* sparc64-tdep.h (sparc64_regnum): Fix comment.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "floatformat.h"
30 #include "frame.h"
31 #include "frame-base.h"
32 #include "frame-unwind.h"
33 #include "inferior.h"
34 #include "gdbcmd.h"
35 #include "gdbcore.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44
45 #include "gdb_assert.h"
46 #include "gdb_string.h"
47
48 #include "i386-tdep.h"
49 #include "i387-tdep.h"
50
51 /* Names of the registers. The first 10 registers match the register
52 numbering scheme used by GCC for stabs and DWARF. */
53
54 static char *i386_register_names[] =
55 {
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67 };
68
69 static const int i386_num_register_names =
70 (sizeof (i386_register_names) / sizeof (*i386_register_names));
71
72 /* MMX registers. */
73
74 static char *i386_mmx_names[] =
75 {
76 "mm0", "mm1", "mm2", "mm3",
77 "mm4", "mm5", "mm6", "mm7"
78 };
79
80 static const int i386_num_mmx_regs =
81 (sizeof (i386_mmx_names) / sizeof (i386_mmx_names[0]));
82
83 #define MM0_REGNUM NUM_REGS
84
85 static int
86 i386_mmx_regnum_p (int regnum)
87 {
88 return (regnum >= MM0_REGNUM
89 && regnum < MM0_REGNUM + i386_num_mmx_regs);
90 }
91
92 /* FP register? */
93
94 int
95 i386_fp_regnum_p (int regnum)
96 {
97 return (regnum < NUM_REGS
98 && (FP0_REGNUM && FP0_REGNUM <= regnum && regnum < FPC_REGNUM));
99 }
100
101 int
102 i386_fpc_regnum_p (int regnum)
103 {
104 return (regnum < NUM_REGS
105 && (FPC_REGNUM <= regnum && regnum < XMM0_REGNUM));
106 }
107
108 /* SSE register? */
109
110 int
111 i386_sse_regnum_p (int regnum)
112 {
113 return (regnum < NUM_REGS
114 && (XMM0_REGNUM <= regnum && regnum < MXCSR_REGNUM));
115 }
116
117 int
118 i386_mxcsr_regnum_p (int regnum)
119 {
120 return (regnum < NUM_REGS
121 && regnum == MXCSR_REGNUM);
122 }
123
124 /* Return the name of register REG. */
125
126 const char *
127 i386_register_name (int reg)
128 {
129 if (i386_mmx_regnum_p (reg))
130 return i386_mmx_names[reg - MM0_REGNUM];
131
132 if (reg >= 0 && reg < i386_num_register_names)
133 return i386_register_names[reg];
134
135 return NULL;
136 }
137
138 /* Convert stabs register number REG to the appropriate register
139 number used by GDB. */
140
141 static int
142 i386_stab_reg_to_regnum (int reg)
143 {
144 /* This implements what GCC calls the "default" register map. */
145 if (reg >= 0 && reg <= 7)
146 {
147 /* General-purpose registers. */
148 return reg;
149 }
150 else if (reg >= 12 && reg <= 19)
151 {
152 /* Floating-point registers. */
153 return reg - 12 + FP0_REGNUM;
154 }
155 else if (reg >= 21 && reg <= 28)
156 {
157 /* SSE registers. */
158 return reg - 21 + XMM0_REGNUM;
159 }
160 else if (reg >= 29 && reg <= 36)
161 {
162 /* MMX registers. */
163 return reg - 29 + MM0_REGNUM;
164 }
165
166 /* This will hopefully provoke a warning. */
167 return NUM_REGS + NUM_PSEUDO_REGS;
168 }
169
170 /* Convert DWARF register number REG to the appropriate register
171 number used by GDB. */
172
173 static int
174 i386_dwarf_reg_to_regnum (int reg)
175 {
176 /* The DWARF register numbering includes %eip and %eflags, and
177 numbers the floating point registers differently. */
178 if (reg >= 0 && reg <= 9)
179 {
180 /* General-purpose registers. */
181 return reg;
182 }
183 else if (reg >= 11 && reg <= 18)
184 {
185 /* Floating-point registers. */
186 return reg - 11 + FP0_REGNUM;
187 }
188 else if (reg >= 21)
189 {
190 /* The SSE and MMX registers have identical numbers as in stabs. */
191 return i386_stab_reg_to_regnum (reg);
192 }
193
194 /* This will hopefully provoke a warning. */
195 return NUM_REGS + NUM_PSEUDO_REGS;
196 }
197 \f
198
199 /* This is the variable that is set with "set disassembly-flavor", and
200 its legitimate values. */
201 static const char att_flavor[] = "att";
202 static const char intel_flavor[] = "intel";
203 static const char *valid_flavors[] =
204 {
205 att_flavor,
206 intel_flavor,
207 NULL
208 };
209 static const char *disassembly_flavor = att_flavor;
210 \f
211
212 /* Use the program counter to determine the contents and size of a
213 breakpoint instruction. Return a pointer to a string of bytes that
214 encode a breakpoint instruction, store the length of the string in
215 *LEN and optionally adjust *PC to point to the correct memory
216 location for inserting the breakpoint.
217
218 On the i386 we have a single breakpoint that fits in a single byte
219 and can be inserted anywhere.
220
221 This function is 64-bit safe. */
222
223 static const unsigned char *
224 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
225 {
226 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
227
228 *len = sizeof (break_insn);
229 return break_insn;
230 }
231 \f
232 #ifdef I386_REGNO_TO_SYMMETRY
233 #error "The Sequent Symmetry is no longer supported."
