2001-04-17 Michael Snyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "floatformat.h"
30 #include "symtab.h"
31 #include "gdbcmd.h"
32 #include "command.h"
33 #include "arch-utils.h"
34 #include "regcache.h"
35
36 /* i386_register_byte[i] is the offset into the register file of the
37 start of register number i. We initialize this from
38 i386_register_raw_size. */
39 int i386_register_byte[MAX_NUM_REGS];
40
41 /* i386_register_raw_size[i] is the number of bytes of storage in
42 GDB's register array occupied by register i. */
43 int i386_register_raw_size[MAX_NUM_REGS] = {
44 4, 4, 4, 4,
45 4, 4, 4, 4,
46 4, 4, 4, 4,
47 4, 4, 4, 4,
48 10, 10, 10, 10,
49 10, 10, 10, 10,
50 4, 4, 4, 4,
51 4, 4, 4, 4,
52 16, 16, 16, 16,
53 16, 16, 16, 16,
54 4
55 };
56
57 /* i386_register_virtual_size[i] is the size in bytes of the virtual
58 type of register i. */
59 int i386_register_virtual_size[MAX_NUM_REGS];
60 \f
61
62 /* This is the variable that is set with "set disassembly-flavor", and
63 its legitimate values. */
64 static const char att_flavor[] = "att";
65 static const char intel_flavor[] = "intel";
66 static const char *valid_flavors[] =
67 {
68 att_flavor,
69 intel_flavor,
70 NULL
71 };
72 static const char *disassembly_flavor = att_flavor;
73
74 /* This is used to keep the bfd arch_info in sync with the disassembly
75 flavor. */
76 static void set_disassembly_flavor_sfunc (char *, int,
77 struct cmd_list_element *);
78 static void set_disassembly_flavor (void);
79 \f
80
81 /* Stdio style buffering was used to minimize calls to ptrace, but
82 this buffering did not take into account that the code section
83 being accessed may not be an even number of buffers long (even if
84 the buffer is only sizeof(int) long). In cases where the code
85 section size happened to be a non-integral number of buffers long,
86 attempting to read the last buffer would fail. Simply using
87 target_read_memory and ignoring errors, rather than read_memory, is
88 not the correct solution, since legitimate access errors would then
89 be totally ignored. To properly handle this situation and continue
90 to use buffering would require that this code be able to determine
91 the minimum code section size granularity (not the alignment of the
92 section itself, since the actual failing case that pointed out this
93 problem had a section alignment of 4 but was not a multiple of 4
94 bytes long), on a target by target basis, and then adjust it's
95 buffer size accordingly. This is messy, but potentially feasible.
96 It probably needs the bfd library's help and support. For now, the
97 buffer size is set to 1. (FIXME -fnf) */
98
99 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
100 static CORE_ADDR codestream_next_addr;
101 static CORE_ADDR codestream_addr;
102 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
103 static int codestream_off;
104 static int codestream_cnt;
105
106 #define codestream_tell() (codestream_addr + codestream_off)
107 #define codestream_peek() \
108 (codestream_cnt == 0 ? \
109 codestream_fill(1) : codestream_buf[codestream_off])
110 #define codestream_get() \
111 (codestream_cnt-- == 0 ? \
112 codestream_fill(0) : codestream_buf[codestream_off++])
113
114 static unsigned char
115 codestream_fill (int peek_flag)
116 {
117 codestream_addr = codestream_next_addr;
118 codestream_next_addr += CODESTREAM_BUFSIZ;
119 codestream_off = 0;
120 codestream_cnt = CODESTREAM_BUFSIZ;
121 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
122
123 if (peek_flag)
