Update i386 and amd64 ports for unwinder changes.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "command.h"
25 #include "dummy-frame.h"
26 #include "dwarf2-frame.h"
27 #include "doublest.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45
46 #include "gdb_assert.h"
47 #include "gdb_string.h"
48
49 #include "i386-tdep.h"
50 #include "i387-tdep.h"
51
52 /* Register names. */
53
54 static char *i386_register_names[] =
55 {
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67 };
68
69 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
70
71 /* Register names for MMX pseudo-registers. */
72
73 static char *i386_mmx_names[] =
74 {
75 "mm0", "mm1", "mm2", "mm3",
76 "mm4", "mm5", "mm6", "mm7"
77 };
78
79 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
80
81 static int
82 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
83 {
84 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
85
86 if (mm0_regnum < 0)
87 return 0;
88
89 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
90 }
91
92 /* SSE register? */
93
94 static int
95 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
96 {
97 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
98
99 if (I387_NUM_XMM_REGS (tdep) == 0)
100 return 0;
101
102 return (I387_XMM0_REGNUM (tdep) <= regnum
103 && regnum < I387_MXCSR_REGNUM (tdep));
104 }
105
106 static int
107 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
108 {
109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
110
111 if (I387_NUM_XMM_REGS (tdep) == 0)
112 return 0;
113
114 return (regnum == I387_MXCSR_REGNUM (tdep));
115 }
116
117 /* FP register? */
118
119 int
120 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
121 {
122 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
123
124 if (I387_ST0_REGNUM (tdep) < 0)
125 return 0;
126
127 return (I387_ST0_REGNUM (tdep) <= regnum
128 && regnum < I387_FCTRL_REGNUM (tdep));
129 }
130
131 int
132 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
135
136 if (I387_ST0_REGNUM (tdep) < 0)
137 return 0;
138
139 return (I387_FCTRL_REGNUM (tdep) <= regnum
140 && regnum < I387_XMM0_REGNUM (tdep));
141 }
142
143 /* Return the name of register REGNUM. */
144
145 const char *
146 i386_register_name (struct gdbarch *gdbarch, int regnum)
147 {
148 if (i386_mmx_regnum_p (gdbarch, regnum))
149 return i386_mmx_names[regnum - I387_MM0_REGNUM (gdbarch_tdep (gdbarch))];
150
151 if (regnum >= 0 && regnum < i386_num_register_names)
152 return i386_register_names[regnum];
153
154 return NULL;
155 }
156
157 /* Convert a dbx register number REG to the appropriate register
158 number used by GDB. */
159
160 static int
161 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
162 {
163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
164
165 /* This implements what GCC calls the "default" register map
166 (dbx_register_map[]). */
167
168 if (reg >= 0 && reg <= 7)
169 {
170 /* General-purpose registers. The debug info calls %ebp
171 register 4, and %esp register 5. */
172 if (reg == 4)
173 return 5;
174 else if (reg == 5)
175 return 4;
176 else return reg;
177 }
178 else if (reg >= 12 && reg <= 19)
179 {
180 /* Floating-point registers. */
181 return reg - 12 + I387_ST0_REGNUM (tdep);
182 }
183 else if (reg >= 21 && reg <= 28)
184 {
185 /* SSE registers. */
186 return reg - 21 + I387_XMM0_REGNUM (tdep);
187 }
188 else if (reg >= 29 && reg <= 36)
189 {
190 /* MMX registers. */
191 return reg - 29 + I387_MM0_REGNUM (tdep);
192 }
193
194 /* This will hopefully provoke a warning. */
195 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
196 }
197
198 /* Convert SVR4 register number REG to the appropriate register number
199 used by GDB. */
200
201 static int
202 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
203 {
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205
206 /* This implements the GCC register map that tries to be compatible
207 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
208
209 /* The SVR4 register numbering includes %eip and %eflags, and
210 numbers the floating point registers differently. */
211 if (reg >= 0 && reg <= 9)
212 {
213 /* General-purpose registers. */
214 return reg;
215 }
216 else if (reg >= 11 && reg <= 18)
217 {
218 /* Floating-point registers. */
219 return reg - 11 + I387_ST0_REGNUM (tdep);
220 }
221 else if (reg >= 21 && reg <= 36)
222 {
223 /* The SSE and MMX registers have the same numbers as with dbx. */
224 return i386_dbx_reg_to_regnum (gdbarch, reg);
225 }
226
227 switch (reg)
228 {
229 case 37: return I387_FCTRL_REGNUM (tdep);
230 case 38: return I387_FSTAT_REGNUM (tdep);
231 case 39: return I387_MXCSR_REGNUM (tdep);
232 case 40: return I386_ES_REGNUM;
233 case 41: return I386_CS_REGNUM;
234 case 42: return I386_SS_REGNUM;
235 case 43: return I386_DS_REGNUM;
236 case 44: return I386_FS_REGNUM;
237 case 45: return I386_GS_REGNUM;
238 }
239
240 /* This will hopefully provoke a warning. */
241 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
242 }
243
244 \f
245
246 /* This is the variable that is set with "set disassembly-flavor", and
247 its legitimate values. */
248 static const char att_flavor[] = "att";
249 static const char intel_flavor[] = "intel";
250 static const char *valid_flavors[] =
251 {
252 att_flavor,
253 intel_flavor,
254 NULL
255 };
256 static const char *disassembly_flavor = att_flavor;
257 \f
258
259 /* Use the program counter to determine the contents and size of a
260 breakpoint instruction. Return a pointer to a string of bytes that
261 encode a breakpoint instruction, store the length of the string in
262 *LEN and optionally adjust *PC to point to the correct memory
263 location for inserting the breakpoint.
264
265 On the i386 we have a single breakpoint that fits in a single byte
266 and can be inserted anywhere.
267
268 This function is 64-bit safe. */
269
270 static const gdb_byte *
271 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
272 {
273 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
274
275 *len = sizeof (break_insn);
276 return break_insn;
277 }
278 \f
279 #ifdef I386_REGNO_TO_SYMMETRY
280 #error "The Sequent Symmetry is no longer supported."
281 #endif
282
283 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
284 and %esp "belong" to the calling function. Therefore these
285 registers should be saved if they're going to be modified. */
286
287 /* The maximum number of saved registers. This should include all
288 registers mentioned above, and %eip. */
289 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
290
291 struct i386_frame_cache
292 {
293 /* Base address. */
294 CORE_ADDR base;
295 LONGEST sp_offset;
296 CORE_ADDR pc;
297
298 /* Saved registers. */
299 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
300 CORE_ADDR saved_sp;
301 int stack_align;
302 int pc_in_eax;
303
304 /* Stack space reserved for local variables. */
305 long locals;
306 };
307
308 /* Allocate and initialize a frame cache. */
309
310 static struct i386_frame_cache *
311 i386_alloc_frame_cache (void)
312 {
313 struct i386_frame_cache *cache;
314 int i;
315
316 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
317
318 /* Base address. */
319 cache->base = 0;
320 cache->sp_offset = -4;
321 cache->pc = 0;
322
323 /* Saved registers. We initialize these to -1 since zero is a valid
324 offset (that's where %ebp is supposed to be stored). */
325 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
326 cache->saved_regs[i] = -1;
327 cache->saved_sp = 0;
328 cache->stack_align = 0;
329 cache->pc_in_eax = 0;
330
331 /* Frameless until proven otherwise. */
332 cache->locals = -1;
333
334 return cache;
335 }
336
337 /* If the instruction at PC is a jump, return the address of its
338 target. Otherwise, return PC. */
339
340 static CORE_ADDR
341 i386_follow_jump (CORE_ADDR pc)
342 {
343 gdb_byte op;
344 long delta = 0;
345 int data16 = 0;
346
347 target_read_memory (pc, &op, 1);
348 if (op == 0x66)
349 {
350 data16 = 1;
351 op = read_memory_unsigned_integer (pc + 1, 1);
352 }
353
354 switch (op)
355 {
356 case 0xe9:
357 /* Relative jump: if data16 == 0, disp32, else disp16. */
358 if (data16)
359 {
360 delta = read_memory_integer (pc + 2, 2);
361
362 /* Include the size of the jmp instruction (including the
363 0x66 prefix). */
364 delta += 4;
365 }
366 else
367 {
368 delta = read_memory_integer (pc + 1, 4);
369
370 /* Include the size of the jmp instruction. */
371 delta += 5;
372 }
373 break;
374 case 0xeb:
375 /* Relative jump, disp8 (ignore data16). */
376 delta = read_memory_integer (pc + data16 + 1, 1);
377
378 delta += data16 + 2;
379 break;
380 }
381
382 return pc + delta;
383 }
384
385 /* Check whether PC points at a prologue for a function returning a
386 structure or union. If so, it updates CACHE and returns the
387 address of the first instruction after the code sequence that
388 removes the "hidden" argument from the stack or CURRENT_PC,
389 whichever is smaller. Otherwise, return PC. */
390
391 static CORE_ADDR
392 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
393 struct i386_frame_cache *cache)
394 {
395 /* Functions that return a structure or union start with:
396
397 popl %eax 0x58
398 xchgl %eax, (%esp) 0x87 0x04 0x24
399 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
400
401 (the System V compiler puts out the second `xchg' instruction,
402 and the assembler doesn't try to optimize it, so the 'sib' form
403 gets generated). This sequence is used to get the address of the
404 return buffer for a function that returns a structure. */
405 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
406 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
407 gdb_byte buf[4];
408 gdb_byte op;
409
410 if (current_pc <= pc)
411 return pc;
412
413 target_read_memory (pc, &op, 1);
414
415 if (op != 0x58) /* popl %eax */
416 return pc;
417
418 target_read_memory (pc + 1, buf, 4);
419 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
420 return pc;
421
422 if (current_pc == pc)
423 {
424 cache->sp_offset += 4;
425 return current_pc;
426 }
427
428 if (current_pc == pc + 1)
429 {
430 cache->pc_in_eax = 1;
431 return current_pc;
432 }
433
434 if (buf[1] == proto1[1])
435 return pc + 4;
436 else
437 return pc + 5;
438 }
439
440 static CORE_ADDR
441 i386_skip_probe (CORE_ADDR pc)
442 {
443 /* A function may start with
444
445 pushl constant
446 call _probe
447 addl $4, %esp
448
449 followed by
450
451 pushl %ebp
452
453 etc. */
454 gdb_byte buf[8];
455 gdb_byte op;
456
457 target_read_memory (pc, &op, 1);
458
459 if (op == 0x68 || op == 0x6a)
460 {
461 int delta;
462
463 /* Skip past the `pushl' instruction; it has either a one-byte or a
464 four-byte operand, depending on the opcode. */
465 if (op == 0x68)
466 delta = 5;
467 else
468 delta = 2;
469
470 /* Read the following 8 bytes, which should be `call _probe' (6
471 bytes) followed by `addl $4,%esp' (2 bytes). */
472 read_memory (pc + delta, buf, sizeof (buf));
473 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
474 pc += delta + sizeof (buf);
475 }
476
477 return pc;
478 }
479
480 /* GCC 4.1 and later, can put code in the prologue to realign the
481 stack pointer. Check whether PC points to such code, and update
482 CACHE accordingly. Return the first instruction after the code
483 sequence or CURRENT_PC, whichever is smaller. If we don't
484 recognize the code, return PC. */
485
486 static CORE_ADDR
487 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
488 struct i386_frame_cache *cache)
489 {
490 /* The register used by the compiler to perform the stack re-alignment
491 is, in order of preference, either %ecx, %edx, or %eax. GCC should
492 never use %ebx as it always treats it as callee-saved, whereas
493 the compiler can only use caller-saved registers. */
494 static const gdb_byte insns_ecx[10] = {
495 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
496 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
497 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
498 };
499 static const gdb_byte insns_edx[10] = {
500 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
501 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
502 0xff, 0x72, 0xfc /* pushl -4(%edx) */
503 };
504 static const gdb_byte insns_eax[10] = {
505 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
506 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
507 0xff, 0x70, 0xfc /* pushl -4(%eax) */
508 };
509 gdb_byte buf[10];
510
511 if (target_read_memory (pc, buf, sizeof buf)
512 || (memcmp (buf, insns_ecx, sizeof buf) != 0
513 && memcmp (buf, insns_edx, sizeof buf) != 0
514 && memcmp (buf, insns_eax, sizeof buf) != 0))
515 return pc;
516
517 if (current_pc > pc + 4)
518 cache->stack_align = 1;
519
520 return min (pc + 10, current_pc);
521 }
522
523 /* Maximum instruction length we need to handle. */
524 #define I386_MAX_INSN_LEN 6
525
526 /* Instruction description. */
527 struct i386_insn
528 {
529 size_t len;
530 gdb_byte insn[I386_MAX_INSN_LEN];
531 gdb_byte mask[I386_MAX_INSN_LEN];
532 };
533
534 /* Search for the instruction at PC in the list SKIP_INSNS. Return
535 the first instruction description that matches. Otherwise, return
536 NULL. */
537
538 static struct i386_insn *
539 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
540 {
541 struct i386_insn *insn;
542 gdb_byte op;
543
544 target_read_memory (pc, &op, 1);
545
546 for (insn = skip_insns; insn->len > 0; insn++)
547 {
548 if ((op & insn->mask[0]) == insn->insn[0])
549 {
550 gdb_byte buf[I386_MAX_INSN_LEN - 1];
551 int insn_matched = 1;
552 size_t i;
553
554 gdb_assert (insn->len > 1);
555 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
556
557 target_read_memory (pc + 1, buf, insn->len - 1);
558 for (i = 1; i < insn->len; i++)
559 {
560 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
561 insn_matched = 0;
562 }
563
564 if (insn_matched)
565 return insn;
566 }
567 }
568
569 return NULL;
570 }
571
572 /* Some special instructions that might be migrated by GCC into the
573 part of the prologue that sets up the new stack frame. Because the
574 stack frame hasn't been setup yet, no registers have been saved
575 yet, and only the scratch registers %eax, %ecx and %edx can be
576 touched. */
577
578 struct i386_insn i386_frame_setup_skip_insns[] =
579 {
580 /* Check for `movb imm8, r' and `movl imm32, r'.
581
582 ??? Should we handle 16-bit operand-sizes here? */
583
584 /* `movb imm8, %al' and `movb imm8, %ah' */
585 /* `movb imm8, %cl' and `movb imm8, %ch' */
586 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
587 /* `movb imm8, %dl' and `movb imm8, %dh' */
588 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
589 /* `movl imm32, %eax' and `movl imm32, %ecx' */
590 { 5, { 0xb8 }, { 0xfe } },
591 /* `movl imm32, %edx' */
592 { 5, { 0xba }, { 0xff } },
593
594 /* Check for `mov imm32, r32'. Note that there is an alternative
595 encoding for `mov m32, %eax'.
596
597 ??? Should we handle SIB adressing here?
598 ??? Should we handle 16-bit operand-sizes here? */
599
600 /* `movl m32, %eax' */
601 { 5, { 0xa1 }, { 0xff } },
602 /* `movl m32, %eax' and `mov; m32, %ecx' */
603 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
604 /* `movl m32, %edx' */
605 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
606
607 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
608 Because of the symmetry, there are actually two ways to encode
609 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
610 opcode bytes 0x31 and 0x33 for `xorl'. */
611
612 /* `subl %eax, %eax' */
613 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
614 /* `subl %ecx, %ecx' */
615 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
616 /* `subl %edx, %edx' */
617 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
618 /* `xorl %eax, %eax' */
619 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
620 /* `xorl %ecx, %ecx' */
621 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
622 /* `xorl %edx, %edx' */
623 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
624 { 0 }
625 };
626
627
628 /* Check whether PC points to a no-op instruction. */
629 static CORE_ADDR
630 i386_skip_noop (CORE_ADDR pc)
631 {
632 gdb_byte op;
633 int check = 1;
634
635 target_read_memory (pc, &op, 1);
636
637 while (check)
638 {
639 check = 0;
640 /* Ignore `nop' instruction. */
641 if (op == 0x90)
642 {
643 pc += 1;
644 target_read_memory (pc, &op, 1);
645 check = 1;
646 }
647 /* Ignore no-op instruction `mov %edi, %edi'.
648 Microsoft system dlls often start with
649 a `mov %edi,%edi' instruction.
650 The 5 bytes before the function start are
651 filled with `nop' instructions.
652 This pattern can be used for hot-patching:
653 The `mov %edi, %edi' instruction can be replaced by a
654 near jump to the location of the 5 `nop' instructions
655 which can be replaced by a 32-bit jump to anywhere
656 in the 32-bit address space. */
657
658 else if (op == 0x8b)
659 {
660 target_read_memory (pc + 1, &op, 1);
661 if (op == 0xff)
662 {
663 pc += 2;
664 target_read_memory (pc, &op, 1);
665 check = 1;
666 }
667 }
668 }
669 return pc;
670 }
671
672 /* Check whether PC points at a code that sets up a new stack frame.
673 If so, it updates CACHE and returns the address of the first
674 instruction after the sequence that sets up the frame or LIMIT,
675 whichever is smaller. If we don't recognize the code, return PC. */
676
677 static CORE_ADDR
678 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
679 struct i386_frame_cache *cache)
680 {
681 struct i386_insn *insn;
682 gdb_byte op;
683 int skip = 0;
684
685 if (limit <= pc)
686 return limit;
687
688 target_read_memory (pc, &op, 1);
689
690 if (op == 0x55) /* pushl %ebp */
691 {
692 /* Take into account that we've executed the `pushl %ebp' that
693 starts this instruction sequence. */
694 cache->saved_regs[I386_EBP_REGNUM] = 0;
695 cache->sp_offset += 4;
696 pc++;
697
698 /* If that's all, return now. */
699 if (limit <= pc)
700 return limit;
701
702 /* Check for some special instructions that might be migrated by
703 GCC into the prologue and skip them. At this point in the
704 prologue, code should only touch the scratch registers %eax,
705 %ecx and %edx, so while the number of posibilities is sheer,
706 it is limited.
