* MAINTAINERS (Write After Approval): Use default email address.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "symtab.h"
43 #include "target.h"
44 #include "value.h"
45 #include "dis-asm.h"
46 #include "disasm.h"
47 #include "remote.h"
48 #include "exceptions.h"
49 #include "gdb_assert.h"
50 #include "gdb_string.h"
51
52 #include "i386-tdep.h"
53 #include "i387-tdep.h"
54 #include "i386-xstate.h"
55
56 #include "record.h"
57 #include <stdint.h>
58
59 #include "features/i386/i386.c"
60 #include "features/i386/i386-avx.c"
61 #include "features/i386/i386-mmx.c"
62
63 /* Register names. */
64
65 static const char *i386_register_names[] =
66 {
67 "eax", "ecx", "edx", "ebx",
68 "esp", "ebp", "esi", "edi",
69 "eip", "eflags", "cs", "ss",
70 "ds", "es", "fs", "gs",
71 "st0", "st1", "st2", "st3",
72 "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg",
74 "fioff", "foseg", "fooff", "fop",
75 "xmm0", "xmm1", "xmm2", "xmm3",
76 "xmm4", "xmm5", "xmm6", "xmm7",
77 "mxcsr"
78 };
79
80 static const char *i386_ymm_names[] =
81 {
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 };
85
86 static const char *i386_ymmh_names[] =
87 {
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
90 };
91
92 /* Register names for MMX pseudo-registers. */
93
94 static const char *i386_mmx_names[] =
95 {
96 "mm0", "mm1", "mm2", "mm3",
97 "mm4", "mm5", "mm6", "mm7"
98 };
99
100 /* Register names for byte pseudo-registers. */
101
102 static const char *i386_byte_names[] =
103 {
104 "al", "cl", "dl", "bl",
105 "ah", "ch", "dh", "bh"
106 };
107
108 /* Register names for word pseudo-registers. */
109
110 static const char *i386_word_names[] =
111 {
112 "ax", "cx", "dx", "bx",
113 "", "bp", "si", "di"
114 };
115
116 /* MMX register? */
117
118 static int
119 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
120 {
121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122 int mm0_regnum = tdep->mm0_regnum;
123
124 if (mm0_regnum < 0)
125 return 0;
126
127 regnum -= mm0_regnum;
128 return regnum >= 0 && regnum < tdep->num_mmx_regs;
129 }
130
131 /* Byte register? */
132
133 int
134 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
135 {
136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
137
138 regnum -= tdep->al_regnum;
139 return regnum >= 0 && regnum < tdep->num_byte_regs;
140 }
141
142 /* Word register? */
143
144 int
145 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
146 {
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 regnum -= tdep->ax_regnum;
150 return regnum >= 0 && regnum < tdep->num_word_regs;
151 }
152
153 /* Dword register? */
154
155 int
156 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 int eax_regnum = tdep->eax_regnum;
160
161 if (eax_regnum < 0)
162 return 0;
163
164 regnum -= eax_regnum;
165 return regnum >= 0 && regnum < tdep->num_dword_regs;
166 }
167
168 static int
169 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
170 {
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int ymm0h_regnum = tdep->ymm0h_regnum;
173
174 if (ymm0h_regnum < 0)
175 return 0;
176
177 regnum -= ymm0h_regnum;
178 return regnum >= 0 && regnum < tdep->num_ymm_regs;
179 }
180
181 /* AVX register? */
182
183 int
184 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
185 {
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187 int ymm0_regnum = tdep->ymm0_regnum;
188
189 if (ymm0_regnum < 0)
190 return 0;
191
192 regnum -= ymm0_regnum;
193 return regnum >= 0 && regnum < tdep->num_ymm_regs;
194 }
195
196 /* SSE register? */
197
198 int
199 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
200 {
201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
202 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
203
204 if (num_xmm_regs == 0)
205 return 0;
206
207 regnum -= I387_XMM0_REGNUM (tdep);
208 return regnum >= 0 && regnum < num_xmm_regs;
209 }
210
211 static int
212 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
213 {
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
216 if (I387_NUM_XMM_REGS (tdep) == 0)
217 return 0;
218
219 return (regnum == I387_MXCSR_REGNUM (tdep));
220 }
221
222 /* FP register? */
223
224 int
225 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
226 {
227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
228
229 if (I387_ST0_REGNUM (tdep) < 0)
230 return 0;
231
232 return (I387_ST0_REGNUM (tdep) <= regnum
233 && regnum < I387_FCTRL_REGNUM (tdep));
234 }
235
236 int
237 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
238 {
239 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240
241 if (I387_ST0_REGNUM (tdep) < 0)
242 return 0;
243
244 return (I387_FCTRL_REGNUM (tdep) <= regnum
245 && regnum < I387_XMM0_REGNUM (tdep));
246 }
247
248 /* Return the name of register REGNUM, or the empty string if it is
249 an anonymous register. */
250
251 static const char *
252 i386_register_name (struct gdbarch *gdbarch, int regnum)
253 {
254 /* Hide the upper YMM registers. */
255 if (i386_ymmh_regnum_p (gdbarch, regnum))
256 return "";
257
258 return tdesc_register_name (gdbarch, regnum);
259 }
260
261 /* Return the name of register REGNUM. */
262
263 const char *
264 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
265 {
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 if (i386_mmx_regnum_p (gdbarch, regnum))
268 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
269 else if (i386_ymm_regnum_p (gdbarch, regnum))
270 return i386_ymm_names[regnum - tdep->ymm0_regnum];
271 else if (i386_byte_regnum_p (gdbarch, regnum))
272 return i386_byte_names[regnum - tdep->al_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return i386_word_names[regnum - tdep->ax_regnum];
275
276 internal_error (__FILE__, __LINE__, _("invalid regnum"));
277 }
278
279 /* Convert a dbx register number REG to the appropriate register
280 number used by GDB. */
281
282 static int
283 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
284 {
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286
287 /* This implements what GCC calls the "default" register map
288 (dbx_register_map[]). */
289
290 if (reg >= 0 && reg <= 7)
291 {
292 /* General-purpose registers. The debug info calls %ebp
293 register 4, and %esp register 5. */
294 if (reg == 4)
295 return 5;
296 else if (reg == 5)
297 return 4;
298 else return reg;
299 }
300 else if (reg >= 12 && reg <= 19)
301 {
302 /* Floating-point registers. */
303 return reg - 12 + I387_ST0_REGNUM (tdep);
304 }
305 else if (reg >= 21 && reg <= 28)
306 {
307 /* SSE registers. */
308 int ymm0_regnum = tdep->ymm0_regnum;
309
310 if (ymm0_regnum >= 0
311 && i386_xmm_regnum_p (gdbarch, reg))
312 return reg - 21 + ymm0_regnum;
313 else
314 return reg - 21 + I387_XMM0_REGNUM (tdep);
315 }
316 else if (reg >= 29 && reg <= 36)
317 {
318 /* MMX registers. */
319 return reg - 29 + I387_MM0_REGNUM (tdep);
320 }
321
322 /* This will hopefully provoke a warning. */
323 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
324 }
325
326 /* Convert SVR4 register number REG to the appropriate register number
327 used by GDB. */
328
329 static int
330 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
331 {
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333
334 /* This implements the GCC register map that tries to be compatible
335 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
336
337 /* The SVR4 register numbering includes %eip and %eflags, and
338 numbers the floating point registers differently. */
339 if (reg >= 0 && reg <= 9)
340 {
341 /* General-purpose registers. */
342 return reg;
343 }
344 else if (reg >= 11 && reg <= 18)
345 {
346 /* Floating-point registers. */
347 return reg - 11 + I387_ST0_REGNUM (tdep);
348 }
349 else if (reg >= 21 && reg <= 36)
350 {
351 /* The SSE and MMX registers have the same numbers as with dbx. */
352 return i386_dbx_reg_to_regnum (gdbarch, reg);
353 }
354
355 switch (reg)
356 {
357 case 37: return I387_FCTRL_REGNUM (tdep);
358 case 38: return I387_FSTAT_REGNUM (tdep);
359 case 39: return I387_MXCSR_REGNUM (tdep);
360 case 40: return I386_ES_REGNUM;
361 case 41: return I386_CS_REGNUM;
362 case 42: return I386_SS_REGNUM;
363 case 43: return I386_DS_REGNUM;
364 case 44: return I386_FS_REGNUM;
365 case 45: return I386_GS_REGNUM;
366 }
367
368 /* This will hopefully provoke a warning. */
369 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
370 }
371
372 \f
373
374 /* This is the variable that is set with "set disassembly-flavor", and
375 its legitimate values. */
376 static const char att_flavor[] = "att";
377 static const char intel_flavor[] = "intel";
378 static const char *valid_flavors[] =
379 {
380 att_flavor,
381 intel_flavor,
382 NULL
383 };
384 static const char *disassembly_flavor = att_flavor;
385 \f
386
387 /* Use the program counter to determine the contents and size of a
388 breakpoint instruction. Return a pointer to a string of bytes that
389 encode a breakpoint instruction, store the length of the string in
390 *LEN and optionally adjust *PC to point to the correct memory
391 location for inserting the breakpoint.
392
393 On the i386 we have a single breakpoint that fits in a single byte
394 and can be inserted anywhere.
395
396 This function is 64-bit safe. */
397
398 static const gdb_byte *
399 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
400 {
401 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
402
403 *len = sizeof (break_insn);
404 return break_insn;
405 }
406 \f
407 /* Displaced instruction handling. */
408
409 /* Skip the legacy instruction prefixes in INSN.
410 Not all prefixes are valid for any particular insn
411 but we needn't care, the insn will fault if it's invalid.
412 The result is a pointer to the first opcode byte,
413 or NULL if we run off the end of the buffer. */
414
415 static gdb_byte *
416 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
417 {
418 gdb_byte *end = insn + max_len;
419
420 while (insn < end)
421 {
422 switch (*insn)
423 {
424 case DATA_PREFIX_OPCODE:
425 case ADDR_PREFIX_OPCODE:
426 case CS_PREFIX_OPCODE:
427 case DS_PREFIX_OPCODE:
428 case ES_PREFIX_OPCODE:
429 case FS_PREFIX_OPCODE:
430 case GS_PREFIX_OPCODE:
431 case SS_PREFIX_OPCODE:
432 case LOCK_PREFIX_OPCODE:
433 case REPE_PREFIX_OPCODE:
434 case REPNE_PREFIX_OPCODE:
435 ++insn;
436 continue;
437 default:
438 return insn;
439 }
440 }
441
442 return NULL;
443 }
444
445 static int
446 i386_absolute_jmp_p (const gdb_byte *insn)
447 {
448 /* jmp far (absolute address in operand). */
449 if (insn[0] == 0xea)
450 return 1;
451
452 if (insn[0] == 0xff)
453 {
454 /* jump near, absolute indirect (/4). */
455 if ((insn[1] & 0x38) == 0x20)
456 return 1;
457
458 /* jump far, absolute indirect (/5). */
459 if ((insn[1] & 0x38) == 0x28)
460 return 1;
461 }
462
463 return 0;
464 }
465
466 static int
467 i386_absolute_call_p (const gdb_byte *insn)
468 {
469 /* call far, absolute. */
470 if (insn[0] == 0x9a)
471 return 1;
472
473 if (insn[0] == 0xff)
474 {
475 /* Call near, absolute indirect (/2). */
476 if ((insn[1] & 0x38) == 0x10)
477 return 1;
478
479 /* Call far, absolute indirect (/3). */
480 if ((insn[1] & 0x38) == 0x18)
481 return 1;
482 }
483
484 return 0;
485 }
486
487 static int
488 i386_ret_p (const gdb_byte *insn)
489 {
490 switch (insn[0])
491 {
492 case 0xc2: /* ret near, pop N bytes. */
493 case 0xc3: /* ret near */
494 case 0xca: /* ret far, pop N bytes. */
495 case 0xcb: /* ret far */
496 case 0xcf: /* iret */
497 return 1;
498
499 default:
500 return 0;
501 }
502 }
503
504 static int
505 i386_call_p (const gdb_byte *insn)
506 {
507 if (i386_absolute_call_p (insn))
508 return 1;
509
510 /* call near, relative. */
511 if (insn[0] == 0xe8)
512 return 1;
513
514 return 0;
515 }
516
517 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
518 length in bytes. Otherwise, return zero. */
519
520 static int
521 i386_syscall_p (const gdb_byte *insn, int *lengthp)
522 {
523 if (insn[0] == 0xcd)
524 {
525 *lengthp = 2;
526 return 1;
527 }
528
529 return 0;
530 }
531
532 /* Some kernels may run one past a syscall insn, so we have to cope.
533 Otherwise this is just simple_displaced_step_copy_insn. */
534
535 struct displaced_step_closure *
536 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
537 CORE_ADDR from, CORE_ADDR to,
538 struct regcache *regs)
539 {
540 size_t len = gdbarch_max_insn_length (gdbarch);
541 gdb_byte *buf = xmalloc (len);
542
543 read_memory (from, buf, len);
544
545 /* GDB may get control back after the insn after the syscall.
546 Presumably this is a kernel bug.
547 If this is a syscall, make sure there's a nop afterwards. */
548 {
549 int syscall_length;
550 gdb_byte *insn;
551
552 insn = i386_skip_prefixes (buf, len);
553 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
554 insn[syscall_length] = NOP_OPCODE;
555 }
556
557 write_memory (to, buf, len);
558
559 if (debug_displaced)
560 {
561 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
562 paddress (gdbarch, from), paddress (gdbarch, to));
563 displaced_step_dump_bytes (gdb_stdlog, buf, len);
564 }
565
566 return (struct displaced_step_closure *) buf;
567 }
568
569 /* Fix up the state of registers and memory after having single-stepped
570 a displaced instruction. */
571
572 void
573 i386_displaced_step_fixup (struct gdbarch *gdbarch,
574 struct displaced_step_closure *closure,
575 CORE_ADDR from, CORE_ADDR to,
576 struct regcache *regs)
577 {
578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
579
580 /* The offset we applied to the instruction's address.
581 This could well be negative (when viewed as a signed 32-bit
582 value), but ULONGEST won't reflect that, so take care when
583 applying it. */
584 ULONGEST insn_offset = to - from;
585
586 /* Since we use simple_displaced_step_copy_insn, our closure is a
587 copy of the instruction. */
588 gdb_byte *insn = (gdb_byte *) closure;
589 /* The start of the insn, needed in case we see some prefixes. */
590 gdb_byte *insn_start = insn;
591
592 if (debug_displaced)
593 fprintf_unfiltered (gdb_stdlog,
594 "displaced: fixup (%s, %s), "
595 "insn = 0x%02x 0x%02x ...\n",
596 paddress (gdbarch, from), paddress (gdbarch, to),
597 insn[0], insn[1]);
598
599 /* The list of issues to contend with here is taken from
600 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
601 Yay for Free Software! */
602
603 /* Relocate the %eip, if necessary. */
604
605 /* The instruction recognizers we use assume any leading prefixes
606 have been skipped. */
607 {
608 /* This is the size of the buffer in closure. */
609 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
610 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
611 /* If there are too many prefixes, just ignore the insn.
612 It will fault when run. */
613 if (opcode != NULL)
614 insn = opcode;
615 }
616
617 /* Except in the case of absolute or indirect jump or call
618 instructions, or a return instruction, the new eip is relative to
619 the displaced instruction; make it relative. Well, signal
620 handler returns don't need relocation either, but we use the
621 value of %eip to recognize those; see below. */
622 if (! i386_absolute_jmp_p (insn)
623 && ! i386_absolute_call_p (insn)
624 && ! i386_ret_p (insn))
625 {
626 ULONGEST orig_eip;
627 int insn_len;
628
629 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
630
631 /* A signal trampoline system call changes the %eip, resuming
632 execution of the main program after the signal handler has
633 returned. That makes them like 'return' instructions; we
634 shouldn't relocate %eip.
635
636 But most system calls don't, and we do need to relocate %eip.
637
638 Our heuristic for distinguishing these cases: if stepping
639 over the system call instruction left control directly after
640 the instruction, the we relocate --- control almost certainly
641 doesn't belong in the displaced copy. Otherwise, we assume
642 the instruction has put control where it belongs, and leave
643 it unrelocated. Goodness help us if there are PC-relative
644 system calls. */
645 if (i386_syscall_p (insn, &insn_len)
646 && orig_eip != to + (insn - insn_start) + insn_len
647 /* GDB can get control back after the insn after the syscall.
648 Presumably this is a kernel bug.
649 i386_displaced_step_copy_insn ensures its a nop,
650 we add one to the length for it. */
651 && orig_eip != to + (insn - insn_start) + insn_len + 1)
652 {
653 if (debug_displaced)
654 fprintf_unfiltered (gdb_stdlog,
655 "displaced: syscall changed %%eip; "
656 "not relocating\n");
657 }
658 else
659 {
660 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
661
662 /* If we just stepped over a breakpoint insn, we don't backup
663 the pc on purpose; this is to match behaviour without
664 stepping. */
665
666 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
667
668 if (debug_displaced)
669 fprintf_unfiltered (gdb_stdlog,
670 "displaced: "
671 "relocated %%eip from %s to %s\n",
672 paddress (gdbarch, orig_eip),
673 paddress (gdbarch, eip));
674 }
675 }
676
677 /* If the instruction was PUSHFL, then the TF bit will be set in the
678 pushed value, and should be cleared. We'll leave this for later,
679 since GDB already messes up the TF flag when stepping over a
680 pushfl. */
681
682 /* If the instruction was a call, the return address now atop the
683 stack is the address following the copied instruction. We need
684 to make it the address following the original instruction. */
685 if (i386_call_p (insn))
686 {
687 ULONGEST esp;
688 ULONGEST retaddr;
689 const ULONGEST retaddr_len = 4;
690
691 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
692 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
693 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
694 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
695
696 if (debug_displaced)
697 fprintf_unfiltered (gdb_stdlog,
698 "displaced: relocated return addr at %s to %s\n",
699 paddress (gdbarch, esp),
700 paddress (gdbarch, retaddr));
701 }
702 }
703
704 static void
705 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
706 {
707 target_write_memory (*to, buf, len);
708 *to += len;
709 }
710
711 static void
712 i386_relocate_instruction (struct gdbarch *gdbarch,
713 CORE_ADDR *to, CORE_ADDR oldloc)
714 {
715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
716 gdb_byte buf[I386_MAX_INSN_LEN];
717 int offset = 0, rel32, newrel;
718 int insn_length;
719 gdb_byte *insn = buf;
720
721 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
722
723 insn_length = gdb_buffered_insn_length (gdbarch, insn,
724 I386_MAX_INSN_LEN, oldloc);
725
726 /* Get past the prefixes. */
727 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
728
729 /* Adjust calls with 32-bit relative addresses as push/jump, with
730 the address pushed being the location where the original call in
731 the user program would return to. */
732 if (insn[0] == 0xe8)
733 {
734 gdb_byte push_buf[16];
735 unsigned int ret_addr;
736
737 /* Where "ret" in the original code will return to. */
738 ret_addr = oldloc + insn_length;
739 push_buf[0] = 0x68; /* pushq $... */
740 memcpy (&push_buf[1], &ret_addr, 4);
741 /* Push the push. */
742 append_insns (to, 5, push_buf);
743
744 /* Convert the relative call to a relative jump. */
745 insn[0] = 0xe9;
746
747 /* Adjust the destination offset. */
748 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
749 newrel = (oldloc - *to) + rel32;
750 store_signed_integer (insn + 1, 4, byte_order, newrel);
751
752 if (debug_displaced)
753 fprintf_unfiltered (gdb_stdlog,
754 "Adjusted insn rel32=%s at %s to"
755 " rel32=%s at %s\n",
756 hex_string (rel32), paddress (gdbarch, oldloc),
757 hex_string (newrel), paddress (gdbarch, *to));
758
759 /* Write the adjusted jump into its displaced location. */
760 append_insns (to, 5, insn);
761 return;
762 }
763
764 /* Adjust jumps with 32-bit relative addresses. Calls are already
765 handled above. */
766 if (insn[0] == 0xe9)
767 offset = 1;
768 /* Adjust conditional jumps. */
769 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
770 offset = 2;
771
772 if (offset)
773 {
774 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
775 newrel = (oldloc - *to) + rel32;
776 store_signed_integer (insn + offset, 4, byte_order, newrel);
777 if (debug_displaced)
778 fprintf_unfiltered (gdb_stdlog,
779 "Adjusted insn rel32=%s at %s to"
780 " rel32=%s at %s\n",
781 hex_string (rel32), paddress (gdbarch, oldloc),
782 hex_string (newrel), paddress (gdbarch, *to));
783 }
784
785 /* Write the adjusted instructions into their displaced
786 location. */
787 append_insns (to, insn_length, buf);
788 }
789
790 \f
791 #ifdef I386_REGNO_TO_SYMMETRY
792 #error "The Sequent Symmetry is no longer supported."
793 #endif
794
795 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
796 and %esp "belong" to the calling function. Therefore these
797 registers should be saved if they're going to be modified. */
798
799 /* The maximum number of saved registers. This should include all
800 registers mentioned above, and %eip. */
801 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
802
803 struct i386_frame_cache
804 {
805 /* Base address. */
806 CORE_ADDR base;
807 int base_p;
808 LONGEST sp_offset;
809 CORE_ADDR pc;
810
811 /* Saved registers. */
812 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
813 CORE_ADDR saved_sp;
814 int saved_sp_reg;
815 int pc_in_eax;
816
817 /* Stack space reserved for local variables. */
818 long locals;
819 };
820
821 /* Allocate and initialize a frame cache. */
822
823 static struct i386_frame_cache *
824 i386_alloc_frame_cache (void)
825 {
826 struct i386_frame_cache *cache;
827 int i;
828
829 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
830
831 /* Base address. */
832 cache->base_p = 0;
833 cache->base = 0;
834 cache->sp_offset = -4;
835 cache->pc = 0;
836
837 /* Saved registers. We initialize these to -1 since zero is a valid
838 offset (that's where %ebp is supposed to be stored). */
839 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
840 cache->saved_regs[i] = -1;
841 cache->saved_sp = 0;
842 cache->saved_sp_reg = -1;
843 cache->pc_in_eax = 0;
844
845 /* Frameless until proven otherwise. */
846 cache->locals = -1;
847
848 return cache;
849 }
850
851 /* If the instruction at PC is a jump, return the address of its
852 target. Otherwise, return PC. */
853
854 static CORE_ADDR
855 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
856 {
857 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
858 gdb_byte op;
859 long delta = 0;
860 int data16 = 0;
861
862 if (target_read_memory (pc, &op, 1))
863 return pc;
864
865 if (op == 0x66)
866 {
867 data16 = 1;
868 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
869 }
870
871 switch (op)
872 {
873 case 0xe9:
874 /* Relative jump: if data16 == 0, disp32, else disp16. */
875 if (data16)
876 {
877 delta = read_memory_integer (pc + 2, 2, byte_order);
878
879 /* Include the size of the jmp instruction (including the
880 0x66 prefix). */
881 delta += 4;
882 }
883 else
884 {
885 delta = read_memory_integer (pc + 1, 4, byte_order);
886
887 /* Include the size of the jmp instruction. */
888 delta += 5;
889 }
890 break;
891 case 0xeb:
892 /* Relative jump, disp8 (ignore data16). */
893 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
894
895 delta += data16 + 2;
896 break;
897 }
898
899 return pc + delta;
900 }
901
902 /* Check whether PC points at a prologue for a function returning a
903 structure or union. If so, it updates CACHE and returns the
904 address of the first instruction after the code sequence that
905 removes the "hidden" argument from the stack or CURRENT_PC,
906 whichever is smaller. Otherwise, return PC. */
907
908 static CORE_ADDR
909 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
910 struct i386_frame_cache *cache)
911 {
912 /* Functions that return a structure or union start with:
913
914 popl %eax 0x58
915 xchgl %eax, (%esp) 0x87 0x04 0x24
916 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
917
918 (the System V compiler puts out the second `xchg' instruction,
919 and the assembler doesn't try to optimize it, so the 'sib' form
920 gets generated). This sequence is used to get the address of the
921 return buffer for a function that returns a structure. */
922 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
923 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
924 gdb_byte buf[4];
925 gdb_byte op;
926
927 if (current_pc <= pc)
928 return pc;
929
930 if (target_read_memory (pc, &op, 1))
931 return pc;
932
933 if (op != 0x58) /* popl %eax */
934 return pc;
935
936 if (target_read_memory (pc + 1, buf, 4))
937 return pc;
938
939 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
940 return pc;
941
942 if (current_pc == pc)
943 {
944 cache->sp_offset += 4;
945 return current_pc;
946 }
947
948 if (current_pc == pc + 1)
949 {
950 cache->pc_in_eax = 1;
951 return current_pc;
952 }
953
954 if (buf[1] == proto1[1])
955 return pc + 4;
956 else
957 return pc + 5;
958 }
959
960 static CORE_ADDR
961 i386_skip_probe (CORE_ADDR pc)
962 {
963 /* A function may start with
964
965 pushl constant
966 call _probe
967 addl $4, %esp
968
969 followed by
970
971 pushl %ebp
972
973 etc. */
974 gdb_byte buf[8];
975 gdb_byte op;
976
977 if (target_read_memory (pc, &op, 1))
978 return pc;
979
980 if (op == 0x68 || op == 0x6a)
981 {
982 int delta;
983
984 /* Skip past the `pushl' instruction; it has either a one-byte or a
985 four-byte operand, depending on the opcode. */
986 if (op == 0x68)
987 delta = 5;
988 else
989 delta = 2;
990
991 /* Read the following 8 bytes, which should be `call _probe' (6
992 bytes) followed by `addl $4,%esp' (2 bytes). */
993 read_memory (pc + delta, buf, sizeof (buf));
994 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
995 pc += delta + sizeof (buf);
996 }
997
998 return pc;
999 }
1000
1001 /* GCC 4.1 and later, can put code in the prologue to realign the
1002 stack pointer. Check whether PC points to such code, and update
1003 CACHE accordingly. Return the first instruction after the code
1004 sequence or CURRENT_PC, whichever is smaller. If we don't
1005 recognize the code, return PC. */
1006
1007 static CORE_ADDR
1008 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1009 struct i386_frame_cache *cache)
1010 {
1011 /* There are 2 code sequences to re-align stack before the frame
1012 gets set up:
1013
1014 1. Use a caller-saved saved register:
1015
1016 leal 4(%esp), %reg
1017 andl $-XXX, %esp
1018 pushl -4(%reg)
1019
1020 2. Use a callee-saved saved register:
1021
1022 pushl %reg
1023 leal 8(%esp), %reg
1024 andl $-XXX, %esp
1025 pushl -4(%reg)
1026
1027 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1028
1029 0x83 0xe4 0xf0 andl $-16, %esp
1030 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1031 */
1032
1033 gdb_byte buf[14];
1034 int reg;
1035 int offset, offset_and;
1036 static int regnums[8] = {
1037 I386_EAX_REGNUM, /* %eax */
1038 I386_ECX_REGNUM, /* %ecx */
1039 I386_EDX_REGNUM, /* %edx */
1040 I386_EBX_REGNUM, /* %ebx */
1041 I386_ESP_REGNUM, /* %esp */
1042 I386_EBP_REGNUM, /* %ebp */
1043 I386_ESI_REGNUM, /* %esi */
1044 I386_EDI_REGNUM /* %edi */
1045 };
1046
1047 if (target_read_memory (pc, buf, sizeof buf))
1048 return pc;
1049
1050 /* Check caller-saved saved register. The first instruction has
1051 to be "leal 4(%esp), %reg". */
1052 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1053 {
1054 /* MOD must be binary 10 and R/M must be binary 100. */
1055 if ((buf[1] & 0xc7) != 0x44)
1056 return pc;
1057
1058 /* REG has register number. */
1059 reg = (buf[1] >> 3) & 7;
1060 offset = 4;
1061 }
1062 else
1063 {
1064 /* Check callee-saved saved register. The first instruction
1065 has to be "pushl %reg". */
1066 if ((buf[0] & 0xf8) != 0x50)
1067 return pc;
1068
1069 /* Get register. */
1070 reg = buf[0] & 0x7;
1071
1072 /* The next instruction has to be "leal 8(%esp), %reg". */
1073 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1074 return pc;
1075
1076 /* MOD must be binary 10 and R/M must be binary 100. */
1077 if ((buf[2] & 0xc7) != 0x44)
1078 return pc;
1079
1080 /* REG has register number. Registers in pushl and leal have to
1081 be the same. */
1082 if (reg != ((buf[2] >> 3) & 7))
1083 return pc;
1084
1085 offset = 5;
1086 }
1087
1088 /* Rigister can't be %esp nor %ebp. */
1089 if (reg == 4 || reg == 5)
1090 return pc;
1091
1092 /* The next instruction has to be "andl $-XXX, %esp". */
1093 if (buf[offset + 1] != 0xe4
1094 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1095 return pc;
1096
1097 offset_and = offset;
1098 offset += buf[offset] == 0x81 ? 6 : 3;
1099
1100 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1101 0xfc. REG must be binary 110 and MOD must be binary 01. */
1102 if (buf[offset] != 0xff
1103 || buf[offset + 2] != 0xfc
1104 || (buf[offset + 1] & 0xf8) != 0x70)
1105 return pc;
1106
1107 /* R/M has register. Registers in leal and pushl have to be the
1108 same. */
1109 if (reg != (buf[offset + 1] & 7))
1110 return pc;
1111
1112 if (current_pc > pc + offset_and)
1113 cache->saved_sp_reg = regnums[reg];
1114
1115 return min (pc + offset + 3, current_pc);
1116 }
1117
1118 /* Maximum instruction length we need to handle. */
1119 #define I386_MAX_MATCHED_INSN_LEN 6
1120
1121 /* Instruction description. */
1122 struct i386_insn
1123 {
1124 size_t len;
1125 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1126 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1127 };
1128
1129 /* Return whether instruction at PC matches PATTERN. */
1130
1131 static int
1132 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1133 {
1134 gdb_byte op;
1135
1136 if (target_read_memory (pc, &op, 1))
1137 return 0;
1138
1139 if ((op & pattern.mask[0]) == pattern.insn[0])
1140 {
1141 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1142 int insn_matched = 1;
1143 size_t i;
1144
1145 gdb_assert (pattern.len > 1);
1146 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1147
1148 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1149 return 0;
1150
1151 for (i = 1; i < pattern.len; i++)
1152 {
1153 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1154 insn_matched = 0;
1155 }
1156 return insn_matched;
1157 }
1158 return 0;
1159 }
1160
1161 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1162 the first instruction description that matches. Otherwise, return
1163 NULL. */
1164
1165 static struct i386_insn *
1166 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1167 {
1168 struct i386_insn *pattern;
1169
1170 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1171 {
1172 if (i386_match_pattern (pc, *pattern))
1173 return pattern;
1174 }
1175
1176 return NULL;
1177 }
1178
1179 /* Return whether PC points inside a sequence of instructions that
1180 matches INSN_PATTERNS. */
1181
1182 static int
1183 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1184 {
1185 CORE_ADDR current_pc;
1186 int ix, i;
1187 gdb_byte op;
1188 struct i386_insn *insn;
1189
1190 insn = i386_match_insn (pc, insn_patterns);
1191 if (insn == NULL)
1192 return 0;
1193
1194 current_pc = pc;
1195 ix = insn - insn_patterns;
1196 for (i = ix - 1; i >= 0; i--)
1197 {
1198 current_pc -= insn_patterns[i].len;
1199
1200 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1201 return 0;
1202 }
1203
1204 current_pc = pc + insn->len;
1205 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1206 {
1207 if (!i386_match_pattern (current_pc, *insn))
1208 return 0;
1209
1210 current_pc += insn->len;
1211 }
1212
1213 return 1;
1214 }
1215
1216 /* Some special instructions that might be migrated by GCC into the
1217 part of the prologue that sets up the new stack frame. Because the
1218 stack frame hasn't been setup yet, no registers have been saved
1219 yet, and only the scratch registers %eax, %ecx and %edx can be
1220 touched. */
1221
1222 struct i386_insn i386_frame_setup_skip_insns[] =
1223 {
1224 /* Check for `movb imm8, r' and `movl imm32, r'.