124 return (codestream_peek ());
125 else
126 return (codestream_get ());
127 }
128
129 static void
130 codestream_seek (CORE_ADDR place)
131 {
132 codestream_next_addr = place / CODESTREAM_BUFSIZ;
133 codestream_next_addr *= CODESTREAM_BUFSIZ;
134 codestream_cnt = 0;
135 codestream_fill (1);
136 while (codestream_tell () != place)
137 codestream_get ();
138 }
139
140 static void
141 codestream_read (unsigned char *buf, int count)
142 {
143 unsigned char *p;
144 int i;
145 p = buf;
146 for (i = 0; i < count; i++)
147 *p++ = codestream_get ();
148 }
149 \f
150
151 /* If the next instruction is a jump, move to its target. */
152
153 static void
154 i386_follow_jump (void)
155 {
156 unsigned char buf[4];
157 long delta;
158
159 int data16;
160 CORE_ADDR pos;
161
162 pos = codestream_tell ();
163
164 data16 = 0;
165 if (codestream_peek () == 0x66)
166 {
167 codestream_get ();
168 data16 = 1;
169 }
170
171 switch (codestream_get ())
172 {
173 case 0xe9:
174 /* Relative jump: if data16 == 0, disp32, else disp16. */
175 if (data16)
176 {
177 codestream_read (buf, 2);
178 delta = extract_signed_integer (buf, 2);
179
180 /* Include the size of the jmp instruction (including the
181 0x66 prefix). */
182 pos += delta + 4;
183 }
184 else
185 {
186 codestream_read (buf, 4);
187 delta = extract_signed_integer (buf, 4);
188
189 pos += delta + 5;
190 }
191 break;
192 case 0xeb:
193 /* Relative jump, disp8 (ignore data16). */
194 codestream_read (buf, 1);
195 /* Sign-extend it. */
196 delta = extract_signed_integer (buf, 1);
197
198 pos += delta + 2;
199 break;
200 }
201 codestream_seek (pos);
202 }
203
204 /* Find & return the amount a local space allocated, and advance the
205 codestream to the first register push (if any).
206
207 If the entry sequence doesn't make sense, return -1, and leave
208 codestream pointer at a random spot. */
209
210 static long
211 i386_get_frame_setup (CORE_ADDR pc)
212 {
213 unsigned char op;
214
215 codestream_seek (pc);
216
217 i386_follow_jump ();
218
219 op = codestream_get ();
220
221 if (op == 0x58) /* popl %eax */
222 {
223 /* This function must start with
224
225 popl %eax 0x58
226 xchgl %eax, (%esp) 0x87 0x04 0x24
227 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
228
229 (the System V compiler puts out the second `xchg'
230 instruction, and the assembler doesn't try to optimize it, so
231 the 'sib' form gets generated). This sequence is used to get
232 the address of the return buffer for a function that returns
233 a structure. */
234 int pos;
235 unsigned char buf[4];
236 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
237 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
238
239 pos = codestream_tell ();
240 codestream_read (buf, 4);
241 if (memcmp (buf, proto1, 3) == 0)
242 pos += 3;
243 else if (memcmp (buf, proto2, 4) == 0)
244 pos += 4;
245
246 codestream_seek (pos);
247 op = codestream_get (); /* Update next opcode. */
248 }
249
250 if (op == 0x68 || op == 0x6a)
251 {
252 /* This function may start with
253
254 pushl constant
255 call _probe
256 addl $4, %esp
257
258 followed by
259
260 pushl %ebp
261
262 etc. */
263 int pos;
264 unsigned char buf[8];
265
266 /* Skip past the `pushl' instruction; it has either a one-byte
267 or a four-byte operand, depending on the opcode. */
268 pos = codestream_tell ();
269 if (op == 0x68)
270 pos += 4;
271 else
272 pos += 1;
273 codestream_seek (pos);
274
275 /* Read the following 8 bytes, which should be "call _probe" (6
276 bytes) followed by "addl $4,%esp" (2 bytes). */
