* MAINTAINERS: Remove myself.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include "gdb_string.h"
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include <stdint.h>
56
57 #include "features/i386/i386.c"
58 #include "features/i386/i386-avx.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70
71 /* Register names. */
72
73 static const char *i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char *i386_ymm_names[] =
89 {
90 "ymm0", "ymm1", "ymm2", "ymm3",
91 "ymm4", "ymm5", "ymm6", "ymm7",
92 };
93
94 static const char *i386_ymmh_names[] =
95 {
96 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
97 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
98 };
99
100 /* Register names for MMX pseudo-registers. */
101
102 static const char *i386_mmx_names[] =
103 {
104 "mm0", "mm1", "mm2", "mm3",
105 "mm4", "mm5", "mm6", "mm7"
106 };
107
108 /* Register names for byte pseudo-registers. */
109
110 static const char *i386_byte_names[] =
111 {
112 "al", "cl", "dl", "bl",
113 "ah", "ch", "dh", "bh"
114 };
115
116 /* Register names for word pseudo-registers. */
117
118 static const char *i386_word_names[] =
119 {
120 "ax", "cx", "dx", "bx",
121 "", "bp", "si", "di"
122 };
123
124 /* MMX register? */
125
126 static int
127 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
128 {
129 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
130 int mm0_regnum = tdep->mm0_regnum;
131
132 if (mm0_regnum < 0)
133 return 0;
134
135 regnum -= mm0_regnum;
136 return regnum >= 0 && regnum < tdep->num_mmx_regs;
137 }
138
139 /* Byte register? */
140
141 int
142 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
143 {
144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
145
146 regnum -= tdep->al_regnum;
147 return regnum >= 0 && regnum < tdep->num_byte_regs;
148 }
149
150 /* Word register? */
151
152 int
153 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156
157 regnum -= tdep->ax_regnum;
158 return regnum >= 0 && regnum < tdep->num_word_regs;
159 }
160
161 /* Dword register? */
162
163 int
164 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
165 {
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int eax_regnum = tdep->eax_regnum;
168
169 if (eax_regnum < 0)
170 return 0;
171
172 regnum -= eax_regnum;
173 return regnum >= 0 && regnum < tdep->num_dword_regs;
174 }
175
176 static int
177 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
178 {
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180 int ymm0h_regnum = tdep->ymm0h_regnum;
181
182 if (ymm0h_regnum < 0)
183 return 0;
184
185 regnum -= ymm0h_regnum;
186 return regnum >= 0 && regnum < tdep->num_ymm_regs;
187 }
188
189 /* AVX register? */
190
191 int
192 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
193 {
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195 int ymm0_regnum = tdep->ymm0_regnum;
196
197 if (ymm0_regnum < 0)
198 return 0;
199
200 regnum -= ymm0_regnum;
201 return regnum >= 0 && regnum < tdep->num_ymm_regs;
202 }
203
204 /* SSE register? */
205
206 int
207 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
208 {
209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
210 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
211
212 if (num_xmm_regs == 0)
213 return 0;
214
215 regnum -= I387_XMM0_REGNUM (tdep);
216 return regnum >= 0 && regnum < num_xmm_regs;
217 }
218
219 static int
220 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
221 {
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223
224 if (I387_NUM_XMM_REGS (tdep) == 0)
225 return 0;
226
227 return (regnum == I387_MXCSR_REGNUM (tdep));
228 }
229
230 /* FP register? */
231
232 int
233 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
234 {
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236
237 if (I387_ST0_REGNUM (tdep) < 0)
238 return 0;
239
240 return (I387_ST0_REGNUM (tdep) <= regnum
241 && regnum < I387_FCTRL_REGNUM (tdep));
242 }
243
244 int
245 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
246 {
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248
249 if (I387_ST0_REGNUM (tdep) < 0)
250 return 0;
251
252 return (I387_FCTRL_REGNUM (tdep) <= regnum
253 && regnum < I387_XMM0_REGNUM (tdep));
254 }
255
256 /* Return the name of register REGNUM, or the empty string if it is
257 an anonymous register. */
258
259 static const char *
260 i386_register_name (struct gdbarch *gdbarch, int regnum)
261 {
262 /* Hide the upper YMM registers. */
263 if (i386_ymmh_regnum_p (gdbarch, regnum))
264 return "";
265
266 return tdesc_register_name (gdbarch, regnum);
267 }
268
269 /* Return the name of register REGNUM. */
270
271 const char *
272 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
273 {
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 if (i386_mmx_regnum_p (gdbarch, regnum))
276 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
277 else if (i386_ymm_regnum_p (gdbarch, regnum))
278 return i386_ymm_names[regnum - tdep->ymm0_regnum];
279 else if (i386_byte_regnum_p (gdbarch, regnum))
280 return i386_byte_names[regnum - tdep->al_regnum];
281 else if (i386_word_regnum_p (gdbarch, regnum))
282 return i386_word_names[regnum - tdep->ax_regnum];
283
284 internal_error (__FILE__, __LINE__, _("invalid regnum"));
285 }
286
287 /* Convert a dbx register number REG to the appropriate register
288 number used by GDB. */
289
290 static int
291 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
292 {
293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294
295 /* This implements what GCC calls the "default" register map
296 (dbx_register_map[]). */
297
298 if (reg >= 0 && reg <= 7)
299 {
300 /* General-purpose registers. The debug info calls %ebp
301 register 4, and %esp register 5. */
302 if (reg == 4)
303 return 5;
304 else if (reg == 5)
305 return 4;
306 else return reg;
307 }
308 else if (reg >= 12 && reg <= 19)
309 {
310 /* Floating-point registers. */
311 return reg - 12 + I387_ST0_REGNUM (tdep);
312 }
313 else if (reg >= 21 && reg <= 28)
314 {
315 /* SSE registers. */
316 int ymm0_regnum = tdep->ymm0_regnum;
317
318 if (ymm0_regnum >= 0
319 && i386_xmm_regnum_p (gdbarch, reg))
320 return reg - 21 + ymm0_regnum;
321 else
322 return reg - 21 + I387_XMM0_REGNUM (tdep);
323 }
324 else if (reg >= 29 && reg <= 36)
325 {
326 /* MMX registers. */
327 return reg - 29 + I387_MM0_REGNUM (tdep);
328 }
329
330 /* This will hopefully provoke a warning. */
331 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
332 }
333
334 /* Convert SVR4 register number REG to the appropriate register number
335 used by GDB. */
336
337 static int
338 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
339 {
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341
342 /* This implements the GCC register map that tries to be compatible
343 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
344
345 /* The SVR4 register numbering includes %eip and %eflags, and
346 numbers the floating point registers differently. */
347 if (reg >= 0 && reg <= 9)
348 {
349 /* General-purpose registers. */
350 return reg;
351 }
352 else if (reg >= 11 && reg <= 18)
353 {
354 /* Floating-point registers. */
355 return reg - 11 + I387_ST0_REGNUM (tdep);
356 }
357 else if (reg >= 21 && reg <= 36)
358 {
359 /* The SSE and MMX registers have the same numbers as with dbx. */
360 return i386_dbx_reg_to_regnum (gdbarch, reg);
361 }
362
363 switch (reg)
364 {
365 case 37: return I387_FCTRL_REGNUM (tdep);
366 case 38: return I387_FSTAT_REGNUM (tdep);
367 case 39: return I387_MXCSR_REGNUM (tdep);
368 case 40: return I386_ES_REGNUM;
369 case 41: return I386_CS_REGNUM;
370 case 42: return I386_SS_REGNUM;
371 case 43: return I386_DS_REGNUM;
372 case 44: return I386_FS_REGNUM;
373 case 45: return I386_GS_REGNUM;
374 }
375
376 /* This will hopefully provoke a warning. */
377 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
378 }
379
380 \f
381
382 /* This is the variable that is set with "set disassembly-flavor", and
383 its legitimate values. */
384 static const char att_flavor[] = "att";
385 static const char intel_flavor[] = "intel";
386 static const char *const valid_flavors[] =
387 {
388 att_flavor,
389 intel_flavor,
390 NULL
391 };
392 static const char *disassembly_flavor = att_flavor;
393 \f
394
395 /* Use the program counter to determine the contents and size of a
396 breakpoint instruction. Return a pointer to a string of bytes that
397 encode a breakpoint instruction, store the length of the string in
398 *LEN and optionally adjust *PC to point to the correct memory
399 location for inserting the breakpoint.
400
401 On the i386 we have a single breakpoint that fits in a single byte
402 and can be inserted anywhere.
403
404 This function is 64-bit safe. */
405
406 static const gdb_byte *
407 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
408 {
409 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
410
411 *len = sizeof (break_insn);
412 return break_insn;
413 }
414 \f
415 /* Displaced instruction handling. */
416
417 /* Skip the legacy instruction prefixes in INSN.
418 Not all prefixes are valid for any particular insn
419 but we needn't care, the insn will fault if it's invalid.
420 The result is a pointer to the first opcode byte,
421 or NULL if we run off the end of the buffer. */
422
423 static gdb_byte *
424 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
425 {
426 gdb_byte *end = insn + max_len;
427
428 while (insn < end)
429 {
430 switch (*insn)
431 {
432 case DATA_PREFIX_OPCODE:
433 case ADDR_PREFIX_OPCODE:
434 case CS_PREFIX_OPCODE:
435 case DS_PREFIX_OPCODE:
436 case ES_PREFIX_OPCODE:
437 case FS_PREFIX_OPCODE:
438 case GS_PREFIX_OPCODE:
439 case SS_PREFIX_OPCODE:
440 case LOCK_PREFIX_OPCODE:
441 case REPE_PREFIX_OPCODE:
442 case REPNE_PREFIX_OPCODE:
443 ++insn;
444 continue;
445 default:
446 return insn;
447 }
448 }
449
450 return NULL;
451 }
452
453 static int
454 i386_absolute_jmp_p (const gdb_byte *insn)
455 {
456 /* jmp far (absolute address in operand). */
457 if (insn[0] == 0xea)
458 return 1;
459
460 if (insn[0] == 0xff)
461 {
462 /* jump near, absolute indirect (/4). */
463 if ((insn[1] & 0x38) == 0x20)
464 return 1;
465
466 /* jump far, absolute indirect (/5). */
467 if ((insn[1] & 0x38) == 0x28)
468 return 1;
469 }
470
471 return 0;
472 }
473
474 static int
475 i386_absolute_call_p (const gdb_byte *insn)
476 {
477 /* call far, absolute. */
478 if (insn[0] == 0x9a)
479 return 1;
480
481 if (insn[0] == 0xff)
482 {
483 /* Call near, absolute indirect (/2). */
484 if ((insn[1] & 0x38) == 0x10)
485 return 1;
486
487 /* Call far, absolute indirect (/3). */
488 if ((insn[1] & 0x38) == 0x18)
489 return 1;
490 }
491
492 return 0;
493 }
494
495 static int
496 i386_ret_p (const gdb_byte *insn)
497 {
498 switch (insn[0])
499 {
500 case 0xc2: /* ret near, pop N bytes. */
501 case 0xc3: /* ret near */
502 case 0xca: /* ret far, pop N bytes. */
503 case 0xcb: /* ret far */
504 case 0xcf: /* iret */
505 return 1;
506
507 default:
508 return 0;
509 }
510 }
511
512 static int
513 i386_call_p (const gdb_byte *insn)
514 {
515 if (i386_absolute_call_p (insn))
516 return 1;
517
518 /* call near, relative. */
519 if (insn[0] == 0xe8)
520 return 1;
521
522 return 0;
523 }
524
525 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
526 length in bytes. Otherwise, return zero. */
527
528 static int
529 i386_syscall_p (const gdb_byte *insn, int *lengthp)
530 {
531 /* Is it 'int $0x80'? */
532 if ((insn[0] == 0xcd && insn[1] == 0x80)
533 /* Or is it 'sysenter'? */
534 || (insn[0] == 0x0f && insn[1] == 0x34)
535 /* Or is it 'syscall'? */
536 || (insn[0] == 0x0f && insn[1] == 0x05))
537 {
538 *lengthp = 2;
539 return 1;
540 }
541
542 return 0;
543 }
544
545 /* Some kernels may run one past a syscall insn, so we have to cope.
546 Otherwise this is just simple_displaced_step_copy_insn. */
547
548 struct displaced_step_closure *
549 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
550 CORE_ADDR from, CORE_ADDR to,
551 struct regcache *regs)
552 {
553 size_t len = gdbarch_max_insn_length (gdbarch);
554 gdb_byte *buf = xmalloc (len);
555
556 read_memory (from, buf, len);
557
558 /* GDB may get control back after the insn after the syscall.
559 Presumably this is a kernel bug.
560 If this is a syscall, make sure there's a nop afterwards. */
561 {
562 int syscall_length;
563 gdb_byte *insn;
564
565 insn = i386_skip_prefixes (buf, len);
566 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
567 insn[syscall_length] = NOP_OPCODE;
568 }
569
570 write_memory (to, buf, len);
571
572 if (debug_displaced)
573 {
574 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
575 paddress (gdbarch, from), paddress (gdbarch, to));
576 displaced_step_dump_bytes (gdb_stdlog, buf, len);
577 }
578
579 return (struct displaced_step_closure *) buf;
580 }
581
582 /* Fix up the state of registers and memory after having single-stepped
583 a displaced instruction. */
584
585 void
586 i386_displaced_step_fixup (struct gdbarch *gdbarch,
587 struct displaced_step_closure *closure,
588 CORE_ADDR from, CORE_ADDR to,
589 struct regcache *regs)
590 {
591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
592
593 /* The offset we applied to the instruction's address.
594 This could well be negative (when viewed as a signed 32-bit
595 value), but ULONGEST won't reflect that, so take care when
596 applying it. */
597 ULONGEST insn_offset = to - from;
598
599 /* Since we use simple_displaced_step_copy_insn, our closure is a
600 copy of the instruction. */
601 gdb_byte *insn = (gdb_byte *) closure;
602 /* The start of the insn, needed in case we see some prefixes. */
603 gdb_byte *insn_start = insn;
604
605 if (debug_displaced)
606 fprintf_unfiltered (gdb_stdlog,
607 "displaced: fixup (%s, %s), "
608 "insn = 0x%02x 0x%02x ...\n",
609 paddress (gdbarch, from), paddress (gdbarch, to),
610 insn[0], insn[1]);
611
612 /* The list of issues to contend with here is taken from
613 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
614 Yay for Free Software! */
615
616 /* Relocate the %eip, if necessary. */
617
618 /* The instruction recognizers we use assume any leading prefixes
619 have been skipped. */
620 {
621 /* This is the size of the buffer in closure. */
622 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
623 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
624 /* If there are too many prefixes, just ignore the insn.
625 It will fault when run. */
626 if (opcode != NULL)
627 insn = opcode;
628 }
629
630 /* Except in the case of absolute or indirect jump or call
631 instructions, or a return instruction, the new eip is relative to
632 the displaced instruction; make it relative. Well, signal
633 handler returns don't need relocation either, but we use the
634 value of %eip to recognize those; see below. */
635 if (! i386_absolute_jmp_p (insn)
636 && ! i386_absolute_call_p (insn)
637 && ! i386_ret_p (insn))
638 {
639 ULONGEST orig_eip;
640 int insn_len;
641
642 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
643
644 /* A signal trampoline system call changes the %eip, resuming
645 execution of the main program after the signal handler has
646 returned. That makes them like 'return' instructions; we
647 shouldn't relocate %eip.
648
649 But most system calls don't, and we do need to relocate %eip.
650
651 Our heuristic for distinguishing these cases: if stepping
652 over the system call instruction left control directly after
653 the instruction, the we relocate --- control almost certainly
654 doesn't belong in the displaced copy. Otherwise, we assume
655 the instruction has put control where it belongs, and leave
656 it unrelocated. Goodness help us if there are PC-relative
657 system calls. */
658 if (i386_syscall_p (insn, &insn_len)
659 && orig_eip != to + (insn - insn_start) + insn_len
660 /* GDB can get control back after the insn after the syscall.
661 Presumably this is a kernel bug.
662 i386_displaced_step_copy_insn ensures its a nop,
663 we add one to the length for it. */
664 && orig_eip != to + (insn - insn_start) + insn_len + 1)
665 {
666 if (debug_displaced)
667 fprintf_unfiltered (gdb_stdlog,
668 "displaced: syscall changed %%eip; "
669 "not relocating\n");
670 }
671 else
672 {
673 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
674
675 /* If we just stepped over a breakpoint insn, we don't backup
676 the pc on purpose; this is to match behaviour without
677 stepping. */
678
679 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
680
681 if (debug_displaced)
682 fprintf_unfiltered (gdb_stdlog,
683 "displaced: "
684 "relocated %%eip from %s to %s\n",
685 paddress (gdbarch, orig_eip),
686 paddress (gdbarch, eip));
687 }
688 }
689
690 /* If the instruction was PUSHFL, then the TF bit will be set in the
691 pushed value, and should be cleared. We'll leave this for later,
692 since GDB already messes up the TF flag when stepping over a
693 pushfl. */
694
695 /* If the instruction was a call, the return address now atop the
696 stack is the address following the copied instruction. We need
697 to make it the address following the original instruction. */
698 if (i386_call_p (insn))
699 {
700 ULONGEST esp;
701 ULONGEST retaddr;
702 const ULONGEST retaddr_len = 4;
703
704 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
705 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
706 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
707 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
711 "displaced: relocated return addr at %s to %s\n",
712 paddress (gdbarch, esp),
713 paddress (gdbarch, retaddr));
714 }
715 }
716
717 static void
718 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
719 {
720 target_write_memory (*to, buf, len);
721 *to += len;
722 }
723
724 static void
725 i386_relocate_instruction (struct gdbarch *gdbarch,
726 CORE_ADDR *to, CORE_ADDR oldloc)
727 {
728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
729 gdb_byte buf[I386_MAX_INSN_LEN];
730 int offset = 0, rel32, newrel;
731 int insn_length;
732 gdb_byte *insn = buf;
733
734 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
735
736 insn_length = gdb_buffered_insn_length (gdbarch, insn,
737 I386_MAX_INSN_LEN, oldloc);
738
739 /* Get past the prefixes. */
740 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
741
742 /* Adjust calls with 32-bit relative addresses as push/jump, with
743 the address pushed being the location where the original call in
744 the user program would return to. */
745 if (insn[0] == 0xe8)
746 {
747 gdb_byte push_buf[16];
748 unsigned int ret_addr;
749
750 /* Where "ret" in the original code will return to. */
751 ret_addr = oldloc + insn_length;
752 push_buf[0] = 0x68; /* pushq $... */
753 memcpy (&push_buf[1], &ret_addr, 4);
754 /* Push the push. */
755 append_insns (to, 5, push_buf);
756
757 /* Convert the relative call to a relative jump. */
758 insn[0] = 0xe9;
759
760 /* Adjust the destination offset. */
761 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
762 newrel = (oldloc - *to) + rel32;
763 store_signed_integer (insn + 1, 4, byte_order, newrel);
764
765 if (debug_displaced)
766 fprintf_unfiltered (gdb_stdlog,
767 "Adjusted insn rel32=%s at %s to"
768 " rel32=%s at %s\n",
769 hex_string (rel32), paddress (gdbarch, oldloc),
770 hex_string (newrel), paddress (gdbarch, *to));
771
772 /* Write the adjusted jump into its displaced location. */
773 append_insns (to, 5, insn);
774 return;
775 }
776
777 /* Adjust jumps with 32-bit relative addresses. Calls are already
778 handled above. */
779 if (insn[0] == 0xe9)
780 offset = 1;
781 /* Adjust conditional jumps. */
782 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
783 offset = 2;
784
785 if (offset)
786 {
787 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
788 newrel = (oldloc - *to) + rel32;
789 store_signed_integer (insn + offset, 4, byte_order, newrel);
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog,
792 "Adjusted insn rel32=%s at %s to"
793 " rel32=%s at %s\n",
794 hex_string (rel32), paddress (gdbarch, oldloc),
795 hex_string (newrel), paddress (gdbarch, *to));
796 }
797
798 /* Write the adjusted instructions into their displaced
799 location. */
800 append_insns (to, insn_length, buf);
801 }
802
803 \f
804 #ifdef I386_REGNO_TO_SYMMETRY
805 #error "The Sequent Symmetry is no longer supported."
806 #endif
807
808 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
809 and %esp "belong" to the calling function. Therefore these
810 registers should be saved if they're going to be modified. */
811
812 /* The maximum number of saved registers. This should include all
813 registers mentioned above, and %eip. */
814 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
815
816 struct i386_frame_cache
817 {
818 /* Base address. */
819 CORE_ADDR base;
820 int base_p;
821 LONGEST sp_offset;
822 CORE_ADDR pc;
823
824 /* Saved registers. */
825 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
826 CORE_ADDR saved_sp;
827 int saved_sp_reg;
828 int pc_in_eax;
829
830 /* Stack space reserved for local variables. */
831 long locals;
832 };
833
834 /* Allocate and initialize a frame cache. */
835
836 static struct i386_frame_cache *
837 i386_alloc_frame_cache (void)
838 {
839 struct i386_frame_cache *cache;
840 int i;
841
842 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
843
844 /* Base address. */
845 cache->base_p = 0;
846 cache->base = 0;
847 cache->sp_offset = -4;
848 cache->pc = 0;
849
850 /* Saved registers. We initialize these to -1 since zero is a valid
851 offset (that's where %ebp is supposed to be stored). */
852 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
853 cache->saved_regs[i] = -1;
854 cache->saved_sp = 0;
855 cache->saved_sp_reg = -1;
856 cache->pc_in_eax = 0;
857
858 /* Frameless until proven otherwise. */
859 cache->locals = -1;
860
861 return cache;
862 }
863
864 /* If the instruction at PC is a jump, return the address of its
865 target. Otherwise, return PC. */
866
867 static CORE_ADDR
868 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
869 {
870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
871 gdb_byte op;
872 long delta = 0;
873 int data16 = 0;
874
875 if (target_read_memory (pc, &op, 1))
876 return pc;
877
878 if (op == 0x66)
879 {
880 data16 = 1;
881 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
882 }
883
884 switch (op)
885 {
886 case 0xe9:
887 /* Relative jump: if data16 == 0, disp32, else disp16. */
888 if (data16)
889 {
890 delta = read_memory_integer (pc + 2, 2, byte_order);
891
892 /* Include the size of the jmp instruction (including the
893 0x66 prefix). */
894 delta += 4;
895 }
896 else
897 {
898 delta = read_memory_integer (pc + 1, 4, byte_order);
899
900 /* Include the size of the jmp instruction. */
901 delta += 5;
902 }
903 break;
904 case 0xeb:
905 /* Relative jump, disp8 (ignore data16). */
906 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
907
908 delta += data16 + 2;
909 break;
910 }
911
912 return pc + delta;
913 }
914
915 /* Check whether PC points at a prologue for a function returning a
916 structure or union. If so, it updates CACHE and returns the
917 address of the first instruction after the code sequence that
918 removes the "hidden" argument from the stack or CURRENT_PC,
919 whichever is smaller. Otherwise, return PC. */
920
921 static CORE_ADDR
922 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
923 struct i386_frame_cache *cache)
924 {
925 /* Functions that return a structure or union start with:
926
927 popl %eax 0x58
928 xchgl %eax, (%esp) 0x87 0x04 0x24
929 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
930
931 (the System V compiler puts out the second `xchg' instruction,
932 and the assembler doesn't try to optimize it, so the 'sib' form
933 gets generated). This sequence is used to get the address of the
934 return buffer for a function that returns a structure. */
935 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
936 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
937 gdb_byte buf[4];
938 gdb_byte op;
939
940 if (current_pc <= pc)
941 return pc;
942
943 if (target_read_memory (pc, &op, 1))
944 return pc;
945
946 if (op != 0x58) /* popl %eax */
947 return pc;
948
949 if (target_read_memory (pc + 1, buf, 4))
950 return pc;
951
952 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
953 return pc;
954
955 if (current_pc == pc)
956 {
957 cache->sp_offset += 4;
958 return current_pc;
959 }
960
961 if (current_pc == pc + 1)
962 {
963 cache->pc_in_eax = 1;
964 return current_pc;
965 }
966
967 if (buf[1] == proto1[1])
968 return pc + 4;
969 else
970 return pc + 5;
971 }
972
973 static CORE_ADDR
974 i386_skip_probe (CORE_ADDR pc)
975 {
976 /* A function may start with
977
978 pushl constant
979 call _probe
980 addl $4, %esp
981
982 followed by
983
984 pushl %ebp
985
986 etc. */
987 gdb_byte buf[8];
988 gdb_byte op;
989
990 if (target_read_memory (pc, &op, 1))
991 return pc;
992
993 if (op == 0x68 || op == 0x6a)
994 {
995 int delta;
996
997 /* Skip past the `pushl' instruction; it has either a one-byte or a
998 four-byte operand, depending on the opcode. */
999 if (op == 0x68)
1000 delta = 5;
1001 else
1002 delta = 2;
1003
1004 /* Read the following 8 bytes, which should be `call _probe' (6
1005 bytes) followed by `addl $4,%esp' (2 bytes). */
1006 read_memory (pc + delta, buf, sizeof (buf));
1007 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1008 pc += delta + sizeof (buf);
1009 }
1010
1011 return pc;
1012 }
1013
1014 /* GCC 4.1 and later, can put code in the prologue to realign the
1015 stack pointer. Check whether PC points to such code, and update
1016 CACHE accordingly. Return the first instruction after the code
1017 sequence or CURRENT_PC, whichever is smaller. If we don't
1018 recognize the code, return PC. */
1019
1020 static CORE_ADDR
1021 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1022 struct i386_frame_cache *cache)
1023 {
1024 /* There are 2 code sequences to re-align stack before the frame
1025 gets set up:
1026
1027 1. Use a caller-saved saved register:
1028
1029 leal 4(%esp), %reg
1030 andl $-XXX, %esp
1031 pushl -4(%reg)
1032
1033 2. Use a callee-saved saved register:
1034
1035 pushl %reg
1036 leal 8(%esp), %reg
1037 andl $-XXX, %esp
1038 pushl -4(%reg)
1039
1040 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1041
1042 0x83 0xe4 0xf0 andl $-16, %esp
1043 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1044 */
1045
1046 gdb_byte buf[14];
1047 int reg;
1048 int offset, offset_and;
1049 static int regnums[8] = {
1050 I386_EAX_REGNUM, /* %eax */
1051 I386_ECX_REGNUM, /* %ecx */
1052 I386_EDX_REGNUM, /* %edx */
1053 I386_EBX_REGNUM, /* %ebx */
1054 I386_ESP_REGNUM, /* %esp */
1055 I386_EBP_REGNUM, /* %ebp */
1056 I386_ESI_REGNUM, /* %esi */
1057 I386_EDI_REGNUM /* %edi */
1058 };
1059
1060 if (target_read_memory (pc, buf, sizeof buf))
1061 return pc;
1062
1063 /* Check caller-saved saved register. The first instruction has
1064 to be "leal 4(%esp), %reg". */
1065 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1066 {
1067 /* MOD must be binary 10 and R/M must be binary 100. */
1068 if ((buf[1] & 0xc7) != 0x44)
1069 return pc;
1070
1071 /* REG has register number. */
1072 reg = (buf[1] >> 3) & 7;
1073 offset = 4;
1074 }
1075 else
1076 {
1077 /* Check callee-saved saved register. The first instruction
1078 has to be "pushl %reg". */
1079 if ((buf[0] & 0xf8) != 0x50)
1080 return pc;
1081
1082 /* Get register. */
1083 reg = buf[0] & 0x7;
1084
1085 /* The next instruction has to be "leal 8(%esp), %reg". */
1086 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1087 return pc;
1088
1089 /* MOD must be binary 10 and R/M must be binary 100. */
1090 if ((buf[2] & 0xc7) != 0x44)
1091 return pc;
1092
1093 /* REG has register number. Registers in pushl and leal have to
1094 be the same. */
1095 if (reg != ((buf[2] >> 3) & 7))
1096 return pc;
1097
1098 offset = 5;
1099 }
1100
1101 /* Rigister can't be %esp nor %ebp. */
1102 if (reg == 4 || reg == 5)
1103 return pc;
1104
1105 /* The next instruction has to be "andl $-XXX, %esp". */
1106 if (buf[offset + 1] != 0xe4
1107 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1108 return pc;
1109
1110 offset_and = offset;
1111 offset += buf[offset] == 0x81 ? 6 : 3;
1112
1113 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1114 0xfc. REG must be binary 110 and MOD must be binary 01. */
1115 if (buf[offset] != 0xff
1116 || buf[offset + 2] != 0xfc
1117 || (buf[offset + 1] & 0xf8) != 0x70)
1118 return pc;
1119
1120 /* R/M has register. Registers in leal and pushl have to be the
1121 same. */
1122 if (reg != (buf[offset + 1] & 7))
1123 return pc;
1124
1125 if (current_pc > pc + offset_and)
1126 cache->saved_sp_reg = regnums[reg];
1127
1128 return min (pc + offset + 3, current_pc);
1129 }
1130
1131 /* Maximum instruction length we need to handle. */
1132 #define I386_MAX_MATCHED_INSN_LEN 6
1133
1134 /* Instruction description. */
1135 struct i386_insn
1136 {
1137 size_t len;
1138 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1139 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1140 };
1141
1142 /* Return whether instruction at PC matches PATTERN. */
1143
1144 static int
1145 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1146 {
1147 gdb_byte op;
1148
1149 if (target_read_memory (pc, &op, 1))
1150 return 0;
1151
1152 if ((op & pattern.mask[0]) == pattern.insn[0])
1153 {
1154 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1155 int insn_matched = 1;
1156 size_t i;
1157
1158 gdb_assert (pattern.len > 1);
1159 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1160
1161 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1162 return 0;
1163
1164 for (i = 1; i < pattern.len; i++)
1165 {
1166 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1167 insn_matched = 0;
1168 }
1169 return insn_matched;
1170 }
1171 return 0;
1172 }
1173
1174 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1175 the first instruction description that matches. Otherwise, return
1176 NULL. */
1177
1178 static struct i386_insn *
1179 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1180 {
1181 struct i386_insn *pattern;
1182
1183 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1184 {
1185 if (i386_match_pattern (pc, *pattern))
1186 return pattern;
1187 }
1188
1189 return NULL;
1190 }
1191
1192 /* Return whether PC points inside a sequence of instructions that
1193 matches INSN_PATTERNS. */
1194
1195 static int
1196 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1197 {
1198 CORE_ADDR current_pc;
1199 int ix, i;
1200 gdb_byte op;
1201 struct i386_insn *insn;
1202
1203 insn = i386_match_insn (pc, insn_patterns);
1204 if (insn == NULL)
1205 return 0;
1206
1207 current_pc = pc;
1208 ix = insn - insn_patterns;
1209 for (i = ix - 1; i >= 0; i--)
1210 {
1211 current_pc -= insn_patterns[i].len;
1212
1213 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1214 return 0;
1215 }
1216
1217 current_pc = pc + insn->len;
1218 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1219 {
1220 if (!i386_match_pattern (current_pc, *insn))
1221 return 0;
1222
1223 current_pc += insn->len;
1224 }
1225
1226 return 1;
1227 }
1228
1229 /* Some special instructions that might be migrated by GCC into the
1230 part of the prologue that sets up the new stack frame. Because the
1231 stack frame hasn't been setup yet, no registers have been saved
1232 yet, and only the scratch registers %eax, %ecx and %edx can be
1233 touched. */
1234
1235 struct i386_insn i386_frame_setup_skip_insns[] =
1236 {
1237 /* Check for `movb imm8, r' and `movl imm32, r'.