1225
1226 ??? Should we handle 16-bit operand-sizes here? */
1227
1228 /* `movb imm8, %al' and `movb imm8, %ah' */
1229 /* `movb imm8, %cl' and `movb imm8, %ch' */
1230 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1231 /* `movb imm8, %dl' and `movb imm8, %dh' */
1232 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1233 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1234 { 5, { 0xb8 }, { 0xfe } },
1235 /* `movl imm32, %edx' */
1236 { 5, { 0xba }, { 0xff } },
1237
1238 /* Check for `mov imm32, r32'. Note that there is an alternative
1239 encoding for `mov m32, %eax'.
1240
1241 ??? Should we handle SIB adressing here?
1242 ??? Should we handle 16-bit operand-sizes here? */
1243
1244 /* `movl m32, %eax' */
1245 { 5, { 0xa1 }, { 0xff } },
1246 /* `movl m32, %eax' and `mov; m32, %ecx' */
1247 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1248 /* `movl m32, %edx' */
1249 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1250
1251 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1252 Because of the symmetry, there are actually two ways to encode
1253 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1254 opcode bytes 0x31 and 0x33 for `xorl'. */
1255
1256 /* `subl %eax, %eax' */
1257 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1258 /* `subl %ecx, %ecx' */
1259 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1260 /* `subl %edx, %edx' */
1261 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1262 /* `xorl %eax, %eax' */
1263 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1264 /* `xorl %ecx, %ecx' */
1265 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1266 /* `xorl %edx, %edx' */
1267 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1268 { 0 }
1269 };
1270
1271
1272 /* Check whether PC points to a no-op instruction. */
1273 static CORE_ADDR
1274 i386_skip_noop (CORE_ADDR pc)
1275 {
1276 gdb_byte op;
1277 int check = 1;
1278
1279 if (target_read_memory (pc, &op, 1))
1280 return pc;
1281
1282 while (check)
1283 {
1284 check = 0;
1285 /* Ignore `nop' instruction. */
1286 if (op == 0x90)
1287 {
1288 pc += 1;
1289 if (target_read_memory (pc, &op, 1))
1290 return pc;
1291 check = 1;
1292 }
1293 /* Ignore no-op instruction `mov %edi, %edi'.
1294 Microsoft system dlls often start with
1295 a `mov %edi,%edi' instruction.
1296 The 5 bytes before the function start are
1297 filled with `nop' instructions.
1298 This pattern can be used for hot-patching:
1299 The `mov %edi, %edi' instruction can be replaced by a
1300 near jump to the location of the 5 `nop' instructions
1301 which can be replaced by a 32-bit jump to anywhere
1302 in the 32-bit address space. */
1303
1304 else if (op == 0x8b)
1305 {
1306 if (target_read_memory (pc + 1, &op, 1))
1307 return pc;
1308
1309 if (op == 0xff)
1310 {
1311 pc += 2;
1312 if (target_read_memory (pc, &op, 1))
1313 return pc;
1314
1315 check = 1;
1316 }
1317 }
1318 }
1319 return pc;
1320 }
1321
1322 /* Check whether PC points at a code that sets up a new stack frame.
1323 If so, it updates CACHE and returns the address of the first
1324 instruction after the sequence that sets up the frame or LIMIT,
1325 whichever is smaller. If we don't recognize the code, return PC. */
1326
1327 static CORE_ADDR
1328 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1329 CORE_ADDR pc, CORE_ADDR limit,
1330 struct i386_frame_cache *cache)
1331 {
1332 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1333 struct i386_insn *insn;
1334 gdb_byte op;
1335 int skip = 0;
1336
1337 if (limit <= pc)
1338 return limit;
1339
1340 if (target_read_memory (pc, &op, 1))
1341 return pc;
1342
1343 if (op == 0x55) /* pushl %ebp */
1344 {
1345 /* Take into account that we've executed the `pushl %ebp' that
1346 starts this instruction sequence. */
1347 cache->saved_regs[I386_EBP_REGNUM] = 0;
1348 cache->sp_offset += 4;
1349 pc++;
1350
1351 /* If that's all, return now. */
1352 if (limit <= pc)
1353 return limit;
1354
1355 /* Check for some special instructions that might be migrated by
1356 GCC into the prologue and skip them. At this point in the
1357 prologue, code should only touch the scratch registers %eax,
1358 %ecx and %edx, so while the number of posibilities is sheer,
1359 it is limited.
1360
1361 Make sure we only skip these instructions if we later see the
1362 `movl %esp, %ebp' that actually sets up the frame. */
1363 while (pc + skip < limit)
1364 {
1365 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1366 if (insn == NULL)
1367 break;
1368
1369 skip += insn->len;
1370 }
1371
1372 /* If that's all, return now. */
1373 if (limit <= pc + skip)
1374 return limit;
1375
1376 if (target_read_memory (pc + skip, &op, 1))
1377 return pc + skip;
1378
1379 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1380 switch (op)
1381 {
1382 case 0x8b:
1383 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1384 != 0xec)
1385 return pc;
1386 break;
1387 case 0x89:
1388 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1389 != 0xe5)
1390 return pc;
1391 break;
1392 default:
1393 return pc;
1394 }
1395
1396 /* OK, we actually have a frame. We just don't know how large
1397 it is yet. Set its size to zero. We'll adjust it if
1398 necessary. We also now commit to skipping the special
1399 instructions mentioned before. */
1400 cache->locals = 0;
1401 pc += (skip + 2);
1402
1403 /* If that's all, return now. */
1404 if (limit <= pc)
1405 return limit;
1406
1407 /* Check for stack adjustment
1408
1409 subl $XXX, %esp
1410
1411 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1412 reg, so we don't have to worry about a data16 prefix. */
1413 if (target_read_memory (pc, &op, 1))
1414 return pc;
1415 if (op == 0x83)
1416 {
1417 /* `subl' with 8-bit immediate. */
1418 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1419 /* Some instruction starting with 0x83 other than `subl'. */
1420 return pc;
1421
1422 /* `subl' with signed 8-bit immediate (though it wouldn't
1423 make sense to be negative). */
1424 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1425 return pc + 3;
1426 }
1427 else if (op == 0x81)
1428 {
1429 /* Maybe it is `subl' with a 32-bit immediate. */
1430 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1431 /* Some instruction starting with 0x81 other than `subl'. */
1432 return pc;
1433
1434 /* It is `subl' with a 32-bit immediate. */
1435 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1436 return pc + 6;
1437 }
1438 else
1439 {
1440 /* Some instruction other than `subl'. */
1441 return pc;
1442 }
1443 }
1444 else if (op == 0xc8) /* enter */
1445 {
1446 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1447 return pc + 4;
1448 }
1449
1450 return pc;
1451 }
1452
1453 /* Check whether PC points at code that saves registers on the stack.
1454 If so, it updates CACHE and returns the address of the first
1455 instruction after the register saves or CURRENT_PC, whichever is
1456 smaller. Otherwise, return PC. */
1457
1458 static CORE_ADDR
1459 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1460 struct i386_frame_cache *cache)
1461 {
1462 CORE_ADDR offset = 0;
1463 gdb_byte op;
1464 int i;
1465
1466 if (cache->locals > 0)
1467 offset -= cache->locals;
1468 for (i = 0; i < 8 && pc < current_pc; i++)
1469 {
1470 if (target_read_memory (pc, &op, 1))
1471 return pc;
1472 if (op < 0x50 || op > 0x57)
1473 break;
1474
1475 offset -= 4;
1476 cache->saved_regs[op - 0x50] = offset;
1477 cache->sp_offset += 4;
1478 pc++;
1479 }
1480
1481 return pc;
1482 }
1483
1484 /* Do a full analysis of the prologue at PC and update CACHE
1485 accordingly. Bail out early if CURRENT_PC is reached. Return the
1486 address where the analysis stopped.
1487
1488 We handle these cases:
1489
1490 The startup sequence can be at the start of the function, or the
1491 function can start with a branch to startup code at the end.
1492
1493 %ebp can be set up with either the 'enter' instruction, or "pushl
1494 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1495 once used in the System V compiler).
1496
1497 Local space is allocated just below the saved %ebp by either the
1498 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1499 16-bit unsigned argument for space to allocate, and the 'addl'
1500 instruction could have either a signed byte, or 32-bit immediate.
1501
1502 Next, the registers used by this function are pushed. With the
1503 System V compiler they will always be in the order: %edi, %esi,
1504 %ebx (and sometimes a harmless bug causes it to also save but not
1505 restore %eax); however, the code below is willing to see the pushes
1506 in any order, and will handle up to 8 of them.
1507
1508 If the setup sequence is at the end of the function, then the next
1509 instruction will be a branch back to the start. */
1510
1511 static CORE_ADDR
1512 i386_analyze_prologue (struct gdbarch *gdbarch,
1513 CORE_ADDR pc, CORE_ADDR current_pc,
1514 struct i386_frame_cache *cache)
1515 {
1516 pc = i386_skip_noop (pc);
1517 pc = i386_follow_jump (gdbarch, pc);
1518 pc = i386_analyze_struct_return (pc, current_pc, cache);
1519 pc = i386_skip_probe (pc);
1520 pc = i386_analyze_stack_align (pc, current_pc, cache);
1521 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1522 return i386_analyze_register_saves (pc, current_pc, cache);
1523 }
1524
1525 /* Return PC of first real instruction. */
1526
1527 static CORE_ADDR
1528 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1529 {
1530 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1531
1532 static gdb_byte pic_pat[6] =
1533 {
1534 0xe8, 0, 0, 0, 0, /* call 0x0 */
1535 0x5b, /* popl %ebx */
1536 };
1537 struct i386_frame_cache cache;
1538 CORE_ADDR pc;
1539 gdb_byte op;
1540 int i;
1541
1542 cache.locals = -1;
1543 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1544 if (cache.locals < 0)
1545 return start_pc;
1546
1547 /* Found valid frame setup. */
1548
1549 /* The native cc on SVR4 in -K PIC mode inserts the following code
1550 to get the address of the global offset table (GOT) into register
1551 %ebx:
1552
1553 call 0x0
1554 popl %ebx
1555 movl %ebx,x(%ebp) (optional)
1556 addl y,%ebx
1557
1558 This code is with the rest of the prologue (at the end of the
1559 function), so we have to skip it to get to the first real
1560 instruction at the start of the function. */
1561
1562 for (i = 0; i < 6; i++)
1563 {
1564 if (target_read_memory (pc + i, &op, 1))
1565 return pc;
1566
1567 if (pic_pat[i] != op)
1568 break;
1569 }
1570 if (i == 6)
1571 {
1572 int delta = 6;
1573
1574 if (target_read_memory (pc + delta, &op, 1))
1575 return pc;
1576
1577 if (op == 0x89) /* movl %ebx, x(%ebp) */
1578 {
1579 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1580
1581 if (op == 0x5d) /* One byte offset from %ebp. */
1582 delta += 3;
1583 else if (op == 0x9d) /* Four byte offset from %ebp. */
1584 delta += 6;
1585 else /* Unexpected instruction. */
1586 delta = 0;
1587
1588 if (target_read_memory (pc + delta, &op, 1))
1589 return pc;
1590 }
1591
1592 /* addl y,%ebx */
1593 if (delta > 0 && op == 0x81
1594 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1595 == 0xc3)
1596 {
1597 pc += delta + 6;
1598 }
1599 }
1600
1601 /* If the function starts with a branch (to startup code at the end)
1602 the last instruction should bring us back to the first
1603 instruction of the real code. */
1604 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1605 pc = i386_follow_jump (gdbarch, pc);
1606
1607 return pc;
1608 }
1609
1610 /* Check that the code pointed to by PC corresponds to a call to
1611 __main, skip it if so. Return PC otherwise. */
1612
1613 CORE_ADDR
1614 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1615 {
1616 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1617 gdb_byte op;
1618
1619 if (target_read_memory (pc, &op, 1))
1620 return pc;
1621 if (op == 0xe8)
1622 {
1623 gdb_byte buf[4];
1624
1625 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1626 {
1627 /* Make sure address is computed correctly as a 32bit
1628 integer even if CORE_ADDR is 64 bit wide. */
1629 struct minimal_symbol *s;
1630 CORE_ADDR call_dest;
1631
1632 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1633 call_dest = call_dest & 0xffffffffU;
1634 s = lookup_minimal_symbol_by_pc (call_dest);
1635 if (s != NULL
1636 && SYMBOL_LINKAGE_NAME (s) != NULL
1637 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1638 pc += 5;
1639 }
1640 }
1641
1642 return pc;
1643 }
1644
1645 /* This function is 64-bit safe. */
1646
1647 static CORE_ADDR
1648 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1649 {
1650 gdb_byte buf[8];
1651
1652 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1653 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1654 }
1655 \f
1656
1657 /* Normal frames. */
1658
1659 static void
1660 i386_frame_cache_1 (struct frame_info *this_frame,
1661 struct i386_frame_cache *cache)
1662 {
1663 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1664 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1665 gdb_byte buf[4];
1666 int i;
1667
1668 cache->pc = get_frame_func (this_frame);
1669
1670 /* In principle, for normal frames, %ebp holds the frame pointer,
1671 which holds the base address for the current stack frame.
1672 However, for functions that don't need it, the frame pointer is
1673 optional. For these "frameless" functions the frame pointer is
1674 actually the frame pointer of the calling frame. Signal
1675 trampolines are just a special case of a "frameless" function.
1676 They (usually) share their frame pointer with the frame that was
1677 in progress when the signal occurred. */
1678
1679 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1680 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1681 if (cache->base == 0)
1682 return;
1683
1684 /* For normal frames, %eip is stored at 4(%ebp). */
1685 cache->saved_regs[I386_EIP_REGNUM] = 4;
1686
1687 if (cache->pc != 0)
1688 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1689 cache);
1690
1691 if (cache->locals < 0)
1692 {
1693 /* We didn't find a valid frame, which means that CACHE->base
1694 currently holds the frame pointer for our calling frame. If
1695 we're at the start of a function, or somewhere half-way its
1696 prologue, the function's frame probably hasn't been fully
1697 setup yet. Try to reconstruct the base address for the stack
1698 frame by looking at the stack pointer. For truly "frameless"
1699 functions this might work too. */
1700
1701 if (cache->saved_sp_reg != -1)
1702 {
1703 /* Saved stack pointer has been saved. */
1704 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1705 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1706
1707 /* We're halfway aligning the stack. */
1708 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1709 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1710
1711 /* This will be added back below. */
1712 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1713 }
1714 else if (cache->pc != 0
1715 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1716 {
1717 /* We're in a known function, but did not find a frame
1718 setup. Assume that the function does not use %ebp.
1719 Alternatively, we may have jumped to an invalid
1720 address; in that case there is definitely no new
1721 frame in %ebp. */
1722 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1723 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1724 + cache->sp_offset;
1725 }
1726 else
1727 /* We're in an unknown function. We could not find the start
1728 of the function to analyze the prologue; our best option is
1729 to assume a typical frame layout with the caller's %ebp
1730 saved. */
1731 cache->saved_regs[I386_EBP_REGNUM] = 0;
1732 }
1733
1734 if (cache->saved_sp_reg != -1)
1735 {
1736 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1737 register may be unavailable). */
1738 if (cache->saved_sp == 0
1739 && frame_register_read (this_frame, cache->saved_sp_reg, buf))
1740 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1741 }
1742 /* Now that we have the base address for the stack frame we can
1743 calculate the value of %esp in the calling frame. */
1744 else if (cache->saved_sp == 0)
1745 cache->saved_sp = cache->base + 8;
1746
1747 /* Adjust all the saved registers such that they contain addresses
1748 instead of offsets. */
1749 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1750 if (cache->saved_regs[i] != -1)
1751 cache->saved_regs[i] += cache->base;
1752
1753 cache->base_p = 1;
1754 }
1755
1756 static struct i386_frame_cache *
1757 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1758 {
1759 volatile struct gdb_exception ex;
1760 struct i386_frame_cache *cache;
1761
1762 if (*this_cache)
1763 return *this_cache;
1764
1765 cache = i386_alloc_frame_cache ();
1766 *this_cache = cache;
1767
1768 TRY_CATCH (ex, RETURN_MASK_ERROR)
1769 {
1770 i386_frame_cache_1 (this_frame, cache);
1771 }
1772 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1773 throw_exception (ex);
1774
1775 return cache;
1776 }
1777
1778 static void
1779 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1780 struct frame_id *this_id)
1781 {
1782 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1783
1784 /* This marks the outermost frame. */
1785 if (cache->base == 0)
1786 return;
1787
1788 /* See the end of i386_push_dummy_call. */
1789 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1790 }
1791
1792 static enum unwind_stop_reason
1793 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1794 void **this_cache)
1795 {
1796 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1797
1798 if (!cache->base_p)
1799 return UNWIND_UNAVAILABLE;
1800
1801 /* This marks the outermost frame. */
1802 if (cache->base == 0)
1803 return UNWIND_OUTERMOST;
1804
1805 return UNWIND_NO_REASON;
1806 }
1807
1808 static struct value *
1809 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1810 int regnum)
1811 {
1812 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1813
1814 gdb_assert (regnum >= 0);
1815
1816 /* The System V ABI says that:
1817
1818 "The flags register contains the system flags, such as the
1819 direction flag and the carry flag. The direction flag must be
1820 set to the forward (that is, zero) direction before entry and
1821 upon exit from a function. Other user flags have no specified
1822 role in the standard calling sequence and are not preserved."
1823
1824 To guarantee the "upon exit" part of that statement we fake a
1825 saved flags register that has its direction flag cleared.
1826
1827 Note that GCC doesn't seem to rely on the fact that the direction
1828 flag is cleared after a function return; it always explicitly
1829 clears the flag before operations where it matters.