234 #endif
235
236 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
237 and %esp "belong" to the calling function. Therefore these
238 registers should be saved if they're going to be modified. */
239
240 /* The maximum number of saved registers. This should include all
241 registers mentioned above, and %eip. */
242 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
243
244 struct i386_frame_cache
245 {
246 /* Base address. */
247 CORE_ADDR base;
248 CORE_ADDR sp_offset;
249 CORE_ADDR pc;
250
251 /* Saved registers. */
252 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
253 CORE_ADDR saved_sp;
254 int pc_in_eax;
255
256 /* Stack space reserved for local variables. */
257 long locals;
258 };
259
260 /* Allocate and initialize a frame cache. */
261
262 static struct i386_frame_cache *
263 i386_alloc_frame_cache (void)
264 {
265 struct i386_frame_cache *cache;
266 int i;
267
268 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
269
270 /* Base address. */
271 cache->base = 0;
272 cache->sp_offset = -4;
273 cache->pc = 0;
274
275 /* Saved registers. We initialize these to -1 since zero is a valid
276 offset (that's where %ebp is supposed to be stored). */
277 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
278 cache->saved_regs[i] = -1;
279 cache->saved_sp = 0;
280 cache->pc_in_eax = 0;
281
282 /* Frameless until proven otherwise. */
283 cache->locals = -1;
284
285 return cache;
286 }
287
288 /* If the instruction at PC is a jump, return the address of its
289 target. Otherwise, return PC. */
290
291 static CORE_ADDR
292 i386_follow_jump (CORE_ADDR pc)
293 {
294 unsigned char op;
295 long delta = 0;
296 int data16 = 0;
297
298 op = read_memory_unsigned_integer (pc, 1);
299 if (op == 0x66)
300 {
301 data16 = 1;
302 op = read_memory_unsigned_integer (pc + 1, 1);
303 }
304
305 switch (op)
306 {
307 case 0xe9:
308 /* Relative jump: if data16 == 0, disp32, else disp16. */
309 if (data16)
310 {
311 delta = read_memory_integer (pc + 2, 2);
312
313 /* Include the size of the jmp instruction (including the
314 0x66 prefix). */
315 delta += 4;
316 }
317 else
318 {
319 delta = read_memory_integer (pc + 1, 4);
320
321 /* Include the size of the jmp instruction. */
322 delta += 5;
323 }
324 break;
325 case 0xeb:
326 /* Relative jump, disp8 (ignore data16). */
327 delta = read_memory_integer (pc + data16 + 1, 1);
328
329 delta += data16 + 2;
330 break;
331 }
332
333 return pc + delta;
334 }
335
336 /* Check whether PC points at a prologue for a function returning a
337 structure or union. If so, it updates CACHE and returns the
338 address of the first instruction after the code sequence that
339 removes the "hidden" argument from the stack or CURRENT_PC,
340 whichever is smaller. Otherwise, return PC. */
341
342 static CORE_ADDR
343 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
344 struct i386_frame_cache *cache)
345 {
346 /* Functions that return a structure or union start with:
347
348 popl %eax 0x58
349 xchgl %eax, (%esp) 0x87 0x04 0x24
350 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
351
352 (the System V compiler puts out the second `xchg' instruction,
353 and the assembler doesn't try to optimize it, so the 'sib' form
354 gets generated). This sequence is used to get the address of the
355 return buffer for a function that returns a structure. */
356 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
357 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
358 unsigned char buf[4];
359 unsigned char op;
360
361 if (current_pc <= pc)
362 return pc;
363
364 op = read_memory_unsigned_integer (pc, 1);
365
366 if (op != 0x58) /* popl %eax */
367 return pc;
368
369 read_memory (pc + 1, buf, 4);
370 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
371 return pc;
372
373 if (current_pc == pc)
374 {
375 cache->sp_offset += 4;
376 return current_pc;
377 }
378
379 if (current_pc == pc + 1)
380 {
381 cache->pc_in_eax = 1;
382 return current_pc;
383 }
384
385 if (buf[1] == proto1[1])
386 return pc + 4;
387 else
388 return pc + 5;
389 }
390
391 static CORE_ADDR
392 i386_skip_probe (CORE_ADDR pc)
393 {
394 /* A function may start with
395
396 pushl constant
397 call _probe
398 addl $4, %esp
399
400 followed by
401
402 pushl %ebp
403
404 etc. */
405 unsigned char buf[8];
406 unsigned char op;
407
408 op = read_memory_unsigned_integer (pc, 1);
409
410 if (op == 0x68 || op == 0x6a)
411 {
412 int delta;
413
414 /* Skip past the `pushl' instruction; it has either a one-byte or a
415 four-byte operand, depending on the opcode. */
416 if (op == 0x68)
417 delta = 5;
418 else
419 delta = 2;
420
421 /* Read the following 8 bytes, which should be `call _probe' (6
422 bytes) followed by `addl $4,%esp' (2 bytes). */
423 read_memory (pc + delta, buf, sizeof (buf));
424 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
425 pc += delta + sizeof (buf);
426 }
427
428 return pc;
429 }
430
431 /* Check whether PC points at a code that sets up a new stack frame.
432 If so, it updates CACHE and returns the address of the first
433 instruction after the sequence that sets removes the "hidden"
434 argument from the stack or CURRENT_PC, whichever is smaller.
435 Otherwise, return PC. */
436
437 static CORE_ADDR
438 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
439 struct i386_frame_cache *cache)
440 {
441 unsigned char op;
442 int skip = 0;
443
444 if (current_pc <= pc)
445 return current_pc;
446
447 op = read_memory_unsigned_integer (pc, 1);
448
449 if (op == 0x55) /* pushl %ebp */
450 {
451 /* Take into account that we've executed the `pushl %ebp' that
452 starts this instruction sequence. */
453 cache->saved_regs[I386_EBP_REGNUM] = 0;
454 cache->sp_offset += 4;
455
456 /* If that's all, return now. */
457 if (current_pc <= pc + 1)
458 return current_pc;
459
460 op = read_memory_unsigned_integer (pc + 1, 1);
461
462 /* Check for some special instructions that might be migrated
463 by GCC into the prologue. We check for
464
465 xorl %ebx, %ebx
466 xorl %ecx, %ecx
467 xorl %edx, %edx
468
469 and the equivalent
470
471 subl %ebx, %ebx
472 subl %ecx, %ecx
473 subl %edx, %edx
474
475 Make sure we only skip these instructions if we later see the
476 `movl %esp, %ebp' that actually sets up the frame. */
477 while (op == 0x29 || op == 0x31)
478 {
479 op = read_memory_unsigned_integer (pc + skip + 2, 1);
480 switch (op)
481 {
482 case 0xdb: /* %ebx */
483 case 0xc9: /* %ecx */
484 case 0xd2: /* %edx */
485 skip += 2;
486 break;
487 default:
488 return pc + 1;
489 }
490
491 op = read_memory_unsigned_integer (pc + skip + 1, 1);
492 }
493
494 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
495 switch (op)
496 {
497 case 0x8b:
498 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xec)
499 return pc + 1;
500 break;
501 case 0x89:
502 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xe5)
503 return pc + 1;
504 break;
505 default:
506 return pc + 1;
507 }
508
509 /* OK, we actually have a frame. We just don't know how large
510 it is yet. Set its size to zero. We'll adjust it if
511 necessary. We also now commit to skipping the special
512 instructions mentioned before. */
513 cache->locals = 0;
514 pc += skip;
515
516 /* If that's all, return now. */
517 if (current_pc <= pc + 3)
518 return current_pc;
519
520 /* Check for stack adjustment
521
522 subl $XXX, %esp
523
524 NOTE: You can't subtract a 16 bit immediate from a 32 bit
525 reg, so we don't have to worry about a data16 prefix. */
526 op = read_memory_unsigned_integer (pc + 3, 1);
527 if (op == 0x83)
528 {
529 /* `subl' with 8 bit immediate. */
530 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
531 /* Some instruction starting with 0x83 other than `subl'. */
532 return pc + 3;
533
534 /* `subl' with signed byte immediate (though it wouldn't make
535 sense to be negative). */
536 cache->locals = read_memory_integer (pc + 5, 1);
537 return pc + 6;
538 }
539 else if (op == 0x81)
540 {
541 /* Maybe it is `subl' with a 32 bit immedediate. */
542 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
543 /* Some instruction starting with 0x81 other than `subl'. */
544 return pc + 3;
545
546 /* It is `subl' with a 32 bit immediate. */
547 cache->locals = read_memory_integer (pc + 5, 4);
548 return pc + 9;
549 }
550 else
551 {
552 /* Some instruction other than `subl'. */
553 return pc + 3;
554 }
555 }
556 else if (op == 0xc8) /* enter $XXX */
557 {
558 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
559 return pc + 4;
560 }
561
562 return pc;
563 }
564
565 /* Check whether PC points at code that saves registers on the stack.