1238
1239 ??? Should we handle 16-bit operand-sizes here? */
1240
1241 /* `movb imm8, %al' and `movb imm8, %ah' */
1242 /* `movb imm8, %cl' and `movb imm8, %ch' */
1243 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1244 /* `movb imm8, %dl' and `movb imm8, %dh' */
1245 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1246 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1247 { 5, { 0xb8 }, { 0xfe } },
1248 /* `movl imm32, %edx' */
1249 { 5, { 0xba }, { 0xff } },
1250
1251 /* Check for `mov imm32, r32'. Note that there is an alternative
1252 encoding for `mov m32, %eax'.
1253
1254 ??? Should we handle SIB adressing here?
1255 ??? Should we handle 16-bit operand-sizes here? */
1256
1257 /* `movl m32, %eax' */
1258 { 5, { 0xa1 }, { 0xff } },
1259 /* `movl m32, %eax' and `mov; m32, %ecx' */
1260 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1261 /* `movl m32, %edx' */
1262 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1263
1264 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1265 Because of the symmetry, there are actually two ways to encode
1266 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1267 opcode bytes 0x31 and 0x33 for `xorl'. */
1268
1269 /* `subl %eax, %eax' */
1270 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1271 /* `subl %ecx, %ecx' */
1272 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1273 /* `subl %edx, %edx' */
1274 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1275 /* `xorl %eax, %eax' */
1276 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1277 /* `xorl %ecx, %ecx' */
1278 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1279 /* `xorl %edx, %edx' */
1280 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1281 { 0 }
1282 };
1283
1284
1285 /* Check whether PC points to a no-op instruction. */
1286 static CORE_ADDR
1287 i386_skip_noop (CORE_ADDR pc)
1288 {
1289 gdb_byte op;
1290 int check = 1;
1291
1292 if (target_read_memory (pc, &op, 1))
1293 return pc;
1294
1295 while (check)
1296 {
1297 check = 0;
1298 /* Ignore `nop' instruction. */
1299 if (op == 0x90)
1300 {
1301 pc += 1;
1302 if (target_read_memory (pc, &op, 1))
1303 return pc;
1304 check = 1;
1305 }
1306 /* Ignore no-op instruction `mov %edi, %edi'.
1307 Microsoft system dlls often start with
1308 a `mov %edi,%edi' instruction.
1309 The 5 bytes before the function start are
1310 filled with `nop' instructions.
1311 This pattern can be used for hot-patching:
1312 The `mov %edi, %edi' instruction can be replaced by a
1313 near jump to the location of the 5 `nop' instructions
1314 which can be replaced by a 32-bit jump to anywhere
1315 in the 32-bit address space. */
1316
1317 else if (op == 0x8b)
1318 {
1319 if (target_read_memory (pc + 1, &op, 1))
1320 return pc;
1321
1322 if (op == 0xff)
1323 {
1324 pc += 2;
1325 if (target_read_memory (pc, &op, 1))
1326 return pc;
1327
1328 check = 1;
1329 }
1330 }
1331 }
1332 return pc;
1333 }
1334
1335 /* Check whether PC points at a code that sets up a new stack frame.
1336 If so, it updates CACHE and returns the address of the first
1337 instruction after the sequence that sets up the frame or LIMIT,
1338 whichever is smaller. If we don't recognize the code, return PC. */
1339
1340 static CORE_ADDR
1341 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1342 CORE_ADDR pc, CORE_ADDR limit,
1343 struct i386_frame_cache *cache)
1344 {
1345 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1346 struct i386_insn *insn;
1347 gdb_byte op;
1348 int skip = 0;
1349
1350 if (limit <= pc)
1351 return limit;
1352
1353 if (target_read_memory (pc, &op, 1))
1354 return pc;
1355
1356 if (op == 0x55) /* pushl %ebp */
1357 {
1358 /* Take into account that we've executed the `pushl %ebp' that
1359 starts this instruction sequence. */
1360 cache->saved_regs[I386_EBP_REGNUM] = 0;
1361 cache->sp_offset += 4;
1362 pc++;
1363
1364 /* If that's all, return now. */
1365 if (limit <= pc)
1366 return limit;
1367
1368 /* Check for some special instructions that might be migrated by
1369 GCC into the prologue and skip them. At this point in the
1370 prologue, code should only touch the scratch registers %eax,
1371 %ecx and %edx, so while the number of posibilities is sheer,
1372 it is limited.
1373
1374 Make sure we only skip these instructions if we later see the
1375 `movl %esp, %ebp' that actually sets up the frame. */
1376 while (pc + skip < limit)
1377 {
1378 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1379 if (insn == NULL)
1380 break;
1381
1382 skip += insn->len;
1383 }
1384
1385 /* If that's all, return now. */
1386 if (limit <= pc + skip)
1387 return limit;
1388
1389 if (target_read_memory (pc + skip, &op, 1))
1390 return pc + skip;
1391
1392 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1393 switch (op)
1394 {
1395 case 0x8b:
1396 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1397 != 0xec)
1398 return pc;
1399 break;
1400 case 0x89:
1401 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1402 != 0xe5)
1403 return pc;
1404 break;
1405 default:
1406 return pc;
1407 }
1408
1409 /* OK, we actually have a frame. We just don't know how large
1410 it is yet. Set its size to zero. We'll adjust it if
1411 necessary. We also now commit to skipping the special
1412 instructions mentioned before. */
1413 cache->locals = 0;
1414 pc += (skip + 2);
1415
1416 /* If that's all, return now. */
1417 if (limit <= pc)
1418 return limit;
1419
1420 /* Check for stack adjustment
1421
1422 subl $XXX, %esp
1423
1424 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1425 reg, so we don't have to worry about a data16 prefix. */
1426 if (target_read_memory (pc, &op, 1))
1427 return pc;
1428 if (op == 0x83)
1429 {
1430 /* `subl' with 8-bit immediate. */
1431 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1432 /* Some instruction starting with 0x83 other than `subl'. */
1433 return pc;
1434
1435 /* `subl' with signed 8-bit immediate (though it wouldn't
1436 make sense to be negative). */
1437 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1438 return pc + 3;
1439 }
1440 else if (op == 0x81)
1441 {
1442 /* Maybe it is `subl' with a 32-bit immediate. */
1443 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1444 /* Some instruction starting with 0x81 other than `subl'. */
1445 return pc;
1446
1447 /* It is `subl' with a 32-bit immediate. */
1448 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1449 return pc + 6;
1450 }
1451 else
1452 {
1453 /* Some instruction other than `subl'. */
1454 return pc;
1455 }
1456 }
1457 else if (op == 0xc8) /* enter */
1458 {
1459 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1460 return pc + 4;
1461 }
1462
1463 return pc;
1464 }
1465
1466 /* Check whether PC points at code that saves registers on the stack.
1467 If so, it updates CACHE and returns the address of the first
1468 instruction after the register saves or CURRENT_PC, whichever is
1469 smaller. Otherwise, return PC. */
1470
1471 static CORE_ADDR
1472 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1473 struct i386_frame_cache *cache)
1474 {
1475 CORE_ADDR offset = 0;
1476 gdb_byte op;
1477 int i;
1478
1479 if (cache->locals > 0)
1480 offset -= cache->locals;
1481 for (i = 0; i < 8 && pc < current_pc; i++)
1482 {
1483 if (target_read_memory (pc, &op, 1))
1484 return pc;
1485 if (op < 0x50 || op > 0x57)
1486 break;
1487
1488 offset -= 4;
1489 cache->saved_regs[op - 0x50] = offset;
1490 cache->sp_offset += 4;
1491 pc++;
1492 }
1493
1494 return pc;
1495 }
1496
1497 /* Do a full analysis of the prologue at PC and update CACHE
1498 accordingly. Bail out early if CURRENT_PC is reached. Return the
1499 address where the analysis stopped.
1500
1501 We handle these cases:
1502
1503 The startup sequence can be at the start of the function, or the
1504 function can start with a branch to startup code at the end.
1505
1506 %ebp can be set up with either the 'enter' instruction, or "pushl
1507 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1508 once used in the System V compiler).
1509
1510 Local space is allocated just below the saved %ebp by either the
1511 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1512 16-bit unsigned argument for space to allocate, and the 'addl'
1513 instruction could have either a signed byte, or 32-bit immediate.
1514
1515 Next, the registers used by this function are pushed. With the
1516 System V compiler they will always be in the order: %edi, %esi,
1517 %ebx (and sometimes a harmless bug causes it to also save but not
1518 restore %eax); however, the code below is willing to see the pushes
1519 in any order, and will handle up to 8 of them.
1520
1521 If the setup sequence is at the end of the function, then the next
1522 instruction will be a branch back to the start. */
1523
1524 static CORE_ADDR
1525 i386_analyze_prologue (struct gdbarch *gdbarch,
1526 CORE_ADDR pc, CORE_ADDR current_pc,
1527 struct i386_frame_cache *cache)
1528 {
1529 pc = i386_skip_noop (pc);
1530 pc = i386_follow_jump (gdbarch, pc);
1531 pc = i386_analyze_struct_return (pc, current_pc, cache);
1532 pc = i386_skip_probe (pc);
1533 pc = i386_analyze_stack_align (pc, current_pc, cache);
1534 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1535 return i386_analyze_register_saves (pc, current_pc, cache);
1536 }
1537
1538 /* Return PC of first real instruction. */
1539
1540 static CORE_ADDR
1541 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1542 {
1543 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1544
1545 static gdb_byte pic_pat[6] =
1546 {
1547 0xe8, 0, 0, 0, 0, /* call 0x0 */
1548 0x5b, /* popl %ebx */
1549 };
1550 struct i386_frame_cache cache;
1551 CORE_ADDR pc;
1552 gdb_byte op;
1553 int i;
1554
1555 cache.locals = -1;
1556 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1557 if (cache.locals < 0)
1558 return start_pc;
1559
1560 /* Found valid frame setup. */
1561
1562 /* The native cc on SVR4 in -K PIC mode inserts the following code
1563 to get the address of the global offset table (GOT) into register
1564 %ebx:
1565
1566 call 0x0
1567 popl %ebx
1568 movl %ebx,x(%ebp) (optional)
1569 addl y,%ebx
1570
1571 This code is with the rest of the prologue (at the end of the
1572 function), so we have to skip it to get to the first real
1573 instruction at the start of the function. */
1574
1575 for (i = 0; i < 6; i++)
1576 {
1577 if (target_read_memory (pc + i, &op, 1))
1578 return pc;
1579
1580 if (pic_pat[i] != op)
1581 break;
1582 }
1583 if (i == 6)
1584 {
1585 int delta = 6;
1586
1587 if (target_read_memory (pc + delta, &op, 1))
1588 return pc;
1589
1590 if (op == 0x89) /* movl %ebx, x(%ebp) */
1591 {
1592 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1593
1594 if (op == 0x5d) /* One byte offset from %ebp. */
1595 delta += 3;
1596 else if (op == 0x9d) /* Four byte offset from %ebp. */
1597 delta += 6;
1598 else /* Unexpected instruction. */
1599 delta = 0;
1600
1601 if (target_read_memory (pc + delta, &op, 1))
1602 return pc;
1603 }
1604
1605 /* addl y,%ebx */
1606 if (delta > 0 && op == 0x81
1607 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1608 == 0xc3)
1609 {
1610 pc += delta + 6;
1611 }
1612 }
1613
1614 /* If the function starts with a branch (to startup code at the end)
1615 the last instruction should bring us back to the first
1616 instruction of the real code. */
1617 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1618 pc = i386_follow_jump (gdbarch, pc);
1619
1620 return pc;
1621 }
1622
1623 /* Check that the code pointed to by PC corresponds to a call to
1624 __main, skip it if so. Return PC otherwise. */
1625
1626 CORE_ADDR
1627 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1628 {
1629 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1630 gdb_byte op;
1631
1632 if (target_read_memory (pc, &op, 1))
1633 return pc;
1634 if (op == 0xe8)
1635 {
1636 gdb_byte buf[4];
1637
1638 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1639 {
1640 /* Make sure address is computed correctly as a 32bit
1641 integer even if CORE_ADDR is 64 bit wide. */
1642 struct minimal_symbol *s;
1643 CORE_ADDR call_dest;
1644
1645 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1646 call_dest = call_dest & 0xffffffffU;
1647 s = lookup_minimal_symbol_by_pc (call_dest);
1648 if (s != NULL
1649 && SYMBOL_LINKAGE_NAME (s) != NULL
1650 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1651 pc += 5;
1652 }
1653 }
1654
1655 return pc;
1656 }
1657
1658 /* This function is 64-bit safe. */
1659
1660 static CORE_ADDR
1661 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1662 {
1663 gdb_byte buf[8];
1664
1665 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1666 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1667 }
1668 \f
1669
1670 /* Normal frames. */
1671
1672 static void
1673 i386_frame_cache_1 (struct frame_info *this_frame,
1674 struct i386_frame_cache *cache)
1675 {
1676 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1678 gdb_byte buf[4];
1679 int i;
1680
1681 cache->pc = get_frame_func (this_frame);
1682
1683 /* In principle, for normal frames, %ebp holds the frame pointer,
1684 which holds the base address for the current stack frame.
1685 However, for functions that don't need it, the frame pointer is
1686 optional. For these "frameless" functions the frame pointer is
1687 actually the frame pointer of the calling frame. Signal
1688 trampolines are just a special case of a "frameless" function.
1689 They (usually) share their frame pointer with the frame that was
1690 in progress when the signal occurred. */
1691
1692 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1693 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1694 if (cache->base == 0)
1695 {
1696 cache->base_p = 1;
1697 return;
1698 }
1699
1700 /* For normal frames, %eip is stored at 4(%ebp). */
1701 cache->saved_regs[I386_EIP_REGNUM] = 4;
1702
1703 if (cache->pc != 0)
1704 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1705 cache);
1706
1707 if (cache->locals < 0)
1708 {
1709 /* We didn't find a valid frame, which means that CACHE->base
1710 currently holds the frame pointer for our calling frame. If
1711 we're at the start of a function, or somewhere half-way its
1712 prologue, the function's frame probably hasn't been fully
1713 setup yet. Try to reconstruct the base address for the stack
1714 frame by looking at the stack pointer. For truly "frameless"
1715 functions this might work too. */
1716
1717 if (cache->saved_sp_reg != -1)
1718 {
1719 /* Saved stack pointer has been saved. */
1720 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1721 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1722
1723 /* We're halfway aligning the stack. */
1724 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1725 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1726
1727 /* This will be added back below. */
1728 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1729 }
1730 else if (cache->pc != 0
1731 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1732 {
1733 /* We're in a known function, but did not find a frame
1734 setup. Assume that the function does not use %ebp.
1735 Alternatively, we may have jumped to an invalid
1736 address; in that case there is definitely no new
1737 frame in %ebp. */
1738 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1739 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1740 + cache->sp_offset;
1741 }
1742 else
1743 /* We're in an unknown function. We could not find the start
1744 of the function to analyze the prologue; our best option is
1745 to assume a typical frame layout with the caller's %ebp
1746 saved. */
1747 cache->saved_regs[I386_EBP_REGNUM] = 0;
1748 }
1749
1750 if (cache->saved_sp_reg != -1)
1751 {
1752 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1753 register may be unavailable). */
1754 if (cache->saved_sp == 0
1755 && frame_register_read (this_frame, cache->saved_sp_reg, buf))
1756 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1757 }
1758 /* Now that we have the base address for the stack frame we can
1759 calculate the value of %esp in the calling frame. */
1760 else if (cache->saved_sp == 0)
1761 cache->saved_sp = cache->base + 8;
1762
1763 /* Adjust all the saved registers such that they contain addresses
1764 instead of offsets. */
1765 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1766 if (cache->saved_regs[i] != -1)
1767 cache->saved_regs[i] += cache->base;
1768
1769 cache->base_p = 1;
1770 }
1771
1772 static struct i386_frame_cache *
1773 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1774 {
1775 volatile struct gdb_exception ex;
1776 struct i386_frame_cache *cache;
1777
1778 if (*this_cache)
1779 return *this_cache;
1780
1781 cache = i386_alloc_frame_cache ();
1782 *this_cache = cache;
1783
1784 TRY_CATCH (ex, RETURN_MASK_ERROR)
1785 {
1786 i386_frame_cache_1 (this_frame, cache);
1787 }
1788 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1789 throw_exception (ex);
1790
1791 return cache;
1792 }
1793
1794 static void
1795 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1796 struct frame_id *this_id)
1797 {
1798 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1799
1800 /* This marks the outermost frame. */
1801 if (cache->base == 0)
1802 return;
1803
1804 /* See the end of i386_push_dummy_call. */
1805 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1806 }
1807
1808 static enum unwind_stop_reason
1809 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1810 void **this_cache)
1811 {
1812 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1813
1814 if (!cache->base_p)
1815 return UNWIND_UNAVAILABLE;
1816
1817 /* This marks the outermost frame. */
1818 if (cache->base == 0)
1819 return UNWIND_OUTERMOST;
1820
1821 return UNWIND_NO_REASON;
1822 }
1823
1824 static struct value *
1825 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1826 int regnum)
1827 {
1828 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1829
1830 gdb_assert (regnum >= 0);
1831
1832 /* The System V ABI says that:
1833
1834 "The flags register contains the system flags, such as the
1835 direction flag and the carry flag. The direction flag must be
1836 set to the forward (that is, zero) direction before entry and
1837 upon exit from a function. Other user flags have no specified
1838 role in the standard calling sequence and are not preserved."
1839
1840 To guarantee the "upon exit" part of that statement we fake a
1841 saved flags register that has its direction flag cleared.
1842
1843 Note that GCC doesn't seem to rely on the fact that the direction
1844 flag is cleared after a function return; it always explicitly
1845 clears the flag before operations where it matters.
1846
1847 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1848 right thing to do. The way we fake the flags register here makes
1849 it impossible to change it. */
1850
1851 if (regnum == I386_EFLAGS_REGNUM)
1852 {
1853 ULONGEST val;
1854
1855 val = get_frame_register_unsigned (this_frame, regnum);
1856 val &= ~(1 << 10);
1857 return frame_unwind_got_constant (this_frame, regnum, val);
1858 }
1859
1860 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1861 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1862
1863 if (regnum == I386_ESP_REGNUM
1864 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1865 {
1866 /* If the SP has been saved, but we don't know where, then this
1867 means that SAVED_SP_REG register was found unavailable back
1868 when we built the cache. */
1869 if (cache->saved_sp == 0)
1870 return frame_unwind_got_register (this_frame, regnum,
1871 cache->saved_sp_reg);
1872 else
1873 return frame_unwind_got_constant (this_frame, regnum,
1874 cache->saved_sp);
1875 }
1876
1877 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1878 return frame_unwind_got_memory (this_frame, regnum,
1879 cache->saved_regs[regnum]);
1880
1881 return frame_unwind_got_register (this_frame, regnum, regnum);
1882 }
1883
1884 static const struct frame_unwind i386_frame_unwind =
1885 {
1886 NORMAL_FRAME,
1887 i386_frame_unwind_stop_reason,
1888 i386_frame_this_id,
1889 i386_frame_prev_register,
1890 NULL,
1891 default_frame_sniffer
1892 };
1893
1894 /* Normal frames, but in a function epilogue. */
1895
1896 /* The epilogue is defined here as the 'ret' instruction, which will
1897 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1898 the function's stack frame. */
1899
1900 static int
1901 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1902 {
1903 gdb_byte insn;
1904 struct symtab *symtab;
1905
1906 symtab = find_pc_symtab (pc);
1907 if (symtab && symtab->epilogue_unwind_valid)
1908 return 0;
1909
1910 if (target_read_memory (pc, &insn, 1))
1911 return 0; /* Can't read memory at pc. */
1912
1913 if (insn != 0xc3) /* 'ret' instruction. */
1914 return 0;
1915
1916 return 1;
1917 }
1918
1919 static int
1920 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1921 struct frame_info *this_frame,
1922 void **this_prologue_cache)
1923 {
1924 if (frame_relative_level (this_frame) == 0)
1925 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1926 get_frame_pc (this_frame));
1927 else
1928 return 0;
1929 }
1930
1931 static struct i386_frame_cache *
1932 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1933 {
1934 volatile struct gdb_exception ex;
1935 struct i386_frame_cache *cache;
1936 CORE_ADDR sp;
1937
1938 if (*this_cache)
1939 return *this_cache;
1940
1941 cache = i386_alloc_frame_cache ();
1942 *this_cache = cache;
1943
1944 TRY_CATCH (ex, RETURN_MASK_ERROR)
1945 {
1946 cache->pc = get_frame_func (this_frame);
1947
1948 /* At this point the stack looks as if we just entered the
1949 function, with the return address at the top of the
1950 stack. */
1951 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
1952 cache->base = sp + cache->sp_offset;
1953 cache->saved_sp = cache->base + 8;
1954 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1955
1956 cache->base_p = 1;
1957 }
1958 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1959 throw_exception (ex);
1960
1961 return cache;
1962 }
1963
1964 static enum unwind_stop_reason
1965 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
1966 void **this_cache)
1967 {
1968 struct i386_frame_cache *cache =
1969 i386_epilogue_frame_cache (this_frame, this_cache);
1970
1971 if (!cache->base_p)
1972 return UNWIND_UNAVAILABLE;
1973
1974 return UNWIND_NO_REASON;
1975 }
1976
1977 static void
1978 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1979 void **this_cache,
1980 struct frame_id *this_id)
1981 {
1982 struct i386_frame_cache *cache =
1983 i386_epilogue_frame_cache (this_frame, this_cache);
1984
1985 if (!cache->base_p)
1986 return;
1987
1988 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1989 }
1990
1991 static struct value *
1992 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
1993 void **this_cache, int regnum)
1994 {
1995 /* Make sure we've initialized the cache. */
1996 i386_epilogue_frame_cache (this_frame, this_cache);
1997
1998 return i386_frame_prev_register (this_frame, this_cache, regnum);
1999 }
2000
2001 static const struct frame_unwind i386_epilogue_frame_unwind =
2002 {
2003 NORMAL_FRAME,
2004 i386_epilogue_frame_unwind_stop_reason,
2005 i386_epilogue_frame_this_id,
2006 i386_epilogue_frame_prev_register,
2007 NULL,
2008 i386_epilogue_frame_sniffer
2009 };
2010 \f
2011
2012 /* Stack-based trampolines. */
2013
2014 /* These trampolines are used on cross x86 targets, when taking the
2015 address of a nested function. When executing these trampolines,
2016 no stack frame is set up, so we are in a similar situation as in
2017 epilogues and i386_epilogue_frame_this_id can be re-used. */
2018
2019 /* Static chain passed in register. */
2020
2021 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2022 {
2023 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2024 { 5, { 0xb8 }, { 0xfe } },
2025
2026 /* `jmp imm32' */
2027 { 5, { 0xe9 }, { 0xff } },
2028
2029 {0}
2030 };
2031
2032 /* Static chain passed on stack (when regparm=3). */
2033
2034 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2035 {
2036 /* `push imm32' */
2037 { 5, { 0x68 }, { 0xff } },
2038
2039 /* `jmp imm32' */
2040 { 5, { 0xe9 }, { 0xff } },
2041
2042 {0}
2043 };
2044
2045 /* Return whether PC points inside a stack trampoline. */
2046
2047 static int
2048 i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2049 {
2050 gdb_byte insn;
2051 const char *name;
2052
2053 /* A stack trampoline is detected if no name is associated
2054 to the current pc and if it points inside a trampoline
2055 sequence. */
2056
2057 find_pc_partial_function (pc, &name, NULL, NULL);
2058 if (name)
2059 return 0;
2060
2061 if (target_read_memory (pc, &insn, 1))
2062 return 0;
2063
2064 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2065 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2066 return 0;
2067
2068 return 1;
2069 }
2070
2071 static int
2072 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2073 struct frame_info *this_frame,
2074 void **this_cache)
2075 {
2076 if (frame_relative_level (this_frame) == 0)
2077 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2078 get_frame_pc (this_frame));
2079 else
2080 return 0;
2081 }
2082
2083 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2084 {
2085 NORMAL_FRAME,
2086 i386_epilogue_frame_unwind_stop_reason,
2087 i386_epilogue_frame_this_id,
2088 i386_epilogue_frame_prev_register,
2089 NULL,
2090 i386_stack_tramp_frame_sniffer
2091 };
2092 \f
2093 /* Generate a bytecode expression to get the value of the saved PC. */
2094
2095 static void
2096 i386_gen_return_address (struct gdbarch *gdbarch,
2097 struct agent_expr *ax, struct axs_value *value,
2098 CORE_ADDR scope)
2099 {
2100 /* The following sequence assumes the traditional use of the base
2101 register. */
2102 ax_reg (ax, I386_EBP_REGNUM);
2103 ax_const_l (ax, 4);
2104 ax_simple (ax, aop_add);
2105 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2106 value->kind = axs_lvalue_memory;
2107 }
2108 \f
2109
2110 /* Signal trampolines. */
2111
2112 static struct i386_frame_cache *
2113 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2114 {
2115 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2117 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2118 volatile struct gdb_exception ex;
2119 struct i386_frame_cache *cache;
2120 CORE_ADDR addr;
2121 gdb_byte buf[4];
2122
2123 if (*this_cache)
2124 return *this_cache;
2125
2126 cache = i386_alloc_frame_cache ();
2127
2128 TRY_CATCH (ex, RETURN_MASK_ERROR)
2129 {
2130 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2131 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2132
2133 addr = tdep->sigcontext_addr (this_frame);
2134 if (tdep->sc_reg_offset)
2135 {
2136 int i;
2137
2138 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2139
2140 for (i = 0; i < tdep->sc_num_regs; i++)
2141 if (tdep->sc_reg_offset[i] != -1)
2142 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2143 }
2144 else
2145 {
2146 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2147 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2148 }
2149
2150 cache->base_p = 1;
2151 }
2152 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2153 throw_exception (ex);
2154
2155 *this_cache = cache;
2156 return cache;
2157 }
2158
2159 static enum unwind_stop_reason
2160 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2161 void **this_cache)
2162 {
2163 struct i386_frame_cache *cache =
2164 i386_sigtramp_frame_cache (this_frame, this_cache);
2165
2166 if (!cache->base_p)
2167 return UNWIND_UNAVAILABLE;
2168
2169 return UNWIND_NO_REASON;
2170 }
2171
2172 static void
2173 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2174 struct frame_id *this_id)
2175 {
2176 struct i386_frame_cache *cache =
2177 i386_sigtramp_frame_cache (this_frame, this_cache);
2178
2179 if (!cache->base_p)
2180 return;
2181
2182 /* See the end of i386_push_dummy_call. */
2183 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2184 }
2185
2186 static struct value *
2187 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2188 void **this_cache, int regnum)
2189 {
2190 /* Make sure we've initialized the cache. */
2191 i386_sigtramp_frame_cache (this_frame, this_cache);
2192
2193 return i386_frame_prev_register (this_frame, this_cache, regnum);
2194 }
2195
2196 static int
2197 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2198 struct frame_info *this_frame,
2199 void **this_prologue_cache)
2200 {
2201 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2202
2203 /* We shouldn't even bother if we don't have a sigcontext_addr
2204 handler. */
2205 if (tdep->sigcontext_addr == NULL)
2206 return 0;
2207
2208 if (tdep->sigtramp_p != NULL)
2209 {
2210 if (tdep->sigtramp_p (this_frame))
2211 return 1;
2212 }
2213
2214 if (tdep->sigtramp_start != 0)
2215 {
2216 CORE_ADDR pc = get_frame_pc (this_frame);
2217
2218 gdb_assert (tdep->sigtramp_end != 0);
2219 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2220 return 1;
2221 }
2222
2223 return 0;
2224 }
2225
2226 static const struct frame_unwind i386_sigtramp_frame_unwind =
2227 {
2228 SIGTRAMP_FRAME,
2229 i386_sigtramp_frame_unwind_stop_reason,
2230 i386_sigtramp_frame_this_id,
2231 i386_sigtramp_frame_prev_register,
2232 NULL,
2233 i386_sigtramp_frame_sniffer
2234 };
2235 \f
2236
2237 static CORE_ADDR
2238 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2239 {
2240 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2241
2242 return cache->base;
2243 }
2244
2245 static const struct frame_base i386_frame_base =
2246 {
2247 &i386_frame_unwind,
2248 i386_frame_base_address,
2249 i386_frame_base_address,
2250 i386_frame_base_address
2251 };
2252
2253 static struct frame_id
2254 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2255 {
2256 CORE_ADDR fp;
2257
2258 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2259
2260 /* See the end of i386_push_dummy_call. */
2261 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2262 }
2263
2264 /* _Decimal128 function return values need 16-byte alignment on the
2265 stack. */
2266
2267 static CORE_ADDR
2268 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2269 {
2270 return sp & -(CORE_ADDR)16;
2271 }
2272 \f
2273
2274 /* Figure out where the longjmp will land. Slurp the args out of the
2275 stack. We expect the first arg to be a pointer to the jmp_buf
2276 structure from which we extract the address that we will land at.