277 codestream_read (buf, sizeof (buf));
278 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
279 pos += sizeof (buf);
280 codestream_seek (pos);
281 op = codestream_get (); /* Update next opcode. */
282 }
283
284 if (op == 0x55) /* pushl %ebp */
285 {
286 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
287 switch (codestream_get ())
288 {
289 case 0x8b:
290 if (codestream_get () != 0xec)
291 return -1;
292 break;
293 case 0x89:
294 if (codestream_get () != 0xe5)
295 return -1;
296 break;
297 default:
298 return -1;
299 }
300 /* Check for stack adjustment
301
302 subl $XXX, %esp
303
304 NOTE: You can't subtract a 16 bit immediate from a 32 bit
305 reg, so we don't have to worry about a data16 prefix. */
306 op = codestream_peek ();
307 if (op == 0x83)
308 {
309 /* `subl' with 8 bit immediate. */
310 codestream_get ();
311 if (codestream_get () != 0xec)
312 /* Some instruction starting with 0x83 other than `subl'. */
313 {
314 codestream_seek (codestream_tell () - 2);
315 return 0;
316 }
317 /* `subl' with signed byte immediate (though it wouldn't
318 make sense to be negative). */
319 return (codestream_get ());
320 }
321 else if (op == 0x81)
322 {
323 char buf[4];
324 /* Maybe it is `subl' with a 32 bit immedediate. */
325 codestream_get ();
326 if (codestream_get () != 0xec)
327 /* Some instruction starting with 0x81 other than `subl'. */
328 {
329 codestream_seek (codestream_tell () - 2);
330 return 0;
331 }
332 /* It is `subl' with a 32 bit immediate. */
333 codestream_read ((unsigned char *) buf, 4);
334 return extract_signed_integer (buf, 4);
335 }
336 else
337 {
338 return 0;
339 }
340 }
341 else if (op == 0xc8)
342 {
343 char buf[2];
344 /* `enter' with 16 bit unsigned immediate. */
345 codestream_read ((unsigned char *) buf, 2);
346 codestream_get (); /* Flush final byte of enter instruction. */
347 return extract_unsigned_integer (buf, 2);
348 }
349 return (-1);
350 }
351
352 /* Return the chain-pointer for FRAME. In the case of the i386, the
353 frame's nominal address is the address of a 4-byte word containing
354 the calling frame's address. */
355
356 CORE_ADDR
357 i386_frame_chain (struct frame_info *frame)
358 {
359 if (frame->signal_handler_caller)
360 return frame->frame;
361
362 if (! inside_entry_file (frame->pc))
363 return read_memory_unsigned_integer (frame->frame, 4);
364
365 return 0;
366 }
367
368 /* Return number of args passed to a frame.
369 Can return -1, meaning no way to tell. */
370
371 int
372 i386_frame_num_args (struct frame_info *fi)
373 {
374 #if 1
375 return -1;
376 #else
377 /* This loses because not only might the compiler not be popping the
378 args right after the function call, it might be popping args from
379 both this call and a previous one, and we would say there are
380 more args than there really are. */
381
382 int retpc;
383 unsigned char op;
384 struct frame_info *pfi;
385
386 /* On the i386, the instruction following the call could be:
387 popl %ecx - one arg
388 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
389 anything else - zero args. */
390
391 int frameless;
392
393 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
394 if (frameless)
395 /* In the absence of a frame pointer, GDB doesn't get correct
396 values for nameless arguments. Return -1, so it doesn't print
397 any nameless arguments. */
398 return -1;
399
400 pfi = get_prev_frame (fi);
401 if (pfi == 0)
402 {
403 /* NOTE: This can happen if we are looking at the frame for
404 main, because FRAME_CHAIN_VALID won't let us go into start.
