg);
6641 break;
6642
6643 default:
6644 no_support_3dnow_data:
6645 opcode = (opcode << 8) | opcode8;
6646 goto no_support;
6647 break;
6648 }
6649 break;
6650
6651 case 0x0faa: /* rsm */
6652 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6653 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6654 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6655 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6656 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6657 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6658 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6659 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6660 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6661 break;
6662
6663 case 0x0fae:
6664 if (i386_record_modrm (&ir))
6665 return -1;
6666 switch(ir.reg)
6667 {
6668 case 0: /* fxsave */
6669 {
6670 uint64_t tmpu64;
6671
6672 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6673 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6674 return -1;
6675 if (record_arch_list_add_mem (tmpu64, 512))
6676 return -1;
6677 }
6678 break;
6679
6680 case 1: /* fxrstor */
6681 {
6682 int i;
6683
6684 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6685
6686 for (i = I387_MM0_REGNUM (tdep);
6687 i386_mmx_regnum_p (gdbarch, i); i++)
6688 record_arch_list_add_reg (ir.regcache, i);
6689
6690 for (i = I387_XMM0_REGNUM (tdep);
6691 i386_xmm_regnum_p (gdbarch, i); i++)
6692 record_arch_list_add_reg (ir.regcache, i);
6693
6694 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6695 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6696
6697 for (i = I387_ST0_REGNUM (tdep);
6698 i386_fp_regnum_p (gdbarch, i); i++)
6699 record_arch_list_add_reg (ir.regcache, i);
6700
6701 for (i = I387_FCTRL_REGNUM (tdep);
6702 i386_fpc_regnum_p (gdbarch, i); i++)
6703 record_arch_list_add_reg (ir.regcache, i);
6704 }
6705 break;
6706
6707 case 2: /* ldmxcsr */
6708 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6709 goto no_support;
6710 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6711 break;
6712
6713 case 3: /* stmxcsr */
6714 ir.ot = OT_LONG;
6715 if (i386_record_lea_modrm (&ir))
6716 return -1;
6717 break;
6718
6719 case 5: /* lfence */
6720 case 6: /* mfence */
6721 case 7: /* sfence clflush */
6722 break;
6723
6724 default:
6725 opcode = (opcode << 8) | ir.modrm;
6726 goto no_support;
6727 break;
6728 }
6729 break;
6730
6731 case 0x0fc3: /* movnti */
6732 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6733 if (i386_record_modrm (&ir))
6734 return -1;
6735 if (ir.mod == 3)
6736 goto no_support;
6737 ir.reg |= rex_r;
6738 if (i386_record_lea_modrm (&ir))
6739 return -1;
6740 break;
6741
6742 /* Add prefix to opcode. */
6743 case 0x0f10:
6744 case 0x0f11:
6745 case 0x0f12:
6746 case 0x0f13:
6747 case 0x0f14:
6748 case 0x0f15:
6749 case 0x0f16:
6750 case 0x0f17:
6751 case 0x0f28:
6752 case 0x0f29:
6753 case 0x0f2a:
6754 case 0x0f2b:
6755 case 0x0f2c:
6756 case 0x0f2d:
6757 case 0x0f2e:
6758 case 0x0f2f:
6759 case 0x0f38:
6760 case 0x0f39:
6761 case 0x0f3a:
6762 case 0x0f50:
6763 case 0x0f51:
6764 case 0x0f52:
6765 case 0x0f53:
6766 case 0x0f54:
6767 case 0x0f55:
6768 case 0x0f56:
6769 case 0x0f57:
6770 case 0x0f58:
6771 case 0x0f59:
6772 case 0x0f5a:
6773 case 0x0f5b:
6774 case 0x0f5c:
6775 case 0x0f5d:
6776 case 0x0f5e:
6777 case 0x0f5f:
6778 case 0x0f60:
6779 case 0x0f61:
6780 case 0x0f62:
6781 case 0x0f63:
6782 case 0x0f64:
6783 case 0x0f65:
6784 case 0x0f66:
6785 case 0x0f67:
6786 case 0x0f68:
6787 case 0x0f69:
6788 case 0x0f6a:
6789 case 0x0f6b:
6790 case 0x0f6c:
6791 case 0x0f6d:
6792 case 0x0f6e:
6793 case 0x0f6f:
6794 case 0x0f70:
6795 case 0x0f71:
6796 case 0x0f72:
6797 case 0x0f73:
6798 case 0x0f74:
6799 case 0x0f75:
6800 case 0x0f76:
6801 case 0x0f7c:
6802 case 0x0f7d:
6803 case 0x0f7e:
6804 case 0x0f7f:
6805 case 0x0fb8:
6806 case 0x0fc2:
6807 case 0x0fc4:
6808 case 0x0fc5:
6809 case 0x0fc6:
6810 case 0x0fd0:
6811 case 0x0fd1:
6812 case 0x0fd2:
6813 case 0x0fd3:
6814 case 0x0fd4:
6815 case 0x0fd5:
6816 case 0x0fd6:
6817 case 0x0fd7:
6818 case 0x0fd8:
6819 case 0x0fd9:
6820 case 0x0fda:
6821 case 0x0fdb:
6822 case 0x0fdc:
6823 case 0x0fdd:
6824 case 0x0fde:
6825 case 0x0fdf:
6826 case 0x0fe0:
6827 case 0x0fe1:
6828 case 0x0fe2:
6829 case 0x0fe3:
6830 case 0x0fe4:
6831 case 0x0fe5:
6832 case 0x0fe6:
6833 case 0x0fe7:
6834 case 0x0fe8:
6835 case 0x0fe9:
6836 case 0x0fea:
6837 case 0x0feb:
6838 case 0x0fec:
6839 case 0x0fed:
6840 case 0x0fee:
6841 case 0x0fef:
6842 case 0x0ff0:
6843 case 0x0ff1:
6844 case 0x0ff2:
6845 case 0x0ff3:
6846 case 0x0ff4:
6847 case 0x0ff5:
6848 case 0x0ff6:
6849 case 0x0ff7:
6850 case 0x0ff8:
6851 case 0x0ff9:
6852 case 0x0ffa:
6853 case 0x0ffb:
6854 case 0x0ffc:
6855 case 0x0ffd:
6856 case 0x0ffe:
6857 switch (prefixes)
6858 {
6859 case PREFIX_REPNZ:
6860 opcode |= 0xf20000;
6861 break;
6862 case PREFIX_DATA:
6863 opcode |= 0x660000;
6864 break;
6865 case PREFIX_REPZ:
6866 opcode |= 0xf30000;
6867 break;
6868 }
6869 reswitch_prefix_add:
6870 switch (opcode)
6871 {
6872 case 0x0f38:
6873 case 0x660f38:
6874 case 0xf20f38:
6875 case 0x0f3a:
6876 case 0x660f3a:
6877 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6878 return -1;
6879 ir.addr++;
6880 opcode = (uint32_t) opcode8 | opcode << 8;
6881 goto reswitch_prefix_add;
6882 break;
6883
6884 case 0x0f10: /* movups */
6885 case 0x660f10: /* movupd */
6886 case 0xf30f10: /* movss */
6887 case 0xf20f10: /* movsd */
6888 case 0x0f12: /* movlps */
6889 case 0x660f12: /* movlpd */
6890 case 0xf30f12: /* movsldup */
6891 case 0xf20f12: /* movddup */
6892 case 0x0f14: /* unpcklps */
6893 case 0x660f14: /* unpcklpd */
6894 case 0x0f15: /* unpckhps */
6895 case 0x660f15: /* unpckhpd */
6896 case 0x0f16: /* movhps */
6897 case 0x660f16: /* movhpd */
6898 case 0xf30f16: /* movshdup */
6899 case 0x0f28: /* movaps */
6900 case 0x660f28: /* movapd */
6901 case 0x0f2a: /* cvtpi2ps */
6902 case 0x660f2a: /* cvtpi2pd */
6903 case 0xf30f2a: /* cvtsi2ss */
6904 case 0xf20f2a: /* cvtsi2sd */
6905 case 0x0f2c: /* cvttps2pi */
6906 case 0x660f2c: /* cvttpd2pi */
6907 case 0x0f2d: /* cvtps2pi */
6908 case 0x660f2d: /* cvtpd2pi */
6909 case 0x660f3800: /* pshufb */
6910 case 0x660f3801: /* phaddw */
6911 case 0x660f3802: /* phaddd */
6912 case 0x660f3803: /* phaddsw */
6913 case 0x660f3804: /* pmaddubsw */
6914 case 0x660f3805: /* phsubw */
6915 case 0x660f3806: /* phsubd */
6916 case 0x660f3807: /* phsubsw */
6917 case 0x660f3808: /* psignb */
6918 case 0x660f3809: /* psignw */
6919 case 0x660f380a: /* psignd */
6920 case 0x660f380b: /* pmulhrsw */
6921 case 0x660f3810: /* pblendvb */
6922 case 0x660f3814: /* blendvps */
6923 case 0x660f3815: /* blendvpd */
6924 case 0x660f381c: /* pabsb */
6925 case 0x660f381d: /* pabsw */
6926 case 0x660f381e: /* pabsd */
6927 case 0x660f3820: /* pmovsxbw */
6928 case 0x660f3821: /* pmovsxbd */
6929 case 0x660f3822: /* pmovsxbq */
6930 case 0x660f3823: /* pmovsxwd */
6931 case 0x660f3824: /* pmovsxwq */
6932 case 0x660f3825: /* pmovsxdq */
6933 case 0x660f3828: /* pmuldq */
6934 case 0x660f3829: /* pcmpeqq */
6935 case 0x660f382a: /* movntdqa */
6936 case 0x660f3a08: /* roundps */
6937 case 0x660f3a09: /* roundpd */
6938 case 0x660f3a0a: /* roundss */
6939 case 0x660f3a0b: /* roundsd */
6940 case 0x660f3a0c: /* blendps */
6941 case 0x660f3a0d: /* blendpd */
6942 case 0x660f3a0e: /* pblendw */
6943 case 0x660f3a0f: /* palignr */
6944 case 0x660f3a20: /* pinsrb */
6945 case 0x660f3a21: /* insertps */
6946 case 0x660f3a22: /* pinsrd pinsrq */
6947 case 0x660f3a40: /* dpps */
6948 case 0x660f3a41: /* dppd */
6949 case 0x660f3a42: /* mpsadbw */
6950 case 0x660f3a60: /* pcmpestrm */
6951 case 0x660f3a61: /* pcmpestri */
6952 case 0x660f3a62: /* pcmpistrm */
6953 case 0x660f3a63: /* pcmpistri */
6954 case 0x0f51: /* sqrtps */
6955 case 0x660f51: /* sqrtpd */
6956 case 0xf20f51: /* sqrtsd */
6957 case 0xf30f51: /* sqrtss */
6958 case 0x0f52: /* rsqrtps */
6959 case 0xf30f52: /* rsqrtss */
6960 case 0x0f53: /* rcpps */
6961 case 0xf30f53: /* rcpss */
6962 case 0x0f54: /* andps */
6963 case 0x660f54: /* andpd */
6964 case 0x0f55: /* andnps */
6965 case 0x660f55: /* andnpd */
6966 case 0x0f56: /* orps */
6967 case 0x660f56: /* orpd */
6968 case 0x0f57: /* xorps */
6969 case 0x660f57: /* xorpd */
6970 case 0x0f58: /* addps */
6971 case 0x660f58: /* addpd */
6972 case 0xf20f58: /* addsd */
6973 case 0xf30f58: /* addss */
6974 case 0x0f59: /* mulps */
6975 case 0x660f59: /* mulpd */
6976 case 0xf20f59: /* mulsd */
6977 case 0xf30f59: /* mulss */
6978 case 0x0f5a: /* cvtps2pd */
6979 case 0x660f5a: /* cvtpd2ps */
6980 case 0xf20f5a: /* cvtsd2ss */
6981 case 0xf30f5a: /* cvtss2sd */
6982 case 0x0f5b: /* cvtdq2ps */
6983 case 0x660f5b: /* cvtps2dq */
6984 case 0xf30f5b: /* cvttps2dq */
6985 case 0x0f5c: /* subps */
6986 case 0x660f5c: /* subpd */
6987 case 0xf20f5c: /* subsd */
6988 case 0xf30f5c: /* subss */
6989 case 0x0f5d: /* minps */
6990 case 0x660f5d: /* minpd */
6991 case 0xf20f5d: /* minsd */
6992 case 0xf30f5d: /* minss */
6993 case 0x0f5e: /* divps */
6994 case 0x660f5e: /* divpd */
6995 case 0xf20f5e: /* divsd */
6996 case 0xf30f5e: /* divss */
6997 case 0x0f5f: /* maxps */
6998 case 0x660f5f: /* maxpd */
6999 case 0xf20f5f: /* maxsd */
7000 case 0xf30f5f: /* maxss */
7001 case 0x660f60: /* punpcklbw */
7002 case 0x660f61: /* punpcklwd */
7003 case 0x660f62: /* punpckldq */
7004 case 0x660f63: /* packsswb */
7005 case 0x660f64: /* pcmpgtb */
7006 case 0x660f65: /* pcmpgtw */
7007 case 0x660f66: /* pcmpgtd */
7008 case 0x660f67: /* packuswb */
7009 case 0x660f68: /* punpckhbw */
7010 case 0x660f69: /* punpckhwd */
