2003-01-07 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "objfiles.h"
29 #include "target.h"
30 #include "floatformat.h"
31 #include "symfile.h"
32 #include "symtab.h"
33 #include "gdbcmd.h"
34 #include "command.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "doublest.h"
38 #include "value.h"
39 #include "gdb_assert.h"
40 #include "reggroups.h"
41 #include "dummy-frame.h"
42 #include "osabi.h"
43
44 #include "i386-tdep.h"
45 #include "i387-tdep.h"
46
47 /* Names of the registers. The first 10 registers match the register
48 numbering scheme used by GCC for stabs and DWARF. */
49 static char *i386_register_names[] =
50 {
51 "eax", "ecx", "edx", "ebx",
52 "esp", "ebp", "esi", "edi",
53 "eip", "eflags", "cs", "ss",
54 "ds", "es", "fs", "gs",
55 "st0", "st1", "st2", "st3",
56 "st4", "st5", "st6", "st7",
57 "fctrl", "fstat", "ftag", "fiseg",
58 "fioff", "foseg", "fooff", "fop",
59 "xmm0", "xmm1", "xmm2", "xmm3",
60 "xmm4", "xmm5", "xmm6", "xmm7",
61 "mxcsr"
62 };
63
64 /* MMX registers. */
65
66 static char *i386_mmx_names[] =
67 {
68 "mm0", "mm1", "mm2", "mm3",
69 "mm4", "mm5", "mm6", "mm7"
70 };
71 static const int mmx_num_regs = (sizeof (i386_mmx_names)
72 / sizeof (i386_mmx_names[0]));
73 #define MM0_REGNUM (NUM_REGS)
74
75 static int
76 i386_mmx_regnum_p (int reg)
77 {
78 return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
79 }
80
81 /* FP register? */
82
83 int
84 i386_fp_regnum_p (int regnum)
85 {
86 return (regnum < NUM_REGS
87 && (FP0_REGNUM && FP0_REGNUM <= (regnum) && (regnum) < FPC_REGNUM));
88 }
89
90 int
91 i386_fpc_regnum_p (int regnum)
92 {
93 return (regnum < NUM_REGS
94 && (FPC_REGNUM <= (regnum) && (regnum) < XMM0_REGNUM));
95 }
96
97 /* SSE register? */
98
99 int
100 i386_sse_regnum_p (int regnum)
101 {
102 return (regnum < NUM_REGS
103 && (XMM0_REGNUM <= (regnum) && (regnum) < MXCSR_REGNUM));
104 }
105
106 int
107 i386_mxcsr_regnum_p (int regnum)
108 {
109 return (regnum < NUM_REGS
110 && (regnum == MXCSR_REGNUM));
111 }
112
113 /* Return the name of register REG. */
114
115 const char *
116 i386_register_name (int reg)
117 {
118 if (reg < 0)
119 return NULL;
120 if (i386_mmx_regnum_p (reg))
121 return i386_mmx_names[reg - MM0_REGNUM];
122 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
123 return NULL;
124
125 return i386_register_names[reg];
126 }
127
128 /* Convert stabs register number REG to the appropriate register
129 number used by GDB. */
130
131 static int
132 i386_stab_reg_to_regnum (int reg)
133 {
134 /* This implements what GCC calls the "default" register map. */
135 if (reg >= 0 && reg <= 7)
136 {
137 /* General registers. */
138 return reg;
139 }
140 else if (reg >= 12 && reg <= 19)
141 {
142 /* Floating-point registers. */
143 return reg - 12 + FP0_REGNUM;
144 }
145 else if (reg >= 21 && reg <= 28)
146 {
147 /* SSE registers. */
148 return reg - 21 + XMM0_REGNUM;
149 }
150 else if (reg >= 29 && reg <= 36)
151 {
152 /* MMX registers. */
153 return reg - 29 + MM0_REGNUM;
154 }
155
156 /* This will hopefully provoke a warning. */
157 return NUM_REGS + NUM_PSEUDO_REGS;
158 }
159
160 /* Convert DWARF register number REG to the appropriate register
161 number used by GDB. */
162
163 static int
164 i386_dwarf_reg_to_regnum (int reg)
165 {
166 /* The DWARF register numbering includes %eip and %eflags, and
167 numbers the floating point registers differently. */
168 if (reg >= 0 && reg <= 9)
169 {
170 /* General registers. */
171 return reg;
172 }
173 else if (reg >= 11 && reg <= 18)
174 {
175 /* Floating-point registers. */
176 return reg - 11 + FP0_REGNUM;
177 }
178 else if (reg >= 21)
179 {
180 /* The SSE and MMX registers have identical numbers as in stabs. */
181 return i386_stab_reg_to_regnum (reg);
182 }
183
184 /* This will hopefully provoke a warning. */
185 return NUM_REGS + NUM_PSEUDO_REGS;
186 }
187 \f
188
189 /* This is the variable that is set with "set disassembly-flavor", and
190 its legitimate values. */
191 static const char att_flavor[] = "att";
192 static const char intel_flavor[] = "intel";
193 static const char *valid_flavors[] =
194 {
195 att_flavor,
196 intel_flavor,
197 NULL
198 };
199 static const char *disassembly_flavor = att_flavor;
200
201 /* Stdio style buffering was used to minimize calls to ptrace, but
202 this buffering did not take into account that the code section
203 being accessed may not be an even number of buffers long (even if
204 the buffer is only sizeof(int) long). In cases where the code
205 section size happened to be a non-integral number of buffers long,
206 attempting to read the last buffer would fail. Simply using
207 target_read_memory and ignoring errors, rather than read_memory, is
208 not the correct solution, since legitimate access errors would then
209 be totally ignored. To properly handle this situation and continue
210 to use buffering would require that this code be able to determine
211 the minimum code section size granularity (not the alignment of the
212 section itself, since the actual failing case that pointed out this
213 problem had a section alignment of 4 but was not a multiple of 4
214 bytes long), on a target by target basis, and then adjust it's
215 buffer size accordingly. This is messy, but potentially feasible.