405 If we have debugging symbols, that's not really a big deal;
406 it just means it will only show as many arguments to main as
407 are declared. */
408 return -1;
409 }
410 else
411 {
412 retpc = pfi->pc;
413 op = read_memory_integer (retpc, 1);
414 if (op == 0x59) /* pop %ecx */
415 return 1;
416 else if (op == 0x83)
417 {
418 op = read_memory_integer (retpc + 1, 1);
419 if (op == 0xc4)
420 /* addl $<signed imm 8 bits>, %esp */
421 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
422 else
423 return 0;
424 }
425 else if (op == 0x81) /* `add' with 32 bit immediate. */
426 {
427 op = read_memory_integer (retpc + 1, 1);
428 if (op == 0xc4)
429 /* addl $<imm 32>, %esp */
430 return read_memory_integer (retpc + 2, 4) / 4;
431 else
432 return 0;
433 }
434 else
435 {
436 return 0;
437 }
438 }
439 #endif
440 }
441
442 /* Parse the first few instructions the function to see what registers
443 were stored.
444
445 We handle these cases:
446
447 The startup sequence can be at the start of the function, or the
448 function can start with a branch to startup code at the end.
449
450 %ebp can be set up with either the 'enter' instruction, or "pushl
451 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
452 once used in the System V compiler).
453
454 Local space is allocated just below the saved %ebp by either the
455 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
456 bit unsigned argument for space to allocate, and the 'addl'
457 instruction could have either a signed byte, or 32 bit immediate.
458
459 Next, the registers used by this function are pushed. With the
460 System V compiler they will always be in the order: %edi, %esi,
461 %ebx (and sometimes a harmless bug causes it to also save but not
462 restore %eax); however, the code below is willing to see the pushes
463 in any order, and will handle up to 8 of them.
464
465 If the setup sequence is at the end of the function, then the next
466 instruction will be a branch back to the start. */
467
468 void
469 i386_frame_init_saved_regs (struct frame_info *fip)
470 {
471 long locals = -1;
472 unsigned char op;
473 CORE_ADDR dummy_bottom;
474 CORE_ADDR addr;
475 CORE_ADDR pc;
476 int i;
477
478 if (fip->saved_regs)
479 return;
480
481 frame_saved_regs_zalloc (fip);
482
483 /* If the frame is the end of a dummy, compute where the beginning
484 would be. */
485 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
486
487 /* Check if the PC points in the stack, in a dummy frame. */
488 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
489 {
490 /* All registers were saved by push_call_dummy. */
491 addr = fip->frame;
492 for (i = 0; i < NUM_REGS; i++)
493 {
494 addr -= REGISTER_RAW_SIZE (i);
495 fip->saved_regs[i] = addr;
496 }
497 return;
498 }
499
500 pc = get_pc_function_start (fip->pc);
501 if (pc != 0)
502 locals = i386_get_frame_setup (pc);
503
504 if (locals >= 0)
505 {
506 addr = fip->frame - 4 - locals;
507 for (i = 0; i < 8; i++)
508 {
509 op = codestream_get ();
510 if (op < 0x50 || op > 0x57)
511 break;
512 #ifdef I386_REGNO_TO_SYMMETRY
513 /* Dynix uses different internal numbering. Ick. */
514 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
515 #else
516 fip->saved_regs[op - 0x50] = addr;
517 #endif
518 addr -= 4;
519 }
520 }
521
522 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
523 fip->saved_regs[FP_REGNUM] = fip->frame;
524 }
525
526 /* Return PC of first real instruction. */
527
528 int
529 i386_skip_prologue (int pc)
530 {
531 unsigned char op;
532 int i;
533 static unsigned char pic_pat[6] =
534 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
535 0x5b, /* popl %ebx */
536 };
537 CORE_ADDR pos;
538
539 if (i386_get_frame_setup (pc) < 0)
540 return (pc);
541
542 /* Found valid frame setup -- codestream now points to start of push
543 instructions for saving registers. */
544