707
708 Make sure we only skip these instructions if we later see the
709 `movl %esp, %ebp' that actually sets up the frame. */
710 while (pc + skip < limit)
711 {
712 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
713 if (insn == NULL)
714 break;
715
716 skip += insn->len;
717 }
718
719 /* If that's all, return now. */
720 if (limit <= pc + skip)
721 return limit;
722
723 target_read_memory (pc + skip, &op, 1);
724
725 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
726 switch (op)
727 {
728 case 0x8b:
729 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
730 return pc;
731 break;
732 case 0x89:
733 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
734 return pc;
735 break;
736 default:
737 return pc;
738 }
739
740 /* OK, we actually have a frame. We just don't know how large
741 it is yet. Set its size to zero. We'll adjust it if
742 necessary. We also now commit to skipping the special
743 instructions mentioned before. */
744 cache->locals = 0;
745 pc += (skip + 2);
746
747 /* If that's all, return now. */
748 if (limit <= pc)
749 return limit;
750
751 /* Check for stack adjustment
752
753 subl $XXX, %esp
754
755 NOTE: You can't subtract a 16-bit immediate from a 32-bit
756 reg, so we don't have to worry about a data16 prefix. */
757 target_read_memory (pc, &op, 1);
758 if (op == 0x83)
759 {
760 /* `subl' with 8-bit immediate. */
761 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
762 /* Some instruction starting with 0x83 other than `subl'. */
763 return pc;
764
765 /* `subl' with signed 8-bit immediate (though it wouldn't
766 make sense to be negative). */
767 cache->locals = read_memory_integer (pc + 2, 1);
768 return pc + 3;
769 }
770 else if (op == 0x81)
771 {
772 /* Maybe it is `subl' with a 32-bit immediate. */
773 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
774 /* Some instruction starting with 0x81 other than `subl'. */
775 return pc;
776
777 /* It is `subl' with a 32-bit immediate. */
778 cache->locals = read_memory_integer (pc + 2, 4);
779 return pc + 6;
780 }
781 else
782 {
783 /* Some instruction other than `subl'. */
784 return pc;
785 }
786 }
787 else if (op == 0xc8) /* enter */
788 {
789 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
790 return pc + 4;
791 }
792
793 return pc;
794 }
795
796 /* Check whether PC points at code that saves registers on the stack.
797 If so, it updates CACHE and returns the address of the first
798 instruction after the register saves or CURRENT_PC, whichever is
799 smaller. Otherwise, return PC. */
800
801 static CORE_ADDR
802 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
803 struct i386_frame_cache *cache)
804 {
805 CORE_ADDR offset = 0;
806 gdb_byte op;
807 int i;
808
809 if (cache->locals > 0)
810 offset -= cache->locals;
811 for (i = 0; i < 8 && pc < current_pc; i++)
812 {
813 target_read_memory (pc, &op, 1);
814 if (op < 0x50 || op > 0x57)
815 break;
816
817 offset -= 4;
818 cache->saved_regs[op - 0x50] = offset;
819 cache->sp_offset += 4;
820 pc++;
821 }
822
823 return pc;
824 }
825
826 /* Do a full analysis of the prologue at PC and update CACHE
827 accordingly. Bail out early if CURRENT_PC is reached. Return the
828 address where the analysis stopped.
829
830 We handle these cases:
831
832 The startup sequence can be at the start of the function, or the
833 function can start with a branch to startup code at the end.
834
835 %ebp can be set up with either the 'enter' instruction, or "pushl
836 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
837 once used in the System V compiler).
838
839 Local space is allocated just below the saved %ebp by either the
840 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
841 16-bit unsigned argument for space to allocate, and the 'addl'
842 instruction could have either a signed byte, or 32-bit immediate.
843
844 Next, the registers used by this function are pushed. With the
845 System V compiler they will always be in the order: %edi, %esi,
846 %ebx (and sometimes a harmless bug causes it to also save but not
847 restore %eax); however, the code below is willing to see the pushes
848 in any order, and will handle up to 8 of them.
849
850 If the setup sequence is at the end of the function, then the next
851 instruction will be a branch back to the start. */
852
853 static CORE_ADDR
854 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
855 struct i386_frame_cache *cache)
856 {
857 pc = i386_skip_noop (pc);
858 pc = i386_follow_jump (pc);
859 pc = i386_analyze_struct_return (pc, current_pc, cache);
860 pc = i386_skip_probe (pc);
861 pc = i386_analyze_stack_align (pc, current_pc, cache);
862 pc = i386_analyze_frame_setup (pc, current_pc, cache);
863 return i386_analyze_register_saves (pc, current_pc, cache);
864 }
865
866 /* Return PC of first real instruction. */
867
868 static CORE_ADDR
869 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
870 {
871 static gdb_byte pic_pat[6] =
872 {
873 0xe8, 0, 0, 0, 0, /* call 0x0 */
874 0x5b, /* popl %ebx */
875 };
876 struct i386_frame_cache cache;
877 CORE_ADDR pc;
878 gdb_byte op;
879 int i;
880
881 cache.locals = -1;
882 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
883 if (cache.locals < 0)
884 return start_pc;
885
886 /* Found valid frame setup. */
887
888 /* The native cc on SVR4 in -K PIC mode inserts the following code
889 to get the address of the global offset table (GOT) into register
890 %ebx:
891
892 call 0x0
893 popl %ebx
894 movl %ebx,x(%ebp) (optional)
895 addl y,%ebx
896
897 This code is with the rest of the prologue (at the end of the
898 function), so we have to skip it to get to the first real
899 instruction at the start of the function. */
900
901 for (i = 0; i < 6; i++)
902 {
903 target_read_memory (pc + i, &op, 1);
904 if (pic_pat[i] != op)
905 break;
906 }
907 if (i == 6)
908 {
909 int delta = 6;
910
911 target_read_memory (pc + delta, &op, 1);
912
913 if (op == 0x89) /* movl %ebx, x(%ebp) */
914 {
915 op = read_memory_unsigned_integer (pc + delta + 1, 1);
916
917 if (op == 0x5d) /* One byte offset from %ebp. */
918 delta += 3;
919 else if (op == 0x9d) /* Four byte offset from %ebp. */
920 delta += 6;
921 else /* Unexpected instruction. */
922 delta = 0;
923
924 target_read_memory (pc + delta, &op, 1);
925 }
926
927 /* addl y,%ebx */
928 if (delta > 0 && op == 0x81
929 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
930 {
931 pc += delta + 6;
932 }
933 }
934
935 /* If the function starts with a branch (to startup code at the end)
936 the last instruction should bring us back to the first
937 instruction of the real code. */
938 if (i386_follow_jump (start_pc) != start_pc)
939 pc = i386_follow_jump (pc);
940
941 return pc;
942 }
943
944 /* This function is 64-bit safe. */
945
946 static CORE_ADDR
947 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
948 {
949 gdb_byte buf[8];
950
951 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
952 return extract_typed_address (buf, builtin_type_void_func_ptr);
953 }
954 \f
955
956 /* Normal frames. */
957
958 static struct i386_frame_cache *
959 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
960 {
961 struct i386_frame_cache *cache;
962 gdb_byte buf[4];
963 int i;
964
965 if (*this_cache)
966 return *this_cache;
967
968 cache = i386_alloc_frame_cache ();
969 *this_cache = cache;
970
971 /* In principle, for normal frames, %ebp holds the frame pointer,
972 which holds the base address for the current stack frame.
973 However, for functions that don't need it, the frame pointer is
974 optional. For these "frameless" functions the frame pointer is
975 actually the frame pointer of the calling frame. Signal
976 trampolines are just a special case of a "frameless" function.