216 It probably needs the bfd library's help and support. For now, the
217 buffer size is set to 1. (FIXME -fnf) */
218
219 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
220 static CORE_ADDR codestream_next_addr;
221 static CORE_ADDR codestream_addr;
222 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
223 static int codestream_off;
224 static int codestream_cnt;
225
226 #define codestream_tell() (codestream_addr + codestream_off)
227 #define codestream_peek() \
228 (codestream_cnt == 0 ? \
229 codestream_fill(1) : codestream_buf[codestream_off])
230 #define codestream_get() \
231 (codestream_cnt-- == 0 ? \
232 codestream_fill(0) : codestream_buf[codestream_off++])
233
234 static unsigned char
235 codestream_fill (int peek_flag)
236 {
237 codestream_addr = codestream_next_addr;
238 codestream_next_addr += CODESTREAM_BUFSIZ;
239 codestream_off = 0;
240 codestream_cnt = CODESTREAM_BUFSIZ;
241 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
242
243 if (peek_flag)
244 return (codestream_peek ());
245 else
246 return (codestream_get ());
247 }
248
249 static void
250 codestream_seek (CORE_ADDR place)
251 {
252 codestream_next_addr = place / CODESTREAM_BUFSIZ;
253 codestream_next_addr *= CODESTREAM_BUFSIZ;
254 codestream_cnt = 0;
255 codestream_fill (1);
256 while (codestream_tell () != place)
257 codestream_get ();
258 }
259
260 static void
261 codestream_read (unsigned char *buf, int count)
262 {
263 unsigned char *p;
264 int i;
265 p = buf;
266 for (i = 0; i < count; i++)
267 *p++ = codestream_get ();
268 }
269 \f
270
271 /* If the next instruction is a jump, move to its target. */
272
273 static void
274 i386_follow_jump (void)
275 {
276 unsigned char buf[4];
277 long delta;
278
279 int data16;
280 CORE_ADDR pos;
281
282 pos = codestream_tell ();
283
284 data16 = 0;
285 if (codestream_peek () == 0x66)
286 {
287 codestream_get ();
288 data16 = 1;
289 }
290
291 switch (codestream_get ())
292 {
293 case 0xe9:
294 /* Relative jump: if data16 == 0, disp32, else disp16. */
295 if (data16)
296 {
297 codestream_read (buf, 2);
298 delta = extract_signed_integer (buf, 2);
299
300 /* Include the size of the jmp instruction (including the
301 0x66 prefix). */
302 pos += delta + 4;
303 }
304 else
305 {
306 codestream_read (buf, 4);
307 delta = extract_signed_integer (buf, 4);
308
309 pos += delta + 5;
310 }
311 break;
312 case 0xeb:
313 /* Relative jump, disp8 (ignore data16). */
314 codestream_read (buf, 1);
315 /* Sign-extend it. */
316 delta = extract_signed_integer (buf, 1);
317
318 pos += delta + 2;
319 break;
320 }
321 codestream_seek (pos);
322 }
323
324 /* Find & return the amount a local space allocated, and advance the
325 codestream to the first register push (if any).
326
327 If the entry sequence doesn't make sense, return -1, and leave
328 codestream pointer at a random spot. */
329
330 static long
331 i386_get_frame_setup (CORE_ADDR pc)
332 {
333 unsigned char op;
334
335 codestream_seek (pc);
336
337 i386_follow_jump ();
338
339 op = codestream_get ();
340
341 if (op == 0x58) /* popl %eax */
342 {
343 /* This function must start with
344
345 popl %eax 0x58
346 xchgl %eax, (%esp) 0x87 0x04 0x24
347 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
348
349 (the System V compiler puts out the second `xchg'
350 instruction, and the assembler doesn't try to optimize it, so
351 the 'sib' form gets generated). This sequence is used to get
352 the address of the return buffer for a function that returns
353 a structure. */
354 int pos;
355 unsigned char buf[4];
356 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
357 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
358
359 pos = codestream_tell ();
360 codestream_read (buf, 4);
361 if (memcmp (buf, proto1, 3) == 0)
362 pos += 3;
363 else if (memcmp (buf, proto2, 4) == 0)
364 pos += 4;
365
366 codestream_seek (pos);
367 op = codestream_get (); /* Update next opcode. */
368 }
369
370 if (op == 0x68 || op == 0x6a)
371 {
372 /* This function may start with
373
374 pushl constant
375 call _probe
376 addl $4, %esp
377
378 followed by
379
380 pushl %ebp
381
382 etc. */
383 int pos;
384 unsigned char buf[8];
385
386 /* Skip past the `pushl' instruction; it has either a one-byte
387 or a four-byte operand, depending on the opcode. */
388 pos = codestream_tell ();
389 if (op == 0x68)
390 pos += 4;
391 else
392 pos += 1;
393 codestream_seek (pos);
394
395 /* Read the following 8 bytes, which should be "call _probe" (6
396 bytes) followed by "addl $4,%esp" (2 bytes). */
397 codestream_read (buf, sizeof (buf));
398 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
399 pos += sizeof (buf);
400 codestream_seek (pos);
401 op = codestream_get (); /* Update next opcode. */
402 }
403
404 if (op == 0x55) /* pushl %ebp */
405 {
406 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
407 switch (codestream_get ())
408 {
409 case 0x8b:
410 if (codestream_get () != 0xec)
411 return -1;
412 break;
413 case 0x89:
414 if (codestream_get () != 0xe5)
415 return -1;
416 break;
417 default:
418 return -1;
419 }
420 /* Check for stack adjustment
421
422 subl $XXX, %esp
423
424 NOTE: You can't subtract a 16 bit immediate from a 32 bit
425 reg, so we don't have to worry about a data16 prefix. */
426 op = codestream_peek ();
427 if (op == 0x83)
428 {
429 /* `subl' with 8 bit immediate. */
430 codestream_get ();
431 if (codestream_get () != 0xec)
432 /* Some instruction starting with 0x83 other than `subl'. */
433 {
434 codestream_seek (codestream_tell () - 2);
435 return 0;
436 }
437 /* `subl' with signed byte immediate (though it wouldn't
438 make sense to be negative). */
439 return (codestream_get ());
440 }
441 else if (op == 0x81)
442 {
443 char buf[4];
444 /* Maybe it is `subl' with a 32 bit immedediate. */
445 codestream_get ();
446 if (codestream_get () != 0xec)
447 /* Some instruction starting with 0x81 other than `subl'. */
448 {
449 codestream_seek (codestream_tell () - 2);
450 return 0;
451 }
452 /* It is `subl' with a 32 bit immediate. */
453 codestream_read ((unsigned char *) buf, 4);
454 return extract_signed_integer (buf, 4);
455 }
456 else
457 {
458 return 0;
459 }
460 }
461 else if (op == 0xc8)
462 {
463 char buf[2];
464 /* `enter' with 16 bit unsigned immediate. */
465 codestream_read ((unsigned char *) buf, 2);
466 codestream_get (); /* Flush final byte of enter instruction. */
467 return extract_unsigned_integer (buf, 2);
468 }
469 return (-1);
470 }
471
472 /* Signal trampolines don't have a meaningful frame. The frame
473 pointer value we use is actually the frame pointer of the calling
474 frame -- that is, the frame which was in progress when the signal
475 trampoline was entered. GDB mostly treats this frame pointer value
476 as a magic cookie. We detect the case of a signal trampoline by
477 testing for get_frame_type() == SIGTRAMP_FRAME, which is set based
478 on PC_IN_SIGTRAMP.