566 If so, it updates CACHE and returns the address of the first
567 instruction after the register saves or CURRENT_PC, whichever is
568 smaller. Otherwise, return PC. */
569
570 static CORE_ADDR
571 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
572 struct i386_frame_cache *cache)
573 {
574 CORE_ADDR offset = 0;
575 unsigned char op;
576 int i;
577
578 if (cache->locals > 0)
579 offset -= cache->locals;
580 for (i = 0; i < 8 && pc < current_pc; i++)
581 {
582 op = read_memory_unsigned_integer (pc, 1);
583 if (op < 0x50 || op > 0x57)
584 break;
585
586 offset -= 4;
587 cache->saved_regs[op - 0x50] = offset;
588 cache->sp_offset += 4;
589 pc++;
590 }
591
592 return pc;
593 }
594
595 /* Do a full analysis of the prologue at PC and update CACHE
596 accordingly. Bail out early if CURRENT_PC is reached. Return the
597 address where the analysis stopped.
598
599 We handle these cases:
600
601 The startup sequence can be at the start of the function, or the
602 function can start with a branch to startup code at the end.
603
604 %ebp can be set up with either the 'enter' instruction, or "pushl
605 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
606 once used in the System V compiler).
607
608 Local space is allocated just below the saved %ebp by either the
609 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
610 bit unsigned argument for space to allocate, and the 'addl'
611 instruction could have either a signed byte, or 32 bit immediate.
612
613 Next, the registers used by this function are pushed. With the
614 System V compiler they will always be in the order: %edi, %esi,
615 %ebx (and sometimes a harmless bug causes it to also save but not
616 restore %eax); however, the code below is willing to see the pushes
617 in any order, and will handle up to 8 of them.
618
619 If the setup sequence is at the end of the function, then the next
620 instruction will be a branch back to the start. */
621
622 static CORE_ADDR
623 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
624 struct i386_frame_cache *cache)
625 {
626 pc = i386_follow_jump (pc);
627 pc = i386_analyze_struct_return (pc, current_pc, cache);
628 pc = i386_skip_probe (pc);
629 pc = i386_analyze_frame_setup (pc, current_pc, cache);
630 return i386_analyze_register_saves (pc, current_pc, cache);
631 }
632
633 /* Return PC of first real instruction. */
634
635 static CORE_ADDR
636 i386_skip_prologue (CORE_ADDR start_pc)
637 {
638 static unsigned char pic_pat[6] =
639 {
640 0xe8, 0, 0, 0, 0, /* call 0x0 */
641 0x5b, /* popl %ebx */
642 };
643 struct i386_frame_cache cache;
644 CORE_ADDR pc;
645 unsigned char op;
646 int i;
647
648 cache.locals = -1;
649 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
650 if (cache.locals < 0)
651 return start_pc;
652
653 /* Found valid frame setup. */
654
655 /* The native cc on SVR4 in -K PIC mode inserts the following code
656 to get the address of the global offset table (GOT) into register
657 %ebx:
658
659 call 0x0
660 popl %ebx
661 movl %ebx,x(%ebp) (optional)
662 addl y,%ebx
663
664 This code is with the rest of the prologue (at the end of the
665 function), so we have to skip it to get to the first real
666 instruction at the start of the function. */
667
668 for (i = 0; i < 6; i++)
669 {
670 op = read_memory_unsigned_integer (pc + i, 1);
671 if (pic_pat[i] != op)
672 break;
673 }
674 if (i == 6)
675 {
676 int delta = 6;
677
678 op = read_memory_unsigned_integer (pc + delta, 1);
679
680 if (op == 0x89) /* movl %ebx, x(%ebp) */
681 {
682 op = read_memory_unsigned_integer (pc + delta + 1, 1);
683
684 if (op == 0x5d) /* One byte offset from %ebp. */
685 delta += 3;
686 else if (op == 0x9d) /* Four byte offset from %ebp. */
687 delta += 6;
688 else /* Unexpected instruction. */
689 delta = 0;
690
691 op = read_memory_unsigned_integer (pc + delta, 1);
692 }
693
694 /* addl y,%ebx */
695 if (delta > 0 && op == 0x81
696 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
697 {
698 pc += delta + 6;
699 }
700 }
701
702 return i386_follow_jump (pc);
703 }
704
705 /* This function is 64-bit safe. */
706
707 static CORE_ADDR
708 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
709 {
710 char buf[8];
711
712 frame_unwind_register (next_frame, PC_REGNUM, buf);
713 return extract_typed_address (buf, builtin_type_void_func_ptr);
714 }
715 \f
716
717 /* Normal frames. */
718
719 static struct i386_frame_cache *
720 i386_frame_cache (struct frame_info *next_frame, void **this_cache)
721 {
722 struct i386_frame_cache *cache;
723 char buf[4];
724 int i;
725
726 if (*this_cache)
727 return *this_cache;
728
729 cache = i386_alloc_frame_cache ();
730 *this_cache = cache;
731
732 /* In principle, for normal frames, %ebp holds the frame pointer,
733 which holds the base address for the current stack frame.
734 However, for functions that don't need it, the frame pointer is
735 optional. For these "frameless" functions the frame pointer is
736 actually the frame pointer of the calling frame. Signal
737 trampolines are just a special case of a "frameless" function.
