gdb/testsuite: Handle underlying type in gdb.cp/var-tag.exp.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include <string.h>
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include "record-full.h"
56 #include <stdint.h>
57
58 #include "features/i386/i386.c"
59 #include "features/i386/i386-avx.c"
60 #include "features/i386/i386-mpx.c"
61 #include "features/i386/i386-avx512.c"
62 #include "features/i386/i386-mmx.c"
63
64 #include "ax.h"
65 #include "ax-gdb.h"
66
67 #include "stap-probe.h"
68 #include "user-regs.h"
69 #include "cli/cli-utils.h"
70 #include "expression.h"
71 #include "parser-defs.h"
72 #include <ctype.h>
73
74 /* Register names. */
75
76 static const char *i386_register_names[] =
77 {
78 "eax", "ecx", "edx", "ebx",
79 "esp", "ebp", "esi", "edi",
80 "eip", "eflags", "cs", "ss",
81 "ds", "es", "fs", "gs",
82 "st0", "st1", "st2", "st3",
83 "st4", "st5", "st6", "st7",
84 "fctrl", "fstat", "ftag", "fiseg",
85 "fioff", "foseg", "fooff", "fop",
86 "xmm0", "xmm1", "xmm2", "xmm3",
87 "xmm4", "xmm5", "xmm6", "xmm7",
88 "mxcsr"
89 };
90
91 static const char *i386_zmm_names[] =
92 {
93 "zmm0", "zmm1", "zmm2", "zmm3",
94 "zmm4", "zmm5", "zmm6", "zmm7"
95 };
96
97 static const char *i386_zmmh_names[] =
98 {
99 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
100 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
101 };
102
103 static const char *i386_k_names[] =
104 {
105 "k0", "k1", "k2", "k3",
106 "k4", "k5", "k6", "k7"
107 };
108
109 static const char *i386_ymm_names[] =
110 {
111 "ymm0", "ymm1", "ymm2", "ymm3",
112 "ymm4", "ymm5", "ymm6", "ymm7",
113 };
114
115 static const char *i386_ymmh_names[] =
116 {
117 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
118 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
119 };
120
121 static const char *i386_mpx_names[] =
122 {
123 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
124 };
125
126 /* Register names for MPX pseudo-registers. */
127
128 static const char *i386_bnd_names[] =
129 {
130 "bnd0", "bnd1", "bnd2", "bnd3"
131 };
132
133 /* Register names for MMX pseudo-registers. */
134
135 static const char *i386_mmx_names[] =
136 {
137 "mm0", "mm1", "mm2", "mm3",
138 "mm4", "mm5", "mm6", "mm7"
139 };
140
141 /* Register names for byte pseudo-registers. */
142
143 static const char *i386_byte_names[] =
144 {
145 "al", "cl", "dl", "bl",
146 "ah", "ch", "dh", "bh"
147 };
148
149 /* Register names for word pseudo-registers. */
150
151 static const char *i386_word_names[] =
152 {
153 "ax", "cx", "dx", "bx",
154 "", "bp", "si", "di"
155 };
156
157 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
158 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
159 we have 16 upper ZMM regs that have to be handled differently. */
160
161 const int num_lower_zmm_regs = 16;
162
163 /* MMX register? */
164
165 static int
166 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
167 {
168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
169 int mm0_regnum = tdep->mm0_regnum;
170
171 if (mm0_regnum < 0)
172 return 0;
173
174 regnum -= mm0_regnum;
175 return regnum >= 0 && regnum < tdep->num_mmx_regs;
176 }
177
178 /* Byte register? */
179
180 int
181 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
182 {
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184
185 regnum -= tdep->al_regnum;
186 return regnum >= 0 && regnum < tdep->num_byte_regs;
187 }
188
189 /* Word register? */
190
191 int
192 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
193 {
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195
196 regnum -= tdep->ax_regnum;
197 return regnum >= 0 && regnum < tdep->num_word_regs;
198 }
199
200 /* Dword register? */
201
202 int
203 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
204 {
205 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
206 int eax_regnum = tdep->eax_regnum;
207
208 if (eax_regnum < 0)
209 return 0;
210
211 regnum -= eax_regnum;
212 return regnum >= 0 && regnum < tdep->num_dword_regs;
213 }
214
215 /* AVX512 register? */
216
217 int
218 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
219 {
220 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
221 int zmm0h_regnum = tdep->zmm0h_regnum;
222
223 if (zmm0h_regnum < 0)
224 return 0;
225
226 regnum -= zmm0h_regnum;
227 return regnum >= 0 && regnum < tdep->num_zmm_regs;
228 }
229
230 int
231 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
232 {
233 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
234 int zmm0_regnum = tdep->zmm0_regnum;
235
236 if (zmm0_regnum < 0)
237 return 0;
238
239 regnum -= zmm0_regnum;
240 return regnum >= 0 && regnum < tdep->num_zmm_regs;
241 }
242
243 int
244 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
245 {
246 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
247 int k0_regnum = tdep->k0_regnum;
248
249 if (k0_regnum < 0)
250 return 0;
251
252 regnum -= k0_regnum;
253 return regnum >= 0 && regnum < I387_NUM_K_REGS;
254 }
255
256 static int
257 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
258 {
259 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
260 int ymm0h_regnum = tdep->ymm0h_regnum;
261
262 if (ymm0h_regnum < 0)
263 return 0;
264
265 regnum -= ymm0h_regnum;
266 return regnum >= 0 && regnum < tdep->num_ymm_regs;
267 }
268
269 /* AVX register? */
270
271 int
272 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
273 {
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 int ymm0_regnum = tdep->ymm0_regnum;
276
277 if (ymm0_regnum < 0)
278 return 0;
279
280 regnum -= ymm0_regnum;
281 return regnum >= 0 && regnum < tdep->num_ymm_regs;
282 }
283
284 static int
285 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
286 {
287 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
288 int ymm16h_regnum = tdep->ymm16h_regnum;
289
290 if (ymm16h_regnum < 0)
291 return 0;
292
293 regnum -= ymm16h_regnum;
294 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
295 }
296
297 int
298 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
299 {
300 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
301 int ymm16_regnum = tdep->ymm16_regnum;
302
303 if (ymm16_regnum < 0)
304 return 0;
305
306 regnum -= ymm16_regnum;
307 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
308 }
309
310 /* BND register? */
311
312 int
313 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
314 {
315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
316 int bnd0_regnum = tdep->bnd0_regnum;
317
318 if (bnd0_regnum < 0)
319 return 0;
320
321 regnum -= bnd0_regnum;
322 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
323 }
324
325 /* SSE register? */
326
327 int
328 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
329 {
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
332
333 if (num_xmm_regs == 0)
334 return 0;
335
336 regnum -= I387_XMM0_REGNUM (tdep);
337 return regnum >= 0 && regnum < num_xmm_regs;
338 }
339
340 /* XMM_512 register? */
341
342 int
343 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
344 {
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
347
348 if (num_xmm_avx512_regs == 0)
349 return 0;
350
351 regnum -= I387_XMM16_REGNUM (tdep);
352 return regnum >= 0 && regnum < num_xmm_avx512_regs;
353 }
354
355 static int
356 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
357 {
358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
359
360 if (I387_NUM_XMM_REGS (tdep) == 0)
361 return 0;
362
363 return (regnum == I387_MXCSR_REGNUM (tdep));
364 }
365
366 /* FP register? */
367
368 int
369 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
370 {
371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
372
373 if (I387_ST0_REGNUM (tdep) < 0)
374 return 0;
375
376 return (I387_ST0_REGNUM (tdep) <= regnum
377 && regnum < I387_FCTRL_REGNUM (tdep));
378 }
379
380 int
381 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
382 {
383 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
384
385 if (I387_ST0_REGNUM (tdep) < 0)
386 return 0;
387
388 return (I387_FCTRL_REGNUM (tdep) <= regnum
389 && regnum < I387_XMM0_REGNUM (tdep));
390 }
391
392 /* BNDr (raw) register? */
393
394 static int
395 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
396 {
397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
398
399 if (I387_BND0R_REGNUM (tdep) < 0)
400 return 0;
401
402 regnum -= tdep->bnd0r_regnum;
403 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
404 }
405
406 /* BND control register? */
407
408 static int
409 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
410 {
411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
412
413 if (I387_BNDCFGU_REGNUM (tdep) < 0)
414 return 0;
415
416 regnum -= I387_BNDCFGU_REGNUM (tdep);
417 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
418 }
419
420 /* Return the name of register REGNUM, or the empty string if it is
421 an anonymous register. */
422
423 static const char *
424 i386_register_name (struct gdbarch *gdbarch, int regnum)
425 {
426 /* Hide the upper YMM registers. */
427 if (i386_ymmh_regnum_p (gdbarch, regnum))
428 return "";
429
430 /* Hide the upper YMM16-31 registers. */
431 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
432 return "";
433
434 /* Hide the upper ZMM registers. */
435 if (i386_zmmh_regnum_p (gdbarch, regnum))
436 return "";
437
438 return tdesc_register_name (gdbarch, regnum);
439 }
440
441 /* Return the name of register REGNUM. */
442
443 const char *
444 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
445 {
446 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
447 if (i386_bnd_regnum_p (gdbarch, regnum))
448 return i386_bnd_names[regnum - tdep->bnd0_regnum];
449 if (i386_mmx_regnum_p (gdbarch, regnum))
450 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
451 else if (i386_ymm_regnum_p (gdbarch, regnum))
452 return i386_ymm_names[regnum - tdep->ymm0_regnum];
453 else if (i386_zmm_regnum_p (gdbarch, regnum))
454 return i386_zmm_names[regnum - tdep->zmm0_regnum];
455 else if (i386_byte_regnum_p (gdbarch, regnum))
456 return i386_byte_names[regnum - tdep->al_regnum];
457 else if (i386_word_regnum_p (gdbarch, regnum))
458 return i386_word_names[regnum - tdep->ax_regnum];
459
460 internal_error (__FILE__, __LINE__, _("invalid regnum"));
461 }
462
463 /* Convert a dbx register number REG to the appropriate register
464 number used by GDB. */
465
466 static int
467 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
468 {
469 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
470
471 /* This implements what GCC calls the "default" register map
472 (dbx_register_map[]). */
473
474 if (reg >= 0 && reg <= 7)
475 {
476 /* General-purpose registers. The debug info calls %ebp
477 register 4, and %esp register 5. */
478 if (reg == 4)
479 return 5;
480 else if (reg == 5)
481 return 4;
482 else return reg;
483 }
484 else if (reg >= 12 && reg <= 19)
485 {
486 /* Floating-point registers. */
487 return reg - 12 + I387_ST0_REGNUM (tdep);
488 }
489 else if (reg >= 21 && reg <= 28)
490 {
491 /* SSE registers. */
492 int ymm0_regnum = tdep->ymm0_regnum;
493
494 if (ymm0_regnum >= 0
495 && i386_xmm_regnum_p (gdbarch, reg))
496 return reg - 21 + ymm0_regnum;
497 else
498 return reg - 21 + I387_XMM0_REGNUM (tdep);
499 }
500 else if (reg >= 29 && reg <= 36)
501 {
502 /* MMX registers. */
503 return reg - 29 + I387_MM0_REGNUM (tdep);
504 }
505
506 /* This will hopefully provoke a warning. */
507 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
508 }
509
510 /* Convert SVR4 register number REG to the appropriate register number
511 used by GDB. */
512
513 static int
514 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
515 {
516 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
517
518 /* This implements the GCC register map that tries to be compatible
519 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
520
521 /* The SVR4 register numbering includes %eip and %eflags, and
522 numbers the floating point registers differently. */
523 if (reg >= 0 && reg <= 9)
524 {
525 /* General-purpose registers. */
526 return reg;
527 }
528 else if (reg >= 11 && reg <= 18)
529 {
530 /* Floating-point registers. */
531 return reg - 11 + I387_ST0_REGNUM (tdep);
532 }
533 else if (reg >= 21 && reg <= 36)
534 {
535 /* The SSE and MMX registers have the same numbers as with dbx. */
536 return i386_dbx_reg_to_regnum (gdbarch, reg);
537 }
538
539 switch (reg)
540 {
541 case 37: return I387_FCTRL_REGNUM (tdep);
542 case 38: return I387_FSTAT_REGNUM (tdep);
543 case 39: return I387_MXCSR_REGNUM (tdep);
544 case 40: return I386_ES_REGNUM;
545 case 41: return I386_CS_REGNUM;
546 case 42: return I386_SS_REGNUM;
547 case 43: return I386_DS_REGNUM;
548 case 44: return I386_FS_REGNUM;
549 case 45: return I386_GS_REGNUM;
550 }
551
552 /* This will hopefully provoke a warning. */
553 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
554 }
555
556 \f
557
558 /* This is the variable that is set with "set disassembly-flavor", and
559 its legitimate values. */
560 static const char att_flavor[] = "att";
561 static const char intel_flavor[] = "intel";
562 static const char *const valid_flavors[] =
563 {
564 att_flavor,
565 intel_flavor,
566 NULL
567 };
568 static const char *disassembly_flavor = att_flavor;
569 \f
570
571 /* Use the program counter to determine the contents and size of a
572 breakpoint instruction. Return a pointer to a string of bytes that
573 encode a breakpoint instruction, store the length of the string in
574 *LEN and optionally adjust *PC to point to the correct memory
575 location for inserting the breakpoint.
576
577 On the i386 we have a single breakpoint that fits in a single byte
578 and can be inserted anywhere.
579
580 This function is 64-bit safe. */
581
582 static const gdb_byte *
583 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
584 {
585 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
586
587 *len = sizeof (break_insn);
588 return break_insn;
589 }
590 \f
591 /* Displaced instruction handling. */
592
593 /* Skip the legacy instruction prefixes in INSN.
594 Not all prefixes are valid for any particular insn
595 but we needn't care, the insn will fault if it's invalid.
596 The result is a pointer to the first opcode byte,
597 or NULL if we run off the end of the buffer. */
598
599 static gdb_byte *
600 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
601 {
602 gdb_byte *end = insn + max_len;
603
604 while (insn < end)
605 {
606 switch (*insn)
607 {
608 case DATA_PREFIX_OPCODE:
609 case ADDR_PREFIX_OPCODE:
610 case CS_PREFIX_OPCODE:
611 case DS_PREFIX_OPCODE:
612 case ES_PREFIX_OPCODE:
613 case FS_PREFIX_OPCODE:
614 case GS_PREFIX_OPCODE:
615 case SS_PREFIX_OPCODE:
616 case LOCK_PREFIX_OPCODE:
617 case REPE_PREFIX_OPCODE:
618 case REPNE_PREFIX_OPCODE:
619 ++insn;
620 continue;
621 default:
622 return insn;
623 }
624 }
625
626 return NULL;
627 }
628
629 static int
630 i386_absolute_jmp_p (const gdb_byte *insn)
631 {
632 /* jmp far (absolute address in operand). */
633 if (insn[0] == 0xea)
634 return 1;
635
636 if (insn[0] == 0xff)
637 {
638 /* jump near, absolute indirect (/4). */
639 if ((insn[1] & 0x38) == 0x20)
640 return 1;
641
642 /* jump far, absolute indirect (/5). */
643 if ((insn[1] & 0x38) == 0x28)
644 return 1;
645 }
646
647 return 0;
648 }
649
650 /* Return non-zero if INSN is a jump, zero otherwise. */
651
652 static int
653 i386_jmp_p (const gdb_byte *insn)
654 {
655 /* jump short, relative. */
656 if (insn[0] == 0xeb)
657 return 1;
658
659 /* jump near, relative. */
660 if (insn[0] == 0xe9)
661 return 1;
662
663 return i386_absolute_jmp_p (insn);
664 }
665
666 static int
667 i386_absolute_call_p (const gdb_byte *insn)
668 {
669 /* call far, absolute. */
670 if (insn[0] == 0x9a)
671 return 1;
672
673 if (insn[0] == 0xff)
674 {
675 /* Call near, absolute indirect (/2). */
676 if ((insn[1] & 0x38) == 0x10)
677 return 1;
678
679 /* Call far, absolute indirect (/3). */
680 if ((insn[1] & 0x38) == 0x18)
681 return 1;
682 }
683
684 return 0;
685 }
686
687 static int
688 i386_ret_p (const gdb_byte *insn)
689 {
690 switch (insn[0])
691 {
692 case 0xc2: /* ret near, pop N bytes. */
693 case 0xc3: /* ret near */
694 case 0xca: /* ret far, pop N bytes. */
695 case 0xcb: /* ret far */
696 case 0xcf: /* iret */
697 return 1;
698
699 default:
700 return 0;
701 }
702 }
703
704 static int
705 i386_call_p (const gdb_byte *insn)
706 {
707 if (i386_absolute_call_p (insn))
708 return 1;
709
710 /* call near, relative. */
711 if (insn[0] == 0xe8)
712 return 1;
713
714 return 0;
715 }
716
717 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
718 length in bytes. Otherwise, return zero. */
719
720 static int
721 i386_syscall_p (const gdb_byte *insn, int *lengthp)
722 {
723 /* Is it 'int $0x80'? */
724 if ((insn[0] == 0xcd && insn[1] == 0x80)
725 /* Or is it 'sysenter'? */
726 || (insn[0] == 0x0f && insn[1] == 0x34)
727 /* Or is it 'syscall'? */
728 || (insn[0] == 0x0f && insn[1] == 0x05))
729 {
730 *lengthp = 2;
731 return 1;
732 }
733
734 return 0;
735 }
736
737 /* The gdbarch insn_is_call method. */
738
739 static int
740 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
741 {
742 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
743
744 read_code (addr, buf, I386_MAX_INSN_LEN);
745 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
746
747 return i386_call_p (insn);
748 }
749
750 /* The gdbarch insn_is_ret method. */
751
752 static int
753 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
754 {
755 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
756
757 read_code (addr, buf, I386_MAX_INSN_LEN);
758 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
759
760 return i386_ret_p (insn);
761 }
762
763 /* The gdbarch insn_is_jump method. */
764
765 static int
766 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
767 {
768 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
769
770 read_code (addr, buf, I386_MAX_INSN_LEN);
771 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
772
773 return i386_jmp_p (insn);
774 }
775
776 /* Some kernels may run one past a syscall insn, so we have to cope.
777 Otherwise this is just simple_displaced_step_copy_insn. */
778
779 struct displaced_step_closure *
780 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
781 CORE_ADDR from, CORE_ADDR to,
782 struct regcache *regs)
783 {
784 size_t len = gdbarch_max_insn_length (gdbarch);
785 gdb_byte *buf = xmalloc (len);
786
787 read_memory (from, buf, len);
788
789 /* GDB may get control back after the insn after the syscall.
790 Presumably this is a kernel bug.
791 If this is a syscall, make sure there's a nop afterwards. */
792 {
793 int syscall_length;
794 gdb_byte *insn;
795
796 insn = i386_skip_prefixes (buf, len);
797 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
798 insn[syscall_length] = NOP_OPCODE;
799 }
800
801 write_memory (to, buf, len);
802
803 if (debug_displaced)
804 {
805 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
806 paddress (gdbarch, from), paddress (gdbarch, to));
807 displaced_step_dump_bytes (gdb_stdlog, buf, len);
808 }
809
810 return (struct displaced_step_closure *) buf;
811 }
812
813 /* Fix up the state of registers and memory after having single-stepped
814 a displaced instruction. */
815
816 void
817 i386_displaced_step_fixup (struct gdbarch *gdbarch,
818 struct displaced_step_closure *closure,
819 CORE_ADDR from, CORE_ADDR to,
820 struct regcache *regs)
821 {
822 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
823
824 /* The offset we applied to the instruction's address.
825 This could well be negative (when viewed as a signed 32-bit
826 value), but ULONGEST won't reflect that, so take care when
827 applying it. */
828 ULONGEST insn_offset = to - from;
829
830 /* Since we use simple_displaced_step_copy_insn, our closure is a
831 copy of the instruction. */
832 gdb_byte *insn = (gdb_byte *) closure;
833 /* The start of the insn, needed in case we see some prefixes. */
834 gdb_byte *insn_start = insn;
835
836 if (debug_displaced)
837 fprintf_unfiltered (gdb_stdlog,
838 "displaced: fixup (%s, %s), "
839 "insn = 0x%02x 0x%02x ...\n",
840 paddress (gdbarch, from), paddress (gdbarch, to),
841 insn[0], insn[1]);
842
843 /* The list of issues to contend with here is taken from
844 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
845 Yay for Free Software! */
846
847 /* Relocate the %eip, if necessary. */
848
849 /* The instruction recognizers we use assume any leading prefixes
850 have been skipped. */
851 {
852 /* This is the size of the buffer in closure. */
853 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
854 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
855 /* If there are too many prefixes, just ignore the insn.
856 It will fault when run. */
857 if (opcode != NULL)
858 insn = opcode;
859 }
860
861 /* Except in the case of absolute or indirect jump or call
862 instructions, or a return instruction, the new eip is relative to
863 the displaced instruction; make it relative. Well, signal
864 handler returns don't need relocation either, but we use the
865 value of %eip to recognize those; see below. */
866 if (! i386_absolute_jmp_p (insn)
867 && ! i386_absolute_call_p (insn)
868 && ! i386_ret_p (insn))
869 {
870 ULONGEST orig_eip;
871 int insn_len;
872
873 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
874
875 /* A signal trampoline system call changes the %eip, resuming
876 execution of the main program after the signal handler has
877 returned. That makes them like 'return' instructions; we
878 shouldn't relocate %eip.
879
880 But most system calls don't, and we do need to relocate %eip.
881
882 Our heuristic for distinguishing these cases: if stepping
883 over the system call instruction left control directly after
884 the instruction, the we relocate --- control almost certainly
885 doesn't belong in the displaced copy. Otherwise, we assume
886 the instruction has put control where it belongs, and leave
887 it unrelocated. Goodness help us if there are PC-relative
888 system calls. */
889 if (i386_syscall_p (insn, &insn_len)
890 && orig_eip != to + (insn - insn_start) + insn_len
891 /* GDB can get control back after the insn after the syscall.
892 Presumably this is a kernel bug.
893 i386_displaced_step_copy_insn ensures its a nop,
894 we add one to the length for it. */
895 && orig_eip != to + (insn - insn_start) + insn_len + 1)
896 {
897 if (debug_displaced)
898 fprintf_unfiltered (gdb_stdlog,
899 "displaced: syscall changed %%eip; "
900 "not relocating\n");
901 }
902 else
903 {
904 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
905
906 /* If we just stepped over a breakpoint insn, we don't backup
907 the pc on purpose; this is to match behaviour without
908 stepping. */
909
910 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
911
912 if (debug_displaced)
913 fprintf_unfiltered (gdb_stdlog,
914 "displaced: "
915 "relocated %%eip from %s to %s\n",
916 paddress (gdbarch, orig_eip),
917 paddress (gdbarch, eip));
918 }
919 }
920
921 /* If the instruction was PUSHFL, then the TF bit will be set in the
922 pushed value, and should be cleared. We'll leave this for later,
923 since GDB already messes up the TF flag when stepping over a
924 pushfl. */
925
926 /* If the instruction was a call, the return address now atop the
927 stack is the address following the copied instruction. We need
928 to make it the address following the original instruction. */
929 if (i386_call_p (insn))
930 {
931 ULONGEST esp;
932 ULONGEST retaddr;
933 const ULONGEST retaddr_len = 4;
934
935 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
936 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
937 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
938 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
939
940 if (debug_displaced)
941 fprintf_unfiltered (gdb_stdlog,
942 "displaced: relocated return addr at %s to %s\n",
943 paddress (gdbarch, esp),
944 paddress (gdbarch, retaddr));
945 }
946 }
947
948 static void
949 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
950 {
951 target_write_memory (*to, buf, len);
952 *to += len;
953 }
954
955 static void
956 i386_relocate_instruction (struct gdbarch *gdbarch,
957 CORE_ADDR *to, CORE_ADDR oldloc)
958 {
959 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
960 gdb_byte buf[I386_MAX_INSN_LEN];
961 int offset = 0, rel32, newrel;
962 int insn_length;
963 gdb_byte *insn = buf;
964
965 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
966
967 insn_length = gdb_buffered_insn_length (gdbarch, insn,
968 I386_MAX_INSN_LEN, oldloc);
969
970 /* Get past the prefixes. */
971 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
972
973 /* Adjust calls with 32-bit relative addresses as push/jump, with
974 the address pushed being the location where the original call in
975 the user program would return to. */
976 if (insn[0] == 0xe8)
977 {
978 gdb_byte push_buf[16];
979 unsigned int ret_addr;
980
981 /* Where "ret" in the original code will return to. */
982 ret_addr = oldloc + insn_length;
983 push_buf[0] = 0x68; /* pushq $... */
984 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
985 /* Push the push. */
986 append_insns (to, 5, push_buf);
987
988 /* Convert the relative call to a relative jump. */
989 insn[0] = 0xe9;
990
991 /* Adjust the destination offset. */
992 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
993 newrel = (oldloc - *to) + rel32;
994 store_signed_integer (insn + 1, 4, byte_order, newrel);
995
996 if (debug_displaced)
997 fprintf_unfiltered (gdb_stdlog,
998 "Adjusted insn rel32=%s at %s to"
999 " rel32=%s at %s\n",
1000 hex_string (rel32), paddress (gdbarch, oldloc),
1001 hex_string (newrel), paddress (gdbarch, *to));
1002
1003 /* Write the adjusted jump into its displaced location. */
1004 append_insns (to, 5, insn);
1005 return;
1006 }
1007
1008 /* Adjust jumps with 32-bit relative addresses. Calls are already
1009 handled above. */
1010 if (insn[0] == 0xe9)
1011 offset = 1;
1012 /* Adjust conditional jumps. */
1013 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1014 offset = 2;
1015
1016 if (offset)
1017 {
1018 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1019 newrel = (oldloc - *to) + rel32;
1020 store_signed_integer (insn + offset, 4, byte_order, newrel);
1021 if (debug_displaced)
1022 fprintf_unfiltered (gdb_stdlog,
1023 "Adjusted insn rel32=%s at %s to"
1024 " rel32=%s at %s\n",
1025 hex_string (rel32), paddress (gdbarch, oldloc),
1026 hex_string (newrel), paddress (gdbarch, *to));
1027 }
1028
1029 /* Write the adjusted instructions into their displaced
1030 location. */
1031 append_insns (to, insn_length, buf);
1032 }
1033
1034 \f
1035 #ifdef I386_REGNO_TO_SYMMETRY
1036 #error "The Sequent Symmetry is no longer supported."
