2009-12-16 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "symtab.h"
43 #include "target.h"
44 #include "value.h"
45 #include "dis-asm.h"
46
47 #include "gdb_assert.h"
48 #include "gdb_string.h"
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52
53 #include "record.h"
54 #include <stdint.h>
55
56 /* Register names. */
57
58 static char *i386_register_names[] =
59 {
60 "eax", "ecx", "edx", "ebx",
61 "esp", "ebp", "esi", "edi",
62 "eip", "eflags", "cs", "ss",
63 "ds", "es", "fs", "gs",
64 "st0", "st1", "st2", "st3",
65 "st4", "st5", "st6", "st7",
66 "fctrl", "fstat", "ftag", "fiseg",
67 "fioff", "foseg", "fooff", "fop",
68 "xmm0", "xmm1", "xmm2", "xmm3",
69 "xmm4", "xmm5", "xmm6", "xmm7",
70 "mxcsr"
71 };
72
73 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
74
75 /* Register names for MMX pseudo-registers. */
76
77 static char *i386_mmx_names[] =
78 {
79 "mm0", "mm1", "mm2", "mm3",
80 "mm4", "mm5", "mm6", "mm7"
81 };
82
83 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
84
85 static int
86 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
87 {
88 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
89
90 if (mm0_regnum < 0)
91 return 0;
92
93 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
94 }
95
96 /* SSE register? */
97
98 static int
99 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
100 {
101 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
102
103 if (I387_NUM_XMM_REGS (tdep) == 0)
104 return 0;
105
106 return (I387_XMM0_REGNUM (tdep) <= regnum
107 && regnum < I387_MXCSR_REGNUM (tdep));
108 }
109
110 static int
111 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
112 {
113 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
114
115 if (I387_NUM_XMM_REGS (tdep) == 0)
116 return 0;
117
118 return (regnum == I387_MXCSR_REGNUM (tdep));
119 }
120
121 /* FP register? */
122
123 int
124 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
125 {
126 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
127
128 if (I387_ST0_REGNUM (tdep) < 0)
129 return 0;
130
131 return (I387_ST0_REGNUM (tdep) <= regnum
132 && regnum < I387_FCTRL_REGNUM (tdep));
133 }
134
135 int
136 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
137 {
138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
139
140 if (I387_ST0_REGNUM (tdep) < 0)
141 return 0;
142
143 return (I387_FCTRL_REGNUM (tdep) <= regnum
144 && regnum < I387_XMM0_REGNUM (tdep));
145 }
146
147 /* Return the name of register REGNUM. */
148
149 const char *
150 i386_register_name (struct gdbarch *gdbarch, int regnum)
151 {
152 if (i386_mmx_regnum_p (gdbarch, regnum))
153 return i386_mmx_names[regnum - I387_MM0_REGNUM (gdbarch_tdep (gdbarch))];
154
155 if (regnum >= 0 && regnum < i386_num_register_names)
156 return i386_register_names[regnum];
157
158 return NULL;
159 }
160
161 /* Convert a dbx register number REG to the appropriate register
162 number used by GDB. */
163
164 static int
165 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
166 {
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168
169 /* This implements what GCC calls the "default" register map
170 (dbx_register_map[]). */
171
172 if (reg >= 0 && reg <= 7)
173 {
174 /* General-purpose registers. The debug info calls %ebp
175 register 4, and %esp register 5. */
176 if (reg == 4)
177 return 5;
178 else if (reg == 5)
179 return 4;
180 else return reg;
181 }
182 else if (reg >= 12 && reg <= 19)
183 {
184 /* Floating-point registers. */
185 return reg - 12 + I387_ST0_REGNUM (tdep);
186 }
187 else if (reg >= 21 && reg <= 28)
188 {
189 /* SSE registers. */
190 return reg - 21 + I387_XMM0_REGNUM (tdep);
191 }
192 else if (reg >= 29 && reg <= 36)
193 {
194 /* MMX registers. */
195 return reg - 29 + I387_MM0_REGNUM (tdep);
196 }
197
198 /* This will hopefully provoke a warning. */
199 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
200 }
201
202 /* Convert SVR4 register number REG to the appropriate register number
203 used by GDB. */
204
205 static int
206 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
207 {
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209
210 /* This implements the GCC register map that tries to be compatible
211 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
212
213 /* The SVR4 register numbering includes %eip and %eflags, and
214 numbers the floating point registers differently. */
215 if (reg >= 0 && reg <= 9)
216 {
217 /* General-purpose registers. */
218 return reg;
219 }
220 else if (reg >= 11 && reg <= 18)
221 {
222 /* Floating-point registers. */
223 return reg - 11 + I387_ST0_REGNUM (tdep);
224 }
225 else if (reg >= 21 && reg <= 36)
226 {
227 /* The SSE and MMX registers have the same numbers as with dbx. */
228 return i386_dbx_reg_to_regnum (gdbarch, reg);
229 }
230
231 switch (reg)
232 {
233 case 37: return I387_FCTRL_REGNUM (tdep);
234 case 38: return I387_FSTAT_REGNUM (tdep);
235 case 39: return I387_MXCSR_REGNUM (tdep);
236 case 40: return I386_ES_REGNUM;
237 case 41: return I386_CS_REGNUM;
238 case 42: return I386_SS_REGNUM;
239 case 43: return I386_DS_REGNUM;
240 case 44: return I386_FS_REGNUM;
241 case 45: return I386_GS_REGNUM;
242 }
243
244 /* This will hopefully provoke a warning. */
245 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
246 }
247
248 \f
249
250 /* This is the variable that is set with "set disassembly-flavor", and
251 its legitimate values. */
252 static const char att_flavor[] = "att";
253 static const char intel_flavor[] = "intel";
254 static const char *valid_flavors[] =
255 {
256 att_flavor,
257 intel_flavor,
258 NULL
259 };
260 static const char *disassembly_flavor = att_flavor;
261 \f
262
263 /* Use the program counter to determine the contents and size of a
264 breakpoint instruction. Return a pointer to a string of bytes that
265 encode a breakpoint instruction, store the length of the string in
266 *LEN and optionally adjust *PC to point to the correct memory
267 location for inserting the breakpoint.
268
269 On the i386 we have a single breakpoint that fits in a single byte
270 and can be inserted anywhere.
271
272 This function is 64-bit safe. */
273
274 static const gdb_byte *
275 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
276 {
277 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
278
279 *len = sizeof (break_insn);
280 return break_insn;
281 }
282 \f
283 /* Displaced instruction handling. */
284
285 /* Skip the legacy instruction prefixes in INSN.
286 Not all prefixes are valid for any particular insn
287 but we needn't care, the insn will fault if it's invalid.