7011 case 0x660f6a: /* punpckhdq */
7012 case 0x660f6b: /* packssdw */
7013 case 0x660f6c: /* punpcklqdq */
7014 case 0x660f6d: /* punpckhqdq */
7015 case 0x660f6e: /* movd */
7016 case 0x660f6f: /* movdqa */
7017 case 0xf30f6f: /* movdqu */
7018 case 0x660f70: /* pshufd */
7019 case 0xf20f70: /* pshuflw */
7020 case 0xf30f70: /* pshufhw */
7021 case 0x660f74: /* pcmpeqb */
7022 case 0x660f75: /* pcmpeqw */
7023 case 0x660f76: /* pcmpeqd */
7024 case 0x660f7c: /* haddpd */
7025 case 0xf20f7c: /* haddps */
7026 case 0x660f7d: /* hsubpd */
7027 case 0xf20f7d: /* hsubps */
7028 case 0xf30f7e: /* movq */
7029 case 0x0fc2: /* cmpps */
7030 case 0x660fc2: /* cmppd */
7031 case 0xf20fc2: /* cmpsd */
7032 case 0xf30fc2: /* cmpss */
7033 case 0x660fc4: /* pinsrw */
7034 case 0x0fc6: /* shufps */
7035 case 0x660fc6: /* shufpd */
7036 case 0x660fd0: /* addsubpd */
7037 case 0xf20fd0: /* addsubps */
7038 case 0x660fd1: /* psrlw */
7039 case 0x660fd2: /* psrld */
7040 case 0x660fd3: /* psrlq */
7041 case 0x660fd4: /* paddq */
7042 case 0x660fd5: /* pmullw */
7043 case 0xf30fd6: /* movq2dq */
7044 case 0x660fd8: /* psubusb */
7045 case 0x660fd9: /* psubusw */
7046 case 0x660fda: /* pminub */
7047 case 0x660fdb: /* pand */
7048 case 0x660fdc: /* paddusb */
7049 case 0x660fdd: /* paddusw */
7050 case 0x660fde: /* pmaxub */
7051 case 0x660fdf: /* pandn */
7052 case 0x660fe0: /* pavgb */
7053 case 0x660fe1: /* psraw */
7054 case 0x660fe2: /* psrad */
7055 case 0x660fe3: /* pavgw */
7056 case 0x660fe4: /* pmulhuw */
7057 case 0x660fe5: /* pmulhw */
7058 case 0x660fe6: /* cvttpd2dq */
7059 case 0xf20fe6: /* cvtpd2dq */
7060 case 0xf30fe6: /* cvtdq2pd */
7061 case 0x660fe8: /* psubsb */
7062 case 0x660fe9: /* psubsw */
7063 case 0x660fea: /* pminsw */
7064 case 0x660feb: /* por */
7065 case 0x660fec: /* paddsb */
7066 case 0x660fed: /* paddsw */
7067 case 0x660fee: /* pmaxsw */
7068 case 0x660fef: /* pxor */
7069 case 0xf20ff0: /* lddqu */
7070 case 0x660ff1: /* psllw */
7071 case 0x660ff2: /* pslld */
7072 case 0x660ff3: /* psllq */
7073 case 0x660ff4: /* pmuludq */
7074 case 0x660ff5: /* pmaddwd */
7075 case 0x660ff6: /* psadbw */
7076 case 0x660ff8: /* psubb */
7077 case 0x660ff9: /* psubw */
7078 case 0x660ffa: /* psubd */
7079 case 0x660ffb: /* psubq */
7080 case 0x660ffc: /* paddb */
7081 case 0x660ffd: /* paddw */
7082 case 0x660ffe: /* paddd */
7083 if (i386_record_modrm (&ir))
7084 return -1;
7085 ir.reg |= rex_r;
7086 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7087 goto no_support;
7088 record_arch_list_add_reg (ir.regcache,
7089 I387_XMM0_REGNUM (tdep) + ir.reg);
7090 if ((opcode & 0xfffffffc) == 0x660f3a60)
7091 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7092 break;
7093
7094 case 0x0f11: /* movups */
7095 case 0x660f11: /* movupd */
7096 case 0xf30f11: /* movss */
7097 case 0xf20f11: /* movsd */
7098 case 0x0f13: /* movlps */
7099 case 0x660f13: /* movlpd */
7100 case 0x0f17: /* movhps */
7101 case 0x660f17: /* movhpd */
7102 case 0x0f29: /* movaps */
7103 case 0x660f29: /* movapd */
7104 case 0x660f3a14: /* pextrb */
7105 case 0x660f3a15: /* pextrw */
7106 case 0x660f3a16: /* pextrd pextrq */
7107 case 0x660f3a17: /* extractps */
7108 case 0x660f7f: /* movdqa */
7109 case 0xf30f7f: /* movdqu */
7110 if (i386_record_modrm (&ir))
7111 return -1;
7112 if (ir.mod == 3)
7113 {
7114 if (opcode == 0x0f13 || opcode == 0x660f13
7115 || opcode == 0x0f17 || opcode == 0x660f17)
7116 goto no_support;
7117 ir.rm |= ir.rex_b;
7118 if (!i386_xmm_regnum_p (gdbarch,
7119 I387_XMM0_REGNUM (tdep) + ir.rm))
7120 goto no_support;
7121 record_arch_list_add_reg (ir.regcache,
7122 I387_XMM0_REGNUM (tdep) + ir.rm);
7123 }
7124 else
7125 {
7126 switch (opcode)
7127 {
7128 case 0x660f3a14:
7129 ir.ot = OT_BYTE;
7130 break;
7131 case 0x660f3a15:
7132 ir.ot = OT_WORD;
7133 break;
7134 case 0x660f3a16:
7135 ir.ot = OT_LONG;
7136 break;
7137 case 0x660f3a17:
7138 ir.ot = OT_QUAD;
7139 break;
7140 default:
7141 ir.ot = OT_DQUAD;
7142 break;
7143 }
7144 if (i386_record_lea_modrm (&ir))
7145 return -1;
7146 }
7147 break;
7148
7149 case 0x0f2b: /* movntps */
7150 case 0x660f2b: /* movntpd */
7151 case 0x0fe7: /* movntq */
7152 case 0x660fe7: /* movntdq */
7153 if (ir.mod == 3)
7154 goto no_support;
7155 if (opcode == 0x0fe7)
7156 ir.ot = OT_QUAD;
7157 else
7158 ir.ot = OT_DQUAD;
7159 if (i386_record_lea_modrm (&ir))
7160 return -1;
7161 break;
7162
7163 case 0xf30f2c: /* cvttss2si */
7164 case 0xf20f2c: /* cvttsd2si */
7165 case 0xf30f2d: /* cvtss2si */
7166 case 0xf20f2d: /* cvtsd2si */
7167 case 0xf20f38f0: /* crc32 */
7168 case 0xf20f38f1: /* crc32 */
7169 case 0x0f50: /* movmskps */
7170 case 0x660f50: /* movmskpd */
7171 case 0x0fc5: /* pextrw */
7172 case 0x660fc5: /* pextrw */
7173 case 0x0fd7: /* pmovmskb */
7174 case 0x660fd7: /* pmovmskb */