1037 #endif
1038
1039 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1040 and %esp "belong" to the calling function. Therefore these
1041 registers should be saved if they're going to be modified. */
1042
1043 /* The maximum number of saved registers. This should include all
1044 registers mentioned above, and %eip. */
1045 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1046
1047 struct i386_frame_cache
1048 {
1049 /* Base address. */
1050 CORE_ADDR base;
1051 int base_p;
1052 LONGEST sp_offset;
1053 CORE_ADDR pc;
1054
1055 /* Saved registers. */
1056 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1057 CORE_ADDR saved_sp;
1058 int saved_sp_reg;
1059 int pc_in_eax;
1060
1061 /* Stack space reserved for local variables. */
1062 long locals;
1063 };
1064
1065 /* Allocate and initialize a frame cache. */
1066
1067 static struct i386_frame_cache *
1068 i386_alloc_frame_cache (void)
1069 {
1070 struct i386_frame_cache *cache;
1071 int i;
1072
1073 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1074
1075 /* Base address. */
1076 cache->base_p = 0;
1077 cache->base = 0;
1078 cache->sp_offset = -4;
1079 cache->pc = 0;
1080
1081 /* Saved registers. We initialize these to -1 since zero is a valid
1082 offset (that's where %ebp is supposed to be stored). */
1083 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1084 cache->saved_regs[i] = -1;
1085 cache->saved_sp = 0;
1086 cache->saved_sp_reg = -1;
1087 cache->pc_in_eax = 0;
1088
1089 /* Frameless until proven otherwise. */
1090 cache->locals = -1;
1091
1092 return cache;
1093 }
1094
1095 /* If the instruction at PC is a jump, return the address of its
1096 target. Otherwise, return PC. */
1097
1098 static CORE_ADDR
1099 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1100 {
1101 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1102 gdb_byte op;
1103 long delta = 0;
1104 int data16 = 0;
1105
1106 if (target_read_code (pc, &op, 1))
1107 return pc;
1108
1109 if (op == 0x66)
1110 {
1111 data16 = 1;
1112
1113 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1114 }
1115
1116 switch (op)
1117 {
1118 case 0xe9:
1119 /* Relative jump: if data16 == 0, disp32, else disp16. */
1120 if (data16)
1121 {
1122 delta = read_memory_integer (pc + 2, 2, byte_order);
1123
1124 /* Include the size of the jmp instruction (including the
1125 0x66 prefix). */
1126 delta += 4;
1127 }
1128 else
1129 {
1130 delta = read_memory_integer (pc + 1, 4, byte_order);
1131
1132 /* Include the size of the jmp instruction. */
1133 delta += 5;
1134 }
1135 break;
1136 case 0xeb:
1137 /* Relative jump, disp8 (ignore data16). */
1138 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1139
1140 delta += data16 + 2;
1141 break;
1142 }
1143
1144 return pc + delta;
1145 }
1146
1147 /* Check whether PC points at a prologue for a function returning a
1148 structure or union. If so, it updates CACHE and returns the
1149 address of the first instruction after the code sequence that
1150 removes the "hidden" argument from the stack or CURRENT_PC,
1151 whichever is smaller. Otherwise, return PC. */
1152
1153 static CORE_ADDR
1154 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1155 struct i386_frame_cache *cache)
1156 {
1157 /* Functions that return a structure or union start with:
1158
1159 popl %eax 0x58
1160 xchgl %eax, (%esp) 0x87 0x04 0x24
1161 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1162
1163 (the System V compiler puts out the second `xchg' instruction,
1164 and the assembler doesn't try to optimize it, so the 'sib' form
1165 gets generated). This sequence is used to get the address of the
1166 return buffer for a function that returns a structure. */
1167 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1168 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1169 gdb_byte buf[4];
1170 gdb_byte op;
1171
1172 if (current_pc <= pc)
1173 return pc;
1174
1175 if (target_read_code (pc, &op, 1))
1176 return pc;
1177
1178 if (op != 0x58) /* popl %eax */
1179 return pc;
1180
1181 if (target_read_code (pc + 1, buf, 4))
1182 return pc;
1183
1184 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1185 return pc;
1186
1187 if (current_pc == pc)
1188 {
1189 cache->sp_offset += 4;
1190 return current_pc;
1191 }
1192
1193 if (current_pc == pc + 1)
1194 {
1195 cache->pc_in_eax = 1;
1196 return current_pc;
1197 }
1198
1199 if (buf[1] == proto1[1])
1200 return pc + 4;
1201 else
1202 return pc + 5;
1203 }
1204
1205 static CORE_ADDR
1206 i386_skip_probe (CORE_ADDR pc)
1207 {
1208 /* A function may start with
1209
1210 pushl constant
1211 call _probe
1212 addl $4, %esp
1213
1214 followed by
1215
1216 pushl %ebp
1217
1218 etc. */
1219 gdb_byte buf[8];
1220 gdb_byte op;
1221
1222 if (target_read_code (pc, &op, 1))
1223 return pc;
1224
1225 if (op == 0x68 || op == 0x6a)
1226 {
1227 int delta;
1228
1229 /* Skip past the `pushl' instruction; it has either a one-byte or a
1230 four-byte operand, depending on the opcode. */
1231 if (op == 0x68)
1232 delta = 5;
1233 else
1234 delta = 2;
1235
1236 /* Read the following 8 bytes, which should be `call _probe' (6
1237 bytes) followed by `addl $4,%esp' (2 bytes). */
1238 read_memory (pc + delta, buf, sizeof (buf));
1239 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1240 pc += delta + sizeof (buf);
1241 }
1242
1243 return pc;
1244 }
1245
1246 /* GCC 4.1 and later, can put code in the prologue to realign the
1247 stack pointer. Check whether PC points to such code, and update
1248 CACHE accordingly. Return the first instruction after the code
1249 sequence or CURRENT_PC, whichever is smaller. If we don't
1250 recognize the code, return PC. */
1251
1252 static CORE_ADDR
1253 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1254 struct i386_frame_cache *cache)
1255 {
1256 /* There are 2 code sequences to re-align stack before the frame
1257 gets set up:
1258
1259 1. Use a caller-saved saved register:
1260
1261 leal 4(%esp), %reg
1262 andl $-XXX, %esp
1263 pushl -4(%reg)
1264
1265 2. Use a callee-saved saved register:
1266
1267 pushl %reg
1268 leal 8(%esp), %reg
1269 andl $-XXX, %esp
1270 pushl -4(%reg)
1271
1272 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1273
1274 0x83 0xe4 0xf0 andl $-16, %esp
1275 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1276 */
1277
1278 gdb_byte buf[14];
1279 int reg;
1280 int offset, offset_and;
1281 static int regnums[8] = {
1282 I386_EAX_REGNUM, /* %eax */
1283 I386_ECX_REGNUM, /* %ecx */
1284 I386_EDX_REGNUM, /* %edx */
1285 I386_EBX_REGNUM, /* %ebx */
1286 I386_ESP_REGNUM, /* %esp */
1287 I386_EBP_REGNUM, /* %ebp */
1288 I386_ESI_REGNUM, /* %esi */
1289 I386_EDI_REGNUM /* %edi */
1290 };
1291
1292 if (target_read_code (pc, buf, sizeof buf))
1293 return pc;
1294
1295 /* Check caller-saved saved register. The first instruction has
1296 to be "leal 4(%esp), %reg". */
1297 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1298 {
1299 /* MOD must be binary 10 and R/M must be binary 100. */
1300 if ((buf[1] & 0xc7) != 0x44)
1301 return pc;
1302
1303 /* REG has register number. */
1304 reg = (buf[1] >> 3) & 7;
1305 offset = 4;
1306 }
1307 else
1308 {
1309 /* Check callee-saved saved register. The first instruction
1310 has to be "pushl %reg". */
1311 if ((buf[0] & 0xf8) != 0x50)
1312 return pc;
1313
1314 /* Get register. */
1315 reg = buf[0] & 0x7;
1316
1317 /* The next instruction has to be "leal 8(%esp), %reg". */
1318 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1319 return pc;
1320
1321 /* MOD must be binary 10 and R/M must be binary 100. */
1322 if ((buf[2] & 0xc7) != 0x44)
1323 return pc;
1324
1325 /* REG has register number. Registers in pushl and leal have to
1326 be the same. */
1327 if (reg != ((buf[2] >> 3) & 7))
1328 return pc;
1329
1330 offset = 5;
1331 }
1332
1333 /* Rigister can't be %esp nor %ebp. */
1334 if (reg == 4 || reg == 5)
1335 return pc;
1336
1337 /* The next instruction has to be "andl $-XXX, %esp". */
1338 if (buf[offset + 1] != 0xe4
1339 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1340 return pc;
1341
1342 offset_and = offset;
1343 offset += buf[offset] == 0x81 ? 6 : 3;
1344
1345 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1346 0xfc. REG must be binary 110 and MOD must be binary 01. */
1347 if (buf[offset] != 0xff
1348 || buf[offset + 2] != 0xfc
1349 || (buf[offset + 1] & 0xf8) != 0x70)
1350 return pc;
1351
1352 /* R/M has register. Registers in leal and pushl have to be the
1353 same. */
1354 if (reg != (buf[offset + 1] & 7))
1355 return pc;
1356
1357 if (current_pc > pc + offset_and)
1358 cache->saved_sp_reg = regnums[reg];
1359
1360 return min (pc + offset + 3, current_pc);
1361 }
1362
1363 /* Maximum instruction length we need to handle. */
1364 #define I386_MAX_MATCHED_INSN_LEN 6
1365
1366 /* Instruction description. */
1367 struct i386_insn
1368 {
1369 size_t len;
1370 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1371 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1372 };
1373
1374 /* Return whether instruction at PC matches PATTERN. */
1375
1376 static int
1377 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1378 {
1379 gdb_byte op;
1380
1381 if (target_read_code (pc, &op, 1))
1382 return 0;
1383
1384 if ((op & pattern.mask[0]) == pattern.insn[0])
1385 {
1386 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1387 int insn_matched = 1;
1388 size_t i;
1389
1390 gdb_assert (pattern.len > 1);
1391 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1392
1393 if (target_read_code (pc + 1, buf, pattern.len - 1))
1394 return 0;
1395
1396 for (i = 1; i < pattern.len; i++)
1397 {
1398 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1399 insn_matched = 0;
1400 }
1401 return insn_matched;
1402 }
1403 return 0;
1404 }
1405
1406 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1407 the first instruction description that matches. Otherwise, return
1408 NULL. */
1409
1410 static struct i386_insn *
1411 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1412 {
1413 struct i386_insn *pattern;
1414
1415 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1416 {
1417 if (i386_match_pattern (pc, *pattern))
1418 return pattern;
1419 }
1420
1421 return NULL;
1422 }
1423
1424 /* Return whether PC points inside a sequence of instructions that
1425 matches INSN_PATTERNS. */
1426
1427 static int
1428 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1429 {
1430 CORE_ADDR current_pc;
1431 int ix, i;
1432 struct i386_insn *insn;
1433
1434 insn = i386_match_insn (pc, insn_patterns);
1435 if (insn == NULL)
1436 return 0;
1437
1438 current_pc = pc;
1439 ix = insn - insn_patterns;
1440 for (i = ix - 1; i >= 0; i--)
1441 {
1442 current_pc -= insn_patterns[i].len;
1443
1444 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1445 return 0;
1446 }
1447
1448 current_pc = pc + insn->len;
1449 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1450 {
1451 if (!i386_match_pattern (current_pc, *insn))
1452 return 0;
1453
1454 current_pc += insn->len;
1455 }
1456
1457 return 1;
1458 }
1459
1460 /* Some special instructions that might be migrated by GCC into the
1461 part of the prologue that sets up the new stack frame. Because the
1462 stack frame hasn't been setup yet, no registers have been saved
1463 yet, and only the scratch registers %eax, %ecx and %edx can be
1464 touched. */
1465
1466 struct i386_insn i386_frame_setup_skip_insns[] =
1467 {
1468 /* Check for `movb imm8, r' and `movl imm32, r'.
1469
1470 ??? Should we handle 16-bit operand-sizes here? */
1471
1472 /* `movb imm8, %al' and `movb imm8, %ah' */
1473 /* `movb imm8, %cl' and `movb imm8, %ch' */
1474 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1475 /* `movb imm8, %dl' and `movb imm8, %dh' */
1476 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1477 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1478 { 5, { 0xb8 }, { 0xfe } },
1479 /* `movl imm32, %edx' */
1480 { 5, { 0xba }, { 0xff } },
1481
1482 /* Check for `mov imm32, r32'. Note that there is an alternative
1483 encoding for `mov m32, %eax'.
1484
1485 ??? Should we handle SIB adressing here?
1486 ??? Should we handle 16-bit operand-sizes here? */
1487
1488 /* `movl m32, %eax' */
1489 { 5, { 0xa1 }, { 0xff } },
1490 /* `movl m32, %eax' and `mov; m32, %ecx' */
1491 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1492 /* `movl m32, %edx' */
1493 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1494
1495 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1496 Because of the symmetry, there are actually two ways to encode
1497 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1498 opcode bytes 0x31 and 0x33 for `xorl'. */
1499
1500 /* `subl %eax, %eax' */
1501 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1502 /* `subl %ecx, %ecx' */
1503 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1504 /* `subl %edx, %edx' */
1505 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1506 /* `xorl %eax, %eax' */
1507 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1508 /* `xorl %ecx, %ecx' */
1509 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1510 /* `xorl %edx, %edx' */
1511 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1512 { 0 }
1513 };
1514
1515
1516 /* Check whether PC points to a no-op instruction. */
1517 static CORE_ADDR
1518 i386_skip_noop (CORE_ADDR pc)
1519 {
1520 gdb_byte op;
1521 int check = 1;
1522
1523 if (target_read_code (pc, &op, 1))
1524 return pc;
1525
1526 while (check)
1527 {
1528 check = 0;
1529 /* Ignore `nop' instruction. */
1530 if (op == 0x90)
1531 {
1532 pc += 1;
1533 if (target_read_code (pc, &op, 1))
1534 return pc;
1535 check = 1;
1536 }
1537 /* Ignore no-op instruction `mov %edi, %edi'.
1538 Microsoft system dlls often start with
1539 a `mov %edi,%edi' instruction.
1540 The 5 bytes before the function start are
1541 filled with `nop' instructions.
1542 This pattern can be used for hot-patching:
1543 The `mov %edi, %edi' instruction can be replaced by a
1544 near jump to the location of the 5 `nop' instructions
1545 which can be replaced by a 32-bit jump to anywhere
1546 in the 32-bit address space. */
1547
1548 else if (op == 0x8b)
1549 {
1550 if (target_read_code (pc + 1, &op, 1))
1551 return pc;
1552
1553 if (op == 0xff)
1554 {
1555 pc += 2;
1556 if (target_read_code (pc, &op, 1))
1557 return pc;
1558
1559 check = 1;
1560 }
1561 }
1562 }
1563 return pc;
1564 }
1565
1566 /* Check whether PC points at a code that sets up a new stack frame.
1567 If so, it updates CACHE and returns the address of the first
1568 instruction after the sequence that sets up the frame or LIMIT,
1569 whichever is smaller. If we don't recognize the code, return PC. */
1570
1571 static CORE_ADDR
1572 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1573 CORE_ADDR pc, CORE_ADDR limit,
1574 struct i386_frame_cache *cache)
1575 {
1576 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1577 struct i386_insn *insn;
1578 gdb_byte op;
1579 int skip = 0;
1580
1581 if (limit <= pc)
1582 return limit;
1583
1584 if (target_read_code (pc, &op, 1))
1585 return pc;
1586
1587 if (op == 0x55) /* pushl %ebp */
1588 {
1589 /* Take into account that we've executed the `pushl %ebp' that
1590 starts this instruction sequence. */
1591 cache->saved_regs[I386_EBP_REGNUM] = 0;
1592 cache->sp_offset += 4;
1593 pc++;
1594
1595 /* If that's all, return now. */
1596 if (limit <= pc)
1597 return limit;
1598
1599 /* Check for some special instructions that might be migrated by
1600 GCC into the prologue and skip them. At this point in the
1601 prologue, code should only touch the scratch registers %eax,
1602 %ecx and %edx, so while the number of posibilities is sheer,
1603 it is limited.
1604
1605 Make sure we only skip these instructions if we later see the
1606 `movl %esp, %ebp' that actually sets up the frame. */
1607 while (pc + skip < limit)
1608 {
1609 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1610 if (insn == NULL)
1611 break;
1612
1613 skip += insn->len;
1614 }
1615
1616 /* If that's all, return now. */
1617 if (limit <= pc + skip)
1618 return limit;
1619
1620 if (target_read_code (pc + skip, &op, 1))
1621 return pc + skip;
1622
1623 /* The i386 prologue looks like
1624
1625 push %ebp
1626 mov %esp,%ebp
1627 sub $0x10,%esp
1628
1629 and a different prologue can be generated for atom.
1630
1631 push %ebp
1632 lea (%esp),%ebp
1633 lea -0x10(%esp),%esp
1634
1635 We handle both of them here. */
1636
1637 switch (op)
1638 {
1639 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1640 case 0x8b:
1641 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1642 != 0xec)
1643 return pc;
1644 pc += (skip + 2);
1645 break;
1646 case 0x89:
1647 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1648 != 0xe5)
1649 return pc;
1650 pc += (skip + 2);
1651 break;
1652 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1653 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1654 != 0x242c)
1655 return pc;
1656 pc += (skip + 3);
1657 break;
1658 default:
1659 return pc;
1660 }
1661
1662 /* OK, we actually have a frame. We just don't know how large
1663 it is yet. Set its size to zero. We'll adjust it if
1664 necessary. We also now commit to skipping the special
1665 instructions mentioned before. */
1666 cache->locals = 0;
1667
1668 /* If that's all, return now. */
1669 if (limit <= pc)
1670 return limit;
1671
1672 /* Check for stack adjustment
1673
1674 subl $XXX, %esp
1675 or
1676 lea -XXX(%esp),%esp
1677
1678 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1679 reg, so we don't have to worry about a data16 prefix. */
1680 if (target_read_code (pc, &op, 1))
1681 return pc;
1682 if (op == 0x83)
1683 {
1684 /* `subl' with 8-bit immediate. */
1685 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1686 /* Some instruction starting with 0x83 other than `subl'. */
1687 return pc;
1688
1689 /* `subl' with signed 8-bit immediate (though it wouldn't
1690 make sense to be negative). */
1691 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1692 return pc + 3;
1693 }
1694 else if (op == 0x81)
1695 {
1696 /* Maybe it is `subl' with a 32-bit immediate. */
1697 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1698 /* Some instruction starting with 0x81 other than `subl'. */
1699 return pc;
1700
1701 /* It is `subl' with a 32-bit immediate. */
1702 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1703 return pc + 6;
1704 }
1705 else if (op == 0x8d)
1706 {
1707 /* The ModR/M byte is 0x64. */
1708 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1709 return pc;
1710 /* 'lea' with 8-bit displacement. */
1711 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1712 return pc + 4;
1713 }
1714 else
1715 {
1716 /* Some instruction other than `subl' nor 'lea'. */
1717 return pc;
1718 }
1719 }
1720 else if (op == 0xc8) /* enter */
1721 {
1722 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1723 return pc + 4;
1724 }
1725
1726 return pc;
1727 }
1728
1729 /* Check whether PC points at code that saves registers on the stack.
1730 If so, it updates CACHE and returns the address of the first
1731 instruction after the register saves or CURRENT_PC, whichever is
1732 smaller. Otherwise, return PC. */
1733
1734 static CORE_ADDR
1735 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1736 struct i386_frame_cache *cache)
1737 {
1738 CORE_ADDR offset = 0;
1739 gdb_byte op;
1740 int i;
1741
1742 if (cache->locals > 0)
1743 offset -= cache->locals;
1744 for (i = 0; i < 8 && pc < current_pc; i++)
1745 {
1746 if (target_read_code (pc, &op, 1))
1747 return pc;
1748 if (op < 0x50 || op > 0x57)
1749 break;
1750
1751 offset -= 4;
1752 cache->saved_regs[op - 0x50] = offset;
1753 cache->sp_offset += 4;
1754 pc++;
1755 }
1756
1757 return pc;
1758 }
1759
1760 /* Do a full analysis of the prologue at PC and update CACHE
1761 accordingly. Bail out early if CURRENT_PC is reached. Return the
1762 address where the analysis stopped.
1763
1764 We handle these cases:
1765
1766 The startup sequence can be at the start of the function, or the
1767 function can start with a branch to startup code at the end.
1768
1769 %ebp can be set up with either the 'enter' instruction, or "pushl
1770 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1771 once used in the System V compiler).
1772
1773 Local space is allocated just below the saved %ebp by either the
1774 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1775 16-bit unsigned argument for space to allocate, and the 'addl'
1776 instruction could have either a signed byte, or 32-bit immediate.
1777
1778 Next, the registers used by this function are pushed. With the
1779 System V compiler they will always be in the order: %edi, %esi,
1780 %ebx (and sometimes a harmless bug causes it to also save but not
1781 restore %eax); however, the code below is willing to see the pushes
1782 in any order, and will handle up to 8 of them.
1783
1784 If the setup sequence is at the end of the function, then the next
1785 instruction will be a branch back to the start. */
1786
1787 static CORE_ADDR
1788 i386_analyze_prologue (struct gdbarch *gdbarch,
1789 CORE_ADDR pc, CORE_ADDR current_pc,
1790 struct i386_frame_cache *cache)
1791 {
1792 pc = i386_skip_noop (pc);
1793 pc = i386_follow_jump (gdbarch, pc);
1794 pc = i386_analyze_struct_return (pc, current_pc, cache);
1795 pc = i386_skip_probe (pc);
1796 pc = i386_analyze_stack_align (pc, current_pc, cache);
1797 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1798 return i386_analyze_register_saves (pc, current_pc, cache);
1799 }
1800
1801 /* Return PC of first real instruction. */
1802
1803 static CORE_ADDR
1804 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1805 {
1806 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1807
1808 static gdb_byte pic_pat[6] =
1809 {
1810 0xe8, 0, 0, 0, 0, /* call 0x0 */
1811 0x5b, /* popl %ebx */
1812 };
1813 struct i386_frame_cache cache;
1814 CORE_ADDR pc;
1815 gdb_byte op;
1816 int i;
1817 CORE_ADDR func_addr;
1818
1819 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1820 {
1821 CORE_ADDR post_prologue_pc
1822 = skip_prologue_using_sal (gdbarch, func_addr);
1823 struct symtab *s = find_pc_symtab (func_addr);
1824
1825 /* Clang always emits a line note before the prologue and another
1826 one after. We trust clang to emit usable line notes. */
1827 if (post_prologue_pc
1828 && (s != NULL
1829 && s->producer != NULL
1830 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1831 return max (start_pc, post_prologue_pc);
1832 }
1833
1834 cache.locals = -1;
1835 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1836 if (cache.locals < 0)
1837 return start_pc;
1838
1839 /* Found valid frame setup. */
1840
1841 /* The native cc on SVR4 in -K PIC mode inserts the following code
1842 to get the address of the global offset table (GOT) into register
1843 %ebx:
1844
1845 call 0x0
1846 popl %ebx
1847 movl %ebx,x(%ebp) (optional)
1848 addl y,%ebx
1849
1850 This code is with the rest of the prologue (at the end of the
1851 function), so we have to skip it to get to the first real
1852 instruction at the start of the function. */
1853
1854 for (i = 0; i < 6; i++)
1855 {
1856 if (target_read_code (pc + i, &op, 1))
1857 return pc;
1858
1859 if (pic_pat[i] != op)
1860 break;
1861 }
1862 if (i == 6)
1863 {
1864 int delta = 6;
1865
1866 if (target_read_code (pc + delta, &op, 1))
1867 return pc;
1868
1869 if (op == 0x89) /* movl %ebx, x(%ebp) */
1870 {
1871 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1872
1873 if (op == 0x5d) /* One byte offset from %ebp. */
1874 delta += 3;
1875 else if (op == 0x9d) /* Four byte offset from %ebp. */
1876 delta += 6;
1877 else /* Unexpected instruction. */
1878 delta = 0;
1879
1880 if (target_read_code (pc + delta, &op, 1))
1881 return pc;
1882 }
1883
1884 /* addl y,%ebx */
1885 if (delta > 0 && op == 0x81
1886 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1887 == 0xc3)
1888 {
1889 pc += delta + 6;
1890 }
1891 }
1892
1893 /* If the function starts with a branch (to startup code at the end)
1894 the last instruction should bring us back to the first
1895 instruction of the real code. */
1896 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1897 pc = i386_follow_jump (gdbarch, pc);
1898
1899 return pc;
1900 }
1901
1902 /* Check that the code pointed to by PC corresponds to a call to
1903 __main, skip it if so. Return PC otherwise. */
1904
1905 CORE_ADDR
1906 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1907 {
1908 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1909 gdb_byte op;
1910
1911 if (target_read_code (pc, &op, 1))
1912 return pc;
1913 if (op == 0xe8)
1914 {
1915 gdb_byte buf[4];
1916
1917 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1918 {
1919 /* Make sure address is computed correctly as a 32bit
1920 integer even if CORE_ADDR is 64 bit wide. */
1921 struct bound_minimal_symbol s;
1922 CORE_ADDR call_dest;
1923
1924 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1925 call_dest = call_dest & 0xffffffffU;
1926 s = lookup_minimal_symbol_by_pc (call_dest);
1927 if (s.minsym != NULL
1928 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1929 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1930 pc += 5;
1931 }
1932 }
1933
1934 return pc;
1935 }
1936
1937 /* This function is 64-bit safe. */
1938
1939 static CORE_ADDR
1940 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1941 {
1942 gdb_byte buf[8];
1943
1944 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1945 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1946 }
1947 \f
1948
1949 /* Normal frames. */
1950
1951 static void
1952 i386_frame_cache_1 (struct frame_info *this_frame,
1953 struct i386_frame_cache *cache)
1954 {
1955 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1956 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1957 gdb_byte buf[4];
1958 int i;
1959
1960 cache->pc = get_frame_func (this_frame);
1961
1962 /* In principle, for normal frames, %ebp holds the frame pointer,
1963 which holds the base address for the current stack frame.
1964 However, for functions that don't need it, the frame pointer is
1965 optional. For these "frameless" functions the frame pointer is
1966 actually the frame pointer of the calling frame. Signal
1967 trampolines are just a special case of a "frameless" function.
1968 They (usually) share their frame pointer with the frame that was
1969 in progress when the signal occurred. */
1970
1971 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1972 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1973 if (cache->base == 0)
1974 {
1975 cache->base_p = 1;
1976 return;
1977 }
1978
1979 /* For normal frames, %eip is stored at 4(%ebp). */
1980 cache->saved_regs[I386_EIP_REGNUM] = 4;
1981
1982 if (cache->pc != 0)
1983 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1984 cache);
1985
1986 if (cache->locals < 0)
1987 {
1988 /* We didn't find a valid frame, which means that CACHE->base
1989 currently holds the frame pointer for our calling frame. If
1990 we're at the start of a function, or somewhere half-way its
1991 prologue, the function's frame probably hasn't been fully
1992 setup yet. Try to reconstruct the base address for the stack
1993 frame by looking at the stack pointer. For truly "frameless"
1994 functions this might work too. */
1995
1996 if (cache->saved_sp_reg != -1)
1997 {
1998 /* Saved stack pointer has been saved. */
1999 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2000 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2001
2002 /* We're halfway aligning the stack. */
2003 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2004 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2005
2006 /* This will be added back below. */
2007 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2008 }
2009 else if (cache->pc != 0
2010 || target_read_code (get_frame_pc (this_frame), buf, 1))
2011 {
2012 /* We're in a known function, but did not find a frame
2013 setup. Assume that the function does not use %ebp.
2014 Alternatively, we may have jumped to an invalid
2015 address; in that case there is definitely no new
2016 frame in %ebp. */
2017 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2018 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2019 + cache->sp_offset;
2020 }
2021 else
2022 /* We're in an unknown function. We could not find the start
2023 of the function to analyze the prologue; our best option is
2024 to assume a typical frame layout with the caller's %ebp
2025 saved. */
2026 cache->saved_regs[I386_EBP_REGNUM] = 0;
2027 }
2028
2029 if (cache->saved_sp_reg != -1)
2030 {
2031 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2032 register may be unavailable). */
2033 if (cache->saved_sp == 0
2034 && deprecated_frame_register_read (this_frame,
2035 cache->saved_sp_reg, buf))
2036 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2037 }
2038 /* Now that we have the base address for the stack frame we can
2039 calculate the value of %esp in the calling frame. */
2040 else if (cache->saved_sp == 0)
2041 cache->saved_sp = cache->base + 8;
2042
2043 /* Adjust all the saved registers such that they contain addresses
2044 instead of offsets. */
2045 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2046 if (cache->saved_regs[i] != -1)
2047 cache->saved_regs[i] += cache->base;
2048
2049 cache->base_p = 1;
2050 }
2051
2052 static struct i386_frame_cache *
2053 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2054 {
2055 volatile struct gdb_exception ex;
2056 struct i386_frame_cache *cache;
2057
2058 if (*this_cache)
2059 return *this_cache;
2060
2061 cache = i386_alloc_frame_cache ();
2062 *this_cache = cache;
2063
2064 TRY_CATCH (ex, RETURN_MASK_ERROR)
2065 {
2066 i386_frame_cache_1 (this_frame, cache);
2067 }
2068 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2069 throw_exception (ex);
2070
2071 return cache;
2072 }
2073
2074 static void
2075 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2076 struct frame_id *this_id)
2077 {
2078 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2079
2080 if (!cache->base_p)
2081 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2082 else if (cache->base == 0)
2083 {
2084 /* This marks the outermost frame. */
2085 }
2086 else
2087 {
2088 /* See the end of i386_push_dummy_call. */
2089 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2090 }
2091 }
2092
2093 static enum unwind_stop_reason
2094 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2095 void **this_cache)
2096 {
2097 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2098
2099 if (!cache->base_p)
2100 return UNWIND_UNAVAILABLE;
2101
2102 /* This marks the outermost frame. */
2103 if (cache->base == 0)
2104 return UNWIND_OUTERMOST;
2105
2106 return UNWIND_NO_REASON;
2107 }
2108
2109 static struct value *
2110 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2111 int regnum)
2112 {
2113 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2114
2115 gdb_assert (regnum >= 0);
2116
2117 /* The System V ABI says that:
2118
2119 "The flags register contains the system flags, such as the
2120 direction flag and the carry flag. The direction flag must be
2121 set to the forward (that is, zero) direction before entry and
2122 upon exit from a function. Other user flags have no specified
2123 role in the standard calling sequence and are not preserved."
2124
2125 To guarantee the "upon exit" part of that statement we fake a
2126 saved flags register that has its direction flag cleared.
2127
2128 Note that GCC doesn't seem to rely on the fact that the direction
2129 flag is cleared after a function return; it always explicitly
2130 clears the flag before operations where it matters.
