ALPHA: Migrate from 'regset_from_core_section' to 'iterate_over_regset_sections'
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "exceptions.h"
48 #include "i386-tdep.h"
49 #include "i387-tdep.h"
50 #include "x86-xstate.h"
51
52 #include "record.h"
53 #include "record-full.h"
54 #include <stdint.h>
55
56 #include "features/i386/i386.c"
57 #include "features/i386/i386-avx.c"
58 #include "features/i386/i386-mpx.c"
59 #include "features/i386/i386-avx512.c"
60 #include "features/i386/i386-mmx.c"
61
62 #include "ax.h"
63 #include "ax-gdb.h"
64
65 #include "stap-probe.h"
66 #include "user-regs.h"
67 #include "cli/cli-utils.h"
68 #include "expression.h"
69 #include "parser-defs.h"
70 #include <ctype.h>
71
72 /* Register names. */
73
74 static const char *i386_register_names[] =
75 {
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
86 "mxcsr"
87 };
88
89 static const char *i386_zmm_names[] =
90 {
91 "zmm0", "zmm1", "zmm2", "zmm3",
92 "zmm4", "zmm5", "zmm6", "zmm7"
93 };
94
95 static const char *i386_zmmh_names[] =
96 {
97 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
98 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
99 };
100
101 static const char *i386_k_names[] =
102 {
103 "k0", "k1", "k2", "k3",
104 "k4", "k5", "k6", "k7"
105 };
106
107 static const char *i386_ymm_names[] =
108 {
109 "ymm0", "ymm1", "ymm2", "ymm3",
110 "ymm4", "ymm5", "ymm6", "ymm7",
111 };
112
113 static const char *i386_ymmh_names[] =
114 {
115 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
116 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
117 };
118
119 static const char *i386_mpx_names[] =
120 {
121 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
122 };
123
124 /* Register names for MPX pseudo-registers. */
125
126 static const char *i386_bnd_names[] =
127 {
128 "bnd0", "bnd1", "bnd2", "bnd3"
129 };
130
131 /* Register names for MMX pseudo-registers. */
132
133 static const char *i386_mmx_names[] =
134 {
135 "mm0", "mm1", "mm2", "mm3",
136 "mm4", "mm5", "mm6", "mm7"
137 };
138
139 /* Register names for byte pseudo-registers. */
140
141 static const char *i386_byte_names[] =
142 {
143 "al", "cl", "dl", "bl",
144 "ah", "ch", "dh", "bh"
145 };
146
147 /* Register names for word pseudo-registers. */
148
149 static const char *i386_word_names[] =
150 {
151 "ax", "cx", "dx", "bx",
152 "", "bp", "si", "di"
153 };
154
155 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
156 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
157 we have 16 upper ZMM regs that have to be handled differently. */
158
159 const int num_lower_zmm_regs = 16;
160
161 /* MMX register? */
162
163 static int
164 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
165 {
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int mm0_regnum = tdep->mm0_regnum;
168
169 if (mm0_regnum < 0)
170 return 0;
171
172 regnum -= mm0_regnum;
173 return regnum >= 0 && regnum < tdep->num_mmx_regs;
174 }
175
176 /* Byte register? */
177
178 int
179 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
180 {
181 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
182
183 regnum -= tdep->al_regnum;
184 return regnum >= 0 && regnum < tdep->num_byte_regs;
185 }
186
187 /* Word register? */
188
189 int
190 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
191 {
192 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
193
194 regnum -= tdep->ax_regnum;
195 return regnum >= 0 && regnum < tdep->num_word_regs;
196 }
197
198 /* Dword register? */
199
200 int
201 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
202 {
203 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
204 int eax_regnum = tdep->eax_regnum;
205
206 if (eax_regnum < 0)
207 return 0;
208
209 regnum -= eax_regnum;
210 return regnum >= 0 && regnum < tdep->num_dword_regs;
211 }
212
213 /* AVX512 register? */
214
215 int
216 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
217 {
218 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
219 int zmm0h_regnum = tdep->zmm0h_regnum;
220
221 if (zmm0h_regnum < 0)
222 return 0;
223
224 regnum -= zmm0h_regnum;
225 return regnum >= 0 && regnum < tdep->num_zmm_regs;
226 }
227
228 int
229 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
230 {
231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
232 int zmm0_regnum = tdep->zmm0_regnum;
233
234 if (zmm0_regnum < 0)
235 return 0;
236
237 regnum -= zmm0_regnum;
238 return regnum >= 0 && regnum < tdep->num_zmm_regs;
239 }
240
241 int
242 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
243 {
244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245 int k0_regnum = tdep->k0_regnum;
246
247 if (k0_regnum < 0)
248 return 0;
249
250 regnum -= k0_regnum;
251 return regnum >= 0 && regnum < I387_NUM_K_REGS;
252 }
253
254 static int
255 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
256 {
257 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
258 int ymm0h_regnum = tdep->ymm0h_regnum;
259
260 if (ymm0h_regnum < 0)
261 return 0;
262
263 regnum -= ymm0h_regnum;
264 return regnum >= 0 && regnum < tdep->num_ymm_regs;
265 }
266
267 /* AVX register? */
268
269 int
270 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
271 {
272 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
273 int ymm0_regnum = tdep->ymm0_regnum;
274
275 if (ymm0_regnum < 0)
276 return 0;
277
278 regnum -= ymm0_regnum;
279 return regnum >= 0 && regnum < tdep->num_ymm_regs;
280 }
281
282 static int
283 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
284 {
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286 int ymm16h_regnum = tdep->ymm16h_regnum;
287
288 if (ymm16h_regnum < 0)
289 return 0;
290
291 regnum -= ymm16h_regnum;
292 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
293 }
294
295 int
296 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
297 {
298 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
299 int ymm16_regnum = tdep->ymm16_regnum;
300
301 if (ymm16_regnum < 0)
302 return 0;
303
304 regnum -= ymm16_regnum;
305 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
306 }
307
308 /* BND register? */
309
310 int
311 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
312 {
313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
314 int bnd0_regnum = tdep->bnd0_regnum;
315
316 if (bnd0_regnum < 0)
317 return 0;
318
319 regnum -= bnd0_regnum;
320 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
321 }
322
323 /* SSE register? */
324
325 int
326 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
327 {
328 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
329 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
330
331 if (num_xmm_regs == 0)
332 return 0;
333
334 regnum -= I387_XMM0_REGNUM (tdep);
335 return regnum >= 0 && regnum < num_xmm_regs;
336 }
337
338 /* XMM_512 register? */
339
340 int
341 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
342 {
343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
345
346 if (num_xmm_avx512_regs == 0)
347 return 0;
348
349 regnum -= I387_XMM16_REGNUM (tdep);
350 return regnum >= 0 && regnum < num_xmm_avx512_regs;
351 }
352
353 static int
354 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
355 {
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357
358 if (I387_NUM_XMM_REGS (tdep) == 0)
359 return 0;
360
361 return (regnum == I387_MXCSR_REGNUM (tdep));
362 }
363
364 /* FP register? */
365
366 int
367 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
368 {
369 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
370
371 if (I387_ST0_REGNUM (tdep) < 0)
372 return 0;
373
374 return (I387_ST0_REGNUM (tdep) <= regnum
375 && regnum < I387_FCTRL_REGNUM (tdep));
376 }
377
378 int
379 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
380 {
381 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
382
383 if (I387_ST0_REGNUM (tdep) < 0)
384 return 0;
385
386 return (I387_FCTRL_REGNUM (tdep) <= regnum
387 && regnum < I387_XMM0_REGNUM (tdep));
388 }
389
390 /* BNDr (raw) register? */
391
392 static int
393 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
394 {
395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
396
397 if (I387_BND0R_REGNUM (tdep) < 0)
398 return 0;
399
400 regnum -= tdep->bnd0r_regnum;
401 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
402 }
403
404 /* BND control register? */
405
406 static int
407 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
408 {
409 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
410
411 if (I387_BNDCFGU_REGNUM (tdep) < 0)
412 return 0;
413
414 regnum -= I387_BNDCFGU_REGNUM (tdep);
415 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
416 }
417
418 /* Return the name of register REGNUM, or the empty string if it is
419 an anonymous register. */
420
421 static const char *
422 i386_register_name (struct gdbarch *gdbarch, int regnum)
423 {
424 /* Hide the upper YMM registers. */
425 if (i386_ymmh_regnum_p (gdbarch, regnum))
426 return "";
427
428 /* Hide the upper YMM16-31 registers. */
429 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
430 return "";
431
432 /* Hide the upper ZMM registers. */
433 if (i386_zmmh_regnum_p (gdbarch, regnum))
434 return "";
435
436 return tdesc_register_name (gdbarch, regnum);
437 }
438
439 /* Return the name of register REGNUM. */
440
441 const char *
442 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
443 {
444 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
445 if (i386_bnd_regnum_p (gdbarch, regnum))
446 return i386_bnd_names[regnum - tdep->bnd0_regnum];
447 if (i386_mmx_regnum_p (gdbarch, regnum))
448 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
449 else if (i386_ymm_regnum_p (gdbarch, regnum))
450 return i386_ymm_names[regnum - tdep->ymm0_regnum];
451 else if (i386_zmm_regnum_p (gdbarch, regnum))
452 return i386_zmm_names[regnum - tdep->zmm0_regnum];
453 else if (i386_byte_regnum_p (gdbarch, regnum))
454 return i386_byte_names[regnum - tdep->al_regnum];
455 else if (i386_word_regnum_p (gdbarch, regnum))
456 return i386_word_names[regnum - tdep->ax_regnum];
457
458 internal_error (__FILE__, __LINE__, _("invalid regnum"));
459 }
460
461 /* Convert a dbx register number REG to the appropriate register
462 number used by GDB. */
463
464 static int
465 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
466 {
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468
469 /* This implements what GCC calls the "default" register map
470 (dbx_register_map[]). */
471
472 if (reg >= 0 && reg <= 7)
473 {
474 /* General-purpose registers. The debug info calls %ebp
475 register 4, and %esp register 5. */
476 if (reg == 4)
477 return 5;
478 else if (reg == 5)
479 return 4;
480 else return reg;
481 }
482 else if (reg >= 12 && reg <= 19)
483 {
484 /* Floating-point registers. */
485 return reg - 12 + I387_ST0_REGNUM (tdep);
486 }
487 else if (reg >= 21 && reg <= 28)
488 {
489 /* SSE registers. */
490 int ymm0_regnum = tdep->ymm0_regnum;
491
492 if (ymm0_regnum >= 0
493 && i386_xmm_regnum_p (gdbarch, reg))
494 return reg - 21 + ymm0_regnum;
495 else
496 return reg - 21 + I387_XMM0_REGNUM (tdep);
497 }
498 else if (reg >= 29 && reg <= 36)
499 {
500 /* MMX registers. */
501 return reg - 29 + I387_MM0_REGNUM (tdep);
502 }
503
504 /* This will hopefully provoke a warning. */
505 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
506 }
507
508 /* Convert SVR4 register number REG to the appropriate register number
509 used by GDB. */
510
511 static int
512 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
513 {
514 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
515
516 /* This implements the GCC register map that tries to be compatible
517 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
518
519 /* The SVR4 register numbering includes %eip and %eflags, and
520 numbers the floating point registers differently. */
521 if (reg >= 0 && reg <= 9)
522 {
523 /* General-purpose registers. */
524 return reg;
525 }
526 else if (reg >= 11 && reg <= 18)
527 {
528 /* Floating-point registers. */
529 return reg - 11 + I387_ST0_REGNUM (tdep);
530 }
531 else if (reg >= 21 && reg <= 36)
532 {
533 /* The SSE and MMX registers have the same numbers as with dbx. */
534 return i386_dbx_reg_to_regnum (gdbarch, reg);
535 }
536
537 switch (reg)
538 {
539 case 37: return I387_FCTRL_REGNUM (tdep);
540 case 38: return I387_FSTAT_REGNUM (tdep);
541 case 39: return I387_MXCSR_REGNUM (tdep);
542 case 40: return I386_ES_REGNUM;
543 case 41: return I386_CS_REGNUM;
544 case 42: return I386_SS_REGNUM;
545 case 43: return I386_DS_REGNUM;
546 case 44: return I386_FS_REGNUM;
547 case 45: return I386_GS_REGNUM;
548 }
549
550 /* This will hopefully provoke a warning. */
551 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
552 }
553
554 \f
555
556 /* This is the variable that is set with "set disassembly-flavor", and
557 its legitimate values. */
558 static const char att_flavor[] = "att";
559 static const char intel_flavor[] = "intel";
560 static const char *const valid_flavors[] =
561 {
562 att_flavor,
563 intel_flavor,
564 NULL
565 };
566 static const char *disassembly_flavor = att_flavor;
567 \f
568
569 /* Use the program counter to determine the contents and size of a
570 breakpoint instruction. Return a pointer to a string of bytes that
571 encode a breakpoint instruction, store the length of the string in
572 *LEN and optionally adjust *PC to point to the correct memory
573 location for inserting the breakpoint.
574
575 On the i386 we have a single breakpoint that fits in a single byte
576 and can be inserted anywhere.
577
578 This function is 64-bit safe. */
579
580 static const gdb_byte *
581 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
582 {
583 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
584
585 *len = sizeof (break_insn);
586 return break_insn;
587 }
588 \f
589 /* Displaced instruction handling. */
590
591 /* Skip the legacy instruction prefixes in INSN.
592 Not all prefixes are valid for any particular insn
593 but we needn't care, the insn will fault if it's invalid.
594 The result is a pointer to the first opcode byte,
595 or NULL if we run off the end of the buffer. */
596
597 static gdb_byte *
598 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
599 {
600 gdb_byte *end = insn + max_len;
601
602 while (insn < end)
603 {
604 switch (*insn)
605 {
606 case DATA_PREFIX_OPCODE:
607 case ADDR_PREFIX_OPCODE:
608 case CS_PREFIX_OPCODE:
609 case DS_PREFIX_OPCODE:
610 case ES_PREFIX_OPCODE:
611 case FS_PREFIX_OPCODE:
612 case GS_PREFIX_OPCODE:
613 case SS_PREFIX_OPCODE:
614 case LOCK_PREFIX_OPCODE:
615 case REPE_PREFIX_OPCODE:
616 case REPNE_PREFIX_OPCODE:
617 ++insn;
618 continue;
619 default:
620 return insn;
621 }
622 }
623
624 return NULL;
625 }
626
627 static int
628 i386_absolute_jmp_p (const gdb_byte *insn)
629 {
630 /* jmp far (absolute address in operand). */
631 if (insn[0] == 0xea)
632 return 1;
633
634 if (insn[0] == 0xff)
635 {
636 /* jump near, absolute indirect (/4). */
637 if ((insn[1] & 0x38) == 0x20)
638 return 1;
639
640 /* jump far, absolute indirect (/5). */
641 if ((insn[1] & 0x38) == 0x28)
642 return 1;
643 }
644
645 return 0;
646 }
647
648 /* Return non-zero if INSN is a jump, zero otherwise. */
649
650 static int
651 i386_jmp_p (const gdb_byte *insn)
652 {
653 /* jump short, relative. */
654 if (insn[0] == 0xeb)
655 return 1;
656
657 /* jump near, relative. */
658 if (insn[0] == 0xe9)
659 return 1;
660
661 return i386_absolute_jmp_p (insn);
662 }
663
664 static int
665 i386_absolute_call_p (const gdb_byte *insn)
666 {
667 /* call far, absolute. */
668 if (insn[0] == 0x9a)
669 return 1;
670
671 if (insn[0] == 0xff)
672 {
673 /* Call near, absolute indirect (/2). */
674 if ((insn[1] & 0x38) == 0x10)
675 return 1;
676
677 /* Call far, absolute indirect (/3). */
678 if ((insn[1] & 0x38) == 0x18)
679 return 1;
680 }
681
682 return 0;
683 }
684
685 static int
686 i386_ret_p (const gdb_byte *insn)
687 {
688 switch (insn[0])
689 {
690 case 0xc2: /* ret near, pop N bytes. */
691 case 0xc3: /* ret near */
692 case 0xca: /* ret far, pop N bytes. */
693 case 0xcb: /* ret far */
694 case 0xcf: /* iret */
695 return 1;
696
697 default:
698 return 0;
699 }
700 }
701
702 static int
703 i386_call_p (const gdb_byte *insn)
704 {
705 if (i386_absolute_call_p (insn))
706 return 1;
707
708 /* call near, relative. */
709 if (insn[0] == 0xe8)
710 return 1;
711
712 return 0;
713 }
714
715 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
716 length in bytes. Otherwise, return zero. */
717
718 static int
719 i386_syscall_p (const gdb_byte *insn, int *lengthp)
720 {
721 /* Is it 'int $0x80'? */
722 if ((insn[0] == 0xcd && insn[1] == 0x80)
723 /* Or is it 'sysenter'? */
724 || (insn[0] == 0x0f && insn[1] == 0x34)
725 /* Or is it 'syscall'? */
726 || (insn[0] == 0x0f && insn[1] == 0x05))
727 {
728 *lengthp = 2;
729 return 1;
730 }
731
732 return 0;
733 }
734
735 /* The gdbarch insn_is_call method. */
736
737 static int
738 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
739 {
740 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
741
742 read_code (addr, buf, I386_MAX_INSN_LEN);
743 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
744
745 return i386_call_p (insn);
746 }
747
748 /* The gdbarch insn_is_ret method. */
749
750 static int
751 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
752 {
753 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
754
755 read_code (addr, buf, I386_MAX_INSN_LEN);
756 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
757
758 return i386_ret_p (insn);
759 }
760
761 /* The gdbarch insn_is_jump method. */
762
763 static int
764 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
765 {
766 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
767
768 read_code (addr, buf, I386_MAX_INSN_LEN);
769 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
770
771 return i386_jmp_p (insn);
772 }
773
774 /* Some kernels may run one past a syscall insn, so we have to cope.
775 Otherwise this is just simple_displaced_step_copy_insn. */
776
777 struct displaced_step_closure *
778 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
779 CORE_ADDR from, CORE_ADDR to,
780 struct regcache *regs)
781 {
782 size_t len = gdbarch_max_insn_length (gdbarch);
783 gdb_byte *buf = xmalloc (len);
784
785 read_memory (from, buf, len);
786
787 /* GDB may get control back after the insn after the syscall.
788 Presumably this is a kernel bug.
789 If this is a syscall, make sure there's a nop afterwards. */
790 {
791 int syscall_length;
792 gdb_byte *insn;
793
794 insn = i386_skip_prefixes (buf, len);
795 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
796 insn[syscall_length] = NOP_OPCODE;
797 }
798
799 write_memory (to, buf, len);
800
801 if (debug_displaced)
802 {
803 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
804 paddress (gdbarch, from), paddress (gdbarch, to));
805 displaced_step_dump_bytes (gdb_stdlog, buf, len);
806 }
807
808 return (struct displaced_step_closure *) buf;
809 }
810
811 /* Fix up the state of registers and memory after having single-stepped
812 a displaced instruction. */
813
814 void
815 i386_displaced_step_fixup (struct gdbarch *gdbarch,
816 struct displaced_step_closure *closure,
817 CORE_ADDR from, CORE_ADDR to,
818 struct regcache *regs)
819 {
820 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
821
822 /* The offset we applied to the instruction's address.
823 This could well be negative (when viewed as a signed 32-bit
824 value), but ULONGEST won't reflect that, so take care when
825 applying it. */
826 ULONGEST insn_offset = to - from;
827
828 /* Since we use simple_displaced_step_copy_insn, our closure is a
829 copy of the instruction. */
830 gdb_byte *insn = (gdb_byte *) closure;
831 /* The start of the insn, needed in case we see some prefixes. */
832 gdb_byte *insn_start = insn;
833
834 if (debug_displaced)
835 fprintf_unfiltered (gdb_stdlog,
836 "displaced: fixup (%s, %s), "
837 "insn = 0x%02x 0x%02x ...\n",
838 paddress (gdbarch, from), paddress (gdbarch, to),
839 insn[0], insn[1]);
840
841 /* The list of issues to contend with here is taken from
842 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
843 Yay for Free Software! */
844
845 /* Relocate the %eip, if necessary. */
846
847 /* The instruction recognizers we use assume any leading prefixes
848 have been skipped. */
849 {
850 /* This is the size of the buffer in closure. */
851 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
852 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
853 /* If there are too many prefixes, just ignore the insn.
854 It will fault when run. */
855 if (opcode != NULL)
856 insn = opcode;
857 }
858
859 /* Except in the case of absolute or indirect jump or call
860 instructions, or a return instruction, the new eip is relative to
861 the displaced instruction; make it relative. Well, signal
862 handler returns don't need relocation either, but we use the
863 value of %eip to recognize those; see below. */
864 if (! i386_absolute_jmp_p (insn)
865 && ! i386_absolute_call_p (insn)
866 && ! i386_ret_p (insn))
867 {
868 ULONGEST orig_eip;
869 int insn_len;
870
871 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
872
873 /* A signal trampoline system call changes the %eip, resuming
874 execution of the main program after the signal handler has
875 returned. That makes them like 'return' instructions; we
876 shouldn't relocate %eip.
877
878 But most system calls don't, and we do need to relocate %eip.
879
880 Our heuristic for distinguishing these cases: if stepping
881 over the system call instruction left control directly after
882 the instruction, the we relocate --- control almost certainly
883 doesn't belong in the displaced copy. Otherwise, we assume
884 the instruction has put control where it belongs, and leave
885 it unrelocated. Goodness help us if there are PC-relative
886 system calls. */
887 if (i386_syscall_p (insn, &insn_len)
888 && orig_eip != to + (insn - insn_start) + insn_len
889 /* GDB can get control back after the insn after the syscall.
890 Presumably this is a kernel bug.
891 i386_displaced_step_copy_insn ensures its a nop,
892 we add one to the length for it. */
893 && orig_eip != to + (insn - insn_start) + insn_len + 1)
894 {
895 if (debug_displaced)
896 fprintf_unfiltered (gdb_stdlog,
897 "displaced: syscall changed %%eip; "
898 "not relocating\n");
899 }
900 else
901 {
902 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
903
904 /* If we just stepped over a breakpoint insn, we don't backup
905 the pc on purpose; this is to match behaviour without
906 stepping. */
907
908 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
909
910 if (debug_displaced)
911 fprintf_unfiltered (gdb_stdlog,
912 "displaced: "
913 "relocated %%eip from %s to %s\n",
914 paddress (gdbarch, orig_eip),
915 paddress (gdbarch, eip));
916 }
917 }
918
919 /* If the instruction was PUSHFL, then the TF bit will be set in the
920 pushed value, and should be cleared. We'll leave this for later,
921 since GDB already messes up the TF flag when stepping over a
922 pushfl. */
923
924 /* If the instruction was a call, the return address now atop the
925 stack is the address following the copied instruction. We need
926 to make it the address following the original instruction. */
927 if (i386_call_p (insn))
928 {
929 ULONGEST esp;
930 ULONGEST retaddr;
931 const ULONGEST retaddr_len = 4;
932
933 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
934 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
935 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
936 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
937
938 if (debug_displaced)
939 fprintf_unfiltered (gdb_stdlog,
940 "displaced: relocated return addr at %s to %s\n",
941 paddress (gdbarch, esp),
942 paddress (gdbarch, retaddr));
943 }
944 }
945
946 static void
947 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
948 {
949 target_write_memory (*to, buf, len);
950 *to += len;
951 }
952
953 static void
954 i386_relocate_instruction (struct gdbarch *gdbarch,
955 CORE_ADDR *to, CORE_ADDR oldloc)
956 {
957 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
958 gdb_byte buf[I386_MAX_INSN_LEN];
959 int offset = 0, rel32, newrel;
960 int insn_length;
961 gdb_byte *insn = buf;
962
963 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
964
965 insn_length = gdb_buffered_insn_length (gdbarch, insn,
966 I386_MAX_INSN_LEN, oldloc);
967
968 /* Get past the prefixes. */
969 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
970
971 /* Adjust calls with 32-bit relative addresses as push/jump, with
972 the address pushed being the location where the original call in
973 the user program would return to. */
974 if (insn[0] == 0xe8)
975 {
976 gdb_byte push_buf[16];
977 unsigned int ret_addr;
978
979 /* Where "ret" in the original code will return to. */
980 ret_addr = oldloc + insn_length;
981 push_buf[0] = 0x68; /* pushq $... */
982 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
983 /* Push the push. */
984 append_insns (to, 5, push_buf);
985
986 /* Convert the relative call to a relative jump. */
987 insn[0] = 0xe9;
988
989 /* Adjust the destination offset. */
990 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
991 newrel = (oldloc - *to) + rel32;
992 store_signed_integer (insn + 1, 4, byte_order, newrel);
993
994 if (debug_displaced)
995 fprintf_unfiltered (gdb_stdlog,
996 "Adjusted insn rel32=%s at %s to"
997 " rel32=%s at %s\n",
998 hex_string (rel32), paddress (gdbarch, oldloc),
999 hex_string (newrel), paddress (gdbarch, *to));
1000
1001 /* Write the adjusted jump into its displaced location. */
1002 append_insns (to, 5, insn);
1003 return;
1004 }
1005
1006 /* Adjust jumps with 32-bit relative addresses. Calls are already
1007 handled above. */
1008 if (insn[0] == 0xe9)
1009 offset = 1;
1010 /* Adjust conditional jumps. */
1011 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1012 offset = 2;
1013
1014 if (offset)
1015 {
1016 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1017 newrel = (oldloc - *to) + rel32;
1018 store_signed_integer (insn + offset, 4, byte_order, newrel);
1019 if (debug_displaced)
1020 fprintf_unfiltered (gdb_stdlog,
1021 "Adjusted insn rel32=%s at %s to"
1022 " rel32=%s at %s\n",
1023 hex_string (rel32), paddress (gdbarch, oldloc),
1024 hex_string (newrel), paddress (gdbarch, *to));
1025 }
1026
1027 /* Write the adjusted instructions into their displaced
1028 location. */
1029 append_insns (to, insn_length, buf);
1030 }
1031
1032 \f
1033 #ifdef I386_REGNO_TO_SYMMETRY
1034 #error "The Sequent Symmetry is no longer supported."