7175 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7176 break;
7177
7178 case 0x0f3800: /* pshufb */
7179 case 0x0f3801: /* phaddw */
7180 case 0x0f3802: /* phaddd */
7181 case 0x0f3803: /* phaddsw */
7182 case 0x0f3804: /* pmaddubsw */
7183 case 0x0f3805: /* phsubw */
7184 case 0x0f3806: /* phsubd */
7185 case 0x0f3807: /* phsubsw */
7186 case 0x0f3808: /* psignb */
7187 case 0x0f3809: /* psignw */
7188 case 0x0f380a: /* psignd */
7189 case 0x0f380b: /* pmulhrsw */
7190 case 0x0f381c: /* pabsb */
7191 case 0x0f381d: /* pabsw */
7192 case 0x0f381e: /* pabsd */
7193 case 0x0f382b: /* packusdw */
7194 case 0x0f3830: /* pmovzxbw */
7195 case 0x0f3831: /* pmovzxbd */
7196 case 0x0f3832: /* pmovzxbq */
7197 case 0x0f3833: /* pmovzxwd */
7198 case 0x0f3834: /* pmovzxwq */
7199 case 0x0f3835: /* pmovzxdq */
7200 case 0x0f3837: /* pcmpgtq */
7201 case 0x0f3838: /* pminsb */
7202 case 0x0f3839: /* pminsd */
7203 case 0x0f383a: /* pminuw */
7204 case 0x0f383b: /* pminud */
7205 case 0x0f383c: /* pmaxsb */
7206 case 0x0f383d: /* pmaxsd */
7207 case 0x0f383e: /* pmaxuw */
7208 case 0x0f383f: /* pmaxud */
7209 case 0x0f3840: /* pmulld */
7210 case 0x0f3841: /* phminposuw */
7211 case 0x0f3a0f: /* palignr */
7212 case 0x0f60: /* punpcklbw */
7213 case 0x0f61: /* punpcklwd */
7214 case 0x0f62: /* punpckldq */
7215 case 0x0f63: /* packsswb */
7216 case 0x0f64: /* pcmpgtb */
7217 case 0x0f65: /* pcmpgtw */
7218 case 0x0f66: /* pcmpgtd */
7219 case 0x0f67: /* packuswb */
7220 case 0x0f68: /* punpckhbw */
7221 case 0x0f69: /* punpckhwd */
7222 case 0x0f6a: /* punpckhdq */
7223 case 0x0f6b: /* packssdw */
7224 case 0x0f6e: /* movd */
7225 case 0x0f6f: /* movq */
7226 case 0x0f70: /* pshufw */
7227 case 0x0f74: /* pcmpeqb */
7228 case 0x0f75: /* pcmpeqw */
7229 case 0x0f76: /* pcmpeqd */
7230 case 0x0fc4: /* pinsrw */
7231 case 0x0fd1: /* psrlw */
7232 case 0x0fd2: /* psrld */
7233 case 0x0fd3: /* psrlq */
7234 case 0x0fd4: /* paddq */
7235 case 0x0fd5: /* pmullw */
7236 case 0xf20fd6: /* movdq2q */
7237 case 0x0fd8: /* psubusb */
7238 case 0x0fd9: /* psubusw */
7239 case 0x0fda: /* pminub */
7240 case 0x0fdb: /* pand */
7241 case 0x0fdc: /* paddusb */
7242 case 0x0fdd: /* paddusw */
7243 case 0x0fde: /* pmaxub */
7244 case 0x0fdf: /* pandn */
7245 case 0x0fe0: /* pavgb */
7246 case 0x0fe1: /* psraw */
7247 case 0x0fe2: /* psrad */
7248 case 0x0fe3: /* pavgw */
7249 case 0x0fe4: /* pmulhuw */
7250 case 0x0fe5: /* pmulhw */
7251 case 0x0fe8: /* psubsb */
7252 case 0x0fe9: /* psubsw */
7253 case 0x0fea: /* pminsw */
7254 case 0x0feb: /* por */
7255 case 0x0fec: /* paddsb */
7256 case 0x0fed: /* paddsw */
7257 case 0x0fee: /* pmaxsw */
7258 case 0x0fef: /* pxor */
7259 case 0x0ff1: /* psllw */
7260 case 0x0ff2: /* pslld */
7261 case 0x0ff3: /* psllq */
7262 case 0x0ff4: /* pmuludq */
7263 case 0x0ff5: /* pmaddwd */
7264 case 0x0ff6: /* psadbw */
7265 case 0x0ff8: /* psubb */
7266 case 0x0ff9: /* psubw */
7267 case 0x0ffa: /* psubd */
7268 case 0x0ffb: /* psubq */
7269 case 0x0ffc: /* paddb */
7270 case 0x0ffd: /* paddw */
7271 case 0x0ffe: /* paddd */
7272 if (i386_record_modrm (&ir))
7273 return -1;
7274 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7275 goto no_support;
7276 record_arch_list_add_reg (ir.regcache,
7277 I387_MM0_REGNUM (tdep) + ir.reg);
7278 break;
7279
7280 case 0x0f71: /* psllw */
7281 case 0x0f72: /* pslld */
7282 case 0x0f73: /* psllq */
7283 if (i386_record_modrm (&ir))
7284 return -1;
7285 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7286 goto no_support;
7287 record_arch_list_add_reg (ir.regcache,
7288 I387_MM0_REGNUM (tdep) + ir.rm);
7289 break;
7290
7291 case 0x660f71: /* psllw */
7292 case 0x660f72: /* pslld */
7293 case 0x660f73: /* psllq */
7294 if (i386_record_modrm (&ir))
7295 return -1;
7296 ir.rm |= ir.rex_b;
7297 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7298 goto no_support;
7299 record_arch_list_add_reg (ir.regcache,
7300 I387_XMM0_REGNUM (tdep) + ir.rm);
7301 break;
7302
7303 case 0x0f7e: /* movd */
7304 case 0x660f7e: /* movd */
7305 if (i386_record_modrm (&ir))
7306 return -1;
7307 if (ir.mod == 3)
7308 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7309 else
7310 {
7311 if (ir.dflag == 2)
7312 ir.ot = OT_QUAD;
7313 else
7314 ir.ot = OT_LONG;
7315 if (i386_record_lea_modrm (&ir))
7316 return -1;
7317 }
7318 break;
7319
7320 case 0x0f7f: /* movq */
7321 if (i386_record_modrm (&ir))
7322 return -1;
7323 if (ir.mod == 3)
7324 {
7325 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7326 goto no_support;
7327 record_arch_list_add_reg (ir.regcache,
7328 I387_MM0_REGNUM (tdep) + ir.rm);
7329 }
7330 else
7331 {
7332 ir.ot = OT_QUAD;
7333 if (i386_record_lea_modrm (&ir))
7334 return -1;
7335 }
7336 break;
7337
7338 case 0xf30fb8: /* popcnt */
7339 if (i386_record_modrm (&ir))
7340 return -1;