288 The result is a pointer to the first opcode byte,
289 or NULL if we run off the end of the buffer. */
290
291 static gdb_byte *
292 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
293 {
294 gdb_byte *end = insn + max_len;
295
296 while (insn < end)
297 {
298 switch (*insn)
299 {
300 case DATA_PREFIX_OPCODE:
301 case ADDR_PREFIX_OPCODE:
302 case CS_PREFIX_OPCODE:
303 case DS_PREFIX_OPCODE:
304 case ES_PREFIX_OPCODE:
305 case FS_PREFIX_OPCODE:
306 case GS_PREFIX_OPCODE:
307 case SS_PREFIX_OPCODE:
308 case LOCK_PREFIX_OPCODE:
309 case REPE_PREFIX_OPCODE:
310 case REPNE_PREFIX_OPCODE:
311 ++insn;
312 continue;
313 default:
314 return insn;
315 }
316 }
317
318 return NULL;
319 }
320
321 static int
322 i386_absolute_jmp_p (const gdb_byte *insn)
323 {
324 /* jmp far (absolute address in operand) */
325 if (insn[0] == 0xea)
326 return 1;
327
328 if (insn[0] == 0xff)
329 {
330 /* jump near, absolute indirect (/4) */
331 if ((insn[1] & 0x38) == 0x20)
332 return 1;
333
334 /* jump far, absolute indirect (/5) */
335 if ((insn[1] & 0x38) == 0x28)
336 return 1;
337 }
338
339 return 0;
340 }
341
342 static int
343 i386_absolute_call_p (const gdb_byte *insn)
344 {
345 /* call far, absolute */
346 if (insn[0] == 0x9a)
347 return 1;
348
349 if (insn[0] == 0xff)
350 {
351 /* Call near, absolute indirect (/2) */
352 if ((insn[1] & 0x38) == 0x10)
353 return 1;
354
355 /* Call far, absolute indirect (/3) */
356 if ((insn[1] & 0x38) == 0x18)
357 return 1;
358 }
359
360 return 0;
361 }
362
363 static int
364 i386_ret_p (const gdb_byte *insn)
365 {
366 switch (insn[0])
367 {
368 case 0xc2: /* ret near, pop N bytes */
369 case 0xc3: /* ret near */
370 case 0xca: /* ret far, pop N bytes */
371 case 0xcb: /* ret far */
372 case 0xcf: /* iret */
373 return 1;
374
375 default:
376 return 0;
377 }
378 }
379
380 static int
381 i386_call_p (const gdb_byte *insn)
382 {
383 if (i386_absolute_call_p (insn))
384 return 1;
385
386 /* call near, relative */
387 if (insn[0] == 0xe8)
388 return 1;
389
390 return 0;
391 }
392
393 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
394 length in bytes. Otherwise, return zero. */
395
396 static int
397 i386_syscall_p (const gdb_byte *insn, ULONGEST *lengthp)
398 {
399 if (insn[0] == 0xcd)
400 {
401 *lengthp = 2;
402 return 1;
403 }
404
405 return 0;
406 }
407
408 /* Fix up the state of registers and memory after having single-stepped
409 a displaced instruction. */
410
411 void
412 i386_displaced_step_fixup (struct gdbarch *gdbarch,
413 struct displaced_step_closure *closure,
414 CORE_ADDR from, CORE_ADDR to,
415 struct regcache *regs)
416 {
417 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
418
419 /* The offset we applied to the instruction's address.
420 This could well be negative (when viewed as a signed 32-bit
421 value), but ULONGEST won't reflect that, so take care when
422 applying it. */
423 ULONGEST insn_offset = to - from;
424
425 /* Since we use simple_displaced_step_copy_insn, our closure is a
426 copy of the instruction. */
427 gdb_byte *insn = (gdb_byte *) closure;
428 /* The start of the insn, needed in case we see some prefixes. */
429 gdb_byte *insn_start = insn;
430
431 if (debug_displaced)
432 fprintf_unfiltered (gdb_stdlog,
433 "displaced: fixup (%s, %s), "
434 "insn = 0x%02x 0x%02x ...\n",
435 paddress (gdbarch, from), paddress (gdbarch, to),
436 insn[0], insn[1]);
437
438 /* The list of issues to contend with here is taken from
439 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
440 Yay for Free Software! */
441
442 /* Relocate the %eip, if necessary. */
443
444 /* The instruction recognizers we use assume any leading prefixes
445 have been skipped. */
446 {
447 /* This is the size of the buffer in closure. */
448 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
449 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
450 /* If there are too many prefixes, just ignore the insn.
451 It will fault when run. */
452 if (opcode != NULL)
453 insn = opcode;
454 }
455
456 /* Except in the case of absolute or indirect jump or call
457 instructions, or a return instruction, the new eip is relative to
458 the displaced instruction; make it relative. Well, signal
459 handler returns don't need relocation either, but we use the
460 value of %eip to recognize those; see below. */
461 if (! i386_absolute_jmp_p (insn)
462 && ! i386_absolute_call_p (insn)
463 && ! i386_ret_p (insn))
464 {
465 ULONGEST orig_eip;
466 ULONGEST insn_len;
467
468 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
469
470 /* A signal trampoline system call changes the %eip, resuming
471 execution of the main program after the signal handler has
472 returned. That makes them like 'return' instructions; we
473 shouldn't relocate %eip.
474
475 But most system calls don't, and we do need to relocate %eip.
476
477 Our heuristic for distinguishing these cases: if stepping
478 over the system call instruction left control directly after
479 the instruction, the we relocate --- control almost certainly
480 doesn't belong in the displaced copy. Otherwise, we assume
481 the instruction has put control where it belongs, and leave
482 it unrelocated. Goodness help us if there are PC-relative
483 system calls. */
484 if (i386_syscall_p (insn, &insn_len)
485 && orig_eip != to + (insn - insn_start) + insn_len)
486 {
487 if (debug_displaced)
488 fprintf_unfiltered (gdb_stdlog,
489 "displaced: syscall changed %%eip; "
490 "not relocating\n");
491 }
492 else
493 {
494 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
495
496 /* If we just stepped over a breakpoint insn, we don't backup
497 the pc on purpose; this is to match behaviour without
498 stepping. */
499
500 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
501
502 if (debug_displaced)
503 fprintf_unfiltered (gdb_stdlog,
504 "displaced: "
505 "relocated %%eip from %s to %s\n",
506 paddress (gdbarch, orig_eip),
507 paddress (gdbarch, eip));
508 }
509 }
510
511 /* If the instruction was PUSHFL, then the TF bit will be set in the
512 pushed value, and should be cleared. We'll leave this for later,
513 since GDB already messes up the TF flag when stepping over a
514 pushfl. */
515
516 /* If the instruction was a call, the return address now atop the
517 stack is the address following the copied instruction. We need
518 to make it the address following the original instruction. */
519 if (i386_call_p (insn))
520 {
521 ULONGEST esp;
522 ULONGEST retaddr;
523 const ULONGEST retaddr_len = 4;
524
525 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
526 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
527 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
528 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
529
530 if (debug_displaced)
531 fprintf_unfiltered (gdb_stdlog,
532 "displaced: relocated return addr at %s to %s\n",
533 paddress (gdbarch, esp),
534 paddress (gdbarch, retaddr));
535 }
536 }
537 \f
538 #ifdef I386_REGNO_TO_SYMMETRY
539 #error "The Sequent Symmetry is no longer supported."