1035 #endif
1036
1037 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1038 and %esp "belong" to the calling function. Therefore these
1039 registers should be saved if they're going to be modified. */
1040
1041 /* The maximum number of saved registers. This should include all
1042 registers mentioned above, and %eip. */
1043 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1044
1045 struct i386_frame_cache
1046 {
1047 /* Base address. */
1048 CORE_ADDR base;
1049 int base_p;
1050 LONGEST sp_offset;
1051 CORE_ADDR pc;
1052
1053 /* Saved registers. */
1054 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1055 CORE_ADDR saved_sp;
1056 int saved_sp_reg;
1057 int pc_in_eax;
1058
1059 /* Stack space reserved for local variables. */
1060 long locals;
1061 };
1062
1063 /* Allocate and initialize a frame cache. */
1064
1065 static struct i386_frame_cache *
1066 i386_alloc_frame_cache (void)
1067 {
1068 struct i386_frame_cache *cache;
1069 int i;
1070
1071 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1072
1073 /* Base address. */
1074 cache->base_p = 0;
1075 cache->base = 0;
1076 cache->sp_offset = -4;
1077 cache->pc = 0;
1078
1079 /* Saved registers. We initialize these to -1 since zero is a valid
1080 offset (that's where %ebp is supposed to be stored). */
1081 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1082 cache->saved_regs[i] = -1;
1083 cache->saved_sp = 0;
1084 cache->saved_sp_reg = -1;
1085 cache->pc_in_eax = 0;
1086
1087 /* Frameless until proven otherwise. */
1088 cache->locals = -1;
1089
1090 return cache;
1091 }
1092
1093 /* If the instruction at PC is a jump, return the address of its
1094 target. Otherwise, return PC. */
1095
1096 static CORE_ADDR
1097 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1098 {
1099 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1100 gdb_byte op;
1101 long delta = 0;
1102 int data16 = 0;
1103
1104 if (target_read_code (pc, &op, 1))
1105 return pc;
1106
1107 if (op == 0x66)
1108 {
1109 data16 = 1;
1110
1111 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1112 }
1113
1114 switch (op)
1115 {
1116 case 0xe9:
1117 /* Relative jump: if data16 == 0, disp32, else disp16. */
1118 if (data16)
1119 {
1120 delta = read_memory_integer (pc + 2, 2, byte_order);
1121
1122 /* Include the size of the jmp instruction (including the
1123 0x66 prefix). */
1124 delta += 4;
1125 }
1126 else
1127 {
1128 delta = read_memory_integer (pc + 1, 4, byte_order);
1129
1130 /* Include the size of the jmp instruction. */
1131 delta += 5;
1132 }
1133 break;
1134 case 0xeb:
1135 /* Relative jump, disp8 (ignore data16). */
1136 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1137
1138 delta += data16 + 2;
1139 break;
1140 }
1141
1142 return pc + delta;
1143 }
1144
1145 /* Check whether PC points at a prologue for a function returning a
1146 structure or union. If so, it updates CACHE and returns the
1147 address of the first instruction after the code sequence that
1148 removes the "hidden" argument from the stack or CURRENT_PC,
1149 whichever is smaller. Otherwise, return PC. */
1150
1151 static CORE_ADDR
1152 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1153 struct i386_frame_cache *cache)
1154 {
1155 /* Functions that return a structure or union start with:
1156
1157 popl %eax 0x58
1158 xchgl %eax, (%esp) 0x87 0x04 0x24
1159 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1160
1161 (the System V compiler puts out the second `xchg' instruction,
1162 and the assembler doesn't try to optimize it, so the 'sib' form
1163 gets generated). This sequence is used to get the address of the
1164 return buffer for a function that returns a structure. */
1165 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1166 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1167 gdb_byte buf[4];
1168 gdb_byte op;
1169
1170 if (current_pc <= pc)
1171 return pc;
1172
1173 if (target_read_code (pc, &op, 1))
1174 return pc;
1175
1176 if (op != 0x58) /* popl %eax */
1177 return pc;
1178
1179 if (target_read_code (pc + 1, buf, 4))
1180 return pc;
1181
1182 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1183 return pc;
1184
1185 if (current_pc == pc)
1186 {
1187 cache->sp_offset += 4;
1188 return current_pc;
1189 }
1190
1191 if (current_pc == pc + 1)
1192 {
1193 cache->pc_in_eax = 1;
1194 return current_pc;
1195 }
1196
1197 if (buf[1] == proto1[1])
1198 return pc + 4;
1199 else
1200 return pc + 5;
1201 }
1202
1203 static CORE_ADDR
1204 i386_skip_probe (CORE_ADDR pc)
1205 {
1206 /* A function may start with
1207
1208 pushl constant
1209 call _probe
1210 addl $4, %esp
1211
1212 followed by
1213
1214 pushl %ebp
1215
1216 etc. */
1217 gdb_byte buf[8];
1218 gdb_byte op;
1219
1220 if (target_read_code (pc, &op, 1))
1221 return pc;
1222
1223 if (op == 0x68 || op == 0x6a)
1224 {
1225 int delta;
1226
1227 /* Skip past the `pushl' instruction; it has either a one-byte or a
1228 four-byte operand, depending on the opcode. */
1229 if (op == 0x68)
1230 delta = 5;
1231 else
1232 delta = 2;
1233
1234 /* Read the following 8 bytes, which should be `call _probe' (6
1235 bytes) followed by `addl $4,%esp' (2 bytes). */
1236 read_memory (pc + delta, buf, sizeof (buf));
1237 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1238 pc += delta + sizeof (buf);
1239 }
1240
1241 return pc;
1242 }
1243
1244 /* GCC 4.1 and later, can put code in the prologue to realign the
1245 stack pointer. Check whether PC points to such code, and update
1246 CACHE accordingly. Return the first instruction after the code
1247 sequence or CURRENT_PC, whichever is smaller. If we don't
1248 recognize the code, return PC. */
1249
1250 static CORE_ADDR
1251 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1252 struct i386_frame_cache *cache)
1253 {
1254 /* There are 2 code sequences to re-align stack before the frame
1255 gets set up:
1256
1257 1. Use a caller-saved saved register:
1258
1259 leal 4(%esp), %reg
1260 andl $-XXX, %esp
1261 pushl -4(%reg)
1262
1263 2. Use a callee-saved saved register:
1264
1265 pushl %reg
1266 leal 8(%esp), %reg
1267 andl $-XXX, %esp
1268 pushl -4(%reg)
1269
1270 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1271
1272 0x83 0xe4 0xf0 andl $-16, %esp
1273 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1274 */
1275
1276 gdb_byte buf[14];
1277 int reg;
1278 int offset, offset_and;
1279 static int regnums[8] = {
1280 I386_EAX_REGNUM, /* %eax */
1281 I386_ECX_REGNUM, /* %ecx */
1282 I386_EDX_REGNUM, /* %edx */
1283 I386_EBX_REGNUM, /* %ebx */
1284 I386_ESP_REGNUM, /* %esp */
1285 I386_EBP_REGNUM, /* %ebp */
1286 I386_ESI_REGNUM, /* %esi */
1287 I386_EDI_REGNUM /* %edi */
1288 };
1289
1290 if (target_read_code (pc, buf, sizeof buf))
1291 return pc;
1292
1293 /* Check caller-saved saved register. The first instruction has
1294 to be "leal 4(%esp), %reg". */
1295 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1296 {
1297 /* MOD must be binary 10 and R/M must be binary 100. */
1298 if ((buf[1] & 0xc7) != 0x44)
1299 return pc;
1300
1301 /* REG has register number. */
1302 reg = (buf[1] >> 3) & 7;
1303 offset = 4;
1304 }
1305 else
1306 {
1307 /* Check callee-saved saved register. The first instruction
1308 has to be "pushl %reg". */
1309 if ((buf[0] & 0xf8) != 0x50)
1310 return pc;
1311
1312 /* Get register. */
1313 reg = buf[0] & 0x7;
1314
1315 /* The next instruction has to be "leal 8(%esp), %reg". */
1316 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1317 return pc;
1318
1319 /* MOD must be binary 10 and R/M must be binary 100. */
1320 if ((buf[2] & 0xc7) != 0x44)
1321 return pc;
1322
1323 /* REG has register number. Registers in pushl and leal have to
1324 be the same. */
1325 if (reg != ((buf[2] >> 3) & 7))
1326 return pc;
1327
1328 offset = 5;
1329 }
1330
1331 /* Rigister can't be %esp nor %ebp. */
1332 if (reg == 4 || reg == 5)
1333 return pc;
1334
1335 /* The next instruction has to be "andl $-XXX, %esp". */
1336 if (buf[offset + 1] != 0xe4
1337 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1338 return pc;
1339
1340 offset_and = offset;
1341 offset += buf[offset] == 0x81 ? 6 : 3;
1342
1343 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1344 0xfc. REG must be binary 110 and MOD must be binary 01. */
1345 if (buf[offset] != 0xff
1346 || buf[offset + 2] != 0xfc
1347 || (buf[offset + 1] & 0xf8) != 0x70)
1348 return pc;
1349
1350 /* R/M has register. Registers in leal and pushl have to be the
1351 same. */
1352 if (reg != (buf[offset + 1] & 7))
1353 return pc;
1354
1355 if (current_pc > pc + offset_and)
1356 cache->saved_sp_reg = regnums[reg];
1357
1358 return min (pc + offset + 3, current_pc);
1359 }
1360
1361 /* Maximum instruction length we need to handle. */
1362 #define I386_MAX_MATCHED_INSN_LEN 6
1363
1364 /* Instruction description. */
1365 struct i386_insn
1366 {
1367 size_t len;
1368 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1369 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1370 };
1371
1372 /* Return whether instruction at PC matches PATTERN. */
1373
1374 static int
1375 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1376 {
1377 gdb_byte op;
1378
1379 if (target_read_code (pc, &op, 1))
1380 return 0;
1381
1382 if ((op & pattern.mask[0]) == pattern.insn[0])
1383 {
1384 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1385 int insn_matched = 1;
1386 size_t i;
1387
1388 gdb_assert (pattern.len > 1);
1389 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1390
1391 if (target_read_code (pc + 1, buf, pattern.len - 1))
1392 return 0;
1393
1394 for (i = 1; i < pattern.len; i++)
1395 {
1396 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1397 insn_matched = 0;
1398 }
1399 return insn_matched;
1400 }
1401 return 0;
1402 }
1403
1404 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1405 the first instruction description that matches. Otherwise, return
1406 NULL. */
1407
1408 static struct i386_insn *
1409 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1410 {
1411 struct i386_insn *pattern;
1412
1413 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1414 {
1415 if (i386_match_pattern (pc, *pattern))
1416 return pattern;
1417 }
1418
1419 return NULL;
1420 }
1421
1422 /* Return whether PC points inside a sequence of instructions that
1423 matches INSN_PATTERNS. */
1424
1425 static int
1426 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1427 {
1428 CORE_ADDR current_pc;
1429 int ix, i;
1430 struct i386_insn *insn;
1431
1432 insn = i386_match_insn (pc, insn_patterns);
1433 if (insn == NULL)
1434 return 0;
1435
1436 current_pc = pc;
1437 ix = insn - insn_patterns;
1438 for (i = ix - 1; i >= 0; i--)
1439 {
1440 current_pc -= insn_patterns[i].len;
1441
1442 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1443 return 0;
1444 }
1445
1446 current_pc = pc + insn->len;
1447 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1448 {
1449 if (!i386_match_pattern (current_pc, *insn))
1450 return 0;
1451
1452 current_pc += insn->len;
1453 }
1454
1455 return 1;
1456 }
1457
1458 /* Some special instructions that might be migrated by GCC into the
1459 part of the prologue that sets up the new stack frame. Because the
1460 stack frame hasn't been setup yet, no registers have been saved
1461 yet, and only the scratch registers %eax, %ecx and %edx can be
1462 touched. */
1463
1464 struct i386_insn i386_frame_setup_skip_insns[] =
1465 {
1466 /* Check for `movb imm8, r' and `movl imm32, r'.
1467
1468 ??? Should we handle 16-bit operand-sizes here? */
1469
1470 /* `movb imm8, %al' and `movb imm8, %ah' */
1471 /* `movb imm8, %cl' and `movb imm8, %ch' */
1472 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1473 /* `movb imm8, %dl' and `movb imm8, %dh' */
1474 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1475 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1476 { 5, { 0xb8 }, { 0xfe } },
1477 /* `movl imm32, %edx' */
1478 { 5, { 0xba }, { 0xff } },
1479
1480 /* Check for `mov imm32, r32'. Note that there is an alternative
1481 encoding for `mov m32, %eax'.
1482
1483 ??? Should we handle SIB adressing here?
1484 ??? Should we handle 16-bit operand-sizes here? */
1485
1486 /* `movl m32, %eax' */
1487 { 5, { 0xa1 }, { 0xff } },
1488 /* `movl m32, %eax' and `mov; m32, %ecx' */
1489 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1490 /* `movl m32, %edx' */
1491 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1492
1493 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1494 Because of the symmetry, there are actually two ways to encode
1495 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1496 opcode bytes 0x31 and 0x33 for `xorl'. */
1497
1498 /* `subl %eax, %eax' */
1499 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1500 /* `subl %ecx, %ecx' */
1501 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1502 /* `subl %edx, %edx' */
1503 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1504 /* `xorl %eax, %eax' */
1505 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1506 /* `xorl %ecx, %ecx' */
1507 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1508 /* `xorl %edx, %edx' */
1509 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1510 { 0 }
1511 };
1512
1513
1514 /* Check whether PC points to a no-op instruction. */
1515 static CORE_ADDR
1516 i386_skip_noop (CORE_ADDR pc)
1517 {
1518 gdb_byte op;
1519 int check = 1;
1520
1521 if (target_read_code (pc, &op, 1))
1522 return pc;
1523
1524 while (check)
1525 {
1526 check = 0;
1527 /* Ignore `nop' instruction. */
1528 if (op == 0x90)
1529 {
1530 pc += 1;
1531 if (target_read_code (pc, &op, 1))
1532 return pc;
1533 check = 1;
1534 }
1535 /* Ignore no-op instruction `mov %edi, %edi'.
1536 Microsoft system dlls often start with
1537 a `mov %edi,%edi' instruction.
1538 The 5 bytes before the function start are
1539 filled with `nop' instructions.
1540 This pattern can be used for hot-patching:
1541 The `mov %edi, %edi' instruction can be replaced by a
1542 near jump to the location of the 5 `nop' instructions
1543 which can be replaced by a 32-bit jump to anywhere
1544 in the 32-bit address space. */
1545
1546 else if (op == 0x8b)
1547 {
1548 if (target_read_code (pc + 1, &op, 1))
1549 return pc;
1550
1551 if (op == 0xff)
1552 {
1553 pc += 2;
1554 if (target_read_code (pc, &op, 1))
1555 return pc;
1556
1557 check = 1;
1558 }
1559 }
1560 }
1561 return pc;
1562 }
1563
1564 /* Check whether PC points at a code that sets up a new stack frame.
1565 If so, it updates CACHE and returns the address of the first
1566 instruction after the sequence that sets up the frame or LIMIT,
1567 whichever is smaller. If we don't recognize the code, return PC. */
1568
1569 static CORE_ADDR
1570 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1571 CORE_ADDR pc, CORE_ADDR limit,
1572 struct i386_frame_cache *cache)
1573 {
1574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1575 struct i386_insn *insn;
1576 gdb_byte op;
1577 int skip = 0;
1578
1579 if (limit <= pc)
1580 return limit;
1581
1582 if (target_read_code (pc, &op, 1))
1583 return pc;
1584
1585 if (op == 0x55) /* pushl %ebp */
1586 {
1587 /* Take into account that we've executed the `pushl %ebp' that
1588 starts this instruction sequence. */
1589 cache->saved_regs[I386_EBP_REGNUM] = 0;
1590 cache->sp_offset += 4;
1591 pc++;
1592
1593 /* If that's all, return now. */
1594 if (limit <= pc)
1595 return limit;
1596
1597 /* Check for some special instructions that might be migrated by
1598 GCC into the prologue and skip them. At this point in the
1599 prologue, code should only touch the scratch registers %eax,
1600 %ecx and %edx, so while the number of posibilities is sheer,
1601 it is limited.
1602
1603 Make sure we only skip these instructions if we later see the
1604 `movl %esp, %ebp' that actually sets up the frame. */
1605 while (pc + skip < limit)
1606 {
1607 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1608 if (insn == NULL)
1609 break;
1610
1611 skip += insn->len;
1612 }
1613
1614 /* If that's all, return now. */
1615 if (limit <= pc + skip)
1616 return limit;
1617
1618 if (target_read_code (pc + skip, &op, 1))
1619 return pc + skip;
1620
1621 /* The i386 prologue looks like
1622
1623 push %ebp
1624 mov %esp,%ebp
1625 sub $0x10,%esp
1626
1627 and a different prologue can be generated for atom.
1628
1629 push %ebp
1630 lea (%esp),%ebp
1631 lea -0x10(%esp),%esp
1632
1633 We handle both of them here. */
1634
1635 switch (op)
1636 {
1637 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1638 case 0x8b:
1639 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1640 != 0xec)
1641 return pc;
1642 pc += (skip + 2);
1643 break;
1644 case 0x89:
1645 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1646 != 0xe5)
1647 return pc;
1648 pc += (skip + 2);
1649 break;
1650 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1651 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1652 != 0x242c)
1653 return pc;
1654 pc += (skip + 3);
1655 break;
1656 default:
1657 return pc;
1658 }
1659
1660 /* OK, we actually have a frame. We just don't know how large
1661 it is yet. Set its size to zero. We'll adjust it if
1662 necessary. We also now commit to skipping the special
1663 instructions mentioned before. */
1664 cache->locals = 0;
1665
1666 /* If that's all, return now. */
1667 if (limit <= pc)
1668 return limit;
1669
1670 /* Check for stack adjustment
1671
1672 subl $XXX, %esp
1673 or
1674 lea -XXX(%esp),%esp
1675
1676 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1677 reg, so we don't have to worry about a data16 prefix. */
1678 if (target_read_code (pc, &op, 1))
1679 return pc;
1680 if (op == 0x83)
1681 {
1682 /* `subl' with 8-bit immediate. */
1683 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1684 /* Some instruction starting with 0x83 other than `subl'. */
1685 return pc;
1686
1687 /* `subl' with signed 8-bit immediate (though it wouldn't
1688 make sense to be negative). */
1689 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1690 return pc + 3;
1691 }
1692 else if (op == 0x81)
1693 {
1694 /* Maybe it is `subl' with a 32-bit immediate. */
1695 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1696 /* Some instruction starting with 0x81 other than `subl'. */
1697 return pc;
1698
1699 /* It is `subl' with a 32-bit immediate. */
1700 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1701 return pc + 6;
1702 }
1703 else if (op == 0x8d)
1704 {
1705 /* The ModR/M byte is 0x64. */
1706 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1707 return pc;
1708 /* 'lea' with 8-bit displacement. */
1709 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1710 return pc + 4;
1711 }
1712 else
1713 {
1714 /* Some instruction other than `subl' nor 'lea'. */
1715 return pc;
1716 }
1717 }
1718 else if (op == 0xc8) /* enter */
1719 {
1720 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1721 return pc + 4;
1722 }
1723
1724 return pc;
1725 }
1726
1727 /* Check whether PC points at code that saves registers on the stack.
1728 If so, it updates CACHE and returns the address of the first
1729 instruction after the register saves or CURRENT_PC, whichever is
1730 smaller. Otherwise, return PC. */
1731
1732 static CORE_ADDR
1733 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1734 struct i386_frame_cache *cache)
1735 {
1736 CORE_ADDR offset = 0;
1737 gdb_byte op;
1738 int i;
1739
1740 if (cache->locals > 0)
1741 offset -= cache->locals;
1742 for (i = 0; i < 8 && pc < current_pc; i++)
1743 {
1744 if (target_read_code (pc, &op, 1))
1745 return pc;
1746 if (op < 0x50 || op > 0x57)
1747 break;
1748
1749 offset -= 4;
1750 cache->saved_regs[op - 0x50] = offset;
1751 cache->sp_offset += 4;
1752 pc++;
1753 }
1754
1755 return pc;
1756 }
1757
1758 /* Do a full analysis of the prologue at PC and update CACHE
1759 accordingly. Bail out early if CURRENT_PC is reached. Return the
1760 address where the analysis stopped.
1761
1762 We handle these cases:
1763
1764 The startup sequence can be at the start of the function, or the
1765 function can start with a branch to startup code at the end.
1766
1767 %ebp can be set up with either the 'enter' instruction, or "pushl
1768 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1769 once used in the System V compiler).
1770
1771 Local space is allocated just below the saved %ebp by either the
1772 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1773 16-bit unsigned argument for space to allocate, and the 'addl'
1774 instruction could have either a signed byte, or 32-bit immediate.
1775
1776 Next, the registers used by this function are pushed. With the
1777 System V compiler they will always be in the order: %edi, %esi,
1778 %ebx (and sometimes a harmless bug causes it to also save but not
1779 restore %eax); however, the code below is willing to see the pushes
1780 in any order, and will handle up to 8 of them.
1781
1782 If the setup sequence is at the end of the function, then the next
1783 instruction will be a branch back to the start. */
1784
1785 static CORE_ADDR
1786 i386_analyze_prologue (struct gdbarch *gdbarch,
1787 CORE_ADDR pc, CORE_ADDR current_pc,
1788 struct i386_frame_cache *cache)
1789 {
1790 pc = i386_skip_noop (pc);
1791 pc = i386_follow_jump (gdbarch, pc);
1792 pc = i386_analyze_struct_return (pc, current_pc, cache);
1793 pc = i386_skip_probe (pc);
1794 pc = i386_analyze_stack_align (pc, current_pc, cache);
1795 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1796 return i386_analyze_register_saves (pc, current_pc, cache);
1797 }
1798
1799 /* Return PC of first real instruction. */
1800
1801 static CORE_ADDR
1802 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1803 {
1804 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1805
1806 static gdb_byte pic_pat[6] =
1807 {
1808 0xe8, 0, 0, 0, 0, /* call 0x0 */
1809 0x5b, /* popl %ebx */
1810 };
1811 struct i386_frame_cache cache;
1812 CORE_ADDR pc;
1813 gdb_byte op;
1814 int i;
1815 CORE_ADDR func_addr;
1816
1817 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1818 {
1819 CORE_ADDR post_prologue_pc
1820 = skip_prologue_using_sal (gdbarch, func_addr);
1821 struct symtab *s = find_pc_symtab (func_addr);
1822
1823 /* Clang always emits a line note before the prologue and another
1824 one after. We trust clang to emit usable line notes. */
1825 if (post_prologue_pc
1826 && (s != NULL
1827 && s->producer != NULL
1828 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1829 return max (start_pc, post_prologue_pc);
1830 }
1831
1832 cache.locals = -1;
1833 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1834 if (cache.locals < 0)
1835 return start_pc;
1836
1837 /* Found valid frame setup. */
1838
1839 /* The native cc on SVR4 in -K PIC mode inserts the following code
1840 to get the address of the global offset table (GOT) into register
1841 %ebx:
1842
1843 call 0x0
1844 popl %ebx
1845 movl %ebx,x(%ebp) (optional)
1846 addl y,%ebx
1847
1848 This code is with the rest of the prologue (at the end of the
1849 function), so we have to skip it to get to the first real
1850 instruction at the start of the function. */
1851
1852 for (i = 0; i < 6; i++)
1853 {
1854 if (target_read_code (pc + i, &op, 1))
1855 return pc;
1856
1857 if (pic_pat[i] != op)
1858 break;
1859 }
1860 if (i == 6)
1861 {
1862 int delta = 6;
1863
1864 if (target_read_code (pc + delta, &op, 1))
1865 return pc;
1866
1867 if (op == 0x89) /* movl %ebx, x(%ebp) */
1868 {
1869 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1870
1871 if (op == 0x5d) /* One byte offset from %ebp. */
1872 delta += 3;
1873 else if (op == 0x9d) /* Four byte offset from %ebp. */
1874 delta += 6;
1875 else /* Unexpected instruction. */
1876 delta = 0;
1877
1878 if (target_read_code (pc + delta, &op, 1))
1879 return pc;
1880 }
1881
1882 /* addl y,%ebx */
1883 if (delta > 0 && op == 0x81
1884 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1885 == 0xc3)
1886 {
1887 pc += delta + 6;
1888 }
1889 }
1890
1891 /* If the function starts with a branch (to startup code at the end)
1892 the last instruction should bring us back to the first
1893 instruction of the real code. */
1894 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1895 pc = i386_follow_jump (gdbarch, pc);
1896
1897 return pc;
1898 }
1899
1900 /* Check that the code pointed to by PC corresponds to a call to
1901 __main, skip it if so. Return PC otherwise. */
1902
1903 CORE_ADDR
1904 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1905 {
1906 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1907 gdb_byte op;
1908
1909 if (target_read_code (pc, &op, 1))
1910 return pc;
1911 if (op == 0xe8)
1912 {
1913 gdb_byte buf[4];
1914
1915 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1916 {
1917 /* Make sure address is computed correctly as a 32bit
1918 integer even if CORE_ADDR is 64 bit wide. */
1919 struct bound_minimal_symbol s;
1920 CORE_ADDR call_dest;
1921
1922 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1923 call_dest = call_dest & 0xffffffffU;
1924 s = lookup_minimal_symbol_by_pc (call_dest);
1925 if (s.minsym != NULL
1926 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1927 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1928 pc += 5;
1929 }
1930 }
1931
1932 return pc;
1933 }
1934
1935 /* This function is 64-bit safe. */
1936
1937 static CORE_ADDR
1938 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1939 {
1940 gdb_byte buf[8];
1941
1942 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1943 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1944 }
1945 \f
1946
1947 /* Normal frames. */
1948
1949 static void
1950 i386_frame_cache_1 (struct frame_info *this_frame,
1951 struct i386_frame_cache *cache)
1952 {
1953 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1954 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1955 gdb_byte buf[4];
1956 int i;
1957
1958 cache->pc = get_frame_func (this_frame);
1959
1960 /* In principle, for normal frames, %ebp holds the frame pointer,
1961 which holds the base address for the current stack frame.
1962 However, for functions that don't need it, the frame pointer is
1963 optional. For these "frameless" functions the frame pointer is
1964 actually the frame pointer of the calling frame. Signal
1965 trampolines are just a special case of a "frameless" function.
1966 They (usually) share their frame pointer with the frame that was
1967 in progress when the signal occurred. */
1968
1969 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1970 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1971 if (cache->base == 0)
1972 {
1973 cache->base_p = 1;
1974 return;
1975 }
1976
1977 /* For normal frames, %eip is stored at 4(%ebp). */
1978 cache->saved_regs[I386_EIP_REGNUM] = 4;
1979
1980 if (cache->pc != 0)
1981 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1982 cache);
1983
1984 if (cache->locals < 0)
1985 {
1986 /* We didn't find a valid frame, which means that CACHE->base
1987 currently holds the frame pointer for our calling frame. If
1988 we're at the start of a function, or somewhere half-way its
1989 prologue, the function's frame probably hasn't been fully
1990 setup yet. Try to reconstruct the base address for the stack
1991 frame by looking at the stack pointer. For truly "frameless"
1992 functions this might work too. */
1993
1994 if (cache->saved_sp_reg != -1)
1995 {
1996 /* Saved stack pointer has been saved. */
1997 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1998 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1999
2000 /* We're halfway aligning the stack. */
2001 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2002 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2003
2004 /* This will be added back below. */
2005 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2006 }
2007 else if (cache->pc != 0
2008 || target_read_code (get_frame_pc (this_frame), buf, 1))
2009 {
2010 /* We're in a known function, but did not find a frame
2011 setup. Assume that the function does not use %ebp.
2012 Alternatively, we may have jumped to an invalid
2013 address; in that case there is definitely no new
2014 frame in %ebp. */
2015 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2016 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2017 + cache->sp_offset;
2018 }
2019 else
2020 /* We're in an unknown function. We could not find the start
2021 of the function to analyze the prologue; our best option is
2022 to assume a typical frame layout with the caller's %ebp
2023 saved. */
2024 cache->saved_regs[I386_EBP_REGNUM] = 0;
2025 }
2026
2027 if (cache->saved_sp_reg != -1)
2028 {
2029 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2030 register may be unavailable). */
2031 if (cache->saved_sp == 0
2032 && deprecated_frame_register_read (this_frame,
2033 cache->saved_sp_reg, buf))
2034 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2035 }
2036 /* Now that we have the base address for the stack frame we can
2037 calculate the value of %esp in the calling frame. */
2038 else if (cache->saved_sp == 0)
2039 cache->saved_sp = cache->base + 8;
2040
2041 /* Adjust all the saved registers such that they contain addresses
2042 instead of offsets. */
2043 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2044 if (cache->saved_regs[i] != -1)
2045 cache->saved_regs[i] += cache->base;
2046
2047 cache->base_p = 1;
2048 }
2049
2050 static struct i386_frame_cache *
2051 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2052 {
2053 volatile struct gdb_exception ex;
2054 struct i386_frame_cache *cache;
2055
2056 if (*this_cache)
2057 return *this_cache;
2058
2059 cache = i386_alloc_frame_cache ();
2060 *this_cache = cache;
2061
2062 TRY_CATCH (ex, RETURN_MASK_ERROR)
2063 {
2064 i386_frame_cache_1 (this_frame, cache);
2065 }
2066 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2067 throw_exception (ex);
2068
2069 return cache;
2070 }
2071
2072 static void
2073 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2074 struct frame_id *this_id)
2075 {
2076 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2077
2078 if (!cache->base_p)
2079 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2080 else if (cache->base == 0)
2081 {
2082 /* This marks the outermost frame. */
2083 }
2084 else
2085 {
2086 /* See the end of i386_push_dummy_call. */
2087 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2088 }
2089 }
2090
2091 static enum unwind_stop_reason
2092 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2093 void **this_cache)
2094 {
2095 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2096
2097 if (!cache->base_p)
2098 return UNWIND_UNAVAILABLE;
2099
2100 /* This marks the outermost frame. */
2101 if (cache->base == 0)
2102 return UNWIND_OUTERMOST;
2103
2104 return UNWIND_NO_REASON;
2105 }
2106
2107 static struct value *
2108 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2109 int regnum)
2110 {
2111 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2112
2113 gdb_assert (regnum >= 0);
2114
2115 /* The System V ABI says that:
2116
2117 "The flags register contains the system flags, such as the
2118 direction flag and the carry flag. The direction flag must be
2119 set to the forward (that is, zero) direction before entry and
2120 upon exit from a function. Other user flags have no specified
2121 role in the standard calling sequence and are not preserved."
2122
2123 To guarantee the "upon exit" part of that statement we fake a
2124 saved flags register that has its direction flag cleared.
2125
2126 Note that GCC doesn't seem to rely on the fact that the direction
2127 flag is cleared after a function return; it always explicitly
2128 clears the flag before operations where it matters.