1830
1831 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1832 right thing to do. The way we fake the flags register here makes
1833 it impossible to change it. */
1834
1835 if (regnum == I386_EFLAGS_REGNUM)
1836 {
1837 ULONGEST val;
1838
1839 val = get_frame_register_unsigned (this_frame, regnum);
1840 val &= ~(1 << 10);
1841 return frame_unwind_got_constant (this_frame, regnum, val);
1842 }
1843
1844 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1845 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1846
1847 if (regnum == I386_ESP_REGNUM
1848 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1849 {
1850 /* If the SP has been saved, but we don't know where, then this
1851 means that SAVED_SP_REG register was found unavailable back
1852 when we built the cache. */
1853 if (cache->saved_sp == 0)
1854 return frame_unwind_got_register (this_frame, regnum,
1855 cache->saved_sp_reg);
1856 else
1857 return frame_unwind_got_constant (this_frame, regnum,
1858 cache->saved_sp);
1859 }
1860
1861 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1862 return frame_unwind_got_memory (this_frame, regnum,
1863 cache->saved_regs[regnum]);
1864
1865 return frame_unwind_got_register (this_frame, regnum, regnum);
1866 }
1867
1868 static const struct frame_unwind i386_frame_unwind =
1869 {
1870 NORMAL_FRAME,
1871 i386_frame_unwind_stop_reason,
1872 i386_frame_this_id,
1873 i386_frame_prev_register,
1874 NULL,
1875 default_frame_sniffer
1876 };
1877
1878 /* Normal frames, but in a function epilogue. */
1879
1880 /* The epilogue is defined here as the 'ret' instruction, which will
1881 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1882 the function's stack frame. */
1883
1884 static int
1885 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1886 {
1887 gdb_byte insn;
1888
1889 if (target_read_memory (pc, &insn, 1))
1890 return 0; /* Can't read memory at pc. */
1891
1892 if (insn != 0xc3) /* 'ret' instruction. */
1893 return 0;
1894
1895 return 1;
1896 }
1897
1898 static int
1899 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1900 struct frame_info *this_frame,
1901 void **this_prologue_cache)
1902 {
1903 if (frame_relative_level (this_frame) == 0)
1904 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1905 get_frame_pc (this_frame));
1906 else
1907 return 0;
1908 }
1909
1910 static struct i386_frame_cache *
1911 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1912 {
1913 volatile struct gdb_exception ex;
1914 struct i386_frame_cache *cache;
1915 CORE_ADDR sp;
1916
1917 if (*this_cache)
1918 return *this_cache;
1919
1920 cache = i386_alloc_frame_cache ();
1921 *this_cache = cache;
1922
1923 TRY_CATCH (ex, RETURN_MASK_ERROR)
1924 {
1925 cache->pc = get_frame_func (this_frame);
1926
1927 /* At this point the stack looks as if we just entered the
1928 function, with the return address at the top of the
1929 stack. */
1930 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
1931 cache->base = sp + cache->sp_offset;
1932 cache->saved_sp = cache->base + 8;
1933 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1934
1935 cache->base_p = 1;
1936 }
1937 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1938 throw_exception (ex);
1939
1940 return cache;
1941 }
1942
1943 static enum unwind_stop_reason
1944 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
1945 void **this_cache)
1946 {
1947 struct i386_frame_cache *cache =
1948 i386_epilogue_frame_cache (this_frame, this_cache);
1949
1950 if (!cache->base_p)
1951 return UNWIND_UNAVAILABLE;
1952
1953 return UNWIND_NO_REASON;
1954 }
1955
1956 static void
1957 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1958 void **this_cache,
1959 struct frame_id *this_id)
1960 {
1961 struct i386_frame_cache *cache =
1962 i386_epilogue_frame_cache (this_frame, this_cache);
1963
1964 if (!cache->base_p)
1965 return;
1966
1967 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1968 }
1969
1970 static struct value *
1971 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
1972 void **this_cache, int regnum)
1973 {
1974 /* Make sure we've initialized the cache. */
1975 i386_epilogue_frame_cache (this_frame, this_cache);
1976
1977 return i386_frame_prev_register (this_frame, this_cache, regnum);
1978 }
1979
1980 static const struct frame_unwind i386_epilogue_frame_unwind =
1981 {
1982 NORMAL_FRAME,
1983 i386_epilogue_frame_unwind_stop_reason,
1984 i386_epilogue_frame_this_id,
1985 i386_epilogue_frame_prev_register,
1986 NULL,
1987 i386_epilogue_frame_sniffer
1988 };
1989 \f
1990
1991 /* Stack-based trampolines. */
1992
1993 /* These trampolines are used on cross x86 targets, when taking the
1994 address of a nested function. When executing these trampolines,
1995 no stack frame is set up, so we are in a similar situation as in
1996 epilogues and i386_epilogue_frame_this_id can be re-used. */
1997
1998 /* Static chain passed in register. */
1999
2000 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2001 {
2002 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2003 { 5, { 0xb8 }, { 0xfe } },
2004
2005 /* `jmp imm32' */
2006 { 5, { 0xe9 }, { 0xff } },
2007
2008 {0}
2009 };
2010
2011 /* Static chain passed on stack (when regparm=3). */
2012
2013 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2014 {
2015 /* `push imm32' */
2016 { 5, { 0x68 }, { 0xff } },
2017
2018 /* `jmp imm32' */
2019 { 5, { 0xe9 }, { 0xff } },
2020
2021 {0}
2022 };
2023
2024 /* Return whether PC points inside a stack trampoline. */
2025
2026 static int
2027 i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2028 {
2029 gdb_byte insn;
2030 char *name;
2031
2032 /* A stack trampoline is detected if no name is associated
2033 to the current pc and if it points inside a trampoline
2034 sequence. */
2035
2036 find_pc_partial_function (pc, &name, NULL, NULL);
2037 if (name)
2038 return 0;
2039
2040 if (target_read_memory (pc, &insn, 1))
2041 return 0;
2042
2043 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2044 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2045 return 0;
2046
2047 return 1;
2048 }
2049
2050 static int
2051 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2052 struct frame_info *this_frame,
2053 void **this_cache)
2054 {
2055 if (frame_relative_level (this_frame) == 0)
2056 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2057 get_frame_pc (this_frame));
2058 else
2059 return 0;
2060 }
2061
2062 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2063 {
2064 NORMAL_FRAME,
2065 i386_epilogue_frame_unwind_stop_reason,
2066 i386_epilogue_frame_this_id,
2067 i386_epilogue_frame_prev_register,
2068 NULL,
2069 i386_stack_tramp_frame_sniffer
2070 };
2071 \f
2072
2073 /* Signal trampolines. */
2074
2075 static struct i386_frame_cache *
2076 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2077 {
2078 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2079 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2080 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2081 volatile struct gdb_exception ex;
2082 struct i386_frame_cache *cache;
2083 CORE_ADDR addr;
2084 gdb_byte buf[4];
2085
2086 if (*this_cache)
2087 return *this_cache;
2088
2089 cache = i386_alloc_frame_cache ();
2090
2091 TRY_CATCH (ex, RETURN_MASK_ERROR)
2092 {
2093 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2094 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2095
2096 addr = tdep->sigcontext_addr (this_frame);
2097 if (tdep->sc_reg_offset)
2098 {
2099 int i;
2100
2101 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2102
2103 for (i = 0; i < tdep->sc_num_regs; i++)
2104 if (tdep->sc_reg_offset[i] != -1)
2105 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2106 }
2107 else
2108 {
2109 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2110 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2111 }
2112
2113 cache->base_p = 1;
2114 }
2115 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2116 throw_exception (ex);
2117
2118 *this_cache = cache;
2119 return cache;
2120 }
2121
2122 static enum unwind_stop_reason
2123 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2124 void **this_cache)
2125 {
2126 struct i386_frame_cache *cache =
2127 i386_sigtramp_frame_cache (this_frame, this_cache);
2128
2129 if (!cache->base_p)
2130 return UNWIND_UNAVAILABLE;
2131
2132 return UNWIND_NO_REASON;
2133 }
2134
2135 static void
2136 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2137 struct frame_id *this_id)
2138 {
2139 struct i386_frame_cache *cache =
2140 i386_sigtramp_frame_cache (this_frame, this_cache);
2141
2142 if (!cache->base_p)
2143 return;
2144
2145 /* See the end of i386_push_dummy_call. */
2146 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2147 }
2148
2149 static struct value *
2150 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2151 void **this_cache, int regnum)
2152 {
2153 /* Make sure we've initialized the cache. */
2154 i386_sigtramp_frame_cache (this_frame, this_cache);
2155
2156 return i386_frame_prev_register (this_frame, this_cache, regnum);
2157 }
2158
2159 static int
2160 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2161 struct frame_info *this_frame,
2162 void **this_prologue_cache)
2163 {
2164 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2165
2166 /* We shouldn't even bother if we don't have a sigcontext_addr
2167 handler. */
2168 if (tdep->sigcontext_addr == NULL)
2169 return 0;
2170
2171 if (tdep->sigtramp_p != NULL)
2172 {
2173 if (tdep->sigtramp_p (this_frame))
2174 return 1;
2175 }
2176
2177 if (tdep->sigtramp_start != 0)
2178 {
2179 CORE_ADDR pc = get_frame_pc (this_frame);
2180
2181 gdb_assert (tdep->sigtramp_end != 0);
2182 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2183 return 1;
2184 }
2185
2186 return 0;
2187 }
2188
2189 static const struct frame_unwind i386_sigtramp_frame_unwind =
2190 {
2191 SIGTRAMP_FRAME,
2192 i386_sigtramp_frame_unwind_stop_reason,
2193 i386_sigtramp_frame_this_id,
2194 i386_sigtramp_frame_prev_register,
2195 NULL,
2196 i386_sigtramp_frame_sniffer
2197 };
2198 \f
2199
2200 static CORE_ADDR
2201 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2202 {
2203 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2204
2205 return cache->base;
2206 }
2207
2208 static const struct frame_base i386_frame_base =
2209 {
2210 &i386_frame_unwind,
2211 i386_frame_base_address,
2212 i386_frame_base_address,
2213 i386_frame_base_address
2214 };
2215
2216 static struct frame_id
2217 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2218 {
2219 CORE_ADDR fp;
2220
2221 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2222
2223 /* See the end of i386_push_dummy_call. */
2224 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2225 }
2226 \f
2227
2228 /* Figure out where the longjmp will land. Slurp the args out of the
2229 stack. We expect the first arg to be a pointer to the jmp_buf
2230 structure from which we extract the address that we will land at.
2231 This address is copied into PC. This routine returns non-zero on
2232 success. */
2233
2234 static int
2235 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2236 {
2237 gdb_byte buf[4];
2238 CORE_ADDR sp, jb_addr;
2239 struct gdbarch *gdbarch = get_frame_arch (frame);
2240 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2241 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2242
2243 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2244 longjmp will land. */
2245 if (jb_pc_offset == -1)
2246 return 0;
2247
2248 get_frame_register (frame, I386_ESP_REGNUM, buf);
2249 sp = extract_unsigned_integer (buf, 4, byte_order);
2250 if (target_read_memory (sp + 4, buf, 4))
2251 return 0;
2252
2253 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2254 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2255 return 0;
2256
2257 *pc = extract_unsigned_integer (buf, 4, byte_order);
2258 return 1;
2259 }
2260 \f
2261
2262 /* Check whether TYPE must be 16-byte-aligned when passed as a
2263 function argument. 16-byte vectors, _Decimal128 and structures or
2264 unions containing such types must be 16-byte-aligned; other
2265 arguments are 4-byte-aligned. */
2266
2267 static int
2268 i386_16_byte_align_p (struct type *type)
2269 {
2270 type = check_typedef (type);
2271 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2272 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2273 && TYPE_LENGTH (type) == 16)
2274 return 1;
2275 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2276 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2277 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2278 || TYPE_CODE (type) == TYPE_CODE_UNION)
2279 {
2280 int i;
2281 for (i = 0; i < TYPE_NFIELDS (type); i++)
2282 {
2283 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2284 return 1;
2285 }
2286 }
2287 return 0;
2288 }
2289
2290 static CORE_ADDR
2291 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2292 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2293 struct value **args, CORE_ADDR sp, int struct_return,
2294 CORE_ADDR struct_addr)
2295 {
2296 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2297 gdb_byte buf[4];
2298 int i;
2299 int write_pass;
2300 int args_space = 0;
2301
2302 /* Determine the total space required for arguments and struct
2303 return address in a first pass (allowing for 16-byte-aligned
2304 arguments), then push arguments in a second pass. */
2305
2306 for (write_pass = 0; write_pass < 2; write_pass++)
2307 {
2308 int args_space_used = 0;
2309 int have_16_byte_aligned_arg = 0;
2310
2311 if (struct_return)
2312 {
2313 if (write_pass)
2314 {
2315 /* Push value address. */
2316 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2317 write_memory (sp, buf, 4);
2318 args_space_used += 4;
2319 }
2320 else
2321 args_space += 4;
2322 }
2323
2324 for (i = 0; i < nargs; i++)
2325 {
2326 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2327
2328 if (write_pass)
2329 {
2330 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2331 args_space_used = align_up (args_space_used, 16);
2332
2333 write_memory (sp + args_space_used,
2334 value_contents_all (args[i]), len);
2335 /* The System V ABI says that:
2336
2337 "An argument's size is increased, if necessary, to make it a
2338 multiple of [32-bit] words. This may require tail padding,
2339 depending on the size of the argument."
2340
2341 This makes sure the stack stays word-aligned. */
2342 args_space_used += align_up (len, 4);
2343 }
2344 else
2345 {
2346 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2347 {
2348 args_space = align_up (args_space, 16);
2349 have_16_byte_aligned_arg = 1;
2350 }
2351 args_space += align_up (len, 4);
2352 }
2353 }
2354
2355 if (!write_pass)
2356 {
2357 if (have_16_byte_aligned_arg)
2358 args_space = align_up (args_space, 16);
2359 sp -= args_space;
2360 }
2361 }
2362
2363 /* Store return address. */
2364 sp -= 4;
2365 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2366 write_memory (sp, buf, 4);
2367
2368 /* Finally, update the stack pointer... */
2369 store_unsigned_integer (buf, 4, byte_order, sp);
2370 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2371
2372 /* ...and fake a frame pointer. */
2373 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2374
2375 /* MarkK wrote: This "+ 8" is all over the place:
2376 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2377 i386_dummy_id). It's there, since all frame unwinders for
2378 a given target have to agree (within a certain margin) on the
2379 definition of the stack address of a frame. Otherwise frame id
2380 comparison might not work correctly. Since DWARF2/GCC uses the
2381 stack address *before* the function call as a frame's CFA. On
2382 the i386, when %ebp is used as a frame pointer, the offset
2383 between the contents %ebp and the CFA as defined by GCC. */
2384 return sp + 8;
2385 }
2386
2387 /* These registers are used for returning integers (and on some
2388 targets also for returning `struct' and `union' values when their
2389 size and alignment match an integer type). */
2390 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2391 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2392
2393 /* Read, for architecture GDBARCH, a function return value of TYPE
2394 from REGCACHE, and copy that into VALBUF. */
2395
2396 static void
2397 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2398 struct regcache *regcache, gdb_byte *valbuf)
2399 {
2400 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2401 int len = TYPE_LENGTH (type);
2402 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2403
2404 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2405 {
2406 if (tdep->st0_regnum < 0)
2407 {
2408 warning (_("Cannot find floating-point return value."));
2409 memset (valbuf, 0, len);
2410 return;
2411 }
2412
2413 /* Floating-point return values can be found in %st(0). Convert
2414 its contents to the desired type. This is probably not
2415 exactly how it would happen on the target itself, but it is
2416 the best we can do. */
2417 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2418 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2419 }
2420 else
2421 {
2422 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2423 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2424
2425 if (len <= low_size)
2426 {
2427 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2428 memcpy (valbuf, buf, len);
2429 }
2430 else if (len <= (low_size + high_size))
2431 {
2432 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2433 memcpy (valbuf, buf, low_size);
2434 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2435 memcpy (valbuf + low_size, buf, len - low_size);
2436 }
2437 else
2438 internal_error (__FILE__, __LINE__,
2439 _("Cannot extract return value of %d bytes long."),
2440 len);
2441 }
2442 }
2443
2444 /* Write, for architecture GDBARCH, a function return value of TYPE
2445 from VALBUF into REGCACHE. */
2446
2447 static void
2448 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2449 struct regcache *regcache, const gdb_byte *valbuf)
2450 {
2451 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2452 int len = TYPE_LENGTH (type);
2453
2454 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2455 {
2456 ULONGEST fstat;
2457 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2458
2459 if (tdep->st0_regnum < 0)
2460 {
2461 warning (_("Cannot set floating-point return value."));
2462 return;
2463 }
2464
2465 /* Returning floating-point values is a bit tricky. Apart from
2466 storing the return value in %st(0), we have to simulate the
2467 state of the FPU at function return point. */
2468
2469 /* Convert the value found in VALBUF to the extended
2470 floating-point format used by the FPU. This is probably
2471 not exactly how it would happen on the target itself, but
2472 it is the best we can do. */
2473 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2474 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2475
2476 /* Set the top of the floating-point register stack to 7. The
2477 actual value doesn't really matter, but 7 is what a normal
2478 function return would end up with if the program started out
2479 with a freshly initialized FPU. */
2480 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2481 fstat |= (7 << 11);
2482 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2483
2484 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2485 the floating-point register stack to 7, the appropriate value
2486 for the tag word is 0x3fff. */
2487 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2488 }
2489 else
2490 {
2491 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2492 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2493
2494 if (len <= low_size)
2495 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2496 else if (len <= (low_size + high_size))
2497 {
2498 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2499 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2500 len - low_size, valbuf + low_size);
2501 }
2502 else
2503 internal_error (__FILE__, __LINE__,
2504 _("Cannot store return value of %d bytes long."), len);
2505 }
2506 }
2507 \f
2508
2509 /* This is the variable that is set with "set struct-convention", and
2510 its legitimate values. */
2511 static const char default_struct_convention[] = "default";
2512 static const char pcc_struct_convention[] = "pcc";
2513 static const char reg_struct_convention[] = "reg";
2514 static const char *valid_conventions[] =
2515 {
2516 default_struct_convention,
2517 pcc_struct_convention,
2518 reg_struct_convention,
2519 NULL
2520 };
2521 static const char *struct_convention = default_struct_convention;
2522
2523 /* Return non-zero if TYPE, which is assumed to be a structure,
2524 a union type, or an array type, should be returned in registers
2525 for architecture GDBARCH. */
2526
2527 static int
2528 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2529 {
2530 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2531 enum type_code code = TYPE_CODE (type);
2532 int len = TYPE_LENGTH (type);
2533
2534 gdb_assert (code == TYPE_CODE_STRUCT
2535 || code == TYPE_CODE_UNION
2536 || code == TYPE_CODE_ARRAY);
2537
2538 if (struct_convention == pcc_struct_convention
2539 || (struct_convention == default_struct_convention
2540 && tdep->struct_return == pcc_struct_return))
2541 return 0;
2542
2543 /* Structures consisting of a single `float', `double' or 'long
2544 double' member are returned in %st(0). */
2545 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2546 {
2547 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2548 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2549 return (len == 4 || len == 8 || len == 12);
2550 }
2551
2552 return (len == 1 || len == 2 || len == 4 || len == 8);
2553 }
2554
2555 /* Determine, for architecture GDBARCH, how a return value of TYPE
2556 should be returned. If it is supposed to be returned in registers,
2557 and READBUF is non-zero, read the appropriate value from REGCACHE,
2558 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2559 from WRITEBUF into REGCACHE. */
2560
2561 static enum return_value_convention
2562 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2563 struct type *type, struct regcache *regcache,
2564 gdb_byte *readbuf, const gdb_byte *writebuf)
2565 {
2566 enum type_code code = TYPE_CODE (type);
2567
2568 if (((code == TYPE_CODE_STRUCT
2569 || code == TYPE_CODE_UNION
2570 || code == TYPE_CODE_ARRAY)
2571 && !i386_reg_struct_return_p (gdbarch, type))
2572 /* 128-bit decimal float uses the struct return convention. */
2573 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2574 {
2575 /* The System V ABI says that:
2576
2577 "A function that returns a structure or union also sets %eax
2578 to the value of the original address of the caller's area
2579 before it returns. Thus when the caller receives control
2580 again, the address of the returned object resides in register
2581 %eax and can be used to access the object."
2582
2583 So the ABI guarantees that we can always find the return
2584 value just after the function has returned. */
2585
2586 /* Note that the ABI doesn't mention functions returning arrays,
2587 which is something possible in certain languages such as Ada.
2588 In this case, the value is returned as if it was wrapped in
2589 a record, so the convention applied to records also applies
2590 to arrays. */
2591
2592 if (readbuf)
2593 {
2594 ULONGEST addr;
2595
2596 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2597 read_memory (addr, readbuf, TYPE_LENGTH (type));
2598 }
2599
2600 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2601 }
2602
2603 /* This special case is for structures consisting of a single
2604 `float', `double' or 'long double' member. These structures are
2605 returned in %st(0). For these structures, we call ourselves
2606 recursively, changing TYPE into the type of the first member of
2607 the structure. Since that should work for all structures that
2608 have only one member, we don't bother to check the member's type
2609 here. */
2610 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2611 {
2612 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2613 return i386_return_value (gdbarch, func_type, type, regcache,
2614 readbuf, writebuf);
2615 }
2616
2617 if (readbuf)
2618 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2619 if (writebuf)
2620 i386_store_return_value (gdbarch, type, regcache, writebuf);
2621
2622 return RETURN_VALUE_REGISTER_CONVENTION;
2623 }
2624 \f
2625
2626 struct type *
2627 i387_ext_type (struct gdbarch *gdbarch)
2628 {
2629 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2630
2631 if (!tdep->i387_ext_type)
2632 {
2633 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2634 gdb_assert (tdep->i387_ext_type != NULL);
2635 }
2636
2637 return tdep->i387_ext_type;
2638 }
2639
2640 /* Construct vector type for pseudo YMM registers. We can't use
2641 tdesc_find_type since YMM isn't described in target description. */
2642
2643 static struct type *
2644 i386_ymm_type (struct gdbarch *gdbarch)
2645 {
2646 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2647
2648 if (!tdep->i386_ymm_type)
2649 {
2650 const struct builtin_type *bt = builtin_type (gdbarch);
2651
2652 /* The type we're building is this: */
2653 #if 0
2654 union __gdb_builtin_type_vec256i
2655 {
2656 int128_t uint128[2];
2657 int64_t v2_int64[4];
2658 int32_t v4_int32[8];
2659 int16_t v8_int16[16];
2660 int8_t v16_int8[32];
2661 double v2_double[4];
2662 float v4_float[8];
2663 };
2664 #endif
2665
2666 struct type *t;
2667
2668 t = arch_composite_type (gdbarch,
2669 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2670 append_composite_type_field (t, "v8_float",
2671 init_vector_type (bt->builtin_float, 8));
2672 append_composite_type_field (t, "v4_double",
2673 init_vector_type (bt->builtin_double, 4));
2674 append_composite_type_field (t, "v32_int8",
2675 init_vector_type (bt->builtin_int8, 32));
2676 append_composite_type_field (t, "v16_int16",
2677 init_vector_type (bt->builtin_int16, 16));
2678 append_composite_type_field (t, "v8_int32",
2679 init_vector_type (bt->builtin_int32, 8));
2680 append_composite_type_field (t, "v4_int64",
2681 init_vector_type (bt->builtin_int64, 4));
2682 append_composite_type_field (t, "v2_int128",
2683 init_vector_type (bt->builtin_int128, 2));
2684
2685 TYPE_VECTOR (t) = 1;
2686 TYPE_NAME (t) = "builtin_type_vec256i";
2687 tdep->i386_ymm_type = t;
2688 }
2689
2690 return tdep->i386_ymm_type;
2691 }
2692
2693 /* Construct vector type for MMX registers. */
2694 static struct type *
2695 i386_mmx_type (struct gdbarch *gdbarch)
2696 {
2697 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2698
2699 if (!tdep->i386_mmx_type)
2700 {
2701 const struct builtin_type *bt = builtin_type (gdbarch);
2702
2703 /* The type we're building is this: */
2704 #if 0
2705 union __gdb_builtin_type_vec64i
2706 {
2707 int64_t uint64;
2708 int32_t v2_int32[2];
2709 int16_t v4_int16[4];
2710 int8_t v8_int8[8];
2711 };
2712 #endif
2713
2714 struct type *t;
2715
2716 t = arch_composite_type (gdbarch,
2717 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2718
2719 append_composite_type_field (t, "uint64", bt->builtin_int64);
2720 append_composite_type_field (t, "v2_int32",
2721 init_vector_type (bt->builtin_int32, 2));
2722 append_composite_type_field (t, "v4_int16",
2723 init_vector_type (bt->builtin_int16, 4));
2724 append_composite_type_field (t, "v8_int8",
2725 init_vector_type (bt->builtin_int8, 8));
2726
2727 TYPE_VECTOR (t) = 1;
2728 TYPE_NAME (t) = "builtin_type_vec64i";
2729 tdep->i386_mmx_type = t;
2730 }
2731
2732 return tdep->i386_mmx_type;
2733 }
2734
2735 /* Return the GDB type object for the "standard" data type of data in
2736 register REGNUM. */
2737
2738 static struct type *
2739 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2740 {
2741 if (i386_mmx_regnum_p (gdbarch, regnum))
2742 return i386_mmx_type (gdbarch);
2743 else if (i386_ymm_regnum_p (gdbarch, regnum))
2744 return i386_ymm_type (gdbarch);
2745 else
2746 {
2747 const struct builtin_type *bt = builtin_type (gdbarch);
2748 if (i386_byte_regnum_p (gdbarch, regnum))
2749 return bt->builtin_int8;
2750 else if (i386_word_regnum_p (gdbarch, regnum))
2751 return bt->builtin_int16;
2752 else if (i386_dword_regnum_p (gdbarch, regnum))
2753 return bt->builtin_int32;
2754 }
2755
2756 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2757 }
2758
2759 /* Map a cooked register onto a raw register or memory. For the i386,
2760 the MMX registers need to be mapped onto floating point registers. */
2761
2762 static int
2763 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2764 {
2765 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2766 int mmxreg, fpreg;
2767 ULONGEST fstat;
2768 int tos;
2769
2770 mmxreg = regnum - tdep->mm0_regnum;
2771 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2772 tos = (fstat >> 11) & 0x7;
2773 fpreg = (mmxreg + tos) % 8;
2774
2775 return (I387_ST0_REGNUM (tdep) + fpreg);
2776 }
2777
2778 enum register_status
2779 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2780 int regnum, gdb_byte *buf)
2781 {
2782 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2783 enum register_status status;
2784
2785 if (i386_mmx_regnum_p (gdbarch, regnum))
2786 {
2787 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2788
2789 /* Extract (always little endian). */
2790 status = regcache_raw_read (regcache, fpnum, raw_buf);
2791 if (status != REG_VALID)
2792 return status;
2793 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2794 }
2795 else
2796 {
2797 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2798
2799 if (i386_ymm_regnum_p (gdbarch, regnum))
2800 {
2801 regnum -= tdep->ymm0_regnum;
2802
2803 /* Extract (always little endian). Read lower 128bits. */
2804 status = regcache_raw_read (regcache,
2805 I387_XMM0_REGNUM (tdep) + regnum,
2806 raw_buf);
2807 if (status != REG_VALID)
2808 return status;
2809 memcpy (buf, raw_buf, 16);
2810 /* Read upper 128bits. */
2811 status = regcache_raw_read (regcache,
2812 tdep->ymm0h_regnum + regnum,
2813 raw_buf);
2814 if (status != REG_VALID)
2815 return status;
2816 memcpy (buf + 16, raw_buf, 16);
2817 }
2818 else if (i386_word_regnum_p (gdbarch, regnum))
2819 {
2820 int gpnum = regnum - tdep->ax_regnum;
2821
2822 /* Extract (always little endian). */
2823 status = regcache_raw_read (regcache, gpnum, raw_buf);
2824 if (status != REG_VALID)
2825 return status;
2826 memcpy (buf, raw_buf, 2);
2827 }