540 #endif
541
542 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
543 and %esp "belong" to the calling function. Therefore these
544 registers should be saved if they're going to be modified. */
545
546 /* The maximum number of saved registers. This should include all
547 registers mentioned above, and %eip. */
548 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
549
550 struct i386_frame_cache
551 {
552 /* Base address. */
553 CORE_ADDR base;
554 LONGEST sp_offset;
555 CORE_ADDR pc;
556
557 /* Saved registers. */
558 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
559 CORE_ADDR saved_sp;
560 int saved_sp_reg;
561 int pc_in_eax;
562
563 /* Stack space reserved for local variables. */
564 long locals;
565 };
566
567 /* Allocate and initialize a frame cache. */
568
569 static struct i386_frame_cache *
570 i386_alloc_frame_cache (void)
571 {
572 struct i386_frame_cache *cache;
573 int i;
574
575 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
576
577 /* Base address. */
578 cache->base = 0;
579 cache->sp_offset = -4;
580 cache->pc = 0;
581
582 /* Saved registers. We initialize these to -1 since zero is a valid
583 offset (that's where %ebp is supposed to be stored). */
584 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
585 cache->saved_regs[i] = -1;
586 cache->saved_sp = 0;
587 cache->saved_sp_reg = -1;
588 cache->pc_in_eax = 0;
589
590 /* Frameless until proven otherwise. */
591 cache->locals = -1;
592
593 return cache;
594 }
595
596 /* If the instruction at PC is a jump, return the address of its
597 target. Otherwise, return PC. */
598
599 static CORE_ADDR
600 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
601 {
602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
603 gdb_byte op;
604 long delta = 0;
605 int data16 = 0;
606
607 target_read_memory (pc, &op, 1);
608 if (op == 0x66)
609 {
610 data16 = 1;
611 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
612 }
613
614 switch (op)
615 {
616 case 0xe9:
617 /* Relative jump: if data16 == 0, disp32, else disp16. */
618 if (data16)
619 {
620 delta = read_memory_integer (pc + 2, 2, byte_order);
621
622 /* Include the size of the jmp instruction (including the
623 0x66 prefix). */
624 delta += 4;
625 }
626 else
627 {
628 delta = read_memory_integer (pc + 1, 4, byte_order);
629
630 /* Include the size of the jmp instruction. */
631 delta += 5;
632 }
633 break;
634 case 0xeb:
635 /* Relative jump, disp8 (ignore data16). */
636 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
637
638 delta += data16 + 2;
639 break;
640 }
641
642 return pc + delta;
643 }
644
645 /* Check whether PC points at a prologue for a function returning a
646 structure or union. If so, it updates CACHE and returns the
647 address of the first instruction after the code sequence that
648 removes the "hidden" argument from the stack or CURRENT_PC,
649 whichever is smaller. Otherwise, return PC. */
650
651 static CORE_ADDR
652 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
653 struct i386_frame_cache *cache)
654 {
655 /* Functions that return a structure or union start with:
656
657 popl %eax 0x58
658 xchgl %eax, (%esp) 0x87 0x04 0x24
659 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
660
661 (the System V compiler puts out the second `xchg' instruction,
662 and the assembler doesn't try to optimize it, so the 'sib' form
663 gets generated). This sequence is used to get the address of the
664 return buffer for a function that returns a structure. */
665 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
666 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
667 gdb_byte buf[4];
668 gdb_byte op;
669
670 if (current_pc <= pc)
671 return pc;
672
673 target_read_memory (pc, &op, 1);
674
675 if (op != 0x58) /* popl %eax */
676 return pc;
677
678 target_read_memory (pc + 1, buf, 4);
679 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
680 return pc;
681
682 if (current_pc == pc)
683 {
684 cache->sp_offset += 4;
685 return current_pc;
686 }
687
688 if (current_pc == pc + 1)
689 {
690 cache->pc_in_eax = 1;
691 return current_pc;
692 }
693
694 if (buf[1] == proto1[1])
695 return pc + 4;
696 else
697 return pc + 5;
698 }
699
700 static CORE_ADDR
701 i386_skip_probe (CORE_ADDR pc)
702 {
703 /* A function may start with
704
705 pushl constant
706 call _probe
707 addl $4, %esp
708
709 followed by
710
711 pushl %ebp
712
713 etc. */
714 gdb_byte buf[8];
715 gdb_byte op;
716
717 target_read_memory (pc, &op, 1);
718
719 if (op == 0x68 || op == 0x6a)
720 {
721 int delta;
722
723 /* Skip past the `pushl' instruction; it has either a one-byte or a
724 four-byte operand, depending on the opcode. */
725 if (op == 0x68)
726 delta = 5;
727 else
728 delta = 2;
729
730 /* Read the following 8 bytes, which should be `call _probe' (6
731 bytes) followed by `addl $4,%esp' (2 bytes). */
732 read_memory (pc + delta, buf, sizeof (buf));
733 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
734 pc += delta + sizeof (buf);
735 }
736
737 return pc;
738 }
739
740 /* GCC 4.1 and later, can put code in the prologue to realign the
741 stack pointer. Check whether PC points to such code, and update
742 CACHE accordingly. Return the first instruction after the code
743 sequence or CURRENT_PC, whichever is smaller. If we don't
744 recognize the code, return PC. */
745
746 static CORE_ADDR
747 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
748 struct i386_frame_cache *cache)
749 {
750 /* There are 2 code sequences to re-align stack before the frame
751 gets set up:
752
753 1. Use a caller-saved saved register:
754
755 leal 4(%esp), %reg
756 andl $-XXX, %esp
757 pushl -4(%reg)
758
759 2. Use a callee-saved saved register:
760
761 pushl %reg
762 leal 8(%esp), %reg
763 andl $-XXX, %esp
764 pushl -4(%reg)
765
766 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
767
768 0x83 0xe4 0xf0 andl $-16, %esp
769 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
770 */
771
772 gdb_byte buf[14];
773 int reg;
774 int offset, offset_and;
775 static int regnums[8] = {
776 I386_EAX_REGNUM, /* %eax */
777 I386_ECX_REGNUM, /* %ecx */
778 I386_EDX_REGNUM, /* %edx */
779 I386_EBX_REGNUM, /* %ebx */
780 I386_ESP_REGNUM, /* %esp */
781 I386_EBP_REGNUM, /* %ebp */
782 I386_ESI_REGNUM, /* %esi */
783 I386_EDI_REGNUM /* %edi */
784 };
785
786 if (target_read_memory (pc, buf, sizeof buf))
787 return pc;
788
789 /* Check caller-saved saved register. The first instruction has
790 to be "leal 4(%esp), %reg". */
791 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
792 {
793 /* MOD must be binary 10 and R/M must be binary 100. */
794 if ((buf[1] & 0xc7) != 0x44)
795 return pc;
796
797 /* REG has register number. */
798 reg = (buf[1] >> 3) & 7;
799 offset = 4;
800 }
801 else
802 {
803 /* Check callee-saved saved register. The first instruction
804 has to be "pushl %reg". */
805 if ((buf[0] & 0xf8) != 0x50)
806 return pc;
807
808 /* Get register. */
809 reg = buf[0] & 0x7;
810
811 /* The next instruction has to be "leal 8(%esp), %reg". */
812 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
813 return pc;
814
815 /* MOD must be binary 10 and R/M must be binary 100. */
816 if ((buf[2] & 0xc7) != 0x44)
817 return pc;
818
819 /* REG has register number. Registers in pushl and leal have to
820 be the same. */
821 if (reg != ((buf[2] >> 3) & 7))
822 return pc;
823
824 offset = 5;
825 }
826
827 /* Rigister can't be %esp nor %ebp. */
828 if (reg == 4 || reg == 5)
829 return pc;
830
831 /* The next instruction has to be "andl $-XXX, %esp". */
832 if (buf[offset + 1] != 0xe4
833 || (buf[offset] != 0x81 && buf[offset] != 0x83))
834 return pc;
835
836 offset_and = offset;
837 offset += buf[offset] == 0x81 ? 6 : 3;
838
839 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
840 0xfc. REG must be binary 110 and MOD must be binary 01. */
841 if (buf[offset] != 0xff
842 || buf[offset + 2] != 0xfc
843 || (buf[offset + 1] & 0xf8) != 0x70)
844 return pc;
845
846 /* R/M has register. Registers in leal and pushl have to be the
847 same. */
848 if (reg != (buf[offset + 1] & 7))
849 return pc;
850
851 if (current_pc > pc + offset_and)
852 cache->saved_sp_reg = regnums[reg];
853
854 return min (pc + offset + 3, current_pc);
855 }
856
857 /* Maximum instruction length we need to handle. */
858 #define I386_MAX_MATCHED_INSN_LEN 6
859
860 /* Instruction description. */
861 struct i386_insn
862 {
863 size_t len;
864 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
865 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
866 };
867
868 /* Search for the instruction at PC in the list SKIP_INSNS. Return
869 the first instruction description that matches. Otherwise, return
870 NULL. */
871
872 static struct i386_insn *
873 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
874 {
875 struct i386_insn *insn;
876 gdb_byte op;
877
878 target_read_memory (pc, &op, 1);
879
880 for (insn = skip_insns; insn->len > 0; insn++)
881 {
882 if ((op & insn->mask[0]) == insn->insn[0])
883 {
884 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
885 int insn_matched = 1;
886 size_t i;
887
888 gdb_assert (insn->len > 1);
889 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
890
891 target_read_memory (pc + 1, buf, insn->len - 1);
892 for (i = 1; i < insn->len; i++)
893 {
894 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
895 insn_matched = 0;
896 }
897
898 if (insn_matched)
899 return insn;
900 }
901 }
902
903 return NULL;
904 }
905
906 /* Some special instructions that might be migrated by GCC into the
907 part of the prologue that sets up the new stack frame. Because the
908 stack frame hasn't been setup yet, no registers have been saved
909 yet, and only the scratch registers %eax, %ecx and %edx can be
910 touched. */
911
912 struct i386_insn i386_frame_setup_skip_insns[] =
913 {
914 /* Check for `movb imm8, r' and `movl imm32, r'.