2277 This address is copied into PC. This routine returns non-zero on
2278 success. */
2279
2280 static int
2281 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2282 {
2283 gdb_byte buf[4];
2284 CORE_ADDR sp, jb_addr;
2285 struct gdbarch *gdbarch = get_frame_arch (frame);
2286 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2287 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2288
2289 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2290 longjmp will land. */
2291 if (jb_pc_offset == -1)
2292 return 0;
2293
2294 get_frame_register (frame, I386_ESP_REGNUM, buf);
2295 sp = extract_unsigned_integer (buf, 4, byte_order);
2296 if (target_read_memory (sp + 4, buf, 4))
2297 return 0;
2298
2299 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2300 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2301 return 0;
2302
2303 *pc = extract_unsigned_integer (buf, 4, byte_order);
2304 return 1;
2305 }
2306 \f
2307
2308 /* Check whether TYPE must be 16-byte-aligned when passed as a
2309 function argument. 16-byte vectors, _Decimal128 and structures or
2310 unions containing such types must be 16-byte-aligned; other
2311 arguments are 4-byte-aligned. */
2312
2313 static int
2314 i386_16_byte_align_p (struct type *type)
2315 {
2316 type = check_typedef (type);
2317 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2318 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2319 && TYPE_LENGTH (type) == 16)
2320 return 1;
2321 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2322 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2323 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2324 || TYPE_CODE (type) == TYPE_CODE_UNION)
2325 {
2326 int i;
2327 for (i = 0; i < TYPE_NFIELDS (type); i++)
2328 {
2329 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2330 return 1;
2331 }
2332 }
2333 return 0;
2334 }
2335
2336 static CORE_ADDR
2337 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2338 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2339 struct value **args, CORE_ADDR sp, int struct_return,
2340 CORE_ADDR struct_addr)
2341 {
2342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2343 gdb_byte buf[4];
2344 int i;
2345 int write_pass;
2346 int args_space = 0;
2347
2348 /* Determine the total space required for arguments and struct
2349 return address in a first pass (allowing for 16-byte-aligned
2350 arguments), then push arguments in a second pass. */
2351
2352 for (write_pass = 0; write_pass < 2; write_pass++)
2353 {
2354 int args_space_used = 0;
2355 int have_16_byte_aligned_arg = 0;
2356
2357 if (struct_return)
2358 {
2359 if (write_pass)
2360 {
2361 /* Push value address. */
2362 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2363 write_memory (sp, buf, 4);
2364 args_space_used += 4;
2365 }
2366 else
2367 args_space += 4;
2368 }
2369
2370 for (i = 0; i < nargs; i++)
2371 {
2372 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2373
2374 if (write_pass)
2375 {
2376 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2377 args_space_used = align_up (args_space_used, 16);
2378
2379 write_memory (sp + args_space_used,
2380 value_contents_all (args[i]), len);
2381 /* The System V ABI says that:
2382
2383 "An argument's size is increased, if necessary, to make it a
2384 multiple of [32-bit] words. This may require tail padding,
2385 depending on the size of the argument."
2386
2387 This makes sure the stack stays word-aligned. */
2388 args_space_used += align_up (len, 4);
2389 }
2390 else
2391 {
2392 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2393 {
2394 args_space = align_up (args_space, 16);
2395 have_16_byte_aligned_arg = 1;
2396 }
2397 args_space += align_up (len, 4);
2398 }
2399 }
2400
2401 if (!write_pass)
2402 {
2403 if (have_16_byte_aligned_arg)
2404 args_space = align_up (args_space, 16);
2405 sp -= args_space;
2406 }
2407 }
2408
2409 /* Store return address. */
2410 sp -= 4;
2411 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2412 write_memory (sp, buf, 4);
2413
2414 /* Finally, update the stack pointer... */
2415 store_unsigned_integer (buf, 4, byte_order, sp);
2416 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2417
2418 /* ...and fake a frame pointer. */
2419 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2420
2421 /* MarkK wrote: This "+ 8" is all over the place:
2422 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2423 i386_dummy_id). It's there, since all frame unwinders for
2424 a given target have to agree (within a certain margin) on the
2425 definition of the stack address of a frame. Otherwise frame id
2426 comparison might not work correctly. Since DWARF2/GCC uses the
2427 stack address *before* the function call as a frame's CFA. On
2428 the i386, when %ebp is used as a frame pointer, the offset
2429 between the contents %ebp and the CFA as defined by GCC. */
2430 return sp + 8;
2431 }
2432
2433 /* These registers are used for returning integers (and on some
2434 targets also for returning `struct' and `union' values when their
2435 size and alignment match an integer type). */
2436 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2437 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2438
2439 /* Read, for architecture GDBARCH, a function return value of TYPE
2440 from REGCACHE, and copy that into VALBUF. */
2441
2442 static void
2443 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2444 struct regcache *regcache, gdb_byte *valbuf)
2445 {
2446 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2447 int len = TYPE_LENGTH (type);
2448 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2449
2450 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2451 {
2452 if (tdep->st0_regnum < 0)
2453 {
2454 warning (_("Cannot find floating-point return value."));
2455 memset (valbuf, 0, len);
2456 return;
2457 }
2458
2459 /* Floating-point return values can be found in %st(0). Convert
2460 its contents to the desired type. This is probably not
2461 exactly how it would happen on the target itself, but it is
2462 the best we can do. */
2463 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2464 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2465 }
2466 else
2467 {
2468 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2469 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2470
2471 if (len <= low_size)
2472 {
2473 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2474 memcpy (valbuf, buf, len);
2475 }
2476 else if (len <= (low_size + high_size))
2477 {
2478 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2479 memcpy (valbuf, buf, low_size);
2480 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2481 memcpy (valbuf + low_size, buf, len - low_size);
2482 }
2483 else
2484 internal_error (__FILE__, __LINE__,
2485 _("Cannot extract return value of %d bytes long."),
2486 len);
2487 }
2488 }
2489
2490 /* Write, for architecture GDBARCH, a function return value of TYPE
2491 from VALBUF into REGCACHE. */
2492
2493 static void
2494 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2495 struct regcache *regcache, const gdb_byte *valbuf)
2496 {
2497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2498 int len = TYPE_LENGTH (type);
2499
2500 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2501 {
2502 ULONGEST fstat;
2503 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2504
2505 if (tdep->st0_regnum < 0)
2506 {
2507 warning (_("Cannot set floating-point return value."));
2508 return;
2509 }
2510
2511 /* Returning floating-point values is a bit tricky. Apart from
2512 storing the return value in %st(0), we have to simulate the
2513 state of the FPU at function return point. */
2514
2515 /* Convert the value found in VALBUF to the extended
2516 floating-point format used by the FPU. This is probably
2517 not exactly how it would happen on the target itself, but
2518 it is the best we can do. */
2519 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2520 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2521
2522 /* Set the top of the floating-point register stack to 7. The
2523 actual value doesn't really matter, but 7 is what a normal
2524 function return would end up with if the program started out
2525 with a freshly initialized FPU. */
2526 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2527 fstat |= (7 << 11);
2528 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2529
2530 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2531 the floating-point register stack to 7, the appropriate value
2532 for the tag word is 0x3fff. */
2533 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2534 }
2535 else
2536 {
2537 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2538 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2539
2540 if (len <= low_size)
2541 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2542 else if (len <= (low_size + high_size))
2543 {
2544 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2545 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2546 len - low_size, valbuf + low_size);
2547 }
2548 else
2549 internal_error (__FILE__, __LINE__,
2550 _("Cannot store return value of %d bytes long."), len);
2551 }
2552 }
2553 \f
2554
2555 /* This is the variable that is set with "set struct-convention", and
2556 its legitimate values. */
2557 static const char default_struct_convention[] = "default";
2558 static const char pcc_struct_convention[] = "pcc";
2559 static const char reg_struct_convention[] = "reg";
2560 static const char *const valid_conventions[] =
2561 {
2562 default_struct_convention,
2563 pcc_struct_convention,
2564 reg_struct_convention,
2565 NULL
2566 };
2567 static const char *struct_convention = default_struct_convention;
2568
2569 /* Return non-zero if TYPE, which is assumed to be a structure,
2570 a union type, or an array type, should be returned in registers
2571 for architecture GDBARCH. */
2572
2573 static int
2574 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2575 {
2576 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2577 enum type_code code = TYPE_CODE (type);
2578 int len = TYPE_LENGTH (type);
2579
2580 gdb_assert (code == TYPE_CODE_STRUCT
2581 || code == TYPE_CODE_UNION
2582 || code == TYPE_CODE_ARRAY);
2583
2584 if (struct_convention == pcc_struct_convention
2585 || (struct_convention == default_struct_convention
2586 && tdep->struct_return == pcc_struct_return))
2587 return 0;
2588
2589 /* Structures consisting of a single `float', `double' or 'long
2590 double' member are returned in %st(0). */
2591 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2592 {
2593 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2594 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2595 return (len == 4 || len == 8 || len == 12);
2596 }
2597
2598 return (len == 1 || len == 2 || len == 4 || len == 8);
2599 }
2600
2601 /* Determine, for architecture GDBARCH, how a return value of TYPE
2602 should be returned. If it is supposed to be returned in registers,
2603 and READBUF is non-zero, read the appropriate value from REGCACHE,
2604 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2605 from WRITEBUF into REGCACHE. */
2606
2607 static enum return_value_convention
2608 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2609 struct type *type, struct regcache *regcache,
2610 gdb_byte *readbuf, const gdb_byte *writebuf)
2611 {
2612 enum type_code code = TYPE_CODE (type);
2613
2614 if (((code == TYPE_CODE_STRUCT
2615 || code == TYPE_CODE_UNION
2616 || code == TYPE_CODE_ARRAY)
2617 && !i386_reg_struct_return_p (gdbarch, type))
2618 /* 128-bit decimal float uses the struct return convention. */
2619 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2620 {
2621 /* The System V ABI says that:
2622
2623 "A function that returns a structure or union also sets %eax
2624 to the value of the original address of the caller's area
2625 before it returns. Thus when the caller receives control
2626 again, the address of the returned object resides in register
2627 %eax and can be used to access the object."
2628
2629 So the ABI guarantees that we can always find the return
2630 value just after the function has returned. */
2631
2632 /* Note that the ABI doesn't mention functions returning arrays,
2633 which is something possible in certain languages such as Ada.
2634 In this case, the value is returned as if it was wrapped in
2635 a record, so the convention applied to records also applies
2636 to arrays. */
2637
2638 if (readbuf)
2639 {
2640 ULONGEST addr;
2641
2642 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2643 read_memory (addr, readbuf, TYPE_LENGTH (type));
2644 }
2645
2646 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2647 }
2648
2649 /* This special case is for structures consisting of a single
2650 `float', `double' or 'long double' member. These structures are
2651 returned in %st(0). For these structures, we call ourselves
2652 recursively, changing TYPE into the type of the first member of
2653 the structure. Since that should work for all structures that
2654 have only one member, we don't bother to check the member's type
2655 here. */
2656 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2657 {
2658 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2659 return i386_return_value (gdbarch, func_type, type, regcache,
2660 readbuf, writebuf);
2661 }
2662
2663 if (readbuf)
2664 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2665 if (writebuf)
2666 i386_store_return_value (gdbarch, type, regcache, writebuf);
2667
2668 return RETURN_VALUE_REGISTER_CONVENTION;
2669 }
2670 \f
2671
2672 struct type *
2673 i387_ext_type (struct gdbarch *gdbarch)
2674 {
2675 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2676
2677 if (!tdep->i387_ext_type)
2678 {
2679 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2680 gdb_assert (tdep->i387_ext_type != NULL);
2681 }
2682
2683 return tdep->i387_ext_type;
2684 }
2685
2686 /* Construct vector type for pseudo YMM registers. We can't use
2687 tdesc_find_type since YMM isn't described in target description. */
2688
2689 static struct type *
2690 i386_ymm_type (struct gdbarch *gdbarch)
2691 {
2692 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2693
2694 if (!tdep->i386_ymm_type)
2695 {
2696 const struct builtin_type *bt = builtin_type (gdbarch);
2697
2698 /* The type we're building is this: */
2699 #if 0
2700 union __gdb_builtin_type_vec256i
2701 {
2702 int128_t uint128[2];
2703 int64_t v2_int64[4];
2704 int32_t v4_int32[8];
2705 int16_t v8_int16[16];
2706 int8_t v16_int8[32];
2707 double v2_double[4];
2708 float v4_float[8];
2709 };
2710 #endif
2711
2712 struct type *t;
2713
2714 t = arch_composite_type (gdbarch,
2715 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2716 append_composite_type_field (t, "v8_float",
2717 init_vector_type (bt->builtin_float, 8));
2718 append_composite_type_field (t, "v4_double",
2719 init_vector_type (bt->builtin_double, 4));
2720 append_composite_type_field (t, "v32_int8",
2721 init_vector_type (bt->builtin_int8, 32));
2722 append_composite_type_field (t, "v16_int16",
2723 init_vector_type (bt->builtin_int16, 16));
2724 append_composite_type_field (t, "v8_int32",
2725 init_vector_type (bt->builtin_int32, 8));
2726 append_composite_type_field (t, "v4_int64",
2727 init_vector_type (bt->builtin_int64, 4));
2728 append_composite_type_field (t, "v2_int128",
2729 init_vector_type (bt->builtin_int128, 2));
2730
2731 TYPE_VECTOR (t) = 1;
2732 TYPE_NAME (t) = "builtin_type_vec256i";
2733 tdep->i386_ymm_type = t;
2734 }
2735
2736 return tdep->i386_ymm_type;
2737 }
2738
2739 /* Construct vector type for MMX registers. */
2740 static struct type *
2741 i386_mmx_type (struct gdbarch *gdbarch)
2742 {
2743 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2744
2745 if (!tdep->i386_mmx_type)
2746 {
2747 const struct builtin_type *bt = builtin_type (gdbarch);
2748
2749 /* The type we're building is this: */
2750 #if 0
2751 union __gdb_builtin_type_vec64i
2752 {
2753 int64_t uint64;
2754 int32_t v2_int32[2];
2755 int16_t v4_int16[4];
2756 int8_t v8_int8[8];
2757 };
2758 #endif
2759
2760 struct type *t;
2761
2762 t = arch_composite_type (gdbarch,
2763 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2764
2765 append_composite_type_field (t, "uint64", bt->builtin_int64);
2766 append_composite_type_field (t, "v2_int32",
2767 init_vector_type (bt->builtin_int32, 2));
2768 append_composite_type_field (t, "v4_int16",
2769 init_vector_type (bt->builtin_int16, 4));
2770 append_composite_type_field (t, "v8_int8",
2771 init_vector_type (bt->builtin_int8, 8));
2772
2773 TYPE_VECTOR (t) = 1;
2774 TYPE_NAME (t) = "builtin_type_vec64i";
2775 tdep->i386_mmx_type = t;
2776 }
2777
2778 return tdep->i386_mmx_type;
2779 }
2780
2781 /* Return the GDB type object for the "standard" data type of data in
2782 register REGNUM. */
2783
2784 static struct type *
2785 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2786 {
2787 if (i386_mmx_regnum_p (gdbarch, regnum))
2788 return i386_mmx_type (gdbarch);
2789 else if (i386_ymm_regnum_p (gdbarch, regnum))
2790 return i386_ymm_type (gdbarch);
2791 else
2792 {
2793 const struct builtin_type *bt = builtin_type (gdbarch);
2794 if (i386_byte_regnum_p (gdbarch, regnum))
2795 return bt->builtin_int8;
2796 else if (i386_word_regnum_p (gdbarch, regnum))
2797 return bt->builtin_int16;
2798 else if (i386_dword_regnum_p (gdbarch, regnum))
2799 return bt->builtin_int32;
2800 }
2801
2802 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2803 }
2804
2805 /* Map a cooked register onto a raw register or memory. For the i386,
2806 the MMX registers need to be mapped onto floating point registers. */
2807
2808 static int
2809 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2810 {
2811 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2812 int mmxreg, fpreg;
2813 ULONGEST fstat;
2814 int tos;
2815
2816 mmxreg = regnum - tdep->mm0_regnum;
2817 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2818 tos = (fstat >> 11) & 0x7;
2819 fpreg = (mmxreg + tos) % 8;
2820
2821 return (I387_ST0_REGNUM (tdep) + fpreg);
2822 }
2823
2824 /* A helper function for us by i386_pseudo_register_read_value and
2825 amd64_pseudo_register_read_value. It does all the work but reads
2826 the data into an already-allocated value. */
2827
2828 void
2829 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2830 struct regcache *regcache,
2831 int regnum,
2832 struct value *result_value)
2833 {
2834 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2835 enum register_status status;
2836 gdb_byte *buf = value_contents_raw (result_value);
2837
2838 if (i386_mmx_regnum_p (gdbarch, regnum))
2839 {
2840 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2841
2842 /* Extract (always little endian). */
2843 status = regcache_raw_read (regcache, fpnum, raw_buf);
2844 if (status != REG_VALID)
2845 mark_value_bytes_unavailable (result_value, 0,
2846 TYPE_LENGTH (value_type (result_value)));
2847 else
2848 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2849 }
2850 else
2851 {
2852 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2853
2854 if (i386_ymm_regnum_p (gdbarch, regnum))
2855 {
2856 regnum -= tdep->ymm0_regnum;
2857
2858 /* Extract (always little endian). Read lower 128bits. */
2859 status = regcache_raw_read (regcache,
2860 I387_XMM0_REGNUM (tdep) + regnum,
2861 raw_buf);
2862 if (status != REG_VALID)
2863 mark_value_bytes_unavailable (result_value, 0, 16);
2864 else
2865 memcpy (buf, raw_buf, 16);
2866 /* Read upper 128bits. */
2867 status = regcache_raw_read (regcache,
2868 tdep->ymm0h_regnum + regnum,
2869 raw_buf);
2870 if (status != REG_VALID)
2871 mark_value_bytes_unavailable (result_value, 16, 32);
2872 else
2873 memcpy (buf + 16, raw_buf, 16);
2874 }
2875 else if (i386_word_regnum_p (gdbarch, regnum))
2876 {
2877 int gpnum = regnum - tdep->ax_regnum;
2878
2879 /* Extract (always little endian). */
2880 status = regcache_raw_read (regcache, gpnum, raw_buf);
2881 if (status != REG_VALID)
2882 mark_value_bytes_unavailable (result_value, 0,
2883 TYPE_LENGTH (value_type (result_value)));
2884 else
2885 memcpy (buf, raw_buf, 2);
2886 }
2887 else if (i386_byte_regnum_p (gdbarch, regnum))
2888 {
2889 /* Check byte pseudo registers last since this function will
2890 be called from amd64_pseudo_register_read, which handles
2891 byte pseudo registers differently. */
2892 int gpnum = regnum - tdep->al_regnum;
2893
2894 /* Extract (always little endian). We read both lower and
2895 upper registers. */
2896 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2897 if (status != REG_VALID)
2898 mark_value_bytes_unavailable (result_value, 0,
2899 TYPE_LENGTH (value_type (result_value)));
2900 else if (gpnum >= 4)
2901 memcpy (buf, raw_buf + 1, 1);
2902 else
2903 memcpy (buf, raw_buf, 1);
2904 }
2905 else
2906 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2907 }
2908 }
2909
2910 static struct value *
2911 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2912 struct regcache *regcache,
2913 int regnum)
2914 {
2915 struct value *result;
2916
2917 result = allocate_value (register_type (gdbarch, regnum));
2918 VALUE_LVAL (result) = lval_register;
2919 VALUE_REGNUM (result) = regnum;
2920
2921 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
2922
2923 return result;
2924 }
2925
2926 void
2927 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2928 int regnum, const gdb_byte *buf)
2929 {
2930 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2931
2932 if (i386_mmx_regnum_p (gdbarch, regnum))
2933 {
2934 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2935
2936 /* Read ... */
2937 regcache_raw_read (regcache, fpnum, raw_buf);
2938 /* ... Modify ... (always little endian). */
2939 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2940 /* ... Write. */
2941 regcache_raw_write (regcache, fpnum, raw_buf);
2942 }
2943 else
2944 {
2945 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2946
2947 if (i386_ymm_regnum_p (gdbarch, regnum))
2948 {
2949 regnum -= tdep->ymm0_regnum;
2950
2951 /* ... Write lower 128bits. */
2952 regcache_raw_write (regcache,
2953 I387_XMM0_REGNUM (tdep) + regnum,
2954 buf);
2955 /* ... Write upper 128bits. */
2956 regcache_raw_write (regcache,
2957 tdep->ymm0h_regnum + regnum,
2958 buf + 16);
2959 }
2960 else if (i386_word_regnum_p (gdbarch, regnum))
2961 {
2962 int gpnum = regnum - tdep->ax_regnum;
2963
2964 /* Read ... */
2965 regcache_raw_read (regcache, gpnum, raw_buf);
2966 /* ... Modify ... (always little endian). */
2967 memcpy (raw_buf, buf, 2);
2968 /* ... Write. */
2969 regcache_raw_write (regcache, gpnum, raw_buf);
2970 }
2971 else if (i386_byte_regnum_p (gdbarch, regnum))
2972 {
2973 /* Check byte pseudo registers last since this function will
2974 be called from amd64_pseudo_register_read, which handles
2975 byte pseudo registers differently. */
2976 int gpnum = regnum - tdep->al_regnum;
2977
2978 /* Read ... We read both lower and upper registers. */
2979 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2980 /* ... Modify ... (always little endian). */
2981 if (gpnum >= 4)
2982 memcpy (raw_buf + 1, buf, 1);
2983 else
2984 memcpy (raw_buf, buf, 1);
2985 /* ... Write. */
2986 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2987 }
2988 else
2989 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2990 }
2991 }
2992 \f
2993
2994 /* Return the register number of the register allocated by GCC after
2995 REGNUM, or -1 if there is no such register. */
2996
2997 static int
2998 i386_next_regnum (int regnum)
2999 {
3000 /* GCC allocates the registers in the order:
3001
3002 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3003
3004 Since storing a variable in %esp doesn't make any sense we return
3005 -1 for %ebp and for %esp itself. */
3006 static int next_regnum[] =
3007 {
3008 I386_EDX_REGNUM, /* Slot for %eax. */
3009 I386_EBX_REGNUM, /* Slot for %ecx. */
3010 I386_ECX_REGNUM, /* Slot for %edx. */
3011 I386_ESI_REGNUM, /* Slot for %ebx. */
3012 -1, -1, /* Slots for %esp and %ebp. */
3013 I386_EDI_REGNUM, /* Slot for %esi. */
3014 I386_EBP_REGNUM /* Slot for %edi. */
3015 };
3016
3017 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3018 return next_regnum[regnum];
3019
3020 return -1;
3021 }
3022
3023 /* Return nonzero if a value of type TYPE stored in register REGNUM
3024 needs any special handling. */
3025
3026 static int
3027 i386_convert_register_p (struct gdbarch *gdbarch,
3028 int regnum, struct type *type)
3029 {
3030 int len = TYPE_LENGTH (type);
3031
3032 /* Values may be spread across multiple registers. Most debugging
3033 formats aren't expressive enough to specify the locations, so
3034 some heuristics is involved. Right now we only handle types that
3035 have a length that is a multiple of the word size, since GCC
3036 doesn't seem to put any other types into registers. */
3037 if (len > 4 && len % 4 == 0)
3038 {
3039 int last_regnum = regnum;
3040
3041 while (len > 4)
3042 {
3043 last_regnum = i386_next_regnum (last_regnum);
3044 len -= 4;
3045 }
3046
3047 if (last_regnum != -1)
3048 return 1;
3049 }
3050
3051 return i387_convert_register_p (gdbarch, regnum, type);
3052 }
3053
3054 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3055 return its contents in TO. */
3056
3057 static int
3058 i386_register_to_value (struct frame_info *frame, int regnum,
3059 struct type *type, gdb_byte *to,
3060 int *optimizedp, int *unavailablep)
3061 {
3062 struct gdbarch *gdbarch = get_frame_arch (frame);
3063 int len = TYPE_LENGTH (type);
3064
3065 if (i386_fp_regnum_p (gdbarch, regnum))
3066 return i387_register_to_value (frame, regnum, type, to,
3067 optimizedp, unavailablep);
3068
3069 /* Read a value spread across multiple registers. */
3070
3071 gdb_assert (len > 4 && len % 4 == 0);
3072
3073 while (len > 0)
3074 {
3075 gdb_assert (regnum != -1);
3076 gdb_assert (register_size (gdbarch, regnum) == 4);
3077
3078 if (!get_frame_register_bytes (frame, regnum, 0,
3079 register_size (gdbarch, regnum),
3080 to, optimizedp, unavailablep))
3081 return 0;
3082
3083 regnum = i386_next_regnum (regnum);
3084 len -= 4;
3085 to += 4;
3086 }
3087
3088 *optimizedp = *unavailablep = 0;
3089 return 1;
3090 }
3091
3092 /* Write the contents FROM of a value of type TYPE into register
3093 REGNUM in frame FRAME. */
3094
3095 static void
3096 i386_value_to_register (struct frame_info *frame, int regnum,
3097 struct type *type, const gdb_byte *from)
3098 {
3099 int len = TYPE_LENGTH (type);
3100
3101 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3102 {
3103 i387_value_to_register (frame, regnum, type, from);
3104 return;
3105 }
3106
3107 /* Write a value spread across multiple registers. */
3108
3109 gdb_assert (len > 4 && len % 4 == 0);
3110
3111 while (len > 0)
3112 {
3113 gdb_assert (regnum != -1);
3114 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3115
3116 put_frame_register (frame, regnum, from);
3117 regnum = i386_next_regnum (regnum);
3118 len -= 4;
3119 from += 4;
3120 }
3121 }
3122 \f
3123 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3124 in the general-purpose register set REGSET to register cache
3125 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3126
3127 void
3128 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3129 int regnum, const void *gregs, size_t len)
3130 {
3131 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3132 const gdb_byte *regs = gregs;
3133 int i;
3134
3135 gdb_assert (len == tdep->sizeof_gregset);
3136
3137 for (i = 0; i < tdep->gregset_num_regs; i++)
3138 {