2828 else if (i386_byte_regnum_p (gdbarch, regnum))
2829 {
2830 /* Check byte pseudo registers last since this function will
2831 be called from amd64_pseudo_register_read, which handles
2832 byte pseudo registers differently. */
2833 int gpnum = regnum - tdep->al_regnum;
2834
2835 /* Extract (always little endian). We read both lower and
2836 upper registers. */
2837 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2838 if (status != REG_VALID)
2839 return status;
2840 if (gpnum >= 4)
2841 memcpy (buf, raw_buf + 1, 1);
2842 else
2843 memcpy (buf, raw_buf, 1);
2844 }
2845 else
2846 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2847 }
2848
2849 return REG_VALID;
2850 }
2851
2852 void
2853 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2854 int regnum, const gdb_byte *buf)
2855 {
2856 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2857
2858 if (i386_mmx_regnum_p (gdbarch, regnum))
2859 {
2860 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2861
2862 /* Read ... */
2863 regcache_raw_read (regcache, fpnum, raw_buf);
2864 /* ... Modify ... (always little endian). */
2865 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2866 /* ... Write. */
2867 regcache_raw_write (regcache, fpnum, raw_buf);
2868 }
2869 else
2870 {
2871 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2872
2873 if (i386_ymm_regnum_p (gdbarch, regnum))
2874 {
2875 regnum -= tdep->ymm0_regnum;
2876
2877 /* ... Write lower 128bits. */
2878 regcache_raw_write (regcache,
2879 I387_XMM0_REGNUM (tdep) + regnum,
2880 buf);
2881 /* ... Write upper 128bits. */
2882 regcache_raw_write (regcache,
2883 tdep->ymm0h_regnum + regnum,
2884 buf + 16);
2885 }
2886 else if (i386_word_regnum_p (gdbarch, regnum))
2887 {
2888 int gpnum = regnum - tdep->ax_regnum;
2889
2890 /* Read ... */
2891 regcache_raw_read (regcache, gpnum, raw_buf);
2892 /* ... Modify ... (always little endian). */
2893 memcpy (raw_buf, buf, 2);
2894 /* ... Write. */
2895 regcache_raw_write (regcache, gpnum, raw_buf);
2896 }
2897 else if (i386_byte_regnum_p (gdbarch, regnum))
2898 {
2899 /* Check byte pseudo registers last since this function will
2900 be called from amd64_pseudo_register_read, which handles
2901 byte pseudo registers differently. */
2902 int gpnum = regnum - tdep->al_regnum;
2903
2904 /* Read ... We read both lower and upper registers. */
2905 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2906 /* ... Modify ... (always little endian). */
2907 if (gpnum >= 4)
2908 memcpy (raw_buf + 1, buf, 1);
2909 else
2910 memcpy (raw_buf, buf, 1);
2911 /* ... Write. */
2912 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2913 }
2914 else
2915 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2916 }
2917 }
2918 \f
2919
2920 /* Return the register number of the register allocated by GCC after
2921 REGNUM, or -1 if there is no such register. */
2922
2923 static int
2924 i386_next_regnum (int regnum)
2925 {
2926 /* GCC allocates the registers in the order:
2927
2928 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2929
2930 Since storing a variable in %esp doesn't make any sense we return
2931 -1 for %ebp and for %esp itself. */
2932 static int next_regnum[] =
2933 {
2934 I386_EDX_REGNUM, /* Slot for %eax. */
2935 I386_EBX_REGNUM, /* Slot for %ecx. */
2936 I386_ECX_REGNUM, /* Slot for %edx. */
2937 I386_ESI_REGNUM, /* Slot for %ebx. */
2938 -1, -1, /* Slots for %esp and %ebp. */
2939 I386_EDI_REGNUM, /* Slot for %esi. */
2940 I386_EBP_REGNUM /* Slot for %edi. */
2941 };
2942
2943 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2944 return next_regnum[regnum];
2945
2946 return -1;
2947 }
2948
2949 /* Return nonzero if a value of type TYPE stored in register REGNUM
2950 needs any special handling. */
2951
2952 static int
2953 i386_convert_register_p (struct gdbarch *gdbarch,
2954 int regnum, struct type *type)
2955 {
2956 int len = TYPE_LENGTH (type);
2957
2958 /* Values may be spread across multiple registers. Most debugging
2959 formats aren't expressive enough to specify the locations, so
2960 some heuristics is involved. Right now we only handle types that
2961 have a length that is a multiple of the word size, since GCC
2962 doesn't seem to put any other types into registers. */
2963 if (len > 4 && len % 4 == 0)
2964 {
2965 int last_regnum = regnum;
2966
2967 while (len > 4)
2968 {
2969 last_regnum = i386_next_regnum (last_regnum);
2970 len -= 4;
2971 }
2972
2973 if (last_regnum != -1)
2974 return 1;
2975 }
2976
2977 return i387_convert_register_p (gdbarch, regnum, type);
2978 }
2979
2980 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
2981 return its contents in TO. */
2982
2983 static int
2984 i386_register_to_value (struct frame_info *frame, int regnum,
2985 struct type *type, gdb_byte *to,
2986 int *optimizedp, int *unavailablep)
2987 {
2988 struct gdbarch *gdbarch = get_frame_arch (frame);
2989 int len = TYPE_LENGTH (type);
2990
2991 if (i386_fp_regnum_p (gdbarch, regnum))
2992 return i387_register_to_value (frame, regnum, type, to,
2993 optimizedp, unavailablep);
2994
2995 /* Read a value spread across multiple registers. */
2996
2997 gdb_assert (len > 4 && len % 4 == 0);
2998
2999 while (len > 0)
3000 {
3001 gdb_assert (regnum != -1);
3002 gdb_assert (register_size (gdbarch, regnum) == 4);
3003
3004 if (!get_frame_register_bytes (frame, regnum, 0,
3005 register_size (gdbarch, regnum),
3006 to, optimizedp, unavailablep))
3007 return 0;
3008
3009 regnum = i386_next_regnum (regnum);
3010 len -= 4;
3011 to += 4;
3012 }
3013
3014 *optimizedp = *unavailablep = 0;
3015 return 1;
3016 }
3017
3018 /* Write the contents FROM of a value of type TYPE into register
3019 REGNUM in frame FRAME. */
3020
3021 static void
3022 i386_value_to_register (struct frame_info *frame, int regnum,
3023 struct type *type, const gdb_byte *from)
3024 {
3025 int len = TYPE_LENGTH (type);
3026
3027 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3028 {
3029 i387_value_to_register (frame, regnum, type, from);
3030 return;
3031 }
3032
3033 /* Write a value spread across multiple registers. */
3034
3035 gdb_assert (len > 4 && len % 4 == 0);
3036
3037 while (len > 0)
3038 {
3039 gdb_assert (regnum != -1);
3040 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3041
3042 put_frame_register (frame, regnum, from);
3043 regnum = i386_next_regnum (regnum);
3044 len -= 4;
3045 from += 4;
3046 }
3047 }
3048 \f
3049 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3050 in the general-purpose register set REGSET to register cache
3051 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3052
3053 void
3054 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3055 int regnum, const void *gregs, size_t len)
3056 {
3057 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3058 const gdb_byte *regs = gregs;
3059 int i;
3060
3061 gdb_assert (len == tdep->sizeof_gregset);
3062
3063 for (i = 0; i < tdep->gregset_num_regs; i++)
3064 {
3065 if ((regnum == i || regnum == -1)
3066 && tdep->gregset_reg_offset[i] != -1)
3067 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3068 }
3069 }
3070
3071 /* Collect register REGNUM from the register cache REGCACHE and store
3072 it in the buffer specified by GREGS and LEN as described by the
3073 general-purpose register set REGSET. If REGNUM is -1, do this for
3074 all registers in REGSET. */
3075
3076 void
3077 i386_collect_gregset (const struct regset *regset,
3078 const struct regcache *regcache,
3079 int regnum, void *gregs, size_t len)
3080 {
3081 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3082 gdb_byte *regs = gregs;
3083 int i;
3084
3085 gdb_assert (len == tdep->sizeof_gregset);
3086
3087 for (i = 0; i < tdep->gregset_num_regs; i++)
3088 {
3089 if ((regnum == i || regnum == -1)
3090 && tdep->gregset_reg_offset[i] != -1)
3091 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3092 }
3093 }
3094
3095 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3096 in the floating-point register set REGSET to register cache
3097 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3098
3099 static void
3100 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3101 int regnum, const void *fpregs, size_t len)
3102 {
3103 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3104
3105 if (len == I387_SIZEOF_FXSAVE)
3106 {
3107 i387_supply_fxsave (regcache, regnum, fpregs);
3108 return;
3109 }
3110
3111 gdb_assert (len == tdep->sizeof_fpregset);
3112 i387_supply_fsave (regcache, regnum, fpregs);
3113 }
3114
3115 /* Collect register REGNUM from the register cache REGCACHE and store
3116 it in the buffer specified by FPREGS and LEN as described by the
3117 floating-point register set REGSET. If REGNUM is -1, do this for
3118 all registers in REGSET. */
3119
3120 static void
3121 i386_collect_fpregset (const struct regset *regset,
3122 const struct regcache *regcache,
3123 int regnum, void *fpregs, size_t len)
3124 {
3125 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3126
3127 if (len == I387_SIZEOF_FXSAVE)
3128 {
3129 i387_collect_fxsave (regcache, regnum, fpregs);
3130 return;
3131 }
3132
3133 gdb_assert (len == tdep->sizeof_fpregset);
3134 i387_collect_fsave (regcache, regnum, fpregs);
3135 }
3136
3137 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3138
3139 static void
3140 i386_supply_xstateregset (const struct regset *regset,
3141 struct regcache *regcache, int regnum,
3142 const void *xstateregs, size_t len)
3143 {
3144 i387_supply_xsave (regcache, regnum, xstateregs);
3145 }
3146
3147 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3148
3149 static void
3150 i386_collect_xstateregset (const struct regset *regset,
3151 const struct regcache *regcache,
3152 int regnum, void *xstateregs, size_t len)
3153 {
3154 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3155 }
3156
3157 /* Return the appropriate register set for the core section identified
3158 by SECT_NAME and SECT_SIZE. */
3159
3160 const struct regset *
3161 i386_regset_from_core_section (struct gdbarch *gdbarch,
3162 const char *sect_name, size_t sect_size)
3163 {
3164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3165
3166 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3167 {
3168 if (tdep->gregset == NULL)
3169 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3170 i386_collect_gregset);
3171 return tdep->gregset;
3172 }
3173
3174 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3175 || (strcmp (sect_name, ".reg-xfp") == 0
3176 && sect_size == I387_SIZEOF_FXSAVE))
3177 {
3178 if (tdep->fpregset == NULL)
3179 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3180 i386_collect_fpregset);
3181 return tdep->fpregset;
3182 }
3183
3184 if (strcmp (sect_name, ".reg-xstate") == 0)
3185 {
3186 if (tdep->xstateregset == NULL)
3187 tdep->xstateregset = regset_alloc (gdbarch,
3188 i386_supply_xstateregset,
3189 i386_collect_xstateregset);
3190
3191 return tdep->xstateregset;
3192 }
3193
3194 return NULL;
3195 }
3196 \f
3197
3198 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3199
3200 CORE_ADDR
3201 i386_pe_skip_trampoline_code (struct frame_info *frame,
3202 CORE_ADDR pc, char *name)
3203 {
3204 struct gdbarch *gdbarch = get_frame_arch (frame);
3205 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3206
3207 /* jmp *(dest) */
3208 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3209 {
3210 unsigned long indirect =
3211 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3212 struct minimal_symbol *indsym =
3213 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
3214 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3215
3216 if (symname)
3217 {
3218 if (strncmp (symname, "__imp_", 6) == 0
3219 || strncmp (symname, "_imp_", 5) == 0)
3220 return name ? 1 :
3221 read_memory_unsigned_integer (indirect, 4, byte_order);
3222 }
3223 }
3224 return 0; /* Not a trampoline. */
3225 }
3226 \f
3227
3228 /* Return whether the THIS_FRAME corresponds to a sigtramp
3229 routine. */
3230
3231 int
3232 i386_sigtramp_p (struct frame_info *this_frame)
3233 {
3234 CORE_ADDR pc = get_frame_pc (this_frame);
3235 char *name;
3236
3237 find_pc_partial_function (pc, &name, NULL, NULL);
3238 return (name && strcmp ("_sigtramp", name) == 0);
3239 }
3240 \f
3241
3242 /* We have two flavours of disassembly. The machinery on this page
3243 deals with switching between those. */
3244
3245 static int
3246 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3247 {
3248 gdb_assert (disassembly_flavor == att_flavor
3249 || disassembly_flavor == intel_flavor);
3250
3251 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3252 constified, cast to prevent a compiler warning. */
3253 info->disassembler_options = (char *) disassembly_flavor;
3254
3255 return print_insn_i386 (pc, info);
3256 }
3257 \f
3258
3259 /* There are a few i386 architecture variants that differ only
3260 slightly from the generic i386 target. For now, we don't give them
3261 their own source file, but include them here. As a consequence,
3262 they'll always be included. */
3263
3264 /* System V Release 4 (SVR4). */
3265
3266 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3267 routine. */
3268
3269 static int
3270 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3271 {
3272 CORE_ADDR pc = get_frame_pc (this_frame);
3273 char *name;
3274
3275 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3276 currently unknown. */
3277 find_pc_partial_function (pc, &name, NULL, NULL);
3278 return (name && (strcmp ("_sigreturn", name) == 0
3279 || strcmp ("_sigacthandler", name) == 0
3280 || strcmp ("sigvechandler", name) == 0));
3281 }
3282
3283 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3284 address of the associated sigcontext (ucontext) structure. */
3285
3286 static CORE_ADDR
3287 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3288 {
3289 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3290 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3291 gdb_byte buf[4];
3292 CORE_ADDR sp;
3293
3294 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3295 sp = extract_unsigned_integer (buf, 4, byte_order);
3296
3297 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3298 }
3299 \f
3300
3301 /* Generic ELF. */
3302
3303 void
3304 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3305 {
3306 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3307 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3308 }
3309
3310 /* System V Release 4 (SVR4). */
3311
3312 void
3313 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3314 {
3315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3316
3317 /* System V Release 4 uses ELF. */
3318 i386_elf_init_abi (info, gdbarch);
3319
3320 /* System V Release 4 has shared libraries. */
3321 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3322
3323 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3324 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3325 tdep->sc_pc_offset = 36 + 14 * 4;
3326 tdep->sc_sp_offset = 36 + 17 * 4;
3327
3328 tdep->jb_pc_offset = 20;
3329 }
3330
3331 /* DJGPP. */
3332
3333 static void
3334 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3335 {
3336 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3337
3338 /* DJGPP doesn't have any special frames for signal handlers. */
3339 tdep->sigtramp_p = NULL;
3340
3341 tdep->jb_pc_offset = 36;
3342
3343 /* DJGPP does not support the SSE registers. */
3344 if (! tdesc_has_registers (info.target_desc))
3345 tdep->tdesc = tdesc_i386_mmx;
3346
3347 /* Native compiler is GCC, which uses the SVR4 register numbering
3348 even in COFF and STABS. See the comment in i386_gdbarch_init,
3349 before the calls to set_gdbarch_stab_reg_to_regnum and
3350 set_gdbarch_sdb_reg_to_regnum. */
3351 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3352 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3353
3354 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3355 }
3356 \f
3357
3358 /* i386 register groups. In addition to the normal groups, add "mmx"
3359 and "sse". */
3360
3361 static struct reggroup *i386_sse_reggroup;
3362 static struct reggroup *i386_mmx_reggroup;
3363
3364 static void
3365 i386_init_reggroups (void)
3366 {
3367 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3368 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3369 }
3370
3371 static void
3372 i386_add_reggroups (struct gdbarch *gdbarch)
3373 {
3374 reggroup_add (gdbarch, i386_sse_reggroup);
3375 reggroup_add (gdbarch, i386_mmx_reggroup);
3376 reggroup_add (gdbarch, general_reggroup);
3377 reggroup_add (gdbarch, float_reggroup);
3378 reggroup_add (gdbarch, all_reggroup);
3379 reggroup_add (gdbarch, save_reggroup);
3380 reggroup_add (gdbarch, restore_reggroup);
3381 reggroup_add (gdbarch, vector_reggroup);
3382 reggroup_add (gdbarch, system_reggroup);
3383 }
3384
3385 int
3386 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3387 struct reggroup *group)
3388 {
3389 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3390 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3391 ymm_regnum_p, ymmh_regnum_p;
3392
3393 /* Don't include pseudo registers, except for MMX, in any register
3394 groups. */
3395 if (i386_byte_regnum_p (gdbarch, regnum))
3396 return 0;
3397
3398 if (i386_word_regnum_p (gdbarch, regnum))
3399 return 0;
3400
3401 if (i386_dword_regnum_p (gdbarch, regnum))
3402 return 0;
3403
3404 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3405 if (group == i386_mmx_reggroup)
3406 return mmx_regnum_p;
3407
3408 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3409 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3410 if (group == i386_sse_reggroup)
3411 return xmm_regnum_p || mxcsr_regnum_p;
3412
3413 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3414 if (group == vector_reggroup)
3415 return (mmx_regnum_p
3416 || ymm_regnum_p
3417 || mxcsr_regnum_p
3418 || (xmm_regnum_p
3419 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3420 == I386_XSTATE_SSE_MASK)));
3421
3422 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3423 || i386_fpc_regnum_p (gdbarch, regnum));
3424 if (group == float_reggroup)
3425 return fp_regnum_p;
3426
3427 /* For "info reg all", don't include upper YMM registers nor XMM
3428 registers when AVX is supported. */
3429 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3430 if (group == all_reggroup
3431 && ((xmm_regnum_p
3432 && (tdep->xcr0 & I386_XSTATE_AVX))
3433 || ymmh_regnum_p))
3434 return 0;
3435
3436 if (group == general_reggroup)
3437 return (!fp_regnum_p
3438 && !mmx_regnum_p
3439 && !mxcsr_regnum_p
3440 && !xmm_regnum_p
3441 && !ymm_regnum_p
3442 && !ymmh_regnum_p);
3443
3444 return default_register_reggroup_p (gdbarch, regnum, group);
3445 }
3446 \f
3447
3448 /* Get the ARGIth function argument for the current function. */
3449
3450 static CORE_ADDR
3451 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3452 struct type *type)
3453 {
3454 struct gdbarch *gdbarch = get_frame_arch (frame);
3455 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3456 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3457 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3458 }
3459
3460 static void
3461 i386_skip_permanent_breakpoint (struct regcache *regcache)
3462 {
3463 CORE_ADDR current_pc = regcache_read_pc (regcache);
3464
3465 /* On i386, breakpoint is exactly 1 byte long, so we just
3466 adjust the PC in the regcache. */
3467 current_pc += 1;
3468 regcache_write_pc (regcache, current_pc);
3469 }
3470
3471
3472 #define PREFIX_REPZ 0x01
3473 #define PREFIX_REPNZ 0x02
3474 #define PREFIX_LOCK 0x04
3475 #define PREFIX_DATA 0x08
3476 #define PREFIX_ADDR 0x10
3477
3478 /* operand size */
3479 enum
3480 {
3481 OT_BYTE = 0,
3482 OT_WORD,
3483 OT_LONG,
3484 OT_QUAD,
3485 OT_DQUAD,
3486 };
3487
3488 /* i386 arith/logic operations */
3489 enum
3490 {
3491 OP_ADDL,
3492 OP_ORL,
3493 OP_ADCL,
3494 OP_SBBL,
3495 OP_ANDL,
3496 OP_SUBL,
3497 OP_XORL,
3498 OP_CMPL,
3499 };
3500
3501 struct i386_record_s
3502 {
3503 struct gdbarch *gdbarch;
3504 struct regcache *regcache;
3505 CORE_ADDR orig_addr;
3506 CORE_ADDR addr;
3507 int aflag;
3508 int dflag;
3509 int override;
3510 uint8_t modrm;
3511 uint8_t mod, reg, rm;
3512 int ot;
3513 uint8_t rex_x;
3514 uint8_t rex_b;
3515 int rip_offset;
3516 int popl_esp_hack;
3517 const int *regmap;
3518 };
3519
3520 /* Parse "modrm" part in current memory address that irp->addr point to
3521 Return -1 if something wrong. */
3522
3523 static int
3524 i386_record_modrm (struct i386_record_s *irp)
3525 {
3526 struct gdbarch *gdbarch = irp->gdbarch;
3527
3528 if (target_read_memory (irp->addr, &irp->modrm, 1))
3529 {
3530 if (record_debug)
3531 printf_unfiltered (_("Process record: error reading memory at "
3532 "addr %s len = 1.\n"),
3533 paddress (gdbarch, irp->addr));
3534 return -1;
3535 }
3536 irp->addr++;
3537 irp->mod = (irp->modrm >> 6) & 3;
3538 irp->reg = (irp->modrm >> 3) & 7;
3539 irp->rm = irp->modrm & 7;
3540
3541 return 0;
3542 }
3543
3544 /* Get the memory address that current instruction write to and set it to
3545 the argument "addr".
3546 Return -1 if something wrong. */
3547
3548 static int
3549 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3550 {
3551 struct gdbarch *gdbarch = irp->gdbarch;
3552 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3553 gdb_byte buf[4];
3554 ULONGEST offset64;
3555
3556 *addr = 0;
3557 if (irp->aflag)
3558 {
3559 /* 32 bits */
3560 int havesib = 0;
3561 uint8_t scale = 0;
3562 uint8_t byte;
3563 uint8_t index = 0;
3564 uint8_t base = irp->rm;
3565
3566 if (base == 4)
3567 {
3568 havesib = 1;
3569 if (target_read_memory (irp->addr, &byte, 1))
3570 {
3571 if (record_debug)
3572 printf_unfiltered (_("Process record: error reading memory "
3573 "at addr %s len = 1.\n"),
3574 paddress (gdbarch, irp->addr));
3575 return -1;
3576 }
3577 irp->addr++;
3578 scale = (byte >> 6) & 3;
3579 index = ((byte >> 3) & 7) | irp->rex_x;
3580 base = (byte & 7);
3581 }
3582 base |= irp->rex_b;
3583
3584 switch (irp->mod)
3585 {
3586 case 0:
3587 if ((base & 7) == 5)
3588 {
3589 base = 0xff;
3590 if (target_read_memory (irp->addr, buf, 4))
3591 {
3592 if (record_debug)
3593 printf_unfiltered (_("Process record: error reading "
3594 "memory at addr %s len = 4.\n"),
3595 paddress (gdbarch, irp->addr));
3596 return -1;
3597 }
3598 irp->addr += 4;
3599 *addr = extract_signed_integer (buf, 4, byte_order);
3600 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3601 *addr += irp->addr + irp->rip_offset;
3602 }
3603 break;
3604 case 1:
3605 if (target_read_memory (irp->addr, buf, 1))
3606 {
3607 if (record_debug)
3608 printf_unfiltered (_("Process record: error reading memory "
3609 "at addr %s len = 1.\n"),
3610 paddress (gdbarch, irp->addr));
3611 return -1;
3612 }
3613 irp->addr++;
3614 *addr = (int8_t) buf[0];
3615 break;
3616 case 2:
3617 if (target_read_memory (irp->addr, buf, 4))
3618 {
3619 if (record_debug)
3620 printf_unfiltered (_("Process record: error reading memory "
3621 "at addr %s len = 4.\n"),
3622 paddress (gdbarch, irp->addr));
3623 return -1;
3624 }
3625 *addr = extract_signed_integer (buf, 4, byte_order);
3626 irp->addr += 4;
3627 break;
3628 }
3629
3630 offset64 = 0;
3631 if (base != 0xff)
3632 {
3633 if (base == 4 && irp->popl_esp_hack)
3634 *addr += irp->popl_esp_hack;
3635 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
3636 &offset64);
3637 }
3638 if (irp->aflag == 2)
3639 {
3640 *addr += offset64;
3641 }
3642 else
3643 *addr = (uint32_t) (offset64 + *addr);
3644
3645 if (havesib && (index != 4 || scale != 0))
3646 {
3647 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
3648 &offset64);
3649 if (irp->aflag == 2)
3650 *addr += offset64 << scale;
3651 else
3652 *addr = (uint32_t) (*addr + (offset64 << scale));
3653 }
3654 }
3655 else
3656 {
3657 /* 16 bits */
3658 switch (irp->mod)
3659 {
3660 case 0:
3661 if (irp->rm == 6)
3662 {
3663 if (target_read_memory (irp->addr, buf, 2))
3664 {
3665 if (record_debug)
3666 printf_unfiltered (_("Process record: error reading "
3667 "memory at addr %s len = 2.\n"),
3668 paddress (gdbarch, irp->addr));
3669 return -1;
3670 }
3671 irp->addr += 2;
3672 *addr = extract_signed_integer (buf, 2, byte_order);
3673 irp->rm = 0;
3674 goto no_rm;
3675 }
3676 break;
3677 case 1:
3678 if (target_read_memory (irp->addr, buf, 1))
3679 {
3680 if (record_debug)
3681 printf_unfiltered (_("Process record: error reading memory "
3682 "at addr %s len = 1.\n"),
3683 paddress (gdbarch, irp->addr));
3684 return -1;
3685 }
3686 irp->addr++;
3687 *addr = (int8_t) buf[0];
3688 break;
3689 case 2:
3690 if (target_read_memory (irp->addr, buf, 2))
3691 {
3692 if (record_debug)
3693 printf_unfiltered (_("Process record: error reading memory "
3694 "at addr %s len = 2.\n"),
3695 paddress (gdbarch, irp->addr));
3696 return -1;
3697 }
3698 irp->addr += 2;
3699 *addr = extract_signed_integer (buf, 2, byte_order);
3700 break;
3701 }
3702
3703 switch (irp->rm)
3704 {
3705 case 0:
3706 regcache_raw_read_unsigned (irp->regcache,
3707 irp->regmap[X86_RECORD_REBX_REGNUM],
3708 &offset64);
3709 *addr = (uint32_t) (*addr + offset64);
3710 regcache_raw_read_unsigned (irp->regcache,
3711 irp->regmap[X86_RECORD_RESI_REGNUM],
3712 &offset64);
3713 *addr = (uint32_t) (*addr + offset64);
3714 break;
3715 case 1:
3716 regcache_raw_read_unsigned (irp->regcache,
3717 irp->regmap[X86_RECORD_REBX_REGNUM],
3718 &offset64);
3719 *addr = (uint32_t) (*addr + offset64);
3720 regcache_raw_read_unsigned (irp->regcache,
3721 irp->regmap[X86_RECORD_REDI_REGNUM],
3722 &offset64);
3723 *addr = (uint32_t) (*addr + offset64);
3724 break;
3725 case 2:
3726 regcache_raw_read_unsigned (irp->regcache,
3727 irp->regmap[X86_RECORD_REBP_REGNUM],
3728 &offset64);
3729 *addr = (uint32_t) (*addr + offset64);
3730 regcache_raw_read_unsigned (irp->regcache,
3731 irp->regmap[X86_RECORD_RESI_REGNUM],
3732 &offset64);
3733 *addr = (uint32_t) (*addr + offset64);
3734 break;
3735 case 3:
3736 regcache_raw_read_unsigned (irp->regcache,
3737 irp->regmap[X86_RECORD_REBP_REGNUM],
3738 &offset64);
3739 *addr = (uint32_t) (*addr + offset64);
3740 regcache_raw_read_unsigned (irp->regcache,
3741 irp->regmap[X86_RECORD_REDI_REGNUM],
3742 &offset64);
3743 *addr = (uint32_t) (*addr + offset64);
3744 break;
3745 case 4:
3746 regcache_raw_read_unsigned (irp->regcache,
3747 irp->regmap[X86_RECORD_RESI_REGNUM],
3748 &offset64);
3749 *addr = (uint32_t) (*addr + offset64);
3750 break;
3751 case 5:
3752 regcache_raw_read_unsigned (irp->regcache,
3753 irp->regmap[X86_RECORD_REDI_REGNUM],
3754 &offset64);
3755 *addr = (uint32_t) (*addr + offset64);
3756 break;
3757 case 6:
3758 regcache_raw_read_unsigned (irp->regcache,
3759 irp->regmap[X86_RECORD_REBP_REGNUM],
3760 &offset64);
3761 *addr = (uint32_t) (*addr + offset64);
3762 break;
3763 case 7:
3764 regcache_raw_read_unsigned (irp->regcache,
3765 irp->regmap[X86_RECORD_REBX_REGNUM],
3766 &offset64);
3767 *addr = (uint32_t) (*addr + offset64);
3768 break;
3769 }
3770 *addr &= 0xffff;
3771 }
3772
3773 no_rm:
3774 return 0;
3775 }
3776
3777 /* Record the value of the memory that willbe changed in current instruction
3778 to "record_arch_list".
3779 Return -1 if something wrong. */
3780
3781 static int
3782 i386_record_lea_modrm (struct i386_record_s *irp)
3783 {
3784 struct gdbarch *gdbarch = irp->gdbarch;
3785 uint64_t addr;
3786
3787 if (irp->override >= 0)
3788 {
3789 if (record_memory_query)
3790 {
3791 int q;
3792
3793 target_terminal_ours ();
3794 q = yquery (_("\
3795 Process record ignores the memory change of instruction at address %s\n\
3796 because it can't get the value of the segment register.\n\
3797 Do you want to stop the program?"),
3798 paddress (gdbarch, irp->orig_addr));
3799 target_terminal_inferior ();
3800 if (q)
3801 return -1;
3802 }
3803
3804 return 0;
3805 }
3806
3807 if (i386_record_lea_modrm_addr (irp, &addr))
3808 return -1;
3809
3810 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3811 return -1;
3812
3813 return 0;
3814 }
3815
3816 /* Record the push operation to "record_arch_list".
3817 Return -1 if something wrong. */
3818
3819 static int
3820 i386_record_push (struct i386_record_s *irp, int size)
3821 {
3822 ULONGEST addr;
3823
3824 if (record_arch_list_add_reg (irp->regcache,
3825 irp->regmap[X86_RECORD_RESP_REGNUM]))
3826 return -1;
3827 regcache_raw_read_unsigned (irp->regcache,
3828 irp->regmap[X86_RECORD_RESP_REGNUM],
3829 &addr);
3830 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
3831 return -1;
3832
3833 return 0;
3834 }
3835
3836
3837 /* Defines contents to record. */
3838 #define I386_SAVE_FPU_REGS 0xfffd
3839 #define I386_SAVE_FPU_ENV 0xfffe
3840 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3841
3842 /* Record the value of floating point registers which will be changed
3843 by the current instruction to "record_arch_list". Return -1 if
3844 something is wrong. */
3845
3846 static int i386_record_floats (struct gdbarch *gdbarch,
3847 struct i386_record_s *ir,
3848 uint32_t iregnum)
3849 {
3850 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3851 int i;
3852
3853 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3854 happen. Currently we store st0-st7 registers, but we need not store all
3855 registers all the time, in future we use ftag register and record only
3856 those who are not marked as an empty. */
3857
3858 if (I386_SAVE_FPU_REGS == iregnum)
3859 {
3860 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3861 {
3862 if (record_arch_list_add_reg (ir->regcache, i))
3863 return -1;
3864 }
3865 }
3866 else if (I386_SAVE_FPU_ENV == iregnum)
3867 {
3868 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3869 {
3870 if (record_arch_list_add_reg (ir->regcache, i))
3871 return -1;
3872 }
3873 }
3874 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3875 {
3876 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3877 {
3878 if (record_arch_list_add_reg (ir->regcache, i))
3879 return -1;
3880 }
3881 }
3882 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3883 (iregnum <= I387_FOP_REGNUM (tdep)))
3884 {
3885 if (record_arch_list_add_reg (ir->regcache,iregnum))
3886 return -1;
3887 }
3888 else
3889 {
3890 /* Parameter error. */
3891 return -1;
3892 }
3893 if(I386_SAVE_FPU_ENV != iregnum)
3894 {
3895 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3896 {
3897 if (record_arch_list_add_reg (ir->regcache, i))
3898 return -1;
3899 }
3900 }
3901 return 0;
3902 }
3903
3904 /* Parse the current instruction and record the values of the registers and
3905 memory that will be changed in current instruction to "record_arch_list".