2129
2130 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2131 right thing to do. The way we fake the flags register here makes
2132 it impossible to change it. */
2133
2134 if (regnum == I386_EFLAGS_REGNUM)
2135 {
2136 ULONGEST val;
2137
2138 val = get_frame_register_unsigned (this_frame, regnum);
2139 val &= ~(1 << 10);
2140 return frame_unwind_got_constant (this_frame, regnum, val);
2141 }
2142
2143 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2144 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2145
2146 if (regnum == I386_ESP_REGNUM
2147 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2148 {
2149 /* If the SP has been saved, but we don't know where, then this
2150 means that SAVED_SP_REG register was found unavailable back
2151 when we built the cache. */
2152 if (cache->saved_sp == 0)
2153 return frame_unwind_got_register (this_frame, regnum,
2154 cache->saved_sp_reg);
2155 else
2156 return frame_unwind_got_constant (this_frame, regnum,
2157 cache->saved_sp);
2158 }
2159
2160 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2161 return frame_unwind_got_memory (this_frame, regnum,
2162 cache->saved_regs[regnum]);
2163
2164 return frame_unwind_got_register (this_frame, regnum, regnum);
2165 }
2166
2167 static const struct frame_unwind i386_frame_unwind =
2168 {
2169 NORMAL_FRAME,
2170 i386_frame_unwind_stop_reason,
2171 i386_frame_this_id,
2172 i386_frame_prev_register,
2173 NULL,
2174 default_frame_sniffer
2175 };
2176
2177 /* Normal frames, but in a function epilogue. */
2178
2179 /* The epilogue is defined here as the 'ret' instruction, which will
2180 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2181 the function's stack frame. */
2182
2183 static int
2184 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2185 {
2186 gdb_byte insn;
2187 struct symtab *symtab;
2188
2189 symtab = find_pc_symtab (pc);
2190 if (symtab && symtab->epilogue_unwind_valid)
2191 return 0;
2192
2193 if (target_read_memory (pc, &insn, 1))
2194 return 0; /* Can't read memory at pc. */
2195
2196 if (insn != 0xc3) /* 'ret' instruction. */
2197 return 0;
2198
2199 return 1;
2200 }
2201
2202 static int
2203 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2204 struct frame_info *this_frame,
2205 void **this_prologue_cache)
2206 {
2207 if (frame_relative_level (this_frame) == 0)
2208 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2209 get_frame_pc (this_frame));
2210 else
2211 return 0;
2212 }
2213
2214 static struct i386_frame_cache *
2215 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2216 {
2217 volatile struct gdb_exception ex;
2218 struct i386_frame_cache *cache;
2219 CORE_ADDR sp;
2220
2221 if (*this_cache)
2222 return *this_cache;
2223
2224 cache = i386_alloc_frame_cache ();
2225 *this_cache = cache;
2226
2227 TRY_CATCH (ex, RETURN_MASK_ERROR)
2228 {
2229 cache->pc = get_frame_func (this_frame);
2230
2231 /* At this point the stack looks as if we just entered the
2232 function, with the return address at the top of the
2233 stack. */
2234 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2235 cache->base = sp + cache->sp_offset;
2236 cache->saved_sp = cache->base + 8;
2237 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2238
2239 cache->base_p = 1;
2240 }
2241 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2242 throw_exception (ex);
2243
2244 return cache;
2245 }
2246
2247 static enum unwind_stop_reason
2248 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2249 void **this_cache)
2250 {
2251 struct i386_frame_cache *cache =
2252 i386_epilogue_frame_cache (this_frame, this_cache);
2253
2254 if (!cache->base_p)
2255 return UNWIND_UNAVAILABLE;
2256
2257 return UNWIND_NO_REASON;
2258 }
2259
2260 static void
2261 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2262 void **this_cache,
2263 struct frame_id *this_id)
2264 {
2265 struct i386_frame_cache *cache =
2266 i386_epilogue_frame_cache (this_frame, this_cache);
2267
2268 if (!cache->base_p)
2269 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2270 else
2271 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2272 }
2273
2274 static struct value *
2275 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2276 void **this_cache, int regnum)
2277 {
2278 /* Make sure we've initialized the cache. */
2279 i386_epilogue_frame_cache (this_frame, this_cache);
2280
2281 return i386_frame_prev_register (this_frame, this_cache, regnum);
2282 }
2283
2284 static const struct frame_unwind i386_epilogue_frame_unwind =
2285 {
2286 NORMAL_FRAME,
2287 i386_epilogue_frame_unwind_stop_reason,
2288 i386_epilogue_frame_this_id,
2289 i386_epilogue_frame_prev_register,
2290 NULL,
2291 i386_epilogue_frame_sniffer
2292 };
2293 \f
2294
2295 /* Stack-based trampolines. */
2296
2297 /* These trampolines are used on cross x86 targets, when taking the
2298 address of a nested function. When executing these trampolines,
2299 no stack frame is set up, so we are in a similar situation as in
2300 epilogues and i386_epilogue_frame_this_id can be re-used. */
2301
2302 /* Static chain passed in register. */
2303
2304 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2305 {
2306 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2307 { 5, { 0xb8 }, { 0xfe } },
2308
2309 /* `jmp imm32' */
2310 { 5, { 0xe9 }, { 0xff } },
2311
2312 {0}
2313 };
2314
2315 /* Static chain passed on stack (when regparm=3). */
2316
2317 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2318 {
2319 /* `push imm32' */
2320 { 5, { 0x68 }, { 0xff } },
2321
2322 /* `jmp imm32' */
2323 { 5, { 0xe9 }, { 0xff } },
2324
2325 {0}
2326 };
2327
2328 /* Return whether PC points inside a stack trampoline. */
2329
2330 static int
2331 i386_in_stack_tramp_p (CORE_ADDR pc)
2332 {
2333 gdb_byte insn;
2334 const char *name;
2335
2336 /* A stack trampoline is detected if no name is associated
2337 to the current pc and if it points inside a trampoline
2338 sequence. */
2339
2340 find_pc_partial_function (pc, &name, NULL, NULL);
2341 if (name)
2342 return 0;
2343
2344 if (target_read_memory (pc, &insn, 1))
2345 return 0;
2346
2347 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2348 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2349 return 0;
2350
2351 return 1;
2352 }
2353
2354 static int
2355 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2356 struct frame_info *this_frame,
2357 void **this_cache)
2358 {
2359 if (frame_relative_level (this_frame) == 0)
2360 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2361 else
2362 return 0;
2363 }
2364
2365 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2366 {
2367 NORMAL_FRAME,
2368 i386_epilogue_frame_unwind_stop_reason,
2369 i386_epilogue_frame_this_id,
2370 i386_epilogue_frame_prev_register,
2371 NULL,
2372 i386_stack_tramp_frame_sniffer
2373 };
2374 \f
2375 /* Generate a bytecode expression to get the value of the saved PC. */
2376
2377 static void
2378 i386_gen_return_address (struct gdbarch *gdbarch,
2379 struct agent_expr *ax, struct axs_value *value,
2380 CORE_ADDR scope)
2381 {
2382 /* The following sequence assumes the traditional use of the base
2383 register. */
2384 ax_reg (ax, I386_EBP_REGNUM);
2385 ax_const_l (ax, 4);
2386 ax_simple (ax, aop_add);
2387 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2388 value->kind = axs_lvalue_memory;
2389 }
2390 \f
2391
2392 /* Signal trampolines. */
2393
2394 static struct i386_frame_cache *
2395 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2396 {
2397 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2399 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2400 volatile struct gdb_exception ex;
2401 struct i386_frame_cache *cache;
2402 CORE_ADDR addr;
2403 gdb_byte buf[4];
2404
2405 if (*this_cache)
2406 return *this_cache;
2407
2408 cache = i386_alloc_frame_cache ();
2409
2410 TRY_CATCH (ex, RETURN_MASK_ERROR)
2411 {
2412 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2413 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2414
2415 addr = tdep->sigcontext_addr (this_frame);
2416 if (tdep->sc_reg_offset)
2417 {
2418 int i;
2419
2420 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2421
2422 for (i = 0; i < tdep->sc_num_regs; i++)
2423 if (tdep->sc_reg_offset[i] != -1)
2424 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2425 }
2426 else
2427 {
2428 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2429 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2430 }
2431
2432 cache->base_p = 1;
2433 }
2434 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2435 throw_exception (ex);
2436
2437 *this_cache = cache;
2438 return cache;
2439 }
2440
2441 static enum unwind_stop_reason
2442 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2443 void **this_cache)
2444 {
2445 struct i386_frame_cache *cache =
2446 i386_sigtramp_frame_cache (this_frame, this_cache);
2447
2448 if (!cache->base_p)
2449 return UNWIND_UNAVAILABLE;
2450
2451 return UNWIND_NO_REASON;
2452 }
2453
2454 static void
2455 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2456 struct frame_id *this_id)
2457 {
2458 struct i386_frame_cache *cache =
2459 i386_sigtramp_frame_cache (this_frame, this_cache);
2460
2461 if (!cache->base_p)
2462 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2463 else
2464 {
2465 /* See the end of i386_push_dummy_call. */
2466 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2467 }
2468 }
2469
2470 static struct value *
2471 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2472 void **this_cache, int regnum)
2473 {
2474 /* Make sure we've initialized the cache. */
2475 i386_sigtramp_frame_cache (this_frame, this_cache);
2476
2477 return i386_frame_prev_register (this_frame, this_cache, regnum);
2478 }
2479
2480 static int
2481 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2482 struct frame_info *this_frame,
2483 void **this_prologue_cache)
2484 {
2485 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2486
2487 /* We shouldn't even bother if we don't have a sigcontext_addr
2488 handler. */
2489 if (tdep->sigcontext_addr == NULL)
2490 return 0;
2491
2492 if (tdep->sigtramp_p != NULL)
2493 {
2494 if (tdep->sigtramp_p (this_frame))
2495 return 1;
2496 }
2497
2498 if (tdep->sigtramp_start != 0)
2499 {
2500 CORE_ADDR pc = get_frame_pc (this_frame);
2501
2502 gdb_assert (tdep->sigtramp_end != 0);
2503 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2504 return 1;
2505 }
2506
2507 return 0;
2508 }
2509
2510 static const struct frame_unwind i386_sigtramp_frame_unwind =
2511 {
2512 SIGTRAMP_FRAME,
2513 i386_sigtramp_frame_unwind_stop_reason,
2514 i386_sigtramp_frame_this_id,
2515 i386_sigtramp_frame_prev_register,
2516 NULL,
2517 i386_sigtramp_frame_sniffer
2518 };
2519 \f
2520
2521 static CORE_ADDR
2522 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2523 {
2524 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2525
2526 return cache->base;
2527 }
2528
2529 static const struct frame_base i386_frame_base =
2530 {
2531 &i386_frame_unwind,
2532 i386_frame_base_address,
2533 i386_frame_base_address,
2534 i386_frame_base_address
2535 };
2536
2537 static struct frame_id
2538 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2539 {
2540 CORE_ADDR fp;
2541
2542 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2543
2544 /* See the end of i386_push_dummy_call. */
2545 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2546 }
2547
2548 /* _Decimal128 function return values need 16-byte alignment on the
2549 stack. */
2550
2551 static CORE_ADDR
2552 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2553 {
2554 return sp & -(CORE_ADDR)16;
2555 }
2556 \f
2557
2558 /* Figure out where the longjmp will land. Slurp the args out of the
2559 stack. We expect the first arg to be a pointer to the jmp_buf
2560 structure from which we extract the address that we will land at.
2561 This address is copied into PC. This routine returns non-zero on
2562 success. */
2563
2564 static int
2565 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2566 {
2567 gdb_byte buf[4];
2568 CORE_ADDR sp, jb_addr;
2569 struct gdbarch *gdbarch = get_frame_arch (frame);
2570 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2571 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2572
2573 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2574 longjmp will land. */
2575 if (jb_pc_offset == -1)
2576 return 0;
2577
2578 get_frame_register (frame, I386_ESP_REGNUM, buf);
2579 sp = extract_unsigned_integer (buf, 4, byte_order);
2580 if (target_read_memory (sp + 4, buf, 4))
2581 return 0;
2582
2583 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2584 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2585 return 0;
2586
2587 *pc = extract_unsigned_integer (buf, 4, byte_order);
2588 return 1;
2589 }
2590 \f
2591
2592 /* Check whether TYPE must be 16-byte-aligned when passed as a
2593 function argument. 16-byte vectors, _Decimal128 and structures or
2594 unions containing such types must be 16-byte-aligned; other
2595 arguments are 4-byte-aligned. */
2596
2597 static int
2598 i386_16_byte_align_p (struct type *type)
2599 {
2600 type = check_typedef (type);
2601 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2602 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2603 && TYPE_LENGTH (type) == 16)
2604 return 1;
2605 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2606 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2607 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2608 || TYPE_CODE (type) == TYPE_CODE_UNION)
2609 {
2610 int i;
2611 for (i = 0; i < TYPE_NFIELDS (type); i++)
2612 {
2613 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2614 return 1;
2615 }
2616 }
2617 return 0;
2618 }
2619
2620 /* Implementation for set_gdbarch_push_dummy_code. */
2621
2622 static CORE_ADDR
2623 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2624 struct value **args, int nargs, struct type *value_type,
2625 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2626 struct regcache *regcache)
2627 {
2628 /* Use 0xcc breakpoint - 1 byte. */
2629 *bp_addr = sp - 1;
2630 *real_pc = funaddr;
2631
2632 /* Keep the stack aligned. */
2633 return sp - 16;
2634 }
2635
2636 static CORE_ADDR
2637 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2638 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2639 struct value **args, CORE_ADDR sp, int struct_return,
2640 CORE_ADDR struct_addr)
2641 {
2642 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2643 gdb_byte buf[4];
2644 int i;
2645 int write_pass;
2646 int args_space = 0;
2647
2648 /* Determine the total space required for arguments and struct
2649 return address in a first pass (allowing for 16-byte-aligned
2650 arguments), then push arguments in a second pass. */
2651
2652 for (write_pass = 0; write_pass < 2; write_pass++)
2653 {
2654 int args_space_used = 0;
2655
2656 if (struct_return)
2657 {
2658 if (write_pass)
2659 {
2660 /* Push value address. */
2661 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2662 write_memory (sp, buf, 4);
2663 args_space_used += 4;
2664 }
2665 else
2666 args_space += 4;
2667 }
2668
2669 for (i = 0; i < nargs; i++)
2670 {
2671 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2672
2673 if (write_pass)
2674 {
2675 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2676 args_space_used = align_up (args_space_used, 16);
2677
2678 write_memory (sp + args_space_used,
2679 value_contents_all (args[i]), len);
2680 /* The System V ABI says that:
2681
2682 "An argument's size is increased, if necessary, to make it a
2683 multiple of [32-bit] words. This may require tail padding,
2684 depending on the size of the argument."
2685
2686 This makes sure the stack stays word-aligned. */
2687 args_space_used += align_up (len, 4);
2688 }
2689 else
2690 {
2691 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2692 args_space = align_up (args_space, 16);
2693 args_space += align_up (len, 4);
2694 }
2695 }
2696
2697 if (!write_pass)
2698 {
2699 sp -= args_space;
2700
2701 /* The original System V ABI only requires word alignment,
2702 but modern incarnations need 16-byte alignment in order
2703 to support SSE. Since wasting a few bytes here isn't
2704 harmful we unconditionally enforce 16-byte alignment. */
2705 sp &= ~0xf;
2706 }
2707 }
2708
2709 /* Store return address. */
2710 sp -= 4;
2711 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2712 write_memory (sp, buf, 4);
2713
2714 /* Finally, update the stack pointer... */
2715 store_unsigned_integer (buf, 4, byte_order, sp);
2716 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2717
2718 /* ...and fake a frame pointer. */
2719 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2720
2721 /* MarkK wrote: This "+ 8" is all over the place:
2722 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2723 i386_dummy_id). It's there, since all frame unwinders for
2724 a given target have to agree (within a certain margin) on the
2725 definition of the stack address of a frame. Otherwise frame id
2726 comparison might not work correctly. Since DWARF2/GCC uses the
2727 stack address *before* the function call as a frame's CFA. On
2728 the i386, when %ebp is used as a frame pointer, the offset
2729 between the contents %ebp and the CFA as defined by GCC. */
2730 return sp + 8;
2731 }
2732
2733 /* These registers are used for returning integers (and on some
2734 targets also for returning `struct' and `union' values when their
2735 size and alignment match an integer type). */
2736 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2737 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2738
2739 /* Read, for architecture GDBARCH, a function return value of TYPE
2740 from REGCACHE, and copy that into VALBUF. */
2741
2742 static void
2743 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2744 struct regcache *regcache, gdb_byte *valbuf)
2745 {
2746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2747 int len = TYPE_LENGTH (type);
2748 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2749
2750 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2751 {
2752 if (tdep->st0_regnum < 0)
2753 {
2754 warning (_("Cannot find floating-point return value."));
2755 memset (valbuf, 0, len);
2756 return;
2757 }
2758
2759 /* Floating-point return values can be found in %st(0). Convert
2760 its contents to the desired type. This is probably not
2761 exactly how it would happen on the target itself, but it is
2762 the best we can do. */
2763 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2764 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2765 }
2766 else
2767 {
2768 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2769 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2770
2771 if (len <= low_size)
2772 {
2773 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2774 memcpy (valbuf, buf, len);
2775 }
2776 else if (len <= (low_size + high_size))
2777 {
2778 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2779 memcpy (valbuf, buf, low_size);
2780 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2781 memcpy (valbuf + low_size, buf, len - low_size);
2782 }
2783 else
2784 internal_error (__FILE__, __LINE__,
2785 _("Cannot extract return value of %d bytes long."),
2786 len);
2787 }
2788 }
2789
2790 /* Write, for architecture GDBARCH, a function return value of TYPE
2791 from VALBUF into REGCACHE. */
2792
2793 static void
2794 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2795 struct regcache *regcache, const gdb_byte *valbuf)
2796 {
2797 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2798 int len = TYPE_LENGTH (type);
2799
2800 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2801 {
2802 ULONGEST fstat;
2803 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2804
2805 if (tdep->st0_regnum < 0)
2806 {
2807 warning (_("Cannot set floating-point return value."));
2808 return;
2809 }
2810
2811 /* Returning floating-point values is a bit tricky. Apart from
2812 storing the return value in %st(0), we have to simulate the
2813 state of the FPU at function return point. */
2814
2815 /* Convert the value found in VALBUF to the extended
2816 floating-point format used by the FPU. This is probably
2817 not exactly how it would happen on the target itself, but
2818 it is the best we can do. */
2819 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2820 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2821
2822 /* Set the top of the floating-point register stack to 7. The
2823 actual value doesn't really matter, but 7 is what a normal
2824 function return would end up with if the program started out
2825 with a freshly initialized FPU. */
2826 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2827 fstat |= (7 << 11);
2828 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2829
2830 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2831 the floating-point register stack to 7, the appropriate value
2832 for the tag word is 0x3fff. */
2833 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2834 }
2835 else
2836 {
2837 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2838 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2839
2840 if (len <= low_size)
2841 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2842 else if (len <= (low_size + high_size))
2843 {
2844 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2845 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2846 len - low_size, valbuf + low_size);
2847 }
2848 else
2849 internal_error (__FILE__, __LINE__,
2850 _("Cannot store return value of %d bytes long."), len);
2851 }
2852 }
2853 \f
2854
2855 /* This is the variable that is set with "set struct-convention", and
2856 its legitimate values. */
2857 static const char default_struct_convention[] = "default";
2858 static const char pcc_struct_convention[] = "pcc";
2859 static const char reg_struct_convention[] = "reg";
2860 static const char *const valid_conventions[] =
2861 {
2862 default_struct_convention,
2863 pcc_struct_convention,
2864 reg_struct_convention,
2865 NULL
2866 };
2867 static const char *struct_convention = default_struct_convention;
2868
2869 /* Return non-zero if TYPE, which is assumed to be a structure,
2870 a union type, or an array type, should be returned in registers
2871 for architecture GDBARCH. */
2872
2873 static int
2874 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2875 {
2876 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2877 enum type_code code = TYPE_CODE (type);
2878 int len = TYPE_LENGTH (type);
2879
2880 gdb_assert (code == TYPE_CODE_STRUCT
2881 || code == TYPE_CODE_UNION
2882 || code == TYPE_CODE_ARRAY);
2883
2884 if (struct_convention == pcc_struct_convention
2885 || (struct_convention == default_struct_convention
2886 && tdep->struct_return == pcc_struct_return))
2887 return 0;
2888
2889 /* Structures consisting of a single `float', `double' or 'long
2890 double' member are returned in %st(0). */
2891 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2892 {
2893 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2894 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2895 return (len == 4 || len == 8 || len == 12);
2896 }
2897
2898 return (len == 1 || len == 2 || len == 4 || len == 8);
2899 }
2900
2901 /* Determine, for architecture GDBARCH, how a return value of TYPE
2902 should be returned. If it is supposed to be returned in registers,
2903 and READBUF is non-zero, read the appropriate value from REGCACHE,
2904 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2905 from WRITEBUF into REGCACHE. */
2906
2907 static enum return_value_convention
2908 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2909 struct type *type, struct regcache *regcache,
2910 gdb_byte *readbuf, const gdb_byte *writebuf)
2911 {
2912 enum type_code code = TYPE_CODE (type);
2913
2914 if (((code == TYPE_CODE_STRUCT
2915 || code == TYPE_CODE_UNION
2916 || code == TYPE_CODE_ARRAY)
2917 && !i386_reg_struct_return_p (gdbarch, type))
2918 /* Complex double and long double uses the struct return covention. */
2919 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2920 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2921 /* 128-bit decimal float uses the struct return convention. */
2922 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2923 {
2924 /* The System V ABI says that:
2925
2926 "A function that returns a structure or union also sets %eax
2927 to the value of the original address of the caller's area
2928 before it returns. Thus when the caller receives control
2929 again, the address of the returned object resides in register
2930 %eax and can be used to access the object."
2931
2932 So the ABI guarantees that we can always find the return
2933 value just after the function has returned. */
2934
2935 /* Note that the ABI doesn't mention functions returning arrays,
2936 which is something possible in certain languages such as Ada.
2937 In this case, the value is returned as if it was wrapped in
2938 a record, so the convention applied to records also applies
2939 to arrays. */
2940
2941 if (readbuf)
2942 {
2943 ULONGEST addr;
2944
2945 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2946 read_memory (addr, readbuf, TYPE_LENGTH (type));
2947 }
2948
2949 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2950 }
2951
2952 /* This special case is for structures consisting of a single
2953 `float', `double' or 'long double' member. These structures are
2954 returned in %st(0). For these structures, we call ourselves
2955 recursively, changing TYPE into the type of the first member of
2956 the structure. Since that should work for all structures that
2957 have only one member, we don't bother to check the member's type
2958 here. */
2959 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2960 {
2961 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2962 return i386_return_value (gdbarch, function, type, regcache,
2963 readbuf, writebuf);
2964 }
2965
2966 if (readbuf)
2967 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2968 if (writebuf)
2969 i386_store_return_value (gdbarch, type, regcache, writebuf);
2970
2971 return RETURN_VALUE_REGISTER_CONVENTION;
2972 }
2973 \f
2974
2975 struct type *
2976 i387_ext_type (struct gdbarch *gdbarch)
2977 {
2978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2979
2980 if (!tdep->i387_ext_type)
2981 {
2982 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2983 gdb_assert (tdep->i387_ext_type != NULL);
2984 }
2985
2986 return tdep->i387_ext_type;
2987 }
2988
2989 /* Construct type for pseudo BND registers. We can't use
2990 tdesc_find_type since a complement of one value has to be used
2991 to describe the upper bound. */
2992
2993 static struct type *
2994 i386_bnd_type (struct gdbarch *gdbarch)
2995 {
2996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2997
2998
2999 if (!tdep->i386_bnd_type)
3000 {
3001 struct type *t, *bound_t;
3002 const struct builtin_type *bt = builtin_type (gdbarch);
3003
3004 /* The type we're building is described bellow: */
3005 #if 0
3006 struct __bound128
3007 {
3008 void *lbound;
3009 void *ubound; /* One complement of raw ubound field. */
3010 };
3011 #endif
3012
3013 t = arch_composite_type (gdbarch,
3014 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3015
3016 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3017 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3018
3019 TYPE_NAME (t) = "builtin_type_bound128";
3020 tdep->i386_bnd_type = t;
3021 }
3022
3023 return tdep->i386_bnd_type;
3024 }
3025
3026 /* Construct vector type for pseudo ZMM registers. We can't use
3027 tdesc_find_type since ZMM isn't described in target description. */
3028
3029 static struct type *
3030 i386_zmm_type (struct gdbarch *gdbarch)
3031 {
3032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3033
3034 if (!tdep->i386_zmm_type)
3035 {
3036 const struct builtin_type *bt = builtin_type (gdbarch);
3037
3038 /* The type we're building is this: */
3039 #if 0
3040 union __gdb_builtin_type_vec512i
3041 {
3042 int128_t uint128[4];
3043 int64_t v4_int64[8];
3044 int32_t v8_int32[16];
3045 int16_t v16_int16[32];
3046 int8_t v32_int8[64];
3047 double v4_double[8];
3048 float v8_float[16];
3049 };
3050 #endif
3051
3052 struct type *t;
3053
3054 t = arch_composite_type (gdbarch,
3055 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3056 append_composite_type_field (t, "v16_float",
3057 init_vector_type (bt->builtin_float, 16));
3058 append_composite_type_field (t, "v8_double",
3059 init_vector_type (bt->builtin_double, 8));
3060 append_composite_type_field (t, "v64_int8",
3061 init_vector_type (bt->builtin_int8, 64));
3062 append_composite_type_field (t, "v32_int16",
3063 init_vector_type (bt->builtin_int16, 32));
3064 append_composite_type_field (t, "v16_int32",
3065 init_vector_type (bt->builtin_int32, 16));
3066 append_composite_type_field (t, "v8_int64",
3067 init_vector_type (bt->builtin_int64, 8));
3068 append_composite_type_field (t, "v4_int128",
3069 init_vector_type (bt->builtin_int128, 4));
3070
3071 TYPE_VECTOR (t) = 1;
3072 TYPE_NAME (t) = "builtin_type_vec512i";
3073 tdep->i386_zmm_type = t;
3074 }
3075
3076 return tdep->i386_zmm_type;
3077 }
3078
3079 /* Construct vector type for pseudo YMM registers. We can't use
3080 tdesc_find_type since YMM isn't described in target description. */
3081
3082 static struct type *
3083 i386_ymm_type (struct gdbarch *gdbarch)
3084 {
3085 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3086
3087 if (!tdep->i386_ymm_type)
3088 {
3089 const struct builtin_type *bt = builtin_type (gdbarch);
3090
3091 /* The type we're building is this: */
3092 #if 0
3093 union __gdb_builtin_type_vec256i
3094 {
3095 int128_t uint128[2];
3096 int64_t v2_int64[4];
3097 int32_t v4_int32[8];
3098 int16_t v8_int16[16];
3099 int8_t v16_int8[32];
3100 double v2_double[4];
3101 float v4_float[8];
3102 };
3103 #endif
3104
3105 struct type *t;
3106
3107 t = arch_composite_type (gdbarch,
3108 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3109 append_composite_type_field (t, "v8_float",
3110 init_vector_type (bt->builtin_float, 8));
3111 append_composite_type_field (t, "v4_double",
3112 init_vector_type (bt->builtin_double, 4));
3113 append_composite_type_field (t, "v32_int8",
3114 init_vector_type (bt->builtin_int8, 32));
3115 append_composite_type_field (t, "v16_int16",
3116 init_vector_type (bt->builtin_int16, 16));
3117 append_composite_type_field (t, "v8_int32",
3118 init_vector_type (bt->builtin_int32, 8));
3119 append_composite_type_field (t, "v4_int64",
3120 init_vector_type (bt->builtin_int64, 4));
3121 append_composite_type_field (t, "v2_int128",
3122 init_vector_type (bt->builtin_int128, 2));
3123
3124 TYPE_VECTOR (t) = 1;
3125 TYPE_NAME (t) = "builtin_type_vec256i";
3126 tdep->i386_ymm_type = t;
3127 }
3128
3129 return tdep->i386_ymm_type;
3130 }
3131
3132 /* Construct vector type for MMX registers. */
3133 static struct type *
3134 i386_mmx_type (struct gdbarch *gdbarch)
3135 {
3136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3137
3138 if (!tdep->i386_mmx_type)
3139 {
3140 const struct builtin_type *bt = builtin_type (gdbarch);
3141
3142 /* The type we're building is this: */
3143 #if 0
3144 union __gdb_builtin_type_vec64i
3145 {
3146 int64_t uint64;
3147 int32_t v2_int32[2];
3148 int16_t v4_int16[4];
3149 int8_t v8_int8[8];
3150 };
3151 #endif
3152
3153 struct type *t;
3154
3155 t = arch_composite_type (gdbarch,
3156 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3157
3158 append_composite_type_field (t, "uint64", bt->builtin_int64);
3159 append_composite_type_field (t, "v2_int32",
3160 init_vector_type (bt->builtin_int32, 2));
3161 append_composite_type_field (t, "v4_int16",
3162 init_vector_type (bt->builtin_int16, 4));
3163 append_composite_type_field (t, "v8_int8",
3164 init_vector_type (bt->builtin_int8, 8));
3165
3166 TYPE_VECTOR (t) = 1;
3167 TYPE_NAME (t) = "builtin_type_vec64i";
3168 tdep->i386_mmx_type = t;
3169 }
3170
3171 return tdep->i386_mmx_type;
3172 }
3173
3174 /* Return the GDB type object for the "standard" data type of data in
3175 register REGNUM. */
3176
3177 struct type *
3178 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3179 {
3180 if (i386_bnd_regnum_p (gdbarch, regnum))
3181 return i386_bnd_type (gdbarch);
3182 if (i386_mmx_regnum_p (gdbarch, regnum))
3183 return i386_mmx_type (gdbarch);
3184 else if (i386_ymm_regnum_p (gdbarch, regnum))
3185 return i386_ymm_type (gdbarch);
3186 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3187 return i386_ymm_type (gdbarch);
3188 else if (i386_zmm_regnum_p (gdbarch, regnum))
3189 return i386_zmm_type (gdbarch);
3190 else
3191 {
3192 const struct builtin_type *bt = builtin_type (gdbarch);
3193 if (i386_byte_regnum_p (gdbarch, regnum))
3194 return bt->builtin_int8;
3195 else if (i386_word_regnum_p (gdbarch, regnum))
3196 return bt->builtin_int16;
3197 else if (i386_dword_regnum_p (gdbarch, regnum))
3198 return bt->builtin_int32;
3199 else if (i386_k_regnum_p (gdbarch, regnum))
3200 return bt->builtin_int64;
3201 }
3202
3203 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3204 }
3205
3206 /* Map a cooked register onto a raw register or memory. For the i386,
3207 the MMX registers need to be mapped onto floating point registers. */
3208
3209 static int
3210 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3211 {
3212 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3213 int mmxreg, fpreg;
3214 ULONGEST fstat;
3215 int tos;
3216
3217 mmxreg = regnum - tdep->mm0_regnum;
3218 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3219 tos = (fstat >> 11) & 0x7;
3220 fpreg = (mmxreg + tos) % 8;
3221
3222 return (I387_ST0_REGNUM (tdep) + fpreg);
3223 }
3224
3225 /* A helper function for us by i386_pseudo_register_read_value and
3226 amd64_pseudo_register_read_value. It does all the work but reads
3227 the data into an already-allocated value. */
3228
3229 void
3230 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3231 struct regcache *regcache,
3232 int regnum,
3233 struct value *result_value)
3234 {
3235 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3236 enum register_status status;
3237 gdb_byte *buf = value_contents_raw (result_value);
3238
3239 if (i386_mmx_regnum_p (gdbarch, regnum))
3240 {
3241 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3242
3243 /* Extract (always little endian). */
3244 status = regcache_raw_read (regcache, fpnum, raw_buf);
3245 if (status != REG_VALID)
3246 mark_value_bytes_unavailable (result_value, 0,
3247 TYPE_LENGTH (value_type (result_value)));
3248 else
3249 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3250 }
3251 else
3252 {
3253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3254 if (i386_bnd_regnum_p (gdbarch, regnum))
3255 {
3256 regnum -= tdep->bnd0_regnum;
3257
3258 /* Extract (always little endian). Read lower 128bits. */
3259 status = regcache_raw_read (regcache,
3260 I387_BND0R_REGNUM (tdep) + regnum,
3261 raw_buf);
3262 if (status != REG_VALID)
3263 mark_value_bytes_unavailable (result_value, 0, 16);
3264 else
3265 {
3266 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3267 LONGEST upper, lower;
3268 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3269
3270 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3271 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3272 upper = ~upper;
3273
3274 memcpy (buf, &lower, size);
3275 memcpy (buf + size, &upper, size);
3276 }
3277 }
3278 else if (i386_k_regnum_p (gdbarch, regnum))
3279 {
3280 regnum -= tdep->k0_regnum;
3281
3282 /* Extract (always little endian). */
3283 status = regcache_raw_read (regcache,
3284 tdep->k0_regnum + regnum,
3285 raw_buf);
3286 if (status != REG_VALID)
3287 mark_value_bytes_unavailable (result_value, 0, 8);
3288 else
3289 memcpy (buf, raw_buf, 8);
3290 }
3291 else if (i386_zmm_regnum_p (gdbarch, regnum))
3292 {
3293 regnum -= tdep->zmm0_regnum;
3294
3295 if (regnum < num_lower_zmm_regs)
3296 {
3297 /* Extract (always little endian). Read lower 128bits. */
3298 status = regcache_raw_read (regcache,
3299 I387_XMM0_REGNUM (tdep) + regnum,
3300 raw_buf);
3301 if (status != REG_VALID)
3302 mark_value_bytes_unavailable (result_value, 0, 16);
3303 else
3304 memcpy (buf, raw_buf, 16);
3305
3306 /* Extract (always little endian). Read upper 128bits. */
3307 status = regcache_raw_read (regcache,
3308 tdep->ymm0h_regnum + regnum,