3139 if ((regnum == i || regnum == -1)
3140 && tdep->gregset_reg_offset[i] != -1)
3141 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3142 }
3143 }
3144
3145 /* Collect register REGNUM from the register cache REGCACHE and store
3146 it in the buffer specified by GREGS and LEN as described by the
3147 general-purpose register set REGSET. If REGNUM is -1, do this for
3148 all registers in REGSET. */
3149
3150 void
3151 i386_collect_gregset (const struct regset *regset,
3152 const struct regcache *regcache,
3153 int regnum, void *gregs, size_t len)
3154 {
3155 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3156 gdb_byte *regs = gregs;
3157 int i;
3158
3159 gdb_assert (len == tdep->sizeof_gregset);
3160
3161 for (i = 0; i < tdep->gregset_num_regs; i++)
3162 {
3163 if ((regnum == i || regnum == -1)
3164 && tdep->gregset_reg_offset[i] != -1)
3165 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3166 }
3167 }
3168
3169 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3170 in the floating-point register set REGSET to register cache
3171 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3172
3173 static void
3174 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3175 int regnum, const void *fpregs, size_t len)
3176 {
3177 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3178
3179 if (len == I387_SIZEOF_FXSAVE)
3180 {
3181 i387_supply_fxsave (regcache, regnum, fpregs);
3182 return;
3183 }
3184
3185 gdb_assert (len == tdep->sizeof_fpregset);
3186 i387_supply_fsave (regcache, regnum, fpregs);
3187 }
3188
3189 /* Collect register REGNUM from the register cache REGCACHE and store
3190 it in the buffer specified by FPREGS and LEN as described by the
3191 floating-point register set REGSET. If REGNUM is -1, do this for
3192 all registers in REGSET. */
3193
3194 static void
3195 i386_collect_fpregset (const struct regset *regset,
3196 const struct regcache *regcache,
3197 int regnum, void *fpregs, size_t len)
3198 {
3199 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3200
3201 if (len == I387_SIZEOF_FXSAVE)
3202 {
3203 i387_collect_fxsave (regcache, regnum, fpregs);
3204 return;
3205 }
3206
3207 gdb_assert (len == tdep->sizeof_fpregset);
3208 i387_collect_fsave (regcache, regnum, fpregs);
3209 }
3210
3211 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3212
3213 static void
3214 i386_supply_xstateregset (const struct regset *regset,
3215 struct regcache *regcache, int regnum,
3216 const void *xstateregs, size_t len)
3217 {
3218 i387_supply_xsave (regcache, regnum, xstateregs);
3219 }
3220
3221 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3222
3223 static void
3224 i386_collect_xstateregset (const struct regset *regset,
3225 const struct regcache *regcache,
3226 int regnum, void *xstateregs, size_t len)
3227 {
3228 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3229 }
3230
3231 /* Return the appropriate register set for the core section identified
3232 by SECT_NAME and SECT_SIZE. */
3233
3234 const struct regset *
3235 i386_regset_from_core_section (struct gdbarch *gdbarch,
3236 const char *sect_name, size_t sect_size)
3237 {
3238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3239
3240 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3241 {
3242 if (tdep->gregset == NULL)
3243 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3244 i386_collect_gregset);
3245 return tdep->gregset;
3246 }
3247
3248 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3249 || (strcmp (sect_name, ".reg-xfp") == 0
3250 && sect_size == I387_SIZEOF_FXSAVE))
3251 {
3252 if (tdep->fpregset == NULL)
3253 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3254 i386_collect_fpregset);
3255 return tdep->fpregset;
3256 }
3257
3258 if (strcmp (sect_name, ".reg-xstate") == 0)
3259 {
3260 if (tdep->xstateregset == NULL)
3261 tdep->xstateregset = regset_alloc (gdbarch,
3262 i386_supply_xstateregset,
3263 i386_collect_xstateregset);
3264
3265 return tdep->xstateregset;
3266 }
3267
3268 return NULL;
3269 }
3270 \f
3271
3272 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3273
3274 CORE_ADDR
3275 i386_pe_skip_trampoline_code (struct frame_info *frame,
3276 CORE_ADDR pc, char *name)
3277 {
3278 struct gdbarch *gdbarch = get_frame_arch (frame);
3279 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3280
3281 /* jmp *(dest) */
3282 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3283 {
3284 unsigned long indirect =
3285 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3286 struct minimal_symbol *indsym =
3287 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
3288 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3289
3290 if (symname)
3291 {
3292 if (strncmp (symname, "__imp_", 6) == 0
3293 || strncmp (symname, "_imp_", 5) == 0)
3294 return name ? 1 :
3295 read_memory_unsigned_integer (indirect, 4, byte_order);
3296 }
3297 }
3298 return 0; /* Not a trampoline. */
3299 }
3300 \f
3301
3302 /* Return whether the THIS_FRAME corresponds to a sigtramp
3303 routine. */
3304
3305 int
3306 i386_sigtramp_p (struct frame_info *this_frame)
3307 {
3308 CORE_ADDR pc = get_frame_pc (this_frame);
3309 const char *name;
3310
3311 find_pc_partial_function (pc, &name, NULL, NULL);
3312 return (name && strcmp ("_sigtramp", name) == 0);
3313 }
3314 \f
3315
3316 /* We have two flavours of disassembly. The machinery on this page
3317 deals with switching between those. */
3318
3319 static int
3320 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3321 {
3322 gdb_assert (disassembly_flavor == att_flavor
3323 || disassembly_flavor == intel_flavor);
3324
3325 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3326 constified, cast to prevent a compiler warning. */
3327 info->disassembler_options = (char *) disassembly_flavor;
3328
3329 return print_insn_i386 (pc, info);
3330 }
3331 \f
3332
3333 /* There are a few i386 architecture variants that differ only
3334 slightly from the generic i386 target. For now, we don't give them
3335 their own source file, but include them here. As a consequence,
3336 they'll always be included. */
3337
3338 /* System V Release 4 (SVR4). */
3339
3340 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3341 routine. */
3342
3343 static int
3344 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3345 {
3346 CORE_ADDR pc = get_frame_pc (this_frame);
3347 const char *name;
3348
3349 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3350 currently unknown. */
3351 find_pc_partial_function (pc, &name, NULL, NULL);
3352 return (name && (strcmp ("_sigreturn", name) == 0
3353 || strcmp ("_sigacthandler", name) == 0
3354 || strcmp ("sigvechandler", name) == 0));
3355 }
3356
3357 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3358 address of the associated sigcontext (ucontext) structure. */
3359
3360 static CORE_ADDR
3361 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3362 {
3363 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3364 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3365 gdb_byte buf[4];
3366 CORE_ADDR sp;
3367
3368 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3369 sp = extract_unsigned_integer (buf, 4, byte_order);
3370
3371 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3372 }
3373
3374 \f
3375
3376 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3377 gdbarch.h. */
3378
3379 int
3380 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3381 {
3382 return (*s == '$' /* Literal number. */
3383 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3384 || (*s == '(' && s[1] == '%') /* Register indirection. */
3385 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3386 }
3387
3388 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3389 gdbarch.h. */
3390
3391 int
3392 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3393 struct stap_parse_info *p)
3394 {
3395 /* In order to parse special tokens, we use a state-machine that go
3396 through every known token and try to get a match. */
3397 enum
3398 {
3399 TRIPLET,
3400 THREE_ARG_DISPLACEMENT,
3401 DONE
3402 } current_state;
3403
3404 current_state = TRIPLET;
3405
3406 /* The special tokens to be parsed here are:
3407
3408 - `register base + (register index * size) + offset', as represented
3409 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3410
3411 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3412 `*(-8 + 3 - 1 + (void *) $eax)'. */
3413
3414 while (current_state != DONE)
3415 {
3416 const char *s = p->arg;
3417
3418 switch (current_state)
3419 {
3420 case TRIPLET:
3421 {
3422 if (isdigit (*s) || *s == '-' || *s == '+')
3423 {
3424 int got_minus[3];
3425 int i;
3426 long displacements[3];
3427 const char *start;
3428 char *regname;
3429 int len;
3430 struct stoken str;
3431
3432 got_minus[0] = 0;
3433 if (*s == '+')
3434 ++s;
3435 else if (*s == '-')
3436 {
3437 ++s;
3438 got_minus[0] = 1;
3439 }
3440
3441 displacements[0] = strtol (s, (char **) &s, 10);
3442
3443 if (*s != '+' && *s != '-')
3444 {
3445 /* We are not dealing with a triplet. */
3446 break;
3447 }
3448
3449 got_minus[1] = 0;
3450 if (*s == '+')
3451 ++s;
3452 else
3453 {
3454 ++s;
3455 got_minus[1] = 1;
3456 }
3457
3458 displacements[1] = strtol (s, (char **) &s, 10);
3459
3460 if (*s != '+' && *s != '-')
3461 {
3462 /* We are not dealing with a triplet. */
3463 break;
3464 }
3465
3466 got_minus[2] = 0;
3467 if (*s == '+')
3468 ++s;
3469 else
3470 {
3471 ++s;
3472 got_minus[2] = 1;
3473 }
3474
3475 displacements[2] = strtol (s, (char **) &s, 10);
3476
3477 if (*s != '(' || s[1] != '%')
3478 break;
3479
3480 s += 2;
3481 start = s;
3482
3483 while (isalnum (*s))
3484 ++s;
3485
3486 if (*s++ != ')')
3487 break;
3488
3489 len = s - start;
3490 regname = alloca (len + 1);
3491
3492 strncpy (regname, start, len);
3493 regname[len] = '\0';
3494
3495 if (user_reg_map_name_to_regnum (gdbarch,
3496 regname, len) == -1)
3497 error (_("Invalid register name `%s' "
3498 "on expression `%s'."),
3499 regname, p->saved_arg);
3500
3501 for (i = 0; i < 3; i++)
3502 {
3503 write_exp_elt_opcode (OP_LONG);
3504 write_exp_elt_type
3505 (builtin_type (gdbarch)->builtin_long);
3506 write_exp_elt_longcst (displacements[i]);
3507 write_exp_elt_opcode (OP_LONG);
3508 if (got_minus[i])
3509 write_exp_elt_opcode (UNOP_NEG);
3510 }
3511
3512 write_exp_elt_opcode (OP_REGISTER);
3513 str.ptr = regname;
3514 str.length = len;
3515 write_exp_string (str);
3516 write_exp_elt_opcode (OP_REGISTER);
3517
3518 write_exp_elt_opcode (UNOP_CAST);
3519 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3520 write_exp_elt_opcode (UNOP_CAST);
3521
3522 write_exp_elt_opcode (BINOP_ADD);
3523 write_exp_elt_opcode (BINOP_ADD);
3524 write_exp_elt_opcode (BINOP_ADD);
3525
3526 write_exp_elt_opcode (UNOP_CAST);
3527 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3528 write_exp_elt_opcode (UNOP_CAST);
3529
3530 write_exp_elt_opcode (UNOP_IND);
3531
3532 p->arg = s;
3533
3534 return 1;
3535 }
3536 break;
3537 }
3538 case THREE_ARG_DISPLACEMENT:
3539 {
3540 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3541 {
3542 int offset_minus = 0;
3543 long offset = 0;
3544 int size_minus = 0;
3545 long size = 0;
3546 const char *start;
3547 char *base;
3548 int len_base;
3549 char *index;
3550 int len_index;
3551 struct stoken base_token, index_token;
3552
3553 if (*s == '+')
3554 ++s;
3555 else if (*s == '-')
3556 {
3557 ++s;
3558 offset_minus = 1;
3559 }
3560
3561 if (offset_minus && !isdigit (*s))
3562 break;
3563
3564 if (isdigit (*s))
3565 offset = strtol (s, (char **) &s, 10);
3566
3567 if (*s != '(' || s[1] != '%')
3568 break;
3569
3570 s += 2;
3571 start = s;
3572
3573 while (isalnum (*s))
3574 ++s;
3575
3576 if (*s != ',' || s[1] != '%')
3577 break;
3578
3579 len_base = s - start;
3580 base = alloca (len_base + 1);
3581 strncpy (base, start, len_base);
3582 base[len_base] = '\0';
3583
3584 if (user_reg_map_name_to_regnum (gdbarch,
3585 base, len_base) == -1)
3586 error (_("Invalid register name `%s' "
3587 "on expression `%s'."),
3588 base, p->saved_arg);
3589
3590 s += 2;
3591 start = s;
3592
3593 while (isalnum (*s))
3594 ++s;
3595
3596 len_index = s - start;
3597 index = alloca (len_index + 1);
3598 strncpy (index, start, len_index);
3599 index[len_index] = '\0';
3600
3601 if (user_reg_map_name_to_regnum (gdbarch,
3602 index, len_index) == -1)
3603 error (_("Invalid register name `%s' "
3604 "on expression `%s'."),
3605 index, p->saved_arg);
3606
3607 if (*s != ',' && *s != ')')
3608 break;
3609
3610 if (*s == ',')
3611 {
3612 ++s;
3613 if (*s == '+')
3614 ++s;
3615 else if (*s == '-')
3616 {
3617 ++s;
3618 size_minus = 1;
3619 }
3620
3621 size = strtol (s, (char **) &s, 10);
3622
3623 if (*s != ')')
3624 break;
3625 }
3626
3627 ++s;
3628
3629 if (offset)
3630 {
3631 write_exp_elt_opcode (OP_LONG);
3632 write_exp_elt_type
3633 (builtin_type (gdbarch)->builtin_long);
3634 write_exp_elt_longcst (offset);
3635 write_exp_elt_opcode (OP_LONG);
3636 if (offset_minus)
3637 write_exp_elt_opcode (UNOP_NEG);
3638 }
3639
3640 write_exp_elt_opcode (OP_REGISTER);
3641 base_token.ptr = base;
3642 base_token.length = len_base;
3643 write_exp_string (base_token);
3644 write_exp_elt_opcode (OP_REGISTER);
3645
3646 if (offset)
3647 write_exp_elt_opcode (BINOP_ADD);
3648
3649 write_exp_elt_opcode (OP_REGISTER);
3650 index_token.ptr = index;
3651 index_token.length = len_index;
3652 write_exp_string (index_token);
3653 write_exp_elt_opcode (OP_REGISTER);
3654
3655 if (size)
3656 {
3657 write_exp_elt_opcode (OP_LONG);
3658 write_exp_elt_type
3659 (builtin_type (gdbarch)->builtin_long);
3660 write_exp_elt_longcst (size);
3661 write_exp_elt_opcode (OP_LONG);
3662 if (size_minus)
3663 write_exp_elt_opcode (UNOP_NEG);
3664 write_exp_elt_opcode (BINOP_MUL);
3665 }
3666
3667 write_exp_elt_opcode (BINOP_ADD);
3668
3669 write_exp_elt_opcode (UNOP_CAST);
3670 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3671 write_exp_elt_opcode (UNOP_CAST);
3672
3673 write_exp_elt_opcode (UNOP_IND);
3674
3675 p->arg = s;
3676
3677 return 1;
3678 }
3679 break;
3680 }
3681 }
3682
3683 /* Advancing to the next state. */
3684 ++current_state;
3685 }
3686
3687 return 0;
3688 }
3689
3690 \f
3691
3692 /* Generic ELF. */
3693
3694 void
3695 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3696 {
3697 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3698 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3699
3700 /* Registering SystemTap handlers. */
3701 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3702 set_gdbarch_stap_register_prefix (gdbarch, "%");
3703 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3704 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3705 set_gdbarch_stap_is_single_operand (gdbarch,
3706 i386_stap_is_single_operand);
3707 set_gdbarch_stap_parse_special_token (gdbarch,
3708 i386_stap_parse_special_token);
3709 }
3710
3711 /* System V Release 4 (SVR4). */
3712
3713 void
3714 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3715 {
3716 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3717
3718 /* System V Release 4 uses ELF. */
3719 i386_elf_init_abi (info, gdbarch);
3720
3721 /* System V Release 4 has shared libraries. */
3722 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3723
3724 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3725 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3726 tdep->sc_pc_offset = 36 + 14 * 4;
3727 tdep->sc_sp_offset = 36 + 17 * 4;
3728
3729 tdep->jb_pc_offset = 20;
3730 }
3731
3732 /* DJGPP. */
3733
3734 static void
3735 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3736 {
3737 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3738
3739 /* DJGPP doesn't have any special frames for signal handlers. */
3740 tdep->sigtramp_p = NULL;
3741
3742 tdep->jb_pc_offset = 36;
3743
3744 /* DJGPP does not support the SSE registers. */
3745 if (! tdesc_has_registers (info.target_desc))
3746 tdep->tdesc = tdesc_i386_mmx;
3747
3748 /* Native compiler is GCC, which uses the SVR4 register numbering
3749 even in COFF and STABS. See the comment in i386_gdbarch_init,
3750 before the calls to set_gdbarch_stab_reg_to_regnum and
3751 set_gdbarch_sdb_reg_to_regnum. */
3752 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3753 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3754
3755 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3756 }
3757 \f
3758
3759 /* i386 register groups. In addition to the normal groups, add "mmx"
3760 and "sse". */
3761
3762 static struct reggroup *i386_sse_reggroup;
3763 static struct reggroup *i386_mmx_reggroup;
3764
3765 static void
3766 i386_init_reggroups (void)
3767 {
3768 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3769 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3770 }
3771
3772 static void
3773 i386_add_reggroups (struct gdbarch *gdbarch)
3774 {
3775 reggroup_add (gdbarch, i386_sse_reggroup);
3776 reggroup_add (gdbarch, i386_mmx_reggroup);
3777 reggroup_add (gdbarch, general_reggroup);
3778 reggroup_add (gdbarch, float_reggroup);
3779 reggroup_add (gdbarch, all_reggroup);
3780 reggroup_add (gdbarch, save_reggroup);
3781 reggroup_add (gdbarch, restore_reggroup);
3782 reggroup_add (gdbarch, vector_reggroup);
3783 reggroup_add (gdbarch, system_reggroup);
3784 }
3785
3786 int
3787 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3788 struct reggroup *group)
3789 {
3790 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3791 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3792 ymm_regnum_p, ymmh_regnum_p;
3793
3794 /* Don't include pseudo registers, except for MMX, in any register
3795 groups. */
3796 if (i386_byte_regnum_p (gdbarch, regnum))
3797 return 0;
3798
3799 if (i386_word_regnum_p (gdbarch, regnum))
3800 return 0;
3801
3802 if (i386_dword_regnum_p (gdbarch, regnum))
3803 return 0;
3804
3805 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3806 if (group == i386_mmx_reggroup)
3807 return mmx_regnum_p;
3808
3809 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3810 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3811 if (group == i386_sse_reggroup)
3812 return xmm_regnum_p || mxcsr_regnum_p;
3813
3814 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3815 if (group == vector_reggroup)
3816 return (mmx_regnum_p
3817 || ymm_regnum_p
3818 || mxcsr_regnum_p
3819 || (xmm_regnum_p
3820 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3821 == I386_XSTATE_SSE_MASK)));
3822
3823 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3824 || i386_fpc_regnum_p (gdbarch, regnum));
3825 if (group == float_reggroup)
3826 return fp_regnum_p;
3827
3828 /* For "info reg all", don't include upper YMM registers nor XMM
3829 registers when AVX is supported. */
3830 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3831 if (group == all_reggroup
3832 && ((xmm_regnum_p
3833 && (tdep->xcr0 & I386_XSTATE_AVX))
3834 || ymmh_regnum_p))
3835 return 0;
3836
3837 if (group == general_reggroup)
3838 return (!fp_regnum_p
3839 && !mmx_regnum_p
3840 && !mxcsr_regnum_p
3841 && !xmm_regnum_p
3842 && !ymm_regnum_p
3843 && !ymmh_regnum_p);
3844
3845 return default_register_reggroup_p (gdbarch, regnum, group);
3846 }
3847 \f
3848
3849 /* Get the ARGIth function argument for the current function. */
3850
3851 static CORE_ADDR
3852 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3853 struct type *type)
3854 {
3855 struct gdbarch *gdbarch = get_frame_arch (frame);
3856 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3857 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3858 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3859 }
3860
3861 static void
3862 i386_skip_permanent_breakpoint (struct regcache *regcache)
3863 {
3864 CORE_ADDR current_pc = regcache_read_pc (regcache);
3865
3866 /* On i386, breakpoint is exactly 1 byte long, so we just
3867 adjust the PC in the regcache. */
3868 current_pc += 1;
3869 regcache_write_pc (regcache, current_pc);
3870 }
3871
3872
3873 #define PREFIX_REPZ 0x01
3874 #define PREFIX_REPNZ 0x02
3875 #define PREFIX_LOCK 0x04
3876 #define PREFIX_DATA 0x08
3877 #define PREFIX_ADDR 0x10
3878
3879 /* operand size */
3880 enum
3881 {
3882 OT_BYTE = 0,
3883 OT_WORD,
3884 OT_LONG,
3885 OT_QUAD,
3886 OT_DQUAD,
3887 };
3888
3889 /* i386 arith/logic operations */
3890 enum
3891 {
3892 OP_ADDL,
3893 OP_ORL,
3894 OP_ADCL,
3895 OP_SBBL,
3896 OP_ANDL,
3897 OP_SUBL,
3898 OP_XORL,
3899 OP_CMPL,
3900 };
3901
3902 struct i386_record_s
3903 {
3904 struct gdbarch *gdbarch;
3905 struct regcache *regcache;
3906 CORE_ADDR orig_addr;
3907 CORE_ADDR addr;
3908 int aflag;
3909 int dflag;
3910 int override;
3911 uint8_t modrm;
3912 uint8_t mod, reg, rm;
3913 int ot;
3914 uint8_t rex_x;
3915 uint8_t rex_b;
3916 int rip_offset;
3917 int popl_esp_hack;
3918 const int *regmap;
3919 };
3920
3921 /* Parse "modrm" part in current memory address that irp->addr point to
3922 Return -1 if something wrong. */
3923
3924 static int
3925 i386_record_modrm (struct i386_record_s *irp)
3926 {
3927 struct gdbarch *gdbarch = irp->gdbarch;
3928
3929 if (target_read_memory (irp->addr, &irp->modrm, 1))
3930 {
3931 if (record_debug)
3932 printf_unfiltered (_("Process record: error reading memory at "
3933 "addr %s len = 1.\n"),
3934 paddress (gdbarch, irp->addr));
3935 return -1;
3936 }
3937 irp->addr++;
3938 irp->mod = (irp->modrm >> 6) & 3;
3939 irp->reg = (irp->modrm >> 3) & 7;
3940 irp->rm = irp->modrm & 7;
3941
3942 return 0;
3943 }
3944
3945 /* Get the memory address that current instruction write to and set it to
3946 the argument "addr".
3947 Return -1 if something wrong. */
3948
3949 static int
3950 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3951 {
3952 struct gdbarch *gdbarch = irp->gdbarch;
3953 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3954 gdb_byte buf[4];
3955 ULONGEST offset64;
3956
3957 *addr = 0;
3958 if (irp->aflag)
3959 {
3960 /* 32 bits */
3961 int havesib = 0;
3962 uint8_t scale = 0;
3963 uint8_t byte;
3964 uint8_t index = 0;
3965 uint8_t base = irp->rm;
3966
3967 if (base == 4)
3968 {
3969 havesib = 1;
3970 if (target_read_memory (irp->addr, &byte, 1))
3971 {
3972 if (record_debug)
3973 printf_unfiltered (_("Process record: error reading memory "
3974 "at addr %s len = 1.\n"),
3975 paddress (gdbarch, irp->addr));
3976 return -1;
3977 }
3978 irp->addr++;
3979 scale = (byte >> 6) & 3;
3980 index = ((byte >> 3) & 7) | irp->rex_x;
3981 base = (byte & 7);
3982 }
3983 base |= irp->rex_b;
3984
3985 switch (irp->mod)
3986 {
3987 case 0:
3988 if ((base & 7) == 5)
3989 {
3990 base = 0xff;
3991 if (target_read_memory (irp->addr, buf, 4))
3992 {
3993 if (record_debug)
3994 printf_unfiltered (_("Process record: error reading "
3995 "memory at addr %s len = 4.\n"),
3996 paddress (gdbarch, irp->addr));
3997 return -1;
3998 }
3999 irp->addr += 4;
4000 *addr = extract_signed_integer (buf, 4, byte_order);
4001 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4002 *addr += irp->addr + irp->rip_offset;
4003 }
4004 break;
4005 case 1:
4006 if (target_read_memory (irp->addr, buf, 1))
4007 {
4008 if (record_debug)
4009 printf_unfiltered (_("Process record: error reading memory "
4010 "at addr %s len = 1.\n"),
4011 paddress (gdbarch, irp->addr));
4012 return -1;
4013 }
4014 irp->addr++;
4015 *addr = (int8_t) buf[0];
4016 break;
4017 case 2:
4018 if (target_read_memory (irp->addr, buf, 4))
4019 {
4020 if (record_debug)
4021 printf_unfiltered (_("Process record: error reading memory "
4022 "at addr %s len = 4.\n"),
4023 paddress (gdbarch, irp->addr));
4024 return -1;
4025 }
4026 *addr = extract_signed_integer (buf, 4, byte_order);
4027 irp->addr += 4;
4028 break;
4029 }
4030
4031 offset64 = 0;
4032 if (base != 0xff)
4033 {
4034 if (base == 4 && irp->popl_esp_hack)
4035 *addr += irp->popl_esp_hack;
4036 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4037 &offset64);
4038 }
4039 if (irp->aflag == 2)
4040 {
4041 *addr += offset64;
4042 }
4043 else
4044 *addr = (uint32_t) (offset64 + *addr);
4045
4046 if (havesib && (index != 4 || scale != 0))
4047 {
4048 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4049 &offset64);
4050 if (irp->aflag == 2)
4051 *addr += offset64 << scale;
4052 else
4053 *addr = (uint32_t) (*addr + (offset64 << scale));
4054 }
4055 }
4056 else
4057 {
4058 /* 16 bits */
4059 switch (irp->mod)
4060 {
4061 case 0:
4062 if (irp->rm == 6)
4063 {
4064 if (target_read_memory (irp->addr, buf, 2))
4065 {
4066 if (record_debug)
4067 printf_unfiltered (_("Process record: error reading "
4068 "memory at addr %s len = 2.\n"),
4069 paddress (gdbarch, irp->addr));
4070 return -1;
4071 }
4072 irp->addr += 2;
4073 *addr = extract_signed_integer (buf, 2, byte_order);
4074 irp->rm = 0;
4075 goto no_rm;
4076 }
4077 break;
4078 case 1:
4079 if (target_read_memory (irp->addr, buf, 1))
4080 {
4081 if (record_debug)
4082 printf_unfiltered (_("Process record: error reading memory "
4083 "at addr %s len = 1.\n"),
4084 paddress (gdbarch, irp->addr));
4085 return -1;
4086 }
4087 irp->addr++;
4088 *addr = (int8_t) buf[0];
4089 break;
4090 case 2:
4091 if (target_read_memory (irp->addr, buf, 2))
4092 {
4093 if (record_debug)
4094 printf_unfiltered (_("Process record: error reading memory "
4095 "at addr %s len = 2.\n"),
4096 paddress (gdbarch, irp->addr));
4097 return -1;
4098 }
4099 irp->addr += 2;
4100 *addr = extract_signed_integer (buf, 2, byte_order);
4101 break;
4102 }
4103
4104 switch (irp->rm)
4105 {
4106 case 0:
4107 regcache_raw_read_unsigned (irp->regcache,
4108 irp->regmap[X86_RECORD_REBX_REGNUM],
4109 &offset64);
4110 *addr = (uint32_t) (*addr + offset64);
4111 regcache_raw_read_unsigned (irp->regcache,
4112 irp->regmap[X86_RECORD_RESI_REGNUM],
4113 &offset64);
4114 *addr = (uint32_t) (*addr + offset64);
4115 break;
4116 case 1:
4117 regcache_raw_read_unsigned (irp->regcache,
4118 irp->regmap[X86_RECORD_REBX_REGNUM],
4119 &offset64);
4120 *addr = (uint32_t) (*addr + offset64);
4121 regcache_raw_read_unsigned (irp->regcache,
4122 irp->regmap[X86_RECORD_REDI_REGNUM],
4123 &offset64);
4124 *addr = (uint32_t) (*addr + offset64);
4125 break;
4126 case 2:
4127 regcache_raw_read_unsigned (irp->regcache,
4128 irp->regmap[X86_RECORD_REBP_REGNUM],
4129 &offset64);
4130 *addr = (uint32_t) (*addr + offset64);
4131 regcache_raw_read_unsigned (irp->regcache,
4132 irp->regmap[X86_RECORD_RESI_REGNUM],
4133 &offset64);
4134 *addr = (uint32_t) (*addr + offset64);
4135 break;
4136 case 3:
4137 regcache_raw_read_unsigned (irp->regcache,
4138 irp->regmap[X86_RECORD_REBP_REGNUM],
4139 &offset64);
4140 *addr = (uint32_t) (*addr + offset64);
4141 regcache_raw_read_unsigned (irp->regcache,
4142 irp->regmap[X86_RECORD_REDI_REGNUM],
4143 &offset64);
4144 *addr = (uint32_t) (*addr + offset64);
4145 break;
4146 case 4:
4147 regcache_raw_read_unsigned (irp->regcache,
4148 irp->regmap[X86_RECORD_RESI_REGNUM],
4149 &offset64);
4150 *addr = (uint32_t) (*addr + offset64);
4151 break;
4152 case 5:
4153 regcache_raw_read_unsigned (irp->regcache,
4154 irp->regmap[X86_RECORD_REDI_REGNUM],
4155 &offset64);
4156 *addr = (uint32_t) (*addr + offset64);
4157 break;
4158 case 6:
4159 regcache_raw_read_unsigned (irp->regcache,
4160 irp->regmap[X86_RECORD_REBP_REGNUM],
4161 &offset64);
4162 *addr = (uint32_t) (*addr + offset64);
4163 break;
4164 case 7:
4165 regcache_raw_read_unsigned (irp->regcache,
4166 irp->regmap[X86_RECORD_REBX_REGNUM],
4167 &offset64);
4168 *addr = (uint32_t) (*addr + offset64);
4169 break;
4170 }
4171 *addr &= 0xffff;
4172 }
4173
4174 no_rm:
4175 return 0;
4176 }
4177
4178 /* Record the value of the memory that willbe changed in current instruction
4179 to "record_arch_list".