3906 Return -1 if something wrong. */
3907
3908 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3909 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3910
3911 int
3912 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3913 CORE_ADDR input_addr)
3914 {
3915 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3916 int prefixes = 0;
3917 int regnum = 0;
3918 uint32_t opcode;
3919 uint8_t opcode8;
3920 ULONGEST addr;
3921 gdb_byte buf[MAX_REGISTER_SIZE];
3922 struct i386_record_s ir;
3923 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3924 int rex = 0;
3925 uint8_t rex_w = -1;
3926 uint8_t rex_r = 0;
3927
3928 memset (&ir, 0, sizeof (struct i386_record_s));
3929 ir.regcache = regcache;
3930 ir.addr = input_addr;
3931 ir.orig_addr = input_addr;
3932 ir.aflag = 1;
3933 ir.dflag = 1;
3934 ir.override = -1;
3935 ir.popl_esp_hack = 0;
3936 ir.regmap = tdep->record_regmap;
3937 ir.gdbarch = gdbarch;
3938
3939 if (record_debug > 1)
3940 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
3941 "addr = %s\n",
3942 paddress (gdbarch, ir.addr));
3943
3944 /* prefixes */
3945 while (1)
3946 {
3947 if (target_read_memory (ir.addr, &opcode8, 1))
3948 {
3949 if (record_debug)
3950 printf_unfiltered (_("Process record: error reading memory at "
3951 "addr %s len = 1.\n"),
3952 paddress (gdbarch, ir.addr));
3953 return -1;
3954 }
3955 ir.addr++;
3956 switch (opcode8) /* Instruction prefixes */
3957 {
3958 case REPE_PREFIX_OPCODE:
3959 prefixes |= PREFIX_REPZ;
3960 break;
3961 case REPNE_PREFIX_OPCODE:
3962 prefixes |= PREFIX_REPNZ;
3963 break;
3964 case LOCK_PREFIX_OPCODE:
3965 prefixes |= PREFIX_LOCK;
3966 break;
3967 case CS_PREFIX_OPCODE:
3968 ir.override = X86_RECORD_CS_REGNUM;
3969 break;
3970 case SS_PREFIX_OPCODE:
3971 ir.override = X86_RECORD_SS_REGNUM;
3972 break;
3973 case DS_PREFIX_OPCODE:
3974 ir.override = X86_RECORD_DS_REGNUM;
3975 break;
3976 case ES_PREFIX_OPCODE:
3977 ir.override = X86_RECORD_ES_REGNUM;
3978 break;
3979 case FS_PREFIX_OPCODE:
3980 ir.override = X86_RECORD_FS_REGNUM;
3981 break;
3982 case GS_PREFIX_OPCODE:
3983 ir.override = X86_RECORD_GS_REGNUM;
3984 break;
3985 case DATA_PREFIX_OPCODE:
3986 prefixes |= PREFIX_DATA;
3987 break;
3988 case ADDR_PREFIX_OPCODE:
3989 prefixes |= PREFIX_ADDR;
3990 break;
3991 case 0x40: /* i386 inc %eax */
3992 case 0x41: /* i386 inc %ecx */
3993 case 0x42: /* i386 inc %edx */
3994 case 0x43: /* i386 inc %ebx */
3995 case 0x44: /* i386 inc %esp */
3996 case 0x45: /* i386 inc %ebp */
3997 case 0x46: /* i386 inc %esi */
3998 case 0x47: /* i386 inc %edi */
3999 case 0x48: /* i386 dec %eax */
4000 case 0x49: /* i386 dec %ecx */
4001 case 0x4a: /* i386 dec %edx */
4002 case 0x4b: /* i386 dec %ebx */
4003 case 0x4c: /* i386 dec %esp */
4004 case 0x4d: /* i386 dec %ebp */
4005 case 0x4e: /* i386 dec %esi */
4006 case 0x4f: /* i386 dec %edi */
4007 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4008 {
4009 /* REX */
4010 rex = 1;
4011 rex_w = (opcode8 >> 3) & 1;
4012 rex_r = (opcode8 & 0x4) << 1;
4013 ir.rex_x = (opcode8 & 0x2) << 2;
4014 ir.rex_b = (opcode8 & 0x1) << 3;
4015 }
4016 else /* 32 bit target */
4017 goto out_prefixes;
4018 break;
4019 default:
4020 goto out_prefixes;
4021 break;
4022 }
4023 }
4024 out_prefixes:
4025 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4026 {
4027 ir.dflag = 2;
4028 }
4029 else
4030 {
4031 if (prefixes & PREFIX_DATA)
4032 ir.dflag ^= 1;
4033 }
4034 if (prefixes & PREFIX_ADDR)
4035 ir.aflag ^= 1;
4036 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4037 ir.aflag = 2;
4038
4039 /* Now check op code. */
4040 opcode = (uint32_t) opcode8;
4041 reswitch:
4042 switch (opcode)
4043 {
4044 case 0x0f:
4045 if (target_read_memory (ir.addr, &opcode8, 1))
4046 {
4047 if (record_debug)
4048 printf_unfiltered (_("Process record: error reading memory at "
4049 "addr %s len = 1.\n"),
4050 paddress (gdbarch, ir.addr));
4051 return -1;
4052 }
4053 ir.addr++;
4054 opcode = (uint32_t) opcode8 | 0x0f00;
4055 goto reswitch;
4056 break;
4057
4058 case 0x00: /* arith & logic */
4059 case 0x01:
4060 case 0x02:
4061 case 0x03:
4062 case 0x04:
4063 case 0x05:
4064 case 0x08:
4065 case 0x09:
4066 case 0x0a:
4067 case 0x0b:
4068 case 0x0c:
4069 case 0x0d:
4070 case 0x10:
4071 case 0x11:
4072 case 0x12:
4073 case 0x13:
4074 case 0x14:
4075 case 0x15:
4076 case 0x18:
4077 case 0x19:
4078 case 0x1a:
4079 case 0x1b:
4080 case 0x1c:
4081 case 0x1d:
4082 case 0x20:
4083 case 0x21:
4084 case 0x22:
4085 case 0x23:
4086 case 0x24:
4087 case 0x25:
4088 case 0x28:
4089 case 0x29:
4090 case 0x2a:
4091 case 0x2b:
4092 case 0x2c:
4093 case 0x2d:
4094 case 0x30:
4095 case 0x31:
4096 case 0x32:
4097 case 0x33:
4098 case 0x34:
4099 case 0x35:
4100 case 0x38:
4101 case 0x39:
4102 case 0x3a:
4103 case 0x3b:
4104 case 0x3c:
4105 case 0x3d:
4106 if (((opcode >> 3) & 7) != OP_CMPL)
4107 {
4108 if ((opcode & 1) == 0)
4109 ir.ot = OT_BYTE;
4110 else
4111 ir.ot = ir.dflag + OT_WORD;
4112
4113 switch ((opcode >> 1) & 3)
4114 {
4115 case 0: /* OP Ev, Gv */
4116 if (i386_record_modrm (&ir))
4117 return -1;
4118 if (ir.mod != 3)
4119 {
4120 if (i386_record_lea_modrm (&ir))
4121 return -1;
4122 }
4123 else
4124 {
4125 ir.rm |= ir.rex_b;
4126 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4127 ir.rm &= 0x3;
4128 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4129 }
4130 break;
4131 case 1: /* OP Gv, Ev */
4132 if (i386_record_modrm (&ir))
4133 return -1;
4134 ir.reg |= rex_r;
4135 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4136 ir.reg &= 0x3;
4137 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4138 break;
4139 case 2: /* OP A, Iv */
4140 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4141 break;
4142 }
4143 }
4144 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4145 break;
4146
4147 case 0x80: /* GRP1 */
4148 case 0x81:
4149 case 0x82:
4150 case 0x83:
4151 if (i386_record_modrm (&ir))
4152 return -1;
4153
4154 if (ir.reg != OP_CMPL)
4155 {
4156 if ((opcode & 1) == 0)
4157 ir.ot = OT_BYTE;
4158 else
4159 ir.ot = ir.dflag + OT_WORD;
4160
4161 if (ir.mod != 3)
4162 {
4163 if (opcode == 0x83)
4164 ir.rip_offset = 1;
4165 else
4166 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4167 if (i386_record_lea_modrm (&ir))
4168 return -1;
4169 }
4170 else
4171 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4172 }
4173 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4174 break;
4175
4176 case 0x40: /* inc */
4177 case 0x41:
4178 case 0x42:
4179 case 0x43:
4180 case 0x44:
4181 case 0x45:
4182 case 0x46:
4183 case 0x47:
4184
4185 case 0x48: /* dec */
4186 case 0x49:
4187 case 0x4a:
4188 case 0x4b:
4189 case 0x4c:
4190 case 0x4d:
4191 case 0x4e:
4192 case 0x4f:
4193
4194 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4195 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4196 break;
4197
4198 case 0xf6: /* GRP3 */
4199 case 0xf7:
4200 if ((opcode & 1) == 0)
4201 ir.ot = OT_BYTE;
4202 else
4203 ir.ot = ir.dflag + OT_WORD;
4204 if (i386_record_modrm (&ir))
4205 return -1;
4206
4207 if (ir.mod != 3 && ir.reg == 0)
4208 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4209
4210 switch (ir.reg)
4211 {
4212 case 0: /* test */
4213 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4214 break;
4215 case 2: /* not */
4216 case 3: /* neg */
4217 if (ir.mod != 3)
4218 {
4219 if (i386_record_lea_modrm (&ir))
4220 return -1;
4221 }
4222 else
4223 {
4224 ir.rm |= ir.rex_b;
4225 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4226 ir.rm &= 0x3;
4227 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4228 }
4229 if (ir.reg == 3) /* neg */
4230 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4231 break;
4232 case 4: /* mul */
4233 case 5: /* imul */
4234 case 6: /* div */
4235 case 7: /* idiv */
4236 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4237 if (ir.ot != OT_BYTE)
4238 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4239 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4240 break;
4241 default:
4242 ir.addr -= 2;
4243 opcode = opcode << 8 | ir.modrm;
4244 goto no_support;
4245 break;
4246 }
4247 break;
4248
4249 case 0xfe: /* GRP4 */
4250 case 0xff: /* GRP5 */
4251 if (i386_record_modrm (&ir))
4252 return -1;
4253 if (ir.reg >= 2 && opcode == 0xfe)
4254 {
4255 ir.addr -= 2;
4256 opcode = opcode << 8 | ir.modrm;
4257 goto no_support;
4258 }
4259 switch (ir.reg)
4260 {
4261 case 0: /* inc */
4262 case 1: /* dec */
4263 if ((opcode & 1) == 0)
4264 ir.ot = OT_BYTE;
4265 else
4266 ir.ot = ir.dflag + OT_WORD;
4267 if (ir.mod != 3)
4268 {
4269 if (i386_record_lea_modrm (&ir))
4270 return -1;
4271 }
4272 else
4273 {
4274 ir.rm |= ir.rex_b;
4275 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4276 ir.rm &= 0x3;
4277 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4278 }
4279 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4280 break;
4281 case 2: /* call */
4282 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4283 ir.dflag = 2;
4284 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4285 return -1;
4286 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4287 break;
4288 case 3: /* lcall */
4289 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4290 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4291 return -1;
4292 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4293 break;
4294 case 4: /* jmp */
4295 case 5: /* ljmp */
4296 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4297 break;
4298 case 6: /* push */
4299 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4300 ir.dflag = 2;
4301 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4302 return -1;
4303 break;
4304 default:
4305 ir.addr -= 2;
4306 opcode = opcode << 8 | ir.modrm;
4307 goto no_support;
4308 break;
4309 }
4310 break;
4311
4312 case 0x84: /* test */
4313 case 0x85:
4314 case 0xa8:
4315 case 0xa9:
4316 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4317 break;
4318
4319 case 0x98: /* CWDE/CBW */
4320 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4321 break;
4322
4323 case 0x99: /* CDQ/CWD */
4324 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4325 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4326 break;
4327
4328 case 0x0faf: /* imul */
4329 case 0x69:
4330 case 0x6b:
4331 ir.ot = ir.dflag + OT_WORD;
4332 if (i386_record_modrm (&ir))
4333 return -1;
4334 if (opcode == 0x69)
4335 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4336 else if (opcode == 0x6b)
4337 ir.rip_offset = 1;
4338 ir.reg |= rex_r;
4339 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4340 ir.reg &= 0x3;
4341 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4342 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4343 break;
4344
4345 case 0x0fc0: /* xadd */
4346 case 0x0fc1:
4347 if ((opcode & 1) == 0)
4348 ir.ot = OT_BYTE;
4349 else
4350 ir.ot = ir.dflag + OT_WORD;
4351 if (i386_record_modrm (&ir))
4352 return -1;
4353 ir.reg |= rex_r;
4354 if (ir.mod == 3)
4355 {
4356 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4357 ir.reg &= 0x3;
4358 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4359 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4360 ir.rm &= 0x3;
4361 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4362 }
4363 else
4364 {
4365 if (i386_record_lea_modrm (&ir))
4366 return -1;
4367 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4368 ir.reg &= 0x3;
4369 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4370 }
4371 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4372 break;
4373
4374 case 0x0fb0: /* cmpxchg */
4375 case 0x0fb1:
4376 if ((opcode & 1) == 0)
4377 ir.ot = OT_BYTE;
4378 else
4379 ir.ot = ir.dflag + OT_WORD;
4380 if (i386_record_modrm (&ir))
4381 return -1;
4382 if (ir.mod == 3)
4383 {
4384 ir.reg |= rex_r;
4385 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4386 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4387 ir.reg &= 0x3;
4388 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4389 }
4390 else
4391 {
4392 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4393 if (i386_record_lea_modrm (&ir))
4394 return -1;
4395 }
4396 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4397 break;
4398
4399 case 0x0fc7: /* cmpxchg8b */
4400 if (i386_record_modrm (&ir))
4401 return -1;
4402 if (ir.mod == 3)
4403 {
4404 ir.addr -= 2;
4405 opcode = opcode << 8 | ir.modrm;
4406 goto no_support;
4407 }
4408 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4409 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4410 if (i386_record_lea_modrm (&ir))
4411 return -1;
4412 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4413 break;
4414
4415 case 0x50: /* push */
4416 case 0x51:
4417 case 0x52:
4418 case 0x53:
4419 case 0x54:
4420 case 0x55:
4421 case 0x56:
4422 case 0x57:
4423 case 0x68:
4424 case 0x6a:
4425 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4426 ir.dflag = 2;
4427 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4428 return -1;
4429 break;
4430
4431 case 0x06: /* push es */
4432 case 0x0e: /* push cs */
4433 case 0x16: /* push ss */
4434 case 0x1e: /* push ds */
4435 if (ir.regmap[X86_RECORD_R8_REGNUM])
4436 {
4437 ir.addr -= 1;
4438 goto no_support;
4439 }
4440 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4441 return -1;
4442 break;
4443
4444 case 0x0fa0: /* push fs */
4445 case 0x0fa8: /* push gs */
4446 if (ir.regmap[X86_RECORD_R8_REGNUM])
4447 {
4448 ir.addr -= 2;
4449 goto no_support;
4450 }
4451 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4452 return -1;
4453 break;
4454
4455 case 0x60: /* pusha */
4456 if (ir.regmap[X86_RECORD_R8_REGNUM])
4457 {
4458 ir.addr -= 1;
4459 goto no_support;
4460 }
4461 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4462 return -1;
4463 break;
4464
4465 case 0x58: /* pop */
4466 case 0x59:
4467 case 0x5a:
4468 case 0x5b:
4469 case 0x5c:
4470 case 0x5d:
4471 case 0x5e:
4472 case 0x5f:
4473 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4474 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4475 break;
4476
4477 case 0x61: /* popa */
4478 if (ir.regmap[X86_RECORD_R8_REGNUM])
4479 {
4480 ir.addr -= 1;
4481 goto no_support;
4482 }
4483 for (regnum = X86_RECORD_REAX_REGNUM;
4484 regnum <= X86_RECORD_REDI_REGNUM;
4485 regnum++)
4486 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4487 break;
4488
4489 case 0x8f: /* pop */
4490 if (ir.regmap[X86_RECORD_R8_REGNUM])
4491 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4492 else
4493 ir.ot = ir.dflag + OT_WORD;
4494 if (i386_record_modrm (&ir))
4495 return -1;
4496 if (ir.mod == 3)
4497 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4498 else
4499 {
4500 ir.popl_esp_hack = 1 << ir.ot;
4501 if (i386_record_lea_modrm (&ir))
4502 return -1;
4503 }
4504 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4505 break;
4506
4507 case 0xc8: /* enter */
4508 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4509 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4510 ir.dflag = 2;
4511 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4512 return -1;
4513 break;
4514
4515 case 0xc9: /* leave */
4516 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4517 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4518 break;
4519
4520 case 0x07: /* pop es */
4521 if (ir.regmap[X86_RECORD_R8_REGNUM])
4522 {
4523 ir.addr -= 1;
4524 goto no_support;
4525 }
4526 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4527 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4528 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4529 break;
4530
4531 case 0x17: /* pop ss */
4532 if (ir.regmap[X86_RECORD_R8_REGNUM])
4533 {
4534 ir.addr -= 1;
4535 goto no_support;
4536 }
4537 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4538 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4539 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4540 break;
4541
4542 case 0x1f: /* pop ds */
4543 if (ir.regmap[X86_RECORD_R8_REGNUM])
4544 {
4545 ir.addr -= 1;
4546 goto no_support;
4547 }
4548 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4549 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4550 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4551 break;
4552
4553 case 0x0fa1: /* pop fs */
4554 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4555 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4556 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4557 break;
4558
4559 case 0x0fa9: /* pop gs */
4560 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4561 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4562 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4563 break;
4564
4565 case 0x88: /* mov */
4566 case 0x89:
4567 case 0xc6:
4568 case 0xc7:
4569 if ((opcode & 1) == 0)
4570 ir.ot = OT_BYTE;
4571 else
4572 ir.ot = ir.dflag + OT_WORD;
4573
4574 if (i386_record_modrm (&ir))
4575 return -1;
4576
4577 if (ir.mod != 3)
4578 {
4579 if (opcode == 0xc6 || opcode == 0xc7)
4580 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4581 if (i386_record_lea_modrm (&ir))
4582 return -1;
4583 }
4584 else
4585 {
4586 if (opcode == 0xc6 || opcode == 0xc7)
4587 ir.rm |= ir.rex_b;
4588 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4589 ir.rm &= 0x3;
4590 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4591 }
4592 break;
4593
4594 case 0x8a: /* mov */
4595 case 0x8b:
4596 if ((opcode & 1) == 0)
4597 ir.ot = OT_BYTE;
4598 else
4599 ir.ot = ir.dflag + OT_WORD;
4600 if (i386_record_modrm (&ir))
4601 return -1;
4602 ir.reg |= rex_r;
4603 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4604 ir.reg &= 0x3;
4605 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4606 break;
4607
4608 case 0x8c: /* mov seg */
4609 if (i386_record_modrm (&ir))
4610 return -1;
4611 if (ir.reg > 5)
4612 {
4613 ir.addr -= 2;
4614 opcode = opcode << 8 | ir.modrm;
4615 goto no_support;
4616 }
4617
4618 if (ir.mod == 3)
4619 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4620 else
4621 {
4622 ir.ot = OT_WORD;
4623 if (i386_record_lea_modrm (&ir))
4624 return -1;
4625 }
4626 break;
4627
4628 case 0x8e: /* mov seg */
4629 if (i386_record_modrm (&ir))
4630 return -1;
4631 switch (ir.reg)
4632 {
4633 case 0:
4634 regnum = X86_RECORD_ES_REGNUM;
4635 break;
4636 case 2:
4637 regnum = X86_RECORD_SS_REGNUM;
4638 break;
4639 case 3:
4640 regnum = X86_RECORD_DS_REGNUM;
4641 break;
4642 case 4:
4643 regnum = X86_RECORD_FS_REGNUM;
4644 break;
4645 case 5:
4646 regnum = X86_RECORD_GS_REGNUM;
4647 break;
4648 default:
4649 ir.addr -= 2;
4650 opcode = opcode << 8 | ir.modrm;
4651 goto no_support;
4652 break;
4653 }
4654 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4655 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4656 break;
4657
4658 case 0x0fb6: /* movzbS */
4659 case 0x0fb7: /* movzwS */
4660 case 0x0fbe: /* movsbS */
4661 case 0x0fbf: /* movswS */
4662 if (i386_record_modrm (&ir))
4663 return -1;
4664 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4665 break;
4666
4667 case 0x8d: /* lea */
4668 if (i386_record_modrm (&ir))
4669 return -1;
4670 if (ir.mod == 3)
4671 {
4672 ir.addr -= 2;
4673 opcode = opcode << 8 | ir.modrm;
4674 goto no_support;
4675 }
4676 ir.ot = ir.dflag;
4677 ir.reg |= rex_r;
4678 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4679 ir.reg &= 0x3;
4680 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4681 break;
4682
4683 case 0xa0: /* mov EAX */
4684 case 0xa1:
4685
4686 case 0xd7: /* xlat */
4687 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4688 break;
4689
4690 case 0xa2: /* mov EAX */
4691 case 0xa3:
4692 if (ir.override >= 0)
4693 {
4694 if (record_memory_query)
4695 {
4696 int q;
4697
4698 target_terminal_ours ();
4699 q = yquery (_("\
4700 Process record ignores the memory change of instruction at address %s\n\
4701 because it can't get the value of the segment register.\n\
4702 Do you want to stop the program?"),
4703 paddress (gdbarch, ir.orig_addr));
4704 target_terminal_inferior ();
4705 if (q)
4706 return -1;
4707 }
4708 }
4709 else
4710 {
4711 if ((opcode & 1) == 0)
4712 ir.ot = OT_BYTE;
4713 else
4714 ir.ot = ir.dflag + OT_WORD;
4715 if (ir.aflag == 2)
4716 {
4717 if (target_read_memory (ir.addr, buf, 8))
4718 {
4719 if (record_debug)
4720 printf_unfiltered (_("Process record: error reading "
4721 "memory at addr 0x%s len = 8.\n"),
4722 paddress (gdbarch, ir.addr));
4723 return -1;
4724 }
4725 ir.addr += 8;
4726 addr = extract_unsigned_integer (buf, 8, byte_order);
4727 }
4728 else if (ir.aflag)
4729 {
4730 if (target_read_memory (ir.addr, buf, 4))
4731 {
4732 if (record_debug)
4733 printf_unfiltered (_("Process record: error reading "
4734 "memory at addr 0x%s len = 4.\n"),
4735 paddress (gdbarch, ir.addr));
4736 return -1;
4737 }
4738 ir.addr += 4;
4739 addr = extract_unsigned_integer (buf, 4, byte_order);
4740 }
4741 else
4742 {
4743 if (target_read_memory (ir.addr, buf, 2))
4744 {
4745 if (record_debug)
4746 printf_unfiltered (_("Process record: error reading "
4747 "memory at addr 0x%s len = 2.\n"),
4748 paddress (gdbarch, ir.addr));
4749 return -1;
4750 }
4751 ir.addr += 2;
4752 addr = extract_unsigned_integer (buf, 2, byte_order);
4753 }
4754 if (record_arch_list_add_mem (addr, 1 << ir.ot))
4755 return -1;
4756 }
4757 break;
4758
4759 case 0xb0: /* mov R, Ib */
4760 case 0xb1:
4761 case 0xb2:
4762 case 0xb3:
4763 case 0xb4:
4764 case 0xb5:
4765 case 0xb6:
4766 case 0xb7:
4767 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4768 ? ((opcode & 0x7) | ir.rex_b)
4769 : ((opcode & 0x7) & 0x3));
4770 break;
4771
4772 case 0xb8: /* mov R, Iv */
4773 case 0xb9:
4774 case 0xba:
4775 case 0xbb:
4776 case 0xbc:
4777 case 0xbd:
4778 case 0xbe:
4779 case 0xbf:
4780 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4781 break;
4782
4783 case 0x91: /* xchg R, EAX */
4784 case 0x92:
4785 case 0x93:
4786 case 0x94:
4787 case 0x95:
4788 case 0x96:
4789 case 0x97:
4790 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4791 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
4792 break;
4793
4794 case 0x86: /* xchg Ev, Gv */
4795 case 0x87:
4796 if ((opcode & 1) == 0)
4797 ir.ot = OT_BYTE;
4798 else
4799 ir.ot = ir.dflag + OT_WORD;
4800 if (i386_record_modrm (&ir))
4801 return -1;
4802 if (ir.mod == 3)
4803 {
4804 ir.rm |= ir.rex_b;
4805 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4806 ir.rm &= 0x3;
4807 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4808 }
4809 else
4810 {
4811 if (i386_record_lea_modrm (&ir))
4812 return -1;
4813 }
4814 ir.reg |= rex_r;
4815 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4816 ir.reg &= 0x3;
4817 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4818 break;
4819
4820 case 0xc4: /* les Gv */
4821 case 0xc5: /* lds Gv */
4822 if (ir.regmap[X86_RECORD_R8_REGNUM])
4823 {
4824 ir.addr -= 1;
4825 goto no_support;
4826 }
4827 /* FALLTHROUGH */
4828 case 0x0fb2: /* lss Gv */
4829 case 0x0fb4: /* lfs Gv */
4830 case 0x0fb5: /* lgs Gv */
4831 if (i386_record_modrm (&ir))
4832 return -1;
4833 if (ir.mod == 3)
4834 {
4835 if (opcode > 0xff)
4836 ir.addr -= 3;
4837 else
4838 ir.addr -= 2;
4839 opcode = opcode << 8 | ir.modrm;
4840 goto no_support;
4841 }
4842 switch (opcode)
4843 {
4844 case 0xc4: /* les Gv */
4845 regnum = X86_RECORD_ES_REGNUM;
4846 break;
4847 case 0xc5: /* lds Gv */
4848 regnum = X86_RECORD_DS_REGNUM;
4849 break;
4850 case 0x0fb2: /* lss Gv */
4851 regnum = X86_RECORD_SS_REGNUM;
4852 break;
4853 case 0x0fb4: /* lfs Gv */
4854 regnum = X86_RECORD_FS_REGNUM;
4855 break;
4856 case 0x0fb5: /* lgs Gv */
4857 regnum = X86_RECORD_GS_REGNUM;
4858 break;
4859 }