545 /* Skip over register saves. */
546 for (i = 0; i < 8; i++)
547 {
548 op = codestream_peek ();
549 /* Break if not `pushl' instrunction. */
550 if (op < 0x50 || op > 0x57)
551 break;
552 codestream_get ();
553 }
554
555 /* The native cc on SVR4 in -K PIC mode inserts the following code
556 to get the address of the global offset table (GOT) into register
557 %ebx
558
559 call 0x0
560 popl %ebx
561 movl %ebx,x(%ebp) (optional)
562 addl y,%ebx
563
564 This code is with the rest of the prologue (at the end of the
565 function), so we have to skip it to get to the first real
566 instruction at the start of the function. */
567
568 pos = codestream_tell ();
569 for (i = 0; i < 6; i++)
570 {
571 op = codestream_get ();
572 if (pic_pat[i] != op)
573 break;
574 }
575 if (i == 6)
576 {
577 unsigned char buf[4];
578 long delta = 6;
579
580 op = codestream_get ();
581 if (op == 0x89) /* movl %ebx, x(%ebp) */
582 {
583 op = codestream_get ();
584 if (op == 0x5d) /* One byte offset from %ebp. */
585 {
586 delta += 3;
587 codestream_read (buf, 1);
588 }
589 else if (op == 0x9d) /* Four byte offset from %ebp. */
590 {
591 delta += 6;
592 codestream_read (buf, 4);
593 }
594 else /* Unexpected instruction. */
595 delta = -1;
596 op = codestream_get ();
597 }
598 /* addl y,%ebx */
599 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
600 {
601 pos += delta + 6;
602 }
603 }
604 codestream_seek (pos);
605
606 i386_follow_jump ();
607
608 return (codestream_tell ());
609 }
610
611 void
612 i386_push_dummy_frame (void)
613 {
614 CORE_ADDR sp = read_register (SP_REGNUM);
615 int regnum;
616 char regbuf[MAX_REGISTER_RAW_SIZE];
617
618 sp = push_word (sp, read_register (PC_REGNUM));
619 sp = push_word (sp, read_register (FP_REGNUM));
620 write_register (FP_REGNUM, sp);
621 for (regnum = 0; regnum < NUM_REGS; regnum++)
622 {
623 read_register_gen (regnum, regbuf);
624 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
625 }
626 write_register (SP_REGNUM, sp);
627 }
628
629 /* Insert the (relative) function address into the call sequence
630 stored at DYMMY. */
631
632 void
633 i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
634 value_ptr *args, struct type *type, int gcc_p)
635 {
636 int from, to, delta, loc;
637
638 loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH);
639 from = loc + 5;
640 to = (int)(fun);
641 delta = to - from;
642
643 *((char *)(dummy) + 1) = (delta & 0xff);
644 *((char *)(dummy) + 2) = ((delta >> 8) & 0xff);
645 *((char *)(dummy) + 3) = ((delta >> 16) & 0xff);
646 *((char *)(dummy) + 4) = ((delta >> 24) & 0xff);
647 }
648
649 void
650 i386_pop_frame (void)
651 {
652 struct frame_info *frame = get_current_frame ();
653 CORE_ADDR fp;
654 int regnum;
655 char regbuf[MAX_REGISTER_RAW_SIZE];
656
657 fp = FRAME_FP (frame);
658 i386_frame_init_saved_regs (frame);
659
660 for (regnum = 0; regnum < NUM_REGS; regnum++)
661 {
662 CORE_ADDR addr;
663 addr = frame->saved_regs[regnum];
664 if (addr)
665 {
666 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
667 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
668 REGISTER_RAW_SIZE (regnum));
669 }
670 }
671 write_register (FP_REGNUM, read_memory_integer (fp, 4));
672 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
673 write_register (SP_REGNUM, fp + 8);
674 flush_cached_frames ();
675 }
676 \f
677
678 #ifdef GET_LONGJMP_TARGET
679
680 /* Figure out where the longjmp will land. Slurp the args out of the
681 stack. We expect the first arg to be a pointer to the jmp_buf
682 structure from which we extract the pc (JB_PC) that we will land
683 at. The pc is copied into PC. This routine returns true on
684 success. */
685
686 int
687 get_longjmp_target (CORE_ADDR *pc)
688 {
689 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
690 CORE_ADDR sp, jb_addr;
691
692 sp = read_register (SP_REGNUM);
693