915
916 ??? Should we handle 16-bit operand-sizes here? */
917
918 /* `movb imm8, %al' and `movb imm8, %ah' */
919 /* `movb imm8, %cl' and `movb imm8, %ch' */
920 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
921 /* `movb imm8, %dl' and `movb imm8, %dh' */
922 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
923 /* `movl imm32, %eax' and `movl imm32, %ecx' */
924 { 5, { 0xb8 }, { 0xfe } },
925 /* `movl imm32, %edx' */
926 { 5, { 0xba }, { 0xff } },
927
928 /* Check for `mov imm32, r32'. Note that there is an alternative
929 encoding for `mov m32, %eax'.
930
931 ??? Should we handle SIB adressing here?
932 ??? Should we handle 16-bit operand-sizes here? */
933
934 /* `movl m32, %eax' */
935 { 5, { 0xa1 }, { 0xff } },
936 /* `movl m32, %eax' and `mov; m32, %ecx' */
937 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
938 /* `movl m32, %edx' */
939 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
940
941 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
942 Because of the symmetry, there are actually two ways to encode
943 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
944 opcode bytes 0x31 and 0x33 for `xorl'. */
945
946 /* `subl %eax, %eax' */
947 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
948 /* `subl %ecx, %ecx' */
949 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
950 /* `subl %edx, %edx' */
951 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
952 /* `xorl %eax, %eax' */
953 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
954 /* `xorl %ecx, %ecx' */
955 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
956 /* `xorl %edx, %edx' */
957 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
958 { 0 }
959 };
960
961
962 /* Check whether PC points to a no-op instruction. */
963 static CORE_ADDR
964 i386_skip_noop (CORE_ADDR pc)
965 {
966 gdb_byte op;
967 int check = 1;
968
969 target_read_memory (pc, &op, 1);
970
971 while (check)
972 {
973 check = 0;
974 /* Ignore `nop' instruction. */
975 if (op == 0x90)
976 {
977 pc += 1;
978 target_read_memory (pc, &op, 1);
979 check = 1;
980 }
981 /* Ignore no-op instruction `mov %edi, %edi'.
982 Microsoft system dlls often start with
983 a `mov %edi,%edi' instruction.
984 The 5 bytes before the function start are
985 filled with `nop' instructions.
986 This pattern can be used for hot-patching:
987 The `mov %edi, %edi' instruction can be replaced by a
988 near jump to the location of the 5 `nop' instructions
989 which can be replaced by a 32-bit jump to anywhere
990 in the 32-bit address space. */
991
992 else if (op == 0x8b)
993 {
994 target_read_memory (pc + 1, &op, 1);
995 if (op == 0xff)
996 {
997 pc += 2;
998 target_read_memory (pc, &op, 1);
999 check = 1;
1000 }
1001 }
1002 }
1003 return pc;
1004 }
1005
1006 /* Check whether PC points at a code that sets up a new stack frame.
1007 If so, it updates CACHE and returns the address of the first
1008 instruction after the sequence that sets up the frame or LIMIT,
1009 whichever is smaller. If we don't recognize the code, return PC. */
1010
1011 static CORE_ADDR
1012 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1013 CORE_ADDR pc, CORE_ADDR limit,
1014 struct i386_frame_cache *cache)
1015 {
1016 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1017 struct i386_insn *insn;
1018 gdb_byte op;
1019 int skip = 0;
1020
1021 if (limit <= pc)
1022 return limit;
1023
1024 target_read_memory (pc, &op, 1);
1025
1026 if (op == 0x55) /* pushl %ebp */
1027 {
1028 /* Take into account that we've executed the `pushl %ebp' that
1029 starts this instruction sequence. */
1030 cache->saved_regs[I386_EBP_REGNUM] = 0;
1031 cache->sp_offset += 4;
1032 pc++;
1033
1034 /* If that's all, return now. */
1035 if (limit <= pc)
1036 return limit;
1037
1038 /* Check for some special instructions that might be migrated by
1039 GCC into the prologue and skip them. At this point in the
1040 prologue, code should only touch the scratch registers %eax,
1041 %ecx and %edx, so while the number of posibilities is sheer,
1042 it is limited.
1043
1044 Make sure we only skip these instructions if we later see the
1045 `movl %esp, %ebp' that actually sets up the frame. */
1046 while (pc + skip < limit)
1047 {
1048 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1049 if (insn == NULL)
1050 break;
1051
1052 skip += insn->len;
1053 }
1054
1055 /* If that's all, return now. */
1056 if (limit <= pc + skip)
1057 return limit;
1058
1059 target_read_memory (pc + skip, &op, 1);
1060
1061 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1062 switch (op)
1063 {
1064 case 0x8b:
1065 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1066 != 0xec)
1067 return pc;
1068 break;
1069 case 0x89:
1070 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1071 != 0xe5)
1072 return pc;
1073 break;
1074 default:
1075 return pc;
1076 }
1077
1078 /* OK, we actually have a frame. We just don't know how large
1079 it is yet. Set its size to zero. We'll adjust it if
1080 necessary. We also now commit to skipping the special
1081 instructions mentioned before. */
1082 cache->locals = 0;
1083 pc += (skip + 2);
1084
1085 /* If that's all, return now. */
1086 if (limit <= pc)
1087 return limit;
1088
1089 /* Check for stack adjustment
1090
1091 subl $XXX, %esp
1092
1093 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1094 reg, so we don't have to worry about a data16 prefix. */
1095 target_read_memory (pc, &op, 1);
1096 if (op == 0x83)
1097 {
1098 /* `subl' with 8-bit immediate. */
1099 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1100 /* Some instruction starting with 0x83 other than `subl'. */
1101 return pc;
1102
1103 /* `subl' with signed 8-bit immediate (though it wouldn't
1104 make sense to be negative). */
1105 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1106 return pc + 3;
1107 }
1108 else if (op == 0x81)
1109 {
1110 /* Maybe it is `subl' with a 32-bit immediate. */
1111 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1112 /* Some instruction starting with 0x81 other than `subl'. */
1113 return pc;
1114
1115 /* It is `subl' with a 32-bit immediate. */
1116 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1117 return pc + 6;
1118 }
1119 else
1120 {
1121 /* Some instruction other than `subl'. */
1122 return pc;
1123 }
1124 }
1125 else if (op == 0xc8) /* enter */
1126 {
1127 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1128 return pc + 4;
1129 }
1130
1131 return pc;
1132 }
1133
1134 /* Check whether PC points at code that saves registers on the stack.
1135 If so, it updates CACHE and returns the address of the first
1136 instruction after the register saves or CURRENT_PC, whichever is
1137 smaller. Otherwise, return PC. */
1138
1139 static CORE_ADDR
1140 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1141 struct i386_frame_cache *cache)
1142 {
1143 CORE_ADDR offset = 0;
1144 gdb_byte op;
1145 int i;
1146
1147 if (cache->locals > 0)
1148 offset -= cache->locals;
1149 for (i = 0; i < 8 && pc < current_pc; i++)
1150 {
1151 target_read_memory (pc, &op, 1);
1152 if (op < 0x50 || op > 0x57)
1153 break;
1154
1155 offset -= 4;
1156 cache->saved_regs[op - 0x50] = offset;
1157 cache->sp_offset += 4;
1158 pc++;
1159 }
1160
1161 return pc;
1162 }
1163
1164 /* Do a full analysis of the prologue at PC and update CACHE
1165 accordingly. Bail out early if CURRENT_PC is reached. Return the
1166 address where the analysis stopped.
1167
1168 We handle these cases:
1169
1170 The startup sequence can be at the start of the function, or the
1171 function can start with a branch to startup code at the end.
1172
1173 %ebp can be set up with either the 'enter' instruction, or "pushl
1174 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1175 once used in the System V compiler).