479
480 When a signal trampoline is invoked from a frameless function, we
481 essentially have two frameless functions in a row. In this case,
482 we use the same magic cookie for three frames in a row. We detect
483 this case by seeing whether the next frame is a SIGTRAMP_FRAME,
484 and, if it does, checking whether the current frame is actually
485 frameless. In this case, we need to get the PC by looking at the
486 SP register value stored in the signal context.
487
488 This should work in most cases except in horrible situations where
489 a signal occurs just as we enter a function but before the frame
490 has been set up. Incidentally, that's just what happens when we
491 call a function from GDB with a signal pending (there's a test in
492 the testsuite that makes this happen). Therefore we pretend that
493 we have a frameless function if we're stopped at the start of a
494 function. */
495
496 /* Return non-zero if we're dealing with a frameless signal, that is,
497 a signal trampoline invoked from a frameless function. */
498
499 int
500 i386_frameless_signal_p (struct frame_info *frame)
501 {
502 return (frame->next && get_frame_type (frame->next) == SIGTRAMP_FRAME
503 && (frameless_look_for_prologue (frame)
504 || get_frame_pc (frame) == get_pc_function_start (get_frame_pc (frame))));
505 }
506
507 /* Return the chain-pointer for FRAME. In the case of the i386, the
508 frame's nominal address is the address of a 4-byte word containing
509 the calling frame's address. */
510
511 static CORE_ADDR
512 i386_frame_chain (struct frame_info *frame)
513 {
514 if (pc_in_dummy_frame (get_frame_pc (frame)))
515 return get_frame_base (frame);
516
517 if (get_frame_type (frame) == SIGTRAMP_FRAME
518 || i386_frameless_signal_p (frame))
519 return get_frame_base (frame);
520
521 if (! inside_entry_file (get_frame_pc (frame)))
522 return read_memory_unsigned_integer (get_frame_base (frame), 4);
523
524 return 0;
525 }
526
527 /* Determine whether the function invocation represented by FRAME does
528 not have a from on the stack associated with it. If it does not,
529 return non-zero, otherwise return zero. */
530
531 static int
532 i386_frameless_function_invocation (struct frame_info *frame)
533 {
534 if (get_frame_type (frame) == SIGTRAMP_FRAME)
535 return 0;
536
537 return frameless_look_for_prologue (frame);
538 }
539
540 /* Assuming FRAME is for a sigtramp routine, return the saved program
541 counter. */
542
543 static CORE_ADDR
544 i386_sigtramp_saved_pc (struct frame_info *frame)
545 {
546 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
547 CORE_ADDR addr;
548
549 addr = tdep->sigcontext_addr (frame);
550 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
551 }
552
553 /* Assuming FRAME is for a sigtramp routine, return the saved stack
554 pointer. */
555
556 static CORE_ADDR
557 i386_sigtramp_saved_sp (struct frame_info *frame)
558 {
559 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
560 CORE_ADDR addr;
561
562 addr = tdep->sigcontext_addr (frame);
563 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
564 }
565
566 /* Return the saved program counter for FRAME. */
567
568 static CORE_ADDR
569 i386_frame_saved_pc (struct frame_info *frame)
570 {
571 if (pc_in_dummy_frame (get_frame_pc (frame)))
572 {
573 ULONGEST pc;
574
575 frame_unwind_unsigned_register (frame, PC_REGNUM, &pc);
576 return pc;
577 }
578
579 if (get_frame_type (frame) == SIGTRAMP_FRAME)
580 return i386_sigtramp_saved_pc (frame);
581
582 if (i386_frameless_signal_p (frame))
583 {
584 CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
585 return read_memory_unsigned_integer (sp, 4);
586 }
587
588 return read_memory_unsigned_integer (get_frame_base (frame) + 4, 4);
589 }
590
591 /* Immediately after a function call, return the saved pc. */
592
593 static CORE_ADDR
594 i386_saved_pc_after_call (struct frame_info *frame)
595 {
596 if (get_frame_type (frame) == SIGTRAMP_FRAME)
597 return i386_sigtramp_saved_pc (frame);
598
599 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
600 }
601
602 /* Return number of args passed to a frame.
603 Can return -1, meaning no way to tell. */
604
605 static int
606 i386_frame_num_args (struct frame_info *fi)
607 {
608 #if 1
609 return -1;
610 #else
611 /* This loses because not only might the compiler not be popping the
612 args right after the function call, it might be popping args from
613 both this call and a previous one, and we would say there are
614 more args than there really are. */
615
616 int retpc;
617 unsigned char op;
618 struct frame_info *pfi;
619
620 /* On the i386, the instruction following the call could be:
621 popl %ecx - one arg
622 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
623 anything else - zero args. */
624
625 int frameless;
626
627 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
628 if (frameless)
629 /* In the absence of a frame pointer, GDB doesn't get correct
630 values for nameless arguments. Return -1, so it doesn't print
631 any nameless arguments. */
632 return -1;
633
634 pfi = get_prev_frame (fi);
635 if (pfi == 0)
636 {
637 /* NOTE: This can happen if we are looking at the frame for
638 main, because FRAME_CHAIN_VALID won't let us go into start.