3309 raw_buf);
3310 if (status != REG_VALID)
3311 mark_value_bytes_unavailable (result_value, 16, 16);
3312 else
3313 memcpy (buf + 16, raw_buf, 16);
3314 }
3315 else
3316 {
3317 /* Extract (always little endian). Read lower 128bits. */
3318 status = regcache_raw_read (regcache,
3319 I387_XMM16_REGNUM (tdep) + regnum
3320 - num_lower_zmm_regs,
3321 raw_buf);
3322 if (status != REG_VALID)
3323 mark_value_bytes_unavailable (result_value, 0, 16);
3324 else
3325 memcpy (buf, raw_buf, 16);
3326
3327 /* Extract (always little endian). Read upper 128bits. */
3328 status = regcache_raw_read (regcache,
3329 I387_YMM16H_REGNUM (tdep) + regnum
3330 - num_lower_zmm_regs,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 16, 16);
3334 else
3335 memcpy (buf + 16, raw_buf, 16);
3336 }
3337
3338 /* Read upper 256bits. */
3339 status = regcache_raw_read (regcache,
3340 tdep->zmm0h_regnum + regnum,
3341 raw_buf);
3342 if (status != REG_VALID)
3343 mark_value_bytes_unavailable (result_value, 32, 32);
3344 else
3345 memcpy (buf + 32, raw_buf, 32);
3346 }
3347 else if (i386_ymm_regnum_p (gdbarch, regnum))
3348 {
3349 regnum -= tdep->ymm0_regnum;
3350
3351 /* Extract (always little endian). Read lower 128bits. */
3352 status = regcache_raw_read (regcache,
3353 I387_XMM0_REGNUM (tdep) + regnum,
3354 raw_buf);
3355 if (status != REG_VALID)
3356 mark_value_bytes_unavailable (result_value, 0, 16);
3357 else
3358 memcpy (buf, raw_buf, 16);
3359 /* Read upper 128bits. */
3360 status = regcache_raw_read (regcache,
3361 tdep->ymm0h_regnum + regnum,
3362 raw_buf);
3363 if (status != REG_VALID)
3364 mark_value_bytes_unavailable (result_value, 16, 32);
3365 else
3366 memcpy (buf + 16, raw_buf, 16);
3367 }
3368 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3369 {
3370 regnum -= tdep->ymm16_regnum;
3371 /* Extract (always little endian). Read lower 128bits. */
3372 status = regcache_raw_read (regcache,
3373 I387_XMM16_REGNUM (tdep) + regnum,
3374 raw_buf);
3375 if (status != REG_VALID)
3376 mark_value_bytes_unavailable (result_value, 0, 16);
3377 else
3378 memcpy (buf, raw_buf, 16);
3379 /* Read upper 128bits. */
3380 status = regcache_raw_read (regcache,
3381 tdep->ymm16h_regnum + regnum,
3382 raw_buf);
3383 if (status != REG_VALID)
3384 mark_value_bytes_unavailable (result_value, 16, 16);
3385 else
3386 memcpy (buf + 16, raw_buf, 16);
3387 }
3388 else if (i386_word_regnum_p (gdbarch, regnum))
3389 {
3390 int gpnum = regnum - tdep->ax_regnum;
3391
3392 /* Extract (always little endian). */
3393 status = regcache_raw_read (regcache, gpnum, raw_buf);
3394 if (status != REG_VALID)
3395 mark_value_bytes_unavailable (result_value, 0,
3396 TYPE_LENGTH (value_type (result_value)));
3397 else
3398 memcpy (buf, raw_buf, 2);
3399 }
3400 else if (i386_byte_regnum_p (gdbarch, regnum))
3401 {
3402 /* Check byte pseudo registers last since this function will
3403 be called from amd64_pseudo_register_read, which handles
3404 byte pseudo registers differently. */
3405 int gpnum = regnum - tdep->al_regnum;
3406
3407 /* Extract (always little endian). We read both lower and
3408 upper registers. */
3409 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3410 if (status != REG_VALID)
3411 mark_value_bytes_unavailable (result_value, 0,
3412 TYPE_LENGTH (value_type (result_value)));
3413 else if (gpnum >= 4)
3414 memcpy (buf, raw_buf + 1, 1);
3415 else
3416 memcpy (buf, raw_buf, 1);
3417 }
3418 else
3419 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3420 }
3421 }
3422
3423 static struct value *
3424 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3425 struct regcache *regcache,
3426 int regnum)
3427 {
3428 struct value *result;
3429
3430 result = allocate_value (register_type (gdbarch, regnum));
3431 VALUE_LVAL (result) = lval_register;
3432 VALUE_REGNUM (result) = regnum;
3433
3434 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3435
3436 return result;
3437 }
3438
3439 void
3440 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3441 int regnum, const gdb_byte *buf)
3442 {
3443 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3444
3445 if (i386_mmx_regnum_p (gdbarch, regnum))
3446 {
3447 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3448
3449 /* Read ... */
3450 regcache_raw_read (regcache, fpnum, raw_buf);
3451 /* ... Modify ... (always little endian). */
3452 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3453 /* ... Write. */
3454 regcache_raw_write (regcache, fpnum, raw_buf);
3455 }
3456 else
3457 {
3458 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3459
3460 if (i386_bnd_regnum_p (gdbarch, regnum))
3461 {
3462 ULONGEST upper, lower;
3463 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3464 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3465
3466 /* New values from input value. */
3467 regnum -= tdep->bnd0_regnum;
3468 lower = extract_unsigned_integer (buf, size, byte_order);
3469 upper = extract_unsigned_integer (buf + size, size, byte_order);
3470
3471 /* Fetching register buffer. */
3472 regcache_raw_read (regcache,
3473 I387_BND0R_REGNUM (tdep) + regnum,
3474 raw_buf);
3475
3476 upper = ~upper;
3477
3478 /* Set register bits. */
3479 memcpy (raw_buf, &lower, 8);
3480 memcpy (raw_buf + 8, &upper, 8);
3481
3482
3483 regcache_raw_write (regcache,
3484 I387_BND0R_REGNUM (tdep) + regnum,
3485 raw_buf);
3486 }
3487 else if (i386_k_regnum_p (gdbarch, regnum))
3488 {
3489 regnum -= tdep->k0_regnum;
3490
3491 regcache_raw_write (regcache,
3492 tdep->k0_regnum + regnum,
3493 buf);
3494 }
3495 else if (i386_zmm_regnum_p (gdbarch, regnum))
3496 {
3497 regnum -= tdep->zmm0_regnum;
3498
3499 if (regnum < num_lower_zmm_regs)
3500 {
3501 /* Write lower 128bits. */
3502 regcache_raw_write (regcache,
3503 I387_XMM0_REGNUM (tdep) + regnum,
3504 buf);
3505 /* Write upper 128bits. */
3506 regcache_raw_write (regcache,
3507 I387_YMM0_REGNUM (tdep) + regnum,
3508 buf + 16);
3509 }
3510 else
3511 {
3512 /* Write lower 128bits. */
3513 regcache_raw_write (regcache,
3514 I387_XMM16_REGNUM (tdep) + regnum
3515 - num_lower_zmm_regs,
3516 buf);
3517 /* Write upper 128bits. */
3518 regcache_raw_write (regcache,
3519 I387_YMM16H_REGNUM (tdep) + regnum
3520 - num_lower_zmm_regs,
3521 buf + 16);
3522 }
3523 /* Write upper 256bits. */
3524 regcache_raw_write (regcache,
3525 tdep->zmm0h_regnum + regnum,
3526 buf + 32);
3527 }
3528 else if (i386_ymm_regnum_p (gdbarch, regnum))
3529 {
3530 regnum -= tdep->ymm0_regnum;
3531
3532 /* ... Write lower 128bits. */
3533 regcache_raw_write (regcache,
3534 I387_XMM0_REGNUM (tdep) + regnum,
3535 buf);
3536 /* ... Write upper 128bits. */
3537 regcache_raw_write (regcache,
3538 tdep->ymm0h_regnum + regnum,
3539 buf + 16);
3540 }
3541 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3542 {
3543 regnum -= tdep->ymm16_regnum;
3544
3545 /* ... Write lower 128bits. */
3546 regcache_raw_write (regcache,
3547 I387_XMM16_REGNUM (tdep) + regnum,
3548 buf);
3549 /* ... Write upper 128bits. */
3550 regcache_raw_write (regcache,
3551 tdep->ymm16h_regnum + regnum,
3552 buf + 16);
3553 }
3554 else if (i386_word_regnum_p (gdbarch, regnum))
3555 {
3556 int gpnum = regnum - tdep->ax_regnum;
3557
3558 /* Read ... */
3559 regcache_raw_read (regcache, gpnum, raw_buf);
3560 /* ... Modify ... (always little endian). */
3561 memcpy (raw_buf, buf, 2);
3562 /* ... Write. */
3563 regcache_raw_write (regcache, gpnum, raw_buf);
3564 }
3565 else if (i386_byte_regnum_p (gdbarch, regnum))
3566 {
3567 /* Check byte pseudo registers last since this function will
3568 be called from amd64_pseudo_register_read, which handles
3569 byte pseudo registers differently. */
3570 int gpnum = regnum - tdep->al_regnum;
3571
3572 /* Read ... We read both lower and upper registers. */
3573 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3574 /* ... Modify ... (always little endian). */
3575 if (gpnum >= 4)
3576 memcpy (raw_buf + 1, buf, 1);
3577 else
3578 memcpy (raw_buf, buf, 1);
3579 /* ... Write. */
3580 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3581 }
3582 else
3583 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3584 }
3585 }
3586 \f
3587
3588 /* Return the register number of the register allocated by GCC after
3589 REGNUM, or -1 if there is no such register. */
3590
3591 static int
3592 i386_next_regnum (int regnum)
3593 {
3594 /* GCC allocates the registers in the order:
3595
3596 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3597
3598 Since storing a variable in %esp doesn't make any sense we return
3599 -1 for %ebp and for %esp itself. */
3600 static int next_regnum[] =
3601 {
3602 I386_EDX_REGNUM, /* Slot for %eax. */
3603 I386_EBX_REGNUM, /* Slot for %ecx. */
3604 I386_ECX_REGNUM, /* Slot for %edx. */
3605 I386_ESI_REGNUM, /* Slot for %ebx. */
3606 -1, -1, /* Slots for %esp and %ebp. */
3607 I386_EDI_REGNUM, /* Slot for %esi. */
3608 I386_EBP_REGNUM /* Slot for %edi. */
3609 };
3610
3611 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3612 return next_regnum[regnum];
3613
3614 return -1;
3615 }
3616
3617 /* Return nonzero if a value of type TYPE stored in register REGNUM
3618 needs any special handling. */
3619
3620 static int
3621 i386_convert_register_p (struct gdbarch *gdbarch,
3622 int regnum, struct type *type)
3623 {
3624 int len = TYPE_LENGTH (type);
3625
3626 /* Values may be spread across multiple registers. Most debugging
3627 formats aren't expressive enough to specify the locations, so
3628 some heuristics is involved. Right now we only handle types that
3629 have a length that is a multiple of the word size, since GCC
3630 doesn't seem to put any other types into registers. */
3631 if (len > 4 && len % 4 == 0)
3632 {
3633 int last_regnum = regnum;
3634
3635 while (len > 4)
3636 {
3637 last_regnum = i386_next_regnum (last_regnum);
3638 len -= 4;
3639 }
3640
3641 if (last_regnum != -1)
3642 return 1;
3643 }
3644
3645 return i387_convert_register_p (gdbarch, regnum, type);
3646 }
3647
3648 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3649 return its contents in TO. */
3650
3651 static int
3652 i386_register_to_value (struct frame_info *frame, int regnum,
3653 struct type *type, gdb_byte *to,
3654 int *optimizedp, int *unavailablep)
3655 {
3656 struct gdbarch *gdbarch = get_frame_arch (frame);
3657 int len = TYPE_LENGTH (type);
3658
3659 if (i386_fp_regnum_p (gdbarch, regnum))
3660 return i387_register_to_value (frame, regnum, type, to,
3661 optimizedp, unavailablep);
3662
3663 /* Read a value spread across multiple registers. */
3664
3665 gdb_assert (len > 4 && len % 4 == 0);
3666
3667 while (len > 0)
3668 {
3669 gdb_assert (regnum != -1);
3670 gdb_assert (register_size (gdbarch, regnum) == 4);
3671
3672 if (!get_frame_register_bytes (frame, regnum, 0,
3673 register_size (gdbarch, regnum),
3674 to, optimizedp, unavailablep))
3675 return 0;
3676
3677 regnum = i386_next_regnum (regnum);
3678 len -= 4;
3679 to += 4;
3680 }
3681
3682 *optimizedp = *unavailablep = 0;
3683 return 1;
3684 }
3685
3686 /* Write the contents FROM of a value of type TYPE into register
3687 REGNUM in frame FRAME. */
3688
3689 static void
3690 i386_value_to_register (struct frame_info *frame, int regnum,
3691 struct type *type, const gdb_byte *from)
3692 {
3693 int len = TYPE_LENGTH (type);
3694
3695 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3696 {
3697 i387_value_to_register (frame, regnum, type, from);
3698 return;
3699 }
3700
3701 /* Write a value spread across multiple registers. */
3702
3703 gdb_assert (len > 4 && len % 4 == 0);
3704
3705 while (len > 0)
3706 {
3707 gdb_assert (regnum != -1);
3708 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3709
3710 put_frame_register (frame, regnum, from);
3711 regnum = i386_next_regnum (regnum);
3712 len -= 4;
3713 from += 4;
3714 }
3715 }
3716 \f
3717 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3718 in the general-purpose register set REGSET to register cache
3719 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3720
3721 void
3722 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3723 int regnum, const void *gregs, size_t len)
3724 {
3725 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3726 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3727 const gdb_byte *regs = gregs;
3728 int i;
3729
3730 gdb_assert (len == tdep->sizeof_gregset);
3731
3732 for (i = 0; i < tdep->gregset_num_regs; i++)
3733 {
3734 if ((regnum == i || regnum == -1)
3735 && tdep->gregset_reg_offset[i] != -1)
3736 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3737 }
3738 }
3739
3740 /* Collect register REGNUM from the register cache REGCACHE and store
3741 it in the buffer specified by GREGS and LEN as described by the
3742 general-purpose register set REGSET. If REGNUM is -1, do this for
3743 all registers in REGSET. */
3744
3745 static void
3746 i386_collect_gregset (const struct regset *regset,
3747 const struct regcache *regcache,
3748 int regnum, void *gregs, size_t len)
3749 {
3750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3751 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3752 gdb_byte *regs = gregs;
3753 int i;
3754
3755 gdb_assert (len == tdep->sizeof_gregset);
3756
3757 for (i = 0; i < tdep->gregset_num_regs; i++)
3758 {
3759 if ((regnum == i || regnum == -1)
3760 && tdep->gregset_reg_offset[i] != -1)
3761 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3762 }
3763 }
3764
3765 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3766 in the floating-point register set REGSET to register cache
3767 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3768
3769 static void
3770 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3771 int regnum, const void *fpregs, size_t len)
3772 {
3773 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3774 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3775
3776 if (len == I387_SIZEOF_FXSAVE)
3777 {
3778 i387_supply_fxsave (regcache, regnum, fpregs);
3779 return;
3780 }
3781
3782 gdb_assert (len == tdep->sizeof_fpregset);
3783 i387_supply_fsave (regcache, regnum, fpregs);
3784 }
3785
3786 /* Collect register REGNUM from the register cache REGCACHE and store
3787 it in the buffer specified by FPREGS and LEN as described by the
3788 floating-point register set REGSET. If REGNUM is -1, do this for
3789 all registers in REGSET. */
3790
3791 static void
3792 i386_collect_fpregset (const struct regset *regset,
3793 const struct regcache *regcache,
3794 int regnum, void *fpregs, size_t len)
3795 {
3796 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3797 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3798
3799 if (len == I387_SIZEOF_FXSAVE)
3800 {
3801 i387_collect_fxsave (regcache, regnum, fpregs);
3802 return;
3803 }
3804
3805 gdb_assert (len == tdep->sizeof_fpregset);
3806 i387_collect_fsave (regcache, regnum, fpregs);
3807 }
3808
3809 /* Register set definitions. */
3810
3811 const struct regset i386_gregset =
3812 {
3813 NULL, i386_supply_gregset, i386_collect_gregset
3814 };
3815
3816 const struct regset i386_fpregset =
3817 {
3818 NULL, i386_supply_fpregset, i386_collect_fpregset
3819 };
3820
3821 /* Return the appropriate register set for the core section identified
3822 by SECT_NAME and SECT_SIZE. */
3823
3824 const struct regset *
3825 i386_regset_from_core_section (struct gdbarch *gdbarch,
3826 const char *sect_name, size_t sect_size)
3827 {
3828 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3829
3830 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3831 return &i386_gregset;
3832
3833 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3834 return tdep->fpregset;
3835
3836 return NULL;
3837 }
3838 \f
3839
3840 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3841
3842 CORE_ADDR
3843 i386_pe_skip_trampoline_code (struct frame_info *frame,
3844 CORE_ADDR pc, char *name)
3845 {
3846 struct gdbarch *gdbarch = get_frame_arch (frame);
3847 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3848
3849 /* jmp *(dest) */
3850 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3851 {
3852 unsigned long indirect =
3853 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3854 struct minimal_symbol *indsym =
3855 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3856 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3857
3858 if (symname)
3859 {
3860 if (strncmp (symname, "__imp_", 6) == 0
3861 || strncmp (symname, "_imp_", 5) == 0)
3862 return name ? 1 :
3863 read_memory_unsigned_integer (indirect, 4, byte_order);
3864 }
3865 }
3866 return 0; /* Not a trampoline. */
3867 }
3868 \f
3869
3870 /* Return whether the THIS_FRAME corresponds to a sigtramp
3871 routine. */
3872
3873 int
3874 i386_sigtramp_p (struct frame_info *this_frame)
3875 {
3876 CORE_ADDR pc = get_frame_pc (this_frame);
3877 const char *name;
3878
3879 find_pc_partial_function (pc, &name, NULL, NULL);
3880 return (name && strcmp ("_sigtramp", name) == 0);
3881 }
3882 \f
3883
3884 /* We have two flavours of disassembly. The machinery on this page
3885 deals with switching between those. */
3886
3887 static int
3888 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3889 {
3890 gdb_assert (disassembly_flavor == att_flavor
3891 || disassembly_flavor == intel_flavor);
3892
3893 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3894 constified, cast to prevent a compiler warning. */
3895 info->disassembler_options = (char *) disassembly_flavor;
3896
3897 return print_insn_i386 (pc, info);
3898 }
3899 \f
3900
3901 /* There are a few i386 architecture variants that differ only
3902 slightly from the generic i386 target. For now, we don't give them
3903 their own source file, but include them here. As a consequence,
3904 they'll always be included. */
3905
3906 /* System V Release 4 (SVR4). */
3907
3908 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3909 routine. */
3910
3911 static int
3912 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3913 {
3914 CORE_ADDR pc = get_frame_pc (this_frame);
3915 const char *name;
3916
3917 /* The origin of these symbols is currently unknown. */
3918 find_pc_partial_function (pc, &name, NULL, NULL);
3919 return (name && (strcmp ("_sigreturn", name) == 0
3920 || strcmp ("sigvechandler", name) == 0));
3921 }
3922
3923 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3924 address of the associated sigcontext (ucontext) structure. */
3925
3926 static CORE_ADDR
3927 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3928 {
3929 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3930 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3931 gdb_byte buf[4];
3932 CORE_ADDR sp;
3933
3934 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3935 sp = extract_unsigned_integer (buf, 4, byte_order);
3936
3937 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3938 }
3939
3940 \f
3941
3942 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3943 gdbarch.h. */
3944
3945 int
3946 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3947 {
3948 return (*s == '$' /* Literal number. */
3949 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3950 || (*s == '(' && s[1] == '%') /* Register indirection. */
3951 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3952 }
3953
3954 /* Helper function for i386_stap_parse_special_token.
3955
3956 This function parses operands of the form `-8+3+1(%rbp)', which
3957 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3958
3959 Return 1 if the operand was parsed successfully, zero
3960 otherwise. */
3961
3962 static int
3963 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3964 struct stap_parse_info *p)
3965 {
3966 const char *s = p->arg;
3967
3968 if (isdigit (*s) || *s == '-' || *s == '+')
3969 {
3970 int got_minus[3];
3971 int i;
3972 long displacements[3];
3973 const char *start;
3974 char *regname;
3975 int len;
3976 struct stoken str;
3977 char *endp;
3978
3979 got_minus[0] = 0;
3980 if (*s == '+')
3981 ++s;
3982 else if (*s == '-')
3983 {
3984 ++s;
3985 got_minus[0] = 1;
3986 }
3987
3988 if (!isdigit ((unsigned char) *s))
3989 return 0;
3990
3991 displacements[0] = strtol (s, &endp, 10);
3992 s = endp;
3993
3994 if (*s != '+' && *s != '-')
3995 {
3996 /* We are not dealing with a triplet. */
3997 return 0;
3998 }
3999
4000 got_minus[1] = 0;
4001 if (*s == '+')
4002 ++s;
4003 else
4004 {
4005 ++s;
4006 got_minus[1] = 1;
4007 }
4008
4009 if (!isdigit ((unsigned char) *s))
4010 return 0;
4011
4012 displacements[1] = strtol (s, &endp, 10);
4013 s = endp;
4014
4015 if (*s != '+' && *s != '-')
4016 {
4017 /* We are not dealing with a triplet. */
4018 return 0;
4019 }
4020
4021 got_minus[2] = 0;
4022 if (*s == '+')
4023 ++s;
4024 else
4025 {
4026 ++s;
4027 got_minus[2] = 1;
4028 }
4029
4030 if (!isdigit ((unsigned char) *s))
4031 return 0;
4032
4033 displacements[2] = strtol (s, &endp, 10);
4034 s = endp;
4035
4036 if (*s != '(' || s[1] != '%')
4037 return 0;
4038
4039 s += 2;
4040 start = s;
4041
4042 while (isalnum (*s))
4043 ++s;
4044
4045 if (*s++ != ')')
4046 return 0;
4047
4048 len = s - start - 1;
4049 regname = alloca (len + 1);
4050
4051 strncpy (regname, start, len);
4052 regname[len] = '\0';
4053
4054 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4055 error (_("Invalid register name `%s' on expression `%s'."),
4056 regname, p->saved_arg);
4057
4058 for (i = 0; i < 3; i++)
4059 {
4060 write_exp_elt_opcode (&p->pstate, OP_LONG);
4061 write_exp_elt_type
4062 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4063 write_exp_elt_longcst (&p->pstate, displacements[i]);
4064 write_exp_elt_opcode (&p->pstate, OP_LONG);
4065 if (got_minus[i])
4066 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4067 }
4068
4069 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4070 str.ptr = regname;
4071 str.length = len;
4072 write_exp_string (&p->pstate, str);
4073 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4074
4075 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4076 write_exp_elt_type (&p->pstate,
4077 builtin_type (gdbarch)->builtin_data_ptr);
4078 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4079
4080 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4081 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4082 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4083
4084 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4085 write_exp_elt_type (&p->pstate,
4086 lookup_pointer_type (p->arg_type));
4087 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4088
4089 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4090
4091 p->arg = s;
4092
4093 return 1;
4094 }
4095
4096 return 0;
4097 }
4098
4099 /* Helper function for i386_stap_parse_special_token.
4100
4101 This function parses operands of the form `register base +
4102 (register index * size) + offset', as represented in
4103 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4104
4105 Return 1 if the operand was parsed successfully, zero
4106 otherwise. */
4107
4108 static int
4109 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4110 struct stap_parse_info *p)
4111 {
4112 const char *s = p->arg;
4113
4114 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4115 {
4116 int offset_minus = 0;
4117 long offset = 0;
4118 int size_minus = 0;
4119 long size = 0;
4120 const char *start;
4121 char *base;
4122 int len_base;
4123 char *index;
4124 int len_index;
4125 struct stoken base_token, index_token;
4126
4127 if (*s == '+')
4128 ++s;
4129 else if (*s == '-')
4130 {
4131 ++s;
4132 offset_minus = 1;
4133 }
4134
4135 if (offset_minus && !isdigit (*s))
4136 return 0;
4137
4138 if (isdigit (*s))
4139 {
4140 char *endp;
4141
4142 offset = strtol (s, &endp, 10);
4143 s = endp;
4144 }
4145
4146 if (*s != '(' || s[1] != '%')
4147 return 0;
4148
4149 s += 2;
4150 start = s;
4151
4152 while (isalnum (*s))
4153 ++s;
4154
4155 if (*s != ',' || s[1] != '%')
4156 return 0;
4157
4158 len_base = s - start;
4159 base = alloca (len_base + 1);
4160 strncpy (base, start, len_base);
4161 base[len_base] = '\0';
4162
4163 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4164 error (_("Invalid register name `%s' on expression `%s'."),
4165 base, p->saved_arg);
4166
4167 s += 2;
4168 start = s;
4169
4170 while (isalnum (*s))
4171 ++s;
4172
4173 len_index = s - start;
4174 index = alloca (len_index + 1);
4175 strncpy (index, start, len_index);
4176 index[len_index] = '\0';
4177
4178 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4179 error (_("Invalid register name `%s' on expression `%s'."),
4180 index, p->saved_arg);
4181
4182 if (*s != ',' && *s != ')')
4183 return 0;
4184
4185 if (*s == ',')
4186 {
4187 char *endp;
4188
4189 ++s;
4190 if (*s == '+')
4191 ++s;
4192 else if (*s == '-')
4193 {
4194 ++s;
4195 size_minus = 1;
4196 }
4197
4198 size = strtol (s, &endp, 10);
4199 s = endp;
4200
4201 if (*s != ')')
4202 return 0;
4203 }
4204
4205 ++s;
4206
4207 if (offset)
4208 {
4209 write_exp_elt_opcode (&p->pstate, OP_LONG);
4210 write_exp_elt_type (&p->pstate,
4211 builtin_type (gdbarch)->builtin_long);
4212 write_exp_elt_longcst (&p->pstate, offset);
4213 write_exp_elt_opcode (&p->pstate, OP_LONG);
4214 if (offset_minus)
4215 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4216 }
4217
4218 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4219 base_token.ptr = base;
4220 base_token.length = len_base;
4221 write_exp_string (&p->pstate, base_token);
4222 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4223
4224 if (offset)
4225 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4226
4227 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4228 index_token.ptr = index;
4229 index_token.length = len_index;
4230 write_exp_string (&p->pstate, index_token);
4231 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4232
4233 if (size)
4234 {
4235 write_exp_elt_opcode (&p->pstate, OP_LONG);
4236 write_exp_elt_type (&p->pstate,
4237 builtin_type (gdbarch)->builtin_long);
4238 write_exp_elt_longcst (&p->pstate, size);
4239 write_exp_elt_opcode (&p->pstate, OP_LONG);
4240 if (size_minus)
4241 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4242 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4243 }
4244
4245 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4246
4247 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4248 write_exp_elt_type (&p->pstate,
4249 lookup_pointer_type (p->arg_type));
4250 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4251
4252 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4253
4254 p->arg = s;
4255
4256 return 1;
4257 }
4258
4259 return 0;
4260 }
4261
4262 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4263 gdbarch.h. */
4264
4265 int
4266 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4267 struct stap_parse_info *p)
4268 {
4269 /* In order to parse special tokens, we use a state-machine that go
4270 through every known token and try to get a match. */
4271 enum
4272 {
4273 TRIPLET,
4274 THREE_ARG_DISPLACEMENT,
4275 DONE
4276 } current_state;
4277
4278 current_state = TRIPLET;
4279
4280 /* The special tokens to be parsed here are:
4281
4282 - `register base + (register index * size) + offset', as represented
4283 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4284
4285 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4286 `*(-8 + 3 - 1 + (void *) $eax)'. */
4287
4288 while (current_state != DONE)
4289 {
4290 switch (current_state)
4291 {
4292 case TRIPLET:
4293 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4294 return 1;
4295 break;
4296
4297 case THREE_ARG_DISPLACEMENT:
4298 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4299 return 1;
4300 break;
4301 }
4302
4303 /* Advancing to the next state. */
4304 ++current_state;
4305 }
4306
4307 return 0;
4308 }
4309
4310 \f
4311
4312 /* Generic ELF. */
4313
4314 void
4315 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4316 {
4317 static const char *const stap_integer_prefixes[] = { "$", NULL };
4318 static const char *const stap_register_prefixes[] = { "%", NULL };
4319 static const char *const stap_register_indirection_prefixes[] = { "(",
4320 NULL };
4321 static const char *const stap_register_indirection_suffixes[] = { ")",
4322 NULL };
4323
4324 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4325 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4326
4327 /* Registering SystemTap handlers. */
4328 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4329 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4330 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4331 stap_register_indirection_prefixes);
4332 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4333 stap_register_indirection_suffixes);
4334 set_gdbarch_stap_is_single_operand (gdbarch,
4335 i386_stap_is_single_operand);
4336 set_gdbarch_stap_parse_special_token (gdbarch,
4337 i386_stap_parse_special_token);
4338 }
4339
4340 /* System V Release 4 (SVR4). */
4341
4342 void
4343 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4344 {
4345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4346
4347 /* System V Release 4 uses ELF. */
4348 i386_elf_init_abi (info, gdbarch);
4349
4350 /* System V Release 4 has shared libraries. */
4351 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4352
4353 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4354 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4355 tdep->sc_pc_offset = 36 + 14 * 4;
4356 tdep->sc_sp_offset = 36 + 17 * 4;
4357
4358 tdep->jb_pc_offset = 20;
4359 }
4360
4361 /* DJGPP. */
4362
4363 static void
4364 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4365 {
4366 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4367
4368 /* DJGPP doesn't have any special frames for signal handlers. */
4369 tdep->sigtramp_p = NULL;
4370
4371 tdep->jb_pc_offset = 36;
4372
4373 /* DJGPP does not support the SSE registers. */
4374 if (! tdesc_has_registers (info.target_desc))
4375 tdep->tdesc = tdesc_i386_mmx;
4376
4377 /* Native compiler is GCC, which uses the SVR4 register numbering
4378 even in COFF and STABS. See the comment in i386_gdbarch_init,
4379 before the calls to set_gdbarch_stab_reg_to_regnum and
4380 set_gdbarch_sdb_reg_to_regnum. */
4381 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4382 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4383
4384 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4385 }
4386 \f
4387
4388 /* i386 register groups. In addition to the normal groups, add "mmx"
4389 and "sse". */
4390
4391 static struct reggroup *i386_sse_reggroup;
4392 static struct reggroup *i386_mmx_reggroup;
4393
4394 static void
4395 i386_init_reggroups (void)
4396 {
4397 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4398 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4399 }
4400
4401 static void
4402 i386_add_reggroups (struct gdbarch *gdbarch)
4403 {
4404 reggroup_add (gdbarch, i386_sse_reggroup);
4405 reggroup_add (gdbarch, i386_mmx_reggroup);
4406 reggroup_add (gdbarch, general_reggroup);
4407 reggroup_add (gdbarch, float_reggroup);
4408 reggroup_add (gdbarch, all_reggroup);
4409 reggroup_add (gdbarch, save_reggroup);
4410 reggroup_add (gdbarch, restore_reggroup);
4411 reggroup_add (gdbarch, vector_reggroup);
4412 reggroup_add (gdbarch, system_reggroup);
4413 }
4414
4415 int
4416 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4417 struct reggroup *group)
4418 {
4419 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4420 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4421 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4422 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4423 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4424 avx512_p, avx_p, sse_p;
4425
4426 /* Don't include pseudo registers, except for MMX, in any register
4427 groups. */
4428 if (i386_byte_regnum_p (gdbarch, regnum))
4429 return 0;
4430
4431 if (i386_word_regnum_p (gdbarch, regnum))
4432 return 0;
4433
4434 if (i386_dword_regnum_p (gdbarch, regnum))
4435 return 0;
4436
4437 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4438 if (group == i386_mmx_reggroup)
4439 return mmx_regnum_p;
4440
4441 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4442 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4443 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4444 if (group == i386_sse_reggroup)
4445 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4446
4447 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4448 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4449 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4450
4451 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4452 == X86_XSTATE_AVX512_MASK);
4453 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4454 == X86_XSTATE_AVX_MASK) && !avx512_p;
4455 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4456 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4457
4458 if (group == vector_reggroup)
4459 return (mmx_regnum_p
4460 || (zmm_regnum_p && avx512_p)
4461 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4462 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4463 || mxcsr_regnum_p);
4464
4465 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4466 || i386_fpc_regnum_p (gdbarch, regnum));
4467 if (group == float_reggroup)
4468 return fp_regnum_p;
4469
4470 /* For "info reg all", don't include upper YMM registers nor XMM
4471 registers when AVX is supported. */
4472 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4473 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4474 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4475 if (group == all_reggroup
4476 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4477 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4478 || ymmh_regnum_p
4479 || ymmh_avx512_regnum_p
4480 || zmmh_regnum_p))
4481 return 0;
4482
4483 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4484 if (group == all_reggroup
4485 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4486 return bnd_regnum_p;
4487
4488 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4489 if (group == all_reggroup
4490 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4491 return 0;
4492
4493 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4494 if (group == all_reggroup
4495 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4496 return mpx_ctrl_regnum_p;
4497
4498 if (group == general_reggroup)
4499 return (!fp_regnum_p
4500 && !mmx_regnum_p
4501 && !mxcsr_regnum_p
4502 && !xmm_regnum_p
4503 && !xmm_avx512_regnum_p
4504 && !ymm_regnum_p
4505 && !ymmh_regnum_p
4506 && !ymm_avx512_regnum_p
4507 && !ymmh_avx512_regnum_p
4508 && !bndr_regnum_p
4509 && !bnd_regnum_p
4510 && !mpx_ctrl_regnum_p
4511 && !zmm_regnum_p
4512 && !zmmh_regnum_p);
4513
4514 return default_register_reggroup_p (gdbarch, regnum, group);
4515 }
4516 \f
4517
4518 /* Get the ARGIth function argument for the current function. */
4519
4520 static CORE_ADDR
4521 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4522 struct type *type)
4523 {
4524 struct gdbarch *gdbarch = get_frame_arch (frame);
4525 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4526 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4527 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4528 }
4529
4530 static void
4531 i386_skip_permanent_breakpoint (struct regcache *regcache)
4532 {
4533 CORE_ADDR current_pc = regcache_read_pc (regcache);
4534
4535 /* On i386, breakpoint is exactly 1 byte long, so we just
4536 adjust the PC in the regcache. */
4537 current_pc += 1;
4538 regcache_write_pc (regcache, current_pc);
4539 }
4540
4541
4542 #define PREFIX_REPZ 0x01
4543 #define PREFIX_REPNZ 0x02
4544 #define PREFIX_LOCK 0x04
4545 #define PREFIX_DATA 0x08
4546 #define PREFIX_ADDR 0x10
4547
4548 /* operand size */
4549 enum
4550 {
4551 OT_BYTE = 0,
4552 OT_WORD,
4553 OT_LONG,
4554 OT_QUAD,
4555 OT_DQUAD,
4556 };
4557
4558 /* i386 arith/logic operations */
4559 enum
4560 {
4561 OP_ADDL,
4562 OP_ORL,
4563 OP_ADCL,
4564 OP_SBBL,
4565 OP_ANDL,
4566 OP_SUBL,
4567 OP_XORL,
4568 OP_CMPL,
4569 };
4570
4571 struct i386_record_s
4572 {
4573 struct gdbarch *gdbarch;
4574 struct regcache *regcache;
4575 CORE_ADDR orig_addr;
4576 CORE_ADDR addr;
4577 int aflag;
4578 int dflag;
4579 int override;
4580 uint8_t modrm;
4581 uint8_t mod, reg, rm;
4582 int ot;
4583 uint8_t rex_x;
4584 uint8_t rex_b;
4585 int rip_offset;
4586 int popl_esp_hack;
4587 const int *regmap;
4588 };
4589
4590 /* Parse the "modrm" part of the memory address irp->addr points at.