694 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
695 buf,
696 TARGET_PTR_BIT / TARGET_CHAR_BIT))
697 return 0;
698
699 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
700
701 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
702 TARGET_PTR_BIT / TARGET_CHAR_BIT))
703 return 0;
704
705 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
706
707 return 1;
708 }
709
710 #endif /* GET_LONGJMP_TARGET */
711 \f
712
713 CORE_ADDR
714 i386_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
715 int struct_return, CORE_ADDR struct_addr)
716 {
717 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
718
719 if (struct_return)
720 {
721 char buf[4];
722
723 sp -= 4;
724 store_address (buf, 4, struct_addr);
725 write_memory (sp, buf, 4);
726 }
727
728 return sp;
729 }
730
731 void
732 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
733 {
734 /* Do nothing. Everything was already done by i386_push_arguments. */
735 }
736
737 /* These registers are used for returning integers (and on some
738 targets also for returning `struct' and `union' values when their
739 size and alignment match an integer type). */
740 #define LOW_RETURN_REGNUM 0 /* %eax */
741 #define HIGH_RETURN_REGNUM 2 /* %edx */
742
743 /* Extract from an array REGBUF containing the (raw) register state, a
744 function return value of TYPE, and copy that, in virtual format,
745 into VALBUF. */
746
747 void
748 i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
749 {
750 int len = TYPE_LENGTH (type);
751
752 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
753 && TYPE_NFIELDS (type) == 1)
754 {
755 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regbuf, valbuf);
756 return;
757 }
758
759 if (TYPE_CODE (type) == TYPE_CODE_FLT)
760 {
761 if (NUM_FREGS == 0)
762 {
763 warning ("Cannot find floating-point return value.");
764 memset (valbuf, 0, len);
765 return;
766 }
767
768 /* Floating-point return values can be found in %st(0). */
769 if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
770 && TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
771 {
772 /* Copy straight over, but take care of the padding. */
773 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)],
774 FPU_REG_RAW_SIZE);
775 memset (valbuf + FPU_REG_RAW_SIZE, 0, len - FPU_REG_RAW_SIZE);
776 }
777 else
778 {
779 /* Convert the extended floating-point number found in
780 %st(0) to the desired type. This is probably not exactly
781 how it would happen on the target itself, but it is the
782 best we can do. */
783 DOUBLEST val;
784 floatformat_to_doublest (&floatformat_i387_ext,
785 &regbuf[REGISTER_BYTE (FP0_REGNUM)], &val);
786 store_floating (valbuf, TYPE_LENGTH (type), val);
787 }
788 }
789 else
790 {
791 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
792 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
793
794 if (len <= low_size)
795 memcpy (valbuf, &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
796 else if (len <= (low_size + high_size))
797 {
798 memcpy (valbuf,
799 &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
800 memcpy (valbuf + low_size,
801 &regbuf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
802 }
803 else
804 internal_error (__FILE__, __LINE__,
805 "Cannot extract return value of %d bytes long.", len);
806 }
807 }
808
809 /* Write into the appropriate registers a function return value stored
810 in VALBUF of type TYPE, given in virtual format. */
811
812 void
813 i386_store_return_value (struct type *type, char *valbuf)
814 {
815 int len = TYPE_LENGTH (type);
816
817 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
818 && TYPE_NFIELDS (type) == 1)
819 {
820 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
821 return;
822 }
823
824 if (TYPE_CODE (type) == TYPE_CODE_FLT)
825 {
826 if (NUM_FREGS == 0)
827 {
828 warning ("Cannot set floating-point return value.");