639 If we have debugging symbols, that's not really a big deal;
640 it just means it will only show as many arguments to main as
641 are declared. */
642 return -1;
643 }
644 else
645 {
646 retpc = pfi->pc;
647 op = read_memory_integer (retpc, 1);
648 if (op == 0x59) /* pop %ecx */
649 return 1;
650 else if (op == 0x83)
651 {
652 op = read_memory_integer (retpc + 1, 1);
653 if (op == 0xc4)
654 /* addl $<signed imm 8 bits>, %esp */
655 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
656 else
657 return 0;
658 }
659 else if (op == 0x81) /* `add' with 32 bit immediate. */
660 {
661 op = read_memory_integer (retpc + 1, 1);
662 if (op == 0xc4)
663 /* addl $<imm 32>, %esp */
664 return read_memory_integer (retpc + 2, 4) / 4;
665 else
666 return 0;
667 }
668 else
669 {
670 return 0;
671 }
672 }
673 #endif
674 }
675
676 /* Parse the first few instructions the function to see what registers
677 were stored.
678
679 We handle these cases:
680
681 The startup sequence can be at the start of the function, or the
682 function can start with a branch to startup code at the end.
683
684 %ebp can be set up with either the 'enter' instruction, or "pushl
685 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
686 once used in the System V compiler).
687
688 Local space is allocated just below the saved %ebp by either the
689 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
690 bit unsigned argument for space to allocate, and the 'addl'
691 instruction could have either a signed byte, or 32 bit immediate.
692
693 Next, the registers used by this function are pushed. With the
694 System V compiler they will always be in the order: %edi, %esi,
695 %ebx (and sometimes a harmless bug causes it to also save but not
696 restore %eax); however, the code below is willing to see the pushes
697 in any order, and will handle up to 8 of them.
698
699 If the setup sequence is at the end of the function, then the next
700 instruction will be a branch back to the start. */
701
702 static void
703 i386_frame_init_saved_regs (struct frame_info *fip)
704 {
705 long locals = -1;
706 unsigned char op;
707 CORE_ADDR addr;
708 CORE_ADDR pc;
709 int i;
710
711 if (get_frame_saved_regs (fip))
712 return;
713
714 frame_saved_regs_zalloc (fip);
715
716 pc = get_pc_function_start (get_frame_pc (fip));
717 if (pc != 0)
718 locals = i386_get_frame_setup (pc);
719
720 if (locals >= 0)
721 {
722 addr = get_frame_base (fip) - 4 - locals;
723 for (i = 0; i < 8; i++)
724 {
725 op = codestream_get ();
726 if (op < 0x50 || op > 0x57)
727 break;
728 #ifdef I386_REGNO_TO_SYMMETRY
729 /* Dynix uses different internal numbering. Ick. */
730 get_frame_saved_regs (fip)[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
731 #else
732 get_frame_saved_regs (fip)[op - 0x50] = addr;
733 #endif
734 addr -= 4;
735 }
736 }
737
738 get_frame_saved_regs (fip)[PC_REGNUM] = get_frame_base (fip) + 4;
739 get_frame_saved_regs (fip)[FP_REGNUM] = get_frame_base (fip);
740 }
741
742 /* Return PC of first real instruction. */
743
744 static CORE_ADDR
745 i386_skip_prologue (CORE_ADDR pc)
746 {
747 unsigned char op;
748 int i;
749 static unsigned char pic_pat[6] =
750 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
751 0x5b, /* popl %ebx */
752 };
753 CORE_ADDR pos;
754
755 if (i386_get_frame_setup (pc) < 0)
756 return (pc);
757
758 /* Found valid frame setup -- codestream now points to start of push
759 instructions for saving registers. */
760
761 /* Skip over register saves. */
762 for (i = 0; i < 8; i++)
763 {
764 op = codestream_peek ();
765 /* Break if not `pushl' instrunction. */
766 if (op < 0x50 || op > 0x57)
767 break;
768 codestream_get ();
769 }
770
771 /* The native cc on SVR4 in -K PIC mode inserts the following code
772 to get the address of the global offset table (GOT) into register
773 %ebx
774
775 call 0x0
776 popl %ebx
777 movl %ebx,x(%ebp) (optional)
778 addl y,%ebx
779
780 This code is with the rest of the prologue (at the end of the
781 function), so we have to skip it to get to the first real
782 instruction at the start of the function. */
783
784 pos = codestream_tell ();
785 for (i = 0; i < 6; i++)
786 {
787 op = codestream_get ();
788 if (pic_pat[i] != op)
789 break;
790 }
791 if (i == 6)
792 {
793 unsigned char buf[4];
794 long delta = 6;
795
796 op = codestream_get ();
797 if (op == 0x89) /* movl %ebx, x(%ebp) */
798 {
799 op = codestream_get ();
800 if (op == 0x5d) /* One byte offset from %ebp. */
801 {
802 delta += 3;
803 codestream_read (buf, 1);
804 }
805 else if (op == 0x9d) /* Four byte offset from %ebp. */
806 {
807 delta += 6;
808 codestream_read (buf, 4);
809 }
810 else /* Unexpected instruction. */
811 delta = -1;
812 op = codestream_get ();
813 }
814 /* addl y,%ebx */
815 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
816 {
817 pos += delta + 6;
818 }
819 }
820 codestream_seek (pos);
821
822 i386_follow_jump ();
823
824 return (codestream_tell ());
825 }
826
827 /* Use the program counter to determine the contents and size of a
828 breakpoint instruction. Return a pointer to a string of bytes that
829 encode a breakpoint instruction, store the length of the string in
830 *LEN and optionally adjust *PC to point to the correct memory
831 location for inserting the breakpoint.