4591 Returns -1 if something goes wrong, 0 otherwise. */
4592
4593 static int
4594 i386_record_modrm (struct i386_record_s *irp)
4595 {
4596 struct gdbarch *gdbarch = irp->gdbarch;
4597
4598 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4599 return -1;
4600
4601 irp->addr++;
4602 irp->mod = (irp->modrm >> 6) & 3;
4603 irp->reg = (irp->modrm >> 3) & 7;
4604 irp->rm = irp->modrm & 7;
4605
4606 return 0;
4607 }
4608
4609 /* Extract the memory address that the current instruction writes to,
4610 and return it in *ADDR. Return -1 if something goes wrong. */
4611
4612 static int
4613 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4614 {
4615 struct gdbarch *gdbarch = irp->gdbarch;
4616 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4617 gdb_byte buf[4];
4618 ULONGEST offset64;
4619
4620 *addr = 0;
4621 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4622 {
4623 /* 32/64 bits */
4624 int havesib = 0;
4625 uint8_t scale = 0;
4626 uint8_t byte;
4627 uint8_t index = 0;
4628 uint8_t base = irp->rm;
4629
4630 if (base == 4)
4631 {
4632 havesib = 1;
4633 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4634 return -1;
4635 irp->addr++;
4636 scale = (byte >> 6) & 3;
4637 index = ((byte >> 3) & 7) | irp->rex_x;
4638 base = (byte & 7);
4639 }
4640 base |= irp->rex_b;
4641
4642 switch (irp->mod)
4643 {
4644 case 0:
4645 if ((base & 7) == 5)
4646 {
4647 base = 0xff;
4648 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4649 return -1;
4650 irp->addr += 4;
4651 *addr = extract_signed_integer (buf, 4, byte_order);
4652 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4653 *addr += irp->addr + irp->rip_offset;
4654 }
4655 break;
4656 case 1:
4657 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4658 return -1;
4659 irp->addr++;
4660 *addr = (int8_t) buf[0];
4661 break;
4662 case 2:
4663 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4664 return -1;
4665 *addr = extract_signed_integer (buf, 4, byte_order);
4666 irp->addr += 4;
4667 break;
4668 }
4669
4670 offset64 = 0;
4671 if (base != 0xff)
4672 {
4673 if (base == 4 && irp->popl_esp_hack)
4674 *addr += irp->popl_esp_hack;
4675 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4676 &offset64);
4677 }
4678 if (irp->aflag == 2)
4679 {
4680 *addr += offset64;
4681 }
4682 else
4683 *addr = (uint32_t) (offset64 + *addr);
4684
4685 if (havesib && (index != 4 || scale != 0))
4686 {
4687 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4688 &offset64);
4689 if (irp->aflag == 2)
4690 *addr += offset64 << scale;
4691 else
4692 *addr = (uint32_t) (*addr + (offset64 << scale));
4693 }
4694
4695 if (!irp->aflag)
4696 {
4697 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4698 address from 32-bit to 64-bit. */
4699 *addr = (uint32_t) *addr;
4700 }
4701 }
4702 else
4703 {
4704 /* 16 bits */
4705 switch (irp->mod)
4706 {
4707 case 0:
4708 if (irp->rm == 6)
4709 {
4710 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4711 return -1;
4712 irp->addr += 2;
4713 *addr = extract_signed_integer (buf, 2, byte_order);
4714 irp->rm = 0;
4715 goto no_rm;
4716 }
4717 break;
4718 case 1:
4719 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4720 return -1;
4721 irp->addr++;
4722 *addr = (int8_t) buf[0];
4723 break;
4724 case 2:
4725 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4726 return -1;
4727 irp->addr += 2;
4728 *addr = extract_signed_integer (buf, 2, byte_order);
4729 break;
4730 }
4731
4732 switch (irp->rm)
4733 {
4734 case 0:
4735 regcache_raw_read_unsigned (irp->regcache,
4736 irp->regmap[X86_RECORD_REBX_REGNUM],
4737 &offset64);
4738 *addr = (uint32_t) (*addr + offset64);
4739 regcache_raw_read_unsigned (irp->regcache,
4740 irp->regmap[X86_RECORD_RESI_REGNUM],
4741 &offset64);
4742 *addr = (uint32_t) (*addr + offset64);
4743 break;
4744 case 1:
4745 regcache_raw_read_unsigned (irp->regcache,
4746 irp->regmap[X86_RECORD_REBX_REGNUM],
4747 &offset64);
4748 *addr = (uint32_t) (*addr + offset64);
4749 regcache_raw_read_unsigned (irp->regcache,
4750 irp->regmap[X86_RECORD_REDI_REGNUM],
4751 &offset64);
4752 *addr = (uint32_t) (*addr + offset64);
4753 break;
4754 case 2:
4755 regcache_raw_read_unsigned (irp->regcache,
4756 irp->regmap[X86_RECORD_REBP_REGNUM],
4757 &offset64);
4758 *addr = (uint32_t) (*addr + offset64);
4759 regcache_raw_read_unsigned (irp->regcache,
4760 irp->regmap[X86_RECORD_RESI_REGNUM],
4761 &offset64);
4762 *addr = (uint32_t) (*addr + offset64);
4763 break;
4764 case 3:
4765 regcache_raw_read_unsigned (irp->regcache,
4766 irp->regmap[X86_RECORD_REBP_REGNUM],
4767 &offset64);
4768 *addr = (uint32_t) (*addr + offset64);
4769 regcache_raw_read_unsigned (irp->regcache,
4770 irp->regmap[X86_RECORD_REDI_REGNUM],
4771 &offset64);
4772 *addr = (uint32_t) (*addr + offset64);
4773 break;
4774 case 4:
4775 regcache_raw_read_unsigned (irp->regcache,
4776 irp->regmap[X86_RECORD_RESI_REGNUM],
4777 &offset64);
4778 *addr = (uint32_t) (*addr + offset64);
4779 break;
4780 case 5:
4781 regcache_raw_read_unsigned (irp->regcache,
4782 irp->regmap[X86_RECORD_REDI_REGNUM],
4783 &offset64);
4784 *addr = (uint32_t) (*addr + offset64);
4785 break;
4786 case 6:
4787 regcache_raw_read_unsigned (irp->regcache,
4788 irp->regmap[X86_RECORD_REBP_REGNUM],
4789 &offset64);
4790 *addr = (uint32_t) (*addr + offset64);
4791 break;
4792 case 7:
4793 regcache_raw_read_unsigned (irp->regcache,
4794 irp->regmap[X86_RECORD_REBX_REGNUM],
4795 &offset64);
4796 *addr = (uint32_t) (*addr + offset64);
4797 break;
4798 }
4799 *addr &= 0xffff;
4800 }
4801
4802 no_rm:
4803 return 0;
4804 }
4805
4806 /* Record the address and contents of the memory that will be changed
4807 by the current instruction. Return -1 if something goes wrong, 0
4808 otherwise. */
4809
4810 static int
4811 i386_record_lea_modrm (struct i386_record_s *irp)
4812 {
4813 struct gdbarch *gdbarch = irp->gdbarch;
4814 uint64_t addr;
4815
4816 if (irp->override >= 0)
4817 {
4818 if (record_full_memory_query)
4819 {
4820 int q;
4821
4822 target_terminal_ours ();
4823 q = yquery (_("\
4824 Process record ignores the memory change of instruction at address %s\n\
4825 because it can't get the value of the segment register.\n\
4826 Do you want to stop the program?"),
4827 paddress (gdbarch, irp->orig_addr));
4828 target_terminal_inferior ();
4829 if (q)
4830 return -1;
4831 }
4832
4833 return 0;
4834 }
4835
4836 if (i386_record_lea_modrm_addr (irp, &addr))
4837 return -1;
4838
4839 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4840 return -1;
4841
4842 return 0;
4843 }
4844
4845 /* Record the effects of a push operation. Return -1 if something
4846 goes wrong, 0 otherwise. */
4847
4848 static int
4849 i386_record_push (struct i386_record_s *irp, int size)
4850 {
4851 ULONGEST addr;
4852
4853 if (record_full_arch_list_add_reg (irp->regcache,
4854 irp->regmap[X86_RECORD_RESP_REGNUM]))
4855 return -1;
4856 regcache_raw_read_unsigned (irp->regcache,
4857 irp->regmap[X86_RECORD_RESP_REGNUM],
4858 &addr);
4859 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4860 return -1;
4861
4862 return 0;
4863 }
4864
4865
4866 /* Defines contents to record. */
4867 #define I386_SAVE_FPU_REGS 0xfffd
4868 #define I386_SAVE_FPU_ENV 0xfffe
4869 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4870
4871 /* Record the values of the floating point registers which will be
4872 changed by the current instruction. Returns -1 if something is
4873 wrong, 0 otherwise. */
4874
4875 static int i386_record_floats (struct gdbarch *gdbarch,
4876 struct i386_record_s *ir,
4877 uint32_t iregnum)
4878 {
4879 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4880 int i;
4881
4882 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4883 happen. Currently we store st0-st7 registers, but we need not store all
4884 registers all the time, in future we use ftag register and record only
4885 those who are not marked as an empty. */
4886
4887 if (I386_SAVE_FPU_REGS == iregnum)
4888 {
4889 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4890 {
4891 if (record_full_arch_list_add_reg (ir->regcache, i))
4892 return -1;
4893 }
4894 }
4895 else if (I386_SAVE_FPU_ENV == iregnum)
4896 {
4897 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4898 {
4899 if (record_full_arch_list_add_reg (ir->regcache, i))
4900 return -1;
4901 }
4902 }
4903 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4904 {
4905 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4906 {
4907 if (record_full_arch_list_add_reg (ir->regcache, i))
4908 return -1;
4909 }
4910 }
4911 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4912 (iregnum <= I387_FOP_REGNUM (tdep)))
4913 {
4914 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4915 return -1;
4916 }
4917 else
4918 {
4919 /* Parameter error. */
4920 return -1;
4921 }
4922 if(I386_SAVE_FPU_ENV != iregnum)
4923 {
4924 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4925 {
4926 if (record_full_arch_list_add_reg (ir->regcache, i))
4927 return -1;
4928 }
4929 }
4930 return 0;
4931 }
4932
4933 /* Parse the current instruction, and record the values of the
4934 registers and memory that will be changed by the current
4935 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4936
4937 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4938 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4939
4940 int
4941 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4942 CORE_ADDR input_addr)
4943 {
4944 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4945 int prefixes = 0;
4946 int regnum = 0;
4947 uint32_t opcode;
4948 uint8_t opcode8;
4949 ULONGEST addr;
4950 gdb_byte buf[MAX_REGISTER_SIZE];
4951 struct i386_record_s ir;
4952 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4953 uint8_t rex_w = -1;
4954 uint8_t rex_r = 0;
4955
4956 memset (&ir, 0, sizeof (struct i386_record_s));
4957 ir.regcache = regcache;
4958 ir.addr = input_addr;
4959 ir.orig_addr = input_addr;
4960 ir.aflag = 1;
4961 ir.dflag = 1;
4962 ir.override = -1;
4963 ir.popl_esp_hack = 0;
4964 ir.regmap = tdep->record_regmap;
4965 ir.gdbarch = gdbarch;
4966
4967 if (record_debug > 1)
4968 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4969 "addr = %s\n",
4970 paddress (gdbarch, ir.addr));
4971
4972 /* prefixes */
4973 while (1)
4974 {
4975 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4976 return -1;
4977 ir.addr++;
4978 switch (opcode8) /* Instruction prefixes */
4979 {
4980 case REPE_PREFIX_OPCODE:
4981 prefixes |= PREFIX_REPZ;
4982 break;
4983 case REPNE_PREFIX_OPCODE:
4984 prefixes |= PREFIX_REPNZ;
4985 break;
4986 case LOCK_PREFIX_OPCODE:
4987 prefixes |= PREFIX_LOCK;
4988 break;
4989 case CS_PREFIX_OPCODE:
4990 ir.override = X86_RECORD_CS_REGNUM;
4991 break;
4992 case SS_PREFIX_OPCODE:
4993 ir.override = X86_RECORD_SS_REGNUM;
4994 break;
4995 case DS_PREFIX_OPCODE:
4996 ir.override = X86_RECORD_DS_REGNUM;
4997 break;
4998 case ES_PREFIX_OPCODE:
4999 ir.override = X86_RECORD_ES_REGNUM;
5000 break;
5001 case FS_PREFIX_OPCODE:
5002 ir.override = X86_RECORD_FS_REGNUM;
5003 break;
5004 case GS_PREFIX_OPCODE:
5005 ir.override = X86_RECORD_GS_REGNUM;
5006 break;
5007 case DATA_PREFIX_OPCODE:
5008 prefixes |= PREFIX_DATA;
5009 break;
5010 case ADDR_PREFIX_OPCODE:
5011 prefixes |= PREFIX_ADDR;
5012 break;
5013 case 0x40: /* i386 inc %eax */
5014 case 0x41: /* i386 inc %ecx */
5015 case 0x42: /* i386 inc %edx */
5016 case 0x43: /* i386 inc %ebx */
5017 case 0x44: /* i386 inc %esp */
5018 case 0x45: /* i386 inc %ebp */
5019 case 0x46: /* i386 inc %esi */
5020 case 0x47: /* i386 inc %edi */
5021 case 0x48: /* i386 dec %eax */
5022 case 0x49: /* i386 dec %ecx */
5023 case 0x4a: /* i386 dec %edx */
5024 case 0x4b: /* i386 dec %ebx */
5025 case 0x4c: /* i386 dec %esp */
5026 case 0x4d: /* i386 dec %ebp */
5027 case 0x4e: /* i386 dec %esi */
5028 case 0x4f: /* i386 dec %edi */
5029 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5030 {
5031 /* REX */
5032 rex_w = (opcode8 >> 3) & 1;
5033 rex_r = (opcode8 & 0x4) << 1;
5034 ir.rex_x = (opcode8 & 0x2) << 2;
5035 ir.rex_b = (opcode8 & 0x1) << 3;
5036 }
5037 else /* 32 bit target */
5038 goto out_prefixes;
5039 break;
5040 default:
5041 goto out_prefixes;
5042 break;
5043 }
5044 }
5045 out_prefixes:
5046 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5047 {
5048 ir.dflag = 2;
5049 }
5050 else
5051 {
5052 if (prefixes & PREFIX_DATA)
5053 ir.dflag ^= 1;
5054 }
5055 if (prefixes & PREFIX_ADDR)
5056 ir.aflag ^= 1;
5057 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5058 ir.aflag = 2;
5059
5060 /* Now check op code. */
5061 opcode = (uint32_t) opcode8;
5062 reswitch:
5063 switch (opcode)
5064 {
5065 case 0x0f:
5066 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5067 return -1;
5068 ir.addr++;
5069 opcode = (uint32_t) opcode8 | 0x0f00;
5070 goto reswitch;
5071 break;
5072
5073 case 0x00: /* arith & logic */
5074 case 0x01:
5075 case 0x02:
5076 case 0x03:
5077 case 0x04:
5078 case 0x05:
5079 case 0x08:
5080 case 0x09:
5081 case 0x0a:
5082 case 0x0b:
5083 case 0x0c:
5084 case 0x0d:
5085 case 0x10:
5086 case 0x11:
5087 case 0x12:
5088 case 0x13:
5089 case 0x14:
5090 case 0x15:
5091 case 0x18:
5092 case 0x19:
5093 case 0x1a:
5094 case 0x1b:
5095 case 0x1c:
5096 case 0x1d:
5097 case 0x20:
5098 case 0x21:
5099 case 0x22:
5100 case 0x23:
5101 case 0x24:
5102 case 0x25:
5103 case 0x28:
5104 case 0x29:
5105 case 0x2a:
5106 case 0x2b:
5107 case 0x2c:
5108 case 0x2d:
5109 case 0x30:
5110 case 0x31:
5111 case 0x32:
5112 case 0x33:
5113 case 0x34:
5114 case 0x35:
5115 case 0x38:
5116 case 0x39:
5117 case 0x3a:
5118 case 0x3b:
5119 case 0x3c:
5120 case 0x3d:
5121 if (((opcode >> 3) & 7) != OP_CMPL)
5122 {
5123 if ((opcode & 1) == 0)
5124 ir.ot = OT_BYTE;
5125 else
5126 ir.ot = ir.dflag + OT_WORD;
5127
5128 switch ((opcode >> 1) & 3)
5129 {
5130 case 0: /* OP Ev, Gv */
5131 if (i386_record_modrm (&ir))
5132 return -1;
5133 if (ir.mod != 3)
5134 {
5135 if (i386_record_lea_modrm (&ir))
5136 return -1;
5137 }
5138 else
5139 {
5140 ir.rm |= ir.rex_b;
5141 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5142 ir.rm &= 0x3;
5143 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5144 }
5145 break;
5146 case 1: /* OP Gv, Ev */
5147 if (i386_record_modrm (&ir))
5148 return -1;
5149 ir.reg |= rex_r;
5150 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5151 ir.reg &= 0x3;
5152 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5153 break;
5154 case 2: /* OP A, Iv */
5155 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5156 break;
5157 }
5158 }
5159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5160 break;
5161
5162 case 0x80: /* GRP1 */
5163 case 0x81:
5164 case 0x82:
5165 case 0x83:
5166 if (i386_record_modrm (&ir))
5167 return -1;
5168
5169 if (ir.reg != OP_CMPL)
5170 {
5171 if ((opcode & 1) == 0)
5172 ir.ot = OT_BYTE;
5173 else
5174 ir.ot = ir.dflag + OT_WORD;
5175
5176 if (ir.mod != 3)
5177 {
5178 if (opcode == 0x83)
5179 ir.rip_offset = 1;
5180 else
5181 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5182 if (i386_record_lea_modrm (&ir))
5183 return -1;
5184 }
5185 else
5186 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5187 }
5188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5189 break;
5190
5191 case 0x40: /* inc */
5192 case 0x41:
5193 case 0x42:
5194 case 0x43:
5195 case 0x44:
5196 case 0x45:
5197 case 0x46:
5198 case 0x47:
5199
5200 case 0x48: /* dec */
5201 case 0x49:
5202 case 0x4a:
5203 case 0x4b:
5204 case 0x4c:
5205 case 0x4d:
5206 case 0x4e:
5207 case 0x4f:
5208
5209 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5210 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5211 break;
5212
5213 case 0xf6: /* GRP3 */
5214 case 0xf7:
5215 if ((opcode & 1) == 0)
5216 ir.ot = OT_BYTE;
5217 else
5218 ir.ot = ir.dflag + OT_WORD;
5219 if (i386_record_modrm (&ir))
5220 return -1;
5221
5222 if (ir.mod != 3 && ir.reg == 0)
5223 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5224
5225 switch (ir.reg)
5226 {
5227 case 0: /* test */
5228 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5229 break;
5230 case 2: /* not */
5231 case 3: /* neg */
5232 if (ir.mod != 3)
5233 {
5234 if (i386_record_lea_modrm (&ir))
5235 return -1;
5236 }
5237 else
5238 {
5239 ir.rm |= ir.rex_b;
5240 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5241 ir.rm &= 0x3;
5242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5243 }
5244 if (ir.reg == 3) /* neg */
5245 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5246 break;
5247 case 4: /* mul */
5248 case 5: /* imul */
5249 case 6: /* div */
5250 case 7: /* idiv */
5251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5252 if (ir.ot != OT_BYTE)
5253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5255 break;
5256 default:
5257 ir.addr -= 2;
5258 opcode = opcode << 8 | ir.modrm;
5259 goto no_support;
5260 break;
5261 }
5262 break;
5263
5264 case 0xfe: /* GRP4 */
5265 case 0xff: /* GRP5 */
5266 if (i386_record_modrm (&ir))
5267 return -1;
5268 if (ir.reg >= 2 && opcode == 0xfe)
5269 {
5270 ir.addr -= 2;
5271 opcode = opcode << 8 | ir.modrm;
5272 goto no_support;
5273 }
5274 switch (ir.reg)
5275 {
5276 case 0: /* inc */
5277 case 1: /* dec */
5278 if ((opcode & 1) == 0)
5279 ir.ot = OT_BYTE;
5280 else
5281 ir.ot = ir.dflag + OT_WORD;
5282 if (ir.mod != 3)
5283 {
5284 if (i386_record_lea_modrm (&ir))
5285 return -1;
5286 }
5287 else
5288 {
5289 ir.rm |= ir.rex_b;
5290 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5291 ir.rm &= 0x3;
5292 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5293 }
5294 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5295 break;
5296 case 2: /* call */
5297 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5298 ir.dflag = 2;
5299 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5300 return -1;
5301 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5302 break;
5303 case 3: /* lcall */
5304 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5305 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5306 return -1;
5307 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5308 break;
5309 case 4: /* jmp */
5310 case 5: /* ljmp */
5311 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5312 break;
5313 case 6: /* push */
5314 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5315 ir.dflag = 2;
5316 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5317 return -1;
5318 break;
5319 default:
5320 ir.addr -= 2;
5321 opcode = opcode << 8 | ir.modrm;
5322 goto no_support;
5323 break;
5324 }
5325 break;
5326
5327 case 0x84: /* test */
5328 case 0x85:
5329 case 0xa8:
5330 case 0xa9:
5331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5332 break;
5333
5334 case 0x98: /* CWDE/CBW */
5335 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5336 break;
5337
5338 case 0x99: /* CDQ/CWD */
5339 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5341 break;
5342
5343 case 0x0faf: /* imul */
5344 case 0x69:
5345 case 0x6b:
5346 ir.ot = ir.dflag + OT_WORD;
5347 if (i386_record_modrm (&ir))
5348 return -1;
5349 if (opcode == 0x69)
5350 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5351 else if (opcode == 0x6b)
5352 ir.rip_offset = 1;
5353 ir.reg |= rex_r;
5354 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5355 ir.reg &= 0x3;
5356 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5357 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5358 break;
5359
5360 case 0x0fc0: /* xadd */
5361 case 0x0fc1:
5362 if ((opcode & 1) == 0)
5363 ir.ot = OT_BYTE;
5364 else
5365 ir.ot = ir.dflag + OT_WORD;
5366 if (i386_record_modrm (&ir))
5367 return -1;
5368 ir.reg |= rex_r;
5369 if (ir.mod == 3)
5370 {
5371 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5372 ir.reg &= 0x3;
5373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5374 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5375 ir.rm &= 0x3;
5376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5377 }
5378 else
5379 {
5380 if (i386_record_lea_modrm (&ir))
5381 return -1;
5382 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5383 ir.reg &= 0x3;
5384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5385 }
5386 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5387 break;
5388
5389 case 0x0fb0: /* cmpxchg */
5390 case 0x0fb1:
5391 if ((opcode & 1) == 0)
5392 ir.ot = OT_BYTE;
5393 else
5394 ir.ot = ir.dflag + OT_WORD;
5395 if (i386_record_modrm (&ir))
5396 return -1;
5397 if (ir.mod == 3)
5398 {
5399 ir.reg |= rex_r;
5400 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5401 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5402 ir.reg &= 0x3;
5403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5404 }
5405 else
5406 {
5407 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5408 if (i386_record_lea_modrm (&ir))
5409 return -1;
5410 }
5411 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5412 break;
5413
5414 case 0x0fc7: /* cmpxchg8b */
5415 if (i386_record_modrm (&ir))
5416 return -1;
5417 if (ir.mod == 3)
5418 {
5419 ir.addr -= 2;
5420 opcode = opcode << 8 | ir.modrm;
5421 goto no_support;
5422 }
5423 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5425 if (i386_record_lea_modrm (&ir))
5426 return -1;
5427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5428 break;
5429
5430 case 0x50: /* push */
5431 case 0x51:
5432 case 0x52:
5433 case 0x53:
5434 case 0x54:
5435 case 0x55:
5436 case 0x56:
5437 case 0x57:
5438 case 0x68:
5439 case 0x6a:
5440 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5441 ir.dflag = 2;
5442 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5443 return -1;
5444 break;
5445
5446 case 0x06: /* push es */
5447 case 0x0e: /* push cs */
5448 case 0x16: /* push ss */
5449 case 0x1e: /* push ds */
5450 if (ir.regmap[X86_RECORD_R8_REGNUM])
5451 {
5452 ir.addr -= 1;
5453 goto no_support;
5454 }
5455 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5456 return -1;
5457 break;
5458
5459 case 0x0fa0: /* push fs */
5460 case 0x0fa8: /* push gs */
5461 if (ir.regmap[X86_RECORD_R8_REGNUM])
5462 {
5463 ir.addr -= 2;
5464 goto no_support;
5465 }
5466 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5467 return -1;
5468 break;
5469
5470 case 0x60: /* pusha */
5471 if (ir.regmap[X86_RECORD_R8_REGNUM])
5472 {
5473 ir.addr -= 1;
5474 goto no_support;
5475 }
5476 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5477 return -1;
5478 break;
5479
5480 case 0x58: /* pop */
5481 case 0x59:
5482 case 0x5a:
5483 case 0x5b:
5484 case 0x5c:
5485 case 0x5d:
5486 case 0x5e:
5487 case 0x5f:
5488 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5489 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5490 break;
5491
5492 case 0x61: /* popa */
5493 if (ir.regmap[X86_RECORD_R8_REGNUM])
5494 {
5495 ir.addr -= 1;
5496 goto no_support;
5497 }
5498 for (regnum = X86_RECORD_REAX_REGNUM;
5499 regnum <= X86_RECORD_REDI_REGNUM;
5500 regnum++)
5501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5502 break;
5503
5504 case 0x8f: /* pop */
5505 if (ir.regmap[X86_RECORD_R8_REGNUM])
5506 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5507 else
5508 ir.ot = ir.dflag + OT_WORD;
5509 if (i386_record_modrm (&ir))
5510 return -1;
5511 if (ir.mod == 3)
5512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5513 else
5514 {
5515 ir.popl_esp_hack = 1 << ir.ot;
5516 if (i386_record_lea_modrm (&ir))
5517 return -1;
5518 }
5519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5520 break;
5521
5522 case 0xc8: /* enter */
5523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5524 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5525 ir.dflag = 2;
5526 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5527 return -1;
5528 break;
5529
5530 case 0xc9: /* leave */
5531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5533 break;
5534
5535 case 0x07: /* pop es */
5536 if (ir.regmap[X86_RECORD_R8_REGNUM])
5537 {
5538 ir.addr -= 1;
5539 goto no_support;
5540 }
5541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5544 break;
5545
5546 case 0x17: /* pop ss */
5547 if (ir.regmap[X86_RECORD_R8_REGNUM])
5548 {
5549 ir.addr -= 1;
5550 goto no_support;
5551 }
5552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5555 break;
5556
5557 case 0x1f: /* pop ds */
5558 if (ir.regmap[X86_RECORD_R8_REGNUM])
5559 {
5560 ir.addr -= 1;
5561 goto no_support;
5562 }
5563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5566 break;
5567
5568 case 0x0fa1: /* pop fs */
5569 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5570 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5572 break;
5573
5574 case 0x0fa9: /* pop gs */
5575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5576 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5577 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5578 break;
5579
5580 case 0x88: /* mov */
5581 case 0x89:
5582 case 0xc6:
5583 case 0xc7:
5584 if ((opcode & 1) == 0)
5585 ir.ot = OT_BYTE;
5586 else
5587 ir.ot = ir.dflag + OT_WORD;
5588
5589 if (i386_record_modrm (&ir))
5590 return -1;
5591
5592 if (ir.mod != 3)
5593 {
5594 if (opcode == 0xc6 || opcode == 0xc7)
5595 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5596 if (i386_record_lea_modrm (&ir))
5597 return -1;
5598 }
5599 else
5600 {
5601 if (opcode == 0xc6 || opcode == 0xc7)
5602 ir.rm |= ir.rex_b;
5603 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5604 ir.rm &= 0x3;
5605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5606 }
5607 break;
5608
5609 case 0x8a: /* mov */
5610 case 0x8b:
5611 if ((opcode & 1) == 0)
5612 ir.ot = OT_BYTE;
5613 else
5614 ir.ot = ir.dflag + OT_WORD;
5615 if (i386_record_modrm (&ir))
5616 return -1;
5617 ir.reg |= rex_r;
5618 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5619 ir.reg &= 0x3;
5620 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5621 break;
5622
5623 case 0x8c: /* mov seg */
5624 if (i386_record_modrm (&ir))
5625 return -1;
5626 if (ir.reg > 5)
5627 {
5628 ir.addr -= 2;
5629 opcode = opcode << 8 | ir.modrm;
5630 goto no_support;
5631 }
5632
5633 if (ir.mod == 3)
5634 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5635 else
5636 {
5637 ir.ot = OT_WORD;
5638 if (i386_record_lea_modrm (&ir))
5639 return -1;
5640 }
5641 break;
5642
5643 case 0x8e: /* mov seg */
5644 if (i386_record_modrm (&ir))
5645 return -1;
5646 switch (ir.reg)
5647 {
5648 case 0:
5649 regnum = X86_RECORD_ES_REGNUM;
5650 break;
5651 case 2:
5652 regnum = X86_RECORD_SS_REGNUM;