7341 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7342 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7343 break;
7344
7345 case 0x660fd6: /* movq */
7346 if (i386_record_modrm (&ir))
7347 return -1;
7348 if (ir.mod == 3)
7349 {
7350 ir.rm |= ir.rex_b;
7351 if (!i386_xmm_regnum_p (gdbarch,
7352 I387_XMM0_REGNUM (tdep) + ir.rm))
7353 goto no_support;
7354 record_arch_list_add_reg (ir.regcache,
7355 I387_XMM0_REGNUM (tdep) + ir.rm);
7356 }
7357 else
7358 {
7359 ir.ot = OT_QUAD;
7360 if (i386_record_lea_modrm (&ir))
7361 return -1;
7362 }
7363 break;
7364
7365 case 0x660f3817: /* ptest */
7366 case 0x0f2e: /* ucomiss */
7367 case 0x660f2e: /* ucomisd */
7368 case 0x0f2f: /* comiss */
7369 case 0x660f2f: /* comisd */
7370 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7371 break;
7372
7373 case 0x0ff7: /* maskmovq */
7374 regcache_raw_read_unsigned (ir.regcache,
7375 ir.regmap[X86_RECORD_REDI_REGNUM],
7376 &addr);
7377 if (record_arch_list_add_mem (addr, 64))
7378 return -1;
7379 break;
7380
7381 case 0x660ff7: /* maskmovdqu */
7382 regcache_raw_read_unsigned (ir.regcache,
7383 ir.regmap[X86_RECORD_REDI_REGNUM],
7384 &addr);
7385 if (record_arch_list_add_mem (addr, 128))
7386 return -1;
7387 break;
7388
7389 default:
7390 goto no_support;
7391 break;
7392 }
7393 break;
7394
7395 default:
7396 goto no_support;
7397 break;
7398 }
7399
7400 /* In the future, maybe still need to deal with need_dasm. */
7401 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7402 if (record_arch_list_add_end ())
7403 return -1;
7404
7405 return 0;
7406
7407 no_support:
7408 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7409 "at address %s.\n"),
7410 (unsigned int) (opcode),
7411 paddress (gdbarch, ir.orig_addr));
7412 return -1;
7413 }
7414
7415 static const int i386_record_regmap[] =
7416 {
7417 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7418 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7419 0, 0, 0, 0, 0, 0, 0, 0,
7420 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7421 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7422 };
7423
7424 /* Check that the given address appears suitable for a fast
7425 tracepoint, which on x86-64 means that we need an instruction of at
7426 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7427 jump and not have to worry about program jumps to an address in the
7428 middle of the tracepoint jump. On x86, it may be possible to use
7429 4-byte jumps with a 2-byte offset to a trampoline located in the
7430 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7431 of instruction to replace, and 0 if not, plus an explanatory
7432 string. */
7433
7434 static int
7435 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7436 CORE_ADDR addr, int *isize, char **msg)
7437 {
7438 int len, jumplen;
7439 static struct ui_file *gdb_null = NULL;
7440
7441 /* Ask the target for the minimum instruction length supported. */
7442 jumplen = target_get_min_fast_tracepoint_insn_len ();
7443
7444 if (jumplen < 0)
7445 {
7446 /* If the target does not support the get_min_fast_tracepoint_insn_len
7447 operation, assume that fast tracepoints will always be implemented
7448 using 4-byte relative jumps on both x86 and x86-64. */
7449 jumplen = 5;
7450 }
7451 else if (jumplen == 0)
7452 {
7453 /* If the target does support get_min_fast_tracepoint_insn_len but
7454 returns zero, then the IPA has not loaded yet. In this case,
7455 we optimistically assume that truncated 2-byte relative jumps
7456 will be available on x86, and compensate later if this assumption
7457 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7458 jumps will always be used. */
7459 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7460 }
7461
7462 /* Dummy file descriptor for the disassembler. */
7463 if (!gdb_null)
7464 gdb_null = ui_file_new ();
7465
7466 /* Check for fit. */
7467 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7468 if (isize)
7469 *isize = len;
7470
7471 if (len < jumplen)
7472 {
7473 /* Return a bit of target-specific detail to add to the caller's
7474 generic failure message. */
7475 if (msg)
7476 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7477 "need at least %d bytes for the jump"),
7478 len, jumplen);
7479 return 0;
7480 }
7481 else
7482 {
7483 if (msg)
7484 *msg = NULL;
7485 return 1;
7486 }
7487 }
7488
7489 static int
7490 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7491 struct tdesc_arch_data *tdesc_data)
7492 {
7493 const struct target_desc *tdesc = tdep->tdesc;
7494 const struct tdesc_feature *feature_core;
7495 const struct tdesc_feature *feature_sse, *feature_avx;
7496 int i, num_regs, valid_p;
7497
7498 if (! tdesc_has_registers (tdesc))
7499 return 0;
7500
7501 /* Get core registers. */
7502 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7503 if (feature_core == NULL)