4180 Return -1 if something wrong. */
4181
4182 static int
4183 i386_record_lea_modrm (struct i386_record_s *irp)
4184 {
4185 struct gdbarch *gdbarch = irp->gdbarch;
4186 uint64_t addr;
4187
4188 if (irp->override >= 0)
4189 {
4190 if (record_memory_query)
4191 {
4192 int q;
4193
4194 target_terminal_ours ();
4195 q = yquery (_("\
4196 Process record ignores the memory change of instruction at address %s\n\
4197 because it can't get the value of the segment register.\n\
4198 Do you want to stop the program?"),
4199 paddress (gdbarch, irp->orig_addr));
4200 target_terminal_inferior ();
4201 if (q)
4202 return -1;
4203 }
4204
4205 return 0;
4206 }
4207
4208 if (i386_record_lea_modrm_addr (irp, &addr))
4209 return -1;
4210
4211 if (record_arch_list_add_mem (addr, 1 << irp->ot))
4212 return -1;
4213
4214 return 0;
4215 }
4216
4217 /* Record the push operation to "record_arch_list".
4218 Return -1 if something wrong. */
4219
4220 static int
4221 i386_record_push (struct i386_record_s *irp, int size)
4222 {
4223 ULONGEST addr;
4224
4225 if (record_arch_list_add_reg (irp->regcache,
4226 irp->regmap[X86_RECORD_RESP_REGNUM]))
4227 return -1;
4228 regcache_raw_read_unsigned (irp->regcache,
4229 irp->regmap[X86_RECORD_RESP_REGNUM],
4230 &addr);
4231 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4232 return -1;
4233
4234 return 0;
4235 }
4236
4237
4238 /* Defines contents to record. */
4239 #define I386_SAVE_FPU_REGS 0xfffd
4240 #define I386_SAVE_FPU_ENV 0xfffe
4241 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4242
4243 /* Record the value of floating point registers which will be changed
4244 by the current instruction to "record_arch_list". Return -1 if
4245 something is wrong. */
4246
4247 static int i386_record_floats (struct gdbarch *gdbarch,
4248 struct i386_record_s *ir,
4249 uint32_t iregnum)
4250 {
4251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4252 int i;
4253
4254 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4255 happen. Currently we store st0-st7 registers, but we need not store all
4256 registers all the time, in future we use ftag register and record only
4257 those who are not marked as an empty. */
4258
4259 if (I386_SAVE_FPU_REGS == iregnum)
4260 {
4261 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4262 {
4263 if (record_arch_list_add_reg (ir->regcache, i))
4264 return -1;
4265 }
4266 }
4267 else if (I386_SAVE_FPU_ENV == iregnum)
4268 {
4269 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4270 {
4271 if (record_arch_list_add_reg (ir->regcache, i))
4272 return -1;
4273 }
4274 }
4275 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4276 {
4277 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4278 {
4279 if (record_arch_list_add_reg (ir->regcache, i))
4280 return -1;
4281 }
4282 }
4283 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4284 (iregnum <= I387_FOP_REGNUM (tdep)))
4285 {
4286 if (record_arch_list_add_reg (ir->regcache,iregnum))
4287 return -1;
4288 }
4289 else
4290 {
4291 /* Parameter error. */
4292 return -1;
4293 }
4294 if(I386_SAVE_FPU_ENV != iregnum)
4295 {
4296 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4297 {
4298 if (record_arch_list_add_reg (ir->regcache, i))
4299 return -1;
4300 }
4301 }
4302 return 0;
4303 }
4304
4305 /* Parse the current instruction and record the values of the registers and
4306 memory that will be changed in current instruction to "record_arch_list".
4307 Return -1 if something wrong. */
4308
4309 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
4310 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4311
4312 int
4313 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4314 CORE_ADDR input_addr)
4315 {
4316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4317 int prefixes = 0;
4318 int regnum = 0;
4319 uint32_t opcode;
4320 uint8_t opcode8;
4321 ULONGEST addr;
4322 gdb_byte buf[MAX_REGISTER_SIZE];
4323 struct i386_record_s ir;
4324 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4325 int rex = 0;
4326 uint8_t rex_w = -1;
4327 uint8_t rex_r = 0;
4328
4329 memset (&ir, 0, sizeof (struct i386_record_s));
4330 ir.regcache = regcache;
4331 ir.addr = input_addr;
4332 ir.orig_addr = input_addr;
4333 ir.aflag = 1;
4334 ir.dflag = 1;
4335 ir.override = -1;
4336 ir.popl_esp_hack = 0;
4337 ir.regmap = tdep->record_regmap;
4338 ir.gdbarch = gdbarch;
4339
4340 if (record_debug > 1)
4341 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4342 "addr = %s\n",
4343 paddress (gdbarch, ir.addr));
4344
4345 /* prefixes */
4346 while (1)
4347 {
4348 if (target_read_memory (ir.addr, &opcode8, 1))
4349 {
4350 if (record_debug)
4351 printf_unfiltered (_("Process record: error reading memory at "
4352 "addr %s len = 1.\n"),
4353 paddress (gdbarch, ir.addr));
4354 return -1;
4355 }
4356 ir.addr++;
4357 switch (opcode8) /* Instruction prefixes */
4358 {
4359 case REPE_PREFIX_OPCODE:
4360 prefixes |= PREFIX_REPZ;
4361 break;
4362 case REPNE_PREFIX_OPCODE:
4363 prefixes |= PREFIX_REPNZ;
4364 break;
4365 case LOCK_PREFIX_OPCODE:
4366 prefixes |= PREFIX_LOCK;
4367 break;
4368 case CS_PREFIX_OPCODE:
4369 ir.override = X86_RECORD_CS_REGNUM;
4370 break;
4371 case SS_PREFIX_OPCODE:
4372 ir.override = X86_RECORD_SS_REGNUM;
4373 break;
4374 case DS_PREFIX_OPCODE:
4375 ir.override = X86_RECORD_DS_REGNUM;
4376 break;
4377 case ES_PREFIX_OPCODE:
4378 ir.override = X86_RECORD_ES_REGNUM;
4379 break;
4380 case FS_PREFIX_OPCODE:
4381 ir.override = X86_RECORD_FS_REGNUM;
4382 break;
4383 case GS_PREFIX_OPCODE:
4384 ir.override = X86_RECORD_GS_REGNUM;
4385 break;
4386 case DATA_PREFIX_OPCODE:
4387 prefixes |= PREFIX_DATA;
4388 break;
4389 case ADDR_PREFIX_OPCODE:
4390 prefixes |= PREFIX_ADDR;
4391 break;
4392 case 0x40: /* i386 inc %eax */
4393 case 0x41: /* i386 inc %ecx */
4394 case 0x42: /* i386 inc %edx */
4395 case 0x43: /* i386 inc %ebx */
4396 case 0x44: /* i386 inc %esp */
4397 case 0x45: /* i386 inc %ebp */
4398 case 0x46: /* i386 inc %esi */
4399 case 0x47: /* i386 inc %edi */
4400 case 0x48: /* i386 dec %eax */
4401 case 0x49: /* i386 dec %ecx */
4402 case 0x4a: /* i386 dec %edx */
4403 case 0x4b: /* i386 dec %ebx */
4404 case 0x4c: /* i386 dec %esp */
4405 case 0x4d: /* i386 dec %ebp */
4406 case 0x4e: /* i386 dec %esi */
4407 case 0x4f: /* i386 dec %edi */
4408 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4409 {
4410 /* REX */
4411 rex = 1;
4412 rex_w = (opcode8 >> 3) & 1;
4413 rex_r = (opcode8 & 0x4) << 1;
4414 ir.rex_x = (opcode8 & 0x2) << 2;
4415 ir.rex_b = (opcode8 & 0x1) << 3;
4416 }
4417 else /* 32 bit target */
4418 goto out_prefixes;
4419 break;
4420 default:
4421 goto out_prefixes;
4422 break;
4423 }
4424 }
4425 out_prefixes:
4426 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4427 {
4428 ir.dflag = 2;
4429 }
4430 else
4431 {
4432 if (prefixes & PREFIX_DATA)
4433 ir.dflag ^= 1;
4434 }
4435 if (prefixes & PREFIX_ADDR)
4436 ir.aflag ^= 1;
4437 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4438 ir.aflag = 2;
4439
4440 /* Now check op code. */
4441 opcode = (uint32_t) opcode8;
4442 reswitch:
4443 switch (opcode)
4444 {
4445 case 0x0f:
4446 if (target_read_memory (ir.addr, &opcode8, 1))
4447 {
4448 if (record_debug)
4449 printf_unfiltered (_("Process record: error reading memory at "
4450 "addr %s len = 1.\n"),
4451 paddress (gdbarch, ir.addr));
4452 return -1;
4453 }
4454 ir.addr++;
4455 opcode = (uint32_t) opcode8 | 0x0f00;
4456 goto reswitch;
4457 break;
4458
4459 case 0x00: /* arith & logic */
4460 case 0x01:
4461 case 0x02:
4462 case 0x03:
4463 case 0x04:
4464 case 0x05:
4465 case 0x08:
4466 case 0x09:
4467 case 0x0a:
4468 case 0x0b:
4469 case 0x0c:
4470 case 0x0d:
4471 case 0x10:
4472 case 0x11:
4473 case 0x12:
4474 case 0x13:
4475 case 0x14:
4476 case 0x15:
4477 case 0x18:
4478 case 0x19:
4479 case 0x1a:
4480 case 0x1b:
4481 case 0x1c:
4482 case 0x1d:
4483 case 0x20:
4484 case 0x21:
4485 case 0x22:
4486 case 0x23:
4487 case 0x24:
4488 case 0x25:
4489 case 0x28:
4490 case 0x29:
4491 case 0x2a:
4492 case 0x2b:
4493 case 0x2c:
4494 case 0x2d:
4495 case 0x30:
4496 case 0x31:
4497 case 0x32:
4498 case 0x33:
4499 case 0x34:
4500 case 0x35:
4501 case 0x38:
4502 case 0x39:
4503 case 0x3a:
4504 case 0x3b:
4505 case 0x3c:
4506 case 0x3d:
4507 if (((opcode >> 3) & 7) != OP_CMPL)
4508 {
4509 if ((opcode & 1) == 0)
4510 ir.ot = OT_BYTE;
4511 else
4512 ir.ot = ir.dflag + OT_WORD;
4513
4514 switch ((opcode >> 1) & 3)
4515 {
4516 case 0: /* OP Ev, Gv */
4517 if (i386_record_modrm (&ir))
4518 return -1;
4519 if (ir.mod != 3)
4520 {
4521 if (i386_record_lea_modrm (&ir))
4522 return -1;
4523 }
4524 else
4525 {
4526 ir.rm |= ir.rex_b;
4527 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4528 ir.rm &= 0x3;
4529 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4530 }
4531 break;
4532 case 1: /* OP Gv, Ev */
4533 if (i386_record_modrm (&ir))
4534 return -1;
4535 ir.reg |= rex_r;
4536 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4537 ir.reg &= 0x3;
4538 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4539 break;
4540 case 2: /* OP A, Iv */
4541 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4542 break;
4543 }
4544 }
4545 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4546 break;
4547
4548 case 0x80: /* GRP1 */
4549 case 0x81:
4550 case 0x82:
4551 case 0x83:
4552 if (i386_record_modrm (&ir))
4553 return -1;
4554
4555 if (ir.reg != OP_CMPL)
4556 {
4557 if ((opcode & 1) == 0)
4558 ir.ot = OT_BYTE;
4559 else
4560 ir.ot = ir.dflag + OT_WORD;
4561
4562 if (ir.mod != 3)
4563 {
4564 if (opcode == 0x83)
4565 ir.rip_offset = 1;
4566 else
4567 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4568 if (i386_record_lea_modrm (&ir))
4569 return -1;
4570 }
4571 else
4572 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4573 }
4574 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4575 break;
4576
4577 case 0x40: /* inc */
4578 case 0x41:
4579 case 0x42:
4580 case 0x43:
4581 case 0x44:
4582 case 0x45:
4583 case 0x46:
4584 case 0x47:
4585
4586 case 0x48: /* dec */
4587 case 0x49:
4588 case 0x4a:
4589 case 0x4b:
4590 case 0x4c:
4591 case 0x4d:
4592 case 0x4e:
4593 case 0x4f:
4594
4595 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4596 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4597 break;
4598
4599 case 0xf6: /* GRP3 */
4600 case 0xf7:
4601 if ((opcode & 1) == 0)
4602 ir.ot = OT_BYTE;
4603 else
4604 ir.ot = ir.dflag + OT_WORD;
4605 if (i386_record_modrm (&ir))
4606 return -1;
4607
4608 if (ir.mod != 3 && ir.reg == 0)
4609 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4610
4611 switch (ir.reg)
4612 {
4613 case 0: /* test */
4614 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4615 break;
4616 case 2: /* not */
4617 case 3: /* neg */
4618 if (ir.mod != 3)
4619 {
4620 if (i386_record_lea_modrm (&ir))
4621 return -1;
4622 }
4623 else
4624 {
4625 ir.rm |= ir.rex_b;
4626 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4627 ir.rm &= 0x3;
4628 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4629 }
4630 if (ir.reg == 3) /* neg */
4631 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4632 break;
4633 case 4: /* mul */
4634 case 5: /* imul */
4635 case 6: /* div */
4636 case 7: /* idiv */
4637 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4638 if (ir.ot != OT_BYTE)
4639 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4640 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4641 break;
4642 default:
4643 ir.addr -= 2;
4644 opcode = opcode << 8 | ir.modrm;
4645 goto no_support;
4646 break;
4647 }
4648 break;
4649
4650 case 0xfe: /* GRP4 */
4651 case 0xff: /* GRP5 */
4652 if (i386_record_modrm (&ir))
4653 return -1;
4654 if (ir.reg >= 2 && opcode == 0xfe)
4655 {
4656 ir.addr -= 2;
4657 opcode = opcode << 8 | ir.modrm;
4658 goto no_support;
4659 }
4660 switch (ir.reg)
4661 {
4662 case 0: /* inc */
4663 case 1: /* dec */
4664 if ((opcode & 1) == 0)
4665 ir.ot = OT_BYTE;
4666 else
4667 ir.ot = ir.dflag + OT_WORD;
4668 if (ir.mod != 3)
4669 {
4670 if (i386_record_lea_modrm (&ir))
4671 return -1;
4672 }
4673 else
4674 {
4675 ir.rm |= ir.rex_b;
4676 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4677 ir.rm &= 0x3;
4678 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4679 }
4680 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4681 break;
4682 case 2: /* call */
4683 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4684 ir.dflag = 2;
4685 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4686 return -1;
4687 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4688 break;
4689 case 3: /* lcall */
4690 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4691 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4692 return -1;
4693 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4694 break;
4695 case 4: /* jmp */
4696 case 5: /* ljmp */
4697 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4698 break;
4699 case 6: /* push */
4700 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4701 ir.dflag = 2;
4702 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4703 return -1;
4704 break;
4705 default:
4706 ir.addr -= 2;
4707 opcode = opcode << 8 | ir.modrm;
4708 goto no_support;
4709 break;
4710 }
4711 break;
4712
4713 case 0x84: /* test */
4714 case 0x85:
4715 case 0xa8:
4716 case 0xa9:
4717 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4718 break;
4719
4720 case 0x98: /* CWDE/CBW */
4721 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4722 break;
4723
4724 case 0x99: /* CDQ/CWD */
4725 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4726 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4727 break;
4728
4729 case 0x0faf: /* imul */
4730 case 0x69:
4731 case 0x6b:
4732 ir.ot = ir.dflag + OT_WORD;
4733 if (i386_record_modrm (&ir))
4734 return -1;
4735 if (opcode == 0x69)
4736 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4737 else if (opcode == 0x6b)
4738 ir.rip_offset = 1;
4739 ir.reg |= rex_r;
4740 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4741 ir.reg &= 0x3;
4742 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4743 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4744 break;
4745
4746 case 0x0fc0: /* xadd */
4747 case 0x0fc1:
4748 if ((opcode & 1) == 0)
4749 ir.ot = OT_BYTE;
4750 else
4751 ir.ot = ir.dflag + OT_WORD;
4752 if (i386_record_modrm (&ir))
4753 return -1;
4754 ir.reg |= rex_r;
4755 if (ir.mod == 3)
4756 {
4757 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4758 ir.reg &= 0x3;
4759 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4760 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4761 ir.rm &= 0x3;
4762 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4763 }
4764 else
4765 {
4766 if (i386_record_lea_modrm (&ir))
4767 return -1;
4768 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4769 ir.reg &= 0x3;
4770 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4771 }
4772 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4773 break;
4774
4775 case 0x0fb0: /* cmpxchg */
4776 case 0x0fb1:
4777 if ((opcode & 1) == 0)
4778 ir.ot = OT_BYTE;
4779 else
4780 ir.ot = ir.dflag + OT_WORD;
4781 if (i386_record_modrm (&ir))
4782 return -1;
4783 if (ir.mod == 3)
4784 {
4785 ir.reg |= rex_r;
4786 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4787 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4788 ir.reg &= 0x3;
4789 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4790 }
4791 else
4792 {
4793 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4794 if (i386_record_lea_modrm (&ir))
4795 return -1;
4796 }
4797 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4798 break;
4799
4800 case 0x0fc7: /* cmpxchg8b */
4801 if (i386_record_modrm (&ir))
4802 return -1;
4803 if (ir.mod == 3)
4804 {
4805 ir.addr -= 2;
4806 opcode = opcode << 8 | ir.modrm;
4807 goto no_support;
4808 }
4809 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4810 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4811 if (i386_record_lea_modrm (&ir))
4812 return -1;
4813 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4814 break;
4815
4816 case 0x50: /* push */
4817 case 0x51:
4818 case 0x52:
4819 case 0x53:
4820 case 0x54:
4821 case 0x55:
4822 case 0x56:
4823 case 0x57:
4824 case 0x68:
4825 case 0x6a:
4826 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4827 ir.dflag = 2;
4828 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4829 return -1;
4830 break;
4831
4832 case 0x06: /* push es */
4833 case 0x0e: /* push cs */
4834 case 0x16: /* push ss */
4835 case 0x1e: /* push ds */
4836 if (ir.regmap[X86_RECORD_R8_REGNUM])
4837 {
4838 ir.addr -= 1;
4839 goto no_support;
4840 }
4841 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4842 return -1;
4843 break;
4844
4845 case 0x0fa0: /* push fs */
4846 case 0x0fa8: /* push gs */
4847 if (ir.regmap[X86_RECORD_R8_REGNUM])
4848 {
4849 ir.addr -= 2;
4850 goto no_support;
4851 }
4852 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4853 return -1;
4854 break;
4855
4856 case 0x60: /* pusha */
4857 if (ir.regmap[X86_RECORD_R8_REGNUM])
4858 {
4859 ir.addr -= 1;
4860 goto no_support;
4861 }
4862 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4863 return -1;
4864 break;
4865
4866 case 0x58: /* pop */
4867 case 0x59:
4868 case 0x5a:
4869 case 0x5b:
4870 case 0x5c:
4871 case 0x5d:
4872 case 0x5e:
4873 case 0x5f:
4874 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4875 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4876 break;
4877
4878 case 0x61: /* popa */
4879 if (ir.regmap[X86_RECORD_R8_REGNUM])
4880 {
4881 ir.addr -= 1;
4882 goto no_support;
4883 }
4884 for (regnum = X86_RECORD_REAX_REGNUM;
4885 regnum <= X86_RECORD_REDI_REGNUM;
4886 regnum++)
4887 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4888 break;
4889
4890 case 0x8f: /* pop */
4891 if (ir.regmap[X86_RECORD_R8_REGNUM])
4892 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4893 else
4894 ir.ot = ir.dflag + OT_WORD;
4895 if (i386_record_modrm (&ir))
4896 return -1;
4897 if (ir.mod == 3)
4898 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4899 else
4900 {
4901 ir.popl_esp_hack = 1 << ir.ot;
4902 if (i386_record_lea_modrm (&ir))
4903 return -1;
4904 }
4905 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4906 break;
4907
4908 case 0xc8: /* enter */
4909 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4910 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4911 ir.dflag = 2;
4912 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4913 return -1;
4914 break;
4915
4916 case 0xc9: /* leave */
4917 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4918 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4919 break;
4920
4921 case 0x07: /* pop es */
4922 if (ir.regmap[X86_RECORD_R8_REGNUM])
4923 {
4924 ir.addr -= 1;
4925 goto no_support;
4926 }
4927 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4928 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4929 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4930 break;
4931
4932 case 0x17: /* pop ss */
4933 if (ir.regmap[X86_RECORD_R8_REGNUM])
4934 {
4935 ir.addr -= 1;
4936 goto no_support;
4937 }
4938 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4939 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4940 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4941 break;
4942
4943 case 0x1f: /* pop ds */
4944 if (ir.regmap[X86_RECORD_R8_REGNUM])
4945 {
4946 ir.addr -= 1;
4947 goto no_support;
4948 }
4949 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4950 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4951 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4952 break;
4953
4954 case 0x0fa1: /* pop fs */
4955 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4956 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4957 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4958 break;
4959
4960 case 0x0fa9: /* pop gs */
4961 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4962 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4963 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4964 break;
4965
4966 case 0x88: /* mov */
4967 case 0x89:
4968 case 0xc6:
4969 case 0xc7:
4970 if ((opcode & 1) == 0)
4971 ir.ot = OT_BYTE;
4972 else
4973 ir.ot = ir.dflag + OT_WORD;
4974
4975 if (i386_record_modrm (&ir))
4976 return -1;
4977
4978 if (ir.mod != 3)
4979 {
4980 if (opcode == 0xc6 || opcode == 0xc7)
4981 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4982 if (i386_record_lea_modrm (&ir))
4983 return -1;
4984 }
4985 else
4986 {
4987 if (opcode == 0xc6 || opcode == 0xc7)
4988 ir.rm |= ir.rex_b;
4989 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4990 ir.rm &= 0x3;
4991 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4992 }
4993 break;
4994
4995 case 0x8a: /* mov */
4996 case 0x8b:
4997 if ((opcode & 1) == 0)
4998 ir.ot = OT_BYTE;
4999 else
5000 ir.ot = ir.dflag + OT_WORD;
5001 if (i386_record_modrm (&ir))
5002 return -1;
5003 ir.reg |= rex_r;
5004 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5005 ir.reg &= 0x3;
5006 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5007 break;
5008
5009 case 0x8c: /* mov seg */
5010 if (i386_record_modrm (&ir))
5011 return -1;
5012 if (ir.reg > 5)
5013 {
5014 ir.addr -= 2;
5015 opcode = opcode << 8 | ir.modrm;
5016 goto no_support;
5017 }
5018
5019 if (ir.mod == 3)
5020 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5021 else
5022 {
5023 ir.ot = OT_WORD;
5024 if (i386_record_lea_modrm (&ir))
5025 return -1;
5026 }
5027 break;
5028
5029 case 0x8e: /* mov seg */
5030 if (i386_record_modrm (&ir))
5031 return -1;
5032 switch (ir.reg)
5033 {
5034 case 0:
5035 regnum = X86_RECORD_ES_REGNUM;
5036 break;
5037 case 2:
5038 regnum = X86_RECORD_SS_REGNUM;
5039 break;
5040 case 3:
5041 regnum = X86_RECORD_DS_REGNUM;
5042 break;
5043 case 4:
5044 regnum = X86_RECORD_FS_REGNUM;
5045 break;
5046 case 5:
5047 regnum = X86_RECORD_GS_REGNUM;
5048 break;
5049 default:
5050 ir.addr -= 2;
5051 opcode = opcode << 8 | ir.modrm;
5052 goto no_support;
5053 break;
5054 }
5055 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
5056 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5057 break;
5058
5059 case 0x0fb6: /* movzbS */
5060 case 0x0fb7: /* movzwS */
5061 case 0x0fbe: /* movsbS */
5062 case 0x0fbf: /* movswS */
5063 if (i386_record_modrm (&ir))
5064 return -1;
5065 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5066 break;
5067
5068 case 0x8d: /* lea */
5069 if (i386_record_modrm (&ir))
5070 return -1;
5071 if (ir.mod == 3)
5072 {
5073 ir.addr -= 2;
5074 opcode = opcode << 8 | ir.modrm;
5075 goto no_support;
5076 }
5077 ir.ot = ir.dflag;
5078 ir.reg |= rex_r;
5079 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5080 ir.reg &= 0x3;
5081 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5082 break;
5083
5084 case 0xa0: /* mov EAX */
5085 case 0xa1:
5086
5087 case 0xd7: /* xlat */
5088 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5089 break;
5090
5091 case 0xa2: /* mov EAX */
5092 case 0xa3:
5093 if (ir.override >= 0)
5094 {
5095 if (record_memory_query)
5096 {
5097 int q;
5098
5099 target_terminal_ours ();
5100 q = yquery (_("\
5101 Process record ignores the memory change of instruction at address %s\n\
5102 because it can't get the value of the segment register.\n\
5103 Do you want to stop the program?"),
5104 paddress (gdbarch, ir.orig_addr));
5105 target_terminal_inferior ();
5106 if (q)
5107 return -1;
5108 }
5109 }
5110 else
5111 {
5112 if ((opcode & 1) == 0)
5113 ir.ot = OT_BYTE;
5114 else
5115 ir.ot = ir.dflag + OT_WORD;
5116 if (ir.aflag == 2)
5117 {
5118 if (target_read_memory (ir.addr, buf, 8))
5119 {
5120 if (record_debug)
5121 printf_unfiltered (_("Process record: error reading "
5122 "memory at addr 0x%s len = 8.\n"),
5123 paddress (gdbarch, ir.addr));
5124 return -1;
5125 }
5126 ir.addr += 8;
5127 addr = extract_unsigned_integer (buf, 8, byte_order);
5128 }
5129 else if (ir.aflag)
5130 {
5131 if (target_read_memory (ir.addr, buf, 4))
5132 {
5133 if (record_debug)
5134 printf_unfiltered (_("Process record: error reading "
5135 "memory at addr 0x%s len = 4.\n"),
5136 paddress (gdbarch, ir.addr));
5137 return -1;
5138 }
5139 ir.addr += 4;
5140 addr = extract_unsigned_integer (buf, 4, byte_order);
5141 }
5142 else
5143 {
5144 if (target_read_memory (ir.addr, buf, 2))
5145 {
5146 if (record_debug)
5147 printf_unfiltered (_("Process record: error reading "
5148 "memory at addr 0x%s len = 2.\n"),
5149 paddress (gdbarch, ir.addr));
5150 return -1;
5151 }
5152 ir.addr += 2;
5153 addr = extract_unsigned_integer (buf, 2, byte_order);
5154 }
5155 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5156 return -1;
5157 }
5158 break;
5159
5160 case 0xb0: /* mov R, Ib */