1176
1177 Local space is allocated just below the saved %ebp by either the
1178 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1179 16-bit unsigned argument for space to allocate, and the 'addl'
1180 instruction could have either a signed byte, or 32-bit immediate.
1181
1182 Next, the registers used by this function are pushed. With the
1183 System V compiler they will always be in the order: %edi, %esi,
1184 %ebx (and sometimes a harmless bug causes it to also save but not
1185 restore %eax); however, the code below is willing to see the pushes
1186 in any order, and will handle up to 8 of them.
1187
1188 If the setup sequence is at the end of the function, then the next
1189 instruction will be a branch back to the start. */
1190
1191 static CORE_ADDR
1192 i386_analyze_prologue (struct gdbarch *gdbarch,
1193 CORE_ADDR pc, CORE_ADDR current_pc,
1194 struct i386_frame_cache *cache)
1195 {
1196 pc = i386_skip_noop (pc);
1197 pc = i386_follow_jump (gdbarch, pc);
1198 pc = i386_analyze_struct_return (pc, current_pc, cache);
1199 pc = i386_skip_probe (pc);
1200 pc = i386_analyze_stack_align (pc, current_pc, cache);
1201 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1202 return i386_analyze_register_saves (pc, current_pc, cache);
1203 }
1204
1205 /* Return PC of first real instruction. */
1206
1207 static CORE_ADDR
1208 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1209 {
1210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1211
1212 static gdb_byte pic_pat[6] =
1213 {
1214 0xe8, 0, 0, 0, 0, /* call 0x0 */
1215 0x5b, /* popl %ebx */
1216 };
1217 struct i386_frame_cache cache;
1218 CORE_ADDR pc;
1219 gdb_byte op;
1220 int i;
1221
1222 cache.locals = -1;
1223 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1224 if (cache.locals < 0)
1225 return start_pc;
1226
1227 /* Found valid frame setup. */
1228
1229 /* The native cc on SVR4 in -K PIC mode inserts the following code
1230 to get the address of the global offset table (GOT) into register
1231 %ebx:
1232
1233 call 0x0
1234 popl %ebx
1235 movl %ebx,x(%ebp) (optional)
1236 addl y,%ebx
1237
1238 This code is with the rest of the prologue (at the end of the
1239 function), so we have to skip it to get to the first real
1240 instruction at the start of the function. */
1241
1242 for (i = 0; i < 6; i++)
1243 {
1244 target_read_memory (pc + i, &op, 1);
1245 if (pic_pat[i] != op)
1246 break;
1247 }
1248 if (i == 6)
1249 {
1250 int delta = 6;
1251
1252 target_read_memory (pc + delta, &op, 1);
1253
1254 if (op == 0x89) /* movl %ebx, x(%ebp) */
1255 {
1256 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1257
1258 if (op == 0x5d) /* One byte offset from %ebp. */
1259 delta += 3;
1260 else if (op == 0x9d) /* Four byte offset from %ebp. */
1261 delta += 6;
1262 else /* Unexpected instruction. */
1263 delta = 0;
1264
1265 target_read_memory (pc + delta, &op, 1);
1266 }
1267
1268 /* addl y,%ebx */
1269 if (delta > 0 && op == 0x81
1270 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1271 == 0xc3)
1272 {
1273 pc += delta + 6;
1274 }
1275 }
1276
1277 /* If the function starts with a branch (to startup code at the end)
1278 the last instruction should bring us back to the first
1279 instruction of the real code. */
1280 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1281 pc = i386_follow_jump (gdbarch, pc);
1282
1283 return pc;
1284 }
1285
1286 /* Check that the code pointed to by PC corresponds to a call to
1287 __main, skip it if so. Return PC otherwise. */
1288
1289 CORE_ADDR
1290 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1291 {
1292 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1293 gdb_byte op;
1294
1295 target_read_memory (pc, &op, 1);
1296 if (op == 0xe8)
1297 {
1298 gdb_byte buf[4];
1299
1300 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1301 {
1302 /* Make sure address is computed correctly as a 32bit
1303 integer even if CORE_ADDR is 64 bit wide. */
1304 struct minimal_symbol *s;
1305 CORE_ADDR call_dest;
1306
1307 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1308 call_dest = call_dest & 0xffffffffU;
1309 s = lookup_minimal_symbol_by_pc (call_dest);
1310 if (s != NULL
1311 && SYMBOL_LINKAGE_NAME (s) != NULL
1312 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1313 pc += 5;
1314 }
1315 }
1316
1317 return pc;
1318 }
1319
1320 /* This function is 64-bit safe. */
1321
1322 static CORE_ADDR
1323 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1324 {
1325 gdb_byte buf[8];
1326
1327 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1328 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1329 }
1330 \f
1331
1332 /* Normal frames. */
1333
1334 static struct i386_frame_cache *
1335 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1336 {
1337 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1338 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1339 struct i386_frame_cache *cache;
1340 gdb_byte buf[4];
1341 int i;
1342
1343 if (*this_cache)
1344 return *this_cache;
1345
1346 cache = i386_alloc_frame_cache ();
1347 *this_cache = cache;
1348
1349 /* In principle, for normal frames, %ebp holds the frame pointer,
1350 which holds the base address for the current stack frame.
1351 However, for functions that don't need it, the frame pointer is
1352 optional. For these "frameless" functions the frame pointer is
1353 actually the frame pointer of the calling frame. Signal
1354 trampolines are just a special case of a "frameless" function.
1355 They (usually) share their frame pointer with the frame that was
1356 in progress when the signal occurred. */
1357
1358 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1359 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1360 if (cache->base == 0)
1361 return cache;
1362
1363 /* For normal frames, %eip is stored at 4(%ebp). */
1364 cache->saved_regs[I386_EIP_REGNUM] = 4;
1365
1366 cache->pc = get_frame_func (this_frame);
1367 if (cache->pc != 0)
1368 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1369 cache);
1370
1371 if (cache->saved_sp_reg != -1)
1372 {
1373 /* Saved stack pointer has been saved. */
1374 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1375 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1376 }
1377
1378 if (cache->locals < 0)
1379 {
1380 /* We didn't find a valid frame, which means that CACHE->base
1381 currently holds the frame pointer for our calling frame. If
1382 we're at the start of a function, or somewhere half-way its
1383 prologue, the function's frame probably hasn't been fully
1384 setup yet. Try to reconstruct the base address for the stack
1385 frame by looking at the stack pointer. For truly "frameless"
1386 functions this might work too. */
1387
1388 if (cache->saved_sp_reg != -1)
1389 {
1390 /* We're halfway aligning the stack. */
1391 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1392 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1393
1394 /* This will be added back below. */
1395 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1396 }
1397 else
1398 {
1399 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1400 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1401 + cache->sp_offset;
1402 }
1403 }
1404
1405 /* Now that we have the base address for the stack frame we can
1406 calculate the value of %esp in the calling frame. */
1407 if (cache->saved_sp == 0)
1408 cache->saved_sp = cache->base + 8;
1409
1410 /* Adjust all the saved registers such that they contain addresses
1411 instead of offsets. */
1412 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1413 if (cache->saved_regs[i] != -1)
1414 cache->saved_regs[i] += cache->base;
1415
1416 return cache;
1417 }
1418
1419 static void
1420 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1421 struct frame_id *this_id)
1422 {
1423 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1424
1425 /* This marks the outermost frame. */
1426 if (cache->base == 0)
1427 return;
1428
1429 /* See the end of i386_push_dummy_call. */
1430 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1431 }
1432
1433 static struct value *
1434 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1435 int regnum)
1436 {
1437 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1438
1439 gdb_assert (regnum >= 0);
1440
1441 /* The System V ABI says that:
1442
1443 "The flags register contains the system flags, such as the
1444 direction flag and the carry flag. The direction flag must be
1445 set to the forward (that is, zero) direction before entry and
1446 upon exit from a function. Other user flags have no specified
1447 role in the standard calling sequence and are not preserved."
1448
1449 To guarantee the "upon exit" part of that statement we fake a
1450 saved flags register that has its direction flag cleared.