7504 return 0;
7505
7506 /* Get SSE registers. */
7507 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7508
7509 /* Try AVX registers. */
7510 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7511
7512 valid_p = 1;
7513
7514 /* The XCR0 bits. */
7515 if (feature_avx)
7516 {
7517 /* AVX register description requires SSE register description. */
7518 if (!feature_sse)
7519 return 0;
7520
7521 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7522
7523 /* It may have been set by OSABI initialization function. */
7524 if (tdep->num_ymm_regs == 0)
7525 {
7526 tdep->ymmh_register_names = i386_ymmh_names;
7527 tdep->num_ymm_regs = 8;
7528 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7529 }
7530
7531 for (i = 0; i < tdep->num_ymm_regs; i++)
7532 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7533 tdep->ymm0h_regnum + i,
7534 tdep->ymmh_register_names[i]);
7535 }
7536 else if (feature_sse)
7537 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7538 else
7539 {
7540 tdep->xcr0 = I386_XSTATE_X87_MASK;
7541 tdep->num_xmm_regs = 0;
7542 }
7543
7544 num_regs = tdep->num_core_regs;
7545 for (i = 0; i < num_regs; i++)
7546 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7547 tdep->register_names[i]);
7548
7549 if (feature_sse)
7550 {
7551 /* Need to include %mxcsr, so add one. */
7552 num_regs += tdep->num_xmm_regs + 1;
7553 for (; i < num_regs; i++)
7554 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7555 tdep->register_names[i]);
7556 }
7557
7558 return valid_p;
7559 }
7560
7561 \f
7562 static struct gdbarch *
7563 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7564 {
7565 struct gdbarch_tdep *tdep;
7566 struct gdbarch *gdbarch;
7567 struct tdesc_arch_data *tdesc_data;
7568 const struct target_desc *tdesc;
7569 int mm0_regnum;
7570 int ymm0_regnum;
7571
7572 /* If there is already a candidate, use it. */
7573 arches = gdbarch_list_lookup_by_info (arches, &info);
7574 if (arches != NULL)
7575 return arches->gdbarch;
7576
7577 /* Allocate space for the new architecture. */
7578 tdep = XCALLOC (1, struct gdbarch_tdep);
7579 gdbarch = gdbarch_alloc (&info, tdep);
7580
7581 /* General-purpose registers. */
7582 tdep->gregset = NULL;
7583 tdep->gregset_reg_offset = NULL;
7584 tdep->gregset_num_regs = I386_NUM_GREGS;
7585 tdep->sizeof_gregset = 0;
7586
7587 /* Floating-point registers. */
7588 tdep->fpregset = NULL;
7589 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7590
7591 tdep->xstateregset = NULL;
7592
7593 /* The default settings include the FPU registers, the MMX registers
7594 and the SSE registers. This can be overridden for a specific ABI
7595 by adjusting the members `st0_regnum', `mm0_regnum' and
7596 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7597 will show up in the output of "info all-registers". */
7598
7599 tdep->st0_regnum = I386_ST0_REGNUM;
7600
7601 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7602 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7603
7604 tdep->jb_pc_offset = -1;
7605 tdep->struct_return = pcc_struct_return;
7606 tdep->sigtramp_start = 0;
7607 tdep->sigtramp_end = 0;
7608 tdep->sigtramp_p = i386_sigtramp_p;
7609 tdep->sigcontext_addr = NULL;
7610 tdep->sc_reg_offset = NULL;
7611 tdep->sc_pc_offset = -1;
7612 tdep->sc_sp_offset = -1;
7613
7614 tdep->xsave_xcr0_offset = -1;
7615
7616 tdep->record_regmap = i386_record_regmap;
7617
7618 set_gdbarch_long_long_align_bit (gdbarch, 32);
7619
7620 /* The format used for `long double' on almost all i386 targets is
7621 the i387 extended floating-point format. In fact, of all targets
7622 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7623 on having a `long double' that's not `long' at all. */
7624 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7625
7626 /* Although the i387 extended floating-point has only 80 significant
7627 bits, a `long double' actually takes up 96, probably to enforce
7628 alignment. */
7629 set_gdbarch_long_double_bit (gdbarch, 96);
7630
7631 /* Register numbers of various important registers. */
7632 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7633 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7634 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7635 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7636
7637 /* NOTE: kettenis/20040418: GCC does have two possible register
7638 numbering schemes on the i386: dbx and SVR4. These schemes
7639 differ in how they number %ebp, %esp, %eflags, and the
7640 floating-point registers, and are implemented by the arrays
7641 dbx_register_map[] and svr4_dbx_register_map in
7642 gcc/config/i386.c. GCC also defines a third numbering scheme in
7643 gcc/config/i386.c, which it designates as the "default" register
7644 map used in 64bit mode. This last register numbering scheme is