738 They (usually) share their frame pointer with the frame that was
739 in progress when the signal occurred. */
740
741 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
742 cache->base = extract_unsigned_integer (buf, 4);
743 if (cache->base == 0)
744 return cache;
745
746 /* For normal frames, %eip is stored at 4(%ebp). */
747 cache->saved_regs[I386_EIP_REGNUM] = 4;
748
749 cache->pc = frame_func_unwind (next_frame);
750 if (cache->pc != 0)
751 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
752
753 if (cache->locals < 0)
754 {
755 /* We didn't find a valid frame, which means that CACHE->base
756 currently holds the frame pointer for our calling frame. If
757 we're at the start of a function, or somewhere half-way its
758 prologue, the function's frame probably hasn't been fully
759 setup yet. Try to reconstruct the base address for the stack
760 frame by looking at the stack pointer. For truly "frameless"
761 functions this might work too. */
762
763 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
764 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
765 }
766
767 /* Now that we have the base address for the stack frame we can
768 calculate the value of %esp in the calling frame. */
769 cache->saved_sp = cache->base + 8;
770
771 /* Adjust all the saved registers such that they contain addresses
772 instead of offsets. */
773 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
774 if (cache->saved_regs[i] != -1)
775 cache->saved_regs[i] += cache->base;
776
777 return cache;
778 }
779
780 static void
781 i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
782 struct frame_id *this_id)
783 {
784 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
785
786 /* This marks the outermost frame. */
787 if (cache->base == 0)
788 return;
789
790 /* See the end of i386_push_dummy_call. */
791 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
792 }
793
794 static void
795 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
796 int regnum, int *optimizedp,
797 enum lval_type *lvalp, CORE_ADDR *addrp,
798 int *realnump, void *valuep)
799 {
800 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
801
802 gdb_assert (regnum >= 0);
803
804 /* The System V ABI says that:
805
806 "The flags register contains the system flags, such as the
807 direction flag and the carry flag. The direction flag must be
808 set to the forward (that is, zero) direction before entry and
809 upon exit from a function. Other user flags have no specified
810 role in the standard calling sequence and are not preserved."
811
812 To guarantee the "upon exit" part of that statement we fake a
813 saved flags register that has its direction flag cleared.
814
815 Note that GCC doesn't seem to rely on the fact that the direction
816 flag is cleared after a function return; it always explicitly
817 clears the flag before operations where it matters.
818
819 FIXME: kettenis/20030316: I'm not quite sure whether this is the
820 right thing to do. The way we fake the flags register here makes
821 it impossible to change it. */
822
823 if (regnum == I386_EFLAGS_REGNUM)
824 {
825 *optimizedp = 0;
826 *lvalp = not_lval;
827 *addrp = 0;
828 *realnump = -1;
829 if (valuep)
830 {
831 ULONGEST val;
832
833 /* Clear the direction flag. */
834 val = frame_unwind_register_unsigned (next_frame,
835 I386_EFLAGS_REGNUM);
836 val &= ~(1 << 10);
837 store_unsigned_integer (valuep, 4, val);
838 }
839
840 return;
841 }
842
843 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
844 {
845 frame_register_unwind (next_frame, I386_EAX_REGNUM,
846 optimizedp, lvalp, addrp, realnump, valuep);
847 return;
848 }
849
850 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
851 {
852 *optimizedp = 0;
853 *lvalp = not_lval;
854 *addrp = 0;
855 *realnump = -1;
856 if (valuep)
857 {
858 /* Store the value. */
859 store_unsigned_integer (valuep, 4, cache->saved_sp);
860 }
861 return;
862 }
863
864 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
865 {
866 *optimizedp = 0;
867 *lvalp = lval_memory;
868 *addrp = cache->saved_regs[regnum];
869 *realnump = -1;
870 if (valuep)
871 {
872 /* Read the value in from memory. */
873 read_memory (*addrp, valuep,
874 register_size (current_gdbarch, regnum));
875 }
876 return;
877 }
878
879 frame_register_unwind (next_frame, regnum,
880 optimizedp, lvalp, addrp, realnump, valuep);
881 }
882
883 static const struct frame_unwind i386_frame_unwind =
884 {
885 NORMAL_FRAME,
886 i386_frame_this_id,
887 i386_frame_prev_register
888 };
889
890 static const struct frame_unwind *
891 i386_frame_sniffer (struct frame_info *next_frame)
892 {
893 return &i386_frame_unwind;
894 }
895 \f
896
897 /* Signal trampolines. */
898
899 static struct i386_frame_cache *
900 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
901 {
902 struct i386_frame_cache *cache;
903 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
904 CORE_ADDR addr;
905 char buf[4];
906
907 if (*this_cache)
908 return *this_cache;
909
910 cache = i386_alloc_frame_cache ();
911
912 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
913 cache->base = extract_unsigned_integer (buf, 4) - 4;
914
915 addr = tdep->sigcontext_addr (next_frame);
916 if (tdep->sc_reg_offset)
917 {
918 int i;
919
920 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
921
922 for (i = 0; i < tdep->sc_num_regs; i++)
923 if (tdep->sc_reg_offset[i] != -1)
924 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
925 }
926 else
927 {
928 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
929 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
930 }
931
932 *this_cache = cache;
933 return cache;
934 }
935
936 static void
937 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
938 struct frame_id *this_id)
939 {
940 struct i386_frame_cache *cache =
941 i386_sigtramp_frame_cache (next_frame, this_cache);
942
943 /* See the end of i386_push_dummy_call. */
944 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
945 }
946
947 static void
948 i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
949 void **this_cache,
950 int regnum, int *optimizedp,
951 enum lval_type *lvalp, CORE_ADDR *addrp,
952 int *realnump, void *valuep)
953 {
954 /* Make sure we've initialized the cache. */
955 i386_sigtramp_frame_cache (next_frame, this_cache);
956
957 i386_frame_prev_register (next_frame, this_cache, regnum,
958 optimizedp, lvalp, addrp, realnump, valuep);
959 }
960
961 static const struct frame_unwind i386_sigtramp_frame_unwind =
962 {
963 SIGTRAMP_FRAME,
964 i386_sigtramp_frame_this_id,
965 i386_sigtramp_frame_prev_register
966 };
967
968 static const struct frame_unwind *
969 i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
970 {
971 CORE_ADDR pc = frame_pc_unwind (next_frame);
972 char *name;
973
974 /* We shouldn't even bother to try if the OSABI didn't register
975 a sigcontext_addr handler. */
976 if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr)
977 return NULL;
978
979 find_pc_partial_function (pc, &name, NULL, NULL);
980 if (PC_IN_SIGTRAMP (pc, name))
981 return &i386_sigtramp_frame_unwind;
982
983 return NULL;
984 }
985 \f
986
987 static CORE_ADDR
988 i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
989 {
990 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
991
992 return cache->base;
993 }
994
995 static const struct frame_base i386_frame_base =
996 {
997 &i386_frame_unwind,
998 i386_frame_base_address,
999 i386_frame_base_address,
1000 i386_frame_base_address
1001 };
1002
1003 static struct frame_id
1004 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1005 {
1006 char buf[4];
1007 CORE_ADDR fp;
1008
1009 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1010 fp = extract_unsigned_integer (buf, 4);
1011
1012 /* See the end of i386_push_dummy_call. */
1013 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1014 }
1015 \f
1016
1017 /* Figure out where the longjmp will land. Slurp the args out of the
1018 stack. We expect the first arg to be a pointer to the jmp_buf
1019 structure from which we extract the address that we will land at.