5161 case 0xb1:
5162 case 0xb2:
5163 case 0xb3:
5164 case 0xb4:
5165 case 0xb5:
5166 case 0xb6:
5167 case 0xb7:
5168 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5169 ? ((opcode & 0x7) | ir.rex_b)
5170 : ((opcode & 0x7) & 0x3));
5171 break;
5172
5173 case 0xb8: /* mov R, Iv */
5174 case 0xb9:
5175 case 0xba:
5176 case 0xbb:
5177 case 0xbc:
5178 case 0xbd:
5179 case 0xbe:
5180 case 0xbf:
5181 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5182 break;
5183
5184 case 0x91: /* xchg R, EAX */
5185 case 0x92:
5186 case 0x93:
5187 case 0x94:
5188 case 0x95:
5189 case 0x96:
5190 case 0x97:
5191 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5192 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
5193 break;
5194
5195 case 0x86: /* xchg Ev, Gv */
5196 case 0x87:
5197 if ((opcode & 1) == 0)
5198 ir.ot = OT_BYTE;
5199 else
5200 ir.ot = ir.dflag + OT_WORD;
5201 if (i386_record_modrm (&ir))
5202 return -1;
5203 if (ir.mod == 3)
5204 {
5205 ir.rm |= ir.rex_b;
5206 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5207 ir.rm &= 0x3;
5208 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5209 }
5210 else
5211 {
5212 if (i386_record_lea_modrm (&ir))
5213 return -1;
5214 }
5215 ir.reg |= rex_r;
5216 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5217 ir.reg &= 0x3;
5218 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5219 break;
5220
5221 case 0xc4: /* les Gv */
5222 case 0xc5: /* lds Gv */
5223 if (ir.regmap[X86_RECORD_R8_REGNUM])
5224 {
5225 ir.addr -= 1;
5226 goto no_support;
5227 }
5228 /* FALLTHROUGH */
5229 case 0x0fb2: /* lss Gv */
5230 case 0x0fb4: /* lfs Gv */
5231 case 0x0fb5: /* lgs Gv */
5232 if (i386_record_modrm (&ir))
5233 return -1;
5234 if (ir.mod == 3)
5235 {
5236 if (opcode > 0xff)
5237 ir.addr -= 3;
5238 else
5239 ir.addr -= 2;
5240 opcode = opcode << 8 | ir.modrm;
5241 goto no_support;
5242 }
5243 switch (opcode)
5244 {
5245 case 0xc4: /* les Gv */
5246 regnum = X86_RECORD_ES_REGNUM;
5247 break;
5248 case 0xc5: /* lds Gv */
5249 regnum = X86_RECORD_DS_REGNUM;
5250 break;
5251 case 0x0fb2: /* lss Gv */
5252 regnum = X86_RECORD_SS_REGNUM;
5253 break;
5254 case 0x0fb4: /* lfs Gv */
5255 regnum = X86_RECORD_FS_REGNUM;
5256 break;
5257 case 0x0fb5: /* lgs Gv */
5258 regnum = X86_RECORD_GS_REGNUM;
5259 break;
5260 }
5261 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
5262 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5263 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5264 break;
5265
5266 case 0xc0: /* shifts */
5267 case 0xc1:
5268 case 0xd0:
5269 case 0xd1:
5270 case 0xd2:
5271 case 0xd3:
5272 if ((opcode & 1) == 0)
5273 ir.ot = OT_BYTE;
5274 else
5275 ir.ot = ir.dflag + OT_WORD;
5276 if (i386_record_modrm (&ir))
5277 return -1;
5278 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5279 {
5280 if (i386_record_lea_modrm (&ir))
5281 return -1;
5282 }
5283 else
5284 {
5285 ir.rm |= ir.rex_b;
5286 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5287 ir.rm &= 0x3;
5288 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5289 }
5290 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5291 break;
5292
5293 case 0x0fa4:
5294 case 0x0fa5:
5295 case 0x0fac:
5296 case 0x0fad:
5297 if (i386_record_modrm (&ir))
5298 return -1;
5299 if (ir.mod == 3)
5300 {
5301 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5302 return -1;
5303 }
5304 else
5305 {
5306 if (i386_record_lea_modrm (&ir))
5307 return -1;
5308 }
5309 break;
5310
5311 case 0xd8: /* Floats. */
5312 case 0xd9:
5313 case 0xda:
5314 case 0xdb:
5315 case 0xdc:
5316 case 0xdd:
5317 case 0xde:
5318 case 0xdf:
5319 if (i386_record_modrm (&ir))
5320 return -1;
5321 ir.reg |= ((opcode & 7) << 3);
5322 if (ir.mod != 3)
5323 {
5324 /* Memory. */
5325 uint64_t addr64;
5326
5327 if (i386_record_lea_modrm_addr (&ir, &addr64))
5328 return -1;
5329 switch (ir.reg)
5330 {
5331 case 0x02:
5332 case 0x12:
5333 case 0x22:
5334 case 0x32:
5335 /* For fcom, ficom nothing to do. */
5336 break;
5337 case 0x03:
5338 case 0x13:
5339 case 0x23:
5340 case 0x33:
5341 /* For fcomp, ficomp pop FPU stack, store all. */
5342 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5343 return -1;
5344 break;
5345 case 0x00:
5346 case 0x01:
5347 case 0x04:
5348 case 0x05:
5349 case 0x06:
5350 case 0x07:
5351 case 0x10:
5352 case 0x11:
5353 case 0x14:
5354 case 0x15:
5355 case 0x16:
5356 case 0x17:
5357 case 0x20:
5358 case 0x21:
5359 case 0x24:
5360 case 0x25:
5361 case 0x26:
5362 case 0x27:
5363 case 0x30:
5364 case 0x31:
5365 case 0x34:
5366 case 0x35:
5367 case 0x36:
5368 case 0x37:
5369 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5370 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5371 of code, always affects st(0) register. */
5372 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5373 return -1;
5374 break;
5375 case 0x08:
5376 case 0x0a:
5377 case 0x0b:
5378 case 0x18:
5379 case 0x19:
5380 case 0x1a:
5381 case 0x1b:
5382 case 0x1d:
5383 case 0x28:
5384 case 0x29:
5385 case 0x2a:
5386 case 0x2b:
5387 case 0x38:
5388 case 0x39:
5389 case 0x3a:
5390 case 0x3b:
5391 case 0x3c:
5392 case 0x3d:
5393 switch (ir.reg & 7)
5394 {
5395 case 0:
5396 /* Handling fld, fild. */
5397 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5398 return -1;
5399 break;
5400 case 1:
5401 switch (ir.reg >> 4)
5402 {
5403 case 0:
5404 if (record_arch_list_add_mem (addr64, 4))
5405 return -1;
5406 break;
5407 case 2:
5408 if (record_arch_list_add_mem (addr64, 8))
5409 return -1;
5410 break;
5411 case 3:
5412 break;
5413 default:
5414 if (record_arch_list_add_mem (addr64, 2))
5415 return -1;
5416 break;
5417 }
5418 break;
5419 default:
5420 switch (ir.reg >> 4)
5421 {
5422 case 0:
5423 if (record_arch_list_add_mem (addr64, 4))
5424 return -1;
5425 if (3 == (ir.reg & 7))
5426 {
5427 /* For fstp m32fp. */
5428 if (i386_record_floats (gdbarch, &ir,
5429 I386_SAVE_FPU_REGS))
5430 return -1;
5431 }
5432 break;
5433 case 1:
5434 if (record_arch_list_add_mem (addr64, 4))
5435 return -1;
5436 if ((3 == (ir.reg & 7))
5437 || (5 == (ir.reg & 7))
5438 || (7 == (ir.reg & 7)))
5439 {
5440 /* For fstp insn. */
5441 if (i386_record_floats (gdbarch, &ir,
5442 I386_SAVE_FPU_REGS))
5443 return -1;
5444 }
5445 break;
5446 case 2:
5447 if (record_arch_list_add_mem (addr64, 8))
5448 return -1;
5449 if (3 == (ir.reg & 7))
5450 {
5451 /* For fstp m64fp. */
5452 if (i386_record_floats (gdbarch, &ir,
5453 I386_SAVE_FPU_REGS))
5454 return -1;
5455 }
5456 break;
5457 case 3:
5458 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5459 {
5460 /* For fistp, fbld, fild, fbstp. */
5461 if (i386_record_floats (gdbarch, &ir,
5462 I386_SAVE_FPU_REGS))
5463 return -1;
5464 }
5465 /* Fall through */
5466 default:
5467 if (record_arch_list_add_mem (addr64, 2))
5468 return -1;
5469 break;
5470 }
5471 break;
5472 }
5473 break;
5474 case 0x0c:
5475 /* Insn fldenv. */
5476 if (i386_record_floats (gdbarch, &ir,
5477 I386_SAVE_FPU_ENV_REG_STACK))
5478 return -1;
5479 break;
5480 case 0x0d:
5481 /* Insn fldcw. */
5482 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5483 return -1;
5484 break;
5485 case 0x2c:
5486 /* Insn frstor. */
5487 if (i386_record_floats (gdbarch, &ir,
5488 I386_SAVE_FPU_ENV_REG_STACK))
5489 return -1;
5490 break;
5491 case 0x0e:
5492 if (ir.dflag)
5493 {
5494 if (record_arch_list_add_mem (addr64, 28))
5495 return -1;
5496 }
5497 else
5498 {
5499 if (record_arch_list_add_mem (addr64, 14))
5500 return -1;
5501 }
5502 break;
5503 case 0x0f:
5504 case 0x2f:
5505 if (record_arch_list_add_mem (addr64, 2))
5506 return -1;
5507 /* Insn fstp, fbstp. */
5508 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5509 return -1;
5510 break;
5511 case 0x1f:
5512 case 0x3e:
5513 if (record_arch_list_add_mem (addr64, 10))
5514 return -1;
5515 break;
5516 case 0x2e:
5517 if (ir.dflag)
5518 {
5519 if (record_arch_list_add_mem (addr64, 28))
5520 return -1;
5521 addr64 += 28;
5522 }
5523 else
5524 {
5525 if (record_arch_list_add_mem (addr64, 14))
5526 return -1;
5527 addr64 += 14;
5528 }
5529 if (record_arch_list_add_mem (addr64, 80))
5530 return -1;
5531 /* Insn fsave. */
5532 if (i386_record_floats (gdbarch, &ir,
5533 I386_SAVE_FPU_ENV_REG_STACK))
5534 return -1;
5535 break;
5536 case 0x3f:
5537 if (record_arch_list_add_mem (addr64, 8))
5538 return -1;
5539 /* Insn fistp. */
5540 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5541 return -1;
5542 break;
5543 default:
5544 ir.addr -= 2;
5545 opcode = opcode << 8 | ir.modrm;
5546 goto no_support;
5547 break;
5548 }
5549 }
5550 /* Opcode is an extension of modR/M byte. */
5551 else
5552 {
5553 switch (opcode)
5554 {
5555 case 0xd8:
5556 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5557 return -1;
5558 break;
5559 case 0xd9:
5560 if (0x0c == (ir.modrm >> 4))
5561 {
5562 if ((ir.modrm & 0x0f) <= 7)
5563 {
5564 if (i386_record_floats (gdbarch, &ir,
5565 I386_SAVE_FPU_REGS))
5566 return -1;
5567 }
5568 else
5569 {
5570 if (i386_record_floats (gdbarch, &ir,
5571 I387_ST0_REGNUM (tdep)))
5572 return -1;
5573 /* If only st(0) is changing, then we have already
5574 recorded. */
5575 if ((ir.modrm & 0x0f) - 0x08)
5576 {
5577 if (i386_record_floats (gdbarch, &ir,
5578 I387_ST0_REGNUM (tdep) +
5579 ((ir.modrm & 0x0f) - 0x08)))
5580 return -1;
5581 }
5582 }
5583 }
5584 else
5585 {
5586 switch (ir.modrm)
5587 {
5588 case 0xe0:
5589 case 0xe1:
5590 case 0xf0:
5591 case 0xf5:
5592 case 0xf8:
5593 case 0xfa:
5594 case 0xfc:
5595 case 0xfe:
5596 case 0xff:
5597 if (i386_record_floats (gdbarch, &ir,
5598 I387_ST0_REGNUM (tdep)))
5599 return -1;
5600 break;
5601 case 0xf1:
5602 case 0xf2:
5603 case 0xf3:
5604 case 0xf4:
5605 case 0xf6:
5606 case 0xf7:
5607 case 0xe8:
5608 case 0xe9:
5609 case 0xea:
5610 case 0xeb:
5611 case 0xec:
5612 case 0xed:
5613 case 0xee:
5614 case 0xf9:
5615 case 0xfb:
5616 if (i386_record_floats (gdbarch, &ir,
5617 I386_SAVE_FPU_REGS))
5618 return -1;
5619 break;
5620 case 0xfd:
5621 if (i386_record_floats (gdbarch, &ir,
5622 I387_ST0_REGNUM (tdep)))
5623 return -1;
5624 if (i386_record_floats (gdbarch, &ir,
5625 I387_ST0_REGNUM (tdep) + 1))
5626 return -1;
5627 break;
5628 }
5629 }
5630 break;
5631 case 0xda:
5632 if (0xe9 == ir.modrm)
5633 {
5634 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5635 return -1;
5636 }
5637 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5638 {
5639 if (i386_record_floats (gdbarch, &ir,
5640 I387_ST0_REGNUM (tdep)))
5641 return -1;
5642 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5643 {
5644 if (i386_record_floats (gdbarch, &ir,
5645 I387_ST0_REGNUM (tdep) +
5646 (ir.modrm & 0x0f)))
5647 return -1;
5648 }
5649 else if ((ir.modrm & 0x0f) - 0x08)
5650 {
5651 if (i386_record_floats (gdbarch, &ir,
5652 I387_ST0_REGNUM (tdep) +
5653 ((ir.modrm & 0x0f) - 0x08)))
5654 return -1;
5655 }
5656 }
5657 break;
5658 case 0xdb:
5659 if (0xe3 == ir.modrm)
5660 {
5661 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5662 return -1;
5663 }
5664 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5665 {
5666 if (i386_record_floats (gdbarch, &ir,
5667 I387_ST0_REGNUM (tdep)))
5668 return -1;
5669 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5670 {
5671 if (i386_record_floats (gdbarch, &ir,
5672 I387_ST0_REGNUM (tdep) +
5673 (ir.modrm & 0x0f)))
5674 return -1;
5675 }
5676 else if ((ir.modrm & 0x0f) - 0x08)
5677 {
5678 if (i386_record_floats (gdbarch, &ir,
5679 I387_ST0_REGNUM (tdep) +
5680 ((ir.modrm & 0x0f) - 0x08)))
5681 return -1;
5682 }
5683 }
5684 break;
5685 case 0xdc:
5686 if ((0x0c == ir.modrm >> 4)
5687 || (0x0d == ir.modrm >> 4)
5688 || (0x0f == ir.modrm >> 4))
5689 {
5690 if ((ir.modrm & 0x0f) <= 7)
5691 {
5692 if (i386_record_floats (gdbarch, &ir,
5693 I387_ST0_REGNUM (tdep) +
5694 (ir.modrm & 0x0f)))
5695 return -1;
5696 }
5697 else
5698 {
5699 if (i386_record_floats (gdbarch, &ir,
5700 I387_ST0_REGNUM (tdep) +
5701 ((ir.modrm & 0x0f) - 0x08)))
5702 return -1;
5703 }
5704 }
5705 break;
5706 case 0xdd:
5707 if (0x0c == ir.modrm >> 4)
5708 {
5709 if (i386_record_floats (gdbarch, &ir,
5710 I387_FTAG_REGNUM (tdep)))
5711 return -1;
5712 }
5713 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5714 {
5715 if ((ir.modrm & 0x0f) <= 7)
5716 {
5717 if (i386_record_floats (gdbarch, &ir,
5718 I387_ST0_REGNUM (tdep) +
5719 (ir.modrm & 0x0f)))
5720 return -1;
5721 }
5722 else
5723 {
5724 if (i386_record_floats (gdbarch, &ir,
5725 I386_SAVE_FPU_REGS))
5726 return -1;
5727 }
5728 }
5729 break;
5730 case 0xde:
5731 if ((0x0c == ir.modrm >> 4)
5732 || (0x0e == ir.modrm >> 4)
5733 || (0x0f == ir.modrm >> 4)
5734 || (0xd9 == ir.modrm))
5735 {
5736 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5737 return -1;
5738 }
5739 break;
5740 case 0xdf:
5741 if (0xe0 == ir.modrm)
5742 {
5743 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5744 return -1;
5745 }
5746 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5747 {
5748 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5749 return -1;
5750 }
5751 break;
5752 }
5753 }
5754 break;
5755 /* string ops */
5756 case 0xa4: /* movsS */
5757 case 0xa5:
5758 case 0xaa: /* stosS */
5759 case 0xab:
5760 case 0x6c: /* insS */
5761 case 0x6d:
5762 regcache_raw_read_unsigned (ir.regcache,
5763 ir.regmap[X86_RECORD_RECX_REGNUM],
5764 &addr);
5765 if (addr)
5766 {
5767 ULONGEST es, ds;
5768
5769 if ((opcode & 1) == 0)
5770 ir.ot = OT_BYTE;
5771 else
5772 ir.ot = ir.dflag + OT_WORD;
5773 regcache_raw_read_unsigned (ir.regcache,
5774 ir.regmap[X86_RECORD_REDI_REGNUM],
5775 &addr);
5776
5777 regcache_raw_read_unsigned (ir.regcache,
5778 ir.regmap[X86_RECORD_ES_REGNUM],
5779 &es);
5780 regcache_raw_read_unsigned (ir.regcache,
5781 ir.regmap[X86_RECORD_DS_REGNUM],
5782 &ds);
5783 if (ir.aflag && (es != ds))
5784 {
5785 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5786 if (record_memory_query)
5787 {
5788 int q;
5789
5790 target_terminal_ours ();
5791 q = yquery (_("\
5792 Process record ignores the memory change of instruction at address %s\n\
5793 because it can't get the value of the segment register.\n\
5794 Do you want to stop the program?"),
5795 paddress (gdbarch, ir.orig_addr));
5796 target_terminal_inferior ();
5797 if (q)
5798 return -1;
5799 }
5800 }
5801 else
5802 {
5803 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5804 return -1;
5805 }
5806
5807 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5808 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5809 if (opcode == 0xa4 || opcode == 0xa5)
5810 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5811 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5812 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5813 }
5814 break;
5815
5816 case 0xa6: /* cmpsS */
5817 case 0xa7:
5818 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5819 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5820 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5821 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5822 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5823 break;
5824
5825 case 0xac: /* lodsS */
5826 case 0xad:
5827 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5828 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5829 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5830 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5831 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5832 break;
5833
5834 case 0xae: /* scasS */
5835 case 0xaf:
5836 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5837 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5838 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5839 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5840 break;
5841
5842 case 0x6e: /* outsS */
5843 case 0x6f:
5844 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5845 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5846 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5847 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5848 break;
5849
5850 case 0xe4: /* port I/O */
5851 case 0xe5:
5852 case 0xec:
5853 case 0xed:
5854 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5855 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5856 break;
5857
5858 case 0xe6:
5859 case 0xe7:
5860 case 0xee:
5861 case 0xef:
5862 break;
5863
5864 /* control */
5865 case 0xc2: /* ret im */
5866 case 0xc3: /* ret */
5867 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5868 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5869 break;
5870
5871 case 0xca: /* lret im */
5872 case 0xcb: /* lret */
5873 case 0xcf: /* iret */
5874 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5875 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5876 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5877 break;
5878
5879 case 0xe8: /* call im */
5880 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5881 ir.dflag = 2;
5882 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5883 return -1;
5884 break;
5885
5886 case 0x9a: /* lcall im */
5887 if (ir.regmap[X86_RECORD_R8_REGNUM])
5888 {
5889 ir.addr -= 1;
5890 goto no_support;
5891 }
5892 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5893 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5894 return -1;
5895 break;
5896
5897 case 0xe9: /* jmp im */
5898 case 0xea: /* ljmp im */
5899 case 0xeb: /* jmp Jb */
5900 case 0x70: /* jcc Jb */
5901 case 0x71:
5902 case 0x72:
5903 case 0x73:
5904 case 0x74:
5905 case 0x75:
5906 case 0x76:
5907 case 0x77:
5908 case 0x78:
5909 case 0x79:
5910 case 0x7a:
5911 case 0x7b:
5912 case 0x7c:
5913 case 0x7d:
5914 case 0x7e:
5915 case 0x7f:
5916 case 0x0f80: /* jcc Jv */
5917 case 0x0f81:
5918 case 0x0f82:
5919 case 0x0f83:
5920 case 0x0f84:
5921 case 0x0f85:
5922 case 0x0f86:
5923 case 0x0f87:
5924 case 0x0f88:
5925 case 0x0f89:
5926 case 0x0f8a:
5927 case 0x0f8b:
5928 case 0x0f8c:
5929 case 0x0f8d:
5930 case 0x0f8e:
5931 case 0x0f8f:
5932 break;
5933
5934 case 0x0f90: /* setcc Gv */
5935 case 0x0f91:
5936 case 0x0f92:
5937 case 0x0f93:
5938 case 0x0f94:
5939 case 0x0f95:
5940 case 0x0f96:
5941 case 0x0f97:
5942 case 0x0f98:
5943 case 0x0f99:
5944 case 0x0f9a:
5945 case 0x0f9b:
5946 case 0x0f9c:
5947 case 0x0f9d:
5948 case 0x0f9e:
5949 case 0x0f9f:
5950 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5951 ir.ot = OT_BYTE;
5952 if (i386_record_modrm (&ir))
5953 return -1;
5954 if (ir.mod == 3)
5955 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5956 : (ir.rm & 0x3));
5957 else
5958 {
5959 if (i386_record_lea_modrm (&ir))
5960 return -1;
5961 }
5962 break;
5963
5964 case 0x0f40: /* cmov Gv, Ev */
5965 case 0x0f41:
5966 case 0x0f42:
5967 case 0x0f43:
5968 case 0x0f44:
5969 case 0x0f45:
5970 case 0x0f46:
5971 case 0x0f47:
5972 case 0x0f48:
5973 case 0x0f49:
5974 case 0x0f4a:
5975 case 0x0f4b:
5976 case 0x0f4c:
5977 case 0x0f4d:
5978 case 0x0f4e:
5979 case 0x0f4f:
5980 if (i386_record_modrm (&ir))
5981 return -1;
5982 ir.reg |= rex_r;
5983 if (ir.dflag == OT_BYTE)
5984 ir.reg &= 0x3;
5985 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5986 break;
5987
5988 /* flags */
5989 case 0x9c: /* pushf */
5990 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5991 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5992 ir.dflag = 2;
5993 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5994 return -1;
5995 break;
5996
5997 case 0x9d: /* popf */
5998 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5999 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6000 break;
6001
6002 case 0x9e: /* sahf */
6003 if (ir.regmap[X86_RECORD_R8_REGNUM])
6004 {
6005 ir.addr -= 1;
6006 goto no_support;
6007 }
6008 /* FALLTHROUGH */
6009 case 0xf5: /* cmc */
6010 case 0xf8: /* clc */
6011 case 0xf9: /* stc */
6012 case 0xfc: /* cld */
6013 case 0xfd: /* std */
6014 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6015 break;
6016
6017 case 0x9f: /* lahf */
6018 if (ir.regmap[X86_RECORD_R8_REGNUM])
6019 {
6020 ir.addr -= 1;
6021 goto no_support;
6022 }
6023 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6024 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6025 break;
6026
6027 /* bit operations */
6028 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6029 ir.ot = ir.dflag + OT_WORD;
6030 if (i386_record_modrm (&ir))
6031 return -1;
6032 if (ir.reg < 4)
6033 {
6034 ir.addr -= 2;
6035 opcode = opcode << 8 | ir.modrm;
6036 goto no_support;
6037 }
6038 if (ir.reg != 4)
6039 {
6040 if (ir.mod == 3)
6041 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6042 else
6043 {
6044 if (i386_record_lea_modrm (&ir))
6045 return -1;
6046 }
6047 }
6048 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6049 break;
6050
6051 case 0x0fa3: /* bt Gv, Ev */
6052 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6053 break;
6054
6055 case 0x0fab: /* bts */
6056 case 0x0fb3: /* btr */
6057 case 0x0fbb: /* btc */
6058 ir.ot = ir.dflag + OT_WORD;
6059 if (i386_record_modrm (&ir))
6060 return -1;
6061 if (ir.mod == 3)
6062 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6063 else
6064 {
6065 uint64_t addr64;
6066 if (i386_record_lea_modrm_addr (&ir, &addr64))
6067 return -1;
6068 regcache_raw_read_unsigned (ir.regcache,
6069 ir.regmap[ir.reg | rex_r],
6070 &addr);
6071 switch (ir.dflag)
6072 {
6073 case 0:
6074 addr64 += ((int16_t) addr >> 4) << 4;
6075 break;
6076 case 1:
6077 addr64 += ((int32_t) addr >> 5) << 5;
6078 break;
6079 case 2:
6080 addr64 += ((int64_t) addr >> 6) << 6;
6081 break;
6082 }
6083 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
6084 return -1;
6085 if (i386_record_lea_modrm (&ir))
6086 return -1;
6087 }
6088 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6089 break;
6090
6091 case 0x0fbc: /* bsf */
6092 case 0x0fbd: /* bsr */
6093 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6094 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6095 break;
6096
6097 /* bcd */
6098 case 0x27: /* daa */
6099 case 0x2f: /* das */
6100 case 0x37: /* aaa */
6101 case 0x3f: /* aas */
6102 case 0xd4: /* aam */
6103 case 0xd5: /* aad */
6104 if (ir.regmap[X86_RECORD_R8_REGNUM])
6105 {
6106 ir.addr -= 1;
6107 goto no_support;
6108 }
6109 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6110 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6111 break;
6112
6113 /* misc */
6114 case 0x90: /* nop */
6115 if (prefixes & PREFIX_LOCK)
6116 {
6117 ir.addr -= 1;
6118 goto no_support;
6119 }
6120 break;
6121
6122 case 0x9b: /* fwait */
6123 if (target_read_memory (ir.addr, &opcode8, 1))
6124 {
6125 if (record_debug)
6126 printf_unfiltered (_("Process record: error reading memory at "
6127 "addr 0x%s len = 1.\n"),
6128 paddress (gdbarch, ir.addr));
6129 return -1;
6130 }
6131 opcode = (uint32_t) opcode8;
6132 ir.addr++;
6133 goto reswitch;
6134 break;
6135
6136 /* XXX */
6137 case 0xcc: /* int3 */
6138 printf_unfiltered (_("Process record does not support instruction "
6139 "int3.\n"));
6140 ir.addr -= 1;
6141 goto no_support;
6142 break;
6143
6144 /* XXX */
6145 case 0xcd: /* int */
6146 {
6147 int ret;
6148 uint8_t interrupt;
6149 if (target_read_memory (ir.addr, &interrupt, 1))
6150 {
6151 if (record_debug)
6152 printf_unfiltered (_("Process record: error reading memory "
6153 "at addr %s len = 1.\n"),
6154 paddress (gdbarch, ir.addr));
6155 return -1;
6156 }
6157 ir.addr++;
6158 if (interrupt != 0x80
6159 || tdep->i386_intx80_record == NULL)
6160 {
6161 printf_unfiltered (_("Process record does not support "
6162 "instruction int 0x%02x.\n"),
6163 interrupt);
6164 ir.addr -= 2;
6165 goto no_support;
6166 }
6167 ret = tdep->i386_intx80_record (ir.regcache);
6168 if (ret)
6169 return ret;
6170 }
6171 break;
6172
6173 /* XXX */
6174 case 0xce: /* into */
6175 printf_unfiltered (_("Process record does not support "
6176 "instruction into.\n"));
6177 ir.addr -= 1;
6178 goto no_support;
6179 break;
6180
6181 case 0xfa: /* cli */
6182 case 0xfb: /* sti */
6183 break;
6184
6185 case 0x62: /* bound */
6186 printf_unfiltered (_("Process record does not support "
6187 "instruction bound.\n"));
6188 ir.addr -= 1;
6189 goto no_support;
6190 break;
6191
6192 case 0x0fc8: /* bswap reg */
6193 case 0x0fc9:
6194 case 0x0fca:
6195 case 0x0fcb:
6196 case 0x0fcc:
6197 case 0x0fcd:
6198 case 0x0fce:
6199 case 0x0fcf:
6200 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6201 break;
6202
6203 case 0xd6: /* salc */
6204 if (ir.regmap[X86_RECORD_R8_REGNUM])
6205 {
6206 ir.addr -= 1;
6207 goto no_support;
6208 }
6209 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6210 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6211 break;
6212
6213 case 0xe0: /* loopnz */
6214 case 0xe1: /* loopz */
6215 case 0xe2: /* loop */
6216 case 0xe3: /* jecxz */
6217 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6218 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6219 break;