4860 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4861 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4862 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4863 break;
4864
4865 case 0xc0: /* shifts */
4866 case 0xc1:
4867 case 0xd0:
4868 case 0xd1:
4869 case 0xd2:
4870 case 0xd3:
4871 if ((opcode & 1) == 0)
4872 ir.ot = OT_BYTE;
4873 else
4874 ir.ot = ir.dflag + OT_WORD;
4875 if (i386_record_modrm (&ir))
4876 return -1;
4877 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4878 {
4879 if (i386_record_lea_modrm (&ir))
4880 return -1;
4881 }
4882 else
4883 {
4884 ir.rm |= ir.rex_b;
4885 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4886 ir.rm &= 0x3;
4887 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4888 }
4889 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4890 break;
4891
4892 case 0x0fa4:
4893 case 0x0fa5:
4894 case 0x0fac:
4895 case 0x0fad:
4896 if (i386_record_modrm (&ir))
4897 return -1;
4898 if (ir.mod == 3)
4899 {
4900 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4901 return -1;
4902 }
4903 else
4904 {
4905 if (i386_record_lea_modrm (&ir))
4906 return -1;
4907 }
4908 break;
4909
4910 case 0xd8: /* Floats. */
4911 case 0xd9:
4912 case 0xda:
4913 case 0xdb:
4914 case 0xdc:
4915 case 0xdd:
4916 case 0xde:
4917 case 0xdf:
4918 if (i386_record_modrm (&ir))
4919 return -1;
4920 ir.reg |= ((opcode & 7) << 3);
4921 if (ir.mod != 3)
4922 {
4923 /* Memory. */
4924 uint64_t addr64;
4925
4926 if (i386_record_lea_modrm_addr (&ir, &addr64))
4927 return -1;
4928 switch (ir.reg)
4929 {
4930 case 0x02:
4931 case 0x12:
4932 case 0x22:
4933 case 0x32:
4934 /* For fcom, ficom nothing to do. */
4935 break;
4936 case 0x03:
4937 case 0x13:
4938 case 0x23:
4939 case 0x33:
4940 /* For fcomp, ficomp pop FPU stack, store all. */
4941 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4942 return -1;
4943 break;
4944 case 0x00:
4945 case 0x01:
4946 case 0x04:
4947 case 0x05:
4948 case 0x06:
4949 case 0x07:
4950 case 0x10:
4951 case 0x11:
4952 case 0x14:
4953 case 0x15:
4954 case 0x16:
4955 case 0x17:
4956 case 0x20:
4957 case 0x21:
4958 case 0x24:
4959 case 0x25:
4960 case 0x26:
4961 case 0x27:
4962 case 0x30:
4963 case 0x31:
4964 case 0x34:
4965 case 0x35:
4966 case 0x36:
4967 case 0x37:
4968 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4969 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4970 of code, always affects st(0) register. */
4971 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4972 return -1;
4973 break;
4974 case 0x08:
4975 case 0x0a:
4976 case 0x0b:
4977 case 0x18:
4978 case 0x19:
4979 case 0x1a:
4980 case 0x1b:
4981 case 0x1d:
4982 case 0x28:
4983 case 0x29:
4984 case 0x2a:
4985 case 0x2b:
4986 case 0x38:
4987 case 0x39:
4988 case 0x3a:
4989 case 0x3b:
4990 case 0x3c:
4991 case 0x3d:
4992 switch (ir.reg & 7)
4993 {
4994 case 0:
4995 /* Handling fld, fild. */
4996 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4997 return -1;
4998 break;
4999 case 1:
5000 switch (ir.reg >> 4)
5001 {
5002 case 0:
5003 if (record_arch_list_add_mem (addr64, 4))
5004 return -1;
5005 break;
5006 case 2:
5007 if (record_arch_list_add_mem (addr64, 8))
5008 return -1;
5009 break;
5010 case 3:
5011 break;
5012 default:
5013 if (record_arch_list_add_mem (addr64, 2))
5014 return -1;
5015 break;
5016 }
5017 break;
5018 default:
5019 switch (ir.reg >> 4)
5020 {
5021 case 0:
5022 if (record_arch_list_add_mem (addr64, 4))
5023 return -1;
5024 if (3 == (ir.reg & 7))
5025 {
5026 /* For fstp m32fp. */
5027 if (i386_record_floats (gdbarch, &ir,
5028 I386_SAVE_FPU_REGS))
5029 return -1;
5030 }
5031 break;
5032 case 1:
5033 if (record_arch_list_add_mem (addr64, 4))
5034 return -1;
5035 if ((3 == (ir.reg & 7))
5036 || (5 == (ir.reg & 7))
5037 || (7 == (ir.reg & 7)))
5038 {
5039 /* For fstp insn. */
5040 if (i386_record_floats (gdbarch, &ir,
5041 I386_SAVE_FPU_REGS))
5042 return -1;
5043 }
5044 break;
5045 case 2:
5046 if (record_arch_list_add_mem (addr64, 8))
5047 return -1;
5048 if (3 == (ir.reg & 7))
5049 {
5050 /* For fstp m64fp. */
5051 if (i386_record_floats (gdbarch, &ir,
5052 I386_SAVE_FPU_REGS))
5053 return -1;
5054 }
5055 break;
5056 case 3:
5057 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5058 {
5059 /* For fistp, fbld, fild, fbstp. */
5060 if (i386_record_floats (gdbarch, &ir,
5061 I386_SAVE_FPU_REGS))
5062 return -1;
5063 }
5064 /* Fall through */
5065 default:
5066 if (record_arch_list_add_mem (addr64, 2))
5067 return -1;
5068 break;
5069 }
5070 break;
5071 }
5072 break;
5073 case 0x0c:
5074 /* Insn fldenv. */
5075 if (i386_record_floats (gdbarch, &ir,
5076 I386_SAVE_FPU_ENV_REG_STACK))
5077 return -1;
5078 break;
5079 case 0x0d:
5080 /* Insn fldcw. */
5081 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5082 return -1;
5083 break;
5084 case 0x2c:
5085 /* Insn frstor. */
5086 if (i386_record_floats (gdbarch, &ir,
5087 I386_SAVE_FPU_ENV_REG_STACK))
5088 return -1;
5089 break;
5090 case 0x0e:
5091 if (ir.dflag)
5092 {
5093 if (record_arch_list_add_mem (addr64, 28))
5094 return -1;
5095 }
5096 else
5097 {
5098 if (record_arch_list_add_mem (addr64, 14))
5099 return -1;
5100 }
5101 break;
5102 case 0x0f:
5103 case 0x2f:
5104 if (record_arch_list_add_mem (addr64, 2))
5105 return -1;
5106 /* Insn fstp, fbstp. */
5107 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5108 return -1;
5109 break;
5110 case 0x1f:
5111 case 0x3e:
5112 if (record_arch_list_add_mem (addr64, 10))
5113 return -1;
5114 break;
5115 case 0x2e:
5116 if (ir.dflag)
5117 {
5118 if (record_arch_list_add_mem (addr64, 28))
5119 return -1;
5120 addr64 += 28;
5121 }
5122 else
5123 {
5124 if (record_arch_list_add_mem (addr64, 14))
5125 return -1;
5126 addr64 += 14;
5127 }
5128 if (record_arch_list_add_mem (addr64, 80))
5129 return -1;
5130 /* Insn fsave. */
5131 if (i386_record_floats (gdbarch, &ir,
5132 I386_SAVE_FPU_ENV_REG_STACK))
5133 return -1;
5134 break;
5135 case 0x3f:
5136 if (record_arch_list_add_mem (addr64, 8))
5137 return -1;
5138 /* Insn fistp. */
5139 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5140 return -1;
5141 break;
5142 default:
5143 ir.addr -= 2;
5144 opcode = opcode << 8 | ir.modrm;
5145 goto no_support;
5146 break;
5147 }
5148 }
5149 /* Opcode is an extension of modR/M byte. */
5150 else
5151 {
5152 switch (opcode)
5153 {
5154 case 0xd8:
5155 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5156 return -1;
5157 break;
5158 case 0xd9:
5159 if (0x0c == (ir.modrm >> 4))
5160 {
5161 if ((ir.modrm & 0x0f) <= 7)
5162 {
5163 if (i386_record_floats (gdbarch, &ir,
5164 I386_SAVE_FPU_REGS))
5165 return -1;
5166 }
5167 else
5168 {
5169 if (i386_record_floats (gdbarch, &ir,
5170 I387_ST0_REGNUM (tdep)))
5171 return -1;
5172 /* If only st(0) is changing, then we have already
5173 recorded. */
5174 if ((ir.modrm & 0x0f) - 0x08)
5175 {
5176 if (i386_record_floats (gdbarch, &ir,
5177 I387_ST0_REGNUM (tdep) +
5178 ((ir.modrm & 0x0f) - 0x08)))
5179 return -1;
5180 }
5181 }
5182 }
5183 else
5184 {
5185 switch (ir.modrm)
5186 {
5187 case 0xe0:
5188 case 0xe1:
5189 case 0xf0:
5190 case 0xf5:
5191 case 0xf8:
5192 case 0xfa:
5193 case 0xfc:
5194 case 0xfe:
5195 case 0xff:
5196 if (i386_record_floats (gdbarch, &ir,
5197 I387_ST0_REGNUM (tdep)))
5198 return -1;
5199 break;
5200 case 0xf1:
5201 case 0xf2:
5202 case 0xf3:
5203 case 0xf4:
5204 case 0xf6:
5205 case 0xf7:
5206 case 0xe8:
5207 case 0xe9:
5208 case 0xea:
5209 case 0xeb:
5210 case 0xec:
5211 case 0xed:
5212 case 0xee:
5213 case 0xf9:
5214 case 0xfb:
5215 if (i386_record_floats (gdbarch, &ir,
5216 I386_SAVE_FPU_REGS))
5217 return -1;
5218 break;
5219 case 0xfd:
5220 if (i386_record_floats (gdbarch, &ir,
5221 I387_ST0_REGNUM (tdep)))
5222 return -1;
5223 if (i386_record_floats (gdbarch, &ir,
5224 I387_ST0_REGNUM (tdep) + 1))
5225 return -1;
5226 break;
5227 }
5228 }
5229 break;
5230 case 0xda:
5231 if (0xe9 == ir.modrm)
5232 {
5233 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5234 return -1;
5235 }
5236 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5237 {
5238 if (i386_record_floats (gdbarch, &ir,
5239 I387_ST0_REGNUM (tdep)))
5240 return -1;
5241 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5242 {
5243 if (i386_record_floats (gdbarch, &ir,
5244 I387_ST0_REGNUM (tdep) +
5245 (ir.modrm & 0x0f)))
5246 return -1;
5247 }
5248 else if ((ir.modrm & 0x0f) - 0x08)
5249 {
5250 if (i386_record_floats (gdbarch, &ir,
5251 I387_ST0_REGNUM (tdep) +
5252 ((ir.modrm & 0x0f) - 0x08)))
5253 return -1;
5254 }
5255 }
5256 break;
5257 case 0xdb:
5258 if (0xe3 == ir.modrm)
5259 {
5260 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5261 return -1;
5262 }
5263 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5264 {
5265 if (i386_record_floats (gdbarch, &ir,
5266 I387_ST0_REGNUM (tdep)))
5267 return -1;
5268 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5269 {
5270 if (i386_record_floats (gdbarch, &ir,
5271 I387_ST0_REGNUM (tdep) +
5272 (ir.modrm & 0x0f)))
5273 return -1;
5274 }
5275 else if ((ir.modrm & 0x0f) - 0x08)
5276 {
5277 if (i386_record_floats (gdbarch, &ir,
5278 I387_ST0_REGNUM (tdep) +
5279 ((ir.modrm & 0x0f) - 0x08)))
5280 return -1;
5281 }
5282 }
5283 break;
5284 case 0xdc:
5285 if ((0x0c == ir.modrm >> 4)
5286 || (0x0d == ir.modrm >> 4)
5287 || (0x0f == ir.modrm >> 4))
5288 {
5289 if ((ir.modrm & 0x0f) <= 7)
5290 {
5291 if (i386_record_floats (gdbarch, &ir,
5292 I387_ST0_REGNUM (tdep) +
5293 (ir.modrm & 0x0f)))
5294 return -1;
5295 }
5296 else
5297 {
5298 if (i386_record_floats (gdbarch, &ir,
5299 I387_ST0_REGNUM (tdep) +
5300 ((ir.modrm & 0x0f) - 0x08)))
5301 return -1;
5302 }
5303 }
5304 break;
5305 case 0xdd:
5306 if (0x0c == ir.modrm >> 4)
5307 {
5308 if (i386_record_floats (gdbarch, &ir,
5309 I387_FTAG_REGNUM (tdep)))
5310 return -1;
5311 }
5312 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5313 {
5314 if ((ir.modrm & 0x0f) <= 7)
5315 {
5316 if (i386_record_floats (gdbarch, &ir,
5317 I387_ST0_REGNUM (tdep) +
5318 (ir.modrm & 0x0f)))
5319 return -1;
5320 }
5321 else
5322 {
5323 if (i386_record_floats (gdbarch, &ir,
5324 I386_SAVE_FPU_REGS))
5325 return -1;
5326 }
5327 }
5328 break;
5329 case 0xde:
5330 if ((0x0c == ir.modrm >> 4)
5331 || (0x0e == ir.modrm >> 4)
5332 || (0x0f == ir.modrm >> 4)
5333 || (0xd9 == ir.modrm))
5334 {
5335 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5336 return -1;
5337 }
5338 break;
5339 case 0xdf:
5340 if (0xe0 == ir.modrm)
5341 {
5342 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5343 return -1;
5344 }
5345 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5346 {
5347 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5348 return -1;
5349 }
5350 break;
5351 }
5352 }
5353 break;
5354 /* string ops */
5355 case 0xa4: /* movsS */
5356 case 0xa5:
5357 case 0xaa: /* stosS */
5358 case 0xab:
5359 case 0x6c: /* insS */
5360 case 0x6d:
5361 regcache_raw_read_unsigned (ir.regcache,
5362 ir.regmap[X86_RECORD_RECX_REGNUM],
5363 &addr);
5364 if (addr)
5365 {
5366 ULONGEST es, ds;
5367
5368 if ((opcode & 1) == 0)
5369 ir.ot = OT_BYTE;
5370 else
5371 ir.ot = ir.dflag + OT_WORD;
5372 regcache_raw_read_unsigned (ir.regcache,
5373 ir.regmap[X86_RECORD_REDI_REGNUM],
5374 &addr);
5375
5376 regcache_raw_read_unsigned (ir.regcache,
5377 ir.regmap[X86_RECORD_ES_REGNUM],
5378 &es);
5379 regcache_raw_read_unsigned (ir.regcache,
5380 ir.regmap[X86_RECORD_DS_REGNUM],
5381 &ds);
5382 if (ir.aflag && (es != ds))
5383 {
5384 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5385 if (record_memory_query)
5386 {
5387 int q;
5388
5389 target_terminal_ours ();
5390 q = yquery (_("\
5391 Process record ignores the memory change of instruction at address %s\n\
5392 because it can't get the value of the segment register.\n\
5393 Do you want to stop the program?"),
5394 paddress (gdbarch, ir.orig_addr));
5395 target_terminal_inferior ();
5396 if (q)
5397 return -1;
5398 }
5399 }
5400 else
5401 {
5402 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5403 return -1;
5404 }
5405
5406 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5407 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5408 if (opcode == 0xa4 || opcode == 0xa5)
5409 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5410 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5411 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5412 }
5413 break;
5414
5415 case 0xa6: /* cmpsS */
5416 case 0xa7:
5417 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5418 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5419 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5420 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5421 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5422 break;
5423
5424 case 0xac: /* lodsS */
5425 case 0xad:
5426 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5427 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5428 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5429 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5430 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5431 break;
5432
5433 case 0xae: /* scasS */
5434 case 0xaf:
5435 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5436 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5437 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5438 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5439 break;
5440
5441 case 0x6e: /* outsS */
5442 case 0x6f:
5443 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5444 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5445 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5446 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5447 break;
5448
5449 case 0xe4: /* port I/O */
5450 case 0xe5:
5451 case 0xec:
5452 case 0xed:
5453 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5454 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5455 break;
5456
5457 case 0xe6:
5458 case 0xe7:
5459 case 0xee:
5460 case 0xef:
5461 break;
5462
5463 /* control */
5464 case 0xc2: /* ret im */
5465 case 0xc3: /* ret */
5466 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5467 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5468 break;
5469
5470 case 0xca: /* lret im */
5471 case 0xcb: /* lret */
5472 case 0xcf: /* iret */
5473 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5474 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5475 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5476 break;
5477
5478 case 0xe8: /* call im */
5479 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5480 ir.dflag = 2;
5481 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5482 return -1;
5483 break;
5484
5485 case 0x9a: /* lcall im */
5486 if (ir.regmap[X86_RECORD_R8_REGNUM])
5487 {
5488 ir.addr -= 1;
5489 goto no_support;
5490 }
5491 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5492 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5493 return -1;
5494 break;
5495
5496 case 0xe9: /* jmp im */
5497 case 0xea: /* ljmp im */
5498 case 0xeb: /* jmp Jb */
5499 case 0x70: /* jcc Jb */
5500 case 0x71:
5501 case 0x72:
5502 case 0x73:
5503 case 0x74:
5504 case 0x75:
5505 case 0x76:
5506 case 0x77:
5507 case 0x78:
5508 case 0x79:
5509 case 0x7a:
5510 case 0x7b:
5511 case 0x7c:
5512 case 0x7d:
5513 case 0x7e:
5514 case 0x7f:
5515 case 0x0f80: /* jcc Jv */
5516 case 0x0f81:
5517 case 0x0f82:
5518 case 0x0f83:
5519 case 0x0f84:
5520 case 0x0f85:
5521 case 0x0f86:
5522 case 0x0f87:
5523 case 0x0f88:
5524 case 0x0f89:
5525 case 0x0f8a:
5526 case 0x0f8b:
5527 case 0x0f8c:
5528 case 0x0f8d:
5529 case 0x0f8e:
5530 case 0x0f8f:
5531 break;
5532
5533 case 0x0f90: /* setcc Gv */
5534 case 0x0f91:
5535 case 0x0f92:
5536 case 0x0f93:
5537 case 0x0f94:
5538 case 0x0f95:
5539 case 0x0f96:
5540 case 0x0f97:
5541 case 0x0f98:
5542 case 0x0f99:
5543 case 0x0f9a:
5544 case 0x0f9b:
5545 case 0x0f9c:
5546 case 0x0f9d:
5547 case 0x0f9e:
5548 case 0x0f9f:
5549 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5550 ir.ot = OT_BYTE;
5551 if (i386_record_modrm (&ir))
5552 return -1;
5553 if (ir.mod == 3)
5554 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5555 : (ir.rm & 0x3));
5556 else
5557 {
5558 if (i386_record_lea_modrm (&ir))
5559 return -1;
5560 }
5561 break;
5562
5563 case 0x0f40: /* cmov Gv, Ev */
5564 case 0x0f41:
5565 case 0x0f42:
5566 case 0x0f43:
5567 case 0x0f44:
5568 case 0x0f45:
5569 case 0x0f46:
5570 case 0x0f47:
5571 case 0x0f48:
5572 case 0x0f49:
5573 case 0x0f4a:
5574 case 0x0f4b:
5575 case 0x0f4c:
5576 case 0x0f4d:
5577 case 0x0f4e:
5578 case 0x0f4f:
5579 if (i386_record_modrm (&ir))
5580 return -1;
5581 ir.reg |= rex_r;
5582 if (ir.dflag == OT_BYTE)
5583 ir.reg &= 0x3;
5584 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5585 break;
5586
5587 /* flags */
5588 case 0x9c: /* pushf */
5589 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5590 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5591 ir.dflag = 2;
5592 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5593 return -1;
5594 break;
5595
5596 case 0x9d: /* popf */
5597 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5598 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5599 break;
5600
5601 case 0x9e: /* sahf */
5602 if (ir.regmap[X86_RECORD_R8_REGNUM])
5603 {
5604 ir.addr -= 1;
5605 goto no_support;
5606 }
5607 /* FALLTHROUGH */
5608 case 0xf5: /* cmc */
5609 case 0xf8: /* clc */
5610 case 0xf9: /* stc */
5611 case 0xfc: /* cld */
5612 case 0xfd: /* std */
5613 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5614 break;
5615
5616 case 0x9f: /* lahf */
5617 if (ir.regmap[X86_RECORD_R8_REGNUM])
5618 {
5619 ir.addr -= 1;
5620 goto no_support;
5621 }
5622 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5623 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5624 break;
5625
5626 /* bit operations */
5627 case 0x0fba: /* bt/bts/btr/btc Gv, im */
5628 ir.ot = ir.dflag + OT_WORD;
5629 if (i386_record_modrm (&ir))
5630 return -1;
5631 if (ir.reg < 4)
5632 {
5633 ir.addr -= 2;
5634 opcode = opcode << 8 | ir.modrm;
5635 goto no_support;
5636 }
5637 if (ir.reg != 4)
5638 {
5639 if (ir.mod == 3)
5640 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5641 else
5642 {
5643 if (i386_record_lea_modrm (&ir))
5644 return -1;
5645 }
5646 }
5647 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5648 break;
5649
5650 case 0x0fa3: /* bt Gv, Ev */
5651 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5652 break;
5653
5654 case 0x0fab: /* bts */
5655 case 0x0fb3: /* btr */
5656 case 0x0fbb: /* btc */
5657 ir.ot = ir.dflag + OT_WORD;
5658 if (i386_record_modrm (&ir))
5659 return -1;
5660 if (ir.mod == 3)
5661 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5662 else
5663 {
5664 uint64_t addr64;
5665 if (i386_record_lea_modrm_addr (&ir, &addr64))
5666 return -1;
5667 regcache_raw_read_unsigned (ir.regcache,
5668 ir.regmap[ir.reg | rex_r],
5669 &addr);
5670 switch (ir.dflag)
5671 {
5672 case 0:
5673 addr64 += ((int16_t) addr >> 4) << 4;
5674 break;
5675 case 1:
5676 addr64 += ((int32_t) addr >> 5) << 5;
5677 break;
5678 case 2:
5679 addr64 += ((int64_t) addr >> 6) << 6;
5680 break;
5681 }
5682 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
5683 return -1;
5684 if (i386_record_lea_modrm (&ir))
5685 return -1;
5686 }
5687 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5688 break;
5689
5690 case 0x0fbc: /* bsf */
5691 case 0x0fbd: /* bsr */
5692 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5693 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5694 break;
5695
5696 /* bcd */
5697 case 0x27: /* daa */
5698 case 0x2f: /* das */
5699 case 0x37: /* aaa */
5700 case 0x3f: /* aas */
5701 case 0xd4: /* aam */
5702 case 0xd5: /* aad */
5703 if (ir.regmap[X86_RECORD_R8_REGNUM])
5704 {
5705 ir.addr -= 1;
5706 goto no_support;
5707 }
5708 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5709 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5710 break;
5711
5712 /* misc */
5713 case 0x90: /* nop */
5714 if (prefixes & PREFIX_LOCK)
5715 {
5716 ir.addr -= 1;
5717 goto no_support;
5718 }
5719 break;
5720
5721 case 0x9b: /* fwait */
5722 if (target_read_memory (ir.addr, &opcode8, 1))
5723 {
5724 if (record_debug)
5725 printf_unfiltered (_("Process record: error reading memory at "
5726 "addr 0x%s len = 1.\n"),
5727 paddress (gdbarch, ir.addr));
5728 return -1;
5729 }
5730 opcode = (uint32_t) opcode8;
5731 ir.addr++;
5732 goto reswitch;
5733 break;
5734
5735 /* XXX */
5736 case 0xcc: /* int3 */
5737 printf_unfiltered (_("Process record does not support instruction "
5738 "int3.\n"));
5739 ir.addr -= 1;
5740 goto no_support;
5741 break;
5742
5743 /* XXX */
5744 case 0xcd: /* int */
5745 {
5746 int ret;
5747 uint8_t interrupt;
5748 if (target_read_memory (ir.addr, &interrupt, 1))
5749 {
5750 if (record_debug)
5751 printf_unfiltered (_("Process record: error reading memory "
5752 "at addr %s len = 1.\n"),
5753 paddress (gdbarch, ir.addr));
5754 return -1;
5755 }
5756 ir.addr++;
5757 if (interrupt != 0x80
5758 || tdep->i386_intx80_record == NULL)
5759 {
5760 printf_unfiltered (_("Process record does not support "
5761 "instruction int 0x%02x.\n"),
5762 interrupt);
5763 ir.addr -= 2;
5764 goto no_support;
5765 }
5766 ret = tdep->i386_intx80_record (ir.regcache);
5767 if (ret)
5768 return ret;
5769 }
5770 break;
5771
5772 /* XXX */
5773 case 0xce: /* into */
5774 printf_unfiltered (_("Process record does not support "
5775 "instruction into.\n"));
5776 ir.addr -= 1;
5777 goto no_support;
5778 break;
5779
5780 case 0xfa: /* cli */
5781 case 0xfb: /* sti */
5782 break;
5783
5784 case 0x62: /* bound */
5785 printf_unfiltered (_("Process record does not support "
5786 "instruction bound.\n"));
5787 ir.addr -= 1;
5788 goto no_support;
5789 break;
5790
5791 case 0x0fc8: /* bswap reg */
5792 case 0x0fc9:
5793 case 0x0fca:
5794 case 0x0fcb:
5795 case 0x0fcc:
5796 case 0x0fcd:
5797 case 0x0fce:
5798 case 0x0fcf:
5799 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
5800 break;
5801
5802 case 0xd6: /* salc */
5803 if (ir.regmap[X86_RECORD_R8_REGNUM])
5804 {
5805 ir.addr -= 1;
5806 goto no_support;
5807 }
5808 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5809 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5810 break;
5811
5812 case 0xe0: /* loopnz */
5813 case 0xe1: /* loopz */
5814 case 0xe2: /* loop */
5815 case 0xe3: /* jecxz */
5816 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5817 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5818 break;
5819
5820 case 0x0f30: /* wrmsr */
5821 printf_unfiltered (_("Process record does not support "
5822 "instruction wrmsr.\n"));
5823 ir.addr -= 2;
5824 goto no_support;
5825 break;
5826
5827 case 0x0f32: /* rdmsr */
5828 printf_unfiltered (_("Process record does not support "
5829 "instruction rdmsr.\n"));
5830 ir.addr -= 2;
5831 goto no_support;
5832 break;
5833
5834 case 0x0f31: /* rdtsc */
5835 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5836 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5837 break;
5838
5839 case 0x0f34: /* sysenter */
5840 {
5841 int ret;
5842 if (ir.regmap[X86_RECORD_R8_REGNUM])
5843 {
5844 ir.addr -= 2;
5845 goto no_support;
5846 }
5847 if (tdep->i386_sysenter_record == NULL)
5848 {
5849 printf_unfiltered (_("Process record does not support "
5850 "instruction sysenter.\n"));
5851 ir.addr -= 2;
5852 goto no_support;
5853 }
5854 ret = tdep->i386_sysenter_record (ir.regcache);
5855 if (ret)
5856 return ret;
5857 }
5858 break;
5859
5860 case 0x0f35: /* sysexit */
5861 printf_unfiltered (_("Process record does not support "
5862 "instruction sysexit.\n"));
5863 ir.addr -= 2;
5864 goto no_support;
5865 break;