1020 This address is copied into PC. This routine returns non-zero on
1021 success.
1022
1023 This function is 64-bit safe. */
1024
1025 static int
1026 i386_get_longjmp_target (CORE_ADDR *pc)
1027 {
1028 char buf[8];
1029 CORE_ADDR sp, jb_addr;
1030 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
1031 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1032
1033 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1034 longjmp will land. */
1035 if (jb_pc_offset == -1)
1036 return 0;
1037
1038 /* Don't use I386_ESP_REGNUM here, since this function is also used
1039 for AMD64. */
1040 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1041 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
1042 if (target_read_memory (sp + len, buf, len))
1043 return 0;
1044
1045 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1046 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1047 return 0;
1048
1049 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1050 return 1;
1051 }
1052 \f
1053
1054 static CORE_ADDR
1055 i386_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1056 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1057 struct value **args, CORE_ADDR sp, int struct_return,
1058 CORE_ADDR struct_addr)
1059 {
1060 char buf[4];
1061 int i;
1062
1063 /* Push arguments in reverse order. */
1064 for (i = nargs - 1; i >= 0; i--)
1065 {
1066 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1067
1068 /* The System V ABI says that:
1069
1070 "An argument's size is increased, if necessary, to make it a
1071 multiple of [32-bit] words. This may require tail padding,
1072 depending on the size of the argument."
1073
1074 This makes sure the stack says word-aligned. */
1075 sp -= (len + 3) & ~3;
1076 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1077 }
1078
1079 /* Push value address. */
1080 if (struct_return)
1081 {
1082 sp -= 4;
1083 store_unsigned_integer (buf, 4, struct_addr);
1084 write_memory (sp, buf, 4);
1085 }
1086
1087 /* Store return address. */
1088 sp -= 4;
1089 store_unsigned_integer (buf, 4, bp_addr);
1090 write_memory (sp, buf, 4);
1091
1092 /* Finally, update the stack pointer... */
1093 store_unsigned_integer (buf, 4, sp);
1094 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1095
1096 /* ...and fake a frame pointer. */
1097 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1098
1099 /* MarkK wrote: This "+ 8" is all over the place:
1100 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1101 i386_unwind_dummy_id). It's there, since all frame unwinders for
1102 a given target have to agree (within a certain margin) on the
1103 defenition of the stack address of a frame. Otherwise
1104 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1105 stack address *before* the function call as a frame's CFA. On
1106 the i386, when %ebp is used as a frame pointer, the offset
1107 between the contents %ebp and the CFA as defined by GCC. */
1108 return sp + 8;
1109 }
1110
1111 /* These registers are used for returning integers (and on some
1112 targets also for returning `struct' and `union' values when their
1113 size and alignment match an integer type). */
1114 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1115 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1116
1117 /* Extract from an array REGBUF containing the (raw) register state, a
1118 function return value of TYPE, and copy that, in virtual format,
1119 into VALBUF. */
1120
1121 static void
1122 i386_extract_return_value (struct type *type, struct regcache *regcache,
1123 void *dst)
1124 {
1125 bfd_byte *valbuf = dst;
1126 int len = TYPE_LENGTH (type);
1127 char buf[I386_MAX_REGISTER_SIZE];
1128
1129 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1130 && TYPE_NFIELDS (type) == 1)
1131 {
1132 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
1133 return;
1134 }
1135
1136 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1137 {
1138 if (FP0_REGNUM < 0)
1139 {
1140 warning ("Cannot find floating-point return value.");
1141 memset (valbuf, 0, len);
1142 return;
1143 }
1144
1145 /* Floating-point return values can be found in %st(0). Convert
1146 its contents to the desired type. This is probably not
1147 exactly how it would happen on the target itself, but it is
1148 the best we can do. */
1149 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1150 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1151 }
1152 else
1153 {
1154 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1155 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1156
1157 if (len <= low_size)
1158 {
1159 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1160 memcpy (valbuf, buf, len);
1161 }
1162 else if (len <= (low_size + high_size))
1163 {
1164 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1165 memcpy (valbuf, buf, low_size);
1166 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1167 memcpy (valbuf + low_size, buf, len - low_size);
1168 }
1169 else
1170 internal_error (__FILE__, __LINE__,
1171 "Cannot extract return value of %d bytes long.", len);
1172 }
1173 }
1174
1175 /* Write into the appropriate registers a function return value stored
1176 in VALBUF of type TYPE, given in virtual format. */
1177
1178 static void
1179 i386_store_return_value (struct type *type, struct regcache *regcache,
1180 const void *valbuf)
1181 {
1182 int len = TYPE_LENGTH (type);
1183
1184 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1185 && TYPE_NFIELDS (type) == 1)
1186 {
1187 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
1188 return;
1189 }
1190
1191 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1192 {
1193 ULONGEST fstat;
1194 char buf[FPU_REG_RAW_SIZE];
1195
1196 if (FP0_REGNUM < 0)
1197 {
1198 warning ("Cannot set floating-point return value.");
1199 return;
1200 }
1201
1202 /* Returning floating-point values is a bit tricky. Apart from
1203 storing the return value in %st(0), we have to simulate the
1204 state of the FPU at function return point. */
1205
1206 /* Convert the value found in VALBUF to the extended
1207 floating-point format used by the FPU. This is probably
1208 not exactly how it would happen on the target itself, but
1209 it is the best we can do. */
1210 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1211 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1212
1213 /* Set the top of the floating-point register stack to 7. The
1214 actual value doesn't really matter, but 7 is what a normal
1215 function return would end up with if the program started out
1216 with a freshly initialized FPU. */
1217 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1218 fstat |= (7 << 11);
1219 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
1220
1221 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1222 the floating-point register stack to 7, the appropriate value
1223 for the tag word is 0x3fff. */
1224 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
1225 }
1226 else
1227 {
1228 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1229 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1230
1231 if (len <= low_size)
1232 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1233 else if (len <= (low_size + high_size))
1234 {
1235 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1236 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1237 len - low_size, (char *) valbuf + low_size);
1238 }
1239 else
1240 internal_error (__FILE__, __LINE__,
1241 "Cannot store return value of %d bytes long.", len);
1242 }
1243 }
1244
1245 /* Extract from REGCACHE, which contains the (raw) register state, the