6220
6221 case 0x0f30: /* wrmsr */
6222 printf_unfiltered (_("Process record does not support "
6223 "instruction wrmsr.\n"));
6224 ir.addr -= 2;
6225 goto no_support;
6226 break;
6227
6228 case 0x0f32: /* rdmsr */
6229 printf_unfiltered (_("Process record does not support "
6230 "instruction rdmsr.\n"));
6231 ir.addr -= 2;
6232 goto no_support;
6233 break;
6234
6235 case 0x0f31: /* rdtsc */
6236 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6237 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6238 break;
6239
6240 case 0x0f34: /* sysenter */
6241 {
6242 int ret;
6243 if (ir.regmap[X86_RECORD_R8_REGNUM])
6244 {
6245 ir.addr -= 2;
6246 goto no_support;
6247 }
6248 if (tdep->i386_sysenter_record == NULL)
6249 {
6250 printf_unfiltered (_("Process record does not support "
6251 "instruction sysenter.\n"));
6252 ir.addr -= 2;
6253 goto no_support;
6254 }
6255 ret = tdep->i386_sysenter_record (ir.regcache);
6256 if (ret)
6257 return ret;
6258 }
6259 break;
6260
6261 case 0x0f35: /* sysexit */
6262 printf_unfiltered (_("Process record does not support "
6263 "instruction sysexit.\n"));
6264 ir.addr -= 2;
6265 goto no_support;
6266 break;
6267
6268 case 0x0f05: /* syscall */
6269 {
6270 int ret;
6271 if (tdep->i386_syscall_record == NULL)
6272 {
6273 printf_unfiltered (_("Process record does not support "
6274 "instruction syscall.\n"));
6275 ir.addr -= 2;
6276 goto no_support;
6277 }
6278 ret = tdep->i386_syscall_record (ir.regcache);
6279 if (ret)
6280 return ret;
6281 }
6282 break;
6283
6284 case 0x0f07: /* sysret */
6285 printf_unfiltered (_("Process record does not support "
6286 "instruction sysret.\n"));
6287 ir.addr -= 2;
6288 goto no_support;
6289 break;
6290
6291 case 0x0fa2: /* cpuid */
6292 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6293 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6294 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6295 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6296 break;
6297
6298 case 0xf4: /* hlt */
6299 printf_unfiltered (_("Process record does not support "
6300 "instruction hlt.\n"));
6301 ir.addr -= 1;
6302 goto no_support;
6303 break;
6304
6305 case 0x0f00:
6306 if (i386_record_modrm (&ir))
6307 return -1;
6308 switch (ir.reg)
6309 {
6310 case 0: /* sldt */
6311 case 1: /* str */
6312 if (ir.mod == 3)
6313 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6314 else
6315 {
6316 ir.ot = OT_WORD;
6317 if (i386_record_lea_modrm (&ir))
6318 return -1;
6319 }
6320 break;
6321 case 2: /* lldt */
6322 case 3: /* ltr */
6323 break;
6324 case 4: /* verr */
6325 case 5: /* verw */
6326 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6327 break;
6328 default:
6329 ir.addr -= 3;
6330 opcode = opcode << 8 | ir.modrm;
6331 goto no_support;
6332 break;
6333 }
6334 break;
6335
6336 case 0x0f01:
6337 if (i386_record_modrm (&ir))
6338 return -1;
6339 switch (ir.reg)
6340 {
6341 case 0: /* sgdt */
6342 {
6343 uint64_t addr64;
6344
6345 if (ir.mod == 3)
6346 {
6347 ir.addr -= 3;
6348 opcode = opcode << 8 | ir.modrm;
6349 goto no_support;
6350 }
6351 if (ir.override >= 0)
6352 {
6353 if (record_memory_query)
6354 {
6355 int q;
6356
6357 target_terminal_ours ();
6358 q = yquery (_("\
6359 Process record ignores the memory change of instruction at address %s\n\
6360 because it can't get the value of the segment register.\n\
6361 Do you want to stop the program?"),
6362 paddress (gdbarch, ir.orig_addr));
6363 target_terminal_inferior ();
6364 if (q)
6365 return -1;
6366 }
6367 }
6368 else
6369 {
6370 if (i386_record_lea_modrm_addr (&ir, &addr64))
6371 return -1;
6372 if (record_arch_list_add_mem (addr64, 2))
6373 return -1;
6374 addr64 += 2;
6375 if (ir.regmap[X86_RECORD_R8_REGNUM])
6376 {
6377 if (record_arch_list_add_mem (addr64, 8))
6378 return -1;
6379 }
6380 else
6381 {
6382 if (record_arch_list_add_mem (addr64, 4))
6383 return -1;
6384 }
6385 }
6386 }
6387 break;
6388 case 1:
6389 if (ir.mod == 3)
6390 {
6391 switch (ir.rm)
6392 {
6393 case 0: /* monitor */
6394 break;
6395 case 1: /* mwait */
6396 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6397 break;
6398 default:
6399 ir.addr -= 3;
6400 opcode = opcode << 8 | ir.modrm;
6401 goto no_support;
6402 break;
6403 }
6404 }
6405 else
6406 {
6407 /* sidt */
6408 if (ir.override >= 0)
6409 {
6410 if (record_memory_query)
6411 {
6412 int q;
6413
6414 target_terminal_ours ();
6415 q = yquery (_("\
6416 Process record ignores the memory change of instruction at address %s\n\
6417 because it can't get the value of the segment register.\n\
6418 Do you want to stop the program?"),
6419 paddress (gdbarch, ir.orig_addr));
6420 target_terminal_inferior ();
6421 if (q)
6422 return -1;
6423 }
6424 }
6425 else
6426 {
6427 uint64_t addr64;
6428
6429 if (i386_record_lea_modrm_addr (&ir, &addr64))
6430 return -1;
6431 if (record_arch_list_add_mem (addr64, 2))
6432 return -1;
6433 addr64 += 2;
6434 if (ir.regmap[X86_RECORD_R8_REGNUM])
6435 {
6436 if (record_arch_list_add_mem (addr64, 8))
6437 return -1;
6438 }
6439 else
6440 {
6441 if (record_arch_list_add_mem (addr64, 4))
6442 return -1;
6443 }
6444 }
6445 }
6446 break;
6447 case 2: /* lgdt */
6448 if (ir.mod == 3)
6449 {
6450 /* xgetbv */
6451 if (ir.rm == 0)
6452 {
6453 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6454 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6455 break;
6456 }
6457 /* xsetbv */
6458 else if (ir.rm == 1)
6459 break;
6460 }
6461 case 3: /* lidt */
6462 if (ir.mod == 3)
6463 {
6464 ir.addr -= 3;
6465 opcode = opcode << 8 | ir.modrm;
6466 goto no_support;
6467 }
6468 break;
6469 case 4: /* smsw */
6470 if (ir.mod == 3)
6471 {
6472 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6473 return -1;
6474 }
6475 else
6476 {
6477 ir.ot = OT_WORD;
6478 if (i386_record_lea_modrm (&ir))
6479 return -1;
6480 }
6481 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6482 break;
6483 case 6: /* lmsw */
6484 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6485 break;
6486 case 7: /* invlpg */
6487 if (ir.mod == 3)
6488 {
6489 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6490 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6491 else
6492 {
6493 ir.addr -= 3;
6494 opcode = opcode << 8 | ir.modrm;
6495 goto no_support;
6496 }
6497 }
6498 else
6499 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6500 break;
6501 default:
6502 ir.addr -= 3;
6503 opcode = opcode << 8 | ir.modrm;
6504 goto no_support;
6505 break;
6506 }
6507 break;
6508
6509 case 0x0f08: /* invd */
6510 case 0x0f09: /* wbinvd */
6511 break;
6512
6513 case 0x63: /* arpl */
6514 if (i386_record_modrm (&ir))
6515 return -1;
6516 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6517 {
6518 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6519 ? (ir.reg | rex_r) : ir.rm);
6520 }
6521 else
6522 {
6523 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6524 if (i386_record_lea_modrm (&ir))
6525 return -1;
6526 }
6527 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6528 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6529 break;
6530
6531 case 0x0f02: /* lar */
6532 case 0x0f03: /* lsl */
6533 if (i386_record_modrm (&ir))
6534 return -1;
6535 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6536 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6537 break;
6538
6539 case 0x0f18:
6540 if (i386_record_modrm (&ir))
6541 return -1;
6542 if (ir.mod == 3 && ir.reg == 3)
6543 {
6544 ir.addr -= 3;
6545 opcode = opcode << 8 | ir.modrm;
6546 goto no_support;
6547 }
6548 break;
6549
6550 case 0x0f19:
6551 case 0x0f1a:
6552 case 0x0f1b:
6553 case 0x0f1c:
6554 case 0x0f1d:
6555 case 0x0f1e:
6556 case 0x0f1f:
6557 /* nop (multi byte) */
6558 break;
6559
6560 case 0x0f20: /* mov reg, crN */
6561 case 0x0f22: /* mov crN, reg */
6562 if (i386_record_modrm (&ir))
6563 return -1;
6564 if ((ir.modrm & 0xc0) != 0xc0)
6565 {
6566 ir.addr -= 3;
6567 opcode = opcode << 8 | ir.modrm;
6568 goto no_support;
6569 }
6570 switch (ir.reg)
6571 {
6572 case 0:
6573 case 2:
6574 case 3:
6575 case 4:
6576 case 8:
6577 if (opcode & 2)
6578 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6579 else
6580 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6581 break;
6582 default:
6583 ir.addr -= 3;
6584 opcode = opcode << 8 | ir.modrm;
6585 goto no_support;
6586 break;
6587 }
6588 break;
6589
6590 case 0x0f21: /* mov reg, drN */
6591 case 0x0f23: /* mov drN, reg */
6592 if (i386_record_modrm (&ir))
6593 return -1;
6594 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6595 || ir.reg == 5 || ir.reg >= 8)
6596 {
6597 ir.addr -= 3;
6598 opcode = opcode << 8 | ir.modrm;
6599 goto no_support;
6600 }
6601 if (opcode & 2)
6602 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6603 else
6604 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6605 break;
6606
6607 case 0x0f06: /* clts */
6608 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6609 break;
6610
6611 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6612
6613 case 0x0f0d: /* 3DNow! prefetch */
6614 break;
6615
6616 case 0x0f0e: /* 3DNow! femms */
6617 case 0x0f77: /* emms */
6618 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6619 goto no_support;
6620 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6621 break;
6622
6623 case 0x0f0f: /* 3DNow! data */
6624 if (i386_record_modrm (&ir))
6625 return -1;
6626 if (target_read_memory (ir.addr, &opcode8, 1))
6627 {
6628 printf_unfiltered (_("Process record: error reading memory at "
6629 "addr %s len = 1.\n"),
6630 paddress (gdbarch, ir.addr));
6631 return -1;
6632 }
6633 ir.addr++;
6634 switch (opcode8)
6635 {
6636 case 0x0c: /* 3DNow! pi2fw */
6637 case 0x0d: /* 3DNow! pi2fd */
6638 case 0x1c: /* 3DNow! pf2iw */
6639 case 0x1d: /* 3DNow! pf2id */
6640 case 0x8a: /* 3DNow! pfnacc */
6641 case 0x8e: /* 3DNow! pfpnacc */
6642 case 0x90: /* 3DNow! pfcmpge */
6643 case 0x94: /* 3DNow! pfmin */
6644 case 0x96: /* 3DNow! pfrcp */
6645 case 0x97: /* 3DNow! pfrsqrt */
6646 case 0x9a: /* 3DNow! pfsub */
6647 case 0x9e: /* 3DNow! pfadd */
6648 case 0xa0: /* 3DNow! pfcmpgt */
6649 case 0xa4: /* 3DNow! pfmax */
6650 case 0xa6: /* 3DNow! pfrcpit1 */
6651 case 0xa7: /* 3DNow! pfrsqit1 */
6652 case 0xaa: /* 3DNow! pfsubr */
6653 case 0xae: /* 3DNow! pfacc */
6654 case 0xb0: /* 3DNow! pfcmpeq */
6655 case 0xb4: /* 3DNow! pfmul */
6656 case 0xb6: /* 3DNow! pfrcpit2 */
6657 case 0xb7: /* 3DNow! pmulhrw */
6658 case 0xbb: /* 3DNow! pswapd */
6659 case 0xbf: /* 3DNow! pavgusb */
6660 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6661 goto no_support_3dnow_data;
6662 record_arch_list_add_reg (ir.regcache, ir.reg);
6663 break;
6664
6665 default:
6666 no_support_3dnow_data:
6667 opcode = (opcode << 8) | opcode8;
6668 goto no_support;
6669 break;
6670 }
6671 break;
6672
6673 case 0x0faa: /* rsm */
6674 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6675 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6676 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6677 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6678 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6679 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6680 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6681 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6682 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6683 break;
6684
6685 case 0x0fae:
6686 if (i386_record_modrm (&ir))
6687 return -1;
6688 switch(ir.reg)
6689 {
6690 case 0: /* fxsave */
6691 {
6692 uint64_t tmpu64;
6693
6694 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6695 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6696 return -1;
6697 if (record_arch_list_add_mem (tmpu64, 512))
6698 return -1;
6699 }
6700 break;
6701
6702 case 1: /* fxrstor */
6703 {
6704 int i;
6705
6706 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6707
6708 for (i = I387_MM0_REGNUM (tdep);
6709 i386_mmx_regnum_p (gdbarch, i); i++)
6710 record_arch_list_add_reg (ir.regcache, i);
6711
6712 for (i = I387_XMM0_REGNUM (tdep);
6713 i386_xmm_regnum_p (gdbarch, i); i++)
6714 record_arch_list_add_reg (ir.regcache, i);
6715
6716 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6717 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6718
6719 for (i = I387_ST0_REGNUM (tdep);
6720 i386_fp_regnum_p (gdbarch, i); i++)
6721 record_arch_list_add_reg (ir.regcache, i);
6722
6723 for (i = I387_FCTRL_REGNUM (tdep);
6724 i386_fpc_regnum_p (gdbarch, i); i++)
6725 record_arch_list_add_reg (ir.regcache, i);
6726 }
6727 break;
6728
6729 case 2: /* ldmxcsr */
6730 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6731 goto no_support;
6732 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6733 break;
6734
6735 case 3: /* stmxcsr */
6736 ir.ot = OT_LONG;
6737 if (i386_record_lea_modrm (&ir))
6738 return -1;
6739 break;
6740
6741 case 5: /* lfence */
6742 case 6: /* mfence */
6743 case 7: /* sfence clflush */
6744 break;
6745
6746 default:
6747 opcode = (opcode << 8) | ir.modrm;
6748 goto no_support;
6749 break;
6750 }
6751 break;
6752
6753 case 0x0fc3: /* movnti */
6754 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6755 if (i386_record_modrm (&ir))
6756 return -1;
6757 if (ir.mod == 3)
6758 goto no_support;
6759 ir.reg |= rex_r;
6760 if (i386_record_lea_modrm (&ir))
6761 return -1;
6762 break;
6763
6764 /* Add prefix to opcode. */
6765 case 0x0f10:
6766 case 0x0f11:
6767 case 0x0f12:
6768 case 0x0f13:
6769 case 0x0f14:
6770 case 0x0f15:
6771 case 0x0f16:
6772 case 0x0f17:
6773 case 0x0f28:
6774 case 0x0f29:
6775 case 0x0f2a:
6776 case 0x0f2b:
6777 case 0x0f2c:
6778 case 0x0f2d:
6779 case 0x0f2e:
6780 case 0x0f2f:
6781 case 0x0f38:
6782 case 0x0f39:
6783 case 0x0f3a:
6784 case 0x0f50:
6785 case 0x0f51:
6786 case 0x0f52:
6787 case 0x0f53:
6788 case 0x0f54:
6789 case 0x0f55:
6790 case 0x0f56:
6791 case 0x0f57:
6792 case 0x0f58:
6793 case 0x0f59:
6794 case 0x0f5a:
6795 case 0x0f5b:
6796 case 0x0f5c:
6797 case 0x0f5d:
6798 case 0x0f5e:
6799 case 0x0f5f:
6800 case 0x0f60:
6801 case 0x0f61:
6802 case 0x0f62:
6803 case 0x0f63:
6804 case 0x0f64:
6805 case 0x0f65:
6806 case 0x0f66:
6807 case 0x0f67:
6808 case 0x0f68:
6809 case 0x0f69:
6810 case 0x0f6a:
6811 case 0x0f6b:
6812 case 0x0f6c:
6813 case 0x0f6d:
6814 case 0x0f6e:
6815 case 0x0f6f:
6816 case 0x0f70:
6817 case 0x0f71:
6818 case 0x0f72:
6819 case 0x0f73:
6820 case 0x0f74:
6821 case 0x0f75:
6822 case 0x0f76:
6823 case 0x0f7c:
6824 case 0x0f7d:
6825 case 0x0f7e:
6826 case 0x0f7f:
6827 case 0x0fb8:
6828 case 0x0fc2:
6829 case 0x0fc4:
6830 case 0x0fc5:
6831 case 0x0fc6:
6832 case 0x0fd0:
6833 case 0x0fd1:
6834 case 0x0fd2:
6835 case 0x0fd3:
6836 case 0x0fd4:
6837 case 0x0fd5:
6838 case 0x0fd6:
6839 case 0x0fd7:
6840 case 0x0fd8:
6841 case 0x0fd9:
6842 case 0x0fda:
6843 case 0x0fdb:
6844 case 0x0fdc:
6845 case 0x0fdd:
6846 case 0x0fde:
6847 case 0x0fdf:
6848 case 0x0fe0:
6849 case 0x0fe1:
6850 case 0x0fe2:
6851 case 0x0fe3:
6852 case 0x0fe4:
6853 case 0x0fe5:
6854 case 0x0fe6:
6855 case 0x0fe7:
6856 case 0x0fe8:
6857 case 0x0fe9:
6858 case 0x0fea:
6859 case 0x0feb:
6860 case 0x0fec:
6861 case 0x0fed:
6862 case 0x0fee:
6863 case 0x0fef:
6864 case 0x0ff0:
6865 case 0x0ff1:
6866 case 0x0ff2:
6867 case 0x0ff3:
6868 case 0x0ff4:
6869 case 0x0ff5:
6870 case 0x0ff6:
6871 case 0x0ff7:
6872 case 0x0ff8:
6873 case 0x0ff9:
6874 case 0x0ffa:
6875 case 0x0ffb:
6876 case 0x0ffc:
6877 case 0x0ffd:
6878 case 0x0ffe:
6879 switch (prefixes)
6880 {
6881 case PREFIX_REPNZ:
6882 opcode |= 0xf20000;
6883 break;
6884 case PREFIX_DATA:
6885 opcode |= 0x660000;
6886 break;
6887 case PREFIX_REPZ:
6888 opcode |= 0xf30000;
6889 break;
6890 }
6891 reswitch_prefix_add:
6892 switch (opcode)
6893 {
6894 case 0x0f38:
6895 case 0x660f38:
6896 case 0xf20f38:
6897 case 0x0f3a:
6898 case 0x660f3a:
6899 if (target_read_memory (ir.addr, &opcode8, 1))
6900 {
6901 printf_unfiltered (_("Process record: error reading memory at "
6902 "addr %s len = 1.\n"),
6903 paddress (gdbarch, ir.addr));
6904 return -1;
6905 }
6906 ir.addr++;
6907 opcode = (uint32_t) opcode8 | opcode << 8;
6908 goto reswitch_prefix_add;
6909 break;
6910
6911 case 0x0f10: /* movups */
6912 case 0x660f10: /* movupd */
6913 case 0xf30f10: /* movss */
6914 case 0xf20f10: /* movsd */
6915 case 0x0f12: /* movlps */
6916 case 0x660f12: /* movlpd */
6917 case 0xf30f12: /* movsldup */
6918 case 0xf20f12: /* movddup */
6919 case 0x0f14: /* unpcklps */
6920 case 0x660f14: /* unpcklpd */
6921 case 0x0f15: /* unpckhps */
6922 case 0x660f15: /* unpckhpd */
6923 case 0x0f16: /* movhps */
6924 case 0x660f16: /* movhpd */
6925 case 0xf30f16: /* movshdup */
6926 case 0x0f28: /* movaps */
6927 case 0x660f28: /* movapd */
6928 case 0x0f2a: /* cvtpi2ps */
6929 case 0x660f2a: /* cvtpi2pd */
6930 case 0xf30f2a: /* cvtsi2ss */
6931 case 0xf20f2a: /* cvtsi2sd */
6932 case 0x0f2c: /* cvttps2pi */
6933 case 0x660f2c: /* cvttpd2pi */
6934 case 0x0f2d: /* cvtps2pi */
6935 case 0x660f2d: /* cvtpd2pi */
6936 case 0x660f3800: /* pshufb */
6937 case 0x660f3801: /* phaddw */
6938 case 0x660f3802: /* phaddd */
6939 case 0x660f3803: /* phaddsw */
6940 case 0x660f3804: /* pmaddubsw */
6941 case 0x660f3805: /* phsubw */
6942 case 0x660f3806: /* phsubd */
6943 case 0x660f3807: /* phsubsw */
6944 case 0x660f3808: /* psignb */
6945 case 0x660f3809: /* psignw */
6946 case 0x660f380a: /* psignd */
6947 case 0x660f380b: /* pmulhrsw */
6948 case 0x660f3810: /* pblendvb */
6949 case 0x660f3814: /* blendvps */
6950 case 0x660f3815: /* blendvpd */
6951 case 0x660f381c: /* pabsb */
6952 case 0x660f381d: /* pabsw */
6953 case 0x660f381e: /* pabsd */
6954 case 0x660f3820: /* pmovsxbw */
6955 case 0x660f3821: /* pmovsxbd */
6956 case 0x660f3822: /* pmovsxbq */
6957 case 0x660f3823: /* pmovsxwd */
6958 case 0x660f3824: /* pmovsxwq */
6959 case 0x660f3825: /* pmovsxdq */
6960 case 0x660f3828: /* pmuldq */
6961 case 0x660f3829: /* pcmpeqq */
6962 case 0x660f382a: /* movntdqa */
6963 case 0x660f3a08: /* roundps */
6964 case 0x660f3a09: /* roundpd */
6965 case 0x660f3a0a: /* roundss */
6966 case 0x660f3a0b: /* roundsd */
6967 case 0x660f3a0c: /* blendps */
6968 case 0x660f3a0d: /* blendpd */
6969 case 0x660f3a0e: /* pblendw */
6970 case 0x660f3a0f: /* palignr */
6971 case 0x660f3a20: /* pinsrb */
6972 case 0x660f3a21: /* insertps */
6973 case 0x660f3a22: /* pinsrd pinsrq */
6974 case 0x660f3a40: /* dpps */
6975 case 0x660f3a41: /* dppd */
6976 case 0x660f3a42: /* mpsadbw */
6977 case 0x660f3a60: /* pcmpestrm */
6978 case 0x660f3a61: /* pcmpestri */
6979 case 0x660f3a62: /* pcmpistrm */
6980 case 0x660f3a63: /* pcmpistri */
6981 case 0x0f51: /* sqrtps */
6982 case 0x660f51: /* sqrtpd */
6983 case 0xf20f51: /* sqrtsd */
6984 case 0xf30f51: /* sqrtss */
6985 case 0x0f52: /* rsqrtps */
6986 case 0xf30f52: /* rsqrtss */
6987 case 0x0f53: /* rcpps */
6988 case 0xf30f53: /* rcpss */
6989 case 0x0f54: /* andps */
6990 case 0x660f54: /* andpd */
6991 case 0x0f55: /* andnps */
6992 case 0x660f55: /* andnpd */
6993 case 0x0f56: /* orps */
6994 case 0x660f56: /* orpd */
6995 case 0x0f57: /* xorps */
6996 case 0x660f57: /* xorpd */
6997 case 0x0f58: /* addps */
6998 case 0x660f58: /* addpd */
6999 case 0xf20f58: /* addsd */
7000 case 0xf30f58: /* addss */
7001 case 0x0f59: /* mulps */
7002 case 0x660f59: /* mulpd */
7003 case 0xf20f59: /* mulsd */
7004 case 0xf30f59: /* mulss */
7005 case 0x0f5a: /* cvtps2pd */
7006 case 0x660f5a: /* cvtpd2ps */
7007 case 0xf20f5a: /* cvtsd2ss */
7008 case 0xf30f5a: /* cvtss2sd */
7009 case 0x0f5b: /* cvtdq2ps */
7010 case 0x660f5b: /* cvtps2dq */
7011 case 0xf30f5b: /* cvttps2dq */
7012 case 0x0f5c: /* subps */
7013 case 0x660f5c: /* subpd */
7014 case 0xf20f5c: /* subsd */
7015 case 0xf30f5c: /* subss */
7016 case 0x0f5d: /* minps */
7017 case 0x660f5d: /* minpd */
7018 case 0xf20f5d: /* minsd */
7019 case 0xf30f5d: /* minss */
7020 case 0x0f5e: /* divps */
7021 case 0x660f5e: /* divpd */
7022 case 0xf20f5e: /* divsd */
7023 case 0xf30f5e: /* divss */
7024 case 0x0f5f: /* maxps */
7025 case 0x660f5f: /* maxpd */
7026 case 0xf20f5f: /* maxsd */
7027 case 0xf30f5f: /* maxss */
7028 case 0x660f60: /* punpcklbw */
7029 case 0x660f61: /* punpcklwd */
7030 case 0x660f62: /* punpckldq */
7031 case 0x660f63: /* packsswb */
7032 case 0x660f64: /* pcmpgtb */
7033 case 0x660f65: /* pcmpgtw */
7034 case 0x660f66: /* pcmpgtd */
7035 case 0x660f67: /* packuswb */
7036 case 0x660f68: /* punpckhbw */
7037 case 0x660f69: /* punpckhwd */
7038 case 0x660f6a: /* punpckhdq */
7039 case 0x660f6b: /* packssdw */
7040 case 0x660f6c: /* punpcklqdq */
7041 case 0x660f6d: /* punpckhqdq */
7042 case 0x660f6e: /* movd */
7043 case 0x660f6f: /* movdqa */
7044 case 0xf30f6f: /* movdqu */
7045 case 0x660f70: /* pshufd */
7046 case 0xf20f70: /* pshuflw */
7047 case 0xf30f70: /* pshufhw */
7048 case 0x660f74: /* pcmpeqb */
7049 case 0x660f75: /* pcmpeqw */
7050 case 0x660f76: /* pcmpeqd */
7051 case 0x660f7c: /* haddpd */
7052 case 0xf20f7c: /* haddps */
7053 case 0x660f7d: /* hsubpd */
7054 case 0xf20f7d: /* hsubps */
7055 case 0xf30f7e: /* movq */
7056 case 0x0fc2: /* cmpps */
7057 case 0x660fc2: /* cmppd */
7058 case 0xf20fc2: /* cmpsd */
7059 case 0xf30fc2: /* cmpss */
7060 case 0x660fc4: /* pinsrw */
7061 case 0x0fc6: /* shufps */
7062 case 0x660fc6: /* shufpd */
7063 case 0x660fd0: /* addsubpd */
7064 case 0xf20fd0: /* addsubps */
7065 case 0x660fd1: /* psrlw */
7066 case 0x660fd2: /* psrld */
7067 case 0x660fd3: /* psrlq */
7068 case 0x660fd4: /* paddq */
7069 case 0x660fd5: /* pmullw */
7070 case 0xf30fd6: /* movq2dq */
7071 case 0x660fd8: /* psubusb */
7072 case 0x660fd9: /* psubusw */
7073 case 0x660fda: /* pminub */
7074 case 0x660fdb: /* pand */
7075 case 0x660fdc: /* paddusb */
7076 case 0x660fdd: /* paddusw */
7077 case 0x660fde: /* pmaxub */
7078 case 0x660fdf: /* pandn */
7079 case 0x660fe0: /* pavgb */
7080 case 0x660fe1: /* psraw */
7081 case 0x660fe2: /* psrad */
7082 case 0x660fe3: /* pavgw */
7083 case 0x660fe4: /* pmulhuw */
7084 case 0x660fe5: /* pmulhw */
7085 case 0x660fe6: /* cvttpd2dq */
7086 case 0xf20fe6: /* cvtpd2dq */
7087 case 0xf30fe6: /* cvtdq2pd */
7088 case 0x660fe8: /* psubsb */
7089 case 0x660fe9: /* psubsw */
7090 case 0x660fea: /* pminsw */
7091 case 0x660feb: /* por */
7092 case 0x660fec: /* paddsb */
7093 case 0x660fed: /* paddsw */
7094 case 0x660fee: /* pmaxsw */
7095 case 0x660fef: /* pxor */
7096 case 0xf20ff0: /* lddqu */
7097 case 0x660ff1: /* psllw */
7098 case 0x660ff2: /* pslld */
7099 case 0x660ff3: /* psllq */
7100 case 0x660ff4: /* pmuludq */
7101 case 0x660ff5: /* pmaddwd */
7102 case 0x660ff6: /* psadbw */
7103 case 0x660ff8: /* psubb */
7104 case 0x660ff9: /* psubw */
7105 case 0x660ffa: /* psubd */
7106 case 0x660ffb: /* psubq */
7107 case 0x660ffc: /* paddb */
7108 case 0x660ffd: /* paddw */
7109 case 0x660ffe: /* paddd */
7110 if (i386_record_modrm (&ir))
7111 return -1;
7112 ir.reg |= rex_r;
7113 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7114 goto no_support;
7115 record_arch_list_add_reg (ir.regcache,
7116 I387_XMM0_REGNUM (tdep) + ir.reg);
7117 if ((opcode & 0xfffffffc) == 0x660f3a60)
7118 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7119 break;
7120
7121 case 0x0f11: /* movups */
7122 case 0x660f11: /* movupd */
7123 case 0xf30f11: /* movss */
7124 case 0xf20f11: /* movsd */
7125 case 0x0f13: /* movlps */
7126 case 0x660f13: /* movlpd */
7127 case 0x0f17: /* movhps */
7128 case 0x660f17: /* movhpd */
7129 case 0x0f29: /* movaps */
7130 case 0x660f29: /* movapd */
7131 case 0x660f3a14: /* pextrb */
7132 case 0x660f3a15: /* pextrw */
7133 case 0x660f3a16: /* pextrd pextrq */
7134 case 0x660f3a17: /* extractps */
7135 case 0x660f7f: /* movdqa */
7136 case 0xf30f7f: /* movdqu */
7137 if (i386_record_modrm (&ir))
7138 return -1;
7139 if (ir.mod == 3)
7140 {
7141 if (opcode == 0x0f13 || opcode == 0x660f13
7142 || opcode == 0x0f17 || opcode == 0x660f17)
7143 goto no_support;
7144 ir.rm |= ir.rex_b;
7145 if (!i386_xmm_regnum_p (gdbarch,
7146 I387_XMM0_REGNUM (tdep) + ir.rm))
7147 goto no_support;
7148 record_arch_list_add_reg (ir.regcache,
7149 I387_XMM0_REGNUM (tdep) + ir.rm);
7150 }
7151 else
7152 {
7153 switch (opcode)
7154 {
7155 case 0x660f3a14:
7156 ir.ot = OT_BYTE;
7157 break;
7158 case 0x660f3a15:
7159 ir.ot = OT_WORD;
7160 break;
7161 case 0x660f3a16:
7162 ir.ot = OT_LONG;
7163 break;
7164 case 0x660f3a17:
7165 ir.ot = OT_QUAD;
7166 break;
7167 default:
7168 ir.ot = OT_DQUAD;
7169 break;
7170 }
7171 if (i386_record_lea_modrm (&ir))
7172 return -1;
7173 }
7174 break;
7175
7176 case 0x0f2b: /* movntps */
7177 case 0x660f2b: /* movntpd */
7178 case 0x0fe7: /* movntq */
7179 case 0x660fe7: /* movntdq */