2131
2132 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2133 right thing to do. The way we fake the flags register here makes
2134 it impossible to change it. */
2135
2136 if (regnum == I386_EFLAGS_REGNUM)
2137 {
2138 ULONGEST val;
2139
2140 val = get_frame_register_unsigned (this_frame, regnum);
2141 val &= ~(1 << 10);
2142 return frame_unwind_got_constant (this_frame, regnum, val);
2143 }
2144
2145 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2146 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2147
2148 if (regnum == I386_ESP_REGNUM
2149 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2150 {
2151 /* If the SP has been saved, but we don't know where, then this
2152 means that SAVED_SP_REG register was found unavailable back
2153 when we built the cache. */
2154 if (cache->saved_sp == 0)
2155 return frame_unwind_got_register (this_frame, regnum,
2156 cache->saved_sp_reg);
2157 else
2158 return frame_unwind_got_constant (this_frame, regnum,
2159 cache->saved_sp);
2160 }
2161
2162 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2163 return frame_unwind_got_memory (this_frame, regnum,
2164 cache->saved_regs[regnum]);
2165
2166 return frame_unwind_got_register (this_frame, regnum, regnum);
2167 }
2168
2169 static const struct frame_unwind i386_frame_unwind =
2170 {
2171 NORMAL_FRAME,
2172 i386_frame_unwind_stop_reason,
2173 i386_frame_this_id,
2174 i386_frame_prev_register,
2175 NULL,
2176 default_frame_sniffer
2177 };
2178
2179 /* Normal frames, but in a function epilogue. */
2180
2181 /* The epilogue is defined here as the 'ret' instruction, which will
2182 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2183 the function's stack frame. */
2184
2185 static int
2186 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2187 {
2188 gdb_byte insn;
2189 struct symtab *symtab;
2190
2191 symtab = find_pc_symtab (pc);
2192 if (symtab && symtab->epilogue_unwind_valid)
2193 return 0;
2194
2195 if (target_read_memory (pc, &insn, 1))
2196 return 0; /* Can't read memory at pc. */
2197
2198 if (insn != 0xc3) /* 'ret' instruction. */
2199 return 0;
2200
2201 return 1;
2202 }
2203
2204 static int
2205 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2206 struct frame_info *this_frame,
2207 void **this_prologue_cache)
2208 {
2209 if (frame_relative_level (this_frame) == 0)
2210 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2211 get_frame_pc (this_frame));
2212 else
2213 return 0;
2214 }
2215
2216 static struct i386_frame_cache *
2217 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2218 {
2219 volatile struct gdb_exception ex;
2220 struct i386_frame_cache *cache;
2221 CORE_ADDR sp;
2222
2223 if (*this_cache)
2224 return *this_cache;
2225
2226 cache = i386_alloc_frame_cache ();
2227 *this_cache = cache;
2228
2229 TRY_CATCH (ex, RETURN_MASK_ERROR)
2230 {
2231 cache->pc = get_frame_func (this_frame);
2232
2233 /* At this point the stack looks as if we just entered the
2234 function, with the return address at the top of the
2235 stack. */
2236 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2237 cache->base = sp + cache->sp_offset;
2238 cache->saved_sp = cache->base + 8;
2239 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2240
2241 cache->base_p = 1;
2242 }
2243 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2244 throw_exception (ex);
2245
2246 return cache;
2247 }
2248
2249 static enum unwind_stop_reason
2250 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2251 void **this_cache)
2252 {
2253 struct i386_frame_cache *cache =
2254 i386_epilogue_frame_cache (this_frame, this_cache);
2255
2256 if (!cache->base_p)
2257 return UNWIND_UNAVAILABLE;
2258
2259 return UNWIND_NO_REASON;
2260 }
2261
2262 static void
2263 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2264 void **this_cache,
2265 struct frame_id *this_id)
2266 {
2267 struct i386_frame_cache *cache =
2268 i386_epilogue_frame_cache (this_frame, this_cache);
2269
2270 if (!cache->base_p)
2271 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2272 else
2273 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2274 }
2275
2276 static struct value *
2277 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2278 void **this_cache, int regnum)
2279 {
2280 /* Make sure we've initialized the cache. */
2281 i386_epilogue_frame_cache (this_frame, this_cache);
2282
2283 return i386_frame_prev_register (this_frame, this_cache, regnum);
2284 }
2285
2286 static const struct frame_unwind i386_epilogue_frame_unwind =
2287 {
2288 NORMAL_FRAME,
2289 i386_epilogue_frame_unwind_stop_reason,
2290 i386_epilogue_frame_this_id,
2291 i386_epilogue_frame_prev_register,
2292 NULL,
2293 i386_epilogue_frame_sniffer
2294 };
2295 \f
2296
2297 /* Stack-based trampolines. */
2298
2299 /* These trampolines are used on cross x86 targets, when taking the
2300 address of a nested function. When executing these trampolines,
2301 no stack frame is set up, so we are in a similar situation as in
2302 epilogues and i386_epilogue_frame_this_id can be re-used. */
2303
2304 /* Static chain passed in register. */
2305
2306 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2307 {
2308 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2309 { 5, { 0xb8 }, { 0xfe } },
2310
2311 /* `jmp imm32' */
2312 { 5, { 0xe9 }, { 0xff } },
2313
2314 {0}
2315 };
2316
2317 /* Static chain passed on stack (when regparm=3). */
2318
2319 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2320 {
2321 /* `push imm32' */
2322 { 5, { 0x68 }, { 0xff } },
2323
2324 /* `jmp imm32' */
2325 { 5, { 0xe9 }, { 0xff } },
2326
2327 {0}
2328 };
2329
2330 /* Return whether PC points inside a stack trampoline. */
2331
2332 static int
2333 i386_in_stack_tramp_p (CORE_ADDR pc)
2334 {
2335 gdb_byte insn;
2336 const char *name;
2337
2338 /* A stack trampoline is detected if no name is associated
2339 to the current pc and if it points inside a trampoline
2340 sequence. */
2341
2342 find_pc_partial_function (pc, &name, NULL, NULL);
2343 if (name)
2344 return 0;
2345
2346 if (target_read_memory (pc, &insn, 1))
2347 return 0;
2348
2349 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2350 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2351 return 0;
2352
2353 return 1;
2354 }
2355
2356 static int
2357 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2358 struct frame_info *this_frame,
2359 void **this_cache)
2360 {
2361 if (frame_relative_level (this_frame) == 0)
2362 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2363 else
2364 return 0;
2365 }
2366
2367 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2368 {
2369 NORMAL_FRAME,
2370 i386_epilogue_frame_unwind_stop_reason,
2371 i386_epilogue_frame_this_id,
2372 i386_epilogue_frame_prev_register,
2373 NULL,
2374 i386_stack_tramp_frame_sniffer
2375 };
2376 \f
2377 /* Generate a bytecode expression to get the value of the saved PC. */
2378
2379 static void
2380 i386_gen_return_address (struct gdbarch *gdbarch,
2381 struct agent_expr *ax, struct axs_value *value,
2382 CORE_ADDR scope)
2383 {
2384 /* The following sequence assumes the traditional use of the base
2385 register. */
2386 ax_reg (ax, I386_EBP_REGNUM);
2387 ax_const_l (ax, 4);
2388 ax_simple (ax, aop_add);
2389 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2390 value->kind = axs_lvalue_memory;
2391 }
2392 \f
2393
2394 /* Signal trampolines. */
2395
2396 static struct i386_frame_cache *
2397 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2398 {
2399 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2400 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2401 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2402 volatile struct gdb_exception ex;
2403 struct i386_frame_cache *cache;
2404 CORE_ADDR addr;
2405 gdb_byte buf[4];
2406
2407 if (*this_cache)
2408 return *this_cache;
2409
2410 cache = i386_alloc_frame_cache ();
2411
2412 TRY_CATCH (ex, RETURN_MASK_ERROR)
2413 {
2414 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2415 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2416
2417 addr = tdep->sigcontext_addr (this_frame);
2418 if (tdep->sc_reg_offset)
2419 {
2420 int i;
2421
2422 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2423
2424 for (i = 0; i < tdep->sc_num_regs; i++)
2425 if (tdep->sc_reg_offset[i] != -1)
2426 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2427 }
2428 else
2429 {
2430 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2431 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2432 }
2433
2434 cache->base_p = 1;
2435 }
2436 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2437 throw_exception (ex);
2438
2439 *this_cache = cache;
2440 return cache;
2441 }
2442
2443 static enum unwind_stop_reason
2444 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2445 void **this_cache)
2446 {
2447 struct i386_frame_cache *cache =
2448 i386_sigtramp_frame_cache (this_frame, this_cache);
2449
2450 if (!cache->base_p)
2451 return UNWIND_UNAVAILABLE;
2452
2453 return UNWIND_NO_REASON;
2454 }
2455
2456 static void
2457 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2458 struct frame_id *this_id)
2459 {
2460 struct i386_frame_cache *cache =
2461 i386_sigtramp_frame_cache (this_frame, this_cache);
2462
2463 if (!cache->base_p)
2464 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2465 else
2466 {
2467 /* See the end of i386_push_dummy_call. */
2468 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2469 }
2470 }
2471
2472 static struct value *
2473 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2474 void **this_cache, int regnum)
2475 {
2476 /* Make sure we've initialized the cache. */
2477 i386_sigtramp_frame_cache (this_frame, this_cache);
2478
2479 return i386_frame_prev_register (this_frame, this_cache, regnum);
2480 }
2481
2482 static int
2483 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2484 struct frame_info *this_frame,
2485 void **this_prologue_cache)
2486 {
2487 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2488
2489 /* We shouldn't even bother if we don't have a sigcontext_addr
2490 handler. */
2491 if (tdep->sigcontext_addr == NULL)
2492 return 0;
2493
2494 if (tdep->sigtramp_p != NULL)
2495 {
2496 if (tdep->sigtramp_p (this_frame))
2497 return 1;
2498 }
2499
2500 if (tdep->sigtramp_start != 0)
2501 {
2502 CORE_ADDR pc = get_frame_pc (this_frame);
2503
2504 gdb_assert (tdep->sigtramp_end != 0);
2505 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2506 return 1;
2507 }
2508
2509 return 0;
2510 }
2511
2512 static const struct frame_unwind i386_sigtramp_frame_unwind =
2513 {
2514 SIGTRAMP_FRAME,
2515 i386_sigtramp_frame_unwind_stop_reason,
2516 i386_sigtramp_frame_this_id,
2517 i386_sigtramp_frame_prev_register,
2518 NULL,
2519 i386_sigtramp_frame_sniffer
2520 };
2521 \f
2522
2523 static CORE_ADDR
2524 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2525 {
2526 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2527
2528 return cache->base;
2529 }
2530
2531 static const struct frame_base i386_frame_base =
2532 {
2533 &i386_frame_unwind,
2534 i386_frame_base_address,
2535 i386_frame_base_address,
2536 i386_frame_base_address
2537 };
2538
2539 static struct frame_id
2540 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2541 {
2542 CORE_ADDR fp;
2543
2544 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2545
2546 /* See the end of i386_push_dummy_call. */
2547 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2548 }
2549
2550 /* _Decimal128 function return values need 16-byte alignment on the
2551 stack. */
2552
2553 static CORE_ADDR
2554 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2555 {
2556 return sp & -(CORE_ADDR)16;
2557 }
2558 \f
2559
2560 /* Figure out where the longjmp will land. Slurp the args out of the
2561 stack. We expect the first arg to be a pointer to the jmp_buf
2562 structure from which we extract the address that we will land at.
2563 This address is copied into PC. This routine returns non-zero on
2564 success. */
2565
2566 static int
2567 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2568 {
2569 gdb_byte buf[4];
2570 CORE_ADDR sp, jb_addr;
2571 struct gdbarch *gdbarch = get_frame_arch (frame);
2572 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2573 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2574
2575 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2576 longjmp will land. */
2577 if (jb_pc_offset == -1)
2578 return 0;
2579
2580 get_frame_register (frame, I386_ESP_REGNUM, buf);
2581 sp = extract_unsigned_integer (buf, 4, byte_order);
2582 if (target_read_memory (sp + 4, buf, 4))
2583 return 0;
2584
2585 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2586 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2587 return 0;
2588
2589 *pc = extract_unsigned_integer (buf, 4, byte_order);
2590 return 1;
2591 }
2592 \f
2593
2594 /* Check whether TYPE must be 16-byte-aligned when passed as a
2595 function argument. 16-byte vectors, _Decimal128 and structures or
2596 unions containing such types must be 16-byte-aligned; other
2597 arguments are 4-byte-aligned. */
2598
2599 static int
2600 i386_16_byte_align_p (struct type *type)
2601 {
2602 type = check_typedef (type);
2603 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2604 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2605 && TYPE_LENGTH (type) == 16)
2606 return 1;
2607 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2608 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2609 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2610 || TYPE_CODE (type) == TYPE_CODE_UNION)
2611 {
2612 int i;
2613 for (i = 0; i < TYPE_NFIELDS (type); i++)
2614 {
2615 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2616 return 1;
2617 }
2618 }
2619 return 0;
2620 }
2621
2622 /* Implementation for set_gdbarch_push_dummy_code. */
2623
2624 static CORE_ADDR
2625 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2626 struct value **args, int nargs, struct type *value_type,
2627 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2628 struct regcache *regcache)
2629 {
2630 /* Use 0xcc breakpoint - 1 byte. */
2631 *bp_addr = sp - 1;
2632 *real_pc = funaddr;
2633
2634 /* Keep the stack aligned. */
2635 return sp - 16;
2636 }
2637
2638 static CORE_ADDR
2639 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2640 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2641 struct value **args, CORE_ADDR sp, int struct_return,
2642 CORE_ADDR struct_addr)
2643 {
2644 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2645 gdb_byte buf[4];
2646 int i;
2647 int write_pass;
2648 int args_space = 0;
2649
2650 /* Determine the total space required for arguments and struct
2651 return address in a first pass (allowing for 16-byte-aligned
2652 arguments), then push arguments in a second pass. */
2653
2654 for (write_pass = 0; write_pass < 2; write_pass++)
2655 {
2656 int args_space_used = 0;
2657
2658 if (struct_return)
2659 {
2660 if (write_pass)
2661 {
2662 /* Push value address. */
2663 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2664 write_memory (sp, buf, 4);
2665 args_space_used += 4;
2666 }
2667 else
2668 args_space += 4;
2669 }
2670
2671 for (i = 0; i < nargs; i++)
2672 {
2673 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2674
2675 if (write_pass)
2676 {
2677 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2678 args_space_used = align_up (args_space_used, 16);
2679
2680 write_memory (sp + args_space_used,
2681 value_contents_all (args[i]), len);
2682 /* The System V ABI says that:
2683
2684 "An argument's size is increased, if necessary, to make it a
2685 multiple of [32-bit] words. This may require tail padding,
2686 depending on the size of the argument."
2687
2688 This makes sure the stack stays word-aligned. */
2689 args_space_used += align_up (len, 4);
2690 }
2691 else
2692 {
2693 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2694 args_space = align_up (args_space, 16);
2695 args_space += align_up (len, 4);
2696 }
2697 }
2698
2699 if (!write_pass)
2700 {
2701 sp -= args_space;
2702
2703 /* The original System V ABI only requires word alignment,
2704 but modern incarnations need 16-byte alignment in order
2705 to support SSE. Since wasting a few bytes here isn't
2706 harmful we unconditionally enforce 16-byte alignment. */
2707 sp &= ~0xf;
2708 }
2709 }
2710
2711 /* Store return address. */
2712 sp -= 4;
2713 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2714 write_memory (sp, buf, 4);
2715
2716 /* Finally, update the stack pointer... */
2717 store_unsigned_integer (buf, 4, byte_order, sp);
2718 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2719
2720 /* ...and fake a frame pointer. */
2721 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2722
2723 /* MarkK wrote: This "+ 8" is all over the place:
2724 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2725 i386_dummy_id). It's there, since all frame unwinders for
2726 a given target have to agree (within a certain margin) on the
2727 definition of the stack address of a frame. Otherwise frame id
2728 comparison might not work correctly. Since DWARF2/GCC uses the
2729 stack address *before* the function call as a frame's CFA. On
2730 the i386, when %ebp is used as a frame pointer, the offset
2731 between the contents %ebp and the CFA as defined by GCC. */
2732 return sp + 8;
2733 }
2734
2735 /* These registers are used for returning integers (and on some
2736 targets also for returning `struct' and `union' values when their
2737 size and alignment match an integer type). */
2738 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2739 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2740
2741 /* Read, for architecture GDBARCH, a function return value of TYPE
2742 from REGCACHE, and copy that into VALBUF. */
2743
2744 static void
2745 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2746 struct regcache *regcache, gdb_byte *valbuf)
2747 {
2748 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2749 int len = TYPE_LENGTH (type);
2750 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2751
2752 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2753 {
2754 if (tdep->st0_regnum < 0)
2755 {
2756 warning (_("Cannot find floating-point return value."));
2757 memset (valbuf, 0, len);
2758 return;
2759 }
2760
2761 /* Floating-point return values can be found in %st(0). Convert
2762 its contents to the desired type. This is probably not
2763 exactly how it would happen on the target itself, but it is
2764 the best we can do. */
2765 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2766 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2767 }
2768 else
2769 {
2770 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2771 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2772
2773 if (len <= low_size)
2774 {
2775 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2776 memcpy (valbuf, buf, len);
2777 }
2778 else if (len <= (low_size + high_size))
2779 {
2780 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2781 memcpy (valbuf, buf, low_size);
2782 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2783 memcpy (valbuf + low_size, buf, len - low_size);
2784 }
2785 else
2786 internal_error (__FILE__, __LINE__,
2787 _("Cannot extract return value of %d bytes long."),
2788 len);
2789 }
2790 }
2791
2792 /* Write, for architecture GDBARCH, a function return value of TYPE
2793 from VALBUF into REGCACHE. */
2794
2795 static void
2796 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2797 struct regcache *regcache, const gdb_byte *valbuf)
2798 {
2799 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2800 int len = TYPE_LENGTH (type);
2801
2802 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2803 {
2804 ULONGEST fstat;
2805 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2806
2807 if (tdep->st0_regnum < 0)
2808 {
2809 warning (_("Cannot set floating-point return value."));
2810 return;
2811 }
2812
2813 /* Returning floating-point values is a bit tricky. Apart from
2814 storing the return value in %st(0), we have to simulate the
2815 state of the FPU at function return point. */
2816
2817 /* Convert the value found in VALBUF to the extended
2818 floating-point format used by the FPU. This is probably
2819 not exactly how it would happen on the target itself, but
2820 it is the best we can do. */
2821 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2822 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2823
2824 /* Set the top of the floating-point register stack to 7. The
2825 actual value doesn't really matter, but 7 is what a normal
2826 function return would end up with if the program started out
2827 with a freshly initialized FPU. */
2828 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2829 fstat |= (7 << 11);
2830 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2831
2832 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2833 the floating-point register stack to 7, the appropriate value
2834 for the tag word is 0x3fff. */
2835 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2836 }
2837 else
2838 {
2839 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2840 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2841
2842 if (len <= low_size)
2843 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2844 else if (len <= (low_size + high_size))
2845 {
2846 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2847 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2848 len - low_size, valbuf + low_size);
2849 }
2850 else
2851 internal_error (__FILE__, __LINE__,
2852 _("Cannot store return value of %d bytes long."), len);
2853 }
2854 }
2855 \f
2856
2857 /* This is the variable that is set with "set struct-convention", and
2858 its legitimate values. */
2859 static const char default_struct_convention[] = "default";
2860 static const char pcc_struct_convention[] = "pcc";
2861 static const char reg_struct_convention[] = "reg";
2862 static const char *const valid_conventions[] =
2863 {
2864 default_struct_convention,
2865 pcc_struct_convention,
2866 reg_struct_convention,
2867 NULL
2868 };
2869 static const char *struct_convention = default_struct_convention;
2870
2871 /* Return non-zero if TYPE, which is assumed to be a structure,
2872 a union type, or an array type, should be returned in registers
2873 for architecture GDBARCH. */
2874
2875 static int
2876 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2877 {
2878 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2879 enum type_code code = TYPE_CODE (type);
2880 int len = TYPE_LENGTH (type);
2881
2882 gdb_assert (code == TYPE_CODE_STRUCT
2883 || code == TYPE_CODE_UNION
2884 || code == TYPE_CODE_ARRAY);
2885
2886 if (struct_convention == pcc_struct_convention
2887 || (struct_convention == default_struct_convention
2888 && tdep->struct_return == pcc_struct_return))
2889 return 0;
2890
2891 /* Structures consisting of a single `float', `double' or 'long
2892 double' member are returned in %st(0). */
2893 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2894 {
2895 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2896 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2897 return (len == 4 || len == 8 || len == 12);
2898 }
2899
2900 return (len == 1 || len == 2 || len == 4 || len == 8);
2901 }
2902
2903 /* Determine, for architecture GDBARCH, how a return value of TYPE
2904 should be returned. If it is supposed to be returned in registers,
2905 and READBUF is non-zero, read the appropriate value from REGCACHE,
2906 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2907 from WRITEBUF into REGCACHE. */
2908
2909 static enum return_value_convention
2910 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2911 struct type *type, struct regcache *regcache,
2912 gdb_byte *readbuf, const gdb_byte *writebuf)
2913 {
2914 enum type_code code = TYPE_CODE (type);
2915
2916 if (((code == TYPE_CODE_STRUCT
2917 || code == TYPE_CODE_UNION
2918 || code == TYPE_CODE_ARRAY)
2919 && !i386_reg_struct_return_p (gdbarch, type))
2920 /* Complex double and long double uses the struct return covention. */
2921 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2922 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2923 /* 128-bit decimal float uses the struct return convention. */
2924 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2925 {
2926 /* The System V ABI says that:
2927
2928 "A function that returns a structure or union also sets %eax
2929 to the value of the original address of the caller's area
2930 before it returns. Thus when the caller receives control
2931 again, the address of the returned object resides in register
2932 %eax and can be used to access the object."
2933
2934 So the ABI guarantees that we can always find the return
2935 value just after the function has returned. */
2936
2937 /* Note that the ABI doesn't mention functions returning arrays,
2938 which is something possible in certain languages such as Ada.
2939 In this case, the value is returned as if it was wrapped in
2940 a record, so the convention applied to records also applies
2941 to arrays. */
2942
2943 if (readbuf)
2944 {
2945 ULONGEST addr;
2946
2947 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2948 read_memory (addr, readbuf, TYPE_LENGTH (type));
2949 }
2950
2951 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2952 }
2953
2954 /* This special case is for structures consisting of a single
2955 `float', `double' or 'long double' member. These structures are
2956 returned in %st(0). For these structures, we call ourselves
2957 recursively, changing TYPE into the type of the first member of
2958 the structure. Since that should work for all structures that
2959 have only one member, we don't bother to check the member's type
2960 here. */
2961 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2962 {
2963 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2964 return i386_return_value (gdbarch, function, type, regcache,
2965 readbuf, writebuf);
2966 }
2967
2968 if (readbuf)
2969 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2970 if (writebuf)
2971 i386_store_return_value (gdbarch, type, regcache, writebuf);
2972
2973 return RETURN_VALUE_REGISTER_CONVENTION;
2974 }
2975 \f
2976
2977 struct type *
2978 i387_ext_type (struct gdbarch *gdbarch)
2979 {
2980 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2981
2982 if (!tdep->i387_ext_type)
2983 {
2984 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2985 gdb_assert (tdep->i387_ext_type != NULL);
2986 }
2987
2988 return tdep->i387_ext_type;
2989 }
2990
2991 /* Construct type for pseudo BND registers. We can't use
2992 tdesc_find_type since a complement of one value has to be used
2993 to describe the upper bound. */
2994
2995 static struct type *
2996 i386_bnd_type (struct gdbarch *gdbarch)
2997 {
2998 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2999
3000
3001 if (!tdep->i386_bnd_type)
3002 {
3003 struct type *t, *bound_t;
3004 const struct builtin_type *bt = builtin_type (gdbarch);
3005
3006 /* The type we're building is described bellow: */
3007 #if 0
3008 struct __bound128
3009 {
3010 void *lbound;
3011 void *ubound; /* One complement of raw ubound field. */
3012 };
3013 #endif
3014
3015 t = arch_composite_type (gdbarch,
3016 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3017
3018 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3019 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3020
3021 TYPE_NAME (t) = "builtin_type_bound128";
3022 tdep->i386_bnd_type = t;
3023 }
3024
3025 return tdep->i386_bnd_type;
3026 }
3027
3028 /* Construct vector type for pseudo ZMM registers. We can't use
3029 tdesc_find_type since ZMM isn't described in target description. */
3030
3031 static struct type *
3032 i386_zmm_type (struct gdbarch *gdbarch)
3033 {
3034 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3035
3036 if (!tdep->i386_zmm_type)
3037 {
3038 const struct builtin_type *bt = builtin_type (gdbarch);
3039
3040 /* The type we're building is this: */
3041 #if 0
3042 union __gdb_builtin_type_vec512i
3043 {
3044 int128_t uint128[4];
3045 int64_t v4_int64[8];
3046 int32_t v8_int32[16];
3047 int16_t v16_int16[32];
3048 int8_t v32_int8[64];
3049 double v4_double[8];
3050 float v8_float[16];
3051 };
3052 #endif
3053
3054 struct type *t;
3055
3056 t = arch_composite_type (gdbarch,
3057 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3058 append_composite_type_field (t, "v16_float",
3059 init_vector_type (bt->builtin_float, 16));
3060 append_composite_type_field (t, "v8_double",
3061 init_vector_type (bt->builtin_double, 8));
3062 append_composite_type_field (t, "v64_int8",
3063 init_vector_type (bt->builtin_int8, 64));
3064 append_composite_type_field (t, "v32_int16",
3065 init_vector_type (bt->builtin_int16, 32));
3066 append_composite_type_field (t, "v16_int32",
3067 init_vector_type (bt->builtin_int32, 16));
3068 append_composite_type_field (t, "v8_int64",
3069 init_vector_type (bt->builtin_int64, 8));
3070 append_composite_type_field (t, "v4_int128",
3071 init_vector_type (bt->builtin_int128, 4));
3072
3073 TYPE_VECTOR (t) = 1;
3074 TYPE_NAME (t) = "builtin_type_vec512i";
3075 tdep->i386_zmm_type = t;
3076 }
3077
3078 return tdep->i386_zmm_type;
3079 }
3080
3081 /* Construct vector type for pseudo YMM registers. We can't use
3082 tdesc_find_type since YMM isn't described in target description. */
3083
3084 static struct type *
3085 i386_ymm_type (struct gdbarch *gdbarch)
3086 {
3087 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3088
3089 if (!tdep->i386_ymm_type)
3090 {
3091 const struct builtin_type *bt = builtin_type (gdbarch);
3092
3093 /* The type we're building is this: */
3094 #if 0
3095 union __gdb_builtin_type_vec256i
3096 {
3097 int128_t uint128[2];
3098 int64_t v2_int64[4];
3099 int32_t v4_int32[8];
3100 int16_t v8_int16[16];
3101 int8_t v16_int8[32];
3102 double v2_double[4];
3103 float v4_float[8];
3104 };
3105 #endif
3106
3107 struct type *t;
3108
3109 t = arch_composite_type (gdbarch,
3110 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3111 append_composite_type_field (t, "v8_float",
3112 init_vector_type (bt->builtin_float, 8));
3113 append_composite_type_field (t, "v4_double",
3114 init_vector_type (bt->builtin_double, 4));
3115 append_composite_type_field (t, "v32_int8",
3116 init_vector_type (bt->builtin_int8, 32));
3117 append_composite_type_field (t, "v16_int16",
3118 init_vector_type (bt->builtin_int16, 16));
3119 append_composite_type_field (t, "v8_int32",
3120 init_vector_type (bt->builtin_int32, 8));
3121 append_composite_type_field (t, "v4_int64",
3122 init_vector_type (bt->builtin_int64, 4));
3123 append_composite_type_field (t, "v2_int128",
3124 init_vector_type (bt->builtin_int128, 2));
3125
3126 TYPE_VECTOR (t) = 1;
3127 TYPE_NAME (t) = "builtin_type_vec256i";
3128 tdep->i386_ymm_type = t;
3129 }
3130
3131 return tdep->i386_ymm_type;
3132 }
3133
3134 /* Construct vector type for MMX registers. */
3135 static struct type *
3136 i386_mmx_type (struct gdbarch *gdbarch)
3137 {
3138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3139
3140 if (!tdep->i386_mmx_type)
3141 {
3142 const struct builtin_type *bt = builtin_type (gdbarch);
3143
3144 /* The type we're building is this: */
3145 #if 0
3146 union __gdb_builtin_type_vec64i
3147 {
3148 int64_t uint64;
3149 int32_t v2_int32[2];
3150 int16_t v4_int16[4];
3151 int8_t v8_int8[8];
3152 };
3153 #endif
3154
3155 struct type *t;
3156
3157 t = arch_composite_type (gdbarch,
3158 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3159
3160 append_composite_type_field (t, "uint64", bt->builtin_int64);
3161 append_composite_type_field (t, "v2_int32",
3162 init_vector_type (bt->builtin_int32, 2));
3163 append_composite_type_field (t, "v4_int16",
3164 init_vector_type (bt->builtin_int16, 4));
3165 append_composite_type_field (t, "v8_int8",
3166 init_vector_type (bt->builtin_int8, 8));
3167
3168 TYPE_VECTOR (t) = 1;
3169 TYPE_NAME (t) = "builtin_type_vec64i";
3170 tdep->i386_mmx_type = t;
3171 }
3172
3173 return tdep->i386_mmx_type;
3174 }
3175
3176 /* Return the GDB type object for the "standard" data type of data in
3177 register REGNUM. */
3178
3179 struct type *
3180 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3181 {
3182 if (i386_bnd_regnum_p (gdbarch, regnum))
3183 return i386_bnd_type (gdbarch);
3184 if (i386_mmx_regnum_p (gdbarch, regnum))
3185 return i386_mmx_type (gdbarch);
3186 else if (i386_ymm_regnum_p (gdbarch, regnum))
3187 return i386_ymm_type (gdbarch);
3188 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3189 return i386_ymm_type (gdbarch);
3190 else if (i386_zmm_regnum_p (gdbarch, regnum))
3191 return i386_zmm_type (gdbarch);
3192 else
3193 {
3194 const struct builtin_type *bt = builtin_type (gdbarch);
3195 if (i386_byte_regnum_p (gdbarch, regnum))
3196 return bt->builtin_int8;
3197 else if (i386_word_regnum_p (gdbarch, regnum))
3198 return bt->builtin_int16;
3199 else if (i386_dword_regnum_p (gdbarch, regnum))
3200 return bt->builtin_int32;
3201 else if (i386_k_regnum_p (gdbarch, regnum))
3202 return bt->builtin_int64;
3203 }
3204
3205 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3206 }
3207
3208 /* Map a cooked register onto a raw register or memory. For the i386,
3209 the MMX registers need to be mapped onto floating point registers. */
3210
3211 static int
3212 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3213 {
3214 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3215 int mmxreg, fpreg;
3216 ULONGEST fstat;
3217 int tos;
3218
3219 mmxreg = regnum - tdep->mm0_regnum;
3220 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3221 tos = (fstat >> 11) & 0x7;
3222 fpreg = (mmxreg + tos) % 8;
3223
3224 return (I387_ST0_REGNUM (tdep) + fpreg);
3225 }
3226
3227 /* A helper function for us by i386_pseudo_register_read_value and
3228 amd64_pseudo_register_read_value. It does all the work but reads
3229 the data into an already-allocated value. */
3230
3231 void
3232 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3233 struct regcache *regcache,
3234 int regnum,
3235 struct value *result_value)
3236 {
3237 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3238 enum register_status status;
3239 gdb_byte *buf = value_contents_raw (result_value);
3240
3241 if (i386_mmx_regnum_p (gdbarch, regnum))
3242 {
3243 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3244
3245 /* Extract (always little endian). */
3246 status = regcache_raw_read (regcache, fpnum, raw_buf);
3247 if (status != REG_VALID)
3248 mark_value_bytes_unavailable (result_value, 0,
3249 TYPE_LENGTH (value_type (result_value)));
3250 else
3251 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3252 }
3253 else
3254 {
3255 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3256 if (i386_bnd_regnum_p (gdbarch, regnum))
3257 {
3258 regnum -= tdep->bnd0_regnum;
3259
3260 /* Extract (always little endian). Read lower 128bits. */
3261 status = regcache_raw_read (regcache,
3262 I387_BND0R_REGNUM (tdep) + regnum,
3263 raw_buf);
3264 if (status != REG_VALID)
3265 mark_value_bytes_unavailable (result_value, 0, 16);
3266 else
3267 {
3268 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3269 LONGEST upper, lower;
3270 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3271
3272 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3273 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3274 upper = ~upper;
3275
3276 memcpy (buf, &lower, size);
3277 memcpy (buf + size, &upper, size);
3278 }
3279 }
3280 else if (i386_k_regnum_p (gdbarch, regnum))
3281 {
3282 regnum -= tdep->k0_regnum;
3283
3284 /* Extract (always little endian). */
3285 status = regcache_raw_read (regcache,
3286 tdep->k0_regnum + regnum,
3287 raw_buf);
3288 if (status != REG_VALID)
3289 mark_value_bytes_unavailable (result_value, 0, 8);
3290 else
3291 memcpy (buf, raw_buf, 8);
3292 }
3293 else if (i386_zmm_regnum_p (gdbarch, regnum))
3294 {
3295 regnum -= tdep->zmm0_regnum;
3296
3297 if (regnum < num_lower_zmm_regs)
3298 {
3299 /* Extract (always little endian). Read lower 128bits. */
3300 status = regcache_raw_read (regcache,
3301 I387_XMM0_REGNUM (tdep) + regnum,
3302 raw_buf);
3303 if (status != REG_VALID)
3304 mark_value_bytes_unavailable (result_value, 0, 16);
3305 else
3306 memcpy (buf, raw_buf, 16);
3307
3308 /* Extract (always little endian). Read upper 128bits. */
3309 status = regcache_raw_read (regcache,
3310 tdep->ymm0h_regnum + regnum,
3311 raw_buf);
3312 if (status != REG_VALID)
3313 mark_value_bytes_unavailable (result_value, 16, 16);
3314 else
3315 memcpy (buf + 16, raw_buf, 16);
3316 }
3317 else
3318 {
3319 /* Extract (always little endian). Read lower 128bits. */
3320 status = regcache_raw_read (regcache,
3321 I387_XMM16_REGNUM (tdep) + regnum
3322 - num_lower_zmm_regs,