1246 address in which a function should return its structure value, as a
1247 CORE_ADDR. */
1248
1249 static CORE_ADDR
1250 i386_extract_struct_value_address (struct regcache *regcache)
1251 {
1252 char buf[4];
1253
1254 regcache_cooked_read (regcache, I386_EAX_REGNUM, buf);
1255 return extract_unsigned_integer (buf, 4);
1256 }
1257 \f
1258
1259 /* This is the variable that is set with "set struct-convention", and
1260 its legitimate values. */
1261 static const char default_struct_convention[] = "default";
1262 static const char pcc_struct_convention[] = "pcc";
1263 static const char reg_struct_convention[] = "reg";
1264 static const char *valid_conventions[] =
1265 {
1266 default_struct_convention,
1267 pcc_struct_convention,
1268 reg_struct_convention,
1269 NULL
1270 };
1271 static const char *struct_convention = default_struct_convention;
1272
1273 static int
1274 i386_use_struct_convention (int gcc_p, struct type *type)
1275 {
1276 enum struct_return struct_return;
1277
1278 if (struct_convention == default_struct_convention)
1279 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1280 else if (struct_convention == pcc_struct_convention)
1281 struct_return = pcc_struct_return;
1282 else
1283 struct_return = reg_struct_return;
1284
1285 return generic_use_struct_convention (struct_return == reg_struct_return,
1286 type);
1287 }
1288 \f
1289
1290 /* Return the GDB type object for the "standard" data type of data in
1291 register REGNUM. Perhaps %esi and %edi should go here, but
1292 potentially they could be used for things other than address. */
1293
1294 static struct type *
1295 i386_register_type (struct gdbarch *gdbarch, int regnum)
1296 {
1297 if (regnum == I386_EIP_REGNUM
1298 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1299 return lookup_pointer_type (builtin_type_void);
1300
1301 if (i386_fp_regnum_p (regnum))
1302 return builtin_type_i387_ext;
1303
1304 if (i386_sse_regnum_p (regnum))
1305 return builtin_type_vec128i;
1306
1307 if (i386_mmx_regnum_p (regnum))
1308 return builtin_type_vec64i;
1309
1310 return builtin_type_int;
1311 }
1312
1313 /* Map a cooked register onto a raw register or memory. For the i386,
1314 the MMX registers need to be mapped onto floating point registers. */
1315
1316 static int
1317 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1318 {
1319 int mmxi;
1320 ULONGEST fstat;
1321 int tos;
1322 int fpi;
1323
1324 mmxi = regnum - MM0_REGNUM;
1325 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1326 tos = (fstat >> 11) & 0x7;
1327 fpi = (mmxi + tos) % 8;
1328
1329 return (FP0_REGNUM + fpi);
1330 }
1331
1332 static void
1333 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1334 int regnum, void *buf)
1335 {
1336 if (i386_mmx_regnum_p (regnum))
1337 {
1338 char mmx_buf[MAX_REGISTER_SIZE];
1339 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1340
1341 /* Extract (always little endian). */
1342 regcache_raw_read (regcache, fpnum, mmx_buf);
1343 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1344 }
1345 else
1346 regcache_raw_read (regcache, regnum, buf);
1347 }
1348
1349 static void
1350 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1351 int regnum, const void *buf)
1352 {
1353 if (i386_mmx_regnum_p (regnum))
1354 {
1355 char mmx_buf[MAX_REGISTER_SIZE];
1356 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1357
1358 /* Read ... */
1359 regcache_raw_read (regcache, fpnum, mmx_buf);
1360 /* ... Modify ... (always little endian). */
1361 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
1362 /* ... Write. */
1363 regcache_raw_write (regcache, fpnum, mmx_buf);
1364 }
1365 else
1366 regcache_raw_write (regcache, regnum, buf);
1367 }
1368 \f
1369
1370 /* These registers don't have pervasive standard uses. Move them to
1371 i386-tdep.h if necessary. */
1372
1373 #define I386_EBX_REGNUM 3 /* %ebx */
1374 #define I386_ECX_REGNUM 1 /* %ecx */
1375 #define I386_ESI_REGNUM 6 /* %esi */
1376 #define I386_EDI_REGNUM 7 /* %edi */
1377
1378 /* Return the register number of the register allocated by GCC after
1379 REGNUM, or -1 if there is no such register. */
1380
1381 static int
1382 i386_next_regnum (int regnum)
1383 {
1384 /* GCC allocates the registers in the order:
1385
1386 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1387
1388 Since storing a variable in %esp doesn't make any sense we return
1389 -1 for %ebp and for %esp itself. */
1390 static int next_regnum[] =
1391 {
1392 I386_EDX_REGNUM, /* Slot for %eax. */
1393 I386_EBX_REGNUM, /* Slot for %ecx. */
1394 I386_ECX_REGNUM, /* Slot for %edx. */
1395 I386_ESI_REGNUM, /* Slot for %ebx. */
1396 -1, -1, /* Slots for %esp and %ebp. */
1397 I386_EDI_REGNUM, /* Slot for %esi. */
1398 I386_EBP_REGNUM /* Slot for %edi. */
1399 };
1400
1401 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1402 return next_regnum[regnum];
1403
1404 return -1;
1405 }
1406
1407 /* Return nonzero if a value of type TYPE stored in register REGNUM
1408 needs any special handling. */
1409
1410 static int
1411 i386_convert_register_p (int regnum, struct type *type)
1412 {
1413 int len = TYPE_LENGTH (type);
1414
1415 /* Values may be spread across multiple registers. Most debugging
1416 formats aren't expressive enough to specify the locations, so
1417 some heuristics is involved. Right now we only handle types that
1418 have a length that is a multiple of the word size, since GCC
1419 doesn't seem to put any other types into registers. */
1420 if (len > 4 && len % 4 == 0)
1421 {
1422 int last_regnum = regnum;
1423
1424 while (len > 4)
1425 {
1426 last_regnum = i386_next_regnum (last_regnum);
1427 len -= 4;
1428 }
1429
1430 if (last_regnum != -1)
1431 return 1;
1432 }
1433
1434 return i386_fp_regnum_p (regnum);
1435 }
1436
1437 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1438 return its contents in TO. */
1439
1440 static void
1441 i386_register_to_value (struct frame_info *frame, int regnum,
1442 struct type *type, void *to)
1443 {
1444 int len = TYPE_LENGTH (type);
1445 char *buf = to;
1446
1447 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1448 available in FRAME (i.e. if it wasn't saved)? */
1449
1450 if (i386_fp_regnum_p (regnum))
1451 {
1452 i387_register_to_value (frame, regnum, type, to);
1453 return;
1454 }
1455
1456 /* Read a value spread accross multiple registers. */
1457
1458 gdb_assert (len > 4 && len % 4 == 0);
1459
1460 while (len > 0)
1461 {
1462 gdb_assert (regnum != -1);
1463 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1464
1465 get_frame_register (frame, regnum, buf);
1466 regnum = i386_next_regnum (regnum);
1467 len -= 4;
1468 buf += 4;
1469 }
1470 }
1471
1472 /* Write the contents FROM of a value of type TYPE into register
1473 REGNUM in frame FRAME. */
1474
1475 static void
1476 i386_value_to_register (struct frame_info *frame, int regnum,
1477 struct type *type, const void *from)
1478 {
1479 int len = TYPE_LENGTH (type);
1480 const char *buf = from;
1481
1482 if (i386_fp_regnum_p (regnum))
1483 {
1484 i387_value_to_register (frame, regnum, type, from);
1485 return;
1486 }
1487
1488 /* Write a value spread accross multiple registers. */
1489
1490 gdb_assert (len > 4 && len % 4 == 0);
1491
1492 while (len > 0)
1493 {
1494 gdb_assert (regnum != -1);
1495 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1496
1497 put_frame_register (frame, regnum, buf);
1498 regnum = i386_next_regnum (regnum);
1499 len -= 4;
1500 buf += 4;
1501 }
1502 }
1503 \f
1504
1505
1506 #ifdef STATIC_TRANSFORM_NAME