977 They (usually) share their frame pointer with the frame that was
978 in progress when the signal occurred. */
979
980 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
981 cache->base = extract_unsigned_integer (buf, 4);
982 if (cache->base == 0)
983 return cache;
984
985 /* For normal frames, %eip is stored at 4(%ebp). */
986 cache->saved_regs[I386_EIP_REGNUM] = 4;
987
988 cache->pc = get_frame_func (this_frame);
989 if (cache->pc != 0)
990 i386_analyze_prologue (cache->pc, get_frame_pc (this_frame), cache);
991
992 if (cache->stack_align)
993 {
994 /* Saved stack pointer has been saved in %ecx. */
995 get_frame_register (this_frame, I386_ECX_REGNUM, buf);
996 cache->saved_sp = extract_unsigned_integer(buf, 4);
997 }
998
999 if (cache->locals < 0)
1000 {
1001 /* We didn't find a valid frame, which means that CACHE->base
1002 currently holds the frame pointer for our calling frame. If
1003 we're at the start of a function, or somewhere half-way its
1004 prologue, the function's frame probably hasn't been fully
1005 setup yet. Try to reconstruct the base address for the stack
1006 frame by looking at the stack pointer. For truly "frameless"
1007 functions this might work too. */
1008
1009 if (cache->stack_align)
1010 {
1011 /* We're halfway aligning the stack. */
1012 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1013 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1014
1015 /* This will be added back below. */
1016 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1017 }
1018 else
1019 {
1020 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1021 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
1022 }
1023 }
1024
1025 /* Now that we have the base address for the stack frame we can
1026 calculate the value of %esp in the calling frame. */
1027 if (cache->saved_sp == 0)
1028 cache->saved_sp = cache->base + 8;
1029
1030 /* Adjust all the saved registers such that they contain addresses
1031 instead of offsets. */
1032 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1033 if (cache->saved_regs[i] != -1)
1034 cache->saved_regs[i] += cache->base;
1035
1036 return cache;
1037 }
1038
1039 static void
1040 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1041 struct frame_id *this_id)
1042 {
1043 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1044
1045 /* This marks the outermost frame. */
1046 if (cache->base == 0)
1047 return;
1048
1049 /* See the end of i386_push_dummy_call. */
1050 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1051 }
1052
1053 static struct value *
1054 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1055 int regnum)
1056 {
1057 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1058
1059 gdb_assert (regnum >= 0);
1060
1061 /* The System V ABI says that:
1062
1063 "The flags register contains the system flags, such as the
1064 direction flag and the carry flag. The direction flag must be
1065 set to the forward (that is, zero) direction before entry and
1066 upon exit from a function. Other user flags have no specified
1067 role in the standard calling sequence and are not preserved."
1068
1069 To guarantee the "upon exit" part of that statement we fake a
1070 saved flags register that has its direction flag cleared.
1071
1072 Note that GCC doesn't seem to rely on the fact that the direction
1073 flag is cleared after a function return; it always explicitly
1074 clears the flag before operations where it matters.
1075
1076 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1077 right thing to do. The way we fake the flags register here makes
1078 it impossible to change it. */
1079
1080 if (regnum == I386_EFLAGS_REGNUM)
1081 {
1082 ULONGEST val;
1083
1084 val = get_frame_register_unsigned (this_frame, regnum);
1085 val &= ~(1 << 10);
1086 return frame_unwind_got_constant (this_frame, regnum, val);
1087 }
1088
1089 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1090 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1091
1092 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1093 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1094
1095 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1096 return frame_unwind_got_memory (this_frame, regnum,
1097 cache->saved_regs[regnum]);
1098
1099 return frame_unwind_got_register (this_frame, regnum, regnum);
1100 }
1101
1102 static const struct frame_unwind i386_frame_unwind =
1103 {
1104 NORMAL_FRAME,
1105 i386_frame_this_id,
1106 i386_frame_prev_register,
1107 NULL,
1108 default_frame_sniffer
1109 };
1110 \f
1111
1112 /* Signal trampolines. */
1113
1114 static struct i386_frame_cache *
1115 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1116 {
1117 struct i386_frame_cache *cache;
1118 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1119 CORE_ADDR addr;
1120 gdb_byte buf[4];
1121
1122 if (*this_cache)
1123 return *this_cache;
1124
1125 cache = i386_alloc_frame_cache ();
1126
1127 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1128 cache->base = extract_unsigned_integer (buf, 4) - 4;
1129
1130 addr = tdep->sigcontext_addr (this_frame);
1131 if (tdep->sc_reg_offset)
1132 {
1133 int i;
1134
1135 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1136
1137 for (i = 0; i < tdep->sc_num_regs; i++)
1138 if (tdep->sc_reg_offset[i] != -1)
1139 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1140 }
1141 else
1142 {
1143 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1144 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1145 }
1146
1147 *this_cache = cache;
1148 return cache;
1149 }
1150
1151 static void
1152 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
1153 struct frame_id *this_id)
1154 {
1155 struct i386_frame_cache *cache =
1156 i386_sigtramp_frame_cache (this_frame, this_cache);
1157
1158 /* See the end of i386_push_dummy_call. */
1159 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
1160 }
1161
1162 static struct value *
1163 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1164 void **this_cache, int regnum)
1165 {
1166 /* Make sure we've initialized the cache. */
1167 i386_sigtramp_frame_cache (this_frame, this_cache);
1168
1169 return i386_frame_prev_register (this_frame, this_cache, regnum);
1170 }
1171
1172 static int
1173 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1174 struct frame_info *this_frame,
1175 void **this_prologue_cache)
1176 {
1177 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1178
1179 /* We shouldn't even bother if we don't have a sigcontext_addr
1180 handler. */
1181 if (tdep->sigcontext_addr == NULL)
1182 return 0;
1183
1184 if (tdep->sigtramp_p != NULL)
1185 {
1186 if (tdep->sigtramp_p (this_frame))
1187 return 1;
1188 }
1189
1190 if (tdep->sigtramp_start != 0)
1191 {
1192 CORE_ADDR pc = get_frame_pc (this_frame);
1193
1194 gdb_assert (tdep->sigtramp_end != 0);
1195 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1196 return 1;
1197 }
1198
1199 return 0;
1200 }
1201
1202 static const struct frame_unwind i386_sigtramp_frame_unwind =
1203 {
1204 SIGTRAMP_FRAME,
1205 i386_sigtramp_frame_this_id,
1206 i386_sigtramp_frame_prev_register,
1207 NULL,
1208 i386_sigtramp_frame_sniffer
1209 };
1210 \f
1211
1212 static CORE_ADDR
1213 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
1214 {
1215 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1216
1217 return cache->base;
1218 }
1219
1220 static const struct frame_base i386_frame_base =
1221 {
1222 &i386_frame_unwind,
1223 i386_frame_base_address,
1224 i386_frame_base_address,
1225 i386_frame_base_address
1226 };
1227
1228 static struct frame_id
1229 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1230 {
1231 CORE_ADDR fp;
1232
1233 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
1234
1235 /* See the end of i386_push_dummy_call. */
1236 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1237 }
1238 \f
1239
1240 /* Figure out where the longjmp will land. Slurp the args out of the
1241 stack. We expect the first arg to be a pointer to the jmp_buf
1242 structure from which we extract the address that we will land at.
1243 This address is copied into PC. This routine returns non-zero on
1244 success. */
1245
1246 static int
1247 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1248 {
1249 gdb_byte buf[4];
1250 CORE_ADDR sp, jb_addr;
1251 struct gdbarch *gdbarch = get_frame_arch (frame);
1252 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
1253
1254 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1255 longjmp will land. */
1256 if (jb_pc_offset == -1)
1257 return 0;
1258
1259 get_frame_register (frame, I386_ESP_REGNUM, buf);
1260 sp = extract_unsigned_integer (buf, 4);
1261 if (target_read_memory (sp + 4, buf, 4))
1262 return 0;
1263
1264 jb_addr = extract_unsigned_integer (buf, 4);
1265 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
1266 return 0;
1267
1268 *pc = extract_unsigned_integer (buf, 4);
1269 return 1;
1270 }
1271 \f
1272
1273 static CORE_ADDR
1274 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1275 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1276 struct value **args, CORE_ADDR sp, int struct_return,
1277 CORE_ADDR struct_addr)
1278 {
1279 gdb_byte buf[4];
1280 int i;
1281
1282 /* Push arguments in reverse order. */
1283 for (i = nargs - 1; i >= 0; i--)
1284 {
1285 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
1286
1287 /* The System V ABI says that:
1288
1289 "An argument's size is increased, if necessary, to make it a
1290 multiple of [32-bit] words. This may require tail padding,
1291 depending on the size of the argument."