3323 raw_buf);
3324 if (status != REG_VALID)
3325 mark_value_bytes_unavailable (result_value, 0, 16);
3326 else
3327 memcpy (buf, raw_buf, 16);
3328
3329 /* Extract (always little endian). Read upper 128bits. */
3330 status = regcache_raw_read (regcache,
3331 I387_YMM16H_REGNUM (tdep) + regnum
3332 - num_lower_zmm_regs,
3333 raw_buf);
3334 if (status != REG_VALID)
3335 mark_value_bytes_unavailable (result_value, 16, 16);
3336 else
3337 memcpy (buf + 16, raw_buf, 16);
3338 }
3339
3340 /* Read upper 256bits. */
3341 status = regcache_raw_read (regcache,
3342 tdep->zmm0h_regnum + regnum,
3343 raw_buf);
3344 if (status != REG_VALID)
3345 mark_value_bytes_unavailable (result_value, 32, 32);
3346 else
3347 memcpy (buf + 32, raw_buf, 32);
3348 }
3349 else if (i386_ymm_regnum_p (gdbarch, regnum))
3350 {
3351 regnum -= tdep->ymm0_regnum;
3352
3353 /* Extract (always little endian). Read lower 128bits. */
3354 status = regcache_raw_read (regcache,
3355 I387_XMM0_REGNUM (tdep) + regnum,
3356 raw_buf);
3357 if (status != REG_VALID)
3358 mark_value_bytes_unavailable (result_value, 0, 16);
3359 else
3360 memcpy (buf, raw_buf, 16);
3361 /* Read upper 128bits. */
3362 status = regcache_raw_read (regcache,
3363 tdep->ymm0h_regnum + regnum,
3364 raw_buf);
3365 if (status != REG_VALID)
3366 mark_value_bytes_unavailable (result_value, 16, 32);
3367 else
3368 memcpy (buf + 16, raw_buf, 16);
3369 }
3370 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3371 {
3372 regnum -= tdep->ymm16_regnum;
3373 /* Extract (always little endian). Read lower 128bits. */
3374 status = regcache_raw_read (regcache,
3375 I387_XMM16_REGNUM (tdep) + regnum,
3376 raw_buf);
3377 if (status != REG_VALID)
3378 mark_value_bytes_unavailable (result_value, 0, 16);
3379 else
3380 memcpy (buf, raw_buf, 16);
3381 /* Read upper 128bits. */
3382 status = regcache_raw_read (regcache,
3383 tdep->ymm16h_regnum + regnum,
3384 raw_buf);
3385 if (status != REG_VALID)
3386 mark_value_bytes_unavailable (result_value, 16, 16);
3387 else
3388 memcpy (buf + 16, raw_buf, 16);
3389 }
3390 else if (i386_word_regnum_p (gdbarch, regnum))
3391 {
3392 int gpnum = regnum - tdep->ax_regnum;
3393
3394 /* Extract (always little endian). */
3395 status = regcache_raw_read (regcache, gpnum, raw_buf);
3396 if (status != REG_VALID)
3397 mark_value_bytes_unavailable (result_value, 0,
3398 TYPE_LENGTH (value_type (result_value)));
3399 else
3400 memcpy (buf, raw_buf, 2);
3401 }
3402 else if (i386_byte_regnum_p (gdbarch, regnum))
3403 {
3404 /* Check byte pseudo registers last since this function will
3405 be called from amd64_pseudo_register_read, which handles
3406 byte pseudo registers differently. */
3407 int gpnum = regnum - tdep->al_regnum;
3408
3409 /* Extract (always little endian). We read both lower and
3410 upper registers. */
3411 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3412 if (status != REG_VALID)
3413 mark_value_bytes_unavailable (result_value, 0,
3414 TYPE_LENGTH (value_type (result_value)));
3415 else if (gpnum >= 4)
3416 memcpy (buf, raw_buf + 1, 1);
3417 else
3418 memcpy (buf, raw_buf, 1);
3419 }
3420 else
3421 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3422 }
3423 }
3424
3425 static struct value *
3426 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3427 struct regcache *regcache,
3428 int regnum)
3429 {
3430 struct value *result;
3431
3432 result = allocate_value (register_type (gdbarch, regnum));
3433 VALUE_LVAL (result) = lval_register;
3434 VALUE_REGNUM (result) = regnum;
3435
3436 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3437
3438 return result;
3439 }
3440
3441 void
3442 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3443 int regnum, const gdb_byte *buf)
3444 {
3445 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3446
3447 if (i386_mmx_regnum_p (gdbarch, regnum))
3448 {
3449 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3450
3451 /* Read ... */
3452 regcache_raw_read (regcache, fpnum, raw_buf);
3453 /* ... Modify ... (always little endian). */
3454 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3455 /* ... Write. */
3456 regcache_raw_write (regcache, fpnum, raw_buf);
3457 }
3458 else
3459 {
3460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3461
3462 if (i386_bnd_regnum_p (gdbarch, regnum))
3463 {
3464 ULONGEST upper, lower;
3465 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3466 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3467
3468 /* New values from input value. */
3469 regnum -= tdep->bnd0_regnum;
3470 lower = extract_unsigned_integer (buf, size, byte_order);
3471 upper = extract_unsigned_integer (buf + size, size, byte_order);
3472
3473 /* Fetching register buffer. */
3474 regcache_raw_read (regcache,
3475 I387_BND0R_REGNUM (tdep) + regnum,
3476 raw_buf);
3477
3478 upper = ~upper;
3479
3480 /* Set register bits. */
3481 memcpy (raw_buf, &lower, 8);
3482 memcpy (raw_buf + 8, &upper, 8);
3483
3484
3485 regcache_raw_write (regcache,
3486 I387_BND0R_REGNUM (tdep) + regnum,
3487 raw_buf);
3488 }
3489 else if (i386_k_regnum_p (gdbarch, regnum))
3490 {
3491 regnum -= tdep->k0_regnum;
3492
3493 regcache_raw_write (regcache,
3494 tdep->k0_regnum + regnum,
3495 buf);
3496 }
3497 else if (i386_zmm_regnum_p (gdbarch, regnum))
3498 {
3499 regnum -= tdep->zmm0_regnum;
3500
3501 if (regnum < num_lower_zmm_regs)
3502 {
3503 /* Write lower 128bits. */
3504 regcache_raw_write (regcache,
3505 I387_XMM0_REGNUM (tdep) + regnum,
3506 buf);
3507 /* Write upper 128bits. */
3508 regcache_raw_write (regcache,
3509 I387_YMM0_REGNUM (tdep) + regnum,
3510 buf + 16);
3511 }
3512 else
3513 {
3514 /* Write lower 128bits. */
3515 regcache_raw_write (regcache,
3516 I387_XMM16_REGNUM (tdep) + regnum
3517 - num_lower_zmm_regs,
3518 buf);
3519 /* Write upper 128bits. */
3520 regcache_raw_write (regcache,
3521 I387_YMM16H_REGNUM (tdep) + regnum
3522 - num_lower_zmm_regs,
3523 buf + 16);
3524 }
3525 /* Write upper 256bits. */
3526 regcache_raw_write (regcache,
3527 tdep->zmm0h_regnum + regnum,
3528 buf + 32);
3529 }
3530 else if (i386_ymm_regnum_p (gdbarch, regnum))
3531 {
3532 regnum -= tdep->ymm0_regnum;
3533
3534 /* ... Write lower 128bits. */
3535 regcache_raw_write (regcache,
3536 I387_XMM0_REGNUM (tdep) + regnum,
3537 buf);
3538 /* ... Write upper 128bits. */
3539 regcache_raw_write (regcache,
3540 tdep->ymm0h_regnum + regnum,
3541 buf + 16);
3542 }
3543 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3544 {
3545 regnum -= tdep->ymm16_regnum;
3546
3547 /* ... Write lower 128bits. */
3548 regcache_raw_write (regcache,
3549 I387_XMM16_REGNUM (tdep) + regnum,
3550 buf);
3551 /* ... Write upper 128bits. */
3552 regcache_raw_write (regcache,
3553 tdep->ymm16h_regnum + regnum,
3554 buf + 16);
3555 }
3556 else if (i386_word_regnum_p (gdbarch, regnum))
3557 {
3558 int gpnum = regnum - tdep->ax_regnum;
3559
3560 /* Read ... */
3561 regcache_raw_read (regcache, gpnum, raw_buf);
3562 /* ... Modify ... (always little endian). */
3563 memcpy (raw_buf, buf, 2);
3564 /* ... Write. */
3565 regcache_raw_write (regcache, gpnum, raw_buf);
3566 }
3567 else if (i386_byte_regnum_p (gdbarch, regnum))
3568 {
3569 /* Check byte pseudo registers last since this function will
3570 be called from amd64_pseudo_register_read, which handles
3571 byte pseudo registers differently. */
3572 int gpnum = regnum - tdep->al_regnum;
3573
3574 /* Read ... We read both lower and upper registers. */
3575 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3576 /* ... Modify ... (always little endian). */
3577 if (gpnum >= 4)
3578 memcpy (raw_buf + 1, buf, 1);
3579 else
3580 memcpy (raw_buf, buf, 1);
3581 /* ... Write. */
3582 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3583 }
3584 else
3585 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3586 }
3587 }
3588 \f
3589
3590 /* Return the register number of the register allocated by GCC after
3591 REGNUM, or -1 if there is no such register. */
3592
3593 static int
3594 i386_next_regnum (int regnum)
3595 {
3596 /* GCC allocates the registers in the order:
3597
3598 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3599
3600 Since storing a variable in %esp doesn't make any sense we return
3601 -1 for %ebp and for %esp itself. */
3602 static int next_regnum[] =
3603 {
3604 I386_EDX_REGNUM, /* Slot for %eax. */
3605 I386_EBX_REGNUM, /* Slot for %ecx. */
3606 I386_ECX_REGNUM, /* Slot for %edx. */
3607 I386_ESI_REGNUM, /* Slot for %ebx. */
3608 -1, -1, /* Slots for %esp and %ebp. */
3609 I386_EDI_REGNUM, /* Slot for %esi. */
3610 I386_EBP_REGNUM /* Slot for %edi. */
3611 };
3612
3613 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3614 return next_regnum[regnum];
3615
3616 return -1;
3617 }
3618
3619 /* Return nonzero if a value of type TYPE stored in register REGNUM
3620 needs any special handling. */
3621
3622 static int
3623 i386_convert_register_p (struct gdbarch *gdbarch,
3624 int regnum, struct type *type)
3625 {
3626 int len = TYPE_LENGTH (type);
3627
3628 /* Values may be spread across multiple registers. Most debugging
3629 formats aren't expressive enough to specify the locations, so
3630 some heuristics is involved. Right now we only handle types that
3631 have a length that is a multiple of the word size, since GCC
3632 doesn't seem to put any other types into registers. */
3633 if (len > 4 && len % 4 == 0)
3634 {
3635 int last_regnum = regnum;
3636
3637 while (len > 4)
3638 {
3639 last_regnum = i386_next_regnum (last_regnum);
3640 len -= 4;
3641 }
3642
3643 if (last_regnum != -1)
3644 return 1;
3645 }
3646
3647 return i387_convert_register_p (gdbarch, regnum, type);
3648 }
3649
3650 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3651 return its contents in TO. */
3652
3653 static int
3654 i386_register_to_value (struct frame_info *frame, int regnum,
3655 struct type *type, gdb_byte *to,
3656 int *optimizedp, int *unavailablep)
3657 {
3658 struct gdbarch *gdbarch = get_frame_arch (frame);
3659 int len = TYPE_LENGTH (type);
3660
3661 if (i386_fp_regnum_p (gdbarch, regnum))
3662 return i387_register_to_value (frame, regnum, type, to,
3663 optimizedp, unavailablep);
3664
3665 /* Read a value spread across multiple registers. */
3666
3667 gdb_assert (len > 4 && len % 4 == 0);
3668
3669 while (len > 0)
3670 {
3671 gdb_assert (regnum != -1);
3672 gdb_assert (register_size (gdbarch, regnum) == 4);
3673
3674 if (!get_frame_register_bytes (frame, regnum, 0,
3675 register_size (gdbarch, regnum),
3676 to, optimizedp, unavailablep))
3677 return 0;
3678
3679 regnum = i386_next_regnum (regnum);
3680 len -= 4;
3681 to += 4;
3682 }
3683
3684 *optimizedp = *unavailablep = 0;
3685 return 1;
3686 }
3687
3688 /* Write the contents FROM of a value of type TYPE into register
3689 REGNUM in frame FRAME. */
3690
3691 static void
3692 i386_value_to_register (struct frame_info *frame, int regnum,
3693 struct type *type, const gdb_byte *from)
3694 {
3695 int len = TYPE_LENGTH (type);
3696
3697 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3698 {
3699 i387_value_to_register (frame, regnum, type, from);
3700 return;
3701 }
3702
3703 /* Write a value spread across multiple registers. */
3704
3705 gdb_assert (len > 4 && len % 4 == 0);
3706
3707 while (len > 0)
3708 {
3709 gdb_assert (regnum != -1);
3710 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3711
3712 put_frame_register (frame, regnum, from);
3713 regnum = i386_next_regnum (regnum);
3714 len -= 4;
3715 from += 4;
3716 }
3717 }
3718 \f
3719 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3720 in the general-purpose register set REGSET to register cache
3721 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3722
3723 void
3724 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3725 int regnum, const void *gregs, size_t len)
3726 {
3727 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3728 const gdb_byte *regs = gregs;
3729 int i;
3730
3731 gdb_assert (len == tdep->sizeof_gregset);
3732
3733 for (i = 0; i < tdep->gregset_num_regs; i++)
3734 {
3735 if ((regnum == i || regnum == -1)
3736 && tdep->gregset_reg_offset[i] != -1)
3737 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3738 }
3739 }
3740
3741 /* Collect register REGNUM from the register cache REGCACHE and store
3742 it in the buffer specified by GREGS and LEN as described by the
3743 general-purpose register set REGSET. If REGNUM is -1, do this for
3744 all registers in REGSET. */
3745
3746 void
3747 i386_collect_gregset (const struct regset *regset,
3748 const struct regcache *regcache,
3749 int regnum, void *gregs, size_t len)
3750 {
3751 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3752 gdb_byte *regs = gregs;
3753 int i;
3754
3755 gdb_assert (len == tdep->sizeof_gregset);
3756
3757 for (i = 0; i < tdep->gregset_num_regs; i++)
3758 {
3759 if ((regnum == i || regnum == -1)
3760 && tdep->gregset_reg_offset[i] != -1)
3761 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3762 }
3763 }
3764
3765 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3766 in the floating-point register set REGSET to register cache
3767 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3768
3769 static void
3770 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3771 int regnum, const void *fpregs, size_t len)
3772 {
3773 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3774
3775 if (len == I387_SIZEOF_FXSAVE)
3776 {
3777 i387_supply_fxsave (regcache, regnum, fpregs);
3778 return;
3779 }
3780
3781 gdb_assert (len == tdep->sizeof_fpregset);
3782 i387_supply_fsave (regcache, regnum, fpregs);
3783 }
3784
3785 /* Collect register REGNUM from the register cache REGCACHE and store
3786 it in the buffer specified by FPREGS and LEN as described by the
3787 floating-point register set REGSET. If REGNUM is -1, do this for
3788 all registers in REGSET. */
3789
3790 static void
3791 i386_collect_fpregset (const struct regset *regset,
3792 const struct regcache *regcache,
3793 int regnum, void *fpregs, size_t len)
3794 {
3795 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3796
3797 if (len == I387_SIZEOF_FXSAVE)
3798 {
3799 i387_collect_fxsave (regcache, regnum, fpregs);
3800 return;
3801 }
3802
3803 gdb_assert (len == tdep->sizeof_fpregset);
3804 i387_collect_fsave (regcache, regnum, fpregs);
3805 }
3806
3807 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3808
3809 static void
3810 i386_supply_xstateregset (const struct regset *regset,
3811 struct regcache *regcache, int regnum,
3812 const void *xstateregs, size_t len)
3813 {
3814 i387_supply_xsave (regcache, regnum, xstateregs);
3815 }
3816
3817 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3818
3819 static void
3820 i386_collect_xstateregset (const struct regset *regset,
3821 const struct regcache *regcache,
3822 int regnum, void *xstateregs, size_t len)
3823 {
3824 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3825 }
3826
3827 /* Return the appropriate register set for the core section identified
3828 by SECT_NAME and SECT_SIZE. */
3829
3830 const struct regset *
3831 i386_regset_from_core_section (struct gdbarch *gdbarch,
3832 const char *sect_name, size_t sect_size)
3833 {
3834 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3835
3836 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3837 {
3838 if (tdep->gregset == NULL)
3839 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3840 i386_collect_gregset);
3841 return tdep->gregset;
3842 }
3843
3844 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3845 || (strcmp (sect_name, ".reg-xfp") == 0
3846 && sect_size == I387_SIZEOF_FXSAVE))
3847 {
3848 if (tdep->fpregset == NULL)
3849 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3850 i386_collect_fpregset);
3851 return tdep->fpregset;
3852 }
3853
3854 if (strcmp (sect_name, ".reg-xstate") == 0)
3855 {
3856 if (tdep->xstateregset == NULL)
3857 tdep->xstateregset = regset_alloc (gdbarch,
3858 i386_supply_xstateregset,
3859 i386_collect_xstateregset);
3860
3861 return tdep->xstateregset;
3862 }
3863
3864 return NULL;
3865 }
3866 \f
3867
3868 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3869
3870 CORE_ADDR
3871 i386_pe_skip_trampoline_code (struct frame_info *frame,
3872 CORE_ADDR pc, char *name)
3873 {
3874 struct gdbarch *gdbarch = get_frame_arch (frame);
3875 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3876
3877 /* jmp *(dest) */
3878 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3879 {
3880 unsigned long indirect =
3881 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3882 struct minimal_symbol *indsym =
3883 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3884 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3885
3886 if (symname)
3887 {
3888 if (strncmp (symname, "__imp_", 6) == 0
3889 || strncmp (symname, "_imp_", 5) == 0)
3890 return name ? 1 :
3891 read_memory_unsigned_integer (indirect, 4, byte_order);
3892 }
3893 }
3894 return 0; /* Not a trampoline. */
3895 }
3896 \f
3897
3898 /* Return whether the THIS_FRAME corresponds to a sigtramp
3899 routine. */
3900
3901 int
3902 i386_sigtramp_p (struct frame_info *this_frame)
3903 {
3904 CORE_ADDR pc = get_frame_pc (this_frame);
3905 const char *name;
3906
3907 find_pc_partial_function (pc, &name, NULL, NULL);
3908 return (name && strcmp ("_sigtramp", name) == 0);
3909 }
3910 \f
3911
3912 /* We have two flavours of disassembly. The machinery on this page
3913 deals with switching between those. */
3914
3915 static int
3916 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3917 {
3918 gdb_assert (disassembly_flavor == att_flavor
3919 || disassembly_flavor == intel_flavor);
3920
3921 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3922 constified, cast to prevent a compiler warning. */
3923 info->disassembler_options = (char *) disassembly_flavor;
3924
3925 return print_insn_i386 (pc, info);
3926 }
3927 \f
3928
3929 /* There are a few i386 architecture variants that differ only
3930 slightly from the generic i386 target. For now, we don't give them
3931 their own source file, but include them here. As a consequence,
3932 they'll always be included. */
3933
3934 /* System V Release 4 (SVR4). */
3935
3936 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3937 routine. */
3938
3939 static int
3940 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3941 {
3942 CORE_ADDR pc = get_frame_pc (this_frame);
3943 const char *name;
3944
3945 /* The origin of these symbols is currently unknown. */
3946 find_pc_partial_function (pc, &name, NULL, NULL);
3947 return (name && (strcmp ("_sigreturn", name) == 0
3948 || strcmp ("sigvechandler", name) == 0));
3949 }
3950
3951 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3952 address of the associated sigcontext (ucontext) structure. */
3953
3954 static CORE_ADDR
3955 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3956 {
3957 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3958 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3959 gdb_byte buf[4];
3960 CORE_ADDR sp;
3961
3962 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3963 sp = extract_unsigned_integer (buf, 4, byte_order);
3964
3965 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3966 }
3967
3968 \f
3969
3970 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3971 gdbarch.h. */
3972
3973 int
3974 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3975 {
3976 return (*s == '$' /* Literal number. */
3977 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3978 || (*s == '(' && s[1] == '%') /* Register indirection. */
3979 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3980 }
3981
3982 /* Helper function for i386_stap_parse_special_token.
3983
3984 This function parses operands of the form `-8+3+1(%rbp)', which
3985 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3986
3987 Return 1 if the operand was parsed successfully, zero
3988 otherwise. */
3989
3990 static int
3991 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3992 struct stap_parse_info *p)
3993 {
3994 const char *s = p->arg;
3995
3996 if (isdigit (*s) || *s == '-' || *s == '+')
3997 {
3998 int got_minus[3];
3999 int i;
4000 long displacements[3];
4001 const char *start;
4002 char *regname;
4003 int len;
4004 struct stoken str;
4005 char *endp;
4006
4007 got_minus[0] = 0;
4008 if (*s == '+')
4009 ++s;
4010 else if (*s == '-')
4011 {
4012 ++s;
4013 got_minus[0] = 1;
4014 }
4015
4016 if (!isdigit ((unsigned char) *s))
4017 return 0;
4018
4019 displacements[0] = strtol (s, &endp, 10);
4020 s = endp;
4021
4022 if (*s != '+' && *s != '-')
4023 {
4024 /* We are not dealing with a triplet. */
4025 return 0;
4026 }
4027
4028 got_minus[1] = 0;
4029 if (*s == '+')
4030 ++s;
4031 else
4032 {
4033 ++s;
4034 got_minus[1] = 1;
4035 }
4036
4037 if (!isdigit ((unsigned char) *s))
4038 return 0;
4039
4040 displacements[1] = strtol (s, &endp, 10);
4041 s = endp;
4042
4043 if (*s != '+' && *s != '-')
4044 {
4045 /* We are not dealing with a triplet. */
4046 return 0;
4047 }
4048
4049 got_minus[2] = 0;
4050 if (*s == '+')
4051 ++s;
4052 else
4053 {
4054 ++s;
4055 got_minus[2] = 1;
4056 }
4057
4058 if (!isdigit ((unsigned char) *s))
4059 return 0;
4060
4061 displacements[2] = strtol (s, &endp, 10);
4062 s = endp;
4063
4064 if (*s != '(' || s[1] != '%')
4065 return 0;
4066
4067 s += 2;
4068 start = s;
4069
4070 while (isalnum (*s))
4071 ++s;
4072
4073 if (*s++ != ')')
4074 return 0;
4075
4076 len = s - start - 1;
4077 regname = alloca (len + 1);
4078
4079 strncpy (regname, start, len);
4080 regname[len] = '\0';
4081
4082 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4083 error (_("Invalid register name `%s' on expression `%s'."),
4084 regname, p->saved_arg);
4085
4086 for (i = 0; i < 3; i++)
4087 {
4088 write_exp_elt_opcode (&p->pstate, OP_LONG);
4089 write_exp_elt_type
4090 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4091 write_exp_elt_longcst (&p->pstate, displacements[i]);
4092 write_exp_elt_opcode (&p->pstate, OP_LONG);
4093 if (got_minus[i])
4094 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4095 }
4096
4097 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4098 str.ptr = regname;
4099 str.length = len;
4100 write_exp_string (&p->pstate, str);
4101 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4102
4103 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4104 write_exp_elt_type (&p->pstate,
4105 builtin_type (gdbarch)->builtin_data_ptr);
4106 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4107
4108 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4109 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4110 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4111
4112 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4113 write_exp_elt_type (&p->pstate,
4114 lookup_pointer_type (p->arg_type));
4115 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4116
4117 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4118
4119 p->arg = s;
4120
4121 return 1;
4122 }
4123
4124 return 0;
4125 }
4126
4127 /* Helper function for i386_stap_parse_special_token.
4128
4129 This function parses operands of the form `register base +
4130 (register index * size) + offset', as represented in
4131 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4132
4133 Return 1 if the operand was parsed successfully, zero
4134 otherwise. */
4135
4136 static int
4137 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4138 struct stap_parse_info *p)
4139 {
4140 const char *s = p->arg;
4141
4142 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4143 {
4144 int offset_minus = 0;
4145 long offset = 0;
4146 int size_minus = 0;
4147 long size = 0;
4148 const char *start;
4149 char *base;
4150 int len_base;
4151 char *index;
4152 int len_index;
4153 struct stoken base_token, index_token;
4154
4155 if (*s == '+')
4156 ++s;
4157 else if (*s == '-')
4158 {
4159 ++s;
4160 offset_minus = 1;
4161 }
4162
4163 if (offset_minus && !isdigit (*s))
4164 return 0;
4165
4166 if (isdigit (*s))
4167 {
4168 char *endp;
4169
4170 offset = strtol (s, &endp, 10);
4171 s = endp;
4172 }
4173
4174 if (*s != '(' || s[1] != '%')
4175 return 0;
4176
4177 s += 2;
4178 start = s;
4179
4180 while (isalnum (*s))
4181 ++s;
4182
4183 if (*s != ',' || s[1] != '%')
4184 return 0;
4185
4186 len_base = s - start;
4187 base = alloca (len_base + 1);
4188 strncpy (base, start, len_base);
4189 base[len_base] = '\0';
4190
4191 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4192 error (_("Invalid register name `%s' on expression `%s'."),
4193 base, p->saved_arg);
4194
4195 s += 2;
4196 start = s;
4197
4198 while (isalnum (*s))
4199 ++s;
4200
4201 len_index = s - start;
4202 index = alloca (len_index + 1);
4203 strncpy (index, start, len_index);
4204 index[len_index] = '\0';
4205
4206 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4207 error (_("Invalid register name `%s' on expression `%s'."),
4208 index, p->saved_arg);
4209
4210 if (*s != ',' && *s != ')')
4211 return 0;
4212
4213 if (*s == ',')
4214 {
4215 char *endp;
4216
4217 ++s;
4218 if (*s == '+')
4219 ++s;
4220 else if (*s == '-')
4221 {
4222 ++s;
4223 size_minus = 1;
4224 }
4225
4226 size = strtol (s, &endp, 10);
4227 s = endp;
4228
4229 if (*s != ')')
4230 return 0;
4231 }
4232
4233 ++s;
4234
4235 if (offset)
4236 {
4237 write_exp_elt_opcode (&p->pstate, OP_LONG);
4238 write_exp_elt_type (&p->pstate,
4239 builtin_type (gdbarch)->builtin_long);
4240 write_exp_elt_longcst (&p->pstate, offset);
4241 write_exp_elt_opcode (&p->pstate, OP_LONG);
4242 if (offset_minus)
4243 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4244 }
4245
4246 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4247 base_token.ptr = base;
4248 base_token.length = len_base;
4249 write_exp_string (&p->pstate, base_token);
4250 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4251
4252 if (offset)
4253 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4254
4255 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4256 index_token.ptr = index;
4257 index_token.length = len_index;
4258 write_exp_string (&p->pstate, index_token);
4259 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4260
4261 if (size)
4262 {
4263 write_exp_elt_opcode (&p->pstate, OP_LONG);
4264 write_exp_elt_type (&p->pstate,
4265 builtin_type (gdbarch)->builtin_long);
4266 write_exp_elt_longcst (&p->pstate, size);
4267 write_exp_elt_opcode (&p->pstate, OP_LONG);
4268 if (size_minus)
4269 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4270 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4271 }
4272
4273 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4274
4275 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4276 write_exp_elt_type (&p->pstate,
4277 lookup_pointer_type (p->arg_type));
4278 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4279
4280 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4281
4282 p->arg = s;
4283
4284 return 1;
4285 }
4286
4287 return 0;
4288 }
4289
4290 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4291 gdbarch.h. */
4292
4293 int
4294 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4295 struct stap_parse_info *p)
4296 {
4297 /* In order to parse special tokens, we use a state-machine that go
4298 through every known token and try to get a match. */
4299 enum
4300 {
4301 TRIPLET,
4302 THREE_ARG_DISPLACEMENT,
4303 DONE
4304 } current_state;
4305
4306 current_state = TRIPLET;
4307
4308 /* The special tokens to be parsed here are:
4309
4310 - `register base + (register index * size) + offset', as represented
4311 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4312
4313 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4314 `*(-8 + 3 - 1 + (void *) $eax)'. */
4315
4316 while (current_state != DONE)
4317 {
4318 switch (current_state)
4319 {
4320 case TRIPLET:
4321 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4322 return 1;
4323 break;
4324
4325 case THREE_ARG_DISPLACEMENT:
4326 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4327 return 1;
4328 break;
4329 }
4330
4331 /* Advancing to the next state. */
4332 ++current_state;
4333 }
4334
4335 return 0;
4336 }
4337
4338 \f
4339
4340 /* Generic ELF. */
4341
4342 void
4343 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4344 {
4345 static const char *const stap_integer_prefixes[] = { "$", NULL };
4346 static const char *const stap_register_prefixes[] = { "%", NULL };
4347 static const char *const stap_register_indirection_prefixes[] = { "(",
4348 NULL };
4349 static const char *const stap_register_indirection_suffixes[] = { ")",
4350 NULL };
4351
4352 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4353 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4354
4355 /* Registering SystemTap handlers. */
4356 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4357 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4358 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4359 stap_register_indirection_prefixes);
4360 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4361 stap_register_indirection_suffixes);
4362 set_gdbarch_stap_is_single_operand (gdbarch,
4363 i386_stap_is_single_operand);
4364 set_gdbarch_stap_parse_special_token (gdbarch,
4365 i386_stap_parse_special_token);
4366 }
4367
4368 /* System V Release 4 (SVR4). */
4369
4370 void
4371 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4372 {
4373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4374
4375 /* System V Release 4 uses ELF. */
4376 i386_elf_init_abi (info, gdbarch);
4377
4378 /* System V Release 4 has shared libraries. */
4379 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4380
4381 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4382 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4383 tdep->sc_pc_offset = 36 + 14 * 4;
4384 tdep->sc_sp_offset = 36 + 17 * 4;
4385
4386 tdep->jb_pc_offset = 20;
4387 }
4388
4389 /* DJGPP. */
4390
4391 static void
4392 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4393 {
4394 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4395
4396 /* DJGPP doesn't have any special frames for signal handlers. */
4397 tdep->sigtramp_p = NULL;
4398
4399 tdep->jb_pc_offset = 36;
4400
4401 /* DJGPP does not support the SSE registers. */
4402 if (! tdesc_has_registers (info.target_desc))
4403 tdep->tdesc = tdesc_i386_mmx;
4404
4405 /* Native compiler is GCC, which uses the SVR4 register numbering
4406 even in COFF and STABS. See the comment in i386_gdbarch_init,
4407 before the calls to set_gdbarch_stab_reg_to_regnum and
4408 set_gdbarch_sdb_reg_to_regnum. */
4409 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4410 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4411
4412 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4413 }
4414 \f
4415
4416 /* i386 register groups. In addition to the normal groups, add "mmx"
4417 and "sse". */
4418
4419 static struct reggroup *i386_sse_reggroup;
4420 static struct reggroup *i386_mmx_reggroup;
4421
4422 static void
4423 i386_init_reggroups (void)
4424 {
4425 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4426 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4427 }
4428
4429 static void
4430 i386_add_reggroups (struct gdbarch *gdbarch)
4431 {
4432 reggroup_add (gdbarch, i386_sse_reggroup);
4433 reggroup_add (gdbarch, i386_mmx_reggroup);
4434 reggroup_add (gdbarch, general_reggroup);
4435 reggroup_add (gdbarch, float_reggroup);
4436 reggroup_add (gdbarch, all_reggroup);
4437 reggroup_add (gdbarch, save_reggroup);
4438 reggroup_add (gdbarch, restore_reggroup);
4439 reggroup_add (gdbarch, vector_reggroup);
4440 reggroup_add (gdbarch, system_reggroup);
4441 }
4442
4443 int
4444 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4445 struct reggroup *group)
4446 {
4447 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4448 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4449 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4450 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4451 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4452 avx512_p, avx_p, sse_p;
4453
4454 /* Don't include pseudo registers, except for MMX, in any register
4455 groups. */
4456 if (i386_byte_regnum_p (gdbarch, regnum))
4457 return 0;
4458
4459 if (i386_word_regnum_p (gdbarch, regnum))
4460 return 0;
4461
4462 if (i386_dword_regnum_p (gdbarch, regnum))
4463 return 0;
4464
4465 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4466 if (group == i386_mmx_reggroup)
4467 return mmx_regnum_p;
4468
4469 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4470 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4471 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4472 if (group == i386_sse_reggroup)
4473 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4474
4475 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4476 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4477 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4478
4479 avx512_p = ((tdep->xcr0 & I386_XSTATE_AVX512_MASK)
4480 == I386_XSTATE_AVX512_MASK);
4481 avx_p = ((tdep->xcr0 & I386_XSTATE_AVX512_MASK)
4482 == I386_XSTATE_AVX_MASK) && !avx512_p;
4483 sse_p = ((tdep->xcr0 & I386_XSTATE_AVX512_MASK)
4484 == I386_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4485
4486 if (group == vector_reggroup)
4487 return (mmx_regnum_p
4488 || (zmm_regnum_p && avx512_p)
4489 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4490 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4491 || mxcsr_regnum_p);
4492
4493 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4494 || i386_fpc_regnum_p (gdbarch, regnum));
4495 if (group == float_reggroup)
4496 return fp_regnum_p;
4497
4498 /* For "info reg all", don't include upper YMM registers nor XMM
4499 registers when AVX is supported. */
4500 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4501 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4502 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4503 if (group == all_reggroup
4504 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4505 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4506 || ymmh_regnum_p
4507 || ymmh_avx512_regnum_p
4508 || zmmh_regnum_p))
4509 return 0;
4510
4511 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4512 if (group == all_reggroup
4513 && ((bnd_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4514 return bnd_regnum_p;
4515
4516 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4517 if (group == all_reggroup
4518 && ((bndr_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4519 return 0;
4520
4521 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4522 if (group == all_reggroup
4523 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4524 return mpx_ctrl_regnum_p;
4525
4526 if (group == general_reggroup)
4527 return (!fp_regnum_p
4528 && !mmx_regnum_p
4529 && !mxcsr_regnum_p
4530 && !xmm_regnum_p
4531 && !xmm_avx512_regnum_p
4532 && !ymm_regnum_p
4533 && !ymmh_regnum_p
4534 && !ymm_avx512_regnum_p
4535 && !ymmh_avx512_regnum_p
4536 && !bndr_regnum_p
4537 && !bnd_regnum_p
4538 && !mpx_ctrl_regnum_p
4539 && !zmm_regnum_p
4540 && !zmmh_regnum_p);
4541
4542 return default_register_reggroup_p (gdbarch, regnum, group);
4543 }
4544 \f
4545
4546 /* Get the ARGIth function argument for the current function. */
4547
4548 static CORE_ADDR
4549 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4550 struct type *type)
4551 {
4552 struct gdbarch *gdbarch = get_frame_arch (frame);
4553 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4554 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4555 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4556 }
4557
4558 static void
4559 i386_skip_permanent_breakpoint (struct regcache *regcache)
4560 {
4561 CORE_ADDR current_pc = regcache_read_pc (regcache);
4562
4563 /* On i386, breakpoint is exactly 1 byte long, so we just
4564 adjust the PC in the regcache. */
4565 current_pc += 1;
4566 regcache_write_pc (regcache, current_pc);
4567 }
4568
4569
4570 #define PREFIX_REPZ 0x01
4571 #define PREFIX_REPNZ 0x02
4572 #define PREFIX_LOCK 0x04
4573 #define PREFIX_DATA 0x08
4574 #define PREFIX_ADDR 0x10
4575
4576 /* operand size */
4577 enum
4578 {
4579 OT_BYTE = 0,
4580 OT_WORD,
4581 OT_LONG,
4582 OT_QUAD,
4583 OT_DQUAD,
4584 };
4585
4586 /* i386 arith/logic operations */
4587 enum
4588 {
4589 OP_ADDL,
4590 OP_ORL,
4591 OP_ADCL,
4592 OP_SBBL,
4593 OP_ANDL,
4594 OP_SUBL,
4595 OP_XORL,
4596 OP_CMPL,
4597 };
4598
4599 struct i386_record_s
4600 {
4601 struct gdbarch *gdbarch;
4602 struct regcache *regcache;
4603 CORE_ADDR orig_addr;
4604 CORE_ADDR addr;
4605 int aflag;
4606 int dflag;
4607 int override;
4608 uint8_t modrm;
4609 uint8_t mod, reg, rm;
4610 int ot;
4611 uint8_t rex_x;
4612 uint8_t rex_b;
4613 int rip_offset;
4614 int popl_esp_hack;
4615 const int *regmap;
4616 };
4617
4618 /* Parse the "modrm" part of the memory address irp->addr points at.