5653 break;
5654 case 3:
5655 regnum = X86_RECORD_DS_REGNUM;
5656 break;
5657 case 4:
5658 regnum = X86_RECORD_FS_REGNUM;
5659 break;
5660 case 5:
5661 regnum = X86_RECORD_GS_REGNUM;
5662 break;
5663 default:
5664 ir.addr -= 2;
5665 opcode = opcode << 8 | ir.modrm;
5666 goto no_support;
5667 break;
5668 }
5669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5671 break;
5672
5673 case 0x0fb6: /* movzbS */
5674 case 0x0fb7: /* movzwS */
5675 case 0x0fbe: /* movsbS */
5676 case 0x0fbf: /* movswS */
5677 if (i386_record_modrm (&ir))
5678 return -1;
5679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5680 break;
5681
5682 case 0x8d: /* lea */
5683 if (i386_record_modrm (&ir))
5684 return -1;
5685 if (ir.mod == 3)
5686 {
5687 ir.addr -= 2;
5688 opcode = opcode << 8 | ir.modrm;
5689 goto no_support;
5690 }
5691 ir.ot = ir.dflag;
5692 ir.reg |= rex_r;
5693 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5694 ir.reg &= 0x3;
5695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5696 break;
5697
5698 case 0xa0: /* mov EAX */
5699 case 0xa1:
5700
5701 case 0xd7: /* xlat */
5702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5703 break;
5704
5705 case 0xa2: /* mov EAX */
5706 case 0xa3:
5707 if (ir.override >= 0)
5708 {
5709 if (record_full_memory_query)
5710 {
5711 int q;
5712
5713 target_terminal_ours ();
5714 q = yquery (_("\
5715 Process record ignores the memory change of instruction at address %s\n\
5716 because it can't get the value of the segment register.\n\
5717 Do you want to stop the program?"),
5718 paddress (gdbarch, ir.orig_addr));
5719 target_terminal_inferior ();
5720 if (q)
5721 return -1;
5722 }
5723 }
5724 else
5725 {
5726 if ((opcode & 1) == 0)
5727 ir.ot = OT_BYTE;
5728 else
5729 ir.ot = ir.dflag + OT_WORD;
5730 if (ir.aflag == 2)
5731 {
5732 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5733 return -1;
5734 ir.addr += 8;
5735 addr = extract_unsigned_integer (buf, 8, byte_order);
5736 }
5737 else if (ir.aflag)
5738 {
5739 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5740 return -1;
5741 ir.addr += 4;
5742 addr = extract_unsigned_integer (buf, 4, byte_order);
5743 }
5744 else
5745 {
5746 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5747 return -1;
5748 ir.addr += 2;
5749 addr = extract_unsigned_integer (buf, 2, byte_order);
5750 }
5751 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5752 return -1;
5753 }
5754 break;
5755
5756 case 0xb0: /* mov R, Ib */
5757 case 0xb1:
5758 case 0xb2:
5759 case 0xb3:
5760 case 0xb4:
5761 case 0xb5:
5762 case 0xb6:
5763 case 0xb7:
5764 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5765 ? ((opcode & 0x7) | ir.rex_b)
5766 : ((opcode & 0x7) & 0x3));
5767 break;
5768
5769 case 0xb8: /* mov R, Iv */
5770 case 0xb9:
5771 case 0xba:
5772 case 0xbb:
5773 case 0xbc:
5774 case 0xbd:
5775 case 0xbe:
5776 case 0xbf:
5777 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5778 break;
5779
5780 case 0x91: /* xchg R, EAX */
5781 case 0x92:
5782 case 0x93:
5783 case 0x94:
5784 case 0x95:
5785 case 0x96:
5786 case 0x97:
5787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5789 break;
5790
5791 case 0x86: /* xchg Ev, Gv */
5792 case 0x87:
5793 if ((opcode & 1) == 0)
5794 ir.ot = OT_BYTE;
5795 else
5796 ir.ot = ir.dflag + OT_WORD;
5797 if (i386_record_modrm (&ir))
5798 return -1;
5799 if (ir.mod == 3)
5800 {
5801 ir.rm |= ir.rex_b;
5802 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5803 ir.rm &= 0x3;
5804 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5805 }
5806 else
5807 {
5808 if (i386_record_lea_modrm (&ir))
5809 return -1;
5810 }
5811 ir.reg |= rex_r;
5812 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5813 ir.reg &= 0x3;
5814 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5815 break;
5816
5817 case 0xc4: /* les Gv */
5818 case 0xc5: /* lds Gv */
5819 if (ir.regmap[X86_RECORD_R8_REGNUM])
5820 {
5821 ir.addr -= 1;
5822 goto no_support;
5823 }
5824 /* FALLTHROUGH */
5825 case 0x0fb2: /* lss Gv */
5826 case 0x0fb4: /* lfs Gv */
5827 case 0x0fb5: /* lgs Gv */
5828 if (i386_record_modrm (&ir))
5829 return -1;
5830 if (ir.mod == 3)
5831 {
5832 if (opcode > 0xff)
5833 ir.addr -= 3;
5834 else
5835 ir.addr -= 2;
5836 opcode = opcode << 8 | ir.modrm;
5837 goto no_support;
5838 }
5839 switch (opcode)
5840 {
5841 case 0xc4: /* les Gv */
5842 regnum = X86_RECORD_ES_REGNUM;
5843 break;
5844 case 0xc5: /* lds Gv */
5845 regnum = X86_RECORD_DS_REGNUM;
5846 break;
5847 case 0x0fb2: /* lss Gv */
5848 regnum = X86_RECORD_SS_REGNUM;
5849 break;
5850 case 0x0fb4: /* lfs Gv */
5851 regnum = X86_RECORD_FS_REGNUM;
5852 break;
5853 case 0x0fb5: /* lgs Gv */
5854 regnum = X86_RECORD_GS_REGNUM;
5855 break;
5856 }
5857 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5858 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5859 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5860 break;
5861
5862 case 0xc0: /* shifts */
5863 case 0xc1:
5864 case 0xd0:
5865 case 0xd1:
5866 case 0xd2:
5867 case 0xd3:
5868 if ((opcode & 1) == 0)
5869 ir.ot = OT_BYTE;
5870 else
5871 ir.ot = ir.dflag + OT_WORD;
5872 if (i386_record_modrm (&ir))
5873 return -1;
5874 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5875 {
5876 if (i386_record_lea_modrm (&ir))
5877 return -1;
5878 }
5879 else
5880 {
5881 ir.rm |= ir.rex_b;
5882 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5883 ir.rm &= 0x3;
5884 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5885 }
5886 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5887 break;
5888
5889 case 0x0fa4:
5890 case 0x0fa5:
5891 case 0x0fac:
5892 case 0x0fad:
5893 if (i386_record_modrm (&ir))
5894 return -1;
5895 if (ir.mod == 3)
5896 {
5897 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5898 return -1;
5899 }
5900 else
5901 {
5902 if (i386_record_lea_modrm (&ir))
5903 return -1;
5904 }
5905 break;
5906
5907 case 0xd8: /* Floats. */
5908 case 0xd9:
5909 case 0xda:
5910 case 0xdb:
5911 case 0xdc:
5912 case 0xdd:
5913 case 0xde:
5914 case 0xdf:
5915 if (i386_record_modrm (&ir))
5916 return -1;
5917 ir.reg |= ((opcode & 7) << 3);
5918 if (ir.mod != 3)
5919 {
5920 /* Memory. */
5921 uint64_t addr64;
5922
5923 if (i386_record_lea_modrm_addr (&ir, &addr64))
5924 return -1;
5925 switch (ir.reg)
5926 {
5927 case 0x02:
5928 case 0x12:
5929 case 0x22:
5930 case 0x32:
5931 /* For fcom, ficom nothing to do. */
5932 break;
5933 case 0x03:
5934 case 0x13:
5935 case 0x23:
5936 case 0x33:
5937 /* For fcomp, ficomp pop FPU stack, store all. */
5938 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5939 return -1;
5940 break;
5941 case 0x00:
5942 case 0x01:
5943 case 0x04:
5944 case 0x05:
5945 case 0x06:
5946 case 0x07:
5947 case 0x10:
5948 case 0x11:
5949 case 0x14:
5950 case 0x15:
5951 case 0x16:
5952 case 0x17:
5953 case 0x20:
5954 case 0x21:
5955 case 0x24:
5956 case 0x25:
5957 case 0x26:
5958 case 0x27:
5959 case 0x30:
5960 case 0x31:
5961 case 0x34:
5962 case 0x35:
5963 case 0x36:
5964 case 0x37:
5965 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5966 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5967 of code, always affects st(0) register. */
5968 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5969 return -1;
5970 break;
5971 case 0x08:
5972 case 0x0a:
5973 case 0x0b:
5974 case 0x18:
5975 case 0x19:
5976 case 0x1a:
5977 case 0x1b:
5978 case 0x1d:
5979 case 0x28:
5980 case 0x29:
5981 case 0x2a:
5982 case 0x2b:
5983 case 0x38:
5984 case 0x39:
5985 case 0x3a:
5986 case 0x3b:
5987 case 0x3c:
5988 case 0x3d:
5989 switch (ir.reg & 7)
5990 {
5991 case 0:
5992 /* Handling fld, fild. */
5993 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5994 return -1;
5995 break;
5996 case 1:
5997 switch (ir.reg >> 4)
5998 {
5999 case 0:
6000 if (record_full_arch_list_add_mem (addr64, 4))
6001 return -1;
6002 break;
6003 case 2:
6004 if (record_full_arch_list_add_mem (addr64, 8))
6005 return -1;
6006 break;
6007 case 3:
6008 break;
6009 default:
6010 if (record_full_arch_list_add_mem (addr64, 2))
6011 return -1;
6012 break;
6013 }
6014 break;
6015 default:
6016 switch (ir.reg >> 4)
6017 {
6018 case 0:
6019 if (record_full_arch_list_add_mem (addr64, 4))
6020 return -1;
6021 if (3 == (ir.reg & 7))
6022 {
6023 /* For fstp m32fp. */
6024 if (i386_record_floats (gdbarch, &ir,
6025 I386_SAVE_FPU_REGS))
6026 return -1;
6027 }
6028 break;
6029 case 1:
6030 if (record_full_arch_list_add_mem (addr64, 4))
6031 return -1;
6032 if ((3 == (ir.reg & 7))
6033 || (5 == (ir.reg & 7))
6034 || (7 == (ir.reg & 7)))
6035 {
6036 /* For fstp insn. */
6037 if (i386_record_floats (gdbarch, &ir,
6038 I386_SAVE_FPU_REGS))
6039 return -1;
6040 }
6041 break;
6042 case 2:
6043 if (record_full_arch_list_add_mem (addr64, 8))
6044 return -1;
6045 if (3 == (ir.reg & 7))
6046 {
6047 /* For fstp m64fp. */
6048 if (i386_record_floats (gdbarch, &ir,
6049 I386_SAVE_FPU_REGS))
6050 return -1;
6051 }
6052 break;
6053 case 3:
6054 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6055 {
6056 /* For fistp, fbld, fild, fbstp. */
6057 if (i386_record_floats (gdbarch, &ir,
6058 I386_SAVE_FPU_REGS))
6059 return -1;
6060 }
6061 /* Fall through */
6062 default:
6063 if (record_full_arch_list_add_mem (addr64, 2))
6064 return -1;
6065 break;
6066 }
6067 break;
6068 }
6069 break;
6070 case 0x0c:
6071 /* Insn fldenv. */
6072 if (i386_record_floats (gdbarch, &ir,
6073 I386_SAVE_FPU_ENV_REG_STACK))
6074 return -1;
6075 break;
6076 case 0x0d:
6077 /* Insn fldcw. */
6078 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6079 return -1;
6080 break;
6081 case 0x2c:
6082 /* Insn frstor. */
6083 if (i386_record_floats (gdbarch, &ir,
6084 I386_SAVE_FPU_ENV_REG_STACK))
6085 return -1;
6086 break;
6087 case 0x0e:
6088 if (ir.dflag)
6089 {
6090 if (record_full_arch_list_add_mem (addr64, 28))
6091 return -1;
6092 }
6093 else
6094 {
6095 if (record_full_arch_list_add_mem (addr64, 14))
6096 return -1;
6097 }
6098 break;
6099 case 0x0f:
6100 case 0x2f:
6101 if (record_full_arch_list_add_mem (addr64, 2))
6102 return -1;
6103 /* Insn fstp, fbstp. */
6104 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6105 return -1;
6106 break;
6107 case 0x1f:
6108 case 0x3e:
6109 if (record_full_arch_list_add_mem (addr64, 10))
6110 return -1;
6111 break;
6112 case 0x2e:
6113 if (ir.dflag)
6114 {
6115 if (record_full_arch_list_add_mem (addr64, 28))
6116 return -1;
6117 addr64 += 28;
6118 }
6119 else
6120 {
6121 if (record_full_arch_list_add_mem (addr64, 14))
6122 return -1;
6123 addr64 += 14;
6124 }
6125 if (record_full_arch_list_add_mem (addr64, 80))
6126 return -1;
6127 /* Insn fsave. */
6128 if (i386_record_floats (gdbarch, &ir,
6129 I386_SAVE_FPU_ENV_REG_STACK))
6130 return -1;
6131 break;
6132 case 0x3f:
6133 if (record_full_arch_list_add_mem (addr64, 8))
6134 return -1;
6135 /* Insn fistp. */
6136 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6137 return -1;
6138 break;
6139 default:
6140 ir.addr -= 2;
6141 opcode = opcode << 8 | ir.modrm;
6142 goto no_support;
6143 break;
6144 }
6145 }
6146 /* Opcode is an extension of modR/M byte. */
6147 else
6148 {
6149 switch (opcode)
6150 {
6151 case 0xd8:
6152 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6153 return -1;
6154 break;
6155 case 0xd9:
6156 if (0x0c == (ir.modrm >> 4))
6157 {
6158 if ((ir.modrm & 0x0f) <= 7)
6159 {
6160 if (i386_record_floats (gdbarch, &ir,
6161 I386_SAVE_FPU_REGS))
6162 return -1;
6163 }
6164 else
6165 {
6166 if (i386_record_floats (gdbarch, &ir,
6167 I387_ST0_REGNUM (tdep)))
6168 return -1;
6169 /* If only st(0) is changing, then we have already
6170 recorded. */
6171 if ((ir.modrm & 0x0f) - 0x08)
6172 {
6173 if (i386_record_floats (gdbarch, &ir,
6174 I387_ST0_REGNUM (tdep) +
6175 ((ir.modrm & 0x0f) - 0x08)))
6176 return -1;
6177 }
6178 }
6179 }
6180 else
6181 {
6182 switch (ir.modrm)
6183 {
6184 case 0xe0:
6185 case 0xe1:
6186 case 0xf0:
6187 case 0xf5:
6188 case 0xf8:
6189 case 0xfa:
6190 case 0xfc:
6191 case 0xfe:
6192 case 0xff:
6193 if (i386_record_floats (gdbarch, &ir,
6194 I387_ST0_REGNUM (tdep)))
6195 return -1;
6196 break;
6197 case 0xf1:
6198 case 0xf2:
6199 case 0xf3:
6200 case 0xf4:
6201 case 0xf6:
6202 case 0xf7:
6203 case 0xe8:
6204 case 0xe9:
6205 case 0xea:
6206 case 0xeb:
6207 case 0xec:
6208 case 0xed:
6209 case 0xee:
6210 case 0xf9:
6211 case 0xfb:
6212 if (i386_record_floats (gdbarch, &ir,
6213 I386_SAVE_FPU_REGS))
6214 return -1;
6215 break;
6216 case 0xfd:
6217 if (i386_record_floats (gdbarch, &ir,
6218 I387_ST0_REGNUM (tdep)))
6219 return -1;
6220 if (i386_record_floats (gdbarch, &ir,
6221 I387_ST0_REGNUM (tdep) + 1))
6222 return -1;
6223 break;
6224 }
6225 }
6226 break;
6227 case 0xda:
6228 if (0xe9 == ir.modrm)
6229 {
6230 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6231 return -1;
6232 }
6233 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6234 {
6235 if (i386_record_floats (gdbarch, &ir,
6236 I387_ST0_REGNUM (tdep)))
6237 return -1;
6238 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6239 {
6240 if (i386_record_floats (gdbarch, &ir,
6241 I387_ST0_REGNUM (tdep) +
6242 (ir.modrm & 0x0f)))
6243 return -1;
6244 }
6245 else if ((ir.modrm & 0x0f) - 0x08)
6246 {
6247 if (i386_record_floats (gdbarch, &ir,
6248 I387_ST0_REGNUM (tdep) +
6249 ((ir.modrm & 0x0f) - 0x08)))
6250 return -1;
6251 }
6252 }
6253 break;
6254 case 0xdb:
6255 if (0xe3 == ir.modrm)
6256 {
6257 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6258 return -1;
6259 }
6260 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6261 {
6262 if (i386_record_floats (gdbarch, &ir,
6263 I387_ST0_REGNUM (tdep)))
6264 return -1;
6265 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6266 {
6267 if (i386_record_floats (gdbarch, &ir,
6268 I387_ST0_REGNUM (tdep) +
6269 (ir.modrm & 0x0f)))
6270 return -1;
6271 }
6272 else if ((ir.modrm & 0x0f) - 0x08)
6273 {
6274 if (i386_record_floats (gdbarch, &ir,
6275 I387_ST0_REGNUM (tdep) +
6276 ((ir.modrm & 0x0f) - 0x08)))
6277 return -1;
6278 }
6279 }
6280 break;
6281 case 0xdc:
6282 if ((0x0c == ir.modrm >> 4)
6283 || (0x0d == ir.modrm >> 4)
6284 || (0x0f == ir.modrm >> 4))
6285 {
6286 if ((ir.modrm & 0x0f) <= 7)
6287 {
6288 if (i386_record_floats (gdbarch, &ir,
6289 I387_ST0_REGNUM (tdep) +
6290 (ir.modrm & 0x0f)))
6291 return -1;
6292 }
6293 else
6294 {
6295 if (i386_record_floats (gdbarch, &ir,
6296 I387_ST0_REGNUM (tdep) +
6297 ((ir.modrm & 0x0f) - 0x08)))
6298 return -1;
6299 }
6300 }
6301 break;
6302 case 0xdd:
6303 if (0x0c == ir.modrm >> 4)
6304 {
6305 if (i386_record_floats (gdbarch, &ir,
6306 I387_FTAG_REGNUM (tdep)))
6307 return -1;
6308 }
6309 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6310 {
6311 if ((ir.modrm & 0x0f) <= 7)
6312 {
6313 if (i386_record_floats (gdbarch, &ir,
6314 I387_ST0_REGNUM (tdep) +
6315 (ir.modrm & 0x0f)))
6316 return -1;
6317 }
6318 else
6319 {
6320 if (i386_record_floats (gdbarch, &ir,
6321 I386_SAVE_FPU_REGS))
6322 return -1;
6323 }
6324 }
6325 break;
6326 case 0xde:
6327 if ((0x0c == ir.modrm >> 4)
6328 || (0x0e == ir.modrm >> 4)
6329 || (0x0f == ir.modrm >> 4)
6330 || (0xd9 == ir.modrm))
6331 {
6332 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6333 return -1;
6334 }
6335 break;
6336 case 0xdf:
6337 if (0xe0 == ir.modrm)
6338 {
6339 if (record_full_arch_list_add_reg (ir.regcache,
6340 I386_EAX_REGNUM))
6341 return -1;
6342 }
6343 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6344 {
6345 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6346 return -1;
6347 }
6348 break;
6349 }
6350 }
6351 break;
6352 /* string ops */
6353 case 0xa4: /* movsS */
6354 case 0xa5:
6355 case 0xaa: /* stosS */
6356 case 0xab:
6357 case 0x6c: /* insS */
6358 case 0x6d:
6359 regcache_raw_read_unsigned (ir.regcache,
6360 ir.regmap[X86_RECORD_RECX_REGNUM],
6361 &addr);
6362 if (addr)
6363 {
6364 ULONGEST es, ds;
6365
6366 if ((opcode & 1) == 0)
6367 ir.ot = OT_BYTE;
6368 else
6369 ir.ot = ir.dflag + OT_WORD;
6370 regcache_raw_read_unsigned (ir.regcache,
6371 ir.regmap[X86_RECORD_REDI_REGNUM],
6372 &addr);
6373
6374 regcache_raw_read_unsigned (ir.regcache,
6375 ir.regmap[X86_RECORD_ES_REGNUM],
6376 &es);
6377 regcache_raw_read_unsigned (ir.regcache,
6378 ir.regmap[X86_RECORD_DS_REGNUM],
6379 &ds);
6380 if (ir.aflag && (es != ds))
6381 {
6382 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6383 if (record_full_memory_query)
6384 {
6385 int q;
6386
6387 target_terminal_ours ();
6388 q = yquery (_("\
6389 Process record ignores the memory change of instruction at address %s\n\
6390 because it can't get the value of the segment register.\n\
6391 Do you want to stop the program?"),
6392 paddress (gdbarch, ir.orig_addr));
6393 target_terminal_inferior ();
6394 if (q)
6395 return -1;
6396 }
6397 }
6398 else
6399 {
6400 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6401 return -1;
6402 }
6403
6404 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6405 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6406 if (opcode == 0xa4 || opcode == 0xa5)
6407 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6408 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6409 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6410 }
6411 break;
6412
6413 case 0xa6: /* cmpsS */
6414 case 0xa7:
6415 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6416 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6417 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6420 break;
6421
6422 case 0xac: /* lodsS */
6423 case 0xad:
6424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6426 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6429 break;
6430
6431 case 0xae: /* scasS */
6432 case 0xaf:
6433 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6434 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6435 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6436 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6437 break;
6438
6439 case 0x6e: /* outsS */
6440 case 0x6f:
6441 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6442 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6443 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6444 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6445 break;
6446
6447 case 0xe4: /* port I/O */
6448 case 0xe5:
6449 case 0xec:
6450 case 0xed:
6451 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6453 break;
6454
6455 case 0xe6:
6456 case 0xe7:
6457 case 0xee:
6458 case 0xef:
6459 break;
6460
6461 /* control */
6462 case 0xc2: /* ret im */
6463 case 0xc3: /* ret */
6464 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6466 break;
6467
6468 case 0xca: /* lret im */
6469 case 0xcb: /* lret */
6470 case 0xcf: /* iret */
6471 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6472 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6474 break;
6475
6476 case 0xe8: /* call im */
6477 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6478 ir.dflag = 2;
6479 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6480 return -1;
6481 break;
6482
6483 case 0x9a: /* lcall im */
6484 if (ir.regmap[X86_RECORD_R8_REGNUM])
6485 {
6486 ir.addr -= 1;
6487 goto no_support;
6488 }
6489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6490 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6491 return -1;
6492 break;
6493
6494 case 0xe9: /* jmp im */
6495 case 0xea: /* ljmp im */
6496 case 0xeb: /* jmp Jb */
6497 case 0x70: /* jcc Jb */
6498 case 0x71:
6499 case 0x72:
6500 case 0x73:
6501 case 0x74:
6502 case 0x75:
6503 case 0x76:
6504 case 0x77:
6505 case 0x78:
6506 case 0x79:
6507 case 0x7a:
6508 case 0x7b:
6509 case 0x7c:
6510 case 0x7d:
6511 case 0x7e:
6512 case 0x7f:
6513 case 0x0f80: /* jcc Jv */
6514 case 0x0f81:
6515 case 0x0f82:
6516 case 0x0f83:
6517 case 0x0f84:
6518 case 0x0f85:
6519 case 0x0f86:
6520 case 0x0f87:
6521 case 0x0f88:
6522 case 0x0f89:
6523 case 0x0f8a:
6524 case 0x0f8b:
6525 case 0x0f8c:
6526 case 0x0f8d:
6527 case 0x0f8e:
6528 case 0x0f8f:
6529 break;
6530
6531 case 0x0f90: /* setcc Gv */
6532 case 0x0f91:
6533 case 0x0f92:
6534 case 0x0f93:
6535 case 0x0f94:
6536 case 0x0f95:
6537 case 0x0f96:
6538 case 0x0f97:
6539 case 0x0f98:
6540 case 0x0f99:
6541 case 0x0f9a:
6542 case 0x0f9b:
6543 case 0x0f9c:
6544 case 0x0f9d:
6545 case 0x0f9e:
6546 case 0x0f9f:
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6548 ir.ot = OT_BYTE;
6549 if (i386_record_modrm (&ir))
6550 return -1;
6551 if (ir.mod == 3)
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6553 : (ir.rm & 0x3));
6554 else
6555 {
6556 if (i386_record_lea_modrm (&ir))
6557 return -1;
6558 }
6559 break;
6560
6561 case 0x0f40: /* cmov Gv, Ev */
6562 case 0x0f41:
6563 case 0x0f42:
6564 case 0x0f43:
6565 case 0x0f44:
6566 case 0x0f45:
6567 case 0x0f46:
6568 case 0x0f47:
6569 case 0x0f48:
6570 case 0x0f49:
6571 case 0x0f4a:
6572 case 0x0f4b:
6573 case 0x0f4c:
6574 case 0x0f4d:
6575 case 0x0f4e:
6576 case 0x0f4f:
6577 if (i386_record_modrm (&ir))
6578 return -1;
6579 ir.reg |= rex_r;
6580 if (ir.dflag == OT_BYTE)
6581 ir.reg &= 0x3;
6582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6583 break;
6584
6585 /* flags */
6586 case 0x9c: /* pushf */
6587 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6588 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6589 ir.dflag = 2;
6590 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6591 return -1;
6592 break;
6593
6594 case 0x9d: /* popf */
6595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6597 break;
6598
6599 case 0x9e: /* sahf */
6600 if (ir.regmap[X86_RECORD_R8_REGNUM])
6601 {
6602 ir.addr -= 1;
6603 goto no_support;
6604 }
6605 /* FALLTHROUGH */
6606 case 0xf5: /* cmc */
6607 case 0xf8: /* clc */
6608 case 0xf9: /* stc */
6609 case 0xfc: /* cld */
6610 case 0xfd: /* std */
6611 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6612 break;
6613
6614 case 0x9f: /* lahf */
6615 if (ir.regmap[X86_RECORD_R8_REGNUM])
6616 {
6617 ir.addr -= 1;
6618 goto no_support;
6619 }
6620 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6621 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6622 break;
6623
6624 /* bit operations */
6625 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6626 ir.ot = ir.dflag + OT_WORD;
6627 if (i386_record_modrm (&ir))
6628 return -1;
6629 if (ir.reg < 4)
6630 {
6631 ir.addr -= 2;
6632 opcode = opcode << 8 | ir.modrm;
6633 goto no_support;
6634 }
6635 if (ir.reg != 4)
6636 {
6637 if (ir.mod == 3)
6638 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6639 else
6640 {
6641 if (i386_record_lea_modrm (&ir))
6642 return -1;
6643 }
6644 }
6645 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6646 break;
6647
6648 case 0x0fa3: /* bt Gv, Ev */
6649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6650 break;
6651
6652 case 0x0fab: /* bts */
6653 case 0x0fb3: /* btr */
6654 case 0x0fbb: /* btc */
6655 ir.ot = ir.dflag + OT_WORD;
6656 if (i386_record_modrm (&ir))
6657 return -1;
6658 if (ir.mod == 3)
6659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6660 else
6661 {
6662 uint64_t addr64;
6663 if (i386_record_lea_modrm_addr (&ir, &addr64))
6664 return -1;
6665 regcache_raw_read_unsigned (ir.regcache,
6666 ir.regmap[ir.reg | rex_r],
6667 &addr);
6668 switch (ir.dflag)
6669 {
6670 case 0:
6671 addr64 += ((int16_t) addr >> 4) << 4;
6672 break;
6673 case 1:
6674 addr64 += ((int32_t) addr >> 5) << 5;
6675 break;
6676 case 2:
6677 addr64 += ((int64_t) addr >> 6) << 6;
6678 break;
6679 }
6680 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6681 return -1;
6682 if (i386_record_lea_modrm (&ir))
6683 return -1;
6684 }
6685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6686 break;
6687
6688 case 0x0fbc: /* bsf */
6689 case 0x0fbd: /* bsr */
6690 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6692 break;
6693
6694 /* bcd */
6695 case 0x27: /* daa */
6696 case 0x2f: /* das */
6697 case 0x37: /* aaa */
6698 case 0x3f: /* aas */
6699 case 0xd4: /* aam */
6700 case 0xd5: /* aad */
6701 if (ir.regmap[X86_RECORD_R8_REGNUM])
6702 {
6703 ir.addr -= 1;
6704 goto no_support;
6705 }
6706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6708 break;
6709
6710 /* misc */
6711 case 0x90: /* nop */
6712 if (prefixes & PREFIX_LOCK)
6713 {
6714 ir.addr -= 1;
6715 goto no_support;
6716 }
6717 break;
6718
6719 case 0x9b: /* fwait */
6720 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6721 return -1;
6722 opcode = (uint32_t) opcode8;
6723 ir.addr++;
6724 goto reswitch;
6725 break;
6726
6727 /* XXX */
6728 case 0xcc: /* int3 */
6729 printf_unfiltered (_("Process record does not support instruction "
6730 "int3.\n"));
6731 ir.addr -= 1;
6732 goto no_support;
6733 break;
6734
6735 /* XXX */
6736 case 0xcd: /* int */
6737 {
6738 int ret;
6739 uint8_t interrupt;
6740 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6741 return -1;
6742 ir.addr++;
6743 if (interrupt != 0x80
6744 || tdep->i386_intx80_record == NULL)
6745 {
6746 printf_unfiltered (_("Process record does not support "
6747 "instruction int 0x%02x.\n"),
6748 interrupt);
6749 ir.addr -= 2;
6750 goto no_support;
6751 }
6752 ret = tdep->i386_intx80_record (ir.regcache);
6753 if (ret)
6754 return ret;
6755 }
6756 break;
6757
6758 /* XXX */
6759 case 0xce: /* into */
6760 printf_unfiltered (_("Process record does not support "
6761 "instruction into.\n"));
6762 ir.addr -= 1;
6763 goto no_support;
6764 break;
6765
6766 case 0xfa: /* cli */
6767 case 0xfb: /* sti */
6768 break;
6769
6770 case 0x62: /* bound */
6771 printf_unfiltered (_("Process record does not support "
6772 "instruction bound.\n"));
6773 ir.addr -= 1;
6774 goto no_support;
6775 break;
6776
6777 case 0x0fc8: /* bswap reg */
6778 case 0x0fc9:
6779 case 0x0fca:
6780 case 0x0fcb:
6781 case 0x0fcc:
6782 case 0x0fcd:
6783 case 0x0fce:
6784 case 0x0fcf:
6785 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6786 break;
6787
6788 case 0xd6: /* salc */
6789 if (ir.regmap[X86_RECORD_R8_REGNUM])
6790 {
6791 ir.addr -= 1;
6792 goto no_support;
6793 }
6794 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6795 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6796 break;
6797
6798 case 0xe0: /* loopnz */
6799 case 0xe1: /* loopz */
6800 case 0xe2: /* loop */
6801 case 0xe3: /* jecxz */
6802 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6803 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6804 break;
6805
6806 case 0x0f30: /* wrmsr */
6807 printf_unfiltered (_("Process record does not support "