1451
1452 Note that GCC doesn't seem to rely on the fact that the direction
1453 flag is cleared after a function return; it always explicitly
1454 clears the flag before operations where it matters.
1455
1456 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1457 right thing to do. The way we fake the flags register here makes
1458 it impossible to change it. */
1459
1460 if (regnum == I386_EFLAGS_REGNUM)
1461 {
1462 ULONGEST val;
1463
1464 val = get_frame_register_unsigned (this_frame, regnum);
1465 val &= ~(1 << 10);
1466 return frame_unwind_got_constant (this_frame, regnum, val);
1467 }
1468
1469 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1470 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1471
1472 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1473 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1474
1475 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1476 return frame_unwind_got_memory (this_frame, regnum,
1477 cache->saved_regs[regnum]);
1478
1479 return frame_unwind_got_register (this_frame, regnum, regnum);
1480 }
1481
1482 static const struct frame_unwind i386_frame_unwind =
1483 {
1484 NORMAL_FRAME,
1485 i386_frame_this_id,
1486 i386_frame_prev_register,
1487 NULL,
1488 default_frame_sniffer
1489 };
1490
1491 /* Normal frames, but in a function epilogue. */
1492
1493 /* The epilogue is defined here as the 'ret' instruction, which will
1494 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1495 the function's stack frame. */
1496
1497 static int
1498 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1499 {
1500 gdb_byte insn;
1501
1502 if (target_read_memory (pc, &insn, 1))
1503 return 0; /* Can't read memory at pc. */
1504
1505 if (insn != 0xc3) /* 'ret' instruction. */
1506 return 0;
1507
1508 return 1;
1509 }
1510
1511 static int
1512 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1513 struct frame_info *this_frame,
1514 void **this_prologue_cache)
1515 {
1516 if (frame_relative_level (this_frame) == 0)
1517 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1518 get_frame_pc (this_frame));
1519 else
1520 return 0;
1521 }
1522
1523 static struct i386_frame_cache *
1524 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1525 {
1526 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1527 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1528 struct i386_frame_cache *cache;
1529 gdb_byte buf[4];
1530
1531 if (*this_cache)
1532 return *this_cache;
1533
1534 cache = i386_alloc_frame_cache ();
1535 *this_cache = cache;
1536
1537 /* Cache base will be %esp plus cache->sp_offset (-4). */
1538 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1539 cache->base = extract_unsigned_integer (buf, 4,
1540 byte_order) + cache->sp_offset;
1541
1542 /* Cache pc will be the frame func. */
1543 cache->pc = get_frame_pc (this_frame);
1544
1545 /* The saved %esp will be at cache->base plus 8. */
1546 cache->saved_sp = cache->base + 8;
1547
1548 /* The saved %eip will be at cache->base plus 4. */
1549 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1550
1551 return cache;
1552 }
1553
1554 static void
1555 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1556 void **this_cache,
1557 struct frame_id *this_id)
1558 {
1559 struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
1560 this_cache);
1561
1562 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1563 }
1564
1565 static const struct frame_unwind i386_epilogue_frame_unwind =
1566 {
1567 NORMAL_FRAME,
1568 i386_epilogue_frame_this_id,
1569 i386_frame_prev_register,
1570 NULL,
1571 i386_epilogue_frame_sniffer
1572 };
1573 \f
1574
1575 /* Signal trampolines. */
1576
1577 static struct i386_frame_cache *
1578 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1579 {
1580 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1581 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1582 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1583 struct i386_frame_cache *cache;
1584 CORE_ADDR addr;
1585 gdb_byte buf[4];
1586
1587 if (*this_cache)
1588 return *this_cache;
1589
1590 cache = i386_alloc_frame_cache ();
1591
1592 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1593 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
1594
1595 addr = tdep->sigcontext_addr (this_frame);
1596 if (tdep->sc_reg_offset)
1597 {
1598 int i;
1599
1600 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1601
1602 for (i = 0; i < tdep->sc_num_regs; i++)
1603 if (tdep->sc_reg_offset[i] != -1)
1604 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1605 }
1606 else
1607 {
1608 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1609 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1610 }
1611
1612 *this_cache = cache;
1613 return cache;
1614 }
1615
1616 static void
1617 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
1618 struct frame_id *this_id)
1619 {
1620 struct i386_frame_cache *cache =
1621 i386_sigtramp_frame_cache (this_frame, this_cache);
1622
1623 /* See the end of i386_push_dummy_call. */
1624 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
1625 }
1626
1627 static struct value *
1628 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1629 void **this_cache, int regnum)
1630 {
1631 /* Make sure we've initialized the cache. */
1632 i386_sigtramp_frame_cache (this_frame, this_cache);
1633
1634 return i386_frame_prev_register (this_frame, this_cache, regnum);
1635 }
1636
1637 static int
1638 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1639 struct frame_info *this_frame,
1640 void **this_prologue_cache)
1641 {
1642 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1643
1644 /* We shouldn't even bother if we don't have a sigcontext_addr
1645 handler. */
1646 if (tdep->sigcontext_addr == NULL)
1647 return 0;
1648
1649 if (tdep->sigtramp_p != NULL)
1650 {
1651 if (tdep->sigtramp_p (this_frame))
1652 return 1;
1653 }
1654
1655 if (tdep->sigtramp_start != 0)
1656 {
1657 CORE_ADDR pc = get_frame_pc (this_frame);
1658
1659 gdb_assert (tdep->sigtramp_end != 0);
1660 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1661 return 1;
1662 }
1663
1664 return 0;
1665 }
1666
1667 static const struct frame_unwind i386_sigtramp_frame_unwind =
1668 {
1669 SIGTRAMP_FRAME,
1670 i386_sigtramp_frame_this_id,
1671 i386_sigtramp_frame_prev_register,
1672 NULL,
1673 i386_sigtramp_frame_sniffer
1674 };
1675 \f
1676
1677 static CORE_ADDR
1678 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
1679 {
1680 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1681
1682 return cache->base;
1683 }
1684
1685 static const struct frame_base i386_frame_base =
1686 {
1687 &i386_frame_unwind,
1688 i386_frame_base_address,
1689 i386_frame_base_address,
1690 i386_frame_base_address
1691 };
1692
1693 static struct frame_id
1694 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1695 {
1696 CORE_ADDR fp;
1697
1698 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
1699
1700 /* See the end of i386_push_dummy_call. */
1701 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1702 }
1703 \f
1704
1705 /* Figure out where the longjmp will land. Slurp the args out of the
1706 stack. We expect the first arg to be a pointer to the jmp_buf
1707 structure from which we extract the address that we will land at.