4619 Returns -1 if something goes wrong, 0 otherwise. */
4620
4621 static int
4622 i386_record_modrm (struct i386_record_s *irp)
4623 {
4624 struct gdbarch *gdbarch = irp->gdbarch;
4625
4626 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4627 return -1;
4628
4629 irp->addr++;
4630 irp->mod = (irp->modrm >> 6) & 3;
4631 irp->reg = (irp->modrm >> 3) & 7;
4632 irp->rm = irp->modrm & 7;
4633
4634 return 0;
4635 }
4636
4637 /* Extract the memory address that the current instruction writes to,
4638 and return it in *ADDR. Return -1 if something goes wrong. */
4639
4640 static int
4641 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4642 {
4643 struct gdbarch *gdbarch = irp->gdbarch;
4644 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4645 gdb_byte buf[4];
4646 ULONGEST offset64;
4647
4648 *addr = 0;
4649 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4650 {
4651 /* 32/64 bits */
4652 int havesib = 0;
4653 uint8_t scale = 0;
4654 uint8_t byte;
4655 uint8_t index = 0;
4656 uint8_t base = irp->rm;
4657
4658 if (base == 4)
4659 {
4660 havesib = 1;
4661 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4662 return -1;
4663 irp->addr++;
4664 scale = (byte >> 6) & 3;
4665 index = ((byte >> 3) & 7) | irp->rex_x;
4666 base = (byte & 7);
4667 }
4668 base |= irp->rex_b;
4669
4670 switch (irp->mod)
4671 {
4672 case 0:
4673 if ((base & 7) == 5)
4674 {
4675 base = 0xff;
4676 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4677 return -1;
4678 irp->addr += 4;
4679 *addr = extract_signed_integer (buf, 4, byte_order);
4680 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4681 *addr += irp->addr + irp->rip_offset;
4682 }
4683 break;
4684 case 1:
4685 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4686 return -1;
4687 irp->addr++;
4688 *addr = (int8_t) buf[0];
4689 break;
4690 case 2:
4691 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4692 return -1;
4693 *addr = extract_signed_integer (buf, 4, byte_order);
4694 irp->addr += 4;
4695 break;
4696 }
4697
4698 offset64 = 0;
4699 if (base != 0xff)
4700 {
4701 if (base == 4 && irp->popl_esp_hack)
4702 *addr += irp->popl_esp_hack;
4703 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4704 &offset64);
4705 }
4706 if (irp->aflag == 2)
4707 {
4708 *addr += offset64;
4709 }
4710 else
4711 *addr = (uint32_t) (offset64 + *addr);
4712
4713 if (havesib && (index != 4 || scale != 0))
4714 {
4715 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4716 &offset64);
4717 if (irp->aflag == 2)
4718 *addr += offset64 << scale;
4719 else
4720 *addr = (uint32_t) (*addr + (offset64 << scale));
4721 }
4722
4723 if (!irp->aflag)
4724 {
4725 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4726 address from 32-bit to 64-bit. */
4727 *addr = (uint32_t) *addr;
4728 }
4729 }
4730 else
4731 {
4732 /* 16 bits */
4733 switch (irp->mod)
4734 {
4735 case 0:
4736 if (irp->rm == 6)
4737 {
4738 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4739 return -1;
4740 irp->addr += 2;
4741 *addr = extract_signed_integer (buf, 2, byte_order);
4742 irp->rm = 0;
4743 goto no_rm;
4744 }
4745 break;
4746 case 1:
4747 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4748 return -1;
4749 irp->addr++;
4750 *addr = (int8_t) buf[0];
4751 break;
4752 case 2:
4753 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4754 return -1;
4755 irp->addr += 2;
4756 *addr = extract_signed_integer (buf, 2, byte_order);
4757 break;
4758 }
4759
4760 switch (irp->rm)
4761 {
4762 case 0:
4763 regcache_raw_read_unsigned (irp->regcache,
4764 irp->regmap[X86_RECORD_REBX_REGNUM],
4765 &offset64);
4766 *addr = (uint32_t) (*addr + offset64);
4767 regcache_raw_read_unsigned (irp->regcache,
4768 irp->regmap[X86_RECORD_RESI_REGNUM],
4769 &offset64);
4770 *addr = (uint32_t) (*addr + offset64);
4771 break;
4772 case 1:
4773 regcache_raw_read_unsigned (irp->regcache,
4774 irp->regmap[X86_RECORD_REBX_REGNUM],
4775 &offset64);
4776 *addr = (uint32_t) (*addr + offset64);
4777 regcache_raw_read_unsigned (irp->regcache,
4778 irp->regmap[X86_RECORD_REDI_REGNUM],
4779 &offset64);
4780 *addr = (uint32_t) (*addr + offset64);
4781 break;
4782 case 2:
4783 regcache_raw_read_unsigned (irp->regcache,
4784 irp->regmap[X86_RECORD_REBP_REGNUM],
4785 &offset64);
4786 *addr = (uint32_t) (*addr + offset64);
4787 regcache_raw_read_unsigned (irp->regcache,
4788 irp->regmap[X86_RECORD_RESI_REGNUM],
4789 &offset64);
4790 *addr = (uint32_t) (*addr + offset64);
4791 break;
4792 case 3:
4793 regcache_raw_read_unsigned (irp->regcache,
4794 irp->regmap[X86_RECORD_REBP_REGNUM],
4795 &offset64);
4796 *addr = (uint32_t) (*addr + offset64);
4797 regcache_raw_read_unsigned (irp->regcache,
4798 irp->regmap[X86_RECORD_REDI_REGNUM],
4799 &offset64);
4800 *addr = (uint32_t) (*addr + offset64);
4801 break;
4802 case 4:
4803 regcache_raw_read_unsigned (irp->regcache,
4804 irp->regmap[X86_RECORD_RESI_REGNUM],
4805 &offset64);
4806 *addr = (uint32_t) (*addr + offset64);
4807 break;
4808 case 5:
4809 regcache_raw_read_unsigned (irp->regcache,
4810 irp->regmap[X86_RECORD_REDI_REGNUM],
4811 &offset64);
4812 *addr = (uint32_t) (*addr + offset64);
4813 break;
4814 case 6:
4815 regcache_raw_read_unsigned (irp->regcache,
4816 irp->regmap[X86_RECORD_REBP_REGNUM],
4817 &offset64);
4818 *addr = (uint32_t) (*addr + offset64);
4819 break;
4820 case 7:
4821 regcache_raw_read_unsigned (irp->regcache,
4822 irp->regmap[X86_RECORD_REBX_REGNUM],
4823 &offset64);
4824 *addr = (uint32_t) (*addr + offset64);
4825 break;
4826 }
4827 *addr &= 0xffff;
4828 }
4829
4830 no_rm:
4831 return 0;
4832 }
4833
4834 /* Record the address and contents of the memory that will be changed
4835 by the current instruction. Return -1 if something goes wrong, 0
4836 otherwise. */
4837
4838 static int
4839 i386_record_lea_modrm (struct i386_record_s *irp)
4840 {
4841 struct gdbarch *gdbarch = irp->gdbarch;
4842 uint64_t addr;
4843
4844 if (irp->override >= 0)
4845 {
4846 if (record_full_memory_query)
4847 {
4848 int q;
4849
4850 target_terminal_ours ();
4851 q = yquery (_("\
4852 Process record ignores the memory change of instruction at address %s\n\
4853 because it can't get the value of the segment register.\n\
4854 Do you want to stop the program?"),
4855 paddress (gdbarch, irp->orig_addr));
4856 target_terminal_inferior ();
4857 if (q)
4858 return -1;
4859 }
4860
4861 return 0;
4862 }
4863
4864 if (i386_record_lea_modrm_addr (irp, &addr))
4865 return -1;
4866
4867 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4868 return -1;
4869
4870 return 0;
4871 }
4872
4873 /* Record the effects of a push operation. Return -1 if something
4874 goes wrong, 0 otherwise. */
4875
4876 static int
4877 i386_record_push (struct i386_record_s *irp, int size)
4878 {
4879 ULONGEST addr;
4880
4881 if (record_full_arch_list_add_reg (irp->regcache,
4882 irp->regmap[X86_RECORD_RESP_REGNUM]))
4883 return -1;
4884 regcache_raw_read_unsigned (irp->regcache,
4885 irp->regmap[X86_RECORD_RESP_REGNUM],
4886 &addr);
4887 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4888 return -1;
4889
4890 return 0;
4891 }
4892
4893
4894 /* Defines contents to record. */
4895 #define I386_SAVE_FPU_REGS 0xfffd
4896 #define I386_SAVE_FPU_ENV 0xfffe
4897 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4898
4899 /* Record the values of the floating point registers which will be
4900 changed by the current instruction. Returns -1 if something is
4901 wrong, 0 otherwise. */
4902
4903 static int i386_record_floats (struct gdbarch *gdbarch,
4904 struct i386_record_s *ir,
4905 uint32_t iregnum)
4906 {
4907 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4908 int i;
4909
4910 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4911 happen. Currently we store st0-st7 registers, but we need not store all
4912 registers all the time, in future we use ftag register and record only
4913 those who are not marked as an empty. */
4914
4915 if (I386_SAVE_FPU_REGS == iregnum)
4916 {
4917 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4918 {
4919 if (record_full_arch_list_add_reg (ir->regcache, i))
4920 return -1;
4921 }
4922 }
4923 else if (I386_SAVE_FPU_ENV == iregnum)
4924 {
4925 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4926 {
4927 if (record_full_arch_list_add_reg (ir->regcache, i))
4928 return -1;
4929 }
4930 }
4931 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4932 {
4933 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4934 {
4935 if (record_full_arch_list_add_reg (ir->regcache, i))
4936 return -1;
4937 }
4938 }
4939 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4940 (iregnum <= I387_FOP_REGNUM (tdep)))
4941 {
4942 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4943 return -1;
4944 }
4945 else
4946 {
4947 /* Parameter error. */
4948 return -1;
4949 }
4950 if(I386_SAVE_FPU_ENV != iregnum)
4951 {
4952 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4953 {
4954 if (record_full_arch_list_add_reg (ir->regcache, i))
4955 return -1;
4956 }
4957 }
4958 return 0;
4959 }
4960
4961 /* Parse the current instruction, and record the values of the
4962 registers and memory that will be changed by the current
4963 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4964
4965 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4966 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4967
4968 int
4969 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4970 CORE_ADDR input_addr)
4971 {
4972 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4973 int prefixes = 0;
4974 int regnum = 0;
4975 uint32_t opcode;
4976 uint8_t opcode8;
4977 ULONGEST addr;
4978 gdb_byte buf[MAX_REGISTER_SIZE];
4979 struct i386_record_s ir;
4980 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4981 uint8_t rex_w = -1;
4982 uint8_t rex_r = 0;
4983
4984 memset (&ir, 0, sizeof (struct i386_record_s));
4985 ir.regcache = regcache;
4986 ir.addr = input_addr;
4987 ir.orig_addr = input_addr;
4988 ir.aflag = 1;
4989 ir.dflag = 1;
4990 ir.override = -1;
4991 ir.popl_esp_hack = 0;
4992 ir.regmap = tdep->record_regmap;
4993 ir.gdbarch = gdbarch;
4994
4995 if (record_debug > 1)
4996 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4997 "addr = %s\n",
4998 paddress (gdbarch, ir.addr));
4999
5000 /* prefixes */
5001 while (1)
5002 {
5003 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5004 return -1;
5005 ir.addr++;
5006 switch (opcode8) /* Instruction prefixes */
5007 {
5008 case REPE_PREFIX_OPCODE:
5009 prefixes |= PREFIX_REPZ;
5010 break;
5011 case REPNE_PREFIX_OPCODE:
5012 prefixes |= PREFIX_REPNZ;
5013 break;
5014 case LOCK_PREFIX_OPCODE:
5015 prefixes |= PREFIX_LOCK;
5016 break;
5017 case CS_PREFIX_OPCODE:
5018 ir.override = X86_RECORD_CS_REGNUM;
5019 break;
5020 case SS_PREFIX_OPCODE:
5021 ir.override = X86_RECORD_SS_REGNUM;
5022 break;
5023 case DS_PREFIX_OPCODE:
5024 ir.override = X86_RECORD_DS_REGNUM;
5025 break;
5026 case ES_PREFIX_OPCODE:
5027 ir.override = X86_RECORD_ES_REGNUM;
5028 break;
5029 case FS_PREFIX_OPCODE:
5030 ir.override = X86_RECORD_FS_REGNUM;
5031 break;
5032 case GS_PREFIX_OPCODE:
5033 ir.override = X86_RECORD_GS_REGNUM;
5034 break;
5035 case DATA_PREFIX_OPCODE:
5036 prefixes |= PREFIX_DATA;
5037 break;
5038 case ADDR_PREFIX_OPCODE:
5039 prefixes |= PREFIX_ADDR;
5040 break;
5041 case 0x40: /* i386 inc %eax */
5042 case 0x41: /* i386 inc %ecx */
5043 case 0x42: /* i386 inc %edx */
5044 case 0x43: /* i386 inc %ebx */
5045 case 0x44: /* i386 inc %esp */
5046 case 0x45: /* i386 inc %ebp */
5047 case 0x46: /* i386 inc %esi */
5048 case 0x47: /* i386 inc %edi */
5049 case 0x48: /* i386 dec %eax */
5050 case 0x49: /* i386 dec %ecx */
5051 case 0x4a: /* i386 dec %edx */
5052 case 0x4b: /* i386 dec %ebx */
5053 case 0x4c: /* i386 dec %esp */
5054 case 0x4d: /* i386 dec %ebp */
5055 case 0x4e: /* i386 dec %esi */
5056 case 0x4f: /* i386 dec %edi */
5057 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5058 {
5059 /* REX */
5060 rex_w = (opcode8 >> 3) & 1;
5061 rex_r = (opcode8 & 0x4) << 1;
5062 ir.rex_x = (opcode8 & 0x2) << 2;
5063 ir.rex_b = (opcode8 & 0x1) << 3;
5064 }
5065 else /* 32 bit target */
5066 goto out_prefixes;
5067 break;
5068 default:
5069 goto out_prefixes;
5070 break;
5071 }
5072 }
5073 out_prefixes:
5074 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5075 {
5076 ir.dflag = 2;
5077 }
5078 else
5079 {
5080 if (prefixes & PREFIX_DATA)
5081 ir.dflag ^= 1;
5082 }
5083 if (prefixes & PREFIX_ADDR)
5084 ir.aflag ^= 1;
5085 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5086 ir.aflag = 2;
5087
5088 /* Now check op code. */
5089 opcode = (uint32_t) opcode8;
5090 reswitch:
5091 switch (opcode)
5092 {
5093 case 0x0f:
5094 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5095 return -1;
5096 ir.addr++;
5097 opcode = (uint32_t) opcode8 | 0x0f00;
5098 goto reswitch;
5099 break;
5100
5101 case 0x00: /* arith & logic */
5102 case 0x01:
5103 case 0x02:
5104 case 0x03:
5105 case 0x04:
5106 case 0x05:
5107 case 0x08:
5108 case 0x09:
5109 case 0x0a:
5110 case 0x0b:
5111 case 0x0c:
5112 case 0x0d:
5113 case 0x10:
5114 case 0x11:
5115 case 0x12:
5116 case 0x13:
5117 case 0x14:
5118 case 0x15:
5119 case 0x18:
5120 case 0x19:
5121 case 0x1a:
5122 case 0x1b:
5123 case 0x1c:
5124 case 0x1d:
5125 case 0x20:
5126 case 0x21:
5127 case 0x22:
5128 case 0x23:
5129 case 0x24:
5130 case 0x25:
5131 case 0x28:
5132 case 0x29:
5133 case 0x2a:
5134 case 0x2b:
5135 case 0x2c:
5136 case 0x2d:
5137 case 0x30:
5138 case 0x31:
5139 case 0x32:
5140 case 0x33:
5141 case 0x34:
5142 case 0x35:
5143 case 0x38:
5144 case 0x39:
5145 case 0x3a:
5146 case 0x3b:
5147 case 0x3c:
5148 case 0x3d:
5149 if (((opcode >> 3) & 7) != OP_CMPL)
5150 {
5151 if ((opcode & 1) == 0)
5152 ir.ot = OT_BYTE;
5153 else
5154 ir.ot = ir.dflag + OT_WORD;
5155
5156 switch ((opcode >> 1) & 3)
5157 {
5158 case 0: /* OP Ev, Gv */
5159 if (i386_record_modrm (&ir))
5160 return -1;
5161 if (ir.mod != 3)
5162 {
5163 if (i386_record_lea_modrm (&ir))
5164 return -1;
5165 }
5166 else
5167 {
5168 ir.rm |= ir.rex_b;
5169 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5170 ir.rm &= 0x3;
5171 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5172 }
5173 break;
5174 case 1: /* OP Gv, Ev */
5175 if (i386_record_modrm (&ir))
5176 return -1;
5177 ir.reg |= rex_r;
5178 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5179 ir.reg &= 0x3;
5180 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5181 break;
5182 case 2: /* OP A, Iv */
5183 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5184 break;
5185 }
5186 }
5187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5188 break;
5189
5190 case 0x80: /* GRP1 */
5191 case 0x81:
5192 case 0x82:
5193 case 0x83:
5194 if (i386_record_modrm (&ir))
5195 return -1;
5196
5197 if (ir.reg != OP_CMPL)
5198 {
5199 if ((opcode & 1) == 0)
5200 ir.ot = OT_BYTE;
5201 else
5202 ir.ot = ir.dflag + OT_WORD;
5203
5204 if (ir.mod != 3)
5205 {
5206 if (opcode == 0x83)
5207 ir.rip_offset = 1;
5208 else
5209 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5210 if (i386_record_lea_modrm (&ir))
5211 return -1;
5212 }
5213 else
5214 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5215 }
5216 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5217 break;
5218
5219 case 0x40: /* inc */
5220 case 0x41:
5221 case 0x42:
5222 case 0x43:
5223 case 0x44:
5224 case 0x45:
5225 case 0x46:
5226 case 0x47:
5227
5228 case 0x48: /* dec */
5229 case 0x49:
5230 case 0x4a:
5231 case 0x4b:
5232 case 0x4c:
5233 case 0x4d:
5234 case 0x4e:
5235 case 0x4f:
5236
5237 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5238 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5239 break;
5240
5241 case 0xf6: /* GRP3 */
5242 case 0xf7:
5243 if ((opcode & 1) == 0)
5244 ir.ot = OT_BYTE;
5245 else
5246 ir.ot = ir.dflag + OT_WORD;
5247 if (i386_record_modrm (&ir))
5248 return -1;
5249
5250 if (ir.mod != 3 && ir.reg == 0)
5251 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5252
5253 switch (ir.reg)
5254 {
5255 case 0: /* test */
5256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5257 break;
5258 case 2: /* not */
5259 case 3: /* neg */
5260 if (ir.mod != 3)
5261 {
5262 if (i386_record_lea_modrm (&ir))
5263 return -1;
5264 }
5265 else
5266 {
5267 ir.rm |= ir.rex_b;
5268 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5269 ir.rm &= 0x3;
5270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5271 }
5272 if (ir.reg == 3) /* neg */
5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5274 break;
5275 case 4: /* mul */
5276 case 5: /* imul */
5277 case 6: /* div */
5278 case 7: /* idiv */
5279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5280 if (ir.ot != OT_BYTE)
5281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5282 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5283 break;
5284 default:
5285 ir.addr -= 2;
5286 opcode = opcode << 8 | ir.modrm;
5287 goto no_support;
5288 break;
5289 }
5290 break;
5291
5292 case 0xfe: /* GRP4 */
5293 case 0xff: /* GRP5 */
5294 if (i386_record_modrm (&ir))
5295 return -1;
5296 if (ir.reg >= 2 && opcode == 0xfe)
5297 {
5298 ir.addr -= 2;
5299 opcode = opcode << 8 | ir.modrm;
5300 goto no_support;
5301 }
5302 switch (ir.reg)
5303 {
5304 case 0: /* inc */
5305 case 1: /* dec */
5306 if ((opcode & 1) == 0)
5307 ir.ot = OT_BYTE;
5308 else
5309 ir.ot = ir.dflag + OT_WORD;
5310 if (ir.mod != 3)
5311 {
5312 if (i386_record_lea_modrm (&ir))
5313 return -1;
5314 }
5315 else
5316 {
5317 ir.rm |= ir.rex_b;
5318 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5319 ir.rm &= 0x3;
5320 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5321 }
5322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5323 break;
5324 case 2: /* call */
5325 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5326 ir.dflag = 2;
5327 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5328 return -1;
5329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5330 break;
5331 case 3: /* lcall */
5332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5333 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5334 return -1;
5335 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5336 break;
5337 case 4: /* jmp */
5338 case 5: /* ljmp */
5339 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5340 break;
5341 case 6: /* push */
5342 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5343 ir.dflag = 2;
5344 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5345 return -1;
5346 break;
5347 default:
5348 ir.addr -= 2;
5349 opcode = opcode << 8 | ir.modrm;
5350 goto no_support;
5351 break;
5352 }
5353 break;
5354
5355 case 0x84: /* test */
5356 case 0x85:
5357 case 0xa8:
5358 case 0xa9:
5359 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5360 break;
5361
5362 case 0x98: /* CWDE/CBW */
5363 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5364 break;
5365
5366 case 0x99: /* CDQ/CWD */
5367 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5368 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5369 break;
5370
5371 case 0x0faf: /* imul */
5372 case 0x69:
5373 case 0x6b:
5374 ir.ot = ir.dflag + OT_WORD;
5375 if (i386_record_modrm (&ir))
5376 return -1;
5377 if (opcode == 0x69)
5378 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5379 else if (opcode == 0x6b)
5380 ir.rip_offset = 1;
5381 ir.reg |= rex_r;
5382 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5383 ir.reg &= 0x3;
5384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5385 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5386 break;
5387
5388 case 0x0fc0: /* xadd */
5389 case 0x0fc1:
5390 if ((opcode & 1) == 0)
5391 ir.ot = OT_BYTE;
5392 else
5393 ir.ot = ir.dflag + OT_WORD;
5394 if (i386_record_modrm (&ir))
5395 return -1;
5396 ir.reg |= rex_r;
5397 if (ir.mod == 3)
5398 {
5399 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5400 ir.reg &= 0x3;
5401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5402 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5403 ir.rm &= 0x3;
5404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5405 }
5406 else
5407 {
5408 if (i386_record_lea_modrm (&ir))
5409 return -1;
5410 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5411 ir.reg &= 0x3;
5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5413 }
5414 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5415 break;
5416
5417 case 0x0fb0: /* cmpxchg */
5418 case 0x0fb1:
5419 if ((opcode & 1) == 0)
5420 ir.ot = OT_BYTE;
5421 else
5422 ir.ot = ir.dflag + OT_WORD;
5423 if (i386_record_modrm (&ir))
5424 return -1;
5425 if (ir.mod == 3)
5426 {
5427 ir.reg |= rex_r;
5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5429 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5430 ir.reg &= 0x3;
5431 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5432 }
5433 else
5434 {
5435 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5436 if (i386_record_lea_modrm (&ir))
5437 return -1;
5438 }
5439 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5440 break;
5441
5442 case 0x0fc7: /* cmpxchg8b */
5443 if (i386_record_modrm (&ir))
5444 return -1;
5445 if (ir.mod == 3)
5446 {
5447 ir.addr -= 2;
5448 opcode = opcode << 8 | ir.modrm;
5449 goto no_support;
5450 }
5451 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5453 if (i386_record_lea_modrm (&ir))
5454 return -1;
5455 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5456 break;
5457
5458 case 0x50: /* push */
5459 case 0x51:
5460 case 0x52:
5461 case 0x53:
5462 case 0x54:
5463 case 0x55:
5464 case 0x56:
5465 case 0x57:
5466 case 0x68:
5467 case 0x6a:
5468 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5469 ir.dflag = 2;
5470 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5471 return -1;
5472 break;
5473
5474 case 0x06: /* push es */
5475 case 0x0e: /* push cs */
5476 case 0x16: /* push ss */
5477 case 0x1e: /* push ds */
5478 if (ir.regmap[X86_RECORD_R8_REGNUM])
5479 {
5480 ir.addr -= 1;
5481 goto no_support;
5482 }
5483 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5484 return -1;
5485 break;
5486
5487 case 0x0fa0: /* push fs */
5488 case 0x0fa8: /* push gs */
5489 if (ir.regmap[X86_RECORD_R8_REGNUM])
5490 {
5491 ir.addr -= 2;
5492 goto no_support;
5493 }
5494 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5495 return -1;
5496 break;
5497
5498 case 0x60: /* pusha */
5499 if (ir.regmap[X86_RECORD_R8_REGNUM])
5500 {
5501 ir.addr -= 1;
5502 goto no_support;
5503 }
5504 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5505 return -1;
5506 break;
5507
5508 case 0x58: /* pop */
5509 case 0x59:
5510 case 0x5a:
5511 case 0x5b:
5512 case 0x5c:
5513 case 0x5d:
5514 case 0x5e:
5515 case 0x5f:
5516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5517 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5518 break;
5519
5520 case 0x61: /* popa */
5521 if (ir.regmap[X86_RECORD_R8_REGNUM])
5522 {
5523 ir.addr -= 1;
5524 goto no_support;
5525 }
5526 for (regnum = X86_RECORD_REAX_REGNUM;
5527 regnum <= X86_RECORD_REDI_REGNUM;
5528 regnum++)
5529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5530 break;
5531
5532 case 0x8f: /* pop */
5533 if (ir.regmap[X86_RECORD_R8_REGNUM])
5534 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5535 else
5536 ir.ot = ir.dflag + OT_WORD;
5537 if (i386_record_modrm (&ir))
5538 return -1;
5539 if (ir.mod == 3)
5540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5541 else
5542 {
5543 ir.popl_esp_hack = 1 << ir.ot;
5544 if (i386_record_lea_modrm (&ir))
5545 return -1;
5546 }
5547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5548 break;
5549
5550 case 0xc8: /* enter */
5551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5552 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5553 ir.dflag = 2;
5554 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5555 return -1;
5556 break;
5557
5558 case 0xc9: /* leave */
5559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5561 break;
5562
5563 case 0x07: /* pop es */
5564 if (ir.regmap[X86_RECORD_R8_REGNUM])
5565 {
5566 ir.addr -= 1;
5567 goto no_support;
5568 }
5569 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5570 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5572 break;
5573
5574 case 0x17: /* pop ss */
5575 if (ir.regmap[X86_RECORD_R8_REGNUM])
5576 {
5577 ir.addr -= 1;
5578 goto no_support;
5579 }
5580 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5581 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5583 break;
5584
5585 case 0x1f: /* pop ds */
5586 if (ir.regmap[X86_RECORD_R8_REGNUM])
5587 {
5588 ir.addr -= 1;
5589 goto no_support;
5590 }
5591 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5592 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5593 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5594 break;
5595
5596 case 0x0fa1: /* pop fs */
5597 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5598 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5599 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5600 break;
5601
5602 case 0x0fa9: /* pop gs */
5603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5606 break;
5607
5608 case 0x88: /* mov */
5609 case 0x89:
5610 case 0xc6:
5611 case 0xc7:
5612 if ((opcode & 1) == 0)
5613 ir.ot = OT_BYTE;
5614 else
5615 ir.ot = ir.dflag + OT_WORD;
5616
5617 if (i386_record_modrm (&ir))
5618 return -1;
5619
5620 if (ir.mod != 3)
5621 {
5622 if (opcode == 0xc6 || opcode == 0xc7)
5623 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5624 if (i386_record_lea_modrm (&ir))
5625 return -1;
5626 }
5627 else
5628 {
5629 if (opcode == 0xc6 || opcode == 0xc7)
5630 ir.rm |= ir.rex_b;
5631 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5632 ir.rm &= 0x3;
5633 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5634 }
5635 break;
5636
5637 case 0x8a: /* mov */
5638 case 0x8b:
5639 if ((opcode & 1) == 0)
5640 ir.ot = OT_BYTE;
5641 else
5642 ir.ot = ir.dflag + OT_WORD;
5643 if (i386_record_modrm (&ir))
5644 return -1;
5645 ir.reg |= rex_r;
5646 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5647 ir.reg &= 0x3;
5648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5649 break;
5650
5651 case 0x8c: /* mov seg */
5652 if (i386_record_modrm (&ir))
5653 return -1;
5654 if (ir.reg > 5)
5655 {
5656 ir.addr -= 2;
5657 opcode = opcode << 8 | ir.modrm;
5658 goto no_support;
5659 }
5660
5661 if (ir.mod == 3)
5662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5663 else
5664 {
5665 ir.ot = OT_WORD;
5666 if (i386_record_lea_modrm (&ir))
5667 return -1;
5668 }
5669 break;
5670
5671 case 0x8e: /* mov seg */
5672 if (i386_record_modrm (&ir))
5673 return -1;
5674 switch (ir.reg)
5675 {
5676 case 0:
5677 regnum = X86_RECORD_ES_REGNUM;
5678 break;
5679 case 2:
5680 regnum = X86_RECORD_SS_REGNUM;
5681 break;
5682 case 3:
5683 regnum = X86_RECORD_DS_REGNUM;
5684 break;
5685 case 4:
5686 regnum = X86_RECORD_FS_REGNUM;
5687 break;
5688 case 5:
5689 regnum = X86_RECORD_GS_REGNUM;
5690 break;
5691 default:
5692 ir.addr -= 2;
5693 opcode = opcode << 8 | ir.modrm;
5694 goto no_support;
5695 break;
5696 }
5697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5698 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5699 break;
5700
5701 case 0x0fb6: /* movzbS */
5702 case 0x0fb7: /* movzwS */
5703 case 0x0fbe: /* movsbS */
5704 case 0x0fbf: /* movswS */
5705 if (i386_record_modrm (&ir))
5706 return -1;
5707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5708 break;
5709
5710 case 0x8d: /* lea */
5711 if (i386_record_modrm (&ir))
5712 return -1;
5713 if (ir.mod == 3)
5714 {
5715 ir.addr -= 2;
5716 opcode = opcode << 8 | ir.modrm;
5717 goto no_support;
5718 }
5719 ir.ot = ir.dflag;
5720 ir.reg |= rex_r;
5721 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5722 ir.reg &= 0x3;
5723 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5724 break;
5725
5726 case 0xa0: /* mov EAX */
5727 case 0xa1:
5728
5729 case 0xd7: /* xlat */
5730 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5731 break;
5732
5733 case 0xa2: /* mov EAX */
5734 case 0xa3:
5735 if (ir.override >= 0)
5736 {
5737 if (record_full_memory_query)
5738 {
5739 int q;
5740
5741 target_terminal_ours ();
5742 q = yquery (_("\
5743 Process record ignores the memory change of instruction at address %s\n\
5744 because it can't get the value of the segment register.\n\
5745 Do you want to stop the program?"),
5746 paddress (gdbarch, ir.orig_addr));
5747 target_terminal_inferior ();
5748 if (q)
5749 return -1;
5750 }
5751 }
5752 else
5753 {
5754 if ((opcode & 1) == 0)
5755 ir.ot = OT_BYTE;
5756 else
5757 ir.ot = ir.dflag + OT_WORD;
5758 if (ir.aflag == 2)
5759 {
5760 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5761 return -1;
5762 ir.addr += 8;
5763 addr = extract_unsigned_integer (buf, 8, byte_order);
5764 }
5765 else if (ir.aflag)
5766 {
5767 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5768 return -1;
5769 ir.addr += 4;
5770 addr = extract_unsigned_integer (buf, 4, byte_order);
5771 }
5772 else
5773 {
5774 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5775 return -1;
5776 ir.addr += 2;
5777 addr = extract_unsigned_integer (buf, 2, byte_order);
5778 }
5779 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5780 return -1;
5781 }
5782 break;
5783
5784 case 0xb0: /* mov R, Ib */
5785 case 0xb1:
5786 case 0xb2:
5787 case 0xb3:
5788 case 0xb4:
5789 case 0xb5:
5790 case 0xb6:
5791 case 0xb7:
5792 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5793 ? ((opcode & 0x7) | ir.rex_b)
5794 : ((opcode & 0x7) & 0x3));
5795 break;
5796
5797 case 0xb8: /* mov R, Iv */
5798 case 0xb9:
5799 case 0xba:
5800 case 0xbb:
5801 case 0xbc:
5802 case 0xbd:
5803 case 0xbe:
5804 case 0xbf:
5805 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5806 break;
5807
5808 case 0x91: /* xchg R, EAX */
5809 case 0x92:
5810 case 0x93:
5811 case 0x94:
5812 case 0x95:
5813 case 0x96:
5814 case 0x97:
5815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5816 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5817 break;
5818
5819 case 0x86: /* xchg Ev, Gv */
5820 case 0x87:
5821 if ((opcode & 1) == 0)
5822 ir.ot = OT_BYTE;
5823 else
5824 ir.ot = ir.dflag + OT_WORD;
5825 if (i386_record_modrm (&ir))
5826 return -1;
5827 if (ir.mod == 3)
5828 {
5829 ir.rm |= ir.rex_b;
5830 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5831 ir.rm &= 0x3;
5832 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5833 }
5834 else
5835 {
5836 if (i386_record_lea_modrm (&ir))
5837 return -1;
5838 }
5839 ir.reg |= rex_r;
5840 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5841 ir.reg &= 0x3;
5842 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5843 break;
5844
5845 case 0xc4: /* les Gv */
5846 case 0xc5: /* lds Gv */
5847 if (ir.regmap[X86_RECORD_R8_REGNUM])
5848 {
5849 ir.addr -= 1;
5850 goto no_support;
5851 }
5852 /* FALLTHROUGH */
5853 case 0x0fb2: /* lss Gv */
5854 case 0x0fb4: /* lfs Gv */
5855 case 0x0fb5: /* lgs Gv */
5856 if (i386_record_modrm (&ir))
5857 return -1;
5858 if (ir.mod == 3)
5859 {
5860 if (opcode > 0xff)
5861 ir.addr -= 3;
5862 else
5863 ir.addr -= 2;
5864 opcode = opcode << 8 | ir.modrm;
5865 goto no_support;
5866 }
5867 switch (opcode)
5868 {
5869 case 0xc4: /* les Gv */
5870 regnum = X86_RECORD_ES_REGNUM;
5871 break;
5872 case 0xc5: /* lds Gv */
5873 regnum = X86_RECORD_DS_REGNUM;
5874 break;
5875 case 0x0fb2: /* lss Gv */
5876 regnum = X86_RECORD_SS_REGNUM;
5877 break;
5878 case 0x0fb4: /* lfs Gv */
5879 regnum = X86_RECORD_FS_REGNUM;
5880 break;
5881 case 0x0fb5: /* lgs Gv */
5882 regnum = X86_RECORD_GS_REGNUM;
5883 break;
5884 }
5885 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5886 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5887 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5888 break;
5889
5890 case 0xc0: /* shifts */
5891 case 0xc1:
5892 case 0xd0:
5893 case 0xd1:
5894 case 0xd2:
5895 case 0xd3:
5896 if ((opcode & 1) == 0)
5897 ir.ot = OT_BYTE;
5898 else
5899 ir.ot = ir.dflag + OT_WORD;
5900 if (i386_record_modrm (&ir))
5901 return -1;
5902 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5903 {
5904 if (i386_record_lea_modrm (&ir))
5905 return -1;
5906 }
5907 else
5908 {
5909 ir.rm |= ir.rex_b;
5910 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5911 ir.rm &= 0x3;
5912 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5913 }
5914 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5915 break;
5916
5917 case 0x0fa4:
5918 case 0x0fa5:
5919 case 0x0fac:
5920 case 0x0fad:
5921 if (i386_record_modrm (&ir))
5922 return -1;
5923 if (ir.mod == 3)
5924 {
5925 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5926 return -1;
5927 }
5928 else
5929 {
5930 if (i386_record_lea_modrm (&ir))
5931 return -1;
5932 }
5933 break;
5934
5935 case 0xd8: /* Floats. */
5936 case 0xd9:
5937 case 0xda:
5938 case 0xdb:
5939 case 0xdc:
5940 case 0xdd:
5941 case 0xde:
5942 case 0xdf:
5943 if (i386_record_modrm (&ir))
5944 return -1;
5945 ir.reg |= ((opcode & 7) << 3);
5946 if (ir.mod != 3)
5947 {
5948 /* Memory. */
5949 uint64_t addr64;
5950
5951 if (i386_record_lea_modrm_addr (&ir, &addr64))
5952 return -1;
5953 switch (ir.reg)
5954 {
5955 case 0x02:
5956 case 0x12:
5957 case 0x22:
5958 case 0x32:
5959 /* For fcom, ficom nothing to do. */
5960 break;
5961 case 0x03:
5962 case 0x13:
5963 case 0x23:
5964 case 0x33:
5965 /* For fcomp, ficomp pop FPU stack, store all. */
5966 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5967 return -1;
5968 break;
5969 case 0x00:
5970 case 0x01:
5971 case 0x04:
5972 case 0x05:
5973 case 0x06:
5974 case 0x07:
5975 case 0x10:
5976 case 0x11:
5977 case 0x14:
5978 case 0x15:
5979 case 0x16:
5980 case 0x17:
5981 case 0x20:
5982 case 0x21:
5983 case 0x24:
5984 case 0x25:
5985 case 0x26:
5986 case 0x27:
5987 case 0x30:
5988 case 0x31:
5989 case 0x34:
5990 case 0x35:
5991 case 0x36:
5992 case 0x37:
5993 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5994 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5995 of code, always affects st(0) register. */
5996 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5997 return -1;
5998 break;
5999 case 0x08:
6000 case 0x0a:
6001 case 0x0b:
6002 case 0x18:
6003 case 0x19:
6004 case 0x1a:
6005 case 0x1b:
6006 case 0x1d:
6007 case 0x28:
6008 case 0x29:
6009 case 0x2a:
6010 case 0x2b:
6011 case 0x38:
6012 case 0x39:
6013 case 0x3a:
6014 case 0x3b:
6015 case 0x3c:
6016 case 0x3d:
6017 switch (ir.reg & 7)
6018 {
6019 case 0:
6020 /* Handling fld, fild. */
6021 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6022 return -1;
6023 break;
6024 case 1:
6025 switch (ir.reg >> 4)
6026 {
6027 case 0:
6028 if (record_full_arch_list_add_mem (addr64, 4))
6029 return -1;
6030 break;
6031 case 2:
6032 if (record_full_arch_list_add_mem (addr64, 8))
6033 return -1;
6034 break;
6035 case 3:
6036 break;
6037 default:
6038 if (record_full_arch_list_add_mem (addr64, 2))
6039 return -1;
6040 break;
6041 }
6042 break;
6043 default:
6044 switch (ir.reg >> 4)
6045 {
6046 case 0:
6047 if (record_full_arch_list_add_mem (addr64, 4))
6048 return -1;
6049 if (3 == (ir.reg & 7))
6050 {
6051 /* For fstp m32fp. */
6052 if (i386_record_floats (gdbarch, &ir,
6053 I386_SAVE_FPU_REGS))
6054 return -1;
6055 }
6056 break;
6057 case 1:
6058 if (record_full_arch_list_add_mem (addr64, 4))
6059 return -1;
6060 if ((3 == (ir.reg & 7))
6061 || (5 == (ir.reg & 7))
6062 || (7 == (ir.reg & 7)))
6063 {
6064 /* For fstp insn. */
6065 if (i386_record_floats (gdbarch, &ir,
6066 I386_SAVE_FPU_REGS))
6067 return -1;
6068 }
6069 break;
6070 case 2:
6071 if (record_full_arch_list_add_mem (addr64, 8))
6072 return -1;
6073 if (3 == (ir.reg & 7))
6074 {
6075 /* For fstp m64fp. */
6076 if (i386_record_floats (gdbarch, &ir,
6077 I386_SAVE_FPU_REGS))
6078 return -1;
6079 }
6080 break;
6081 case 3:
6082 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6083 {
6084 /* For fistp, fbld, fild, fbstp. */
6085 if (i386_record_floats (gdbarch, &ir,
6086 I386_SAVE_FPU_REGS))
6087 return -1;
6088 }
6089 /* Fall through */
6090 default:
6091 if (record_full_arch_list_add_mem (addr64, 2))
6092 return -1;
6093 break;
6094 }
6095 break;
6096 }
6097 break;
6098 case 0x0c:
6099 /* Insn fldenv. */
6100 if (i386_record_floats (gdbarch, &ir,
6101 I386_SAVE_FPU_ENV_REG_STACK))
6102 return -1;
6103 break;
6104 case 0x0d:
6105 /* Insn fldcw. */
6106 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6107 return -1;
6108 break;
6109 case 0x2c:
6110 /* Insn frstor. */
6111 if (i386_record_floats (gdbarch, &ir,
6112 I386_SAVE_FPU_ENV_REG_STACK))
6113 return -1;
6114 break;
6115 case 0x0e:
6116 if (ir.dflag)
6117 {
6118 if (record_full_arch_list_add_mem (addr64, 28))
6119 return -1;
6120 }
6121 else
6122 {
6123 if (record_full_arch_list_add_mem (addr64, 14))
6124 return -1;
6125 }
6126 break;
6127 case 0x0f:
6128 case 0x2f:
6129 if (record_full_arch_list_add_mem (addr64, 2))
6130 return -1;
6131 /* Insn fstp, fbstp. */
6132 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6133 return -1;
6134 break;
6135 case 0x1f:
6136 case 0x3e:
6137 if (record_full_arch_list_add_mem (addr64, 10))
6138 return -1;
6139 break;
6140 case 0x2e:
6141 if (ir.dflag)
6142 {
6143 if (record_full_arch_list_add_mem (addr64, 28))
6144 return -1;
6145 addr64 += 28;
6146 }
6147 else
6148 {
6149 if (record_full_arch_list_add_mem (addr64, 14))
6150 return -1;
6151 addr64 += 14;
6152 }
6153 if (record_full_arch_list_add_mem (addr64, 80))
6154 return -1;
6155 /* Insn fsave. */
6156 if (i386_record_floats (gdbarch, &ir,
6157 I386_SAVE_FPU_ENV_REG_STACK))
6158 return -1;
6159 break;
6160 case 0x3f:
6161 if (record_full_arch_list_add_mem (addr64, 8))
6162 return -1;
6163 /* Insn fistp. */
6164 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6165 return -1;
6166 break;
6167 default:
6168 ir.addr -= 2;
6169 opcode = opcode << 8 | ir.modrm;
6170 goto no_support;
6171 break;
6172 }
6173 }
6174 /* Opcode is an extension of modR/M byte. */
6175 else
6176 {
6177 switch (opcode)
6178 {
6179 case 0xd8:
6180 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6181 return -1;
6182 break;
6183 case 0xd9:
6184 if (0x0c == (ir.modrm >> 4))
6185 {
6186 if ((ir.modrm & 0x0f) <= 7)
6187 {
6188 if (i386_record_floats (gdbarch, &ir,
6189 I386_SAVE_FPU_REGS))
6190 return -1;
6191 }
6192 else
6193 {
6194 if (i386_record_floats (gdbarch, &ir,
6195 I387_ST0_REGNUM (tdep)))
6196 return -1;
6197 /* If only st(0) is changing, then we have already
6198 recorded. */
6199 if ((ir.modrm & 0x0f) - 0x08)
6200 {
6201 if (i386_record_floats (gdbarch, &ir,
6202 I387_ST0_REGNUM (tdep) +
6203 ((ir.modrm & 0x0f) - 0x08)))
6204 return -1;
6205 }
6206 }
6207 }
6208 else
6209 {
6210 switch (ir.modrm)
6211 {
6212 case 0xe0:
6213 case 0xe1:
6214 case 0xf0:
6215 case 0xf5:
6216 case 0xf8:
6217 case 0xfa:
6218 case 0xfc:
6219 case 0xfe:
6220 case 0xff:
6221 if (i386_record_floats (gdbarch, &ir,
6222 I387_ST0_REGNUM (tdep)))
6223 return -1;
6224 break;
6225 case 0xf1:
6226 case 0xf2:
6227 case 0xf3:
6228 case 0xf4:
6229 case 0xf6:
6230 case 0xf7:
6231 case 0xe8:
6232 case 0xe9:
6233 case 0xea:
6234 case 0xeb:
6235 case 0xec:
6236 case 0xed:
6237 case 0xee:
6238 case 0xf9:
6239 case 0xfb:
6240 if (i386_record_floats (gdbarch, &ir,
6241 I386_SAVE_FPU_REGS))
6242 return -1;
6243 break;
6244 case 0xfd:
6245 if (i386_record_floats (gdbarch, &ir,
6246 I387_ST0_REGNUM (tdep)))
6247 return -1;
6248 if (i386_record_floats (gdbarch, &ir,
6249 I387_ST0_REGNUM (tdep) + 1))
6250 return -1;
6251 break;
6252 }
6253 }
6254 break;
6255 case 0xda:
6256 if (0xe9 == ir.modrm)
6257 {
6258 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6259 return -1;
6260 }
6261 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6262 {
6263 if (i386_record_floats (gdbarch, &ir,
6264 I387_ST0_REGNUM (tdep)))
6265 return -1;
6266 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6267 {
6268 if (i386_record_floats (gdbarch, &ir,
6269 I387_ST0_REGNUM (tdep) +
6270 (ir.modrm & 0x0f)))
6271 return -1;
6272 }
6273 else if ((ir.modrm & 0x0f) - 0x08)
6274 {
6275 if (i386_record_floats (gdbarch, &ir,
6276 I387_ST0_REGNUM (tdep) +
6277 ((ir.modrm & 0x0f) - 0x08)))
6278 return -1;
6279 }
6280 }
6281 break;
6282 case 0xdb:
6283 if (0xe3 == ir.modrm)
6284 {
6285 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6286 return -1;
6287 }
6288 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6289 {
6290 if (i386_record_floats (gdbarch, &ir,
6291 I387_ST0_REGNUM (tdep)))
6292 return -1;
6293 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6294 {
6295 if (i386_record_floats (gdbarch, &ir,
6296 I387_ST0_REGNUM (tdep) +
6297 (ir.modrm & 0x0f)))
6298 return -1;
6299 }
6300 else if ((ir.modrm & 0x0f) - 0x08)
6301 {
6302 if (i386_record_floats (gdbarch, &ir,
6303 I387_ST0_REGNUM (tdep) +
6304 ((ir.modrm & 0x0f) - 0x08)))
6305 return -1;
6306 }
6307 }
6308 break;
6309 case 0xdc:
6310 if ((0x0c == ir.modrm >> 4)
6311 || (0x0d == ir.modrm >> 4)
6312 || (0x0f == ir.modrm >> 4))
6313 {
6314 if ((ir.modrm & 0x0f) <= 7)
6315 {
6316 if (i386_record_floats (gdbarch, &ir,
6317 I387_ST0_REGNUM (tdep) +
6318 (ir.modrm & 0x0f)))
6319 return -1;
6320 }
6321 else
6322 {
6323 if (i386_record_floats (gdbarch, &ir,
6324 I387_ST0_REGNUM (tdep) +
6325 ((ir.modrm & 0x0f) - 0x08)))
6326 return -1;
6327 }
6328 }
6329 break;
6330 case 0xdd:
6331 if (0x0c == ir.modrm >> 4)
6332 {
6333 if (i386_record_floats (gdbarch, &ir,
6334 I387_FTAG_REGNUM (tdep)))
6335 return -1;
6336 }
6337 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6338 {
6339 if ((ir.modrm & 0x0f) <= 7)
6340 {
6341 if (i386_record_floats (gdbarch, &ir,
6342 I387_ST0_REGNUM (tdep) +
6343 (ir.modrm & 0x0f)))
6344 return -1;
6345 }
6346 else
6347 {
6348 if (i386_record_floats (gdbarch, &ir,
6349 I386_SAVE_FPU_REGS))
6350 return -1;
6351 }
6352 }
6353 break;
6354 case 0xde:
6355 if ((0x0c == ir.modrm >> 4)
6356 || (0x0e == ir.modrm >> 4)
6357 || (0x0f == ir.modrm >> 4)
6358 || (0xd9 == ir.modrm))
6359 {
6360 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6361 return -1;
6362 }
6363 break;
6364 case 0xdf:
6365 if (0xe0 == ir.modrm)
6366 {
6367 if (record_full_arch_list_add_reg (ir.regcache,
6368 I386_EAX_REGNUM))
6369 return -1;
6370 }
6371 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6372 {
6373 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6374 return -1;
6375 }
6376 break;
6377 }
6378 }
6379 break;
6380 /* string ops */
6381 case 0xa4: /* movsS */
6382 case 0xa5:
6383 case 0xaa: /* stosS */
6384 case 0xab:
6385 case 0x6c: /* insS */
6386 case 0x6d:
6387 regcache_raw_read_unsigned (ir.regcache,
6388 ir.regmap[X86_RECORD_RECX_REGNUM],
6389 &addr);
6390 if (addr)
6391 {
6392 ULONGEST es, ds;
6393
6394 if ((opcode & 1) == 0)
6395 ir.ot = OT_BYTE;
6396 else
6397 ir.ot = ir.dflag + OT_WORD;
6398 regcache_raw_read_unsigned (ir.regcache,
6399 ir.regmap[X86_RECORD_REDI_REGNUM],
6400 &addr);
6401
6402 regcache_raw_read_unsigned (ir.regcache,
6403 ir.regmap[X86_RECORD_ES_REGNUM],
6404 &es);
6405 regcache_raw_read_unsigned (ir.regcache,
6406 ir.regmap[X86_RECORD_DS_REGNUM],
6407 &ds);
6408 if (ir.aflag && (es != ds))
6409 {
6410 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6411 if (record_full_memory_query)
6412 {
6413 int q;
6414
6415 target_terminal_ours ();
6416 q = yquery (_("\
6417 Process record ignores the memory change of instruction at address %s\n\
6418 because it can't get the value of the segment register.\n\
6419 Do you want to stop the program?"),
6420 paddress (gdbarch, ir.orig_addr));
6421 target_terminal_inferior ();
6422 if (q)
6423 return -1;
6424 }
6425 }
6426 else
6427 {
6428 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6429 return -1;
6430 }
6431
6432 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6433 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6434 if (opcode == 0xa4 || opcode == 0xa5)
6435 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6436 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6438 }
6439 break;
6440
6441 case 0xa6: /* cmpsS */
6442 case 0xa7:
6443 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6444 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6445 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6447 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6448 break;
6449
6450 case 0xac: /* lodsS */
6451 case 0xad:
6452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6453 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6454 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6455 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6456 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6457 break;
6458
6459 case 0xae: /* scasS */
6460 case 0xaf:
6461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6462 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6463 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6464 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6465 break;
6466
6467 case 0x6e: /* outsS */
6468 case 0x6f:
6469 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6470 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6471 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6472 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6473 break;
6474
6475 case 0xe4: /* port I/O */
6476 case 0xe5:
6477 case 0xec:
6478 case 0xed:
6479 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6480 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6481 break;
6482
6483 case 0xe6:
6484 case 0xe7:
6485 case 0xee:
6486 case 0xef:
6487 break;
6488
6489 /* control */
6490 case 0xc2: /* ret im */
6491 case 0xc3: /* ret */
6492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6494 break;
6495
6496 case 0xca: /* lret im */
6497 case 0xcb: /* lret */
6498 case 0xcf: /* iret */
6499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6502 break;
6503
6504 case 0xe8: /* call im */
6505 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6506 ir.dflag = 2;
6507 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6508 return -1;
6509 break;
6510
6511 case 0x9a: /* lcall im */
6512 if (ir.regmap[X86_RECORD_R8_REGNUM])
6513 {
6514 ir.addr -= 1;
6515 goto no_support;
6516 }
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6518 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6519 return -1;
6520 break;
6521
6522 case 0xe9: /* jmp im */
6523 case 0xea: /* ljmp im */
6524 case 0xeb: /* jmp Jb */
6525 case 0x70: /* jcc Jb */
6526 case 0x71:
6527 case 0x72:
6528 case 0x73:
6529 case 0x74:
6530 case 0x75:
6531 case 0x76:
6532 case 0x77:
6533 case 0x78:
6534 case 0x79:
6535 case 0x7a:
6536 case 0x7b:
6537 case 0x7c:
6538 case 0x7d:
6539 case 0x7e:
6540 case 0x7f:
6541 case 0x0f80: /* jcc Jv */
6542 case 0x0f81:
6543 case 0x0f82:
6544 case 0x0f83:
6545 case 0x0f84:
6546 case 0x0f85:
6547 case 0x0f86:
6548 case 0x0f87:
6549 case 0x0f88:
6550 case 0x0f89:
6551 case 0x0f8a:
6552 case 0x0f8b:
6553 case 0x0f8c:
6554 case 0x0f8d:
6555 case 0x0f8e:
6556 case 0x0f8f:
6557 break;
6558
6559 case 0x0f90: /* setcc Gv */
6560 case 0x0f91:
6561 case 0x0f92:
6562 case 0x0f93:
6563 case 0x0f94:
6564 case 0x0f95:
6565 case 0x0f96:
6566 case 0x0f97:
6567 case 0x0f98:
6568 case 0x0f99:
6569 case 0x0f9a:
6570 case 0x0f9b:
6571 case 0x0f9c:
6572 case 0x0f9d:
6573 case 0x0f9e:
6574 case 0x0f9f:
6575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6576 ir.ot = OT_BYTE;
6577 if (i386_record_modrm (&ir))
6578 return -1;
6579 if (ir.mod == 3)
6580 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6581 : (ir.rm & 0x3));
6582 else
6583 {
6584 if (i386_record_lea_modrm (&ir))
6585 return -1;
6586 }
6587 break;
6588
6589 case 0x0f40: /* cmov Gv, Ev */
6590 case 0x0f41:
6591 case 0x0f42:
6592 case 0x0f43:
6593 case 0x0f44:
6594 case 0x0f45:
6595 case 0x0f46:
6596 case 0x0f47:
6597 case 0x0f48:
6598 case 0x0f49:
6599 case 0x0f4a:
6600 case 0x0f4b:
6601 case 0x0f4c:
6602 case 0x0f4d:
6603 case 0x0f4e:
6604 case 0x0f4f:
6605 if (i386_record_modrm (&ir))
6606 return -1;
6607 ir.reg |= rex_r;
6608 if (ir.dflag == OT_BYTE)
6609 ir.reg &= 0x3;
6610 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6611 break;
6612
6613 /* flags */
6614 case 0x9c: /* pushf */
6615 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6616 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6617 ir.dflag = 2;
6618 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6619 return -1;
6620 break;
6621
6622 case 0x9d: /* popf */
6623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6624 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6625 break;
6626
6627 case 0x9e: /* sahf */
6628 if (ir.regmap[X86_RECORD_R8_REGNUM])
6629 {
6630 ir.addr -= 1;
6631 goto no_support;
6632 }
6633 /* FALLTHROUGH */
6634 case 0xf5: /* cmc */
6635 case 0xf8: /* clc */
6636 case 0xf9: /* stc */
6637 case 0xfc: /* cld */
6638 case 0xfd: /* std */
6639 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6640 break;
6641
6642 case 0x9f: /* lahf */
6643 if (ir.regmap[X86_RECORD_R8_REGNUM])
6644 {
6645 ir.addr -= 1;
6646 goto no_support;
6647 }
6648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6650 break;
6651
6652 /* bit operations */
6653 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6654 ir.ot = ir.dflag + OT_WORD;
6655 if (i386_record_modrm (&ir))
6656 return -1;
6657 if (ir.reg < 4)
6658 {
6659 ir.addr -= 2;
6660 opcode = opcode << 8 | ir.modrm;
6661 goto no_support;
6662 }
6663 if (ir.reg != 4)
6664 {
6665 if (ir.mod == 3)
6666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6667 else
6668 {
6669 if (i386_record_lea_modrm (&ir))
6670 return -1;
6671 }
6672 }
6673 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6674 break;
6675
6676 case 0x0fa3: /* bt Gv, Ev */
6677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6678 break;
6679
6680 case 0x0fab: /* bts */
6681 case 0x0fb3: /* btr */
6682 case 0x0fbb: /* btc */
6683 ir.ot = ir.dflag + OT_WORD;
6684 if (i386_record_modrm (&ir))
6685 return -1;
6686 if (ir.mod == 3)
6687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6688 else
6689 {
6690 uint64_t addr64;
6691 if (i386_record_lea_modrm_addr (&ir, &addr64))
6692 return -1;
6693 regcache_raw_read_unsigned (ir.regcache,
6694 ir.regmap[ir.reg | rex_r],
6695 &addr);
6696 switch (ir.dflag)
6697 {
6698 case 0:
6699 addr64 += ((int16_t) addr >> 4) << 4;
6700 break;
6701 case 1:
6702 addr64 += ((int32_t) addr >> 5) << 5;
6703 break;
6704 case 2:
6705 addr64 += ((int64_t) addr >> 6) << 6;
6706 break;
6707 }
6708 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6709 return -1;
6710 if (i386_record_lea_modrm (&ir))
6711 return -1;
6712 }
6713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6714 break;
6715
6716 case 0x0fbc: /* bsf */
6717 case 0x0fbd: /* bsr */
6718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6720 break;
6721
6722 /* bcd */
6723 case 0x27: /* daa */
6724 case 0x2f: /* das */
6725 case 0x37: /* aaa */
6726 case 0x3f: /* aas */
6727 case 0xd4: /* aam */
6728 case 0xd5: /* aad */
6729 if (ir.regmap[X86_RECORD_R8_REGNUM])
6730 {
6731 ir.addr -= 1;
6732 goto no_support;
6733 }
6734 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6735 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6736 break;
6737
6738 /* misc */
6739 case 0x90: /* nop */
6740 if (prefixes & PREFIX_LOCK)
6741 {
6742 ir.addr -= 1;
6743 goto no_support;
6744 }
6745 break;
6746
6747 case 0x9b: /* fwait */
6748 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6749 return -1;
6750 opcode = (uint32_t) opcode8;
6751 ir.addr++;
6752 goto reswitch;
6753 break;
6754
6755 /* XXX */
6756 case 0xcc: /* int3 */
6757 printf_unfiltered (_("Process record does not support instruction "
6758 "int3.\n"));
6759 ir.addr -= 1;
6760 goto no_support;
6761 break;
6762
6763 /* XXX */
6764 case 0xcd: /* int */
6765 {
6766 int ret;
6767 uint8_t interrupt;
6768 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6769 return -1;
6770 ir.addr++;
6771 if (interrupt != 0x80
6772 || tdep->i386_intx80_record == NULL)
6773 {
6774 printf_unfiltered (_("Process record does not support "
6775 "instruction int 0x%02x.\n"),
6776 interrupt);
6777 ir.addr -= 2;
6778 goto no_support;
6779 }
6780 ret = tdep->i386_intx80_record (ir.regcache);
6781 if (ret)
6782 return ret;
6783 }
6784 break;
6785
6786 /* XXX */
6787 case 0xce: /* into */
6788 printf_unfiltered (_("Process record does not support "
6789 "instruction into.\n"));
6790 ir.addr -= 1;
6791 goto no_support;
6792 break;
6793
6794 case 0xfa: /* cli */
6795 case 0xfb: /* sti */
6796 break;
6797
6798 case 0x62: /* bound */
6799 printf_unfiltered (_("Process record does not support "
6800 "instruction bound.\n"));
6801 ir.addr -= 1;
6802 goto no_support;
6803 break;
6804
6805 case 0x0fc8: /* bswap reg */
6806 case 0x0fc9:
6807 case 0x0fca:
6808 case 0x0fcb:
6809 case 0x0fcc:
6810 case 0x0fcd:
6811 case 0x0fce:
6812 case 0x0fcf:
6813 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6814 break;
6815
6816 case 0xd6: /* salc */
6817 if (ir.regmap[X86_RECORD_R8_REGNUM])
6818 {
6819 ir.addr -= 1;
6820 goto no_support;
6821 }
6822 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6823 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6824 break;
6825
6826 case 0xe0: /* loopnz */
6827 case 0xe1: /* loopz */
6828 case 0xe2: /* loop */