6808 "instruction wrmsr.\n"));
6809 ir.addr -= 2;
6810 goto no_support;
6811 break;
6812
6813 case 0x0f32: /* rdmsr */
6814 printf_unfiltered (_("Process record does not support "
6815 "instruction rdmsr.\n"));
6816 ir.addr -= 2;
6817 goto no_support;
6818 break;
6819
6820 case 0x0f31: /* rdtsc */
6821 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6822 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6823 break;
6824
6825 case 0x0f34: /* sysenter */
6826 {
6827 int ret;
6828 if (ir.regmap[X86_RECORD_R8_REGNUM])
6829 {
6830 ir.addr -= 2;
6831 goto no_support;
6832 }
6833 if (tdep->i386_sysenter_record == NULL)
6834 {
6835 printf_unfiltered (_("Process record does not support "
6836 "instruction sysenter.\n"));
6837 ir.addr -= 2;
6838 goto no_support;
6839 }
6840 ret = tdep->i386_sysenter_record (ir.regcache);
6841 if (ret)
6842 return ret;
6843 }
6844 break;
6845
6846 case 0x0f35: /* sysexit */
6847 printf_unfiltered (_("Process record does not support "
6848 "instruction sysexit.\n"));
6849 ir.addr -= 2;
6850 goto no_support;
6851 break;
6852
6853 case 0x0f05: /* syscall */
6854 {
6855 int ret;
6856 if (tdep->i386_syscall_record == NULL)
6857 {
6858 printf_unfiltered (_("Process record does not support "
6859 "instruction syscall.\n"));
6860 ir.addr -= 2;
6861 goto no_support;
6862 }
6863 ret = tdep->i386_syscall_record (ir.regcache);
6864 if (ret)
6865 return ret;
6866 }
6867 break;
6868
6869 case 0x0f07: /* sysret */
6870 printf_unfiltered (_("Process record does not support "
6871 "instruction sysret.\n"));
6872 ir.addr -= 2;
6873 goto no_support;
6874 break;
6875
6876 case 0x0fa2: /* cpuid */
6877 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6878 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6879 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6880 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6881 break;
6882
6883 case 0xf4: /* hlt */
6884 printf_unfiltered (_("Process record does not support "
6885 "instruction hlt.\n"));
6886 ir.addr -= 1;
6887 goto no_support;
6888 break;
6889
6890 case 0x0f00:
6891 if (i386_record_modrm (&ir))
6892 return -1;
6893 switch (ir.reg)
6894 {
6895 case 0: /* sldt */
6896 case 1: /* str */
6897 if (ir.mod == 3)
6898 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6899 else
6900 {
6901 ir.ot = OT_WORD;
6902 if (i386_record_lea_modrm (&ir))
6903 return -1;
6904 }
6905 break;
6906 case 2: /* lldt */
6907 case 3: /* ltr */
6908 break;
6909 case 4: /* verr */
6910 case 5: /* verw */
6911 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6912 break;
6913 default:
6914 ir.addr -= 3;
6915 opcode = opcode << 8 | ir.modrm;
6916 goto no_support;
6917 break;
6918 }
6919 break;
6920
6921 case 0x0f01:
6922 if (i386_record_modrm (&ir))
6923 return -1;
6924 switch (ir.reg)
6925 {
6926 case 0: /* sgdt */
6927 {
6928 uint64_t addr64;
6929
6930 if (ir.mod == 3)
6931 {
6932 ir.addr -= 3;
6933 opcode = opcode << 8 | ir.modrm;
6934 goto no_support;
6935 }
6936 if (ir.override >= 0)
6937 {
6938 if (record_full_memory_query)
6939 {
6940 int q;
6941
6942 target_terminal_ours ();
6943 q = yquery (_("\
6944 Process record ignores the memory change of instruction at address %s\n\
6945 because it can't get the value of the segment register.\n\
6946 Do you want to stop the program?"),
6947 paddress (gdbarch, ir.orig_addr));
6948 target_terminal_inferior ();
6949 if (q)
6950 return -1;
6951 }
6952 }
6953 else
6954 {
6955 if (i386_record_lea_modrm_addr (&ir, &addr64))
6956 return -1;
6957 if (record_full_arch_list_add_mem (addr64, 2))
6958 return -1;
6959 addr64 += 2;
6960 if (ir.regmap[X86_RECORD_R8_REGNUM])
6961 {
6962 if (record_full_arch_list_add_mem (addr64, 8))
6963 return -1;
6964 }
6965 else
6966 {
6967 if (record_full_arch_list_add_mem (addr64, 4))
6968 return -1;
6969 }
6970 }
6971 }
6972 break;
6973 case 1:
6974 if (ir.mod == 3)
6975 {
6976 switch (ir.rm)
6977 {
6978 case 0: /* monitor */
6979 break;
6980 case 1: /* mwait */
6981 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6982 break;
6983 default:
6984 ir.addr -= 3;
6985 opcode = opcode << 8 | ir.modrm;
6986 goto no_support;
6987 break;
6988 }
6989 }
6990 else
6991 {
6992 /* sidt */
6993 if (ir.override >= 0)
6994 {
6995 if (record_full_memory_query)
6996 {
6997 int q;
6998
6999 target_terminal_ours ();
7000 q = yquery (_("\
7001 Process record ignores the memory change of instruction at address %s\n\
7002 because it can't get the value of the segment register.\n\
7003 Do you want to stop the program?"),
7004 paddress (gdbarch, ir.orig_addr));
7005 target_terminal_inferior ();
7006 if (q)
7007 return -1;
7008 }
7009 }
7010 else
7011 {
7012 uint64_t addr64;
7013
7014 if (i386_record_lea_modrm_addr (&ir, &addr64))
7015 return -1;
7016 if (record_full_arch_list_add_mem (addr64, 2))
7017 return -1;
7018 addr64 += 2;
7019 if (ir.regmap[X86_RECORD_R8_REGNUM])
7020 {
7021 if (record_full_arch_list_add_mem (addr64, 8))
7022 return -1;
7023 }
7024 else
7025 {
7026 if (record_full_arch_list_add_mem (addr64, 4))
7027 return -1;
7028 }
7029 }
7030 }
7031 break;
7032 case 2: /* lgdt */
7033 if (ir.mod == 3)
7034 {
7035 /* xgetbv */
7036 if (ir.rm == 0)
7037 {
7038 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7039 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7040 break;
7041 }
7042 /* xsetbv */
7043 else if (ir.rm == 1)
7044 break;
7045 }
7046 case 3: /* lidt */
7047 if (ir.mod == 3)
7048 {
7049 ir.addr -= 3;
7050 opcode = opcode << 8 | ir.modrm;
7051 goto no_support;
7052 }
7053 break;
7054 case 4: /* smsw */
7055 if (ir.mod == 3)
7056 {
7057 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7058 return -1;
7059 }
7060 else
7061 {
7062 ir.ot = OT_WORD;
7063 if (i386_record_lea_modrm (&ir))
7064 return -1;
7065 }
7066 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7067 break;
7068 case 6: /* lmsw */
7069 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7070 break;
7071 case 7: /* invlpg */
7072 if (ir.mod == 3)
7073 {
7074 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7075 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7076 else
7077 {
7078 ir.addr -= 3;
7079 opcode = opcode << 8 | ir.modrm;
7080 goto no_support;
7081 }
7082 }
7083 else
7084 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7085 break;
7086 default:
7087 ir.addr -= 3;
7088 opcode = opcode << 8 | ir.modrm;
7089 goto no_support;
7090 break;
7091 }
7092 break;
7093
7094 case 0x0f08: /* invd */
7095 case 0x0f09: /* wbinvd */
7096 break;
7097
7098 case 0x63: /* arpl */
7099 if (i386_record_modrm (&ir))
7100 return -1;
7101 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7102 {
7103 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7104 ? (ir.reg | rex_r) : ir.rm);
7105 }
7106 else
7107 {
7108 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7109 if (i386_record_lea_modrm (&ir))
7110 return -1;
7111 }
7112 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7113 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7114 break;
7115
7116 case 0x0f02: /* lar */
7117 case 0x0f03: /* lsl */
7118 if (i386_record_modrm (&ir))
7119 return -1;
7120 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7121 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7122 break;
7123
7124 case 0x0f18:
7125 if (i386_record_modrm (&ir))
7126 return -1;
7127 if (ir.mod == 3 && ir.reg == 3)
7128 {
7129 ir.addr -= 3;
7130 opcode = opcode << 8 | ir.modrm;
7131 goto no_support;
7132 }
7133 break;
7134
7135 case 0x0f19:
7136 case 0x0f1a:
7137 case 0x0f1b:
7138 case 0x0f1c:
7139 case 0x0f1d:
7140 case 0x0f1e:
7141 case 0x0f1f:
7142 /* nop (multi byte) */
7143 break;
7144
7145 case 0x0f20: /* mov reg, crN */
7146 case 0x0f22: /* mov crN, reg */
7147 if (i386_record_modrm (&ir))
7148 return -1;
7149 if ((ir.modrm & 0xc0) != 0xc0)
7150 {
7151 ir.addr -= 3;
7152 opcode = opcode << 8 | ir.modrm;
7153 goto no_support;
7154 }
7155 switch (ir.reg)
7156 {
7157 case 0:
7158 case 2:
7159 case 3:
7160 case 4:
7161 case 8:
7162 if (opcode & 2)
7163 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7164 else
7165 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7166 break;
7167 default:
7168 ir.addr -= 3;
7169 opcode = opcode << 8 | ir.modrm;
7170 goto no_support;
7171 break;
7172 }
7173 break;
7174
7175 case 0x0f21: /* mov reg, drN */
7176 case 0x0f23: /* mov drN, reg */
7177 if (i386_record_modrm (&ir))
7178 return -1;
7179 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7180 || ir.reg == 5 || ir.reg >= 8)
7181 {
7182 ir.addr -= 3;
7183 opcode = opcode << 8 | ir.modrm;
7184 goto no_support;
7185 }
7186 if (opcode & 2)
7187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7188 else
7189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7190 break;
7191
7192 case 0x0f06: /* clts */
7193 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7194 break;
7195
7196 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7197
7198 case 0x0f0d: /* 3DNow! prefetch */
7199 break;
7200
7201 case 0x0f0e: /* 3DNow! femms */
7202 case 0x0f77: /* emms */
7203 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7204 goto no_support;
7205 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7206 break;
7207
7208 case 0x0f0f: /* 3DNow! data */
7209 if (i386_record_modrm (&ir))
7210 return -1;
7211 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7212 return -1;
7213 ir.addr++;
7214 switch (opcode8)
7215 {
7216 case 0x0c: /* 3DNow! pi2fw */
7217 case 0x0d: /* 3DNow! pi2fd */
7218 case 0x1c: /* 3DNow! pf2iw */
7219 case 0x1d: /* 3DNow! pf2id */
7220 case 0x8a: /* 3DNow! pfnacc */
7221 case 0x8e: /* 3DNow! pfpnacc */
7222 case 0x90: /* 3DNow! pfcmpge */
7223 case 0x94: /* 3DNow! pfmin */
7224 case 0x96: /* 3DNow! pfrcp */
7225 case 0x97: /* 3DNow! pfrsqrt */
7226 case 0x9a: /* 3DNow! pfsub */
7227 case 0x9e: /* 3DNow! pfadd */
7228 case 0xa0: /* 3DNow! pfcmpgt */
7229 case 0xa4: /* 3DNow! pfmax */
7230 case 0xa6: /* 3DNow! pfrcpit1 */
7231 case 0xa7: /* 3DNow! pfrsqit1 */
7232 case 0xaa: /* 3DNow! pfsubr */
7233 case 0xae: /* 3DNow! pfacc */
7234 case 0xb0: /* 3DNow! pfcmpeq */
7235 case 0xb4: /* 3DNow! pfmul */
7236 case 0xb6: /* 3DNow! pfrcpit2 */
7237 case 0xb7: /* 3DNow! pmulhrw */
7238 case 0xbb: /* 3DNow! pswapd */
7239 case 0xbf: /* 3DNow! pavgusb */
7240 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7241 goto no_support_3dnow_data;
7242 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7243 break;
7244
7245 default:
7246 no_support_3dnow_data:
7247 opcode = (opcode << 8) | opcode8;
7248 goto no_support;
7249 break;
7250 }
7251 break;
7252
7253 case 0x0faa: /* rsm */
7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7257 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7259 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7262 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7263 break;
7264
7265 case 0x0fae:
7266 if (i386_record_modrm (&ir))
7267 return -1;
7268 switch(ir.reg)
7269 {
7270 case 0: /* fxsave */
7271 {
7272 uint64_t tmpu64;
7273
7274 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7275 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7276 return -1;
7277 if (record_full_arch_list_add_mem (tmpu64, 512))
7278 return -1;
7279 }
7280 break;
7281
7282 case 1: /* fxrstor */
7283 {
7284 int i;
7285
7286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7287
7288 for (i = I387_MM0_REGNUM (tdep);
7289 i386_mmx_regnum_p (gdbarch, i); i++)
7290 record_full_arch_list_add_reg (ir.regcache, i);
7291
7292 for (i = I387_XMM0_REGNUM (tdep);
7293 i386_xmm_regnum_p (gdbarch, i); i++)
7294 record_full_arch_list_add_reg (ir.regcache, i);
7295
7296 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7297 record_full_arch_list_add_reg (ir.regcache,
7298 I387_MXCSR_REGNUM(tdep));
7299
7300 for (i = I387_ST0_REGNUM (tdep);
7301 i386_fp_regnum_p (gdbarch, i); i++)
7302 record_full_arch_list_add_reg (ir.regcache, i);
7303
7304 for (i = I387_FCTRL_REGNUM (tdep);
7305 i386_fpc_regnum_p (gdbarch, i); i++)
7306 record_full_arch_list_add_reg (ir.regcache, i);
7307 }
7308 break;
7309
7310 case 2: /* ldmxcsr */
7311 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7312 goto no_support;
7313 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7314 break;
7315
7316 case 3: /* stmxcsr */
7317 ir.ot = OT_LONG;
7318 if (i386_record_lea_modrm (&ir))
7319 return -1;
7320 break;
7321
7322 case 5: /* lfence */
7323 case 6: /* mfence */
7324 case 7: /* sfence clflush */
7325 break;
7326
7327 default:
7328 opcode = (opcode << 8) | ir.modrm;
7329 goto no_support;
7330 break;
7331 }
7332 break;
7333
7334 case 0x0fc3: /* movnti */
7335 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7336 if (i386_record_modrm (&ir))
7337 return -1;
7338 if (ir.mod == 3)
7339 goto no_support;
7340 ir.reg |= rex_r;
7341 if (i386_record_lea_modrm (&ir))
7342 return -1;
7343 break;
7344
7345 /* Add prefix to opcode. */
7346 case 0x0f10:
7347 case 0x0f11:
7348 case 0x0f12:
7349 case 0x0f13:
7350 case 0x0f14:
7351 case 0x0f15:
7352 case 0x0f16:
7353 case 0x0f17:
7354 case 0x0f28:
7355 case 0x0f29:
7356 case 0x0f2a:
7357 case 0x0f2b:
7358 case 0x0f2c:
7359 case 0x0f2d:
7360 case 0x0f2e:
7361 case 0x0f2f:
7362 case 0x0f38:
7363 case 0x0f39:
7364 case 0x0f3a:
7365 case 0x0f50:
7366 case 0x0f51:
7367 case 0x0f52:
7368 case 0x0f53:
7369 case 0x0f54:
7370 case 0x0f55:
7371 case 0x0f56:
7372 case 0x0f57:
7373 case 0x0f58:
7374 case 0x0f59:
7375 case 0x0f5a:
7376 case 0x0f5b:
7377 case 0x0f5c:
7378 case 0x0f5d:
7379 case 0x0f5e:
7380 case 0x0f5f:
7381 case 0x0f60:
7382 case 0x0f61:
7383 case 0x0f62:
7384 case 0x0f63:
7385 case 0x0f64:
7386 case 0x0f65:
7387 case 0x0f66:
7388 case 0x0f67:
7389 case 0x0f68:
7390 case 0x0f69:
7391 case 0x0f6a:
7392 case 0x0f6b:
7393 case 0x0f6c:
7394 case 0x0f6d:
7395 case 0x0f6e:
7396 case 0x0f6f:
7397 case 0x0f70:
7398 case 0x0f71:
7399 case 0x0f72:
7400 case 0x0f73:
7401 case 0x0f74:
7402 case 0x0f75:
7403 case 0x0f76:
7404 case 0x0f7c:
7405 case 0x0f7d:
7406 case 0x0f7e:
7407 case 0x0f7f:
7408 case 0x0fb8:
7409 case 0x0fc2:
7410 case 0x0fc4:
7411 case 0x0fc5:
7412 case 0x0fc6:
7413 case 0x0fd0:
7414 case 0x0fd1:
7415 case 0x0fd2:
7416 case 0x0fd3:
7417 case 0x0fd4:
7418 case 0x0fd5:
7419 case 0x0fd6:
7420 case 0x0fd7:
7421 case 0x0fd8:
7422 case 0x0fd9:
7423 case 0x0fda:
7424 case 0x0fdb:
7425 case 0x0fdc:
7426 case 0x0fdd:
7427 case 0x0fde:
7428 case 0x0fdf:
7429 case 0x0fe0:
7430 case 0x0fe1:
7431 case 0x0fe2:
7432 case 0x0fe3:
7433 case 0x0fe4:
7434 case 0x0fe5:
7435 case 0x0fe6:
7436 case 0x0fe7:
7437 case 0x0fe8:
7438 case 0x0fe9:
7439 case 0x0fea:
7440 case 0x0feb:
7441 case 0x0fec:
7442 case 0x0fed:
7443 case 0x0fee:
7444 case 0x0fef:
7445 case 0x0ff0:
7446 case 0x0ff1:
7447 case 0x0ff2:
7448 case 0x0ff3:
7449 case 0x0ff4:
7450 case 0x0ff5:
7451 case 0x0ff6:
7452 case 0x0ff7:
7453 case 0x0ff8:
7454 case 0x0ff9:
7455 case 0x0ffa:
7456 case 0x0ffb:
7457 case 0x0ffc:
7458 case 0x0ffd:
7459 case 0x0ffe:
7460 /* Mask out PREFIX_ADDR. */
7461 switch ((prefixes & ~PREFIX_ADDR))
7462 {
7463 case PREFIX_REPNZ:
7464 opcode |= 0xf20000;
7465 break;
7466 case PREFIX_DATA:
7467 opcode |= 0x660000;
7468 break;
7469 case PREFIX_REPZ:
7470 opcode |= 0xf30000;
7471 break;
7472 }
7473 reswitch_prefix_add:
7474 switch (opcode)
7475 {
7476 case 0x0f38:
7477 case 0x660f38:
7478 case 0xf20f38:
7479 case 0x0f3a:
7480 case 0x660f3a:
7481 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7482 return -1;
7483 ir.addr++;
7484 opcode = (uint32_t) opcode8 | opcode << 8;
7485 goto reswitch_prefix_add;
7486 break;
7487
7488 case 0x0f10: /* movups */
7489 case 0x660f10: /* movupd */
7490 case 0xf30f10: /* movss */
7491 case 0xf20f10: /* movsd */
7492 case 0x0f12: /* movlps */
7493 case 0x660f12: /* movlpd */
7494 case 0xf30f12: /* movsldup */
7495 case 0xf20f12: /* movddup */
7496 case 0x0f14: /* unpcklps */
7497 case 0x660f14: /* unpcklpd */
7498 case 0x0f15: /* unpckhps */
7499 case 0x660f15: /* unpckhpd */
7500 case 0x0f16: /* movhps */
7501 case 0x660f16: /* movhpd */
7502 case 0xf30f16: /* movshdup */
7503 case 0x0f28: /* movaps */
7504 case 0x660f28: /* movapd */
7505 case 0x0f2a: /* cvtpi2ps */
7506 case 0x660f2a: /* cvtpi2pd */
7507 case 0xf30f2a: /* cvtsi2ss */
7508 case 0xf20f2a: /* cvtsi2sd */
7509 case 0x0f2c: /* cvttps2pi */
7510 case 0x660f2c: /* cvttpd2pi */
7511 case 0x0f2d: /* cvtps2pi */
7512 case 0x660f2d: /* cvtpd2pi */
7513 case 0x660f3800: /* pshufb */
7514 case 0x660f3801: /* phaddw */
7515 case 0x660f3802: /* phaddd */
7516 case 0x660f3803: /* phaddsw */
7517 case 0x660f3804: /* pmaddubsw */
7518 case 0x660f3805: /* phsubw */
7519 case 0x660f3806: /* phsubd */
7520 case 0x660f3807: /* phsubsw */
7521 case 0x660f3808: /* psignb */
7522 case 0x660f3809: /* psignw */
7523 case 0x660f380a: /* psignd */
7524 case 0x660f380b: /* pmulhrsw */
7525 case 0x660f3810: /* pblendvb */
7526 case 0x660f3814: /* blendvps */
7527 case 0x660f3815: /* blendvpd */
7528 case 0x660f381c: /* pabsb */
7529 case 0x660f381d: /* pabsw */
7530 case 0x660f381e: /* pabsd */
7531 case 0x660f3820: /* pmovsxbw */
7532 case 0x660f3821: /* pmovsxbd */
7533 case 0x660f3822: /* pmovsxbq */
7534 case 0x660f3823: /* pmovsxwd */
7535 case 0x660f3824: /* pmovsxwq */
7536 case 0x660f3825: /* pmovsxdq */
7537 case 0x660f3828: /* pmuldq */
7538 case 0x660f3829: /* pcmpeqq */
7539 case 0x660f382a: /* movntdqa */
7540 case 0x660f3a08: /* roundps */
7541 case 0x660f3a09: /* roundpd */
7542 case 0x660f3a0a: /* roundss */
7543 case 0x660f3a0b: /* roundsd */
7544 case 0x660f3a0c: /* blendps */
7545 case 0x660f3a0d: /* blendpd */
7546 case 0x660f3a0e: /* pblendw */
7547 case 0x660f3a0f: /* palignr */
7548 case 0x660f3a20: /* pinsrb */
7549 case 0x660f3a21: /* insertps */
7550 case 0x660f3a22: /* pinsrd pinsrq */
7551 case 0x660f3a40: /* dpps */
7552 case 0x660f3a41: /* dppd */
7553 case 0x660f3a42: /* mpsadbw */
7554 case 0x660f3a60: /* pcmpestrm */
7555 case 0x660f3a61: /* pcmpestri */
7556 case 0x660f3a62: /* pcmpistrm */
7557 case 0x660f3a63: /* pcmpistri */
7558 case 0x0f51: /* sqrtps */
7559 case 0x660f51: /* sqrtpd */
7560 case 0xf20f51: /* sqrtsd */
7561 case 0xf30f51: /* sqrtss */
7562 case 0x0f52: /* rsqrtps */
7563 case 0xf30f52: /* rsqrtss */
7564 case 0x0f53: /* rcpps */
7565 case 0xf30f53: /* rcpss */
7566 case 0x0f54: /* andps */
7567 case 0x660f54: /* andpd */
7568 case 0x0f55: /* andnps */
7569 case 0x660f55: /* andnpd */
7570 case 0x0f56: /* orps */
7571 case 0x660f56: /* orpd */
7572 case 0x0f57: /* xorps */
7573 case 0x660f57: /* xorpd */
7574 case 0x0f58: /* addps */
7575 case 0x660f58: /* addpd */
7576 case 0xf20f58: /* addsd */
7577 case 0xf30f58: /* addss */
7578 case 0x0f59: /* mulps */
7579 case 0x660f59: /* mulpd */
7580 case 0xf20f59: /* mulsd */
7581 case 0xf30f59: /* mulss */
7582 case 0x0f5a: /* cvtps2pd */
7583 case 0x660f5a: /* cvtpd2ps */
7584 case 0xf20f5a: /* cvtsd2ss */
7585 case 0xf30f5a: /* cvtss2sd */
7586 case 0x0f5b: /* cvtdq2ps */
7587 case 0x660f5b: /* cvtps2dq */
7588 case 0xf30f5b: /* cvttps2dq */
7589 case 0x0f5c: /* subps */
7590 case 0x660f5c: /* subpd */
7591 case 0xf20f5c: /* subsd */
7592 case 0xf30f5c: /* subss */
7593 case 0x0f5d: /* minps */
7594 case 0x660f5d: /* minpd */
7595 case 0xf20f5d: /* minsd */
7596 case 0xf30f5d: /* minss */
7597 case 0x0f5e: /* divps */
7598 case 0x660f5e: /* divpd */
7599 case 0xf20f5e: /* divsd */
7600 case 0xf30f5e: /* divss */
7601 case 0x0f5f: /* maxps */
7602 case 0x660f5f: /* maxpd */
7603 case 0xf20f5f: /* maxsd */
7604 case 0xf30f5f: /* maxss */
7605 case 0x660f60: /* punpcklbw */
7606 case 0x660f61: /* punpcklwd */
7607 case 0x660f62: /* punpckldq */
7608 case 0x660f63: /* packsswb */
7609 case 0x660f64: /* pcmpgtb */
7610 case 0x660f65: /* pcmpgtw */
7611 case 0x660f66: /* pcmpgtd */
7612 case 0x660f67: /* packuswb */
7613 case 0x660f68: /* punpckhbw */
7614 case 0x660f69: /* punpckhwd */
7615 case 0x660f6a: /* punpckhdq */
7616 case 0x660f6b: /* packssdw */
7617 case 0x660f6c: /* punpcklqdq */
7618 case 0x660f6d: /* punpckhqdq */
7619 case 0x660f6e: /* movd */
7620 case 0x660f6f: /* movdqa */
7621 case 0xf30f6f: /* movdqu */
7622 case 0x660f70: /* pshufd */
7623 case 0xf20f70: /* pshuflw */
7624 case 0xf30f70: /* pshufhw */
7625 case 0x660f74: /* pcmpeqb */
7626 case 0x660f75: /* pcmpeqw */
7627 case 0x660f76: /* pcmpeqd */
7628 case 0x660f7c: /* haddpd */
7629 case 0xf20f7c: /* haddps */
7630 case 0x660f7d: /* hsubpd */
7631 case 0xf20f7d: /* hsubps */
7632 case 0xf30f7e: /* movq */
7633 case 0x0fc2: /* cmpps */
7634 case 0x660fc2: /* cmppd */
7635 case 0xf20fc2: /* cmpsd */
7636 case 0xf30fc2: /* cmpss */
7637 case 0x660fc4: /* pinsrw */
7638 case 0x0fc6: /* shufps */
7639 case 0x660fc6: /* shufpd */
7640 case 0x660fd0: /* addsubpd */
7641 case 0xf20fd0: /* addsubps */
7642 case 0x660fd1: /* psrlw */
7643 case 0x660fd2: /* psrld */
7644 case 0x660fd3: /* psrlq */
7645 case 0x660fd4: /* paddq */
7646 case 0x660fd5: /* pmullw */
7647 case 0xf30fd6: /* movq2dq */
7648 case 0x660fd8: /* psubusb */
7649 case 0x660fd9: /* psubusw */
7650 case 0x660fda: /* pminub */
7651 case 0x660fdb: /* pand */
7652 case 0x660fdc: /* paddusb */
7653 case 0x660fdd: /* paddusw */
7654 case 0x660fde: /* pmaxub */
7655 case 0x660fdf: /* pandn */
7656 case 0x660fe0: /* pavgb */
7657 case 0x660fe1: /* psraw */
7658 case 0x660fe2: /* psrad */
7659 case 0x660fe3: /* pavgw */
7660 case 0x660fe4: /* pmulhuw */
7661 case 0x660fe5: /* pmulhw */
7662 case 0x660fe6: /* cvttpd2dq */
7663 case 0xf20fe6: /* cvtpd2dq */
7664 case 0xf30fe6: /* cvtdq2pd */
7665 case 0x660fe8: /* psubsb */
7666 case 0x660fe9: /* psubsw */
7667 case 0x660fea: /* pminsw */
7668 case 0x660feb: /* por */
7669 case 0x660fec: /* paddsb */
7670 case 0x660fed: /* paddsw */
7671 case 0x660fee: /* pmaxsw */
7672 case 0x660fef: /* pxor */
7673 case 0xf20ff0: /* lddqu */
7674 case 0x660ff1: /* psllw */
7675 case 0x660ff2: /* pslld */
7676 case 0x660ff3: /* psllq */
7677 case 0x660ff4: /* pmuludq */
7678 case 0x660ff5: /* pmaddwd */
7679 case 0x660ff6: /* psadbw */
7680 case 0x660ff8: /* psubb */
7681 case 0x660ff9: /* psubw */
7682 case 0x660ffa: /* psubd */
7683 case 0x660ffb: /* psubq */
7684 case 0x660ffc: /* paddb */
7685 case 0x660ffd: /* paddw */
7686 case 0x660ffe: /* paddd */
7687 if (i386_record_modrm (&ir))
7688 return -1;
7689 ir.reg |= rex_r;
7690 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7691 goto no_support;
7692 record_full_arch_list_add_reg (ir.regcache,
7693 I387_XMM0_REGNUM (tdep) + ir.reg);
7694 if ((opcode & 0xfffffffc) == 0x660f3a60)
7695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7696 break;
7697
7698 case 0x0f11: /* movups */
7699 case 0x660f11: /* movupd */
7700 case 0xf30f11: /* movss */
7701 case 0xf20f11: /* movsd */
7702 case 0x0f13: /* movlps */
7703 case 0x660f13: /* movlpd */
7704 case 0x0f17: /* movhps */
7705 case 0x660f17: /* movhpd */
7706 case 0x0f29: /* movaps */
7707 case 0x660f29: /* movapd */
7708 case 0x660f3a14: /* pextrb */
7709 case 0x660f3a15: /* pextrw */
7710 case 0x660f3a16: /* pextrd pextrq */
7711 case 0x660f3a17: /* extractps */
7712 case 0x660f7f: /* movdqa */
7713 case 0xf30f7f: /* movdqu */
7714 if (i386_record_modrm (&ir))
7715 return -1;
7716 if (ir.mod == 3)
7717 {
7718 if (opcode == 0x0f13 || opcode == 0x660f13
7719 || opcode == 0x0f17 || opcode == 0x660f17)
7720 goto no_support;
7721 ir.rm |= ir.rex_b;
7722 if (!i386_xmm_regnum_p (gdbarch,
7723 I387_XMM0_REGNUM (tdep) + ir.rm))
7724 goto no_support;
7725 record_full_arch_list_add_reg (ir.regcache,
7726 I387_XMM0_REGNUM (tdep) + ir.rm);
7727 }
7728 else
7729 {
7730 switch (opcode)
7731 {
7732 case 0x660f3a14:
7733 ir.ot = OT_BYTE;
7734 break;
7735 case 0x660f3a15:
7736 ir.ot = OT_WORD;
7737 break;
7738 case 0x660f3a16:
7739 ir.ot = OT_LONG;
7740 break;
7741 case 0x660f3a17:
7742 ir.ot = OT_QUAD;
7743 break;
7744 default:
7745 ir.ot = OT_DQUAD;
7746 break;
7747 }
7748 if (i386_record_lea_modrm (&ir))
7749 return -1;
7750 }
7751 break;
7752
7753 case 0x0f2b: /* movntps */
7754 case 0x660f2b: /* movntpd */
7755 case 0x0fe7: /* movntq */
7756 case 0x660fe7: /* movntdq */
7757 if (ir.mod == 3)
7758 goto no_support;
7759 if (opcode == 0x0fe7)
7760 ir.ot = OT_QUAD;
7761 else
7762 ir.ot = OT_DQUAD;
7763 if (i386_record_lea_modrm (&ir))
7764 return -1;
7765 break;
7766
7767 case 0xf30f2c: /* cvttss2si */
7768 case 0xf20f2c: /* cvttsd2si */
7769 case 0xf30f2d: /* cvtss2si */
7770 case 0xf20f2d: /* cvtsd2si */
7771 case 0xf20f38f0: /* crc32 */
7772 case 0xf20f38f1: /* crc32 */
7773 case 0x0f50: /* movmskps */
7774 case 0x660f50: /* movmskpd */
7775 case 0x0fc5: /* pextrw */
7776 case 0x660fc5: /* pextrw */
7777 case 0x0fd7: /* pmovmskb */
7778 case 0x660fd7: /* pmovmskb */
7779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7780 break;
7781
7782 case 0x0f3800: /* pshufb */
7783 case 0x0f3801: /* phaddw */
7784 case 0x0f3802: /* phaddd */
7785 case 0x0f3803: /* phaddsw */
7786 case 0x0f3804: /* pmaddubsw */
7787 case 0x0f3805: /* phsubw */
7788 case 0x0f3806: /* phsubd */
7789 case 0x0f3807: /* phsubsw */
7790 case 0x0f3808: /* psignb */
7791 case 0x0f3809: /* psignw */
7792 case 0x0f380a: /* psignd */
7793 case 0x0f380b: /* pmulhrsw */
7794 case 0x0f381c: /* pabsb */
7795 case 0x0f381d: /* pabsw */
7796 case 0x0f381e: /* pabsd */
7797 case 0x0f382b: /* packusdw */
7798 case 0x0f3830: /* pmovzxbw */
7799 case 0x0f3831: /* pmovzxbd */
7800 case 0x0f3832: /* pmovzxbq */
7801 case 0x0f3833: /* pmovzxwd */
7802 case 0x0f3834: /* pmovzxwq */
7803 case 0x0f3835: /* pmovzxdq */
7804 case 0x0f3837: /* pcmpgtq */
7805 case 0x0f3838: /* pminsb */
7806 case 0x0f3839: /* pminsd */
7807 case 0x0f383a: /* pminuw */
7808 case 0x0f383b: /* pminud */
7809 case 0x0f383c: /* pmaxsb */
7810 case 0x0f383d: /* pmaxsd */
7811 case 0x0f383e: /* pmaxuw */
7812 case 0x0f383f: /* pmaxud */
7813 case 0x0f3840: /* pmulld */
7814 case 0x0f3841: /* phminposuw */
7815 case 0x0f3a0f: /* palignr */
7816 case 0x0f60: /* punpcklbw */
7817 case 0x0f61: /* punpcklwd */
7818 case 0x0f62: /* punpckldq */
7819 case 0x0f63: /* packsswb */
7820 case 0x0f64: /* pcmpgtb */
7821 case 0x0f65: /* pcmpgtw */
7822 case 0x0f66: /* pcmpgtd */
7823 case 0x0f67: /* packuswb */
7824 case 0x0f68: /* punpckhbw */
7825 case 0x0f69: /* punpckhwd */
7826 case 0x0f6a: /* punpckhdq */
7827 case 0x0f6b: /* packssdw */
7828 case 0x0f6e: /* movd */