5866
5867 case 0x0f05: /* syscall */
5868 {
5869 int ret;
5870 if (tdep->i386_syscall_record == NULL)
5871 {
5872 printf_unfiltered (_("Process record does not support "
5873 "instruction syscall.\n"));
5874 ir.addr -= 2;
5875 goto no_support;
5876 }
5877 ret = tdep->i386_syscall_record (ir.regcache);
5878 if (ret)
5879 return ret;
5880 }
5881 break;
5882
5883 case 0x0f07: /* sysret */
5884 printf_unfiltered (_("Process record does not support "
5885 "instruction sysret.\n"));
5886 ir.addr -= 2;
5887 goto no_support;
5888 break;
5889
5890 case 0x0fa2: /* cpuid */
5891 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5892 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5893 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5894 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5895 break;
5896
5897 case 0xf4: /* hlt */
5898 printf_unfiltered (_("Process record does not support "
5899 "instruction hlt.\n"));
5900 ir.addr -= 1;
5901 goto no_support;
5902 break;
5903
5904 case 0x0f00:
5905 if (i386_record_modrm (&ir))
5906 return -1;
5907 switch (ir.reg)
5908 {
5909 case 0: /* sldt */
5910 case 1: /* str */
5911 if (ir.mod == 3)
5912 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5913 else
5914 {
5915 ir.ot = OT_WORD;
5916 if (i386_record_lea_modrm (&ir))
5917 return -1;
5918 }
5919 break;
5920 case 2: /* lldt */
5921 case 3: /* ltr */
5922 break;
5923 case 4: /* verr */
5924 case 5: /* verw */
5925 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5926 break;
5927 default:
5928 ir.addr -= 3;
5929 opcode = opcode << 8 | ir.modrm;
5930 goto no_support;
5931 break;
5932 }
5933 break;
5934
5935 case 0x0f01:
5936 if (i386_record_modrm (&ir))
5937 return -1;
5938 switch (ir.reg)
5939 {
5940 case 0: /* sgdt */
5941 {
5942 uint64_t addr64;
5943
5944 if (ir.mod == 3)
5945 {
5946 ir.addr -= 3;
5947 opcode = opcode << 8 | ir.modrm;
5948 goto no_support;
5949 }
5950 if (ir.override >= 0)
5951 {
5952 if (record_memory_query)
5953 {
5954 int q;
5955
5956 target_terminal_ours ();
5957 q = yquery (_("\
5958 Process record ignores the memory change of instruction at address %s\n\
5959 because it can't get the value of the segment register.\n\
5960 Do you want to stop the program?"),
5961 paddress (gdbarch, ir.orig_addr));
5962 target_terminal_inferior ();
5963 if (q)
5964 return -1;
5965 }
5966 }
5967 else
5968 {
5969 if (i386_record_lea_modrm_addr (&ir, &addr64))
5970 return -1;
5971 if (record_arch_list_add_mem (addr64, 2))
5972 return -1;
5973 addr64 += 2;
5974 if (ir.regmap[X86_RECORD_R8_REGNUM])
5975 {
5976 if (record_arch_list_add_mem (addr64, 8))
5977 return -1;
5978 }
5979 else
5980 {
5981 if (record_arch_list_add_mem (addr64, 4))
5982 return -1;
5983 }
5984 }
5985 }
5986 break;
5987 case 1:
5988 if (ir.mod == 3)
5989 {
5990 switch (ir.rm)
5991 {
5992 case 0: /* monitor */
5993 break;
5994 case 1: /* mwait */
5995 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5996 break;
5997 default:
5998 ir.addr -= 3;
5999 opcode = opcode << 8 | ir.modrm;
6000 goto no_support;
6001 break;
6002 }
6003 }
6004 else
6005 {
6006 /* sidt */
6007 if (ir.override >= 0)
6008 {
6009 if (record_memory_query)
6010 {
6011 int q;
6012
6013 target_terminal_ours ();
6014 q = yquery (_("\
6015 Process record ignores the memory change of instruction at address %s\n\
6016 because it can't get the value of the segment register.\n\
6017 Do you want to stop the program?"),
6018 paddress (gdbarch, ir.orig_addr));
6019 target_terminal_inferior ();
6020 if (q)
6021 return -1;
6022 }
6023 }
6024 else
6025 {
6026 uint64_t addr64;
6027
6028 if (i386_record_lea_modrm_addr (&ir, &addr64))
6029 return -1;
6030 if (record_arch_list_add_mem (addr64, 2))
6031 return -1;
6032 addr64 += 2;
6033 if (ir.regmap[X86_RECORD_R8_REGNUM])
6034 {
6035 if (record_arch_list_add_mem (addr64, 8))
6036 return -1;
6037 }
6038 else
6039 {
6040 if (record_arch_list_add_mem (addr64, 4))
6041 return -1;
6042 }
6043 }
6044 }
6045 break;
6046 case 2: /* lgdt */
6047 if (ir.mod == 3)
6048 {
6049 /* xgetbv */
6050 if (ir.rm == 0)
6051 {
6052 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6053 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6054 break;
6055 }
6056 /* xsetbv */
6057 else if (ir.rm == 1)
6058 break;
6059 }
6060 case 3: /* lidt */
6061 if (ir.mod == 3)
6062 {
6063 ir.addr -= 3;
6064 opcode = opcode << 8 | ir.modrm;
6065 goto no_support;
6066 }
6067 break;
6068 case 4: /* smsw */
6069 if (ir.mod == 3)
6070 {
6071 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6072 return -1;
6073 }
6074 else
6075 {
6076 ir.ot = OT_WORD;
6077 if (i386_record_lea_modrm (&ir))
6078 return -1;
6079 }
6080 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6081 break;
6082 case 6: /* lmsw */
6083 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6084 break;
6085 case 7: /* invlpg */
6086 if (ir.mod == 3)
6087 {
6088 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6089 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6090 else
6091 {
6092 ir.addr -= 3;
6093 opcode = opcode << 8 | ir.modrm;
6094 goto no_support;
6095 }
6096 }
6097 else
6098 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6099 break;
6100 default:
6101 ir.addr -= 3;
6102 opcode = opcode << 8 | ir.modrm;
6103 goto no_support;
6104 break;
6105 }
6106 break;
6107
6108 case 0x0f08: /* invd */
6109 case 0x0f09: /* wbinvd */
6110 break;
6111
6112 case 0x63: /* arpl */
6113 if (i386_record_modrm (&ir))
6114 return -1;
6115 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6116 {
6117 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6118 ? (ir.reg | rex_r) : ir.rm);
6119 }
6120 else
6121 {
6122 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6123 if (i386_record_lea_modrm (&ir))
6124 return -1;
6125 }
6126 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6127 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6128 break;
6129
6130 case 0x0f02: /* lar */
6131 case 0x0f03: /* lsl */
6132 if (i386_record_modrm (&ir))
6133 return -1;
6134 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6135 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6136 break;
6137
6138 case 0x0f18:
6139 if (i386_record_modrm (&ir))
6140 return -1;
6141 if (ir.mod == 3 && ir.reg == 3)
6142 {
6143 ir.addr -= 3;
6144 opcode = opcode << 8 | ir.modrm;
6145 goto no_support;
6146 }
6147 break;
6148
6149 case 0x0f19:
6150 case 0x0f1a:
6151 case 0x0f1b:
6152 case 0x0f1c:
6153 case 0x0f1d:
6154 case 0x0f1e:
6155 case 0x0f1f:
6156 /* nop (multi byte) */
6157 break;
6158
6159 case 0x0f20: /* mov reg, crN */
6160 case 0x0f22: /* mov crN, reg */
6161 if (i386_record_modrm (&ir))
6162 return -1;
6163 if ((ir.modrm & 0xc0) != 0xc0)
6164 {
6165 ir.addr -= 3;
6166 opcode = opcode << 8 | ir.modrm;
6167 goto no_support;
6168 }
6169 switch (ir.reg)
6170 {
6171 case 0:
6172 case 2:
6173 case 3:
6174 case 4:
6175 case 8:
6176 if (opcode & 2)
6177 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6178 else
6179 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6180 break;
6181 default:
6182 ir.addr -= 3;
6183 opcode = opcode << 8 | ir.modrm;
6184 goto no_support;
6185 break;
6186 }
6187 break;
6188
6189 case 0x0f21: /* mov reg, drN */
6190 case 0x0f23: /* mov drN, reg */
6191 if (i386_record_modrm (&ir))
6192 return -1;
6193 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6194 || ir.reg == 5 || ir.reg >= 8)
6195 {
6196 ir.addr -= 3;
6197 opcode = opcode << 8 | ir.modrm;
6198 goto no_support;
6199 }
6200 if (opcode & 2)
6201 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6202 else
6203 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6204 break;
6205
6206 case 0x0f06: /* clts */
6207 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6208 break;
6209
6210 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6211
6212 case 0x0f0d: /* 3DNow! prefetch */
6213 break;
6214
6215 case 0x0f0e: /* 3DNow! femms */
6216 case 0x0f77: /* emms */
6217 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6218 goto no_support;
6219 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6220 break;
6221
6222 case 0x0f0f: /* 3DNow! data */
6223 if (i386_record_modrm (&ir))
6224 return -1;
6225 if (target_read_memory (ir.addr, &opcode8, 1))
6226 {
6227 printf_unfiltered (_("Process record: error reading memory at "
6228 "addr %s len = 1.\n"),
6229 paddress (gdbarch, ir.addr));
6230 return -1;
6231 }
6232 ir.addr++;
6233 switch (opcode8)
6234 {
6235 case 0x0c: /* 3DNow! pi2fw */
6236 case 0x0d: /* 3DNow! pi2fd */
6237 case 0x1c: /* 3DNow! pf2iw */
6238 case 0x1d: /* 3DNow! pf2id */
6239 case 0x8a: /* 3DNow! pfnacc */
6240 case 0x8e: /* 3DNow! pfpnacc */
6241 case 0x90: /* 3DNow! pfcmpge */
6242 case 0x94: /* 3DNow! pfmin */
6243 case 0x96: /* 3DNow! pfrcp */
6244 case 0x97: /* 3DNow! pfrsqrt */
6245 case 0x9a: /* 3DNow! pfsub */
6246 case 0x9e: /* 3DNow! pfadd */
6247 case 0xa0: /* 3DNow! pfcmpgt */
6248 case 0xa4: /* 3DNow! pfmax */
6249 case 0xa6: /* 3DNow! pfrcpit1 */
6250 case 0xa7: /* 3DNow! pfrsqit1 */
6251 case 0xaa: /* 3DNow! pfsubr */
6252 case 0xae: /* 3DNow! pfacc */
6253 case 0xb0: /* 3DNow! pfcmpeq */
6254 case 0xb4: /* 3DNow! pfmul */
6255 case 0xb6: /* 3DNow! pfrcpit2 */
6256 case 0xb7: /* 3DNow! pmulhrw */
6257 case 0xbb: /* 3DNow! pswapd */
6258 case 0xbf: /* 3DNow! pavgusb */
6259 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6260 goto no_support_3dnow_data;
6261 record_arch_list_add_reg (ir.regcache, ir.reg);
6262 break;
6263
6264 default:
6265 no_support_3dnow_data:
6266 opcode = (opcode << 8) | opcode8;
6267 goto no_support;
6268 break;
6269 }
6270 break;
6271
6272 case 0x0faa: /* rsm */
6273 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6274 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6275 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6276 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6277 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6278 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6279 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6280 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6281 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6282 break;
6283
6284 case 0x0fae:
6285 if (i386_record_modrm (&ir))
6286 return -1;
6287 switch(ir.reg)
6288 {
6289 case 0: /* fxsave */
6290 {
6291 uint64_t tmpu64;
6292
6293 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6294 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6295 return -1;
6296 if (record_arch_list_add_mem (tmpu64, 512))
6297 return -1;
6298 }
6299 break;
6300
6301 case 1: /* fxrstor */
6302 {
6303 int i;
6304
6305 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6306
6307 for (i = I387_MM0_REGNUM (tdep);
6308 i386_mmx_regnum_p (gdbarch, i); i++)
6309 record_arch_list_add_reg (ir.regcache, i);
6310
6311 for (i = I387_XMM0_REGNUM (tdep);
6312 i386_xmm_regnum_p (gdbarch, i); i++)
6313 record_arch_list_add_reg (ir.regcache, i);
6314
6315 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6316 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6317
6318 for (i = I387_ST0_REGNUM (tdep);
6319 i386_fp_regnum_p (gdbarch, i); i++)
6320 record_arch_list_add_reg (ir.regcache, i);
6321
6322 for (i = I387_FCTRL_REGNUM (tdep);
6323 i386_fpc_regnum_p (gdbarch, i); i++)
6324 record_arch_list_add_reg (ir.regcache, i);
6325 }
6326 break;
6327
6328 case 2: /* ldmxcsr */
6329 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6330 goto no_support;
6331 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6332 break;
6333
6334 case 3: /* stmxcsr */
6335 ir.ot = OT_LONG;
6336 if (i386_record_lea_modrm (&ir))
6337 return -1;
6338 break;
6339
6340 case 5: /* lfence */
6341 case 6: /* mfence */
6342 case 7: /* sfence clflush */
6343 break;
6344
6345 default:
6346 opcode = (opcode << 8) | ir.modrm;
6347 goto no_support;
6348 break;
6349 }
6350 break;
6351
6352 case 0x0fc3: /* movnti */
6353 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6354 if (i386_record_modrm (&ir))
6355 return -1;
6356 if (ir.mod == 3)
6357 goto no_support;
6358 ir.reg |= rex_r;
6359 if (i386_record_lea_modrm (&ir))
6360 return -1;
6361 break;
6362
6363 /* Add prefix to opcode. */
6364 case 0x0f10:
6365 case 0x0f11:
6366 case 0x0f12:
6367 case 0x0f13:
6368 case 0x0f14:
6369 case 0x0f15:
6370 case 0x0f16:
6371 case 0x0f17:
6372 case 0x0f28:
6373 case 0x0f29:
6374 case 0x0f2a:
6375 case 0x0f2b:
6376 case 0x0f2c:
6377 case 0x0f2d:
6378 case 0x0f2e:
6379 case 0x0f2f:
6380 case 0x0f38:
6381 case 0x0f39:
6382 case 0x0f3a:
6383 case 0x0f50:
6384 case 0x0f51:
6385 case 0x0f52:
6386 case 0x0f53:
6387 case 0x0f54:
6388 case 0x0f55:
6389 case 0x0f56:
6390 case 0x0f57:
6391 case 0x0f58:
6392 case 0x0f59:
6393 case 0x0f5a:
6394 case 0x0f5b:
6395 case 0x0f5c:
6396 case 0x0f5d:
6397 case 0x0f5e:
6398 case 0x0f5f:
6399 case 0x0f60:
6400 case 0x0f61:
6401 case 0x0f62:
6402 case 0x0f63:
6403 case 0x0f64:
6404 case 0x0f65:
6405 case 0x0f66:
6406 case 0x0f67:
6407 case 0x0f68:
6408 case 0x0f69:
6409 case 0x0f6a:
6410 case 0x0f6b:
6411 case 0x0f6c:
6412 case 0x0f6d:
6413 case 0x0f6e:
6414 case 0x0f6f:
6415 case 0x0f70:
6416 case 0x0f71:
6417 case 0x0f72:
6418 case 0x0f73:
6419 case 0x0f74:
6420 case 0x0f75:
6421 case 0x0f76:
6422 case 0x0f7c:
6423 case 0x0f7d:
6424 case 0x0f7e:
6425 case 0x0f7f:
6426 case 0x0fb8:
6427 case 0x0fc2:
6428 case 0x0fc4:
6429 case 0x0fc5:
6430 case 0x0fc6:
6431 case 0x0fd0:
6432 case 0x0fd1:
6433 case 0x0fd2:
6434 case 0x0fd3:
6435 case 0x0fd4:
6436 case 0x0fd5:
6437 case 0x0fd6:
6438 case 0x0fd7:
6439 case 0x0fd8:
6440 case 0x0fd9:
6441 case 0x0fda:
6442 case 0x0fdb:
6443 case 0x0fdc:
6444 case 0x0fdd:
6445 case 0x0fde:
6446 case 0x0fdf:
6447 case 0x0fe0:
6448 case 0x0fe1:
6449 case 0x0fe2:
6450 case 0x0fe3:
6451 case 0x0fe4:
6452 case 0x0fe5:
6453 case 0x0fe6:
6454 case 0x0fe7:
6455 case 0x0fe8:
6456 case 0x0fe9:
6457 case 0x0fea:
6458 case 0x0feb:
6459 case 0x0fec:
6460 case 0x0fed:
6461 case 0x0fee:
6462 case 0x0fef:
6463 case 0x0ff0:
6464 case 0x0ff1:
6465 case 0x0ff2:
6466 case 0x0ff3:
6467 case 0x0ff4:
6468 case 0x0ff5:
6469 case 0x0ff6:
6470 case 0x0ff7:
6471 case 0x0ff8:
6472 case 0x0ff9:
6473 case 0x0ffa:
6474 case 0x0ffb:
6475 case 0x0ffc:
6476 case 0x0ffd:
6477 case 0x0ffe:
6478 switch (prefixes)
6479 {
6480 case PREFIX_REPNZ:
6481 opcode |= 0xf20000;
6482 break;
6483 case PREFIX_DATA:
6484 opcode |= 0x660000;
6485 break;
6486 case PREFIX_REPZ:
6487 opcode |= 0xf30000;
6488 break;
6489 }
6490 reswitch_prefix_add:
6491 switch (opcode)
6492 {
6493 case 0x0f38:
6494 case 0x660f38:
6495 case 0xf20f38:
6496 case 0x0f3a:
6497 case 0x660f3a:
6498 if (target_read_memory (ir.addr, &opcode8, 1))
6499 {
6500 printf_unfiltered (_("Process record: error reading memory at "
6501 "addr %s len = 1.\n"),
6502 paddress (gdbarch, ir.addr));
6503 return -1;
6504 }
6505 ir.addr++;
6506 opcode = (uint32_t) opcode8 | opcode << 8;
6507 goto reswitch_prefix_add;
6508 break;
6509
6510 case 0x0f10: /* movups */
6511 case 0x660f10: /* movupd */
6512 case 0xf30f10: /* movss */
6513 case 0xf20f10: /* movsd */
6514 case 0x0f12: /* movlps */
6515 case 0x660f12: /* movlpd */
6516 case 0xf30f12: /* movsldup */
6517 case 0xf20f12: /* movddup */
6518 case 0x0f14: /* unpcklps */
6519 case 0x660f14: /* unpcklpd */
6520 case 0x0f15: /* unpckhps */
6521 case 0x660f15: /* unpckhpd */
6522 case 0x0f16: /* movhps */
6523 case 0x660f16: /* movhpd */
6524 case 0xf30f16: /* movshdup */
6525 case 0x0f28: /* movaps */
6526 case 0x660f28: /* movapd */
6527 case 0x0f2a: /* cvtpi2ps */
6528 case 0x660f2a: /* cvtpi2pd */
6529 case 0xf30f2a: /* cvtsi2ss */
6530 case 0xf20f2a: /* cvtsi2sd */
6531 case 0x0f2c: /* cvttps2pi */
6532 case 0x660f2c: /* cvttpd2pi */
6533 case 0x0f2d: /* cvtps2pi */
6534 case 0x660f2d: /* cvtpd2pi */
6535 case 0x660f3800: /* pshufb */
6536 case 0x660f3801: /* phaddw */
6537 case 0x660f3802: /* phaddd */
6538 case 0x660f3803: /* phaddsw */
6539 case 0x660f3804: /* pmaddubsw */
6540 case 0x660f3805: /* phsubw */
6541 case 0x660f3806: /* phsubd */
6542 case 0x660f3807: /* phsubsw */
6543 case 0x660f3808: /* psignb */
6544 case 0x660f3809: /* psignw */
6545 case 0x660f380a: /* psignd */
6546 case 0x660f380b: /* pmulhrsw */
6547 case 0x660f3810: /* pblendvb */
6548 case 0x660f3814: /* blendvps */
6549 case 0x660f3815: /* blendvpd */
6550 case 0x660f381c: /* pabsb */
6551 case 0x660f381d: /* pabsw */
6552 case 0x660f381e: /* pabsd */
6553 case 0x660f3820: /* pmovsxbw */
6554 case 0x660f3821: /* pmovsxbd */
6555 case 0x660f3822: /* pmovsxbq */
6556 case 0x660f3823: /* pmovsxwd */
6557 case 0x660f3824: /* pmovsxwq */
6558 case 0x660f3825: /* pmovsxdq */
6559 case 0x660f3828: /* pmuldq */
6560 case 0x660f3829: /* pcmpeqq */
6561 case 0x660f382a: /* movntdqa */
6562 case 0x660f3a08: /* roundps */
6563 case 0x660f3a09: /* roundpd */
6564 case 0x660f3a0a: /* roundss */
6565 case 0x660f3a0b: /* roundsd */
6566 case 0x660f3a0c: /* blendps */
6567 case 0x660f3a0d: /* blendpd */
6568 case 0x660f3a0e: /* pblendw */
6569 case 0x660f3a0f: /* palignr */
6570 case 0x660f3a20: /* pinsrb */
6571 case 0x660f3a21: /* insertps */
6572 case 0x660f3a22: /* pinsrd pinsrq */
6573 case 0x660f3a40: /* dpps */
6574 case 0x660f3a41: /* dppd */
6575 case 0x660f3a42: /* mpsadbw */
6576 case 0x660f3a60: /* pcmpestrm */
6577 case 0x660f3a61: /* pcmpestri */
6578 case 0x660f3a62: /* pcmpistrm */
6579 case 0x660f3a63: /* pcmpistri */
6580 case 0x0f51: /* sqrtps */
6581 case 0x660f51: /* sqrtpd */
6582 case 0xf20f51: /* sqrtsd */
6583 case 0xf30f51: /* sqrtss */
6584 case 0x0f52: /* rsqrtps */
6585 case 0xf30f52: /* rsqrtss */
6586 case 0x0f53: /* rcpps */
6587 case 0xf30f53: /* rcpss */
6588 case 0x0f54: /* andps */
6589 case 0x660f54: /* andpd */
6590 case 0x0f55: /* andnps */
6591 case 0x660f55: /* andnpd */
6592 case 0x0f56: /* orps */
6593 case 0x660f56: /* orpd */
6594 case 0x0f57: /* xorps */
6595 case 0x660f57: /* xorpd */
6596 case 0x0f58: /* addps */
6597 case 0x660f58: /* addpd */
6598 case 0xf20f58: /* addsd */
6599 case 0xf30f58: /* addss */
6600 case 0x0f59: /* mulps */
6601 case 0x660f59: /* mulpd */
6602 case 0xf20f59: /* mulsd */
6603 case 0xf30f59: /* mulss */
6604 case 0x0f5a: /* cvtps2pd */
6605 case 0x660f5a: /* cvtpd2ps */
6606 case 0xf20f5a: /* cvtsd2ss */
6607 case 0xf30f5a: /* cvtss2sd */
6608 case 0x0f5b: /* cvtdq2ps */
6609 case 0x660f5b: /* cvtps2dq */
6610 case 0xf30f5b: /* cvttps2dq */
6611 case 0x0f5c: /* subps */
6612 case 0x660f5c: /* subpd */
6613 case 0xf20f5c: /* subsd */
6614 case 0xf30f5c: /* subss */
6615 case 0x0f5d: /* minps */
6616 case 0x660f5d: /* minpd */
6617 case 0xf20f5d: /* minsd */
6618 case 0xf30f5d: /* minss */
6619 case 0x0f5e: /* divps */
6620 case 0x660f5e: /* divpd */
6621 case 0xf20f5e: /* divsd */
6622 case 0xf30f5e: /* divss */
6623 case 0x0f5f: /* maxps */
6624 case 0x660f5f: /* maxpd */
6625 case 0xf20f5f: /* maxsd */
6626 case 0xf30f5f: /* maxss */
6627 case 0x660f60: /* punpcklbw */
6628 case 0x660f61: /* punpcklwd */
6629 case 0x660f62: /* punpckldq */
6630 case 0x660f63: /* packsswb */
6631 case 0x660f64: /* pcmpgtb */
6632 case 0x660f65: /* pcmpgtw */
6633 case 0x660f66: /* pcmpgtd */
6634 case 0x660f67: /* packuswb */
6635 case 0x660f68: /* punpckhbw */
6636 case 0x660f69: /* punpckhwd */
6637 case 0x660f6a: /* punpckhdq */
6638 case 0x660f6b: /* packssdw */
6639 case 0x660f6c: /* punpcklqdq */
6640 case 0x660f6d: /* punpckhqdq */
6641 case 0x660f6e: /* movd */
6642 case 0x660f6f: /* movdqa */
6643 case 0xf30f6f: /* movdqu */
6644 case 0x660f70: /* pshufd */
6645 case 0xf20f70: /* pshuflw */
6646 case 0xf30f70: /* pshufhw */
6647 case 0x660f74: /* pcmpeqb */
6648 case 0x660f75: /* pcmpeqw */
6649 case 0x660f76: /* pcmpeqd */
6650 case 0x660f7c: /* haddpd */
6651 case 0xf20f7c: /* haddps */
6652 case 0x660f7d: /* hsubpd */
6653 case 0xf20f7d: /* hsubps */
6654 case 0xf30f7e: /* movq */
6655 case 0x0fc2: /* cmpps */
6656 case 0x660fc2: /* cmppd */
6657 case 0xf20fc2: /* cmpsd */
6658 case 0xf30fc2: /* cmpss */
6659 case 0x660fc4: /* pinsrw */
6660 case 0x0fc6: /* shufps */
6661 case 0x660fc6: /* shufpd */
6662 case 0x660fd0: /* addsubpd */
6663 case 0xf20fd0: /* addsubps */
6664 case 0x660fd1: /* psrlw */
6665 case 0x660fd2: /* psrld */
6666 case 0x660fd3: /* psrlq */
6667 case 0x660fd4: /* paddq */
6668 case 0x660fd5: /* pmullw */
6669 case 0xf30fd6: /* movq2dq */
6670 case 0x660fd8: /* psubusb */
6671 case 0x660fd9: /* psubusw */
6672 case 0x660fda: /* pminub */
6673 case 0x660fdb: /* pand */
6674 case 0x660fdc: /* paddusb */
6675 case 0x660fdd: /* paddusw */
6676 case 0x660fde: /* pmaxub */
6677 case 0x660fdf: /* pandn */
6678 case 0x660fe0: /* pavgb */
6679 case 0x660fe1: /* psraw */
6680 case 0x660fe2: /* psrad */
6681 case 0x660fe3: /* pavgw */
6682 case 0x660fe4: /* pmulhuw */
6683 case 0x660fe5: /* pmulhw */
6684 case 0x660fe6: /* cvttpd2dq */
6685 case 0xf20fe6: /* cvtpd2dq */
6686 case 0xf30fe6: /* cvtdq2pd */
6687 case 0x660fe8: /* psubsb */
6688 case 0x660fe9: /* psubsw */
6689 case 0x660fea: /* pminsw */
6690 case 0x660feb: /* por */
6691 case 0x660fec: /* paddsb */
6692 case 0x660fed: /* paddsw */
6693 case 0x660fee: /* pmaxsw */
6694 case 0x660fef: /* pxor */
6695 case 0xf20ff0: /* lddqu */
6696 case 0x660ff1: /* psllw */
6697 case 0x660ff2: /* pslld */
6698 case 0x660ff3: /* psllq */
6699 case 0x660ff4: /* pmuludq */
6700 case 0x660ff5: /* pmaddwd */
6701 case 0x660ff6: /* psadbw */
6702 case 0x660ff8: /* psubb */
6703 case 0x660ff9: /* psubw */
6704 case 0x660ffa: /* psubd */
6705 case 0x660ffb: /* psubq */
6706 case 0x660ffc: /* paddb */
6707 case 0x660ffd: /* paddw */
6708 case 0x660ffe: /* paddd */
6709 if (i386_record_modrm (&ir))
6710 return -1;
6711 ir.reg |= rex_r;
6712 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
6713 goto no_support;
6714 record_arch_list_add_reg (ir.regcache,
6715 I387_XMM0_REGNUM (tdep) + ir.reg);
6716 if ((opcode & 0xfffffffc) == 0x660f3a60)
6717 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6718 break;
6719
6720 case 0x0f11: /* movups */
6721 case 0x660f11: /* movupd */
6722 case 0xf30f11: /* movss */
6723 case 0xf20f11: /* movsd */
6724 case 0x0f13: /* movlps */
6725 case 0x660f13: /* movlpd */
6726 case 0x0f17: /* movhps */
6727 case 0x660f17: /* movhpd */
6728 case 0x0f29: /* movaps */
6729 case 0x660f29: /* movapd */
6730 case 0x660f3a14: /* pextrb */
6731 case 0x660f3a15: /* pextrw */
6732 case 0x660f3a16: /* pextrd pextrq */
6733 case 0x660f3a17: /* extractps */
6734 case 0x660f7f: /* movdqa */
6735 case 0xf30f7f: /* movdqu */
6736 if (i386_record_modrm (&ir))
6737 return -1;
6738 if (ir.mod == 3)
6739 {
6740 if (opcode == 0x0f13 || opcode == 0x660f13
6741 || opcode == 0x0f17 || opcode == 0x660f17)
6742 goto no_support;
6743 ir.rm |= ir.rex_b;
6744 if (!i386_xmm_regnum_p (gdbarch,
6745 I387_XMM0_REGNUM (tdep) + ir.rm))
6746 goto no_support;
6747 record_arch_list_add_reg (ir.regcache,
6748 I387_XMM0_REGNUM (tdep) + ir.rm);
6749 }
6750 else
6751 {
6752 switch (opcode)
6753 {
6754 case 0x660f3a14:
6755 ir.ot = OT_BYTE;
6756 break;
6757 case 0x660f3a15:
6758 ir.ot = OT_WORD;
6759 break;
6760 case 0x660f3a16:
6761 ir.ot = OT_LONG;
6762 break;
6763 case 0x660f3a17:
6764 ir.ot = OT_QUAD;
6765 break;
6766 default:
6767 ir.ot = OT_DQUAD;
6768 break;
6769 }
6770 if (i386_record_lea_modrm (&ir))
6771 return -1;
6772 }
6773 break;
6774
6775 case 0x0f2b: /* movntps */
6776 case 0x660f2b: /* movntpd */
6777 case 0x0fe7: /* movntq */
6778 case 0x660fe7: /* movntdq */
6779 if (ir.mod == 3)
6780 goto no_support;
6781 if (opcode == 0x0fe7)
6782 ir.ot = OT_QUAD;