1507 /* SunPRO encodes the static variables. This is not related to C++
1508 mangling, it is done for C too. */
1509
1510 char *
1511 sunpro_static_transform_name (char *name)
1512 {
1513 char *p;
1514 if (IS_STATIC_TRANSFORM_NAME (name))
1515 {
1516 /* For file-local statics there will be a period, a bunch of
1517 junk (the contents of which match a string given in the
1518 N_OPT), a period and the name. For function-local statics
1519 there will be a bunch of junk (which seems to change the
1520 second character from 'A' to 'B'), a period, the name of the
1521 function, and the name. So just skip everything before the
1522 last period. */
1523 p = strrchr (name, '.');
1524 if (p != NULL)
1525 name = p + 1;
1526 }
1527 return name;
1528 }
1529 #endif /* STATIC_TRANSFORM_NAME */
1530 \f
1531
1532 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1533
1534 CORE_ADDR
1535 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1536 {
1537 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1538 {
1539 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1540 struct minimal_symbol *indsym =
1541 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1542 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
1543
1544 if (symname)
1545 {
1546 if (strncmp (symname, "__imp_", 6) == 0
1547 || strncmp (symname, "_imp_", 5) == 0)
1548 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1549 }
1550 }
1551 return 0; /* Not a trampoline. */
1552 }
1553 \f
1554
1555 /* Return non-zero if PC and NAME show that we are in a signal
1556 trampoline. */
1557
1558 static int
1559 i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1560 {
1561 return (name && strcmp ("_sigtramp", name) == 0);
1562 }
1563 \f
1564
1565 /* We have two flavours of disassembly. The machinery on this page
1566 deals with switching between those. */
1567
1568 static int
1569 i386_print_insn (bfd_vma pc, disassemble_info *info)
1570 {
1571 gdb_assert (disassembly_flavor == att_flavor
1572 || disassembly_flavor == intel_flavor);
1573
1574 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1575 constified, cast to prevent a compiler warning. */
1576 info->disassembler_options = (char *) disassembly_flavor;
1577 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1578
1579 return print_insn_i386 (pc, info);
1580 }
1581 \f
1582
1583 /* There are a few i386 architecture variants that differ only
1584 slightly from the generic i386 target. For now, we don't give them
1585 their own source file, but include them here. As a consequence,
1586 they'll always be included. */
1587
1588 /* System V Release 4 (SVR4). */
1589
1590 static int
1591 i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
1592 {
1593 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1594 currently unknown. */
1595 return (name && (strcmp ("_sigreturn", name) == 0
1596 || strcmp ("_sigacthandler", name) == 0
1597 || strcmp ("sigvechandler", name) == 0));
1598 }
1599
1600 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1601 routine, return the address of the associated sigcontext (ucontext)
1602 structure. */
1603
1604 static CORE_ADDR
1605 i386_svr4_sigcontext_addr (struct frame_info *next_frame)
1606 {
1607 char buf[4];
1608 CORE_ADDR sp;
1609
1610 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1611 sp = extract_unsigned_integer (buf, 4);
1612
1613 return read_memory_unsigned_integer (sp + 8, 4);
1614 }
1615 \f
1616
1617 /* DJGPP. */
1618
1619 static int
1620 i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1621 {
1622 /* DJGPP doesn't have any special frames for signal handlers. */
1623 return 0;
1624 }
1625 \f
1626
1627 /* Generic ELF. */
1628
1629 void
1630 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1631 {
1632 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1633 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1634 }
1635
1636 /* System V Release 4 (SVR4). */
1637
1638 void
1639 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1640 {
1641 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1642
1643 /* System V Release 4 uses ELF. */
1644 i386_elf_init_abi (info, gdbarch);
1645
1646 /* System V Release 4 has shared libraries. */
1647 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1648 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1649
1650 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1651 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1652 tdep->sc_pc_offset = 36 + 14 * 4;
1653 tdep->sc_sp_offset = 36 + 17 * 4;
1654
1655 tdep->jb_pc_offset = 20;
1656 }
1657
1658 /* DJGPP. */
1659
1660 static void
1661 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1662 {
1663 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1664
1665 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
1666
1667 tdep->jb_pc_offset = 36;
1668 }
1669
1670 /* NetWare. */
1671
1672 static void
1673 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1674 {
1675 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1676
1677 tdep->jb_pc_offset = 24;
1678 }
1679 \f
1680
1681 /* i386 register groups. In addition to the normal groups, add "mmx"
1682 and "sse". */
1683
1684 static struct reggroup *i386_sse_reggroup;
1685 static struct reggroup *i386_mmx_reggroup;
1686
1687 static void
1688 i386_init_reggroups (void)
1689 {
1690 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1691 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1692 }
1693
1694 static void
1695 i386_add_reggroups (struct gdbarch *gdbarch)
1696 {
1697 reggroup_add (gdbarch, i386_sse_reggroup);
1698 reggroup_add (gdbarch, i386_mmx_reggroup);
1699 reggroup_add (gdbarch, general_reggroup);
1700 reggroup_add (gdbarch, float_reggroup);
1701 reggroup_add (gdbarch, all_reggroup);
1702 reggroup_add (gdbarch, save_reggroup);
1703 reggroup_add (gdbarch, restore_reggroup);
1704 reggroup_add (gdbarch, vector_reggroup);
1705 reggroup_add (gdbarch, system_reggroup);
1706 }
1707
1708 int
1709 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1710 struct reggroup *group)
1711 {
1712 int sse_regnum_p = (i386_sse_regnum_p (regnum)
1713 || i386_mxcsr_regnum_p (regnum));
1714 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1715 || i386_fpc_regnum_p (regnum));
1716 int mmx_regnum_p = (i386_mmx_regnum_p (regnum));
1717
1718 if (group == i386_mmx_reggroup)
1719 return mmx_regnum_p;
1720 if (group == i386_sse_reggroup)
1721 return sse_regnum_p;
1722 if (group == vector_reggroup)
1723 return (mmx_regnum_p || sse_regnum_p);
1724 if (group == float_reggroup)
1725 return fp_regnum_p;
1726 if (group == general_reggroup)
1727 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
1728
1729 return default_register_reggroup_p (gdbarch, regnum, group);
1730 }
1731 \f
1732
1733 /* Get the ARGIth function argument for the current function. */
1734
1735 static CORE_ADDR
1736 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
1737 struct type *type)
1738 {
1739 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
1740 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
1741 }
1742
1743 \f
1744 static struct gdbarch *
1745 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1746 {
1747 struct gdbarch_tdep *tdep;
1748 struct gdbarch *gdbarch;
1749
1750 /* If there is already a candidate, use it. */
1751 arches = gdbarch_list_lookup_by_info (arches, &info);
1752 if (arches != NULL)
1753 return arches->gdbarch;
1754
1755 /* Allocate space for the new architecture. */
1756 tdep = XMALLOC (struct gdbarch_tdep);
1757 gdbarch = gdbarch_alloc (&info, tdep);
1758
1759 /* The i386 default settings now include the SSE registers.