1292
1293 This makes sure the stack stays word-aligned. */
1294 sp -= (len + 3) & ~3;
1295 write_memory (sp, value_contents_all (args[i]), len);
1296 }
1297
1298 /* Push value address. */
1299 if (struct_return)
1300 {
1301 sp -= 4;
1302 store_unsigned_integer (buf, 4, struct_addr);
1303 write_memory (sp, buf, 4);
1304 }
1305
1306 /* Store return address. */
1307 sp -= 4;
1308 store_unsigned_integer (buf, 4, bp_addr);
1309 write_memory (sp, buf, 4);
1310
1311 /* Finally, update the stack pointer... */
1312 store_unsigned_integer (buf, 4, sp);
1313 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1314
1315 /* ...and fake a frame pointer. */
1316 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1317
1318 /* MarkK wrote: This "+ 8" is all over the place:
1319 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1320 i386_dummy_id). It's there, since all frame unwinders for
1321 a given target have to agree (within a certain margin) on the
1322 definition of the stack address of a frame. Otherwise
1323 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1324 stack address *before* the function call as a frame's CFA. On
1325 the i386, when %ebp is used as a frame pointer, the offset
1326 between the contents %ebp and the CFA as defined by GCC. */
1327 return sp + 8;
1328 }
1329
1330 /* These registers are used for returning integers (and on some
1331 targets also for returning `struct' and `union' values when their
1332 size and alignment match an integer type). */
1333 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1334 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1335
1336 /* Read, for architecture GDBARCH, a function return value of TYPE
1337 from REGCACHE, and copy that into VALBUF. */
1338
1339 static void
1340 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1341 struct regcache *regcache, gdb_byte *valbuf)
1342 {
1343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1344 int len = TYPE_LENGTH (type);
1345 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1346
1347 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1348 {
1349 if (tdep->st0_regnum < 0)
1350 {
1351 warning (_("Cannot find floating-point return value."));
1352 memset (valbuf, 0, len);
1353 return;
1354 }
1355
1356 /* Floating-point return values can be found in %st(0). Convert
1357 its contents to the desired type. This is probably not
1358 exactly how it would happen on the target itself, but it is
1359 the best we can do. */
1360 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1361 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1362 }
1363 else
1364 {
1365 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1366 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1367
1368 if (len <= low_size)
1369 {
1370 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1371 memcpy (valbuf, buf, len);
1372 }
1373 else if (len <= (low_size + high_size))
1374 {
1375 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1376 memcpy (valbuf, buf, low_size);
1377 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1378 memcpy (valbuf + low_size, buf, len - low_size);
1379 }
1380 else
1381 internal_error (__FILE__, __LINE__,
1382 _("Cannot extract return value of %d bytes long."), len);
1383 }
1384 }
1385
1386 /* Write, for architecture GDBARCH, a function return value of TYPE
1387 from VALBUF into REGCACHE. */
1388
1389 static void
1390 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1391 struct regcache *regcache, const gdb_byte *valbuf)
1392 {
1393 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1394 int len = TYPE_LENGTH (type);
1395
1396 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1397 {
1398 ULONGEST fstat;
1399 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1400
1401 if (tdep->st0_regnum < 0)
1402 {
1403 warning (_("Cannot set floating-point return value."));
1404 return;
1405 }
1406
1407 /* Returning floating-point values is a bit tricky. Apart from
1408 storing the return value in %st(0), we have to simulate the
1409 state of the FPU at function return point. */
1410
1411 /* Convert the value found in VALBUF to the extended
1412 floating-point format used by the FPU. This is probably
1413 not exactly how it would happen on the target itself, but
1414 it is the best we can do. */
1415 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1416 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1417
1418 /* Set the top of the floating-point register stack to 7. The
1419 actual value doesn't really matter, but 7 is what a normal
1420 function return would end up with if the program started out
1421 with a freshly initialized FPU. */
1422 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
1423 fstat |= (7 << 11);
1424 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
1425
1426 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1427 the floating-point register stack to 7, the appropriate value
1428 for the tag word is 0x3fff. */
1429 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
1430 }
1431 else
1432 {
1433 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1434 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1435
1436 if (len <= low_size)
1437 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1438 else if (len <= (low_size + high_size))
1439 {
1440 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1441 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1442 len - low_size, valbuf + low_size);
1443 }
1444 else
1445 internal_error (__FILE__, __LINE__,
1446 _("Cannot store return value of %d bytes long."), len);
1447 }
1448 }
1449 \f
1450
1451 /* This is the variable that is set with "set struct-convention", and
1452 its legitimate values. */
1453 static const char default_struct_convention[] = "default";
1454 static const char pcc_struct_convention[] = "pcc";
1455 static const char reg_struct_convention[] = "reg";
1456 static const char *valid_conventions[] =
1457 {
1458 default_struct_convention,
1459 pcc_struct_convention,
1460 reg_struct_convention,
1461 NULL
1462 };
1463 static const char *struct_convention = default_struct_convention;
1464
1465 /* Return non-zero if TYPE, which is assumed to be a structure,
1466 a union type, or an array type, should be returned in registers
1467 for architecture GDBARCH. */
1468
1469 static int
1470 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1471 {
1472 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1473 enum type_code code = TYPE_CODE (type);
1474 int len = TYPE_LENGTH (type);
1475
1476 gdb_assert (code == TYPE_CODE_STRUCT
1477 || code == TYPE_CODE_UNION
1478 || code == TYPE_CODE_ARRAY);
1479
1480 if (struct_convention == pcc_struct_convention
1481 || (struct_convention == default_struct_convention
1482 && tdep->struct_return == pcc_struct_return))
1483 return 0;
1484
1485 /* Structures consisting of a single `float', `double' or 'long
1486 double' member are returned in %st(0). */
1487 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1488 {
1489 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1490 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1491 return (len == 4 || len == 8 || len == 12);
1492 }
1493
1494 return (len == 1 || len == 2 || len == 4 || len == 8);
1495 }
1496
1497 /* Determine, for architecture GDBARCH, how a return value of TYPE
1498 should be returned. If it is supposed to be returned in registers,
1499 and READBUF is non-zero, read the appropriate value from REGCACHE,
1500 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1501 from WRITEBUF into REGCACHE. */
1502
1503 static enum return_value_convention
1504 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
1505 struct type *type, struct regcache *regcache,
1506 gdb_byte *readbuf, const gdb_byte *writebuf)
1507 {
1508 enum type_code code = TYPE_CODE (type);
1509
1510 if (((code == TYPE_CODE_STRUCT
1511 || code == TYPE_CODE_UNION
1512 || code == TYPE_CODE_ARRAY)
1513 && !i386_reg_struct_return_p (gdbarch, type))
1514 /* 128-bit decimal float uses the struct return convention. */
1515 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
1516 {
1517 /* The System V ABI says that:
1518
1519 "A function that returns a structure or union also sets %eax
1520 to the value of the original address of the caller's area
1521 before it returns. Thus when the caller receives control
1522 again, the address of the returned object resides in register
1523 %eax and can be used to access the object."
1524
1525 So the ABI guarantees that we can always find the return
1526 value just after the function has returned. */
1527
1528 /* Note that the ABI doesn't mention functions returning arrays,
1529 which is something possible in certain languages such as Ada.
1530 In this case, the value is returned as if it was wrapped in
1531 a record, so the convention applied to records also applies
1532 to arrays. */
1533
1534 if (readbuf)
1535 {
1536 ULONGEST addr;
1537
1538 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1539 read_memory (addr, readbuf, TYPE_LENGTH (type));
1540 }
1541
1542 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1543 }
1544
1545 /* This special case is for structures consisting of a single
1546 `float', `double' or 'long double' member. These structures are
1547 returned in %st(0). For these structures, we call ourselves
1548 recursively, changing TYPE into the type of the first member of
1549 the structure. Since that should work for all structures that
1550 have only one member, we don't bother to check the member's type
1551 here. */
1552 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1553 {
1554 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1555 return i386_return_value (gdbarch, func_type, type, regcache,
1556 readbuf, writebuf);
1557 }
1558
1559 if (readbuf)
1560 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1561 if (writebuf)
1562 i386_store_return_value (gdbarch, type, regcache, writebuf);
1563
1564 return RETURN_VALUE_REGISTER_CONVENTION;
1565 }
1566 \f
1567
1568 /* Type for %eflags. */
1569 struct type *i386_eflags_type;
1570
1571 /* Type for %mxcsr. */
1572 struct type *i386_mxcsr_type;
1573
1574 /* Construct types for ISA-specific registers. */
1575 static void
1576 i386_init_types (void)
1577 {
1578 struct type *type;
1579
1580 type = init_flags_type ("builtin_type_i386_eflags", 4);
1581 append_flags_type_flag (type, 0, "CF");
1582 append_flags_type_flag (type, 1, NULL);
1583 append_flags_type_flag (type, 2, "PF");
1584 append_flags_type_flag (type, 4, "AF");
1585 append_flags_type_flag (type, 6, "ZF");