7180 if (ir.mod == 3)
7181 goto no_support;
7182 if (opcode == 0x0fe7)
7183 ir.ot = OT_QUAD;
7184 else
7185 ir.ot = OT_DQUAD;
7186 if (i386_record_lea_modrm (&ir))
7187 return -1;
7188 break;
7189
7190 case 0xf30f2c: /* cvttss2si */
7191 case 0xf20f2c: /* cvttsd2si */
7192 case 0xf30f2d: /* cvtss2si */
7193 case 0xf20f2d: /* cvtsd2si */
7194 case 0xf20f38f0: /* crc32 */
7195 case 0xf20f38f1: /* crc32 */
7196 case 0x0f50: /* movmskps */
7197 case 0x660f50: /* movmskpd */
7198 case 0x0fc5: /* pextrw */
7199 case 0x660fc5: /* pextrw */
7200 case 0x0fd7: /* pmovmskb */
7201 case 0x660fd7: /* pmovmskb */
7202 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7203 break;
7204
7205 case 0x0f3800: /* pshufb */
7206 case 0x0f3801: /* phaddw */
7207 case 0x0f3802: /* phaddd */
7208 case 0x0f3803: /* phaddsw */
7209 case 0x0f3804: /* pmaddubsw */
7210 case 0x0f3805: /* phsubw */
7211 case 0x0f3806: /* phsubd */
7212 case 0x0f3807: /* phsubsw */
7213 case 0x0f3808: /* psignb */
7214 case 0x0f3809: /* psignw */
7215 case 0x0f380a: /* psignd */
7216 case 0x0f380b: /* pmulhrsw */
7217 case 0x0f381c: /* pabsb */
7218 case 0x0f381d: /* pabsw */
7219 case 0x0f381e: /* pabsd */
7220 case 0x0f382b: /* packusdw */
7221 case 0x0f3830: /* pmovzxbw */
7222 case 0x0f3831: /* pmovzxbd */
7223 case 0x0f3832: /* pmovzxbq */
7224 case 0x0f3833: /* pmovzxwd */
7225 case 0x0f3834: /* pmovzxwq */
7226 case 0x0f3835: /* pmovzxdq */
7227 case 0x0f3837: /* pcmpgtq */
7228 case 0x0f3838: /* pminsb */
7229 case 0x0f3839: /* pminsd */
7230 case 0x0f383a: /* pminuw */
7231 case 0x0f383b: /* pminud */
7232 case 0x0f383c: /* pmaxsb */
7233 case 0x0f383d: /* pmaxsd */
7234 case 0x0f383e: /* pmaxuw */
7235 case 0x0f383f: /* pmaxud */
7236 case 0x0f3840: /* pmulld */
7237 case 0x0f3841: /* phminposuw */
7238 case 0x0f3a0f: /* palignr */
7239 case 0x0f60: /* punpcklbw */
7240 case 0x0f61: /* punpcklwd */
7241 case 0x0f62: /* punpckldq */
7242 case 0x0f63: /* packsswb */
7243 case 0x0f64: /* pcmpgtb */
7244 case 0x0f65: /* pcmpgtw */
7245 case 0x0f66: /* pcmpgtd */
7246 case 0x0f67: /* packuswb */
7247 case 0x0f68: /* punpckhbw */
7248 case 0x0f69: /* punpckhwd */
7249 case 0x0f6a: /* punpckhdq */
7250 case 0x0f6b: /* packssdw */
7251 case 0x0f6e: /* movd */
7252 case 0x0f6f: /* movq */
7253 case 0x0f70: /* pshufw */
7254 case 0x0f74: /* pcmpeqb */
7255 case 0x0f75: /* pcmpeqw */
7256 case 0x0f76: /* pcmpeqd */
7257 case 0x0fc4: /* pinsrw */
7258 case 0x0fd1: /* psrlw */
7259 case 0x0fd2: /* psrld */
7260 case 0x0fd3: /* psrlq */
7261 case 0x0fd4: /* paddq */
7262 case 0x0fd5: /* pmullw */
7263 case 0xf20fd6: /* movdq2q */
7264 case 0x0fd8: /* psubusb */
7265 case 0x0fd9: /* psubusw */
7266 case 0x0fda: /* pminub */
7267 case 0x0fdb: /* pand */
7268 case 0x0fdc: /* paddusb */
7269 case 0x0fdd: /* paddusw */
7270 case 0x0fde: /* pmaxub */
7271 case 0x0fdf: /* pandn */
7272 case 0x0fe0: /* pavgb */
7273 case 0x0fe1: /* psraw */
7274 case 0x0fe2: /* psrad */
7275 case 0x0fe3: /* pavgw */
7276 case 0x0fe4: /* pmulhuw */
7277 case 0x0fe5: /* pmulhw */
7278 case 0x0fe8: /* psubsb */
7279 case 0x0fe9: /* psubsw */
7280 case 0x0fea: /* pminsw */
7281 case 0x0feb: /* por */
7282 case 0x0fec: /* paddsb */
7283 case 0x0fed: /* paddsw */
7284 case 0x0fee: /* pmaxsw */
7285 case 0x0fef: /* pxor */
7286 case 0x0ff1: /* psllw */
7287 case 0x0ff2: /* pslld */
7288 case 0x0ff3: /* psllq */
7289 case 0x0ff4: /* pmuludq */
7290 case 0x0ff5: /* pmaddwd */
7291 case 0x0ff6: /* psadbw */
7292 case 0x0ff8: /* psubb */
7293 case 0x0ff9: /* psubw */
7294 case 0x0ffa: /* psubd */
7295 case 0x0ffb: /* psubq */
7296 case 0x0ffc: /* paddb */
7297 case 0x0ffd: /* paddw */
7298 case 0x0ffe: /* paddd */
7299 if (i386_record_modrm (&ir))
7300 return -1;
7301 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7302 goto no_support;
7303 record_arch_list_add_reg (ir.regcache,
7304 I387_MM0_REGNUM (tdep) + ir.reg);
7305 break;
7306
7307 case 0x0f71: /* psllw */
7308 case 0x0f72: /* pslld */
7309 case 0x0f73: /* psllq */
7310 if (i386_record_modrm (&ir))
7311 return -1;
7312 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7313 goto no_support;
7314 record_arch_list_add_reg (ir.regcache,
7315 I387_MM0_REGNUM (tdep) + ir.rm);
7316 break;
7317
7318 case 0x660f71: /* psllw */
7319 case 0x660f72: /* pslld */
7320 case 0x660f73: /* psllq */
7321 if (i386_record_modrm (&ir))
7322 return -1;
7323 ir.rm |= ir.rex_b;
7324 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7325 goto no_support;
7326 record_arch_list_add_reg (ir.regcache,
7327 I387_XMM0_REGNUM (tdep) + ir.rm);
7328 break;
7329
7330 case 0x0f7e: /* movd */
7331 case 0x660f7e: /* movd */
7332 if (i386_record_modrm (&ir))
7333 return -1;
7334 if (ir.mod == 3)
7335 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7336 else
7337 {
7338 if (ir.dflag == 2)
7339 ir.ot = OT_QUAD;
7340 else
7341 ir.ot = OT_LONG;
7342 if (i386_record_lea_modrm (&ir))
7343 return -1;
7344 }
7345 break;
7346
7347 case 0x0f7f: /* movq */
7348 if (i386_record_modrm (&ir))
7349 return -1;
7350 if (ir.mod == 3)
7351 {
7352 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7353 goto no_support;
7354 record_arch_list_add_reg (ir.regcache,
7355 I387_MM0_REGNUM (tdep) + ir.rm);
7356 }
7357 else
7358 {
7359 ir.ot = OT_QUAD;
7360 if (i386_record_lea_modrm (&ir))
7361 return -1;
7362 }
7363 break;
7364
7365 case 0xf30fb8: /* popcnt */
7366 if (i386_record_modrm (&ir))
7367 return -1;
7368 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7369 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7370 break;
7371
7372 case 0x660fd6: /* movq */
7373 if (i386_record_modrm (&ir))
7374 return -1;
7375 if (ir.mod == 3)
7376 {
7377 ir.rm |= ir.rex_b;
7378 if (!i386_xmm_regnum_p (gdbarch,
7379 I387_XMM0_REGNUM (tdep) + ir.rm))
7380 goto no_support;
7381 record_arch_list_add_reg (ir.regcache,
7382 I387_XMM0_REGNUM (tdep) + ir.rm);
7383 }
7384 else
7385 {
7386 ir.ot = OT_QUAD;
7387 if (i386_record_lea_modrm (&ir))
7388 return -1;
7389 }
7390 break;
7391
7392 case 0x660f3817: /* ptest */
7393 case 0x0f2e: /* ucomiss */
7394 case 0x660f2e: /* ucomisd */
7395 case 0x0f2f: /* comiss */
7396 case 0x660f2f: /* comisd */
7397 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7398 break;
7399
7400 case 0x0ff7: /* maskmovq */
7401 regcache_raw_read_unsigned (ir.regcache,
7402 ir.regmap[X86_RECORD_REDI_REGNUM],
7403 &addr);
7404 if (record_arch_list_add_mem (addr, 64))
7405 return -1;
7406 break;
7407
7408 case 0x660ff7: /* maskmovdqu */
7409 regcache_raw_read_unsigned (ir.regcache,
7410 ir.regmap[X86_RECORD_REDI_REGNUM],
7411 &addr);
7412 if (record_arch_list_add_mem (addr, 128))
7413 return -1;
7414 break;
7415
7416 default:
7417 goto no_support;
7418 break;
7419 }
7420 break;
7421
7422 default:
7423 goto no_support;
7424 break;
7425 }
7426
7427 /* In the future, maybe still need to deal with need_dasm. */
7428 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7429 if (record_arch_list_add_end ())
7430 return -1;
7431
7432 return 0;
7433
7434 no_support:
7435 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7436 "at address %s.\n"),
7437 (unsigned int) (opcode),
7438 paddress (gdbarch, ir.orig_addr));
7439 return -1;
7440 }
7441
7442 static const int i386_record_regmap[] =
7443 {
7444 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7445 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7446 0, 0, 0, 0, 0, 0, 0, 0,
7447 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7448 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7449 };
7450
7451 /* Check that the given address appears suitable for a fast
7452 tracepoint, which on x86-64 means that we need an instruction of at
7453 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7454 jump and not have to worry about program jumps to an address in the
7455 middle of the tracepoint jump. On x86, it may be possible to use
7456 4-byte jumps with a 2-byte offset to a trampoline located in the
7457 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7458 of instruction to replace, and 0 if not, plus an explanatory
7459 string. */
7460
7461 static int
7462 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7463 CORE_ADDR addr, int *isize, char **msg)
7464 {
7465 int len, jumplen;
7466 static struct ui_file *gdb_null = NULL;
7467
7468 /* Ask the target for the minimum instruction length supported. */
7469 jumplen = target_get_min_fast_tracepoint_insn_len ();
7470
7471 if (jumplen < 0)
7472 {
7473 /* If the target does not support the get_min_fast_tracepoint_insn_len
7474 operation, assume that fast tracepoints will always be implemented
7475 using 4-byte relative jumps on both x86 and x86-64. */
7476 jumplen = 5;
7477 }
7478 else if (jumplen == 0)
7479 {
7480 /* If the target does support get_min_fast_tracepoint_insn_len but
7481 returns zero, then the IPA has not loaded yet. In this case,
7482 we optimistically assume that truncated 2-byte relative jumps
7483 will be available on x86, and compensate later if this assumption
7484 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7485 jumps will always be used. */
7486 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7487 }
7488
7489 /* Dummy file descriptor for the disassembler. */
7490 if (!gdb_null)
7491 gdb_null = ui_file_new ();
7492
7493 /* Check for fit. */
7494 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7495 if (isize)
7496 *isize = len;
7497
7498 if (len < jumplen)
7499 {
7500 /* Return a bit of target-specific detail to add to the caller's
7501 generic failure message. */
7502 if (msg)
7503 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7504 "need at least %d bytes for the jump"),
7505 len, jumplen);
7506 return 0;
7507 }
7508 else
7509 {
7510 if (msg)
7511 *msg = NULL;
7512 return 1;
7513 }
7514 }
7515
7516 static int
7517 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7518 struct tdesc_arch_data *tdesc_data)
7519 {
7520 const struct target_desc *tdesc = tdep->tdesc;
7521 const struct tdesc_feature *feature_core;
7522 const struct tdesc_feature *feature_sse, *feature_avx;
7523 int i, num_regs, valid_p;
7524
7525 if (! tdesc_has_registers (tdesc))
7526 return 0;
7527
7528 /* Get core registers. */
7529 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7530 if (feature_core == NULL)
7531 return 0;
7532
7533 /* Get SSE registers. */
7534 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7535
7536 /* Try AVX registers. */
7537 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7538
7539 valid_p = 1;
7540
7541 /* The XCR0 bits. */
7542 if (feature_avx)
7543 {
7544 /* AVX register description requires SSE register description. */
7545 if (!feature_sse)
7546 return 0;
7547
7548 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7549
7550 /* It may have been set by OSABI initialization function. */
7551 if (tdep->num_ymm_regs == 0)
7552 {
7553 tdep->ymmh_register_names = i386_ymmh_names;
7554 tdep->num_ymm_regs = 8;
7555 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7556 }
7557
7558 for (i = 0; i < tdep->num_ymm_regs; i++)
7559 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7560 tdep->ymm0h_regnum + i,
7561 tdep->ymmh_register_names[i]);
7562 }
7563 else if (feature_sse)
7564 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7565 else
7566 {
7567 tdep->xcr0 = I386_XSTATE_X87_MASK;
7568 tdep->num_xmm_regs = 0;
7569 }
7570
7571 num_regs = tdep->num_core_regs;
7572 for (i = 0; i < num_regs; i++)
7573 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7574 tdep->register_names[i]);
7575
7576 if (feature_sse)
7577 {
7578 /* Need to include %mxcsr, so add one. */
7579 num_regs += tdep->num_xmm_regs + 1;
7580 for (; i < num_regs; i++)
7581 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7582 tdep->register_names[i]);
7583 }
7584
7585 return valid_p;
7586 }
7587
7588 \f
7589 static struct gdbarch *
7590 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7591 {
7592 struct gdbarch_tdep *tdep;
7593 struct gdbarch *gdbarch;
7594 struct tdesc_arch_data *tdesc_data;
7595 const struct target_desc *tdesc;
7596 int mm0_regnum;
7597 int ymm0_regnum;
7598
7599 /* If there is already a candidate, use it. */
7600 arches = gdbarch_list_lookup_by_info (arches, &info);
7601 if (arches != NULL)
7602 return arches->gdbarch;
7603
7604 /* Allocate space for the new architecture. */
7605 tdep = XCALLOC (1, struct gdbarch_tdep);
7606 gdbarch = gdbarch_alloc (&info, tdep);
7607
7608 /* General-purpose registers. */
7609 tdep->gregset = NULL;
7610 tdep->gregset_reg_offset = NULL;
7611 tdep->gregset_num_regs = I386_NUM_GREGS;
7612 tdep->sizeof_gregset = 0;
7613
7614 /* Floating-point registers. */
7615 tdep->fpregset = NULL;
7616 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7617
7618 tdep->xstateregset = NULL;
7619
7620 /* The default settings include the FPU registers, the MMX registers
7621 and the SSE registers. This can be overridden for a specific ABI
7622 by adjusting the members `st0_regnum', `mm0_regnum' and
7623 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7624 will show up in the output of "info all-registers". */
7625
7626 tdep->st0_regnum = I386_ST0_REGNUM;
7627
7628 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7629 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7630
7631 tdep->jb_pc_offset = -1;
7632 tdep->struct_return = pcc_struct_return;
7633 tdep->sigtramp_start = 0;
7634 tdep->sigtramp_end = 0;
7635 tdep->sigtramp_p = i386_sigtramp_p;
7636 tdep->sigcontext_addr = NULL;
7637 tdep->sc_reg_offset = NULL;
7638 tdep->sc_pc_offset = -1;
7639 tdep->sc_sp_offset = -1;
7640
7641 tdep->xsave_xcr0_offset = -1;
7642
7643 tdep->record_regmap = i386_record_regmap;
7644
7645 set_gdbarch_long_long_align_bit (gdbarch, 32);
7646
7647 /* The format used for `long double' on almost all i386 targets is
7648 the i387 extended floating-point format. In fact, of all targets
7649 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7650 on having a `long double' that's not `long' at all. */
7651 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7652
7653 /* Although the i387 extended floating-point has only 80 significant
7654 bits, a `long double' actually takes up 96, probably to enforce
7655 alignment. */
7656 set_gdbarch_long_double_bit (gdbarch, 96);
7657
7658 /* Register numbers of various important registers. */
7659 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7660 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7661 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7662 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7663
7664 /* NOTE: kettenis/20040418: GCC does have two possible register
7665 numbering schemes on the i386: dbx and SVR4. These schemes
7666 differ in how they number %ebp, %esp, %eflags, and the
7667 floating-point registers, and are implemented by the arrays
7668 dbx_register_map[] and svr4_dbx_register_map in
7669 gcc/config/i386.c. GCC also defines a third numbering scheme in
7670 gcc/config/i386.c, which it designates as the "default" register
7671 map used in 64bit mode. This last register numbering scheme is
7672 implemented in dbx64_register_map, and is used for AMD64; see
7673 amd64-tdep.c.
7674
7675 Currently, each GCC i386 target always uses the same register
7676 numbering scheme across all its supported debugging formats
7677 i.e. SDB (COFF), stabs and DWARF 2. This is because
7678 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7679 DBX_REGISTER_NUMBER macro which is defined by each target's
7680 respective config header in a manner independent of the requested
7681 output debugging format.
7682
7683 This does not match the arrangement below, which presumes that
7684 the SDB and stabs numbering schemes differ from the DWARF and
7685 DWARF 2 ones. The reason for this arrangement is that it is
7686 likely to get the numbering scheme for the target's
7687 default/native debug format right. For targets where GCC is the
7688 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7689 targets where the native toolchain uses a different numbering
7690 scheme for a particular debug format (stabs-in-ELF on Solaris)
7691 the defaults below will have to be overridden, like
7692 i386_elf_init_abi() does. */
7693
7694 /* Use the dbx register numbering scheme for stabs and COFF. */
7695 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7696 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7697
7698 /* Use the SVR4 register numbering scheme for DWARF 2. */
7699 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7700
7701 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7702 be in use on any of the supported i386 targets. */
7703
7704 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7705
7706 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7707
7708 /* Call dummy code. */
7709 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7710 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7711
7712 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7713 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7714 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7715
7716 set_gdbarch_return_value (gdbarch, i386_return_value);
7717
7718 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7719
7720 /* Stack grows downward. */
7721 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7722
7723 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7724 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7725 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7726
7727 set_gdbarch_frame_args_skip (gdbarch, 8);
7728
7729 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7730
7731 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7732
7733 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7734
7735 /* Add the i386 register groups. */
7736 i386_add_reggroups (gdbarch);
7737 tdep->register_reggroup_p = i386_register_reggroup_p;
7738
7739 /* Helper for function argument information. */
7740 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7741
7742 /* Hook the function epilogue frame unwinder. This unwinder is
7743 appended to the list first, so that it supercedes the DWARF
7744 unwinder in function epilogues (where the DWARF unwinder
7745 currently fails). */
7746 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7747
7748 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7749 to the list before the prologue-based unwinders, so that DWARF
7750 CFI info will be used if it is available. */
7751 dwarf2_append_unwinders (gdbarch);
7752
7753 frame_base_set_default (gdbarch, &i386_frame_base);
7754
7755 /* Pseudo registers may be changed by amd64_init_abi. */
7756 set_gdbarch_pseudo_register_read_value (gdbarch,
7757 i386_pseudo_register_read_value);
7758 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7759
7760 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7761 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7762
7763 /* Override the normal target description method to make the AVX
7764 upper halves anonymous. */
7765 set_gdbarch_register_name (gdbarch, i386_register_name);
7766
7767 /* Even though the default ABI only includes general-purpose registers,
7768 floating-point registers and the SSE registers, we have to leave a
7769 gap for the upper AVX registers. */
7770 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7771
7772 /* Get the x86 target description from INFO. */
7773 tdesc = info.target_desc;
7774 if (! tdesc_has_registers (tdesc))
7775 tdesc = tdesc_i386;
7776 tdep->tdesc = tdesc;
7777
7778 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7779 tdep->register_names = i386_register_names;
7780
7781 /* No upper YMM registers. */
7782 tdep->ymmh_register_names = NULL;
7783 tdep->ymm0h_regnum = -1;
7784
7785 tdep->num_byte_regs = 8;
7786 tdep->num_word_regs = 8;
7787 tdep->num_dword_regs = 0;
7788 tdep->num_mmx_regs = 8;
7789 tdep->num_ymm_regs = 0;
7790
7791 tdesc_data = tdesc_data_alloc ();
7792
7793 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7794
7795 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7796
7797 /* Hook in ABI-specific overrides, if they have been registered. */
7798 info.tdep_info = (void *) tdesc_data;
7799 gdbarch_init_osabi (info, gdbarch);
7800
7801 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7802 {
7803 tdesc_data_cleanup (tdesc_data);
7804 xfree (tdep);
7805 gdbarch_free (gdbarch);
7806 return NULL;
7807 }
7808
7809 /* Wire in pseudo registers. Number of pseudo registers may be
7810 changed. */
7811 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7812 + tdep->num_word_regs
7813 + tdep->num_dword_regs
7814 + tdep->num_mmx_regs
7815 + tdep->num_ymm_regs));
7816
7817 /* Target description may be changed. */
7818 tdesc = tdep->tdesc;
7819
7820 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7821
7822 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7823 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7824
7825 /* Make %al the first pseudo-register. */
7826 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7827 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7828
7829 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7830 if (tdep->num_dword_regs)
7831 {
7832 /* Support dword pseudo-register if it hasn't been disabled. */
7833 tdep->eax_regnum = ymm0_regnum;
7834 ymm0_regnum += tdep->num_dword_regs;
7835 }
7836 else
7837 tdep->eax_regnum = -1;
7838
7839 mm0_regnum = ymm0_regnum;
7840 if (tdep->num_ymm_regs)
7841 {
7842 /* Support YMM pseudo-register if it is available. */
7843 tdep->ymm0_regnum = ymm0_regnum;
7844 mm0_regnum += tdep->num_ymm_regs;
7845 }
7846 else
7847 tdep->ymm0_regnum = -1;
7848
7849 if (tdep->num_mmx_regs != 0)
7850 {
7851 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7852 tdep->mm0_regnum = mm0_regnum;
7853 }
7854 else
7855 tdep->mm0_regnum = -1;
7856
7857 /* Hook in the legacy prologue-based unwinders last (fallback). */
7858 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
7859 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7860 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7861
7862 /* If we have a register mapping, enable the generic core file
7863 support, unless it has already been enabled. */
7864 if (tdep->gregset_reg_offset
7865 && !gdbarch_regset_from_core_section_p (gdbarch))
7866 set_gdbarch_regset_from_core_section (gdbarch,
7867 i386_regset_from_core_section);
7868
7869 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7870 i386_skip_permanent_breakpoint);
7871
7872 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7873 i386_fast_tracepoint_valid_at);
7874
7875 return gdbarch;
7876 }
7877
7878 static enum gdb_osabi
7879 i386_coff_osabi_sniffer (bfd *abfd)
7880 {
7881 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7882 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7883 return GDB_OSABI_GO32;
7884
7885 return GDB_OSABI_UNKNOWN;
7886 }
7887 \f
7888
7889 /* Provide a prototype to silence -Wmissing-prototypes. */
7890 void _initialize_i386_tdep (void);
7891
7892 void
7893 _initialize_i386_tdep (void)
7894 {
7895 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7896
7897 /* Add the variable that controls the disassembly flavor. */
7898 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7899 &disassembly_flavor, _("\
7900 Set the disassembly flavor."), _("\
7901 Show the disassembly flavor."), _("\
7902 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7903 NULL,
7904 NULL, /* FIXME: i18n: */
7905 &setlist, &showlist);
7906
7907 /* Add the variable that controls the convention for returning
7908 structs. */
7909 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7910 &struct_convention, _("\
7911 Set the convention for returning small structs."), _("\
7912 Show the convention for returning small structs."), _("\
7913 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7914 is \"default\"."),
7915 NULL,
7916 NULL, /* FIXME: i18n: */
7917 &setlist, &showlist);
7918
7919 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7920 i386_coff_osabi_sniffer);
7921
7922 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7923 i386_svr4_init_abi);
7924 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7925 i386_go32_init_abi);
7926
7927 /* Initialize the i386-specific register groups. */
7928 i386_init_reggroups ();
7929
7930 /* Initialize the standard target descriptions. */
7931 initialize_tdesc_i386 ();
7932 initialize_tdesc_i386_mmx ();
7933 initialize_tdesc_i386_avx ();
7934
7935 /* Tell remote stub that we support XML target description. */
7936 register_remote_support_xml ("i386");
7937 }
This page took 0.200593 seconds and 4 git commands to generate.