832
833 On the i386 we have a single breakpoint that fits in a single byte
834 and can be inserted anywhere. */
835
836 static const unsigned char *
837 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
838 {
839 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
840
841 *len = sizeof (break_insn);
842 return break_insn;
843 }
844
845 /* Push the return address (pointing to the call dummy) onto the stack
846 and return the new value for the stack pointer. */
847
848 static CORE_ADDR
849 i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
850 {
851 char buf[4];
852
853 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
854 write_memory (sp - 4, buf, 4);
855 return sp - 4;
856 }
857
858 static void
859 i386_do_pop_frame (struct frame_info *frame)
860 {
861 CORE_ADDR fp;
862 int regnum;
863 char regbuf[I386_MAX_REGISTER_SIZE];
864
865 fp = get_frame_base (frame);
866 i386_frame_init_saved_regs (frame);
867
868 for (regnum = 0; regnum < NUM_REGS; regnum++)
869 {
870 CORE_ADDR addr;
871 addr = get_frame_saved_regs (frame)[regnum];
872 if (addr)
873 {
874 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
875 deprecated_write_register_gen (regnum, regbuf);
876 }
877 }
878 write_register (FP_REGNUM, read_memory_integer (fp, 4));
879 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
880 write_register (SP_REGNUM, fp + 8);
881 flush_cached_frames ();
882 }
883
884 static void
885 i386_pop_frame (void)
886 {
887 generic_pop_current_frame (i386_do_pop_frame);
888 }
889 \f
890
891 /* Figure out where the longjmp will land. Slurp the args out of the
892 stack. We expect the first arg to be a pointer to the jmp_buf
893 structure from which we extract the address that we will land at.
894 This address is copied into PC. This routine returns non-zero on
895 success. */
896
897 static int
898 i386_get_longjmp_target (CORE_ADDR *pc)
899 {
900 char buf[8];
901 CORE_ADDR sp, jb_addr;
902 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
903 int len = TARGET_PTR_BIT / TARGET_CHAR_BIT;
904
905 /* If JB_PC_OFFSET is -1, we have no way to find out where the
906 longjmp will land. */
907 if (jb_pc_offset == -1)
908 return 0;
909
910 sp = read_register (SP_REGNUM);
911 if (target_read_memory (sp + len, buf, len))
912 return 0;
913
914 jb_addr = extract_address (buf, len);
915 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
916 return 0;
917
918 *pc = extract_address (buf, len);
919 return 1;
920 }
921 \f
922
923 static CORE_ADDR
924 i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
925 int struct_return, CORE_ADDR struct_addr)
926 {
927 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
928
929 if (struct_return)
930 {
931 char buf[4];
932
933 sp -= 4;
934 store_address (buf, 4, struct_addr);
935 write_memory (sp, buf, 4);
936 }
937
938 return sp;
939 }
940
941 static void
942 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
943 {
944 /* Do nothing. Everything was already done by i386_push_arguments. */
945 }
946
947 /* These registers are used for returning integers (and on some
948 targets also for returning `struct' and `union' values when their
949 size and alignment match an integer type). */
950 #define LOW_RETURN_REGNUM 0 /* %eax */
951 #define HIGH_RETURN_REGNUM 2 /* %edx */
952
953 /* Extract from an array REGBUF containing the (raw) register state, a
954 function return value of TYPE, and copy that, in virtual format,
955 into VALBUF. */
956
957 static void
958 i386_extract_return_value (struct type *type, struct regcache *regcache,
959 void *dst)
960 {
961 bfd_byte *valbuf = dst;
962 int len = TYPE_LENGTH (type);
963 char buf[I386_MAX_REGISTER_SIZE];
964
965 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
966 && TYPE_NFIELDS (type) == 1)
967 {
968 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
969 return;
970 }
971
972 if (TYPE_CODE (type) == TYPE_CODE_FLT)
973 {
974 if (FP0_REGNUM == 0)
975 {
976 warning ("Cannot find floating-point return value.");
977 memset (valbuf, 0, len);
978 return;
979 }
980
981 /* Floating-point return values can be found in %st(0). Convert
982 its contents to the desired type. This is probably not
983 exactly how it would happen on the target itself, but it is
984 the best we can do. */
985 regcache_raw_read (regcache, FP0_REGNUM, buf);
986 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
987 }
988 else
989 {
990 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
991 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
992
993 if (len <= low_size)
994 {
995 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
996 memcpy (valbuf, buf, len);
997 }
998 else if (len <= (low_size + high_size))
999 {
1000 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1001 memcpy (valbuf, buf, low_size);
1002 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1003 memcpy (valbuf + low_size, buf, len - low_size);
1004 }
1005 else
1006 internal_error (__FILE__, __LINE__,
1007 "Cannot extract return value of %d bytes long.", len);
1008 }
1009 }
1010
1011 /* Write into the appropriate registers a function return value stored
1012 in VALBUF of type TYPE, given in virtual format. */
1013
1014 static void
1015 i386_store_return_value (struct type *type, struct regcache *regcache,
1016 const void *valbuf)
1017 {
1018 int len = TYPE_LENGTH (type);
1019
1020 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1021 && TYPE_NFIELDS (type) == 1)
1022 {
1023 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
1024 return;
1025 }
1026
1027 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1028 {
1029 ULONGEST fstat;
1030 char buf[FPU_REG_RAW_SIZE];
1031
1032 if (FP0_REGNUM == 0)
1033 {
1034 warning ("Cannot set floating-point return value.");
1035 return;
1036 }
1037
1038 /* Returning floating-point values is a bit tricky. Apart from
1039 storing the return value in %st(0), we have to simulate the
1040 state of the FPU at function return point. */
1041
1042 /* Convert the value found in VALBUF to the extended
1043 floating-point format used by the FPU. This is probably
1044 not exactly how it would happen on the target itself, but
1045 it is the best we can do. */
1046 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1047 regcache_raw_write (regcache, FP0_REGNUM, buf);
1048
1049 /* Set the top of the floating-point register stack to 7. The
1050 actual value doesn't really matter, but 7 is what a normal
1051 function return would end up with if the program started out
1052 with a freshly initialized FPU. */
1053 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1054 fstat |= (7 << 11);
1055 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
1056
1057 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1058 the floating-point register stack to 7, the appropriate value
1059 for the tag word is 0x3fff. */
1060 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
1061 }
1062 else
1063 {
1064 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1065 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1066