1586 append_flags_type_flag (type, 7, "SF");
1587 append_flags_type_flag (type, 8, "TF");
1588 append_flags_type_flag (type, 9, "IF");
1589 append_flags_type_flag (type, 10, "DF");
1590 append_flags_type_flag (type, 11, "OF");
1591 append_flags_type_flag (type, 14, "NT");
1592 append_flags_type_flag (type, 16, "RF");
1593 append_flags_type_flag (type, 17, "VM");
1594 append_flags_type_flag (type, 18, "AC");
1595 append_flags_type_flag (type, 19, "VIF");
1596 append_flags_type_flag (type, 20, "VIP");
1597 append_flags_type_flag (type, 21, "ID");
1598 i386_eflags_type = type;
1599
1600 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1601 append_flags_type_flag (type, 0, "IE");
1602 append_flags_type_flag (type, 1, "DE");
1603 append_flags_type_flag (type, 2, "ZE");
1604 append_flags_type_flag (type, 3, "OE");
1605 append_flags_type_flag (type, 4, "UE");
1606 append_flags_type_flag (type, 5, "PE");
1607 append_flags_type_flag (type, 6, "DAZ");
1608 append_flags_type_flag (type, 7, "IM");
1609 append_flags_type_flag (type, 8, "DM");
1610 append_flags_type_flag (type, 9, "ZM");
1611 append_flags_type_flag (type, 10, "OM");
1612 append_flags_type_flag (type, 11, "UM");
1613 append_flags_type_flag (type, 12, "PM");
1614 append_flags_type_flag (type, 15, "FZ");
1615 i386_mxcsr_type = type;
1616 }
1617
1618 /* Construct vector type for MMX registers. */
1619 struct type *
1620 i386_mmx_type (struct gdbarch *gdbarch)
1621 {
1622 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1623
1624 if (!tdep->i386_mmx_type)
1625 {
1626 /* The type we're building is this: */
1627 #if 0
1628 union __gdb_builtin_type_vec64i
1629 {
1630 int64_t uint64;
1631 int32_t v2_int32[2];
1632 int16_t v4_int16[4];
1633 int8_t v8_int8[8];
1634 };
1635 #endif
1636
1637 struct type *t;
1638
1639 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1640 append_composite_type_field (t, "uint64", builtin_type_int64);
1641 append_composite_type_field (t, "v2_int32",
1642 init_vector_type (builtin_type_int32, 2));
1643 append_composite_type_field (t, "v4_int16",
1644 init_vector_type (builtin_type_int16, 4));
1645 append_composite_type_field (t, "v8_int8",
1646 init_vector_type (builtin_type_int8, 8));
1647
1648 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1649 TYPE_NAME (t) = "builtin_type_vec64i";
1650 tdep->i386_mmx_type = t;
1651 }
1652
1653 return tdep->i386_mmx_type;
1654 }
1655
1656 struct type *
1657 i386_sse_type (struct gdbarch *gdbarch)
1658 {
1659 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1660
1661 if (!tdep->i386_sse_type)
1662 {
1663 /* The type we're building is this: */
1664 #if 0
1665 union __gdb_builtin_type_vec128i
1666 {
1667 int128_t uint128;
1668 int64_t v2_int64[2];
1669 int32_t v4_int32[4];
1670 int16_t v8_int16[8];
1671 int8_t v16_int8[16];
1672 double v2_double[2];
1673 float v4_float[4];
1674 };
1675 #endif
1676
1677 struct type *t;
1678
1679 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1680 append_composite_type_field (t, "v4_float",
1681 init_vector_type (builtin_type_float, 4));
1682 append_composite_type_field (t, "v2_double",
1683 init_vector_type (builtin_type_double, 2));
1684 append_composite_type_field (t, "v16_int8",
1685 init_vector_type (builtin_type_int8, 16));
1686 append_composite_type_field (t, "v8_int16",
1687 init_vector_type (builtin_type_int16, 8));
1688 append_composite_type_field (t, "v4_int32",
1689 init_vector_type (builtin_type_int32, 4));
1690 append_composite_type_field (t, "v2_int64",
1691 init_vector_type (builtin_type_int64, 2));
1692 append_composite_type_field (t, "uint128", builtin_type_int128);
1693
1694 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1695 TYPE_NAME (t) = "builtin_type_vec128i";
1696 tdep->i386_sse_type = t;
1697 }
1698
1699 return tdep->i386_sse_type;
1700 }
1701
1702 /* Return the GDB type object for the "standard" data type of data in
1703 register REGNUM. Perhaps %esi and %edi should go here, but
1704 potentially they could be used for things other than address. */
1705
1706 static struct type *
1707 i386_register_type (struct gdbarch *gdbarch, int regnum)
1708 {
1709 if (regnum == I386_EIP_REGNUM)
1710 return builtin_type_void_func_ptr;
1711
1712 if (regnum == I386_EFLAGS_REGNUM)
1713 return i386_eflags_type;
1714
1715 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1716 return builtin_type_void_data_ptr;
1717
1718 if (i386_fp_regnum_p (gdbarch, regnum))
1719 return builtin_type_i387_ext;
1720
1721 if (i386_mmx_regnum_p (gdbarch, regnum))
1722 return i386_mmx_type (gdbarch);
1723
1724 if (i386_sse_regnum_p (gdbarch, regnum))
1725 return i386_sse_type (gdbarch);
1726
1727 if (regnum == I387_MXCSR_REGNUM (gdbarch_tdep (gdbarch)))
1728 return i386_mxcsr_type;
1729
1730 return builtin_type_int;
1731 }
1732
1733 /* Map a cooked register onto a raw register or memory. For the i386,
1734 the MMX registers need to be mapped onto floating point registers. */
1735
1736 static int
1737 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1738 {
1739 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1740 int mmxreg, fpreg;
1741 ULONGEST fstat;
1742 int tos;
1743
1744 mmxreg = regnum - tdep->mm0_regnum;
1745 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
1746 tos = (fstat >> 11) & 0x7;
1747 fpreg = (mmxreg + tos) % 8;
1748
1749 return (I387_ST0_REGNUM (tdep) + fpreg);
1750 }
1751
1752 static void
1753 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1754 int regnum, gdb_byte *buf)
1755 {
1756 if (i386_mmx_regnum_p (gdbarch, regnum))
1757 {
1758 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1759 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1760
1761 /* Extract (always little endian). */
1762 regcache_raw_read (regcache, fpnum, mmx_buf);
1763 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1764 }
1765 else
1766 regcache_raw_read (regcache, regnum, buf);
1767 }
1768
1769 static void
1770 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1771 int regnum, const gdb_byte *buf)
1772 {
1773 if (i386_mmx_regnum_p (gdbarch, regnum))
1774 {
1775 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1776 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1777
1778 /* Read ... */
1779 regcache_raw_read (regcache, fpnum, mmx_buf);
1780 /* ... Modify ... (always little endian). */
1781 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
1782 /* ... Write. */
1783 regcache_raw_write (regcache, fpnum, mmx_buf);
1784 }
1785 else
1786 regcache_raw_write (regcache, regnum, buf);
1787 }
1788 \f
1789
1790 /* Return the register number of the register allocated by GCC after
1791 REGNUM, or -1 if there is no such register. */
1792
1793 static int
1794 i386_next_regnum (int regnum)
1795 {
1796 /* GCC allocates the registers in the order:
1797
1798 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1799
1800 Since storing a variable in %esp doesn't make any sense we return
1801 -1 for %ebp and for %esp itself. */
1802 static int next_regnum[] =
1803 {
1804 I386_EDX_REGNUM, /* Slot for %eax. */
1805 I386_EBX_REGNUM, /* Slot for %ecx. */
1806 I386_ECX_REGNUM, /* Slot for %edx. */
1807 I386_ESI_REGNUM, /* Slot for %ebx. */
1808 -1, -1, /* Slots for %esp and %ebp. */
1809 I386_EDI_REGNUM, /* Slot for %esi. */
1810 I386_EBP_REGNUM /* Slot for %edi. */
1811 };
1812
1813 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1814 return next_regnum[regnum];
1815
1816 return -1;
1817 }
1818
1819 /* Return nonzero if a value of type TYPE stored in register REGNUM
1820 needs any special handling. */
1821
1822 static int
1823 i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
1824 {
1825 int len = TYPE_LENGTH (type);
1826
1827 /* Values may be spread across multiple registers. Most debugging
1828 formats aren't expressive enough to specify the locations, so
1829 some heuristics is involved. Right now we only handle types that
1830 have a length that is a multiple of the word size, since GCC
1831 doesn't seem to put any other types into registers. */
1832 if (len > 4 && len % 4 == 0)
1833 {
1834 int last_regnum = regnum;
1835
1836 while (len > 4)
1837 {
1838 last_regnum = i386_next_regnum (last_regnum);
1839 len -= 4;
1840 }
1841
1842 if (last_regnum != -1)
1843 return 1;
1844 }
1845
1846 return i387_convert_register_p (gdbarch, regnum, type);
1847 }
1848
1849 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1850 return its contents in TO. */
1851
1852 static void
1853 i386_register_to_value (struct frame_info *frame, int regnum,
1854 struct type *type, gdb_byte *to)
1855 {
1856 struct gdbarch *gdbarch = get_frame_arch (frame);
1857 int len = TYPE_LENGTH (type);
1858
1859 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1860 available in FRAME (i.e. if it wasn't saved)? */
1861
1862 if (i386_fp_regnum_p (gdbarch, regnum))
1863 {
1864 i387_register_to_value (frame, regnum, type, to);
1865 return;
1866 }
1867
1868 /* Read a value spread across multiple registers. */
1869
1870 gdb_assert (len > 4 && len % 4 == 0);
1871
1872 while (len > 0)
1873 {
1874 gdb_assert (regnum != -1);
1875 gdb_assert (register_size (gdbarch, regnum) == 4);
1876
1877 get_frame_register (frame, regnum, to);
1878 regnum = i386_next_regnum (regnum);
1879 len -= 4;
1880 to += 4;
1881 }
1882 }
1883
1884 /* Write the contents FROM of a value of type TYPE into register
1885 REGNUM in frame FRAME. */
1886
1887 static void
1888 i386_value_to_register (struct frame_info *frame, int regnum,
1889 struct type *type, const gdb_byte *from)
1890 {
1891 int len = TYPE_LENGTH (type);
1892
1893 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
1894 {
1895 i387_value_to_register (frame, regnum, type, from);
1896 return;
1897 }
1898
1899 /* Write a value spread across multiple registers. */
1900
1901 gdb_assert (len > 4 && len % 4 == 0);
1902
1903 while (len > 0)
1904 {
1905 gdb_assert (regnum != -1);
1906 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
1907
1908 put_frame_register (frame, regnum, from);
1909 regnum = i386_next_regnum (regnum);
1910 len -= 4;
1911 from += 4;
1912 }
1913 }
1914 \f
1915 /* Supply register REGNUM from the buffer specified by GREGS and LEN
1916 in the general-purpose register set REGSET to register cache
1917 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1918
1919 void
1920 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1921 int regnum, const void *gregs, size_t len)
1922 {
1923 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1924 const gdb_byte *regs = gregs;
1925 int i;
1926
1927 gdb_assert (len == tdep->sizeof_gregset);
1928