6829 case 0xe3: /* jecxz */
6830 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6831 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6832 break;
6833
6834 case 0x0f30: /* wrmsr */
6835 printf_unfiltered (_("Process record does not support "
6836 "instruction wrmsr.\n"));
6837 ir.addr -= 2;
6838 goto no_support;
6839 break;
6840
6841 case 0x0f32: /* rdmsr */
6842 printf_unfiltered (_("Process record does not support "
6843 "instruction rdmsr.\n"));
6844 ir.addr -= 2;
6845 goto no_support;
6846 break;
6847
6848 case 0x0f31: /* rdtsc */
6849 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6850 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6851 break;
6852
6853 case 0x0f34: /* sysenter */
6854 {
6855 int ret;
6856 if (ir.regmap[X86_RECORD_R8_REGNUM])
6857 {
6858 ir.addr -= 2;
6859 goto no_support;
6860 }
6861 if (tdep->i386_sysenter_record == NULL)
6862 {
6863 printf_unfiltered (_("Process record does not support "
6864 "instruction sysenter.\n"));
6865 ir.addr -= 2;
6866 goto no_support;
6867 }
6868 ret = tdep->i386_sysenter_record (ir.regcache);
6869 if (ret)
6870 return ret;
6871 }
6872 break;
6873
6874 case 0x0f35: /* sysexit */
6875 printf_unfiltered (_("Process record does not support "
6876 "instruction sysexit.\n"));
6877 ir.addr -= 2;
6878 goto no_support;
6879 break;
6880
6881 case 0x0f05: /* syscall */
6882 {
6883 int ret;
6884 if (tdep->i386_syscall_record == NULL)
6885 {
6886 printf_unfiltered (_("Process record does not support "
6887 "instruction syscall.\n"));
6888 ir.addr -= 2;
6889 goto no_support;
6890 }
6891 ret = tdep->i386_syscall_record (ir.regcache);
6892 if (ret)
6893 return ret;
6894 }
6895 break;
6896
6897 case 0x0f07: /* sysret */
6898 printf_unfiltered (_("Process record does not support "
6899 "instruction sysret.\n"));
6900 ir.addr -= 2;
6901 goto no_support;
6902 break;
6903
6904 case 0x0fa2: /* cpuid */
6905 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6906 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6907 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6908 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6909 break;
6910
6911 case 0xf4: /* hlt */
6912 printf_unfiltered (_("Process record does not support "
6913 "instruction hlt.\n"));
6914 ir.addr -= 1;
6915 goto no_support;
6916 break;
6917
6918 case 0x0f00:
6919 if (i386_record_modrm (&ir))
6920 return -1;
6921 switch (ir.reg)
6922 {
6923 case 0: /* sldt */
6924 case 1: /* str */
6925 if (ir.mod == 3)
6926 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6927 else
6928 {
6929 ir.ot = OT_WORD;
6930 if (i386_record_lea_modrm (&ir))
6931 return -1;
6932 }
6933 break;
6934 case 2: /* lldt */
6935 case 3: /* ltr */
6936 break;
6937 case 4: /* verr */
6938 case 5: /* verw */
6939 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6940 break;
6941 default:
6942 ir.addr -= 3;
6943 opcode = opcode << 8 | ir.modrm;
6944 goto no_support;
6945 break;
6946 }
6947 break;
6948
6949 case 0x0f01:
6950 if (i386_record_modrm (&ir))
6951 return -1;
6952 switch (ir.reg)
6953 {
6954 case 0: /* sgdt */
6955 {
6956 uint64_t addr64;
6957
6958 if (ir.mod == 3)
6959 {
6960 ir.addr -= 3;
6961 opcode = opcode << 8 | ir.modrm;
6962 goto no_support;
6963 }
6964 if (ir.override >= 0)
6965 {
6966 if (record_full_memory_query)
6967 {
6968 int q;
6969
6970 target_terminal_ours ();
6971 q = yquery (_("\
6972 Process record ignores the memory change of instruction at address %s\n\
6973 because it can't get the value of the segment register.\n\
6974 Do you want to stop the program?"),
6975 paddress (gdbarch, ir.orig_addr));
6976 target_terminal_inferior ();
6977 if (q)
6978 return -1;
6979 }
6980 }
6981 else
6982 {
6983 if (i386_record_lea_modrm_addr (&ir, &addr64))
6984 return -1;
6985 if (record_full_arch_list_add_mem (addr64, 2))
6986 return -1;
6987 addr64 += 2;
6988 if (ir.regmap[X86_RECORD_R8_REGNUM])
6989 {
6990 if (record_full_arch_list_add_mem (addr64, 8))
6991 return -1;
6992 }
6993 else
6994 {
6995 if (record_full_arch_list_add_mem (addr64, 4))
6996 return -1;
6997 }
6998 }
6999 }
7000 break;
7001 case 1:
7002 if (ir.mod == 3)
7003 {
7004 switch (ir.rm)
7005 {
7006 case 0: /* monitor */
7007 break;
7008 case 1: /* mwait */
7009 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7010 break;
7011 default:
7012 ir.addr -= 3;
7013 opcode = opcode << 8 | ir.modrm;
7014 goto no_support;
7015 break;
7016 }
7017 }
7018 else
7019 {
7020 /* sidt */
7021 if (ir.override >= 0)
7022 {
7023 if (record_full_memory_query)
7024 {
7025 int q;
7026
7027 target_terminal_ours ();
7028 q = yquery (_("\
7029 Process record ignores the memory change of instruction at address %s\n\
7030 because it can't get the value of the segment register.\n\
7031 Do you want to stop the program?"),
7032 paddress (gdbarch, ir.orig_addr));
7033 target_terminal_inferior ();
7034 if (q)
7035 return -1;
7036 }
7037 }
7038 else
7039 {
7040 uint64_t addr64;
7041
7042 if (i386_record_lea_modrm_addr (&ir, &addr64))
7043 return -1;
7044 if (record_full_arch_list_add_mem (addr64, 2))
7045 return -1;
7046 addr64 += 2;
7047 if (ir.regmap[X86_RECORD_R8_REGNUM])
7048 {
7049 if (record_full_arch_list_add_mem (addr64, 8))
7050 return -1;
7051 }
7052 else
7053 {
7054 if (record_full_arch_list_add_mem (addr64, 4))
7055 return -1;
7056 }
7057 }
7058 }
7059 break;
7060 case 2: /* lgdt */
7061 if (ir.mod == 3)
7062 {
7063 /* xgetbv */
7064 if (ir.rm == 0)
7065 {
7066 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7067 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7068 break;
7069 }
7070 /* xsetbv */
7071 else if (ir.rm == 1)
7072 break;
7073 }
7074 case 3: /* lidt */
7075 if (ir.mod == 3)
7076 {
7077 ir.addr -= 3;
7078 opcode = opcode << 8 | ir.modrm;
7079 goto no_support;
7080 }
7081 break;
7082 case 4: /* smsw */
7083 if (ir.mod == 3)
7084 {
7085 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7086 return -1;
7087 }
7088 else
7089 {
7090 ir.ot = OT_WORD;
7091 if (i386_record_lea_modrm (&ir))
7092 return -1;
7093 }
7094 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7095 break;
7096 case 6: /* lmsw */
7097 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7098 break;
7099 case 7: /* invlpg */
7100 if (ir.mod == 3)
7101 {
7102 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7103 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7104 else
7105 {
7106 ir.addr -= 3;
7107 opcode = opcode << 8 | ir.modrm;
7108 goto no_support;
7109 }
7110 }
7111 else
7112 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7113 break;
7114 default:
7115 ir.addr -= 3;
7116 opcode = opcode << 8 | ir.modrm;
7117 goto no_support;
7118 break;
7119 }
7120 break;
7121
7122 case 0x0f08: /* invd */
7123 case 0x0f09: /* wbinvd */
7124 break;
7125
7126 case 0x63: /* arpl */
7127 if (i386_record_modrm (&ir))
7128 return -1;
7129 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7130 {
7131 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7132 ? (ir.reg | rex_r) : ir.rm);
7133 }
7134 else
7135 {
7136 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7137 if (i386_record_lea_modrm (&ir))
7138 return -1;
7139 }
7140 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7141 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7142 break;
7143
7144 case 0x0f02: /* lar */
7145 case 0x0f03: /* lsl */
7146 if (i386_record_modrm (&ir))
7147 return -1;
7148 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7149 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7150 break;
7151
7152 case 0x0f18:
7153 if (i386_record_modrm (&ir))
7154 return -1;
7155 if (ir.mod == 3 && ir.reg == 3)
7156 {
7157 ir.addr -= 3;
7158 opcode = opcode << 8 | ir.modrm;
7159 goto no_support;
7160 }
7161 break;
7162
7163 case 0x0f19:
7164 case 0x0f1a:
7165 case 0x0f1b:
7166 case 0x0f1c:
7167 case 0x0f1d:
7168 case 0x0f1e:
7169 case 0x0f1f:
7170 /* nop (multi byte) */
7171 break;
7172
7173 case 0x0f20: /* mov reg, crN */
7174 case 0x0f22: /* mov crN, reg */
7175 if (i386_record_modrm (&ir))
7176 return -1;
7177 if ((ir.modrm & 0xc0) != 0xc0)
7178 {
7179 ir.addr -= 3;
7180 opcode = opcode << 8 | ir.modrm;
7181 goto no_support;
7182 }
7183 switch (ir.reg)
7184 {
7185 case 0:
7186 case 2:
7187 case 3:
7188 case 4:
7189 case 8:
7190 if (opcode & 2)
7191 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7192 else
7193 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7194 break;
7195 default:
7196 ir.addr -= 3;
7197 opcode = opcode << 8 | ir.modrm;
7198 goto no_support;
7199 break;
7200 }
7201 break;
7202
7203 case 0x0f21: /* mov reg, drN */
7204 case 0x0f23: /* mov drN, reg */
7205 if (i386_record_modrm (&ir))
7206 return -1;
7207 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7208 || ir.reg == 5 || ir.reg >= 8)
7209 {
7210 ir.addr -= 3;
7211 opcode = opcode << 8 | ir.modrm;
7212 goto no_support;
7213 }
7214 if (opcode & 2)
7215 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7216 else
7217 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7218 break;
7219
7220 case 0x0f06: /* clts */
7221 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7222 break;
7223
7224 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7225
7226 case 0x0f0d: /* 3DNow! prefetch */
7227 break;
7228
7229 case 0x0f0e: /* 3DNow! femms */
7230 case 0x0f77: /* emms */
7231 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7232 goto no_support;
7233 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7234 break;
7235
7236 case 0x0f0f: /* 3DNow! data */
7237 if (i386_record_modrm (&ir))
7238 return -1;
7239 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7240 return -1;
7241 ir.addr++;
7242 switch (opcode8)
7243 {
7244 case 0x0c: /* 3DNow! pi2fw */
7245 case 0x0d: /* 3DNow! pi2fd */
7246 case 0x1c: /* 3DNow! pf2iw */
7247 case 0x1d: /* 3DNow! pf2id */
7248 case 0x8a: /* 3DNow! pfnacc */
7249 case 0x8e: /* 3DNow! pfpnacc */
7250 case 0x90: /* 3DNow! pfcmpge */
7251 case 0x94: /* 3DNow! pfmin */
7252 case 0x96: /* 3DNow! pfrcp */
7253 case 0x97: /* 3DNow! pfrsqrt */
7254 case 0x9a: /* 3DNow! pfsub */
7255 case 0x9e: /* 3DNow! pfadd */
7256 case 0xa0: /* 3DNow! pfcmpgt */
7257 case 0xa4: /* 3DNow! pfmax */
7258 case 0xa6: /* 3DNow! pfrcpit1 */
7259 case 0xa7: /* 3DNow! pfrsqit1 */
7260 case 0xaa: /* 3DNow! pfsubr */
7261 case 0xae: /* 3DNow! pfacc */
7262 case 0xb0: /* 3DNow! pfcmpeq */
7263 case 0xb4: /* 3DNow! pfmul */
7264 case 0xb6: /* 3DNow! pfrcpit2 */
7265 case 0xb7: /* 3DNow! pmulhrw */
7266 case 0xbb: /* 3DNow! pswapd */
7267 case 0xbf: /* 3DNow! pavgusb */
7268 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7269 goto no_support_3dnow_data;
7270 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7271 break;
7272
7273 default:
7274 no_support_3dnow_data:
7275 opcode = (opcode << 8) | opcode8;
7276 goto no_support;
7277 break;
7278 }
7279 break;
7280
7281 case 0x0faa: /* rsm */
7282 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7283 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7284 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7287 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7288 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7289 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7290 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7291 break;
7292
7293 case 0x0fae:
7294 if (i386_record_modrm (&ir))
7295 return -1;
7296 switch(ir.reg)
7297 {
7298 case 0: /* fxsave */
7299 {
7300 uint64_t tmpu64;
7301
7302 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7303 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7304 return -1;
7305 if (record_full_arch_list_add_mem (tmpu64, 512))
7306 return -1;
7307 }
7308 break;
7309
7310 case 1: /* fxrstor */
7311 {
7312 int i;
7313
7314 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7315
7316 for (i = I387_MM0_REGNUM (tdep);
7317 i386_mmx_regnum_p (gdbarch, i); i++)
7318 record_full_arch_list_add_reg (ir.regcache, i);
7319
7320 for (i = I387_XMM0_REGNUM (tdep);
7321 i386_xmm_regnum_p (gdbarch, i); i++)
7322 record_full_arch_list_add_reg (ir.regcache, i);
7323
7324 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7325 record_full_arch_list_add_reg (ir.regcache,
7326 I387_MXCSR_REGNUM(tdep));
7327
7328 for (i = I387_ST0_REGNUM (tdep);
7329 i386_fp_regnum_p (gdbarch, i); i++)
7330 record_full_arch_list_add_reg (ir.regcache, i);
7331
7332 for (i = I387_FCTRL_REGNUM (tdep);
7333 i386_fpc_regnum_p (gdbarch, i); i++)
7334 record_full_arch_list_add_reg (ir.regcache, i);
7335 }
7336 break;
7337
7338 case 2: /* ldmxcsr */
7339 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7340 goto no_support;
7341 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7342 break;
7343
7344 case 3: /* stmxcsr */
7345 ir.ot = OT_LONG;
7346 if (i386_record_lea_modrm (&ir))
7347 return -1;
7348 break;
7349
7350 case 5: /* lfence */
7351 case 6: /* mfence */
7352 case 7: /* sfence clflush */
7353 break;
7354
7355 default:
7356 opcode = (opcode << 8) | ir.modrm;
7357 goto no_support;
7358 break;
7359 }
7360 break;
7361
7362 case 0x0fc3: /* movnti */
7363 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7364 if (i386_record_modrm (&ir))
7365 return -1;
7366 if (ir.mod == 3)
7367 goto no_support;
7368 ir.reg |= rex_r;
7369 if (i386_record_lea_modrm (&ir))
7370 return -1;
7371 break;
7372
7373 /* Add prefix to opcode. */
7374 case 0x0f10:
7375 case 0x0f11:
7376 case 0x0f12:
7377 case 0x0f13:
7378 case 0x0f14:
7379 case 0x0f15:
7380 case 0x0f16:
7381 case 0x0f17:
7382 case 0x0f28:
7383 case 0x0f29:
7384 case 0x0f2a:
7385 case 0x0f2b:
7386 case 0x0f2c:
7387 case 0x0f2d:
7388 case 0x0f2e:
7389 case 0x0f2f:
7390 case 0x0f38:
7391 case 0x0f39:
7392 case 0x0f3a:
7393 case 0x0f50:
7394 case 0x0f51:
7395 case 0x0f52:
7396 case 0x0f53:
7397 case 0x0f54:
7398 case 0x0f55:
7399 case 0x0f56:
7400 case 0x0f57:
7401 case 0x0f58:
7402 case 0x0f59:
7403 case 0x0f5a:
7404 case 0x0f5b:
7405 case 0x0f5c:
7406 case 0x0f5d:
7407 case 0x0f5e:
7408 case 0x0f5f:
7409 case 0x0f60:
7410 case 0x0f61:
7411 case 0x0f62:
7412 case 0x0f63:
7413 case 0x0f64:
7414 case 0x0f65:
7415 case 0x0f66:
7416 case 0x0f67:
7417 case 0x0f68:
7418 case 0x0f69:
7419 case 0x0f6a:
7420 case 0x0f6b:
7421 case 0x0f6c:
7422 case 0x0f6d:
7423 case 0x0f6e:
7424 case 0x0f6f:
7425 case 0x0f70:
7426 case 0x0f71:
7427 case 0x0f72:
7428 case 0x0f73:
7429 case 0x0f74:
7430 case 0x0f75:
7431 case 0x0f76:
7432 case 0x0f7c:
7433 case 0x0f7d:
7434 case 0x0f7e:
7435 case 0x0f7f:
7436 case 0x0fb8:
7437 case 0x0fc2:
7438 case 0x0fc4:
7439 case 0x0fc5:
7440 case 0x0fc6:
7441 case 0x0fd0:
7442 case 0x0fd1:
7443 case 0x0fd2:
7444 case 0x0fd3:
7445 case 0x0fd4:
7446 case 0x0fd5:
7447 case 0x0fd6:
7448 case 0x0fd7:
7449 case 0x0fd8:
7450 case 0x0fd9:
7451 case 0x0fda:
7452 case 0x0fdb:
7453 case 0x0fdc:
7454 case 0x0fdd:
7455 case 0x0fde:
7456 case 0x0fdf:
7457 case 0x0fe0:
7458 case 0x0fe1:
7459 case 0x0fe2:
7460 case 0x0fe3:
7461 case 0x0fe4:
7462 case 0x0fe5:
7463 case 0x0fe6:
7464 case 0x0fe7:
7465 case 0x0fe8:
7466 case 0x0fe9:
7467 case 0x0fea:
7468 case 0x0feb:
7469 case 0x0fec:
7470 case 0x0fed:
7471 case 0x0fee:
7472 case 0x0fef:
7473 case 0x0ff0:
7474 case 0x0ff1:
7475 case 0x0ff2:
7476 case 0x0ff3:
7477 case 0x0ff4:
7478 case 0x0ff5:
7479 case 0x0ff6:
7480 case 0x0ff7:
7481 case 0x0ff8:
7482 case 0x0ff9:
7483 case 0x0ffa:
7484 case 0x0ffb:
7485 case 0x0ffc:
7486 case 0x0ffd:
7487 case 0x0ffe:
7488 /* Mask out PREFIX_ADDR. */
7489 switch ((prefixes & ~PREFIX_ADDR))
7490 {
7491 case PREFIX_REPNZ:
7492 opcode |= 0xf20000;
7493 break;
7494 case PREFIX_DATA:
7495 opcode |= 0x660000;
7496 break;
7497 case PREFIX_REPZ:
7498 opcode |= 0xf30000;
7499 break;
7500 }
7501 reswitch_prefix_add:
7502 switch (opcode)
7503 {
7504 case 0x0f38:
7505 case 0x660f38:
7506 case 0xf20f38:
7507 case 0x0f3a:
7508 case 0x660f3a:
7509 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7510 return -1;
7511 ir.addr++;
7512 opcode = (uint32_t) opcode8 | opcode << 8;
7513 goto reswitch_prefix_add;
7514 break;
7515
7516 case 0x0f10: /* movups */
7517 case 0x660f10: /* movupd */
7518 case 0xf30f10: /* movss */
7519 case 0xf20f10: /* movsd */
7520 case 0x0f12: /* movlps */
7521 case 0x660f12: /* movlpd */
7522 case 0xf30f12: /* movsldup */
7523 case 0xf20f12: /* movddup */
7524 case 0x0f14: /* unpcklps */
7525 case 0x660f14: /* unpcklpd */
7526 case 0x0f15: /* unpckhps */
7527 case 0x660f15: /* unpckhpd */
7528 case 0x0f16: /* movhps */
7529 case 0x660f16: /* movhpd */
7530 case 0xf30f16: /* movshdup */
7531 case 0x0f28: /* movaps */
7532 case 0x660f28: /* movapd */
7533 case 0x0f2a: /* cvtpi2ps */
7534 case 0x660f2a: /* cvtpi2pd */
7535 case 0xf30f2a: /* cvtsi2ss */
7536 case 0xf20f2a: /* cvtsi2sd */
7537 case 0x0f2c: /* cvttps2pi */
7538 case 0x660f2c: /* cvttpd2pi */
7539 case 0x0f2d: /* cvtps2pi */
7540 case 0x660f2d: /* cvtpd2pi */
7541 case 0x660f3800: /* pshufb */
7542 case 0x660f3801: /* phaddw */
7543 case 0x660f3802: /* phaddd */
7544 case 0x660f3803: /* phaddsw */
7545 case 0x660f3804: /* pmaddubsw */
7546 case 0x660f3805: /* phsubw */
7547 case 0x660f3806: /* phsubd */
7548 case 0x660f3807: /* phsubsw */
7549 case 0x660f3808: /* psignb */
7550 case 0x660f3809: /* psignw */
7551 case 0x660f380a: /* psignd */
7552 case 0x660f380b: /* pmulhrsw */
7553 case 0x660f3810: /* pblendvb */
7554 case 0x660f3814: /* blendvps */
7555 case 0x660f3815: /* blendvpd */
7556 case 0x660f381c: /* pabsb */
7557 case 0x660f381d: /* pabsw */
7558 case 0x660f381e: /* pabsd */
7559 case 0x660f3820: /* pmovsxbw */
7560 case 0x660f3821: /* pmovsxbd */
7561 case 0x660f3822: /* pmovsxbq */
7562 case 0x660f3823: /* pmovsxwd */
7563 case 0x660f3824: /* pmovsxwq */
7564 case 0x660f3825: /* pmovsxdq */
7565 case 0x660f3828: /* pmuldq */
7566 case 0x660f3829: /* pcmpeqq */
7567 case 0x660f382a: /* movntdqa */
7568 case 0x660f3a08: /* roundps */
7569 case 0x660f3a09: /* roundpd */
7570 case 0x660f3a0a: /* roundss */
7571 case 0x660f3a0b: /* roundsd */
7572 case 0x660f3a0c: /* blendps */
7573 case 0x660f3a0d: /* blendpd */
7574 case 0x660f3a0e: /* pblendw */
7575 case 0x660f3a0f: /* palignr */
7576 case 0x660f3a20: /* pinsrb */
7577 case 0x660f3a21: /* insertps */
7578 case 0x660f3a22: /* pinsrd pinsrq */
7579 case 0x660f3a40: /* dpps */
7580 case 0x660f3a41: /* dppd */
7581 case 0x660f3a42: /* mpsadbw */
7582 case 0x660f3a60: /* pcmpestrm */
7583 case 0x660f3a61: /* pcmpestri */
7584 case 0x660f3a62: /* pcmpistrm */
7585 case 0x660f3a63: /* pcmpistri */
7586 case 0x0f51: /* sqrtps */
7587 case 0x660f51: /* sqrtpd */
7588 case 0xf20f51: /* sqrtsd */
7589 case 0xf30f51: /* sqrtss */
7590 case 0x0f52: /* rsqrtps */
7591 case 0xf30f52: /* rsqrtss */
7592 case 0x0f53: /* rcpps */
7593 case 0xf30f53: /* rcpss */
7594 case 0x0f54: /* andps */
7595 case 0x660f54: /* andpd */
7596 case 0x0f55: /* andnps */
7597 case 0x660f55: /* andnpd */
7598 case 0x0f56: /* orps */
7599 case 0x660f56: /* orpd */
7600 case 0x0f57: /* xorps */
7601 case 0x660f57: /* xorpd */
7602 case 0x0f58: /* addps */
7603 case 0x660f58: /* addpd */
7604 case 0xf20f58: /* addsd */
7605 case 0xf30f58: /* addss */
7606 case 0x0f59: /* mulps */
7607 case 0x660f59: /* mulpd */
7608 case 0xf20f59: /* mulsd */
7609 case 0xf30f59: /* mulss */
7610 case 0x0f5a: /* cvtps2pd */
7611 case 0x660f5a: /* cvtpd2ps */
7612 case 0xf20f5a: /* cvtsd2ss */
7613 case 0xf30f5a: /* cvtss2sd */
7614 case 0x0f5b: /* cvtdq2ps */
7615 case 0x660f5b: /* cvtps2dq */
7616 case 0xf30f5b: /* cvttps2dq */
7617 case 0x0f5c: /* subps */
7618 case 0x660f5c: /* subpd */
7619 case 0xf20f5c: /* subsd */
7620 case 0xf30f5c: /* subss */
7621 case 0x0f5d: /* minps */
7622 case 0x660f5d: /* minpd */
7623 case 0xf20f5d: /* minsd */
7624 case 0xf30f5d: /* minss */
7625 case 0x0f5e: /* divps */
7626 case 0x660f5e: /* divpd */
7627 case 0xf20f5e: /* divsd */
7628 case 0xf30f5e: /* divss */
7629 case 0x0f5f: /* maxps */
7630 case 0x660f5f: /* maxpd */
7631 case 0xf20f5f: /* maxsd */
7632 case 0xf30f5f: /* maxss */
7633 case 0x660f60: /* punpcklbw */
7634 case 0x660f61: /* punpcklwd */
7635 case 0x660f62: /* punpckldq */
7636 case 0x660f63: /* packsswb */
7637 case 0x660f64: /* pcmpgtb */
7638 case 0x660f65: /* pcmpgtw */
7639 case 0x660f66: /* pcmpgtd */
7640 case 0x660f67: /* packuswb */
7641 case 0x660f68: /* punpckhbw */
7642 case 0x660f69: /* punpckhwd */
7643 case 0x660f6a: /* punpckhdq */
7644 case 0x660f6b: /* packssdw */
7645 case 0x660f6c: /* punpcklqdq */
7646 case 0x660f6d: /* punpckhqdq */
7647 case 0x660f6e: /* movd */
7648 case 0x660f6f: /* movdqa */
7649 case 0xf30f6f: /* movdqu */
7650 case 0x660f70: /* pshufd */
7651 case 0xf20f70: /* pshuflw */
7652 case 0xf30f70: /* pshufhw */
7653 case 0x660f74: /* pcmpeqb */
7654 case 0x660f75: /* pcmpeqw */
7655 case 0x660f76: /* pcmpeqd */
7656 case 0x660f7c: /* haddpd */
7657 case 0xf20f7c: /* haddps */
7658 case 0x660f7d: /* hsubpd */
7659 case 0xf20f7d: /* hsubps */
7660 case 0xf30f7e: /* movq */
7661 case 0x0fc2: /* cmpps */
7662 case 0x660fc2: /* cmppd */
7663 case 0xf20fc2: /* cmpsd */
7664 case 0xf30fc2: /* cmpss */
7665 case 0x660fc4: /* pinsrw */
7666 case 0x0fc6: /* shufps */
7667 case 0x660fc6: /* shufpd */
7668 case 0x660fd0: /* addsubpd */
7669 case 0xf20fd0: /* addsubps */
7670 case 0x660fd1: /* psrlw */
7671 case 0x660fd2: /* psrld */
7672 case 0x660fd3: /* psrlq */
7673 case 0x660fd4: /* paddq */
7674 case 0x660fd5: /* pmullw */
7675 case 0xf30fd6: /* movq2dq */
7676 case 0x660fd8: /* psubusb */
7677 case 0x660fd9: /* psubusw */
7678 case 0x660fda: /* pminub */
7679 case 0x660fdb: /* pand */
7680 case 0x660fdc: /* paddusb */
7681 case 0x660fdd: /* paddusw */
7682 case 0x660fde: /* pmaxub */
7683 case 0x660fdf: /* pandn */
7684 case 0x660fe0: /* pavgb */
7685 case 0x660fe1: /* psraw */
7686 case 0x660fe2: /* psrad */
7687 case 0x660fe3: /* pavgw */
7688 case 0x660fe4: /* pmulhuw */
7689 case 0x660fe5: /* pmulhw */
7690 case 0x660fe6: /* cvttpd2dq */
7691 case 0xf20fe6: /* cvtpd2dq */
7692 case 0xf30fe6: /* cvtdq2pd */
7693 case 0x660fe8: /* psubsb */
7694 case 0x660fe9: /* psubsw */
7695 case 0x660fea: /* pminsw */
7696 case 0x660feb: /* por */
7697 case 0x660fec: /* paddsb */
7698 case 0x660fed: /* paddsw */
7699 case 0x660fee: /* pmaxsw */
7700 case 0x660fef: /* pxor */
7701 case 0xf20ff0: /* lddqu */
7702 case 0x660ff1: /* psllw */
7703 case 0x660ff2: /* pslld */
7704 case 0x660ff3: /* psllq */
7705 case 0x660ff4: /* pmuludq */
7706 case 0x660ff5: /* pmaddwd */
7707 case 0x660ff6: /* psadbw */
7708 case 0x660ff8: /* psubb */
7709 case 0x660ff9: /* psubw */
7710 case 0x660ffa: /* psubd */
7711 case 0x660ffb: /* psubq */
7712 case 0x660ffc: /* paddb */
7713 case 0x660ffd: /* paddw */
7714 case 0x660ffe: /* paddd */
7715 if (i386_record_modrm (&ir))
7716 return -1;
7717 ir.reg |= rex_r;
7718 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7719 goto no_support;
7720 record_full_arch_list_add_reg (ir.regcache,
7721 I387_XMM0_REGNUM (tdep) + ir.reg);
7722 if ((opcode & 0xfffffffc) == 0x660f3a60)
7723 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7724 break;
7725
7726 case 0x0f11: /* movups */
7727 case 0x660f11: /* movupd */
7728 case 0xf30f11: /* movss */
7729 case 0xf20f11: /* movsd */
7730 case 0x0f13: /* movlps */
7731 case 0x660f13: /* movlpd */
7732 case 0x0f17: /* movhps */
7733 case 0x660f17: /* movhpd */
7734 case 0x0f29: /* movaps */
7735 case 0x660f29: /* movapd */
7736 case 0x660f3a14: /* pextrb */
7737 case 0x660f3a15: /* pextrw */
7738 case 0x660f3a16: /* pextrd pextrq */
7739 case 0x660f3a17: /* extractps */
7740 case 0x660f7f: /* movdqa */
7741 case 0xf30f7f: /* movdqu */
7742 if (i386_record_modrm (&ir))
7743 return -1;
7744 if (ir.mod == 3)
7745 {
7746 if (opcode == 0x0f13 || opcode == 0x660f13
7747 || opcode == 0x0f17 || opcode == 0x660f17)
7748 goto no_support;
7749 ir.rm |= ir.rex_b;
7750 if (!i386_xmm_regnum_p (gdbarch,
7751 I387_XMM0_REGNUM (tdep) + ir.rm))
7752 goto no_support;
7753 record_full_arch_list_add_reg (ir.regcache,
7754 I387_XMM0_REGNUM (tdep) + ir.rm);
7755 }
7756 else
7757 {
7758 switch (opcode)
7759 {
7760 case 0x660f3a14:
7761 ir.ot = OT_BYTE;
7762 break;
7763 case 0x660f3a15:
7764 ir.ot = OT_WORD;
7765 break;
7766 case 0x660f3a16:
7767 ir.ot = OT_LONG;
7768 break;
7769 case 0x660f3a17:
7770 ir.ot = OT_QUAD;
7771 break;
7772 default:
7773 ir.ot = OT_DQUAD;
7774 break;
7775 }
7776 if (i386_record_lea_modrm (&ir))
7777 return -1;
7778 }
7779 break;
7780
7781 case 0x0f2b: /* movntps */
7782 case 0x660f2b: /* movntpd */
7783 case 0x0fe7: /* movntq */
7784 case 0x660fe7: /* movntdq */
7785 if (ir.mod == 3)
7786 goto no_support;
7787 if (opcode == 0x0fe7)
7788 ir.ot = OT_QUAD;
7789 else
7790 ir.ot = OT_DQUAD;
7791 if (i386_record_lea_modrm (&ir))
7792 return -1;
7793 break;
7794
7795 case 0xf30f2c: /* cvttss2si */
7796 case 0xf20f2c: /* cvttsd2si */
7797 case 0xf30f2d: /* cvtss2si */
7798 case 0xf20f2d: /* cvtsd2si */
7799 case 0xf20f38f0: /* crc32 */
7800 case 0xf20f38f1: /* crc32 */
7801 case 0x0f50: /* movmskps */
7802 case 0x660f50: /* movmskpd */
7803 case 0x0fc5: /* pextrw */
7804 case 0x660fc5: /* pextrw */
7805 case 0x0fd7: /* pmovmskb */
7806 case 0x660fd7: /* pmovmskb */
7807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7808 break;
7809
7810 case 0x0f3800: /* pshufb */
7811 case 0x0f3801: /* phaddw */
7812 case 0x0f3802: /* phaddd */
7813 case 0x0f3803: /* phaddsw */
7814 case 0x0f3804: /* pmaddubsw */
7815 case 0x0f3805: /* phsubw */
7816 case 0x0f3806: /* phsubd */
7817 case 0x0f3807: /* phsubsw */
7818 case 0x0f3808: /* psignb */
7819 case 0x0f3809: /* psignw */
7820 case 0x0f380a: /* psignd */
7821 case 0x0f380b: /* pmulhrsw */
7822 case 0x0f381c: /* pabsb */
7823 case 0x0f381d: /* pabsw */
7824 case 0x0f381e: /* pabsd */
7825 case 0x0f382b: /* packusdw */
7826 case 0x0f3830: /* pmovzxbw */
7827 case 0x0f3831: /* pmovzxbd */
7828 case 0x0f3832: /* pmovzxbq */
7829 case 0x0f3833: /* pmovzxwd */
7830 case 0x0f3834: /* pmovzxwq */
7831 case 0x0f3835: /* pmovzxdq */
7832 case 0x0f3837: /* pcmpgtq */
7833 case 0x0f3838: /* pminsb */
7834 case 0x0f3839: /* pminsd */
7835 case 0x0f383a: /* pminuw */
7836 case 0x0f383b: /* pminud */
7837 case 0x0f383c: /* pmaxsb */
7838 case 0x0f383d: /* pmaxsd */
7839 case 0x0f383e: /* pmaxuw */
7840 case 0x0f383f: /* pmaxud */
7841 case 0x0f3840: /* pmulld */
7842 case 0x0f3841: /* phminposuw */
7843 case 0x0f3a0f: /* palignr */
7844 case 0x0f60: /* punpcklbw */
7845 case 0x0f61: /* punpcklwd */
7846 case 0x0f62: /* punpckldq */
7847 case 0x0f63: /* packsswb */
7848 case 0x0f64: /* pcmpgtb */