1067 if (len <= low_size)
1068 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1069 else if (len <= (low_size + high_size))
1070 {
1071 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1072 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1073 len - low_size, (char *) valbuf + low_size);
1074 }
1075 else
1076 internal_error (__FILE__, __LINE__,
1077 "Cannot store return value of %d bytes long.", len);
1078 }
1079 }
1080
1081 /* Extract from REGCACHE, which contains the (raw) register state, the
1082 address in which a function should return its structure value, as a
1083 CORE_ADDR. */
1084
1085 static CORE_ADDR
1086 i386_extract_struct_value_address (struct regcache *regcache)
1087 {
1088 ULONGEST addr;
1089
1090 regcache_raw_read_unsigned (regcache, LOW_RETURN_REGNUM, &addr);
1091 return addr;
1092 }
1093 \f
1094
1095 /* This is the variable that is set with "set struct-convention", and
1096 its legitimate values. */
1097 static const char default_struct_convention[] = "default";
1098 static const char pcc_struct_convention[] = "pcc";
1099 static const char reg_struct_convention[] = "reg";
1100 static const char *valid_conventions[] =
1101 {
1102 default_struct_convention,
1103 pcc_struct_convention,
1104 reg_struct_convention,
1105 NULL
1106 };
1107 static const char *struct_convention = default_struct_convention;
1108
1109 static int
1110 i386_use_struct_convention (int gcc_p, struct type *type)
1111 {
1112 enum struct_return struct_return;
1113
1114 if (struct_convention == default_struct_convention)
1115 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1116 else if (struct_convention == pcc_struct_convention)
1117 struct_return = pcc_struct_return;
1118 else
1119 struct_return = reg_struct_return;
1120
1121 return generic_use_struct_convention (struct_return == reg_struct_return,
1122 type);
1123 }
1124 \f
1125
1126 /* Return the GDB type object for the "standard" data type of data in
1127 register REGNUM. Perhaps %esi and %edi should go here, but
1128 potentially they could be used for things other than address. */
1129
1130 static struct type *
1131 i386_register_virtual_type (int regnum)
1132 {
1133 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1134 return lookup_pointer_type (builtin_type_void);
1135
1136 if (i386_fp_regnum_p (regnum))
1137 return builtin_type_i387_ext;
1138
1139 if (i386_sse_regnum_p (regnum))
1140 return builtin_type_vec128i;
1141
1142 if (i386_mmx_regnum_p (regnum))
1143 return builtin_type_vec64i;
1144
1145 return builtin_type_int;
1146 }
1147
1148 /* Map a cooked register onto a raw register or memory. For the i386,
1149 the MMX registers need to be mapped onto floating point registers. */
1150
1151 static int
1152 mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1153 {
1154 int mmxi;
1155 ULONGEST fstat;
1156 int tos;
1157 int fpi;
1158 mmxi = regnum - MM0_REGNUM;
1159 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1160 tos = (fstat >> 11) & 0x7;
1161 fpi = (mmxi + tos) % 8;
1162 return (FP0_REGNUM + fpi);
1163 }
1164
1165 static void
1166 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1167 int regnum, void *buf)
1168 {
1169 if (i386_mmx_regnum_p (regnum))
1170 {
1171 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1172 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1173 regcache_raw_read (regcache, fpnum, mmx_buf);
1174 /* Extract (always little endian). */
1175 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1176 }
1177 else
1178 regcache_raw_read (regcache, regnum, buf);
1179 }
1180
1181 static void
1182 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1183 int regnum, const void *buf)
1184 {
1185 if (i386_mmx_regnum_p (regnum))
1186 {
1187 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1188 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1189 /* Read ... */
1190 regcache_raw_read (regcache, fpnum, mmx_buf);
1191 /* ... Modify ... (always little endian). */
1192 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1193 /* ... Write. */
1194 regcache_raw_write (regcache, fpnum, mmx_buf);
1195 }
1196 else
1197 regcache_raw_write (regcache, regnum, buf);
1198 }
1199
1200 /* Return true iff register REGNUM's virtual format is different from
1201 its raw format. Note that this definition assumes that the host
1202 supports IEEE 32-bit floats, since it doesn't say that SSE
1203 registers need conversion. Even if we can't find a counterexample,
1204 this is still sloppy. */
1205
1206 static int
1207 i386_register_convertible (int regnum)
1208 {
1209 return i386_fp_regnum_p (regnum);
1210 }
1211
1212 /* Convert data from raw format for register REGNUM in buffer FROM to
1213 virtual format with type TYPE in buffer TO. */
1214
1215 static void
1216 i386_register_convert_to_virtual (int regnum, struct type *type,
1217 char *from, char *to)
1218 {
1219 gdb_assert (i386_fp_regnum_p (regnum));
1220
1221 /* We only support floating-point values. */
1222 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1223 {
1224 warning ("Cannot convert floating-point register value "
1225 "to non-floating-point type.");
1226 memset (to, 0, TYPE_LENGTH (type));
1227 return;
1228 }
1229
1230 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1231 the extended floating-point format used by the FPU. */
1232 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1233 }
1234
1235 /* Convert data from virtual format with type TYPE in buffer FROM to
1236 raw format for register REGNUM in buffer TO. */
1237
1238 static void
1239 i386_register_convert_to_raw (struct type *type, int regnum,
1240 char *from, char *to)
1241 {
1242 gdb_assert (i386_fp_regnum_p (regnum));
1243
1244 /* We only support floating-point values. */
1245 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1246 {
1247 warning ("Cannot convert non-floating-point type "
1248 "to floating-point register value.");
1249 memset (to, 0, TYPE_LENGTH (type));
1250 return;
1251 }
1252
1253 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1254 to the extended floating-point format used by the FPU. */
1255 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1256 }
1257 \f
1258
1259 #ifdef STATIC_TRANSFORM_NAME
1260 /* SunPRO encodes the static variables. This is not related to C++
1261 mangling, it is done for C too. */
1262
1263 char *
1264 sunpro_static_transform_name (char *name)
1265 {
1266 char *p;
1267 if (IS_STATIC_TRANSFORM_NAME (name))
1268 {
1269 /* For file-local statics there will be a period, a bunch of
1270 junk (the contents of which match a string given in the
1271 N_OPT), a period and the name. For function-local statics
1272 there will be a bunch of junk (which seems to change the
1273 second character from 'A' to 'B'), a period, the name of the
1274 function, and the name. So just skip everything before the
1275 last period. */
1276 p = strrchr (name, '.');
1277 if (p != NULL)
1278 name = p + 1;
1279 }
1280 return name;