829 return;
830 }
831
832 /* Floating-point return values can be found in %st(0). */
833 if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
834 && TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
835 {
836 /* Copy straight over. */
837 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), valbuf,
838 FPU_REG_RAW_SIZE);
839 }
840 else
841 {
842 char buf[FPU_REG_RAW_SIZE];
843 DOUBLEST val;
844
845 /* Convert the value found in VALBUF to the extended
846 floating point format used by the FPU. This is probably
847 not exactly how it would happen on the target itself, but
848 it is the best we can do. */
849 val = extract_floating (valbuf, TYPE_LENGTH (type));
850 floatformat_from_doublest (&floatformat_i387_ext, &val, buf);
851 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
852 FPU_REG_RAW_SIZE);
853 }
854 }
855 else
856 {
857 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
858 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
859
860 if (len <= low_size)
861 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
862 else if (len <= (low_size + high_size))
863 {
864 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
865 valbuf, low_size);
866 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
867 valbuf + low_size, len - low_size);
868 }
869 else
870 internal_error (__FILE__, __LINE__,
871 "Cannot store return value of %d bytes long.", len);
872 }
873 }
874
875 /* Extract from an array REGBUF containing the (raw) register state
876 the address in which a function should return its structure value,
877 as a CORE_ADDR. */
878
879 CORE_ADDR
880 i386_extract_struct_value_address (char *regbuf)
881 {
882 return extract_address (&regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)],
883 REGISTER_RAW_SIZE (LOW_RETURN_REGNUM));
884 }
885 \f
886
887 /* Convert data from raw format for register REGNUM in buffer FROM to
888 virtual format with type TYPE in buffer TO. In principle both
889 formats are identical except that the virtual format has two extra
890 bytes appended that aren't used. We set these to zero. */
891
892 void
893 i386_register_convert_to_virtual (int regnum, struct type *type,
894 char *from, char *to)
895 {
896 /* Copy straight over, but take care of the padding. */
897 memcpy (to, from, FPU_REG_RAW_SIZE);
898 memset (to + FPU_REG_RAW_SIZE, 0, TYPE_LENGTH (type) - FPU_REG_RAW_SIZE);
899 }
900
901 /* Convert data from virtual format with type TYPE in buffer FROM to
902 raw format for register REGNUM in buffer TO. Simply omit the two
903 unused bytes. */
904
905 void
906 i386_register_convert_to_raw (struct type *type, int regnum,
907 char *from, char *to)
908 {
909 memcpy (to, from, FPU_REG_RAW_SIZE);
910 }
911 \f
912
913 #ifdef I386V4_SIGTRAMP_SAVED_PC
914 /* Get saved user PC for sigtramp from the pushed ucontext on the
915 stack for all three variants of SVR4 sigtramps. */
916
917 CORE_ADDR
918 i386v4_sigtramp_saved_pc (struct frame_info *frame)
919 {
920 CORE_ADDR saved_pc_offset = 4;
921 char *name = NULL;
922
923 find_pc_partial_function (frame->pc, &name, NULL, NULL);
924 if (name)
925 {
926 if (STREQ (name, "_sigreturn"))
927 saved_pc_offset = 132 + 14 * 4;
928 else if (STREQ (name, "_sigacthandler"))
929 saved_pc_offset = 80 + 14 * 4;
930 else if (STREQ (name, "sigvechandler"))
931 saved_pc_offset = 120 + 14 * 4;
932 }
933
934 if (frame->next)
935 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
936 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
937 }
938 #endif /* I386V4_SIGTRAMP_SAVED_PC */
939 \f
940
941 #ifdef STATIC_TRANSFORM_NAME
942 /* SunPRO encodes the static variables. This is not related to C++
943 mangling, it is done for C too. */
944
945 char *
946 sunpro_static_transform_name (char *name)
947 {
948 char *p;
949 if (IS_STATIC_TRANSFORM_NAME (name))
950 {
951 /* For file-local statics there will be a period, a bunch of