7849 case 0x0f65: /* pcmpgtw */
7850 case 0x0f66: /* pcmpgtd */
7851 case 0x0f67: /* packuswb */
7852 case 0x0f68: /* punpckhbw */
7853 case 0x0f69: /* punpckhwd */
7854 case 0x0f6a: /* punpckhdq */
7855 case 0x0f6b: /* packssdw */
7856 case 0x0f6e: /* movd */
7857 case 0x0f6f: /* movq */
7858 case 0x0f70: /* pshufw */
7859 case 0x0f74: /* pcmpeqb */
7860 case 0x0f75: /* pcmpeqw */
7861 case 0x0f76: /* pcmpeqd */
7862 case 0x0fc4: /* pinsrw */
7863 case 0x0fd1: /* psrlw */
7864 case 0x0fd2: /* psrld */
7865 case 0x0fd3: /* psrlq */
7866 case 0x0fd4: /* paddq */
7867 case 0x0fd5: /* pmullw */
7868 case 0xf20fd6: /* movdq2q */
7869 case 0x0fd8: /* psubusb */
7870 case 0x0fd9: /* psubusw */
7871 case 0x0fda: /* pminub */
7872 case 0x0fdb: /* pand */
7873 case 0x0fdc: /* paddusb */
7874 case 0x0fdd: /* paddusw */
7875 case 0x0fde: /* pmaxub */
7876 case 0x0fdf: /* pandn */
7877 case 0x0fe0: /* pavgb */
7878 case 0x0fe1: /* psraw */
7879 case 0x0fe2: /* psrad */
7880 case 0x0fe3: /* pavgw */
7881 case 0x0fe4: /* pmulhuw */
7882 case 0x0fe5: /* pmulhw */
7883 case 0x0fe8: /* psubsb */
7884 case 0x0fe9: /* psubsw */
7885 case 0x0fea: /* pminsw */
7886 case 0x0feb: /* por */
7887 case 0x0fec: /* paddsb */
7888 case 0x0fed: /* paddsw */
7889 case 0x0fee: /* pmaxsw */
7890 case 0x0fef: /* pxor */
7891 case 0x0ff1: /* psllw */
7892 case 0x0ff2: /* pslld */
7893 case 0x0ff3: /* psllq */
7894 case 0x0ff4: /* pmuludq */
7895 case 0x0ff5: /* pmaddwd */
7896 case 0x0ff6: /* psadbw */
7897 case 0x0ff8: /* psubb */
7898 case 0x0ff9: /* psubw */
7899 case 0x0ffa: /* psubd */
7900 case 0x0ffb: /* psubq */
7901 case 0x0ffc: /* paddb */
7902 case 0x0ffd: /* paddw */
7903 case 0x0ffe: /* paddd */
7904 if (i386_record_modrm (&ir))
7905 return -1;
7906 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7907 goto no_support;
7908 record_full_arch_list_add_reg (ir.regcache,
7909 I387_MM0_REGNUM (tdep) + ir.reg);
7910 break;
7911
7912 case 0x0f71: /* psllw */
7913 case 0x0f72: /* pslld */
7914 case 0x0f73: /* psllq */
7915 if (i386_record_modrm (&ir))
7916 return -1;
7917 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7918 goto no_support;
7919 record_full_arch_list_add_reg (ir.regcache,
7920 I387_MM0_REGNUM (tdep) + ir.rm);
7921 break;
7922
7923 case 0x660f71: /* psllw */
7924 case 0x660f72: /* pslld */
7925 case 0x660f73: /* psllq */
7926 if (i386_record_modrm (&ir))
7927 return -1;
7928 ir.rm |= ir.rex_b;
7929 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7930 goto no_support;
7931 record_full_arch_list_add_reg (ir.regcache,
7932 I387_XMM0_REGNUM (tdep) + ir.rm);
7933 break;
7934
7935 case 0x0f7e: /* movd */
7936 case 0x660f7e: /* movd */
7937 if (i386_record_modrm (&ir))
7938 return -1;
7939 if (ir.mod == 3)
7940 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7941 else
7942 {
7943 if (ir.dflag == 2)
7944 ir.ot = OT_QUAD;
7945 else
7946 ir.ot = OT_LONG;
7947 if (i386_record_lea_modrm (&ir))
7948 return -1;
7949 }
7950 break;
7951
7952 case 0x0f7f: /* movq */
7953 if (i386_record_modrm (&ir))
7954 return -1;
7955 if (ir.mod == 3)
7956 {
7957 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7958 goto no_support;
7959 record_full_arch_list_add_reg (ir.regcache,
7960 I387_MM0_REGNUM (tdep) + ir.rm);
7961 }
7962 else
7963 {
7964 ir.ot = OT_QUAD;
7965 if (i386_record_lea_modrm (&ir))
7966 return -1;
7967 }
7968 break;
7969
7970 case 0xf30fb8: /* popcnt */
7971 if (i386_record_modrm (&ir))
7972 return -1;
7973 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7974 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7975 break;
7976
7977 case 0x660fd6: /* movq */
7978 if (i386_record_modrm (&ir))
7979 return -1;
7980 if (ir.mod == 3)
7981 {
7982 ir.rm |= ir.rex_b;
7983 if (!i386_xmm_regnum_p (gdbarch,
7984 I387_XMM0_REGNUM (tdep) + ir.rm))
7985 goto no_support;
7986 record_full_arch_list_add_reg (ir.regcache,
7987 I387_XMM0_REGNUM (tdep) + ir.rm);
7988 }
7989 else
7990 {
7991 ir.ot = OT_QUAD;
7992 if (i386_record_lea_modrm (&ir))
7993 return -1;
7994 }
7995 break;
7996
7997 case 0x660f3817: /* ptest */
7998 case 0x0f2e: /* ucomiss */
7999 case 0x660f2e: /* ucomisd */
8000 case 0x0f2f: /* comiss */
8001 case 0x660f2f: /* comisd */
8002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8003 break;
8004
8005 case 0x0ff7: /* maskmovq */
8006 regcache_raw_read_unsigned (ir.regcache,
8007 ir.regmap[X86_RECORD_REDI_REGNUM],
8008 &addr);
8009 if (record_full_arch_list_add_mem (addr, 64))
8010 return -1;
8011 break;
8012
8013 case 0x660ff7: /* maskmovdqu */
8014 regcache_raw_read_unsigned (ir.regcache,
8015 ir.regmap[X86_RECORD_REDI_REGNUM],
8016 &addr);
8017 if (record_full_arch_list_add_mem (addr, 128))
8018 return -1;
8019 break;
8020
8021 default:
8022 goto no_support;
8023 break;
8024 }
8025 break;
8026
8027 default:
8028 goto no_support;
8029 break;
8030 }
8031
8032 /* In the future, maybe still need to deal with need_dasm. */
8033 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8034 if (record_full_arch_list_add_end ())
8035 return -1;
8036
8037 return 0;
8038
8039 no_support:
8040 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8041 "at address %s.\n"),
8042 (unsigned int) (opcode),
8043 paddress (gdbarch, ir.orig_addr));
8044 return -1;
8045 }
8046
8047 static const int i386_record_regmap[] =
8048 {
8049 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8050 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8051 0, 0, 0, 0, 0, 0, 0, 0,
8052 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8053 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8054 };
8055
8056 /* Check that the given address appears suitable for a fast
8057 tracepoint, which on x86-64 means that we need an instruction of at
8058 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8059 jump and not have to worry about program jumps to an address in the
8060 middle of the tracepoint jump. On x86, it may be possible to use
8061 4-byte jumps with a 2-byte offset to a trampoline located in the
8062 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8063 of instruction to replace, and 0 if not, plus an explanatory
8064 string. */
8065
8066 static int
8067 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
8068 CORE_ADDR addr, int *isize, char **msg)
8069 {
8070 int len, jumplen;
8071 static struct ui_file *gdb_null = NULL;
8072
8073 /* Ask the target for the minimum instruction length supported. */
8074 jumplen = target_get_min_fast_tracepoint_insn_len ();
8075
8076 if (jumplen < 0)
8077 {
8078 /* If the target does not support the get_min_fast_tracepoint_insn_len
8079 operation, assume that fast tracepoints will always be implemented
8080 using 4-byte relative jumps on both x86 and x86-64. */
8081 jumplen = 5;
8082 }
8083 else if (jumplen == 0)
8084 {
8085 /* If the target does support get_min_fast_tracepoint_insn_len but
8086 returns zero, then the IPA has not loaded yet. In this case,
8087 we optimistically assume that truncated 2-byte relative jumps
8088 will be available on x86, and compensate later if this assumption
8089 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8090 jumps will always be used. */
8091 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8092 }
8093
8094 /* Dummy file descriptor for the disassembler. */
8095 if (!gdb_null)
8096 gdb_null = ui_file_new ();
8097
8098 /* Check for fit. */
8099 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
8100 if (isize)
8101 *isize = len;
8102
8103 if (len < jumplen)
8104 {
8105 /* Return a bit of target-specific detail to add to the caller's
8106 generic failure message. */
8107 if (msg)
8108 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8109 "need at least %d bytes for the jump"),
8110 len, jumplen);
8111 return 0;
8112 }
8113 else
8114 {
8115 if (msg)
8116 *msg = NULL;
8117 return 1;
8118 }
8119 }
8120
8121 static int
8122 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8123 struct tdesc_arch_data *tdesc_data)
8124 {
8125 const struct target_desc *tdesc = tdep->tdesc;
8126 const struct tdesc_feature *feature_core;
8127
8128 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8129 *feature_avx512;
8130 int i, num_regs, valid_p;
8131
8132 if (! tdesc_has_registers (tdesc))
8133 return 0;
8134
8135 /* Get core registers. */
8136 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8137 if (feature_core == NULL)
8138 return 0;
8139
8140 /* Get SSE registers. */
8141 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8142
8143 /* Try AVX registers. */
8144 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8145
8146 /* Try MPX registers. */
8147 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8148
8149 /* Try AVX512 registers. */
8150 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8151
8152 valid_p = 1;
8153
8154 /* The XCR0 bits. */
8155 if (feature_avx512)
8156 {
8157 /* AVX512 register description requires AVX register description. */
8158 if (!feature_avx)
8159 return 0;
8160
8161 tdep->xcr0 = I386_XSTATE_MPX_AVX512_MASK;
8162
8163 /* It may have been set by OSABI initialization function. */
8164 if (tdep->k0_regnum < 0)
8165 {
8166 tdep->k_register_names = i386_k_names;
8167 tdep->k0_regnum = I386_K0_REGNUM;
8168 }
8169
8170 for (i = 0; i < I387_NUM_K_REGS; i++)
8171 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8172 tdep->k0_regnum + i,
8173 i386_k_names[i]);
8174
8175 if (tdep->num_zmm_regs == 0)
8176 {
8177 tdep->zmmh_register_names = i386_zmmh_names;
8178 tdep->num_zmm_regs = 8;
8179 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8180 }
8181
8182 for (i = 0; i < tdep->num_zmm_regs; i++)
8183 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8184 tdep->zmm0h_regnum + i,
8185 tdep->zmmh_register_names[i]);
8186
8187 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8188 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8189 tdep->xmm16_regnum + i,
8190 tdep->xmm_avx512_register_names[i]);
8191
8192 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8193 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8194 tdep->ymm16h_regnum + i,
8195 tdep->ymm16h_register_names[i]);
8196 }
8197 if (feature_avx)
8198 {
8199 /* AVX register description requires SSE register description. */
8200 if (!feature_sse)
8201 return 0;
8202
8203 if (!feature_avx512)
8204 tdep->xcr0 = I386_XSTATE_AVX_MASK;
8205
8206 /* It may have been set by OSABI initialization function. */
8207 if (tdep->num_ymm_regs == 0)
8208 {
8209 tdep->ymmh_register_names = i386_ymmh_names;
8210 tdep->num_ymm_regs = 8;
8211 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8212 }
8213
8214 for (i = 0; i < tdep->num_ymm_regs; i++)
8215 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8216 tdep->ymm0h_regnum + i,
8217 tdep->ymmh_register_names[i]);
8218 }
8219 else if (feature_sse)
8220 tdep->xcr0 = I386_XSTATE_SSE_MASK;
8221 else
8222 {
8223 tdep->xcr0 = I386_XSTATE_X87_MASK;
8224 tdep->num_xmm_regs = 0;
8225 }
8226
8227 num_regs = tdep->num_core_regs;
8228 for (i = 0; i < num_regs; i++)
8229 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8230 tdep->register_names[i]);
8231
8232 if (feature_sse)
8233 {
8234 /* Need to include %mxcsr, so add one. */
8235 num_regs += tdep->num_xmm_regs + 1;
8236 for (; i < num_regs; i++)
8237 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8238 tdep->register_names[i]);
8239 }
8240
8241 if (feature_mpx)
8242 {
8243 tdep->xcr0 |= I386_XSTATE_MPX_MASK;
8244
8245 if (tdep->bnd0r_regnum < 0)
8246 {
8247 tdep->mpx_register_names = i386_mpx_names;
8248 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8249 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8250 }
8251
8252 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8253 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8254 I387_BND0R_REGNUM (tdep) + i,
8255 tdep->mpx_register_names[i]);
8256 }
8257
8258 return valid_p;
8259 }
8260
8261 \f
8262 static struct gdbarch *
8263 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8264 {
8265 struct gdbarch_tdep *tdep;
8266 struct gdbarch *gdbarch;
8267 struct tdesc_arch_data *tdesc_data;
8268 const struct target_desc *tdesc;
8269 int mm0_regnum;
8270 int ymm0_regnum;
8271 int bnd0_regnum;
8272 int num_bnd_cooked;
8273 int k0_regnum;
8274 int zmm0_regnum;
8275
8276 /* If there is already a candidate, use it. */
8277 arches = gdbarch_list_lookup_by_info (arches, &info);
8278 if (arches != NULL)
8279 return arches->gdbarch;
8280
8281 /* Allocate space for the new architecture. */
8282 tdep = XCNEW (struct gdbarch_tdep);
8283 gdbarch = gdbarch_alloc (&info, tdep);
8284
8285 /* General-purpose registers. */
8286 tdep->gregset = NULL;
8287 tdep->gregset_reg_offset = NULL;
8288 tdep->gregset_num_regs = I386_NUM_GREGS;
8289 tdep->sizeof_gregset = 0;
8290
8291 /* Floating-point registers. */
8292 tdep->fpregset = NULL;
8293 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8294
8295 tdep->xstateregset = NULL;
8296
8297 /* The default settings include the FPU registers, the MMX registers
8298 and the SSE registers. This can be overridden for a specific ABI
8299 by adjusting the members `st0_regnum', `mm0_regnum' and
8300 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8301 will show up in the output of "info all-registers". */
8302
8303 tdep->st0_regnum = I386_ST0_REGNUM;
8304
8305 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8306 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8307
8308 tdep->jb_pc_offset = -1;
8309 tdep->struct_return = pcc_struct_return;
8310 tdep->sigtramp_start = 0;
8311 tdep->sigtramp_end = 0;
8312 tdep->sigtramp_p = i386_sigtramp_p;
8313 tdep->sigcontext_addr = NULL;
8314 tdep->sc_reg_offset = NULL;
8315 tdep->sc_pc_offset = -1;
8316 tdep->sc_sp_offset = -1;
8317
8318 tdep->xsave_xcr0_offset = -1;
8319
8320 tdep->record_regmap = i386_record_regmap;
8321
8322 set_gdbarch_long_long_align_bit (gdbarch, 32);
8323
8324 /* The format used for `long double' on almost all i386 targets is
8325 the i387 extended floating-point format. In fact, of all targets
8326 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8327 on having a `long double' that's not `long' at all. */
8328 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8329
8330 /* Although the i387 extended floating-point has only 80 significant
8331 bits, a `long double' actually takes up 96, probably to enforce
8332 alignment. */
8333 set_gdbarch_long_double_bit (gdbarch, 96);
8334
8335 /* Register numbers of various important registers. */
8336 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8337 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8338 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8339 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8340
8341 /* NOTE: kettenis/20040418: GCC does have two possible register
8342 numbering schemes on the i386: dbx and SVR4. These schemes
8343 differ in how they number %ebp, %esp, %eflags, and the
8344 floating-point registers, and are implemented by the arrays
8345 dbx_register_map[] and svr4_dbx_register_map in
8346 gcc/config/i386.c. GCC also defines a third numbering scheme in
8347 gcc/config/i386.c, which it designates as the "default" register
8348 map used in 64bit mode. This last register numbering scheme is
8349 implemented in dbx64_register_map, and is used for AMD64; see
8350 amd64-tdep.c.
8351
8352 Currently, each GCC i386 target always uses the same register
8353 numbering scheme across all its supported debugging formats
8354 i.e. SDB (COFF), stabs and DWARF 2. This is because
8355 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8356 DBX_REGISTER_NUMBER macro which is defined by each target's
8357 respective config header in a manner independent of the requested
8358 output debugging format.
8359
8360 This does not match the arrangement below, which presumes that
8361 the SDB and stabs numbering schemes differ from the DWARF and
8362 DWARF 2 ones. The reason for this arrangement is that it is
8363 likely to get the numbering scheme for the target's
8364 default/native debug format right. For targets where GCC is the
8365 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8366 targets where the native toolchain uses a different numbering
8367 scheme for a particular debug format (stabs-in-ELF on Solaris)
8368 the defaults below will have to be overridden, like
8369 i386_elf_init_abi() does. */
8370
8371 /* Use the dbx register numbering scheme for stabs and COFF. */
8372 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8373 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8374
8375 /* Use the SVR4 register numbering scheme for DWARF 2. */
8376 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8377
8378 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8379 be in use on any of the supported i386 targets. */
8380
8381 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8382
8383 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8384
8385 /* Call dummy code. */
8386 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8387 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8388 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8389 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8390
8391 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8392 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8393 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8394
8395 set_gdbarch_return_value (gdbarch, i386_return_value);
8396
8397 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8398
8399 /* Stack grows downward. */
8400 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8401
8402 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8403 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8404 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8405
8406 set_gdbarch_frame_args_skip (gdbarch, 8);
8407
8408 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8409
8410 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8411
8412 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8413
8414 /* Add the i386 register groups. */
8415 i386_add_reggroups (gdbarch);
8416 tdep->register_reggroup_p = i386_register_reggroup_p;
8417
8418 /* Helper for function argument information. */
8419 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8420
8421 /* Hook the function epilogue frame unwinder. This unwinder is
8422 appended to the list first, so that it supercedes the DWARF
8423 unwinder in function epilogues (where the DWARF unwinder
8424 currently fails). */
8425 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8426
8427 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8428 to the list before the prologue-based unwinders, so that DWARF
8429 CFI info will be used if it is available. */
8430 dwarf2_append_unwinders (gdbarch);
8431
8432 frame_base_set_default (gdbarch, &i386_frame_base);
8433
8434 /* Pseudo registers may be changed by amd64_init_abi. */
8435 set_gdbarch_pseudo_register_read_value (gdbarch,
8436 i386_pseudo_register_read_value);
8437 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8438
8439 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8440 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8441
8442 /* Override the normal target description method to make the AVX
8443 upper halves anonymous. */
8444 set_gdbarch_register_name (gdbarch, i386_register_name);
8445
8446 /* Even though the default ABI only includes general-purpose registers,
8447 floating-point registers and the SSE registers, we have to leave a
8448 gap for the upper AVX, MPX and AVX512 registers. */
8449 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
8450
8451 /* Get the x86 target description from INFO. */
8452 tdesc = info.target_desc;
8453 if (! tdesc_has_registers (tdesc))
8454 tdesc = tdesc_i386;
8455 tdep->tdesc = tdesc;
8456
8457 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8458 tdep->register_names = i386_register_names;
8459
8460 /* No upper YMM registers. */
8461 tdep->ymmh_register_names = NULL;
8462 tdep->ymm0h_regnum = -1;
8463
8464 /* No upper ZMM registers. */
8465 tdep->zmmh_register_names = NULL;
8466 tdep->zmm0h_regnum = -1;
8467
8468 /* No high XMM registers. */
8469 tdep->xmm_avx512_register_names = NULL;
8470 tdep->xmm16_regnum = -1;
8471
8472 /* No upper YMM16-31 registers. */
8473 tdep->ymm16h_register_names = NULL;
8474 tdep->ymm16h_regnum = -1;
8475
8476 tdep->num_byte_regs = 8;
8477 tdep->num_word_regs = 8;
8478 tdep->num_dword_regs = 0;
8479 tdep->num_mmx_regs = 8;
8480 tdep->num_ymm_regs = 0;
8481
8482 /* No MPX registers. */
8483 tdep->bnd0r_regnum = -1;
8484 tdep->bndcfgu_regnum = -1;
8485
8486 /* No AVX512 registers. */
8487 tdep->k0_regnum = -1;
8488 tdep->num_zmm_regs = 0;
8489 tdep->num_ymm_avx512_regs = 0;
8490 tdep->num_xmm_avx512_regs = 0;
8491
8492 tdesc_data = tdesc_data_alloc ();
8493
8494 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8495
8496 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8497
8498 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8499 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8500 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8501
8502 /* Hook in ABI-specific overrides, if they have been registered. */
8503 info.tdep_info = (void *) tdesc_data;
8504 gdbarch_init_osabi (info, gdbarch);
8505
8506 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8507 {
8508 tdesc_data_cleanup (tdesc_data);
8509 xfree (tdep);
8510 gdbarch_free (gdbarch);
8511 return NULL;
8512 }
8513
8514 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8515
8516 /* Wire in pseudo registers. Number of pseudo registers may be
8517 changed. */
8518 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8519 + tdep->num_word_regs
8520 + tdep->num_dword_regs
8521 + tdep->num_mmx_regs
8522 + tdep->num_ymm_regs
8523 + num_bnd_cooked
8524 + tdep->num_ymm_avx512_regs
8525 + tdep->num_zmm_regs));
8526
8527 /* Target description may be changed. */
8528 tdesc = tdep->tdesc;
8529
8530 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8531
8532 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8533 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8534
8535 /* Make %al the first pseudo-register. */
8536 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8537 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8538
8539 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8540 if (tdep->num_dword_regs)
8541 {
8542 /* Support dword pseudo-register if it hasn't been disabled. */
8543 tdep->eax_regnum = ymm0_regnum;
8544 ymm0_regnum += tdep->num_dword_regs;
8545 }
8546 else
8547 tdep->eax_regnum = -1;
8548
8549 mm0_regnum = ymm0_regnum;
8550 if (tdep->num_ymm_regs)
8551 {
8552 /* Support YMM pseudo-register if it is available. */
8553 tdep->ymm0_regnum = ymm0_regnum;
8554 mm0_regnum += tdep->num_ymm_regs;
8555 }
8556 else
8557 tdep->ymm0_regnum = -1;
8558
8559 if (tdep->num_ymm_avx512_regs)
8560 {
8561 /* Support YMM16-31 pseudo registers if available. */
8562 tdep->ymm16_regnum = mm0_regnum;
8563 mm0_regnum += tdep->num_ymm_avx512_regs;
8564 }
8565 else
8566 tdep->ymm16_regnum = -1;
8567
8568 if (tdep->num_zmm_regs)
8569 {
8570 /* Support ZMM pseudo-register if it is available. */
8571 tdep->zmm0_regnum = mm0_regnum;
8572 mm0_regnum += tdep->num_zmm_regs;
8573 }
8574 else
8575 tdep->zmm0_regnum = -1;
8576
8577 bnd0_regnum = mm0_regnum;
8578 if (tdep->num_mmx_regs != 0)
8579 {
8580 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8581 tdep->mm0_regnum = mm0_regnum;
8582 bnd0_regnum += tdep->num_mmx_regs;
8583 }
8584 else
8585 tdep->mm0_regnum = -1;
8586
8587 if (tdep->bnd0r_regnum > 0)
8588 tdep->bnd0_regnum = bnd0_regnum;
8589 else
8590 tdep-> bnd0_regnum = -1;
8591
8592 /* Hook in the legacy prologue-based unwinders last (fallback). */
8593 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8594 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8595 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8596
8597 /* If we have a register mapping, enable the generic core file
8598 support, unless it has already been enabled. */
8599 if (tdep->gregset_reg_offset
8600 && !gdbarch_regset_from_core_section_p (gdbarch))
8601 set_gdbarch_regset_from_core_section (gdbarch,
8602 i386_regset_from_core_section);
8603
8604 set_gdbarch_skip_permanent_breakpoint (gdbarch,
8605 i386_skip_permanent_breakpoint);
8606
8607 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8608 i386_fast_tracepoint_valid_at);
8609
8610 return gdbarch;
8611 }
8612
8613 static enum gdb_osabi
8614 i386_coff_osabi_sniffer (bfd *abfd)
8615 {
8616 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8617 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8618 return GDB_OSABI_GO32;
8619
8620 return GDB_OSABI_UNKNOWN;
8621 }
8622 \f
8623
8624 /* Provide a prototype to silence -Wmissing-prototypes. */
8625 void _initialize_i386_tdep (void);
8626
8627 void
8628 _initialize_i386_tdep (void)
8629 {
8630 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8631
8632 /* Add the variable that controls the disassembly flavor. */
8633 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8634 &disassembly_flavor, _("\
8635 Set the disassembly flavor."), _("\
8636 Show the disassembly flavor."), _("\
8637 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8638 NULL,
8639 NULL, /* FIXME: i18n: */
8640 &setlist, &showlist);
8641
8642 /* Add the variable that controls the convention for returning
8643 structs. */
8644 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8645 &struct_convention, _("\
8646 Set the convention for returning small structs."), _("\
8647 Show the convention for returning small structs."), _("\
8648 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8649 is \"default\"."),
8650 NULL,
8651 NULL, /* FIXME: i18n: */
8652 &setlist, &showlist);
8653
8654 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8655 i386_coff_osabi_sniffer);
8656
8657 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8658 i386_svr4_init_abi);
8659 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8660 i386_go32_init_abi);
8661
8662 /* Initialize the i386-specific register groups. */
8663 i386_init_reggroups ();
8664
8665 /* Initialize the standard target descriptions. */
8666 initialize_tdesc_i386 ();
8667 initialize_tdesc_i386_mmx ();
8668 initialize_tdesc_i386_avx ();
8669 initialize_tdesc_i386_mpx ();
8670 initialize_tdesc_i386_avx512 ();
8671
8672 /* Tell remote stub that we support XML target description. */
8673 register_remote_support_xml ("i386");
8674 }
This page took 0.210792 seconds and 4 git commands to generate.