1281 }
1282 #endif /* STATIC_TRANSFORM_NAME */
1283 \f
1284
1285 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1286
1287 CORE_ADDR
1288 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1289 {
1290 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1291 {
1292 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1293 struct minimal_symbol *indsym =
1294 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1295 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
1296
1297 if (symname)
1298 {
1299 if (strncmp (symname, "__imp_", 6) == 0
1300 || strncmp (symname, "_imp_", 5) == 0)
1301 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1302 }
1303 }
1304 return 0; /* Not a trampoline. */
1305 }
1306 \f
1307
1308 /* Return non-zero if PC and NAME show that we are in a signal
1309 trampoline. */
1310
1311 static int
1312 i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1313 {
1314 return (name && strcmp ("_sigtramp", name) == 0);
1315 }
1316 \f
1317
1318 /* We have two flavours of disassembly. The machinery on this page
1319 deals with switching between those. */
1320
1321 static int
1322 i386_print_insn (bfd_vma pc, disassemble_info *info)
1323 {
1324 gdb_assert (disassembly_flavor == att_flavor
1325 || disassembly_flavor == intel_flavor);
1326
1327 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1328 constified, cast to prevent a compiler warning. */
1329 info->disassembler_options = (char *) disassembly_flavor;
1330 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1331
1332 return print_insn_i386 (pc, info);
1333 }
1334 \f
1335
1336 /* There are a few i386 architecture variants that differ only
1337 slightly from the generic i386 target. For now, we don't give them
1338 their own source file, but include them here. As a consequence,
1339 they'll always be included. */
1340
1341 /* System V Release 4 (SVR4). */
1342
1343 static int
1344 i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
1345 {
1346 return (name && (strcmp ("_sigreturn", name) == 0
1347 || strcmp ("_sigacthandler", name) == 0
1348 || strcmp ("sigvechandler", name) == 0));
1349 }
1350
1351 /* Get address of the pushed ucontext (sigcontext) on the stack for
1352 all three variants of SVR4 sigtramps. */
1353
1354 static CORE_ADDR
1355 i386_svr4_sigcontext_addr (struct frame_info *frame)
1356 {
1357 int sigcontext_offset = -1;
1358 char *name = NULL;
1359
1360 find_pc_partial_function (get_frame_pc (frame), &name, NULL, NULL);
1361 if (name)
1362 {
1363 if (strcmp (name, "_sigreturn") == 0)
1364 sigcontext_offset = 132;
1365 else if (strcmp (name, "_sigacthandler") == 0)
1366 sigcontext_offset = 80;
1367 else if (strcmp (name, "sigvechandler") == 0)
1368 sigcontext_offset = 120;
1369 }
1370
1371 gdb_assert (sigcontext_offset != -1);
1372
1373 if (frame->next)
1374 return get_frame_base (frame->next) + sigcontext_offset;
1375 return read_register (SP_REGNUM) + sigcontext_offset;
1376 }
1377 \f
1378
1379 /* DJGPP. */
1380
1381 static int
1382 i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1383 {
1384 /* DJGPP doesn't have any special frames for signal handlers. */
1385 return 0;
1386 }
1387 \f
1388
1389 /* Generic ELF. */
1390
1391 void
1392 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1393 {
1394 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1395 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1396 }
1397
1398 /* System V Release 4 (SVR4). */
1399
1400 void
1401 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1402 {
1403 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1404
1405 /* System V Release 4 uses ELF. */
1406 i386_elf_init_abi (info, gdbarch);
1407
1408 /* System V Release 4 has shared libraries. */
1409 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1410 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1411
1412 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1413 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1414 tdep->sc_pc_offset = 14 * 4;
1415 tdep->sc_sp_offset = 7 * 4;
1416
1417 tdep->jb_pc_offset = 20;
1418 }
1419
1420 /* DJGPP. */
1421
1422 static void
1423 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1424 {
1425 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1426
1427 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
1428
1429 tdep->jb_pc_offset = 36;
1430 }
1431
1432 /* NetWare. */
1433
1434 static void
1435 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1436 {
1437 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1438
1439 tdep->jb_pc_offset = 24;
1440 }
1441 \f
1442
1443 /* i386 register groups. In addition to the normal groups, add "mmx"
1444 and "sse". */
1445
1446 static struct reggroup *i386_sse_reggroup;
1447 static struct reggroup *i386_mmx_reggroup;
1448
1449 static void
1450 i386_init_reggroups (void)
1451 {
1452 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1453 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1454 }
1455
1456 static void
1457 i386_add_reggroups (struct gdbarch *gdbarch)
1458 {
1459 reggroup_add (gdbarch, i386_sse_reggroup);
1460 reggroup_add (gdbarch, i386_mmx_reggroup);
1461 reggroup_add (gdbarch, general_reggroup);
1462 reggroup_add (gdbarch, float_reggroup);
1463 reggroup_add (gdbarch, all_reggroup);
1464 reggroup_add (gdbarch, save_reggroup);
1465 reggroup_add (gdbarch, restore_reggroup);
1466 reggroup_add (gdbarch, vector_reggroup);
1467 reggroup_add (gdbarch, system_reggroup);
1468 }
1469
1470 int
1471 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1472 struct reggroup *group)
1473 {
1474 int sse_regnum_p = (i386_sse_regnum_p (regnum)
1475 || i386_mxcsr_regnum_p (regnum));
1476 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1477 || i386_fpc_regnum_p (regnum));
1478 int mmx_regnum_p = (i386_mmx_regnum_p (regnum));
1479 if (group == i386_mmx_reggroup)
1480 return mmx_regnum_p;
1481 if (group == i386_sse_reggroup)
1482 return sse_regnum_p;
1483 if (group == vector_reggroup)
1484 return (mmx_regnum_p || sse_regnum_p);
1485 if (group == float_reggroup)
1486 return fp_regnum_p;
1487 if (group == general_reggroup)
1488 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
1489 return default_register_reggroup_p (gdbarch, regnum, group);
1490 }
1491
1492 \f
1493 static struct gdbarch *
1494 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1495 {
1496 struct gdbarch_tdep *tdep;
1497 struct gdbarch *gdbarch;
1498
1499 /* If there is already a candidate, use it. */
1500 arches = gdbarch_list_lookup_by_info (arches, &info);
1501 if (arches != NULL)
1502 return arches->gdbarch;
1503
1504 /* Allocate space for the new architecture. */
1505 tdep = XMALLOC (struct gdbarch_tdep);
1506 gdbarch = gdbarch_alloc (&info, tdep);
1507
1508 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1509 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1510 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1511
1512 /* The i386 default settings don't include the SSE registers.