1708 This address is copied into PC. This routine returns non-zero on
1709 success. */
1710
1711 static int
1712 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1713 {
1714 gdb_byte buf[4];
1715 CORE_ADDR sp, jb_addr;
1716 struct gdbarch *gdbarch = get_frame_arch (frame);
1717 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1718 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
1719
1720 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1721 longjmp will land. */
1722 if (jb_pc_offset == -1)
1723 return 0;
1724
1725 get_frame_register (frame, I386_ESP_REGNUM, buf);
1726 sp = extract_unsigned_integer (buf, 4, byte_order);
1727 if (target_read_memory (sp + 4, buf, 4))
1728 return 0;
1729
1730 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1731 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
1732 return 0;
1733
1734 *pc = extract_unsigned_integer (buf, 4, byte_order);
1735 return 1;
1736 }
1737 \f
1738
1739 /* Check whether TYPE must be 16-byte-aligned when passed as a
1740 function argument. 16-byte vectors, _Decimal128 and structures or
1741 unions containing such types must be 16-byte-aligned; other
1742 arguments are 4-byte-aligned. */
1743
1744 static int
1745 i386_16_byte_align_p (struct type *type)
1746 {
1747 type = check_typedef (type);
1748 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
1749 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
1750 && TYPE_LENGTH (type) == 16)
1751 return 1;
1752 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1753 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
1754 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1755 || TYPE_CODE (type) == TYPE_CODE_UNION)
1756 {
1757 int i;
1758 for (i = 0; i < TYPE_NFIELDS (type); i++)
1759 {
1760 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
1761 return 1;
1762 }
1763 }
1764 return 0;
1765 }
1766
1767 static CORE_ADDR
1768 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1769 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1770 struct value **args, CORE_ADDR sp, int struct_return,
1771 CORE_ADDR struct_addr)
1772 {
1773 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1774 gdb_byte buf[4];
1775 int i;
1776 int write_pass;
1777 int args_space = 0;
1778
1779 /* Determine the total space required for arguments and struct
1780 return address in a first pass (allowing for 16-byte-aligned
1781 arguments), then push arguments in a second pass. */
1782
1783 for (write_pass = 0; write_pass < 2; write_pass++)
1784 {
1785 int args_space_used = 0;
1786 int have_16_byte_aligned_arg = 0;
1787
1788 if (struct_return)
1789 {
1790 if (write_pass)
1791 {
1792 /* Push value address. */
1793 store_unsigned_integer (buf, 4, byte_order, struct_addr);
1794 write_memory (sp, buf, 4);
1795 args_space_used += 4;
1796 }
1797 else
1798 args_space += 4;
1799 }
1800
1801 for (i = 0; i < nargs; i++)
1802 {
1803 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
1804
1805 if (write_pass)
1806 {
1807 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1808 args_space_used = align_up (args_space_used, 16);
1809
1810 write_memory (sp + args_space_used,
1811 value_contents_all (args[i]), len);
1812 /* The System V ABI says that:
1813
1814 "An argument's size is increased, if necessary, to make it a
1815 multiple of [32-bit] words. This may require tail padding,
1816 depending on the size of the argument."
1817
1818 This makes sure the stack stays word-aligned. */
1819 args_space_used += align_up (len, 4);
1820 }
1821 else
1822 {
1823 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1824 {
1825 args_space = align_up (args_space, 16);
1826 have_16_byte_aligned_arg = 1;
1827 }
1828 args_space += align_up (len, 4);
1829 }
1830 }
1831
1832 if (!write_pass)
1833 {
1834 if (have_16_byte_aligned_arg)
1835 args_space = align_up (args_space, 16);
1836 sp -= args_space;
1837 }
1838 }
1839
1840 /* Store return address. */
1841 sp -= 4;
1842 store_unsigned_integer (buf, 4, byte_order, bp_addr);
1843 write_memory (sp, buf, 4);
1844
1845 /* Finally, update the stack pointer... */
1846 store_unsigned_integer (buf, 4, byte_order, sp);
1847 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1848
1849 /* ...and fake a frame pointer. */
1850 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1851
1852 /* MarkK wrote: This "+ 8" is all over the place:
1853 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1854 i386_dummy_id). It's there, since all frame unwinders for
1855 a given target have to agree (within a certain margin) on the
1856 definition of the stack address of a frame. Otherwise frame id
1857 comparison might not work correctly. Since DWARF2/GCC uses the
1858 stack address *before* the function call as a frame's CFA. On
1859 the i386, when %ebp is used as a frame pointer, the offset
1860 between the contents %ebp and the CFA as defined by GCC. */
1861 return sp + 8;
1862 }
1863
1864 /* These registers are used for returning integers (and on some
1865 targets also for returning `struct' and `union' values when their
1866 size and alignment match an integer type). */
1867 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1868 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1869
1870 /* Read, for architecture GDBARCH, a function return value of TYPE
1871 from REGCACHE, and copy that into VALBUF. */
1872
1873 static void
1874 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1875 struct regcache *regcache, gdb_byte *valbuf)
1876 {
1877 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1878 int len = TYPE_LENGTH (type);
1879 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1880
1881 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1882 {
1883 if (tdep->st0_regnum < 0)
1884 {
1885 warning (_("Cannot find floating-point return value."));
1886 memset (valbuf, 0, len);
1887 return;
1888 }
1889
1890 /* Floating-point return values can be found in %st(0). Convert
1891 its contents to the desired type. This is probably not
1892 exactly how it would happen on the target itself, but it is
1893 the best we can do. */
1894 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1895 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
1896 }
1897 else
1898 {
1899 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1900 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1901
1902 if (len <= low_size)
1903 {
1904 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1905 memcpy (valbuf, buf, len);
1906 }
1907 else if (len <= (low_size + high_size))
1908 {
1909 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1910 memcpy (valbuf, buf, low_size);
1911 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1912 memcpy (valbuf + low_size, buf, len - low_size);
1913 }
1914 else
1915 internal_error (__FILE__, __LINE__,
1916 _("Cannot extract return value of %d bytes long."), len);
1917 }
1918 }
1919
1920 /* Write, for architecture GDBARCH, a function return value of TYPE
1921 from VALBUF into REGCACHE. */
1922
1923 static void
1924 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1925 struct regcache *regcache, const gdb_byte *valbuf)
1926 {
1927 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1928 int len = TYPE_LENGTH (type);
1929
1930 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1931 {
1932 ULONGEST fstat;
1933 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1934
1935 if (tdep->st0_regnum < 0)
1936 {
1937 warning (_("Cannot set floating-point return value."));
1938 return;
1939 }
1940
1941 /* Returning floating-point values is a bit tricky. Apart from
1942 storing the return value in %st(0), we have to simulate the
1943 state of the FPU at function return point. */
1944
1945 /* Convert the value found in VALBUF to the extended
1946 floating-point format used by the FPU. This is probably
1947 not exactly how it would happen on the target itself, but
1948 it is the best we can do. */
1949 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
1950 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1951
1952 /* Set the top of the floating-point register stack to 7. The
1953 actual value doesn't really matter, but 7 is what a normal
1954 function return would end up with if the program started out
1955 with a freshly initialized FPU. */
1956 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
1957 fstat |= (7 << 11);
1958 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
1959
1960 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1961 the floating-point register stack to 7, the appropriate value
1962 for the tag word is 0x3fff. */
1963 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
1964 }
1965 else
1966 {
1967 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1968 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1969
1970 if (len <= low_size)
1971 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1972 else if (len <= (low_size + high_size))
1973 {
1974 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1975 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1976 len - low_size, valbuf + low_size);
1977 }
1978 else
1979 internal_error (__FILE__, __LINE__,
1980 _("Cannot store return value of %d bytes long."), len);
1981 }
1982 }
1983 \f
1984
1985 /* This is the variable that is set with "set struct-convention", and
1986 its legitimate values. */
1987 static const char default_struct_convention[] = "default";
1988 static const char pcc_struct_convention[] = "pcc";
1989 static const char reg_struct_convention[] = "reg";
1990 static const char *valid_conventions[] =
1991 {
1992 default_struct_convention,
1993 pcc_struct_convention,
1994 reg_struct_convention,
1995 NULL
1996 };
1997 static const char *struct_convention = default_struct_convention;
1998
1999 /* Return non-zero if TYPE, which is assumed to be a structure,
2000 a union type, or an array type, should be returned in registers
2001 for architecture GDBARCH. */
2002
2003 static int
2004 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2005 {
2006 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2007 enum type_code code = TYPE_CODE (type);
2008 int len = TYPE_LENGTH (type);
2009
2010 gdb_assert (code == TYPE_CODE_STRUCT
2011 || code == TYPE_CODE_UNION
2012 || code == TYPE_CODE_ARRAY);
2013
2014 if (struct_convention == pcc_struct_convention
2015 || (struct_convention == default_struct_convention
2016 && tdep->struct_return == pcc_struct_return))
2017 return 0;
2018
2019 /* Structures consisting of a single `float', `double' or 'long
2020 double' member are returned in %st(0). */
2021 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2022 {
2023 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2024 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2025 return (len == 4 || len == 8 || len == 12);
2026 }
2027
2028 return (len == 1 || len == 2 || len == 4 || len == 8);
2029 }
2030
2031 /* Determine, for architecture GDBARCH, how a return value of TYPE
2032 should be returned. If it is supposed to be returned in registers,
2033 and READBUF is non-zero, read the appropriate value from REGCACHE,
2034 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2035 from WRITEBUF into REGCACHE. */
2036
2037 static enum return_value_convention
2038 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2039 struct type *type, struct regcache *regcache,
2040 gdb_byte *readbuf, const gdb_byte *writebuf)
2041 {
2042 enum type_code code = TYPE_CODE (type);
2043
2044 if (((code == TYPE_CODE_STRUCT
2045 || code == TYPE_CODE_UNION
2046 || code == TYPE_CODE_ARRAY)
2047 && !i386_reg_struct_return_p (gdbarch, type))
2048 /* 128-bit decimal float uses the struct return convention. */
2049 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2050 {
2051 /* The System V ABI says that:
2052
2053 "A function that returns a structure or union also sets %eax
2054 to the value of the original address of the caller's area
2055 before it returns. Thus when the caller receives control
2056 again, the address of the returned object resides in register
2057 %eax and can be used to access the object."