7829 case 0x0f6f: /* movq */
7830 case 0x0f70: /* pshufw */
7831 case 0x0f74: /* pcmpeqb */
7832 case 0x0f75: /* pcmpeqw */
7833 case 0x0f76: /* pcmpeqd */
7834 case 0x0fc4: /* pinsrw */
7835 case 0x0fd1: /* psrlw */
7836 case 0x0fd2: /* psrld */
7837 case 0x0fd3: /* psrlq */
7838 case 0x0fd4: /* paddq */
7839 case 0x0fd5: /* pmullw */
7840 case 0xf20fd6: /* movdq2q */
7841 case 0x0fd8: /* psubusb */
7842 case 0x0fd9: /* psubusw */
7843 case 0x0fda: /* pminub */
7844 case 0x0fdb: /* pand */
7845 case 0x0fdc: /* paddusb */
7846 case 0x0fdd: /* paddusw */
7847 case 0x0fde: /* pmaxub */
7848 case 0x0fdf: /* pandn */
7849 case 0x0fe0: /* pavgb */
7850 case 0x0fe1: /* psraw */
7851 case 0x0fe2: /* psrad */
7852 case 0x0fe3: /* pavgw */
7853 case 0x0fe4: /* pmulhuw */
7854 case 0x0fe5: /* pmulhw */
7855 case 0x0fe8: /* psubsb */
7856 case 0x0fe9: /* psubsw */
7857 case 0x0fea: /* pminsw */
7858 case 0x0feb: /* por */
7859 case 0x0fec: /* paddsb */
7860 case 0x0fed: /* paddsw */
7861 case 0x0fee: /* pmaxsw */
7862 case 0x0fef: /* pxor */
7863 case 0x0ff1: /* psllw */
7864 case 0x0ff2: /* pslld */
7865 case 0x0ff3: /* psllq */
7866 case 0x0ff4: /* pmuludq */
7867 case 0x0ff5: /* pmaddwd */
7868 case 0x0ff6: /* psadbw */
7869 case 0x0ff8: /* psubb */
7870 case 0x0ff9: /* psubw */
7871 case 0x0ffa: /* psubd */
7872 case 0x0ffb: /* psubq */
7873 case 0x0ffc: /* paddb */
7874 case 0x0ffd: /* paddw */
7875 case 0x0ffe: /* paddd */
7876 if (i386_record_modrm (&ir))
7877 return -1;
7878 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7879 goto no_support;
7880 record_full_arch_list_add_reg (ir.regcache,
7881 I387_MM0_REGNUM (tdep) + ir.reg);
7882 break;
7883
7884 case 0x0f71: /* psllw */
7885 case 0x0f72: /* pslld */
7886 case 0x0f73: /* psllq */
7887 if (i386_record_modrm (&ir))
7888 return -1;
7889 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7890 goto no_support;
7891 record_full_arch_list_add_reg (ir.regcache,
7892 I387_MM0_REGNUM (tdep) + ir.rm);
7893 break;
7894
7895 case 0x660f71: /* psllw */
7896 case 0x660f72: /* pslld */
7897 case 0x660f73: /* psllq */
7898 if (i386_record_modrm (&ir))
7899 return -1;
7900 ir.rm |= ir.rex_b;
7901 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7902 goto no_support;
7903 record_full_arch_list_add_reg (ir.regcache,
7904 I387_XMM0_REGNUM (tdep) + ir.rm);
7905 break;
7906
7907 case 0x0f7e: /* movd */
7908 case 0x660f7e: /* movd */
7909 if (i386_record_modrm (&ir))
7910 return -1;
7911 if (ir.mod == 3)
7912 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7913 else
7914 {
7915 if (ir.dflag == 2)
7916 ir.ot = OT_QUAD;
7917 else
7918 ir.ot = OT_LONG;
7919 if (i386_record_lea_modrm (&ir))
7920 return -1;
7921 }
7922 break;
7923
7924 case 0x0f7f: /* movq */
7925 if (i386_record_modrm (&ir))
7926 return -1;
7927 if (ir.mod == 3)
7928 {
7929 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7930 goto no_support;
7931 record_full_arch_list_add_reg (ir.regcache,
7932 I387_MM0_REGNUM (tdep) + ir.rm);
7933 }
7934 else
7935 {
7936 ir.ot = OT_QUAD;
7937 if (i386_record_lea_modrm (&ir))
7938 return -1;
7939 }
7940 break;
7941
7942 case 0xf30fb8: /* popcnt */
7943 if (i386_record_modrm (&ir))
7944 return -1;
7945 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7946 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7947 break;
7948
7949 case 0x660fd6: /* movq */
7950 if (i386_record_modrm (&ir))
7951 return -1;
7952 if (ir.mod == 3)
7953 {
7954 ir.rm |= ir.rex_b;
7955 if (!i386_xmm_regnum_p (gdbarch,
7956 I387_XMM0_REGNUM (tdep) + ir.rm))
7957 goto no_support;
7958 record_full_arch_list_add_reg (ir.regcache,
7959 I387_XMM0_REGNUM (tdep) + ir.rm);
7960 }
7961 else
7962 {
7963 ir.ot = OT_QUAD;
7964 if (i386_record_lea_modrm (&ir))
7965 return -1;
7966 }
7967 break;
7968
7969 case 0x660f3817: /* ptest */
7970 case 0x0f2e: /* ucomiss */
7971 case 0x660f2e: /* ucomisd */
7972 case 0x0f2f: /* comiss */
7973 case 0x660f2f: /* comisd */
7974 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7975 break;
7976
7977 case 0x0ff7: /* maskmovq */
7978 regcache_raw_read_unsigned (ir.regcache,
7979 ir.regmap[X86_RECORD_REDI_REGNUM],
7980 &addr);
7981 if (record_full_arch_list_add_mem (addr, 64))
7982 return -1;
7983 break;
7984
7985 case 0x660ff7: /* maskmovdqu */
7986 regcache_raw_read_unsigned (ir.regcache,
7987 ir.regmap[X86_RECORD_REDI_REGNUM],
7988 &addr);
7989 if (record_full_arch_list_add_mem (addr, 128))
7990 return -1;
7991 break;
7992
7993 default:
7994 goto no_support;
7995 break;
7996 }
7997 break;
7998
7999 default:
8000 goto no_support;
8001 break;
8002 }
8003
8004 /* In the future, maybe still need to deal with need_dasm. */
8005 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8006 if (record_full_arch_list_add_end ())
8007 return -1;
8008
8009 return 0;
8010
8011 no_support:
8012 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8013 "at address %s.\n"),
8014 (unsigned int) (opcode),
8015 paddress (gdbarch, ir.orig_addr));
8016 return -1;
8017 }
8018
8019 static const int i386_record_regmap[] =
8020 {
8021 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8022 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8023 0, 0, 0, 0, 0, 0, 0, 0,
8024 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8025 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8026 };
8027
8028 /* Check that the given address appears suitable for a fast
8029 tracepoint, which on x86-64 means that we need an instruction of at
8030 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8031 jump and not have to worry about program jumps to an address in the
8032 middle of the tracepoint jump. On x86, it may be possible to use
8033 4-byte jumps with a 2-byte offset to a trampoline located in the
8034 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8035 of instruction to replace, and 0 if not, plus an explanatory
8036 string. */
8037
8038 static int
8039 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
8040 CORE_ADDR addr, int *isize, char **msg)
8041 {
8042 int len, jumplen;
8043 static struct ui_file *gdb_null = NULL;
8044
8045 /* Ask the target for the minimum instruction length supported. */
8046 jumplen = target_get_min_fast_tracepoint_insn_len ();
8047
8048 if (jumplen < 0)
8049 {
8050 /* If the target does not support the get_min_fast_tracepoint_insn_len
8051 operation, assume that fast tracepoints will always be implemented
8052 using 4-byte relative jumps on both x86 and x86-64. */
8053 jumplen = 5;
8054 }
8055 else if (jumplen == 0)
8056 {
8057 /* If the target does support get_min_fast_tracepoint_insn_len but
8058 returns zero, then the IPA has not loaded yet. In this case,
8059 we optimistically assume that truncated 2-byte relative jumps
8060 will be available on x86, and compensate later if this assumption
8061 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8062 jumps will always be used. */
8063 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8064 }
8065
8066 /* Dummy file descriptor for the disassembler. */
8067 if (!gdb_null)
8068 gdb_null = ui_file_new ();
8069
8070 /* Check for fit. */
8071 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
8072 if (isize)
8073 *isize = len;
8074
8075 if (len < jumplen)
8076 {
8077 /* Return a bit of target-specific detail to add to the caller's
8078 generic failure message. */
8079 if (msg)
8080 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8081 "need at least %d bytes for the jump"),
8082 len, jumplen);
8083 return 0;
8084 }
8085 else
8086 {
8087 if (msg)
8088 *msg = NULL;
8089 return 1;
8090 }
8091 }
8092
8093 static int
8094 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8095 struct tdesc_arch_data *tdesc_data)
8096 {
8097 const struct target_desc *tdesc = tdep->tdesc;
8098 const struct tdesc_feature *feature_core;
8099
8100 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8101 *feature_avx512;
8102 int i, num_regs, valid_p;
8103
8104 if (! tdesc_has_registers (tdesc))
8105 return 0;
8106
8107 /* Get core registers. */
8108 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8109 if (feature_core == NULL)
8110 return 0;
8111
8112 /* Get SSE registers. */
8113 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8114
8115 /* Try AVX registers. */
8116 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8117
8118 /* Try MPX registers. */
8119 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8120
8121 /* Try AVX512 registers. */
8122 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8123
8124 valid_p = 1;
8125
8126 /* The XCR0 bits. */
8127 if (feature_avx512)
8128 {
8129 /* AVX512 register description requires AVX register description. */
8130 if (!feature_avx)
8131 return 0;
8132
8133 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
8134
8135 /* It may have been set by OSABI initialization function. */
8136 if (tdep->k0_regnum < 0)
8137 {
8138 tdep->k_register_names = i386_k_names;
8139 tdep->k0_regnum = I386_K0_REGNUM;
8140 }
8141
8142 for (i = 0; i < I387_NUM_K_REGS; i++)
8143 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8144 tdep->k0_regnum + i,
8145 i386_k_names[i]);
8146
8147 if (tdep->num_zmm_regs == 0)
8148 {
8149 tdep->zmmh_register_names = i386_zmmh_names;
8150 tdep->num_zmm_regs = 8;
8151 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8152 }
8153
8154 for (i = 0; i < tdep->num_zmm_regs; i++)
8155 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8156 tdep->zmm0h_regnum + i,
8157 tdep->zmmh_register_names[i]);
8158
8159 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8160 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8161 tdep->xmm16_regnum + i,
8162 tdep->xmm_avx512_register_names[i]);
8163
8164 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8165 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8166 tdep->ymm16h_regnum + i,
8167 tdep->ymm16h_register_names[i]);
8168 }
8169 if (feature_avx)
8170 {
8171 /* AVX register description requires SSE register description. */
8172 if (!feature_sse)
8173 return 0;
8174
8175 if (!feature_avx512)
8176 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8177
8178 /* It may have been set by OSABI initialization function. */
8179 if (tdep->num_ymm_regs == 0)
8180 {
8181 tdep->ymmh_register_names = i386_ymmh_names;
8182 tdep->num_ymm_regs = 8;
8183 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8184 }
8185
8186 for (i = 0; i < tdep->num_ymm_regs; i++)
8187 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8188 tdep->ymm0h_regnum + i,
8189 tdep->ymmh_register_names[i]);
8190 }
8191 else if (feature_sse)
8192 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8193 else
8194 {
8195 tdep->xcr0 = X86_XSTATE_X87_MASK;
8196 tdep->num_xmm_regs = 0;
8197 }
8198
8199 num_regs = tdep->num_core_regs;
8200 for (i = 0; i < num_regs; i++)
8201 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8202 tdep->register_names[i]);
8203
8204 if (feature_sse)
8205 {
8206 /* Need to include %mxcsr, so add one. */
8207 num_regs += tdep->num_xmm_regs + 1;
8208 for (; i < num_regs; i++)
8209 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8210 tdep->register_names[i]);
8211 }
8212
8213 if (feature_mpx)
8214 {
8215 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8216
8217 if (tdep->bnd0r_regnum < 0)
8218 {
8219 tdep->mpx_register_names = i386_mpx_names;
8220 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8221 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8222 }
8223
8224 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8225 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8226 I387_BND0R_REGNUM (tdep) + i,
8227 tdep->mpx_register_names[i]);
8228 }
8229
8230 return valid_p;
8231 }
8232
8233 \f
8234 static struct gdbarch *
8235 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8236 {
8237 struct gdbarch_tdep *tdep;
8238 struct gdbarch *gdbarch;
8239 struct tdesc_arch_data *tdesc_data;
8240 const struct target_desc *tdesc;
8241 int mm0_regnum;
8242 int ymm0_regnum;
8243 int bnd0_regnum;
8244 int num_bnd_cooked;
8245 int k0_regnum;
8246 int zmm0_regnum;
8247
8248 /* If there is already a candidate, use it. */
8249 arches = gdbarch_list_lookup_by_info (arches, &info);
8250 if (arches != NULL)
8251 return arches->gdbarch;
8252
8253 /* Allocate space for the new architecture. */
8254 tdep = XCNEW (struct gdbarch_tdep);
8255 gdbarch = gdbarch_alloc (&info, tdep);
8256
8257 /* General-purpose registers. */
8258 tdep->gregset_reg_offset = NULL;
8259 tdep->gregset_num_regs = I386_NUM_GREGS;
8260 tdep->sizeof_gregset = 0;
8261
8262 /* Floating-point registers. */
8263 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8264 tdep->fpregset = &i386_fpregset;
8265
8266 /* The default settings include the FPU registers, the MMX registers
8267 and the SSE registers. This can be overridden for a specific ABI
8268 by adjusting the members `st0_regnum', `mm0_regnum' and
8269 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8270 will show up in the output of "info all-registers". */
8271
8272 tdep->st0_regnum = I386_ST0_REGNUM;
8273
8274 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8275 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8276
8277 tdep->jb_pc_offset = -1;
8278 tdep->struct_return = pcc_struct_return;
8279 tdep->sigtramp_start = 0;
8280 tdep->sigtramp_end = 0;
8281 tdep->sigtramp_p = i386_sigtramp_p;
8282 tdep->sigcontext_addr = NULL;
8283 tdep->sc_reg_offset = NULL;
8284 tdep->sc_pc_offset = -1;
8285 tdep->sc_sp_offset = -1;
8286
8287 tdep->xsave_xcr0_offset = -1;
8288
8289 tdep->record_regmap = i386_record_regmap;
8290
8291 set_gdbarch_long_long_align_bit (gdbarch, 32);
8292
8293 /* The format used for `long double' on almost all i386 targets is
8294 the i387 extended floating-point format. In fact, of all targets
8295 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8296 on having a `long double' that's not `long' at all. */
8297 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8298
8299 /* Although the i387 extended floating-point has only 80 significant
8300 bits, a `long double' actually takes up 96, probably to enforce
8301 alignment. */
8302 set_gdbarch_long_double_bit (gdbarch, 96);
8303
8304 /* Register numbers of various important registers. */
8305 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8306 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8307 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8308 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8309
8310 /* NOTE: kettenis/20040418: GCC does have two possible register
8311 numbering schemes on the i386: dbx and SVR4. These schemes
8312 differ in how they number %ebp, %esp, %eflags, and the
8313 floating-point registers, and are implemented by the arrays
8314 dbx_register_map[] and svr4_dbx_register_map in
8315 gcc/config/i386.c. GCC also defines a third numbering scheme in
8316 gcc/config/i386.c, which it designates as the "default" register
8317 map used in 64bit mode. This last register numbering scheme is
8318 implemented in dbx64_register_map, and is used for AMD64; see
8319 amd64-tdep.c.
8320
8321 Currently, each GCC i386 target always uses the same register
8322 numbering scheme across all its supported debugging formats
8323 i.e. SDB (COFF), stabs and DWARF 2. This is because
8324 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8325 DBX_REGISTER_NUMBER macro which is defined by each target's
8326 respective config header in a manner independent of the requested
8327 output debugging format.
8328
8329 This does not match the arrangement below, which presumes that
8330 the SDB and stabs numbering schemes differ from the DWARF and
8331 DWARF 2 ones. The reason for this arrangement is that it is
8332 likely to get the numbering scheme for the target's
8333 default/native debug format right. For targets where GCC is the
8334 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8335 targets where the native toolchain uses a different numbering
8336 scheme for a particular debug format (stabs-in-ELF on Solaris)
8337 the defaults below will have to be overridden, like
8338 i386_elf_init_abi() does. */
8339
8340 /* Use the dbx register numbering scheme for stabs and COFF. */
8341 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8342 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8343
8344 /* Use the SVR4 register numbering scheme for DWARF 2. */
8345 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8346
8347 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8348 be in use on any of the supported i386 targets. */
8349
8350 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8351
8352 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8353
8354 /* Call dummy code. */
8355 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8356 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8357 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8358 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8359
8360 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8361 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8362 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8363
8364 set_gdbarch_return_value (gdbarch, i386_return_value);
8365
8366 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8367
8368 /* Stack grows downward. */
8369 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8370
8371 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8372 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8373 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8374
8375 set_gdbarch_frame_args_skip (gdbarch, 8);
8376
8377 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8378
8379 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8380
8381 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8382
8383 /* Add the i386 register groups. */
8384 i386_add_reggroups (gdbarch);
8385 tdep->register_reggroup_p = i386_register_reggroup_p;
8386
8387 /* Helper for function argument information. */
8388 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8389
8390 /* Hook the function epilogue frame unwinder. This unwinder is
8391 appended to the list first, so that it supercedes the DWARF
8392 unwinder in function epilogues (where the DWARF unwinder
8393 currently fails). */
8394 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8395
8396 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8397 to the list before the prologue-based unwinders, so that DWARF
8398 CFI info will be used if it is available. */
8399 dwarf2_append_unwinders (gdbarch);
8400
8401 frame_base_set_default (gdbarch, &i386_frame_base);
8402
8403 /* Pseudo registers may be changed by amd64_init_abi. */
8404 set_gdbarch_pseudo_register_read_value (gdbarch,
8405 i386_pseudo_register_read_value);
8406 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8407
8408 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8409 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8410
8411 /* Override the normal target description method to make the AVX
8412 upper halves anonymous. */
8413 set_gdbarch_register_name (gdbarch, i386_register_name);
8414
8415 /* Even though the default ABI only includes general-purpose registers,
8416 floating-point registers and the SSE registers, we have to leave a
8417 gap for the upper AVX, MPX and AVX512 registers. */
8418 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
8419
8420 /* Get the x86 target description from INFO. */
8421 tdesc = info.target_desc;
8422 if (! tdesc_has_registers (tdesc))
8423 tdesc = tdesc_i386;
8424 tdep->tdesc = tdesc;
8425
8426 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8427 tdep->register_names = i386_register_names;
8428
8429 /* No upper YMM registers. */
8430 tdep->ymmh_register_names = NULL;
8431 tdep->ymm0h_regnum = -1;
8432
8433 /* No upper ZMM registers. */
8434 tdep->zmmh_register_names = NULL;
8435 tdep->zmm0h_regnum = -1;
8436
8437 /* No high XMM registers. */
8438 tdep->xmm_avx512_register_names = NULL;
8439 tdep->xmm16_regnum = -1;
8440
8441 /* No upper YMM16-31 registers. */
8442 tdep->ymm16h_register_names = NULL;
8443 tdep->ymm16h_regnum = -1;
8444
8445 tdep->num_byte_regs = 8;
8446 tdep->num_word_regs = 8;
8447 tdep->num_dword_regs = 0;
8448 tdep->num_mmx_regs = 8;
8449 tdep->num_ymm_regs = 0;
8450
8451 /* No MPX registers. */
8452 tdep->bnd0r_regnum = -1;
8453 tdep->bndcfgu_regnum = -1;
8454
8455 /* No AVX512 registers. */
8456 tdep->k0_regnum = -1;
8457 tdep->num_zmm_regs = 0;
8458 tdep->num_ymm_avx512_regs = 0;
8459 tdep->num_xmm_avx512_regs = 0;
8460
8461 tdesc_data = tdesc_data_alloc ();
8462
8463 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8464
8465 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8466
8467 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8468 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8469 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8470
8471 /* Hook in ABI-specific overrides, if they have been registered. */
8472 info.tdep_info = (void *) tdesc_data;
8473 gdbarch_init_osabi (info, gdbarch);
8474
8475 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8476 {
8477 tdesc_data_cleanup (tdesc_data);
8478 xfree (tdep);
8479 gdbarch_free (gdbarch);
8480 return NULL;
8481 }
8482
8483 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8484
8485 /* Wire in pseudo registers. Number of pseudo registers may be
8486 changed. */
8487 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8488 + tdep->num_word_regs
8489 + tdep->num_dword_regs
8490 + tdep->num_mmx_regs
8491 + tdep->num_ymm_regs
8492 + num_bnd_cooked
8493 + tdep->num_ymm_avx512_regs
8494 + tdep->num_zmm_regs));
8495
8496 /* Target description may be changed. */
8497 tdesc = tdep->tdesc;
8498
8499 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8500
8501 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8502 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8503
8504 /* Make %al the first pseudo-register. */
8505 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8506 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8507
8508 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8509 if (tdep->num_dword_regs)
8510 {
8511 /* Support dword pseudo-register if it hasn't been disabled. */
8512 tdep->eax_regnum = ymm0_regnum;
8513 ymm0_regnum += tdep->num_dword_regs;
8514 }
8515 else
8516 tdep->eax_regnum = -1;
8517
8518 mm0_regnum = ymm0_regnum;
8519 if (tdep->num_ymm_regs)
8520 {
8521 /* Support YMM pseudo-register if it is available. */
8522 tdep->ymm0_regnum = ymm0_regnum;
8523 mm0_regnum += tdep->num_ymm_regs;
8524 }
8525 else
8526 tdep->ymm0_regnum = -1;
8527
8528 if (tdep->num_ymm_avx512_regs)
8529 {
8530 /* Support YMM16-31 pseudo registers if available. */
8531 tdep->ymm16_regnum = mm0_regnum;
8532 mm0_regnum += tdep->num_ymm_avx512_regs;
8533 }
8534 else
8535 tdep->ymm16_regnum = -1;
8536
8537 if (tdep->num_zmm_regs)
8538 {
8539 /* Support ZMM pseudo-register if it is available. */
8540 tdep->zmm0_regnum = mm0_regnum;
8541 mm0_regnum += tdep->num_zmm_regs;
8542 }
8543 else
8544 tdep->zmm0_regnum = -1;
8545
8546 bnd0_regnum = mm0_regnum;
8547 if (tdep->num_mmx_regs != 0)
8548 {
8549 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8550 tdep->mm0_regnum = mm0_regnum;
8551 bnd0_regnum += tdep->num_mmx_regs;
8552 }
8553 else
8554 tdep->mm0_regnum = -1;
8555
8556 if (tdep->bnd0r_regnum > 0)
8557 tdep->bnd0_regnum = bnd0_regnum;
8558 else
8559 tdep-> bnd0_regnum = -1;
8560
8561 /* Hook in the legacy prologue-based unwinders last (fallback). */
8562 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8563 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8564 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8565
8566 /* If we have a register mapping, enable the generic core file
8567 support, unless it has already been enabled. */
8568 if (tdep->gregset_reg_offset
8569 && !gdbarch_regset_from_core_section_p (gdbarch)
8570 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8571 set_gdbarch_regset_from_core_section (gdbarch,
8572 i386_regset_from_core_section);
8573
8574 set_gdbarch_skip_permanent_breakpoint (gdbarch,
8575 i386_skip_permanent_breakpoint);
8576
8577 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8578 i386_fast_tracepoint_valid_at);
8579
8580 return gdbarch;
8581 }
8582
8583 static enum gdb_osabi
8584 i386_coff_osabi_sniffer (bfd *abfd)
8585 {
8586 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8587 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8588 return GDB_OSABI_GO32;
8589
8590 return GDB_OSABI_UNKNOWN;
8591 }
8592 \f
8593
8594 /* Provide a prototype to silence -Wmissing-prototypes. */
8595 void _initialize_i386_tdep (void);
8596
8597 void
8598 _initialize_i386_tdep (void)
8599 {
8600 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8601
8602 /* Add the variable that controls the disassembly flavor. */
8603 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8604 &disassembly_flavor, _("\
8605 Set the disassembly flavor."), _("\
8606 Show the disassembly flavor."), _("\
8607 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8608 NULL,
8609 NULL, /* FIXME: i18n: */
8610 &setlist, &showlist);
8611
8612 /* Add the variable that controls the convention for returning
8613 structs. */
8614 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8615 &struct_convention, _("\
8616 Set the convention for returning small structs."), _("\
8617 Show the convention for returning small structs."), _("\
8618 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8619 is \"default\"."),
8620 NULL,
8621 NULL, /* FIXME: i18n: */
8622 &setlist, &showlist);
8623
8624 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8625 i386_coff_osabi_sniffer);
8626
8627 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8628 i386_svr4_init_abi);
8629 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8630 i386_go32_init_abi);
8631
8632 /* Initialize the i386-specific register groups. */
8633 i386_init_reggroups ();
8634
8635 /* Initialize the standard target descriptions. */
8636 initialize_tdesc_i386 ();
8637 initialize_tdesc_i386_mmx ();
8638 initialize_tdesc_i386_avx ();
8639 initialize_tdesc_i386_mpx ();
8640 initialize_tdesc_i386_avx512 ();
8641
8642 /* Tell remote stub that we support XML target description. */
8643 register_remote_support_xml ("i386");
8644 }
This page took 0.217553 seconds and 4 git commands to generate.