1513 FIXME: kettenis/20020614: They do include the FPU registers for
1514 now, which probably is not quite right. */
1515 tdep->num_xmm_regs = 0;
1516
1517 tdep->jb_pc_offset = -1;
1518 tdep->struct_return = pcc_struct_return;
1519 tdep->sigtramp_start = 0;
1520 tdep->sigtramp_end = 0;
1521 tdep->sigcontext_addr = NULL;
1522 tdep->sc_pc_offset = -1;
1523 tdep->sc_sp_offset = -1;
1524
1525 /* The format used for `long double' on almost all i386 targets is
1526 the i387 extended floating-point format. In fact, of all targets
1527 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1528 on having a `long double' that's not `long' at all. */
1529 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1530
1531 /* Although the i387 extended floating-point has only 80 significant
1532 bits, a `long double' actually takes up 96, probably to enforce
1533 alignment. */
1534 set_gdbarch_long_double_bit (gdbarch, 96);
1535
1536 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1537 tm-symmetry.h currently override this. Sigh. */
1538 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
1539
1540 set_gdbarch_sp_regnum (gdbarch, 4); /* %esp */
1541 set_gdbarch_fp_regnum (gdbarch, 5); /* %ebp */
1542 set_gdbarch_pc_regnum (gdbarch, 8); /* %eip */
1543 set_gdbarch_ps_regnum (gdbarch, 9); /* %eflags */
1544 set_gdbarch_fp0_regnum (gdbarch, 16); /* %st(0) */
1545
1546 /* Use the "default" register numbering scheme for stabs and COFF. */
1547 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1548 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1549
1550 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1551 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1552 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1553
1554 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1555 be in use on any of the supported i386 targets. */
1556
1557 set_gdbarch_register_name (gdbarch, i386_register_name);
1558 set_gdbarch_register_size (gdbarch, 4);
1559 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
1560 set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE);
1561 set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE);
1562 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
1563
1564 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1565
1566 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
1567
1568 /* Call dummy code. */
1569 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1570 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1571 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1572 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1573 set_gdbarch_call_dummy_length (gdbarch, 0);
1574 set_gdbarch_call_dummy_p (gdbarch, 1);
1575 set_gdbarch_call_dummy_words (gdbarch, NULL);
1576 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1577 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1578 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1579
1580 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1581 set_gdbarch_register_convert_to_virtual (gdbarch,
1582 i386_register_convert_to_virtual);
1583 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1584
1585 /* "An argument's size is increased, if necessary, to make it a
1586 multiple of [32-bit] words. This may require tail padding,
1587 depending on the size of the argument" -- from the x86 ABI. */
1588 set_gdbarch_parm_boundary (gdbarch, 32);
1589
1590 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
1591 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1592 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1593 set_gdbarch_push_return_address (gdbarch, i386_push_return_address);
1594 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1595 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
1596 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1597 set_gdbarch_extract_struct_value_address (gdbarch,
1598 i386_extract_struct_value_address);
1599 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1600
1601 set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
1602 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1603
1604 /* Stack grows downward. */
1605 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1606
1607 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1608 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1609 set_gdbarch_function_start_offset (gdbarch, 0);
1610
1611 /* The following redefines make backtracing through sigtramp work.
1612 They manufacture a fake sigtramp frame and obtain the saved pc in
1613 sigtramp from the sigcontext structure which is pushed by the
1614 kernel on the user stack, along with a pointer to it. */
1615
1616 set_gdbarch_frame_args_skip (gdbarch, 8);
1617 set_gdbarch_frameless_function_invocation (gdbarch,
1618 i386_frameless_function_invocation);
1619 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
1620 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
1621 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
1622 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
1623 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1624
1625 /* Wire in the MMX registers. */
1626 set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
1627 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1628 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1629
1630 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1631
1632 /* Add the i386 register groups. */
1633 i386_add_reggroups (gdbarch);
1634 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
1635
1636 /* Hook in ABI-specific overrides, if they have been registered. */
1637 gdbarch_init_osabi (info, gdbarch);
1638
1639 return gdbarch;
1640 }
1641
1642 static enum gdb_osabi
1643 i386_coff_osabi_sniffer (bfd *abfd)
1644 {
1645 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1646 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
1647 return GDB_OSABI_GO32;
1648
1649 return GDB_OSABI_UNKNOWN;
1650 }
1651
1652 static enum gdb_osabi
1653 i386_nlm_osabi_sniffer (bfd *abfd)
1654 {
1655 return GDB_OSABI_NETWARE;
1656 }
1657 \f
1658
1659 /* Provide a prototype to silence -Wmissing-prototypes. */
1660 void _initialize_i386_tdep (void);
1661
1662 void
1663 _initialize_i386_tdep (void)
1664 {
1665 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1666
1667 /* Add the variable that controls the disassembly flavor. */
1668 {
1669 struct cmd_list_element *new_cmd;
1670
1671 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1672 valid_flavors,
1673 &disassembly_flavor,
1674 "\
1675 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1676 and the default value is \"att\".",
1677 &setlist);
1678 add_show_from_set (new_cmd, &showlist);
1679 }
1680
1681 /* Add the variable that controls the convention for returning
1682 structs. */
1683 {
1684 struct cmd_list_element *new_cmd;
1685
1686 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1687 valid_conventions,
1688 &struct_convention, "\
1689 Set the convention for returning small structs, valid values \
1690 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1691 &setlist);
1692 add_show_from_set (new_cmd, &showlist);
1693 }
1694
1695 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1696 i386_coff_osabi_sniffer);
1697 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1698 i386_nlm_osabi_sniffer);
1699
1700 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
1701 i386_svr4_init_abi);
1702 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
1703 i386_go32_init_abi);
1704 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
1705 i386_nw_init_abi);
1706
1707 /* Initialize the i386 specific register groups. */
1708 i386_init_reggroups ();
1709 }
This page took 0.098315 seconds and 4 git commands to generate.