1760 I386_NUM_XREGS includes mxcsr, and we don't want to count
1761 this as one of the xmm regs -- which is why we subtract one.
1762
1763 Note: kevinb/2003-07-14: Whatever Mark's concerns are about the
1764 FPU registers in the FIXME below apply to the SSE registers as well.
1765 The only problem that I see is that these registers will show up
1766 in "info all-registers" even on CPUs where they don't exist. IMO,
1767 however, if it's a choice between printing them always (even when
1768 they don't exist) or never showing them to the user (even when they
1769 do exist), I prefer the former over the latter. Ideally, of course,
1770 we'd somehow autodetect that we have them (or not) and display them
1771 when we have them and suppress them when we don't.
1772
1773 FIXME: kettenis/20020614: They do include the FPU registers for
1774 now, which probably is not quite right. */
1775 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
1776
1777 tdep->jb_pc_offset = -1;
1778 tdep->struct_return = pcc_struct_return;
1779 tdep->sigtramp_start = 0;
1780 tdep->sigtramp_end = 0;
1781 tdep->sigcontext_addr = NULL;
1782 tdep->sc_reg_offset = NULL;
1783 tdep->sc_pc_offset = -1;
1784 tdep->sc_sp_offset = -1;
1785
1786 /* The format used for `long double' on almost all i386 targets is
1787 the i387 extended floating-point format. In fact, of all targets
1788 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1789 on having a `long double' that's not `long' at all. */
1790 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1791
1792 /* Although the i387 extended floating-point has only 80 significant
1793 bits, a `long double' actually takes up 96, probably to enforce
1794 alignment. */
1795 set_gdbarch_long_double_bit (gdbarch, 96);
1796
1797 /* The default ABI includes general-purpose registers,
1798 floating-point registers, and the SSE registers. */
1799 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
1800 set_gdbarch_register_name (gdbarch, i386_register_name);
1801 set_gdbarch_register_type (gdbarch, i386_register_type);
1802
1803 /* Register numbers of various important registers. */
1804 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
1805 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
1806 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
1807 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
1808
1809 /* Use the "default" register numbering scheme for stabs and COFF. */
1810 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1811 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1812
1813 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1814 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1815 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1816
1817 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1818 be in use on any of the supported i386 targets. */
1819
1820 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1821
1822 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
1823
1824 /* Call dummy code. */
1825 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
1826
1827 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
1828 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
1829 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
1830
1831 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
1832 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1833 set_gdbarch_extract_struct_value_address (gdbarch,
1834 i386_extract_struct_value_address);
1835 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1836
1837 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1838
1839 /* Stack grows downward. */
1840 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1841
1842 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1843 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1844 set_gdbarch_function_start_offset (gdbarch, 0);
1845
1846 set_gdbarch_frame_args_skip (gdbarch, 8);
1847 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1848
1849 /* Wire in the MMX registers. */
1850 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
1851 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1852 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1853
1854 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1855
1856 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
1857
1858 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
1859
1860 /* Add the i386 register groups. */
1861 i386_add_reggroups (gdbarch);
1862 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
1863
1864 /* Helper for function argument information. */
1865 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
1866
1867 /* Hook in the DWARF CFI frame unwinder. */
1868 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1869
1870 frame_base_set_default (gdbarch, &i386_frame_base);
1871
1872 /* Hook in ABI-specific overrides, if they have been registered. */
1873 gdbarch_init_osabi (info, gdbarch);
1874
1875 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
1876 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
1877
1878 return gdbarch;
1879 }
1880
1881 static enum gdb_osabi
1882 i386_coff_osabi_sniffer (bfd *abfd)
1883 {
1884 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1885 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
1886 return GDB_OSABI_GO32;
1887
1888 return GDB_OSABI_UNKNOWN;
1889 }
1890
1891 static enum gdb_osabi
1892 i386_nlm_osabi_sniffer (bfd *abfd)
1893 {
1894 return GDB_OSABI_NETWARE;
1895 }
1896 \f
1897
1898 /* Provide a prototype to silence -Wmissing-prototypes. */
1899 void _initialize_i386_tdep (void);
1900
1901 void
1902 _initialize_i386_tdep (void)
1903 {
1904 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1905
1906 /* Add the variable that controls the disassembly flavor. */
1907 {
1908 struct cmd_list_element *new_cmd;
1909
1910 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1911 valid_flavors,
1912 &disassembly_flavor,
1913 "\
1914 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1915 and the default value is \"att\".",
1916 &setlist);
1917 add_show_from_set (new_cmd, &showlist);
1918 }
1919
1920 /* Add the variable that controls the convention for returning
1921 structs. */
1922 {
1923 struct cmd_list_element *new_cmd;
1924
1925 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1926 valid_conventions,
1927 &struct_convention, "\
1928 Set the convention for returning small structs, valid values \
1929 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1930 &setlist);
1931 add_show_from_set (new_cmd, &showlist);
1932 }
1933
1934 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1935 i386_coff_osabi_sniffer);
1936 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1937 i386_nlm_osabi_sniffer);
1938
1939 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
1940 i386_svr4_init_abi);
1941 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
1942 i386_go32_init_abi);
1943 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
1944 i386_nw_init_abi);
1945
1946 /* Initialize the i386 specific register groups. */
1947 i386_init_reggroups ();
1948 }
This page took 0.106942 seconds and 4 git commands to generate.