7645 implemented in dbx64_register_map, and is used for AMD64; see
7646 amd64-tdep.c.
7647
7648 Currently, each GCC i386 target always uses the same register
7649 numbering scheme across all its supported debugging formats
7650 i.e. SDB (COFF), stabs and DWARF 2. This is because
7651 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7652 DBX_REGISTER_NUMBER macro which is defined by each target's
7653 respective config header in a manner independent of the requested
7654 output debugging format.
7655
7656 This does not match the arrangement below, which presumes that
7657 the SDB and stabs numbering schemes differ from the DWARF and
7658 DWARF 2 ones. The reason for this arrangement is that it is
7659 likely to get the numbering scheme for the target's
7660 default/native debug format right. For targets where GCC is the
7661 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7662 targets where the native toolchain uses a different numbering
7663 scheme for a particular debug format (stabs-in-ELF on Solaris)
7664 the defaults below will have to be overridden, like
7665 i386_elf_init_abi() does. */
7666
7667 /* Use the dbx register numbering scheme for stabs and COFF. */
7668 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7669 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7670
7671 /* Use the SVR4 register numbering scheme for DWARF 2. */
7672 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7673
7674 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7675 be in use on any of the supported i386 targets. */
7676
7677 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7678
7679 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7680
7681 /* Call dummy code. */
7682 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7683 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7684 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7685 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7686
7687 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7688 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7689 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7690
7691 set_gdbarch_return_value (gdbarch, i386_return_value);
7692
7693 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7694
7695 /* Stack grows downward. */
7696 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7697
7698 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7699 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7700 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7701
7702 set_gdbarch_frame_args_skip (gdbarch, 8);
7703
7704 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7705
7706 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7707
7708 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7709
7710 /* Add the i386 register groups. */
7711 i386_add_reggroups (gdbarch);
7712 tdep->register_reggroup_p = i386_register_reggroup_p;
7713
7714 /* Helper for function argument information. */
7715 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7716
7717 /* Hook the function epilogue frame unwinder. This unwinder is
7718 appended to the list first, so that it supercedes the DWARF
7719 unwinder in function epilogues (where the DWARF unwinder
7720 currently fails). */
7721 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7722
7723 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7724 to the list before the prologue-based unwinders, so that DWARF
7725 CFI info will be used if it is available. */
7726 dwarf2_append_unwinders (gdbarch);
7727
7728 frame_base_set_default (gdbarch, &i386_frame_base);
7729
7730 /* Pseudo registers may be changed by amd64_init_abi. */
7731 set_gdbarch_pseudo_register_read_value (gdbarch,
7732 i386_pseudo_register_read_value);
7733 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7734
7735 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7736 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7737
7738 /* Override the normal target description method to make the AVX
7739 upper halves anonymous. */
7740 set_gdbarch_register_name (gdbarch, i386_register_name);
7741
7742 /* Even though the default ABI only includes general-purpose registers,
7743 floating-point registers and the SSE registers, we have to leave a
7744 gap for the upper AVX registers. */
7745 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7746
7747 /* Get the x86 target description from INFO. */
7748 tdesc = info.target_desc;
7749 if (! tdesc_has_registers (tdesc))
7750 tdesc = tdesc_i386;
7751 tdep->tdesc = tdesc;
7752
7753 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7754 tdep->register_names = i386_register_names;
7755
7756 /* No upper YMM registers. */
7757 tdep->ymmh_register_names = NULL;
7758 tdep->ymm0h_regnum = -1;
7759
7760 tdep->num_byte_regs = 8;
7761 tdep->num_word_regs = 8;