1929 for (i = 0; i < tdep->gregset_num_regs; i++)
1930 {
1931 if ((regnum == i || regnum == -1)
1932 && tdep->gregset_reg_offset[i] != -1)
1933 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1934 }
1935 }
1936
1937 /* Collect register REGNUM from the register cache REGCACHE and store
1938 it in the buffer specified by GREGS and LEN as described by the
1939 general-purpose register set REGSET. If REGNUM is -1, do this for
1940 all registers in REGSET. */
1941
1942 void
1943 i386_collect_gregset (const struct regset *regset,
1944 const struct regcache *regcache,
1945 int regnum, void *gregs, size_t len)
1946 {
1947 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1948 gdb_byte *regs = gregs;
1949 int i;
1950
1951 gdb_assert (len == tdep->sizeof_gregset);
1952
1953 for (i = 0; i < tdep->gregset_num_regs; i++)
1954 {
1955 if ((regnum == i || regnum == -1)
1956 && tdep->gregset_reg_offset[i] != -1)
1957 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1958 }
1959 }
1960
1961 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1962 in the floating-point register set REGSET to register cache
1963 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1964
1965 static void
1966 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1967 int regnum, const void *fpregs, size_t len)
1968 {
1969 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1970
1971 if (len == I387_SIZEOF_FXSAVE)
1972 {
1973 i387_supply_fxsave (regcache, regnum, fpregs);
1974 return;
1975 }
1976
1977 gdb_assert (len == tdep->sizeof_fpregset);
1978 i387_supply_fsave (regcache, regnum, fpregs);
1979 }
1980
1981 /* Collect register REGNUM from the register cache REGCACHE and store
1982 it in the buffer specified by FPREGS and LEN as described by the
1983 floating-point register set REGSET. If REGNUM is -1, do this for
1984 all registers in REGSET. */
1985
1986 static void
1987 i386_collect_fpregset (const struct regset *regset,
1988 const struct regcache *regcache,
1989 int regnum, void *fpregs, size_t len)
1990 {
1991 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1992
1993 if (len == I387_SIZEOF_FXSAVE)
1994 {
1995 i387_collect_fxsave (regcache, regnum, fpregs);
1996 return;
1997 }
1998
1999 gdb_assert (len == tdep->sizeof_fpregset);
2000 i387_collect_fsave (regcache, regnum, fpregs);
2001 }
2002
2003 /* Return the appropriate register set for the core section identified
2004 by SECT_NAME and SECT_SIZE. */
2005
2006 const struct regset *
2007 i386_regset_from_core_section (struct gdbarch *gdbarch,
2008 const char *sect_name, size_t sect_size)
2009 {
2010 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2011
2012 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2013 {
2014 if (tdep->gregset == NULL)
2015 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2016 i386_collect_gregset);
2017 return tdep->gregset;
2018 }
2019
2020 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2021 || (strcmp (sect_name, ".reg-xfp") == 0
2022 && sect_size == I387_SIZEOF_FXSAVE))
2023 {
2024 if (tdep->fpregset == NULL)
2025 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2026 i386_collect_fpregset);
2027 return tdep->fpregset;
2028 }
2029
2030 return NULL;
2031 }
2032 \f
2033
2034 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2035
2036 CORE_ADDR
2037 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
2038 {
2039 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
2040 {
2041 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
2042 struct minimal_symbol *indsym =
2043 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2044 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2045
2046 if (symname)
2047 {
2048 if (strncmp (symname, "__imp_", 6) == 0
2049 || strncmp (symname, "_imp_", 5) == 0)
2050 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2051 }
2052 }
2053 return 0; /* Not a trampoline. */
2054 }
2055 \f
2056
2057 /* Return whether the THIS_FRAME corresponds to a sigtramp
2058 routine. */
2059
2060 static int
2061 i386_sigtramp_p (struct frame_info *this_frame)
2062 {
2063 CORE_ADDR pc = get_frame_pc (this_frame);
2064 char *name;
2065
2066 find_pc_partial_function (pc, &name, NULL, NULL);
2067 return (name && strcmp ("_sigtramp", name) == 0);
2068 }
2069 \f
2070
2071 /* We have two flavours of disassembly. The machinery on this page
2072 deals with switching between those. */
2073
2074 static int
2075 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2076 {
2077 gdb_assert (disassembly_flavor == att_flavor
2078 || disassembly_flavor == intel_flavor);
2079
2080 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2081 constified, cast to prevent a compiler warning. */
2082 info->disassembler_options = (char *) disassembly_flavor;
2083
2084 return print_insn_i386 (pc, info);
2085 }
2086 \f
2087
2088 /* There are a few i386 architecture variants that differ only
2089 slightly from the generic i386 target. For now, we don't give them
2090 their own source file, but include them here. As a consequence,
2091 they'll always be included. */
2092
2093 /* System V Release 4 (SVR4). */
2094
2095 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2096 routine. */
2097
2098 static int
2099 i386_svr4_sigtramp_p (struct frame_info *this_frame)
2100 {
2101 CORE_ADDR pc = get_frame_pc (this_frame);
2102 char *name;
2103
2104 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2105 currently unknown. */
2106 find_pc_partial_function (pc, &name, NULL, NULL);
2107 return (name && (strcmp ("_sigreturn", name) == 0
2108 || strcmp ("_sigacthandler", name) == 0
2109 || strcmp ("sigvechandler", name) == 0));
2110 }
2111
2112 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
2113 address of the associated sigcontext (ucontext) structure. */
2114
2115 static CORE_ADDR
2116 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
2117 {
2118 gdb_byte buf[4];
2119 CORE_ADDR sp;
2120
2121 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2122 sp = extract_unsigned_integer (buf, 4);
2123
2124 return read_memory_unsigned_integer (sp + 8, 4);
2125 }
2126 \f
2127
2128 /* Generic ELF. */
2129
2130 void
2131 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2132 {
2133 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2134 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2135 }
2136
2137 /* System V Release 4 (SVR4). */
2138
2139 void
2140 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2141 {
2142 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2143
2144 /* System V Release 4 uses ELF. */
2145 i386_elf_init_abi (info, gdbarch);
2146
2147 /* System V Release 4 has shared libraries. */
2148 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2149
2150 tdep->sigtramp_p = i386_svr4_sigtramp_p;
2151 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
2152 tdep->sc_pc_offset = 36 + 14 * 4;
2153 tdep->sc_sp_offset = 36 + 17 * 4;
2154
2155 tdep->jb_pc_offset = 20;
2156 }
2157
2158 /* DJGPP. */
2159
2160 static void
2161 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2162 {
2163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2164
2165 /* DJGPP doesn't have any special frames for signal handlers. */
2166 tdep->sigtramp_p = NULL;
2167
2168 tdep->jb_pc_offset = 36;
2169 }
2170 \f
2171
2172 /* i386 register groups. In addition to the normal groups, add "mmx"
2173 and "sse". */
2174
2175 static struct reggroup *i386_sse_reggroup;
2176 static struct reggroup *i386_mmx_reggroup;
2177
2178 static void
2179 i386_init_reggroups (void)
2180 {
2181 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2182 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2183 }
2184
2185 static void
2186 i386_add_reggroups (struct gdbarch *gdbarch)
2187 {
2188 reggroup_add (gdbarch, i386_sse_reggroup);
2189 reggroup_add (gdbarch, i386_mmx_reggroup);
2190 reggroup_add (gdbarch, general_reggroup);
2191 reggroup_add (gdbarch, float_reggroup);
2192 reggroup_add (gdbarch, all_reggroup);
2193 reggroup_add (gdbarch, save_reggroup);
2194 reggroup_add (gdbarch, restore_reggroup);
2195 reggroup_add (gdbarch, vector_reggroup);
2196 reggroup_add (gdbarch, system_reggroup);
2197 }
2198
2199 int
2200 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2201 struct reggroup *group)
2202 {
2203 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2204 || i386_mxcsr_regnum_p (gdbarch, regnum));
2205 int fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
2206 || i386_fpc_regnum_p (gdbarch, regnum));
2207 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2208
2209 if (group == i386_mmx_reggroup)
2210 return mmx_regnum_p;
2211 if (group == i386_sse_reggroup)
2212 return sse_regnum_p;
2213 if (group == vector_reggroup)
2214 return (mmx_regnum_p || sse_regnum_p);
2215 if (group == float_reggroup)
2216 return fp_regnum_p;
2217 if (group == general_reggroup)
2218 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2219
2220 return default_register_reggroup_p (gdbarch, regnum, group);
2221 }
2222 \f
2223
2224 /* Get the ARGIth function argument for the current function. */
2225
2226 static CORE_ADDR
2227 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2228 struct type *type)
2229 {
2230 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2231 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2232 }
2233
2234 \f
2235 static struct gdbarch *
2236 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2237 {
2238 struct gdbarch_tdep *tdep;
2239 struct gdbarch *gdbarch;
2240
2241 /* If there is already a candidate, use it. */
2242 arches = gdbarch_list_lookup_by_info (arches, &info);
2243 if (arches != NULL)
2244 return arches->gdbarch;
2245
2246 /* Allocate space for the new architecture. */
2247 tdep = XCALLOC (1, struct gdbarch_tdep);
2248 gdbarch = gdbarch_alloc (&info, tdep);
2249
2250 /* General-purpose registers. */
2251 tdep->gregset = NULL;
2252 tdep->gregset_reg_offset = NULL;
2253 tdep->gregset_num_regs = I386_NUM_GREGS;
2254 tdep->sizeof_gregset = 0;
2255
2256 /* Floating-point registers. */
2257 tdep->fpregset = NULL;
2258 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2259
2260 /* The default settings include the FPU registers, the MMX registers
2261 and the SSE registers. This can be overridden for a specific ABI
2262 by adjusting the members `st0_regnum', `mm0_regnum' and
2263 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2264 will show up in the output of "info all-registers". Ideally we
2265 should try to autodetect whether they are available, such that we
2266 can prevent "info all-registers" from displaying registers that
2267 aren't available.