952 junk (the contents of which match a string given in the
953 N_OPT), a period and the name. For function-local statics
954 there will be a bunch of junk (which seems to change the
955 second character from 'A' to 'B'), a period, the name of the
956 function, and the name. So just skip everything before the
957 last period. */
958 p = strrchr (name, '.');
959 if (p != NULL)
960 name = p + 1;
961 }
962 return name;
963 }
964 #endif /* STATIC_TRANSFORM_NAME */
965 \f
966
967 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
968
969 CORE_ADDR
970 skip_trampoline_code (CORE_ADDR pc, char *name)
971 {
972 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
973 {
974 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
975 struct minimal_symbol *indsym =
976 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
977 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
978
979 if (symname)
980 {
981 if (strncmp (symname, "__imp_", 6) == 0
982 || strncmp (symname, "_imp_", 5) == 0)
983 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
984 }
985 }
986 return 0; /* Not a trampoline. */
987 }
988 \f
989
990 /* We have two flavours of disassembly. The machinery on this page
991 deals with switching between those. */
992
993 static int
994 gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
995 {
996 if (disassembly_flavor == att_flavor)
997 return print_insn_i386_att (memaddr, info);
998 else if (disassembly_flavor == intel_flavor)
999 return print_insn_i386_intel (memaddr, info);
1000 /* Never reached -- disassembly_flavour is always either att_flavor
1001 or intel_flavor. */
1002 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1003 }
1004
1005 /* If the disassembly mode is intel, we have to also switch the bfd
1006 mach_type. This function is run in the set disassembly_flavor
1007 command, and does that. */
1008
1009 static void
1010 set_disassembly_flavor_sfunc (char *args, int from_tty,
1011 struct cmd_list_element *c)
1012 {
1013 set_disassembly_flavor ();
1014 }
1015
1016 static void
1017 set_disassembly_flavor (void)
1018 {
1019 if (disassembly_flavor == att_flavor)
1020 set_architecture_from_arch_mach (bfd_arch_i386, bfd_mach_i386_i386);
1021 else if (disassembly_flavor == intel_flavor)
1022 set_architecture_from_arch_mach (bfd_arch_i386,
1023 bfd_mach_i386_i386_intel_syntax);
1024 }
1025 \f
1026
1027 /* Provide a prototype to silence -Wmissing-prototypes. */
1028 void _initialize_i386_tdep (void);
1029
1030 void
1031 _initialize_i386_tdep (void)
1032 {
1033 /* Initialize the table saying where each register starts in the
1034 register file. */
1035 {
1036 int i, offset;
1037
1038 offset = 0;
1039 for (i = 0; i < MAX_NUM_REGS; i++)
1040 {
1041 i386_register_byte[i] = offset;
1042 offset += i386_register_raw_size[i];
1043 }
1044 }
1045
1046 /* Initialize the table of virtual register sizes. */
1047 {
1048 int i;
1049
1050 for (i = 0; i < MAX_NUM_REGS; i++)
1051 i386_register_virtual_size[i] = TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (i));
1052 }
1053
1054 tm_print_insn = gdb_print_insn_i386;
1055 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1056
1057 /* Add the variable that controls the disassembly flavor. */
1058 {
1059 struct cmd_list_element *new_cmd;
1060
1061 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1062 valid_flavors,
1063 &disassembly_flavor,
1064 "\
1065 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1066 and the default value is \"att\".",
1067 &setlist);
1068 new_cmd->function.sfunc = set_disassembly_flavor_sfunc;
1069 add_show_from_set (new_cmd, &showlist);
1070 }
1071
1072 /* Finally, initialize the disassembly flavor to the default given
1073 in the disassembly_flavor variable. */
1074 set_disassembly_flavor ();
1075 }
This page took 0.092545 seconds and 4 git commands to generate.