7762 tdep->num_dword_regs = 0;
7763 tdep->num_mmx_regs = 8;
7764 tdep->num_ymm_regs = 0;
7765
7766 tdesc_data = tdesc_data_alloc ();
7767
7768 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7769
7770 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7771
7772 /* Hook in ABI-specific overrides, if they have been registered. */
7773 info.tdep_info = (void *) tdesc_data;
7774 gdbarch_init_osabi (info, gdbarch);
7775
7776 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7777 {
7778 tdesc_data_cleanup (tdesc_data);
7779 xfree (tdep);
7780 gdbarch_free (gdbarch);
7781 return NULL;
7782 }
7783
7784 /* Wire in pseudo registers. Number of pseudo registers may be
7785 changed. */
7786 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7787 + tdep->num_word_regs
7788 + tdep->num_dword_regs
7789 + tdep->num_mmx_regs
7790 + tdep->num_ymm_regs));
7791
7792 /* Target description may be changed. */
7793 tdesc = tdep->tdesc;
7794
7795 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7796
7797 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7798 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7799
7800 /* Make %al the first pseudo-register. */
7801 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7802 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7803
7804 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7805 if (tdep->num_dword_regs)
7806 {
7807 /* Support dword pseudo-register if it hasn't been disabled. */
7808 tdep->eax_regnum = ymm0_regnum;
7809 ymm0_regnum += tdep->num_dword_regs;
7810 }
7811 else
7812 tdep->eax_regnum = -1;
7813
7814 mm0_regnum = ymm0_regnum;
7815 if (tdep->num_ymm_regs)
7816 {
7817 /* Support YMM pseudo-register if it is available. */
7818 tdep->ymm0_regnum = ymm0_regnum;
7819 mm0_regnum += tdep->num_ymm_regs;
7820 }
7821 else
7822 tdep->ymm0_regnum = -1;
7823
7824 if (tdep->num_mmx_regs != 0)
7825 {
7826 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7827 tdep->mm0_regnum = mm0_regnum;
7828 }
7829 else
7830 tdep->mm0_regnum = -1;
7831
7832 /* Hook in the legacy prologue-based unwinders last (fallback). */
7833 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
7834 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7835 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7836
7837 /* If we have a register mapping, enable the generic core file
7838 support, unless it has already been enabled. */
7839 if (tdep->gregset_reg_offset
7840 && !gdbarch_regset_from_core_section_p (gdbarch))
7841 set_gdbarch_regset_from_core_section (gdbarch,
7842 i386_regset_from_core_section);
7843
7844 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7845 i386_skip_permanent_breakpoint);
7846
7847 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7848 i386_fast_tracepoint_valid_at);
7849
7850 return gdbarch;
7851 }
7852
7853 static enum gdb_osabi
7854 i386_coff_osabi_sniffer (bfd *abfd)
7855 {
7856 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7857 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7858 return GDB_OSABI_GO32;
7859
7860 return GDB_OSABI_UNKNOWN;
7861 }
7862 \f
7863
7864 /* Provide a prototype to silence -Wmissing-prototypes. */
7865 void _initialize_i386_tdep (void);
7866
7867 void
7868 _initialize_i386_tdep (void)
7869 {
7870 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7871
7872 /* Add the variable that controls the disassembly flavor. */
7873 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7874 &disassembly_flavor, _("\
7875 Set the disassembly flavor."), _("\
7876 Show the disassembly flavor."), _("\
7877 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7878 NULL,
7879 NULL, /* FIXME: i18n: */
7880 &setlist, &showlist);
7881
7882 /* Add the variable that controls the convention for returning
7883 structs. */
7884 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7885 &struct_convention, _("\
7886 Set the convention for returning small structs."), _("\
7887 Show the convention for returning small structs."), _("\
7888 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7889 is \"default\"."),
7890 NULL,
7891 NULL, /* FIXME: i18n: */
7892 &setlist, &showlist);
7893
7894 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7895 i386_coff_osabi_sniffer);
7896
7897 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7898 i386_svr4_init_abi);
7899 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7900 i386_go32_init_abi);
7901
7902 /* Initialize the i386-specific register groups. */
7903 i386_init_reggroups ();
7904
7905 /* Initialize the standard target descriptions. */
7906 initialize_tdesc_i386 ();
7907 initialize_tdesc_i386_mmx ();
7908 initialize_tdesc_i386_avx ();
7909
7910 /* Tell remote stub that we support XML target description. */
7911 register_remote_support_xml ("i386");
7912 }
This page took 0.295493 seconds and 4 git commands to generate.