2268
2269 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2270 [the SSE registers] always (even when they don't exist) or never
2271 showing them to the user (even when they do exist), I prefer the
2272 former over the latter. */
2273
2274 tdep->st0_regnum = I386_ST0_REGNUM;
2275
2276 /* The MMX registers are implemented as pseudo-registers. Put off
2277 calculating the register number for %mm0 until we know the number
2278 of raw registers. */
2279 tdep->mm0_regnum = 0;
2280
2281 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
2282 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2283
2284 tdep->jb_pc_offset = -1;
2285 tdep->struct_return = pcc_struct_return;
2286 tdep->sigtramp_start = 0;
2287 tdep->sigtramp_end = 0;
2288 tdep->sigtramp_p = i386_sigtramp_p;
2289 tdep->sigcontext_addr = NULL;
2290 tdep->sc_reg_offset = NULL;
2291 tdep->sc_pc_offset = -1;
2292 tdep->sc_sp_offset = -1;
2293
2294 /* The format used for `long double' on almost all i386 targets is
2295 the i387 extended floating-point format. In fact, of all targets
2296 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2297 on having a `long double' that's not `long' at all. */
2298 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
2299
2300 /* Although the i387 extended floating-point has only 80 significant
2301 bits, a `long double' actually takes up 96, probably to enforce
2302 alignment. */
2303 set_gdbarch_long_double_bit (gdbarch, 96);
2304
2305 /* The default ABI includes general-purpose registers,
2306 floating-point registers, and the SSE registers. */
2307 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2308 set_gdbarch_register_name (gdbarch, i386_register_name);
2309 set_gdbarch_register_type (gdbarch, i386_register_type);
2310
2311 /* Register numbers of various important registers. */
2312 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2313 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2314 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2315 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2316
2317 /* NOTE: kettenis/20040418: GCC does have two possible register
2318 numbering schemes on the i386: dbx and SVR4. These schemes
2319 differ in how they number %ebp, %esp, %eflags, and the
2320 floating-point registers, and are implemented by the arrays
2321 dbx_register_map[] and svr4_dbx_register_map in
2322 gcc/config/i386.c. GCC also defines a third numbering scheme in
2323 gcc/config/i386.c, which it designates as the "default" register
2324 map used in 64bit mode. This last register numbering scheme is
2325 implemented in dbx64_register_map, and is used for AMD64; see
2326 amd64-tdep.c.
2327
2328 Currently, each GCC i386 target always uses the same register
2329 numbering scheme across all its supported debugging formats
2330 i.e. SDB (COFF), stabs and DWARF 2. This is because
2331 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2332 DBX_REGISTER_NUMBER macro which is defined by each target's
2333 respective config header in a manner independent of the requested
2334 output debugging format.
2335
2336 This does not match the arrangement below, which presumes that
2337 the SDB and stabs numbering schemes differ from the DWARF and
2338 DWARF 2 ones. The reason for this arrangement is that it is
2339 likely to get the numbering scheme for the target's
2340 default/native debug format right. For targets where GCC is the
2341 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2342 targets where the native toolchain uses a different numbering
2343 scheme for a particular debug format (stabs-in-ELF on Solaris)
2344 the defaults below will have to be overridden, like
2345 i386_elf_init_abi() does. */
2346
2347 /* Use the dbx register numbering scheme for stabs and COFF. */
2348 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2349 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2350
2351 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2352 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2353 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2354
2355 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
2356 be in use on any of the supported i386 targets. */
2357
2358 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2359
2360 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2361
2362 /* Call dummy code. */
2363 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2364
2365 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2366 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2367 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2368
2369 set_gdbarch_return_value (gdbarch, i386_return_value);
2370
2371 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2372
2373 /* Stack grows downward. */
2374 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2375
2376 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2377 set_gdbarch_decr_pc_after_break (gdbarch, 1);
2378
2379 set_gdbarch_frame_args_skip (gdbarch, 8);
2380
2381 /* Wire in the MMX registers. */
2382 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2383 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2384 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2385
2386 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2387
2388 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
2389
2390 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2391
2392 /* Add the i386 register groups. */
2393 i386_add_reggroups (gdbarch);
2394 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2395
2396 /* Helper for function argument information. */
2397 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2398
2399 /* Hook in the DWARF CFI frame unwinder. */
2400 dwarf2_append_unwinders (gdbarch);
2401
2402 frame_base_set_default (gdbarch, &i386_frame_base);
2403
2404 /* Hook in ABI-specific overrides, if they have been registered. */
2405 gdbarch_init_osabi (info, gdbarch);
2406
2407 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
2408 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
2409
2410 /* If we have a register mapping, enable the generic core file
2411 support, unless it has already been enabled. */
2412 if (tdep->gregset_reg_offset
2413 && !gdbarch_regset_from_core_section_p (gdbarch))
2414 set_gdbarch_regset_from_core_section (gdbarch,
2415 i386_regset_from_core_section);
2416
2417 /* Unless support for MMX has been disabled, make %mm0 the first
2418 pseudo-register. */
2419 if (tdep->mm0_regnum == 0)
2420 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2421
2422 return gdbarch;
2423 }
2424
2425 static enum gdb_osabi
2426 i386_coff_osabi_sniffer (bfd *abfd)
2427 {
2428 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2429 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2430 return GDB_OSABI_GO32;
2431
2432 return GDB_OSABI_UNKNOWN;
2433 }
2434 \f
2435
2436 /* Provide a prototype to silence -Wmissing-prototypes. */
2437 void _initialize_i386_tdep (void);
2438
2439 void
2440 _initialize_i386_tdep (void)
2441 {
2442 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2443
2444 /* Add the variable that controls the disassembly flavor. */
2445 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2446 &disassembly_flavor, _("\
2447 Set the disassembly flavor."), _("\
2448 Show the disassembly flavor."), _("\
2449 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2450 NULL,
2451 NULL, /* FIXME: i18n: */
2452 &setlist, &showlist);
2453
2454 /* Add the variable that controls the convention for returning
2455 structs. */
2456 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2457 &struct_convention, _("\
2458 Set the convention for returning small structs."), _("\
2459 Show the convention for returning small structs."), _("\
2460 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2461 is \"default\"."),
2462 NULL,
2463 NULL, /* FIXME: i18n: */
2464 &setlist, &showlist);
2465
2466 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2467 i386_coff_osabi_sniffer);
2468
2469 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2470 i386_svr4_init_abi);
2471 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2472 i386_go32_init_abi);
2473
2474 /* Initialize the i386-specific register groups & types. */
2475 i386_init_reggroups ();
2476 i386_init_types();
2477 }
This page took 0.107494 seconds and 5 git commands to generate.