6783 else
6784 ir.ot = OT_DQUAD;
6785 if (i386_record_lea_modrm (&ir))
6786 return -1;
6787 break;
6788
6789 case 0xf30f2c: /* cvttss2si */
6790 case 0xf20f2c: /* cvttsd2si */
6791 case 0xf30f2d: /* cvtss2si */
6792 case 0xf20f2d: /* cvtsd2si */
6793 case 0xf20f38f0: /* crc32 */
6794 case 0xf20f38f1: /* crc32 */
6795 case 0x0f50: /* movmskps */
6796 case 0x660f50: /* movmskpd */
6797 case 0x0fc5: /* pextrw */
6798 case 0x660fc5: /* pextrw */
6799 case 0x0fd7: /* pmovmskb */
6800 case 0x660fd7: /* pmovmskb */
6801 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6802 break;
6803
6804 case 0x0f3800: /* pshufb */
6805 case 0x0f3801: /* phaddw */
6806 case 0x0f3802: /* phaddd */
6807 case 0x0f3803: /* phaddsw */
6808 case 0x0f3804: /* pmaddubsw */
6809 case 0x0f3805: /* phsubw */
6810 case 0x0f3806: /* phsubd */
6811 case 0x0f3807: /* phsubsw */
6812 case 0x0f3808: /* psignb */
6813 case 0x0f3809: /* psignw */
6814 case 0x0f380a: /* psignd */
6815 case 0x0f380b: /* pmulhrsw */
6816 case 0x0f381c: /* pabsb */
6817 case 0x0f381d: /* pabsw */
6818 case 0x0f381e: /* pabsd */
6819 case 0x0f382b: /* packusdw */
6820 case 0x0f3830: /* pmovzxbw */
6821 case 0x0f3831: /* pmovzxbd */
6822 case 0x0f3832: /* pmovzxbq */
6823 case 0x0f3833: /* pmovzxwd */
6824 case 0x0f3834: /* pmovzxwq */
6825 case 0x0f3835: /* pmovzxdq */
6826 case 0x0f3837: /* pcmpgtq */
6827 case 0x0f3838: /* pminsb */
6828 case 0x0f3839: /* pminsd */
6829 case 0x0f383a: /* pminuw */
6830 case 0x0f383b: /* pminud */
6831 case 0x0f383c: /* pmaxsb */
6832 case 0x0f383d: /* pmaxsd */
6833 case 0x0f383e: /* pmaxuw */
6834 case 0x0f383f: /* pmaxud */
6835 case 0x0f3840: /* pmulld */
6836 case 0x0f3841: /* phminposuw */
6837 case 0x0f3a0f: /* palignr */
6838 case 0x0f60: /* punpcklbw */
6839 case 0x0f61: /* punpcklwd */
6840 case 0x0f62: /* punpckldq */
6841 case 0x0f63: /* packsswb */
6842 case 0x0f64: /* pcmpgtb */
6843 case 0x0f65: /* pcmpgtw */
6844 case 0x0f66: /* pcmpgtd */
6845 case 0x0f67: /* packuswb */
6846 case 0x0f68: /* punpckhbw */
6847 case 0x0f69: /* punpckhwd */
6848 case 0x0f6a: /* punpckhdq */
6849 case 0x0f6b: /* packssdw */
6850 case 0x0f6e: /* movd */
6851 case 0x0f6f: /* movq */
6852 case 0x0f70: /* pshufw */
6853 case 0x0f74: /* pcmpeqb */
6854 case 0x0f75: /* pcmpeqw */
6855 case 0x0f76: /* pcmpeqd */
6856 case 0x0fc4: /* pinsrw */
6857 case 0x0fd1: /* psrlw */
6858 case 0x0fd2: /* psrld */
6859 case 0x0fd3: /* psrlq */
6860 case 0x0fd4: /* paddq */
6861 case 0x0fd5: /* pmullw */
6862 case 0xf20fd6: /* movdq2q */
6863 case 0x0fd8: /* psubusb */
6864 case 0x0fd9: /* psubusw */
6865 case 0x0fda: /* pminub */
6866 case 0x0fdb: /* pand */
6867 case 0x0fdc: /* paddusb */
6868 case 0x0fdd: /* paddusw */
6869 case 0x0fde: /* pmaxub */
6870 case 0x0fdf: /* pandn */
6871 case 0x0fe0: /* pavgb */
6872 case 0x0fe1: /* psraw */
6873 case 0x0fe2: /* psrad */
6874 case 0x0fe3: /* pavgw */
6875 case 0x0fe4: /* pmulhuw */
6876 case 0x0fe5: /* pmulhw */
6877 case 0x0fe8: /* psubsb */
6878 case 0x0fe9: /* psubsw */
6879 case 0x0fea: /* pminsw */
6880 case 0x0feb: /* por */
6881 case 0x0fec: /* paddsb */
6882 case 0x0fed: /* paddsw */
6883 case 0x0fee: /* pmaxsw */
6884 case 0x0fef: /* pxor */
6885 case 0x0ff1: /* psllw */
6886 case 0x0ff2: /* pslld */
6887 case 0x0ff3: /* psllq */
6888 case 0x0ff4: /* pmuludq */
6889 case 0x0ff5: /* pmaddwd */
6890 case 0x0ff6: /* psadbw */
6891 case 0x0ff8: /* psubb */
6892 case 0x0ff9: /* psubw */
6893 case 0x0ffa: /* psubd */
6894 case 0x0ffb: /* psubq */
6895 case 0x0ffc: /* paddb */
6896 case 0x0ffd: /* paddw */
6897 case 0x0ffe: /* paddd */
6898 if (i386_record_modrm (&ir))
6899 return -1;
6900 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6901 goto no_support;
6902 record_arch_list_add_reg (ir.regcache,
6903 I387_MM0_REGNUM (tdep) + ir.reg);
6904 break;
6905
6906 case 0x0f71: /* psllw */
6907 case 0x0f72: /* pslld */
6908 case 0x0f73: /* psllq */
6909 if (i386_record_modrm (&ir))
6910 return -1;
6911 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6912 goto no_support;
6913 record_arch_list_add_reg (ir.regcache,
6914 I387_MM0_REGNUM (tdep) + ir.rm);
6915 break;
6916
6917 case 0x660f71: /* psllw */
6918 case 0x660f72: /* pslld */
6919 case 0x660f73: /* psllq */
6920 if (i386_record_modrm (&ir))
6921 return -1;
6922 ir.rm |= ir.rex_b;
6923 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6924 goto no_support;
6925 record_arch_list_add_reg (ir.regcache,
6926 I387_XMM0_REGNUM (tdep) + ir.rm);
6927 break;
6928
6929 case 0x0f7e: /* movd */
6930 case 0x660f7e: /* movd */
6931 if (i386_record_modrm (&ir))
6932 return -1;
6933 if (ir.mod == 3)
6934 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6935 else
6936 {
6937 if (ir.dflag == 2)
6938 ir.ot = OT_QUAD;
6939 else
6940 ir.ot = OT_LONG;
6941 if (i386_record_lea_modrm (&ir))
6942 return -1;
6943 }
6944 break;
6945
6946 case 0x0f7f: /* movq */
6947 if (i386_record_modrm (&ir))
6948 return -1;
6949 if (ir.mod == 3)
6950 {
6951 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6952 goto no_support;
6953 record_arch_list_add_reg (ir.regcache,
6954 I387_MM0_REGNUM (tdep) + ir.rm);
6955 }
6956 else
6957 {
6958 ir.ot = OT_QUAD;
6959 if (i386_record_lea_modrm (&ir))
6960 return -1;
6961 }
6962 break;
6963
6964 case 0xf30fb8: /* popcnt */
6965 if (i386_record_modrm (&ir))
6966 return -1;
6967 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
6968 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6969 break;
6970
6971 case 0x660fd6: /* movq */
6972 if (i386_record_modrm (&ir))
6973 return -1;
6974 if (ir.mod == 3)
6975 {
6976 ir.rm |= ir.rex_b;
6977 if (!i386_xmm_regnum_p (gdbarch,
6978 I387_XMM0_REGNUM (tdep) + ir.rm))
6979 goto no_support;
6980 record_arch_list_add_reg (ir.regcache,
6981 I387_XMM0_REGNUM (tdep) + ir.rm);
6982 }
6983 else
6984 {
6985 ir.ot = OT_QUAD;
6986 if (i386_record_lea_modrm (&ir))
6987 return -1;
6988 }
6989 break;
6990
6991 case 0x660f3817: /* ptest */
6992 case 0x0f2e: /* ucomiss */
6993 case 0x660f2e: /* ucomisd */
6994 case 0x0f2f: /* comiss */
6995 case 0x660f2f: /* comisd */
6996 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6997 break;
6998
6999 case 0x0ff7: /* maskmovq */
7000 regcache_raw_read_unsigned (ir.regcache,
7001 ir.regmap[X86_RECORD_REDI_REGNUM],
7002 &addr);
7003 if (record_arch_list_add_mem (addr, 64))
7004 return -1;
7005 break;
7006
7007 case 0x660ff7: /* maskmovdqu */
7008 regcache_raw_read_unsigned (ir.regcache,
7009 ir.regmap[X86_RECORD_REDI_REGNUM],
7010 &addr);
7011 if (record_arch_list_add_mem (addr, 128))
7012 return -1;
7013 break;
7014
7015 default:
7016 goto no_support;
7017 break;
7018 }
7019 break;
7020
7021 default:
7022 goto no_support;
7023 break;
7024 }
7025
7026 /* In the future, maybe still need to deal with need_dasm. */
7027 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7028 if (record_arch_list_add_end ())
7029 return -1;
7030
7031 return 0;
7032
7033 no_support:
7034 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7035 "at address %s.\n"),
7036 (unsigned int) (opcode),
7037 paddress (gdbarch, ir.orig_addr));
7038 return -1;
7039 }
7040
7041 static const int i386_record_regmap[] =
7042 {
7043 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7044 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7045 0, 0, 0, 0, 0, 0, 0, 0,
7046 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7047 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7048 };
7049
7050 /* Check that the given address appears suitable for a fast
7051 tracepoint, which on x86 means that we need an instruction of at
7052 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7053 jump and not have to worry about program jumps to an address in the
7054 middle of the tracepoint jump. Returns 1 if OK, and writes a size
7055 of instruction to replace, and 0 if not, plus an explanatory
7056 string. */
7057
7058 static int
7059 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7060 CORE_ADDR addr, int *isize, char **msg)
7061 {
7062 int len, jumplen;
7063 static struct ui_file *gdb_null = NULL;
7064
7065 /* This is based on the target agent using a 4-byte relative jump.
7066 Alternate future possibilities include 8-byte offset for x86-84,
7067 or 3-byte jumps if the program has trampoline space close by. */
7068 jumplen = 5;
7069
7070 /* Dummy file descriptor for the disassembler. */
7071 if (!gdb_null)
7072 gdb_null = ui_file_new ();
7073
7074 /* Check for fit. */
7075 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7076 if (len < jumplen)
7077 {
7078 /* Return a bit of target-specific detail to add to the caller's
7079 generic failure message. */
7080 if (msg)
7081 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7082 "need at least %d bytes for the jump"),
7083 len, jumplen);
7084 return 0;
7085 }
7086
7087 if (isize)
7088 *isize = len;
7089 if (msg)
7090 *msg = NULL;
7091 return 1;
7092 }
7093
7094 static int
7095 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7096 struct tdesc_arch_data *tdesc_data)
7097 {
7098 const struct target_desc *tdesc = tdep->tdesc;
7099 const struct tdesc_feature *feature_core;
7100 const struct tdesc_feature *feature_sse, *feature_avx;
7101 int i, num_regs, valid_p;
7102
7103 if (! tdesc_has_registers (tdesc))
7104 return 0;
7105
7106 /* Get core registers. */
7107 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7108 if (feature_core == NULL)
7109 return 0;
7110
7111 /* Get SSE registers. */
7112 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7113
7114 /* Try AVX registers. */
7115 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7116
7117 valid_p = 1;
7118
7119 /* The XCR0 bits. */
7120 if (feature_avx)
7121 {
7122 /* AVX register description requires SSE register description. */
7123 if (!feature_sse)
7124 return 0;
7125
7126 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7127
7128 /* It may have been set by OSABI initialization function. */
7129 if (tdep->num_ymm_regs == 0)
7130 {
7131 tdep->ymmh_register_names = i386_ymmh_names;
7132 tdep->num_ymm_regs = 8;
7133 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7134 }
7135
7136 for (i = 0; i < tdep->num_ymm_regs; i++)
7137 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7138 tdep->ymm0h_regnum + i,
7139 tdep->ymmh_register_names[i]);
7140 }
7141 else if (feature_sse)
7142 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7143 else
7144 {
7145 tdep->xcr0 = I386_XSTATE_X87_MASK;
7146 tdep->num_xmm_regs = 0;
7147 }
7148
7149 num_regs = tdep->num_core_regs;
7150 for (i = 0; i < num_regs; i++)
7151 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7152 tdep->register_names[i]);
7153
7154 if (feature_sse)
7155 {
7156 /* Need to include %mxcsr, so add one. */
7157 num_regs += tdep->num_xmm_regs + 1;
7158 for (; i < num_regs; i++)
7159 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7160 tdep->register_names[i]);
7161 }
7162
7163 return valid_p;
7164 }
7165
7166 \f
7167 static struct gdbarch *
7168 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7169 {
7170 struct gdbarch_tdep *tdep;
7171 struct gdbarch *gdbarch;
7172 struct tdesc_arch_data *tdesc_data;
7173 const struct target_desc *tdesc;
7174 int mm0_regnum;
7175 int ymm0_regnum;
7176
7177 /* If there is already a candidate, use it. */
7178 arches = gdbarch_list_lookup_by_info (arches, &info);
7179 if (arches != NULL)
7180 return arches->gdbarch;
7181
7182 /* Allocate space for the new architecture. */
7183 tdep = XCALLOC (1, struct gdbarch_tdep);
7184 gdbarch = gdbarch_alloc (&info, tdep);
7185
7186 /* General-purpose registers. */
7187 tdep->gregset = NULL;
7188 tdep->gregset_reg_offset = NULL;
7189 tdep->gregset_num_regs = I386_NUM_GREGS;
7190 tdep->sizeof_gregset = 0;
7191
7192 /* Floating-point registers. */
7193 tdep->fpregset = NULL;
7194 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7195
7196 tdep->xstateregset = NULL;
7197
7198 /* The default settings include the FPU registers, the MMX registers
7199 and the SSE registers. This can be overridden for a specific ABI
7200 by adjusting the members `st0_regnum', `mm0_regnum' and
7201 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7202 will show up in the output of "info all-registers". */
7203
7204 tdep->st0_regnum = I386_ST0_REGNUM;
7205
7206 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7207 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7208
7209 tdep->jb_pc_offset = -1;
7210 tdep->struct_return = pcc_struct_return;
7211 tdep->sigtramp_start = 0;
7212 tdep->sigtramp_end = 0;
7213 tdep->sigtramp_p = i386_sigtramp_p;
7214 tdep->sigcontext_addr = NULL;
7215 tdep->sc_reg_offset = NULL;
7216 tdep->sc_pc_offset = -1;
7217 tdep->sc_sp_offset = -1;
7218
7219 tdep->xsave_xcr0_offset = -1;
7220
7221 tdep->record_regmap = i386_record_regmap;
7222
7223 /* The format used for `long double' on almost all i386 targets is
7224 the i387 extended floating-point format. In fact, of all targets
7225 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7226 on having a `long double' that's not `long' at all. */
7227 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7228
7229 /* Although the i387 extended floating-point has only 80 significant
7230 bits, a `long double' actually takes up 96, probably to enforce
7231 alignment. */
7232 set_gdbarch_long_double_bit (gdbarch, 96);
7233
7234 /* Register numbers of various important registers. */
7235 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7236 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7237 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7238 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7239
7240 /* NOTE: kettenis/20040418: GCC does have two possible register
7241 numbering schemes on the i386: dbx and SVR4. These schemes
7242 differ in how they number %ebp, %esp, %eflags, and the
7243 floating-point registers, and are implemented by the arrays
7244 dbx_register_map[] and svr4_dbx_register_map in
7245 gcc/config/i386.c. GCC also defines a third numbering scheme in
7246 gcc/config/i386.c, which it designates as the "default" register
7247 map used in 64bit mode. This last register numbering scheme is
7248 implemented in dbx64_register_map, and is used for AMD64; see
7249 amd64-tdep.c.
7250
7251 Currently, each GCC i386 target always uses the same register
7252 numbering scheme across all its supported debugging formats
7253 i.e. SDB (COFF), stabs and DWARF 2. This is because
7254 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7255 DBX_REGISTER_NUMBER macro which is defined by each target's
7256 respective config header in a manner independent of the requested
7257 output debugging format.
7258
7259 This does not match the arrangement below, which presumes that
7260 the SDB and stabs numbering schemes differ from the DWARF and
7261 DWARF 2 ones. The reason for this arrangement is that it is
7262 likely to get the numbering scheme for the target's
7263 default/native debug format right. For targets where GCC is the
7264 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7265 targets where the native toolchain uses a different numbering
7266 scheme for a particular debug format (stabs-in-ELF on Solaris)
7267 the defaults below will have to be overridden, like
7268 i386_elf_init_abi() does. */
7269
7270 /* Use the dbx register numbering scheme for stabs and COFF. */
7271 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7272 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7273
7274 /* Use the SVR4 register numbering scheme for DWARF 2. */
7275 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7276
7277 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7278 be in use on any of the supported i386 targets. */
7279
7280 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7281
7282 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7283
7284 /* Call dummy code. */
7285 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7286
7287 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7288 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7289 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7290
7291 set_gdbarch_return_value (gdbarch, i386_return_value);
7292
7293 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7294
7295 /* Stack grows downward. */
7296 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7297
7298 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7299 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7300 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7301
7302 set_gdbarch_frame_args_skip (gdbarch, 8);
7303
7304 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7305
7306 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7307
7308 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7309
7310 /* Add the i386 register groups. */
7311 i386_add_reggroups (gdbarch);
7312 tdep->register_reggroup_p = i386_register_reggroup_p;
7313
7314 /* Helper for function argument information. */
7315 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7316
7317 /* Hook the function epilogue frame unwinder. This unwinder is
7318 appended to the list first, so that it supercedes the DWARF
7319 unwinder in function epilogues (where the DWARF unwinder
7320 currently fails). */
7321 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7322
7323 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7324 to the list before the prologue-based unwinders, so that DWARF
7325 CFI info will be used if it is available. */
7326 dwarf2_append_unwinders (gdbarch);
7327
7328 frame_base_set_default (gdbarch, &i386_frame_base);
7329
7330 /* Pseudo registers may be changed by amd64_init_abi. */
7331 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
7332 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7333
7334 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7335 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7336
7337 /* Override the normal target description method to make the AVX
7338 upper halves anonymous. */
7339 set_gdbarch_register_name (gdbarch, i386_register_name);
7340
7341 /* Even though the default ABI only includes general-purpose registers,
7342 floating-point registers and the SSE registers, we have to leave a
7343 gap for the upper AVX registers. */
7344 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7345
7346 /* Get the x86 target description from INFO. */
7347 tdesc = info.target_desc;
7348 if (! tdesc_has_registers (tdesc))
7349 tdesc = tdesc_i386;
7350 tdep->tdesc = tdesc;
7351
7352 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7353 tdep->register_names = i386_register_names;
7354
7355 /* No upper YMM registers. */
7356 tdep->ymmh_register_names = NULL;
7357 tdep->ymm0h_regnum = -1;
7358
7359 tdep->num_byte_regs = 8;
7360 tdep->num_word_regs = 8;
7361 tdep->num_dword_regs = 0;
7362 tdep->num_mmx_regs = 8;
7363 tdep->num_ymm_regs = 0;
7364
7365 tdesc_data = tdesc_data_alloc ();
7366
7367 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7368
7369 /* Hook in ABI-specific overrides, if they have been registered. */
7370 info.tdep_info = (void *) tdesc_data;
7371 gdbarch_init_osabi (info, gdbarch);
7372
7373 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7374 {
7375 tdesc_data_cleanup (tdesc_data);
7376 xfree (tdep);
7377 gdbarch_free (gdbarch);
7378 return NULL;
7379 }
7380
7381 /* Wire in pseudo registers. Number of pseudo registers may be
7382 changed. */
7383 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7384 + tdep->num_word_regs
7385 + tdep->num_dword_regs
7386 + tdep->num_mmx_regs
7387 + tdep->num_ymm_regs));
7388
7389 /* Target description may be changed. */
7390 tdesc = tdep->tdesc;
7391
7392 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7393
7394 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7395 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7396
7397 /* Make %al the first pseudo-register. */
7398 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7399 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7400
7401 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7402 if (tdep->num_dword_regs)
7403 {
7404 /* Support dword pseudo-register if it hasn't been disabled. */
7405 tdep->eax_regnum = ymm0_regnum;
7406 ymm0_regnum += tdep->num_dword_regs;
7407 }
7408 else
7409 tdep->eax_regnum = -1;
7410
7411 mm0_regnum = ymm0_regnum;
7412 if (tdep->num_ymm_regs)
7413 {
7414 /* Support YMM pseudo-register if it is available. */
7415 tdep->ymm0_regnum = ymm0_regnum;
7416 mm0_regnum += tdep->num_ymm_regs;
7417 }
7418 else
7419 tdep->ymm0_regnum = -1;
7420
7421 if (tdep->num_mmx_regs != 0)
7422 {
7423 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7424 tdep->mm0_regnum = mm0_regnum;
7425 }
7426 else
7427 tdep->mm0_regnum = -1;
7428
7429 /* Hook in the legacy prologue-based unwinders last (fallback). */
7430 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
7431 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7432 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7433
7434 /* If we have a register mapping, enable the generic core file
7435 support, unless it has already been enabled. */
7436 if (tdep->gregset_reg_offset
7437 && !gdbarch_regset_from_core_section_p (gdbarch))
7438 set_gdbarch_regset_from_core_section (gdbarch,
7439 i386_regset_from_core_section);
7440
7441 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7442 i386_skip_permanent_breakpoint);
7443
7444 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7445 i386_fast_tracepoint_valid_at);
7446
7447 return gdbarch;
7448 }
7449
7450 static enum gdb_osabi
7451 i386_coff_osabi_sniffer (bfd *abfd)
7452 {
7453 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7454 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7455 return GDB_OSABI_GO32;
7456
7457 return GDB_OSABI_UNKNOWN;
7458 }
7459 \f
7460
7461 /* Provide a prototype to silence -Wmissing-prototypes. */
7462 void _initialize_i386_tdep (void);
7463
7464 void
7465 _initialize_i386_tdep (void)
7466 {
7467 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7468
7469 /* Add the variable that controls the disassembly flavor. */
7470 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7471 &disassembly_flavor, _("\
7472 Set the disassembly flavor."), _("\
7473 Show the disassembly flavor."), _("\
7474 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7475 NULL,
7476 NULL, /* FIXME: i18n: */
7477 &setlist, &showlist);
7478
7479 /* Add the variable that controls the convention for returning
7480 structs. */
7481 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7482 &struct_convention, _("\
7483 Set the convention for returning small structs."), _("\
7484 Show the convention for returning small structs."), _("\
7485 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7486 is \"default\"."),
7487 NULL,
7488 NULL, /* FIXME: i18n: */
7489 &setlist, &showlist);
7490
7491 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7492 i386_coff_osabi_sniffer);
7493
7494 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7495 i386_svr4_init_abi);
7496 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7497 i386_go32_init_abi);
7498
7499 /* Initialize the i386-specific register groups. */
7500 i386_init_reggroups ();
7501
7502 /* Initialize the standard target descriptions. */
7503 initialize_tdesc_i386 ();
7504 initialize_tdesc_i386_mmx ();
7505 initialize_tdesc_i386_avx ();
7506
7507 /* Tell remote stub that we support XML target description. */
7508 register_remote_support_xml ("i386");
7509 }
This page took 0.197358 seconds and 4 git commands to generate.