2058
2059 So the ABI guarantees that we can always find the return
2060 value just after the function has returned. */
2061
2062 /* Note that the ABI doesn't mention functions returning arrays,
2063 which is something possible in certain languages such as Ada.
2064 In this case, the value is returned as if it was wrapped in
2065 a record, so the convention applied to records also applies
2066 to arrays. */
2067
2068 if (readbuf)
2069 {
2070 ULONGEST addr;
2071
2072 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2073 read_memory (addr, readbuf, TYPE_LENGTH (type));
2074 }
2075
2076 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2077 }
2078
2079 /* This special case is for structures consisting of a single
2080 `float', `double' or 'long double' member. These structures are
2081 returned in %st(0). For these structures, we call ourselves
2082 recursively, changing TYPE into the type of the first member of
2083 the structure. Since that should work for all structures that
2084 have only one member, we don't bother to check the member's type
2085 here. */
2086 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2087 {
2088 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2089 return i386_return_value (gdbarch, func_type, type, regcache,
2090 readbuf, writebuf);
2091 }
2092
2093 if (readbuf)
2094 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2095 if (writebuf)
2096 i386_store_return_value (gdbarch, type, regcache, writebuf);
2097
2098 return RETURN_VALUE_REGISTER_CONVENTION;
2099 }
2100 \f
2101
2102 /* Construct types for ISA-specific registers. */
2103 struct type *
2104 i386_eflags_type (struct gdbarch *gdbarch)
2105 {
2106 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2107
2108 if (!tdep->i386_eflags_type)
2109 {
2110 struct type *type;
2111
2112 type = arch_flags_type (gdbarch, "builtin_type_i386_eflags", 4);
2113 append_flags_type_flag (type, 0, "CF");
2114 append_flags_type_flag (type, 1, NULL);
2115 append_flags_type_flag (type, 2, "PF");
2116 append_flags_type_flag (type, 4, "AF");
2117 append_flags_type_flag (type, 6, "ZF");
2118 append_flags_type_flag (type, 7, "SF");
2119 append_flags_type_flag (type, 8, "TF");
2120 append_flags_type_flag (type, 9, "IF");
2121 append_flags_type_flag (type, 10, "DF");
2122 append_flags_type_flag (type, 11, "OF");
2123 append_flags_type_flag (type, 14, "NT");
2124 append_flags_type_flag (type, 16, "RF");
2125 append_flags_type_flag (type, 17, "VM");
2126 append_flags_type_flag (type, 18, "AC");
2127 append_flags_type_flag (type, 19, "VIF");
2128 append_flags_type_flag (type, 20, "VIP");
2129 append_flags_type_flag (type, 21, "ID");
2130
2131 tdep->i386_eflags_type = type;
2132 }
2133
2134 return tdep->i386_eflags_type;
2135 }
2136
2137 struct type *
2138 i386_mxcsr_type (struct gdbarch *gdbarch)
2139 {
2140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2141
2142 if (!tdep->i386_mxcsr_type)
2143 {
2144 struct type *type;
2145
2146 type = arch_flags_type (gdbarch, "builtin_type_i386_mxcsr", 4);
2147 append_flags_type_flag (type, 0, "IE");
2148 append_flags_type_flag (type, 1, "DE");
2149 append_flags_type_flag (type, 2, "ZE");
2150 append_flags_type_flag (type, 3, "OE");
2151 append_flags_type_flag (type, 4, "UE");
2152 append_flags_type_flag (type, 5, "PE");
2153 append_flags_type_flag (type, 6, "DAZ");
2154 append_flags_type_flag (type, 7, "IM");
2155 append_flags_type_flag (type, 8, "DM");
2156 append_flags_type_flag (type, 9, "ZM");
2157 append_flags_type_flag (type, 10, "OM");
2158 append_flags_type_flag (type, 11, "UM");
2159 append_flags_type_flag (type, 12, "PM");
2160 append_flags_type_flag (type, 15, "FZ");
2161
2162 tdep->i386_mxcsr_type = type;
2163 }
2164
2165 return tdep->i386_mxcsr_type;
2166 }
2167
2168 struct type *
2169 i387_ext_type (struct gdbarch *gdbarch)
2170 {
2171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2172
2173 if (!tdep->i387_ext_type)
2174 tdep->i387_ext_type
2175 = arch_float_type (gdbarch, -1, "builtin_type_i387_ext",
2176 floatformats_i387_ext);
2177
2178 return tdep->i387_ext_type;
2179 }
2180
2181 /* Construct vector type for MMX registers. */
2182 struct type *
2183 i386_mmx_type (struct gdbarch *gdbarch)
2184 {
2185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2186
2187 if (!tdep->i386_mmx_type)
2188 {
2189 const struct builtin_type *bt = builtin_type (gdbarch);
2190
2191 /* The type we're building is this: */
2192 #if 0
2193 union __gdb_builtin_type_vec64i
2194 {
2195 int64_t uint64;
2196 int32_t v2_int32[2];
2197 int16_t v4_int16[4];
2198 int8_t v8_int8[8];
2199 };
2200 #endif
2201
2202 struct type *t;
2203
2204 t = arch_composite_type (gdbarch,
2205 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2206
2207 append_composite_type_field (t, "uint64", bt->builtin_int64);
2208 append_composite_type_field (t, "v2_int32",
2209 init_vector_type (bt->builtin_int32, 2));
2210 append_composite_type_field (t, "v4_int16",
2211 init_vector_type (bt->builtin_int16, 4));
2212 append_composite_type_field (t, "v8_int8",
2213 init_vector_type (bt->builtin_int8, 8));
2214
2215 TYPE_VECTOR (t) = 1;
2216 TYPE_NAME (t) = "builtin_type_vec64i";
2217 tdep->i386_mmx_type = t;
2218 }
2219
2220 return tdep->i386_mmx_type;
2221 }
2222
2223 struct type *
2224 i386_sse_type (struct gdbarch *gdbarch)
2225 {
2226 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2227
2228 if (!tdep->i386_sse_type)
2229 {
2230 const struct builtin_type *bt = builtin_type (gdbarch);
2231
2232 /* The type we're building is this: */
2233 #if 0
2234 union __gdb_builtin_type_vec128i
2235 {
2236 int128_t uint128;
2237 int64_t v2_int64[2];
2238 int32_t v4_int32[4];
2239 int16_t v8_int16[8];
2240 int8_t v16_int8[16];
2241 double v2_double[2];
2242 float v4_float[4];
2243 };
2244 #endif
2245
2246 struct type *t;
2247
2248 t = arch_composite_type (gdbarch,
2249 "__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
2250 append_composite_type_field (t, "v4_float",
2251 init_vector_type (bt->builtin_float, 4));
2252 append_composite_type_field (t, "v2_double",
2253 init_vector_type (bt->builtin_double, 2));
2254 append_composite_type_field (t, "v16_int8",
2255 init_vector_type (bt->builtin_int8, 16));
2256 append_composite_type_field (t, "v8_int16",
2257 init_vector_type (bt->builtin_int16, 8));
2258 append_composite_type_field (t, "v4_int32",
2259 init_vector_type (bt->builtin_int32, 4));
2260 append_composite_type_field (t, "v2_int64",
2261 init_vector_type (bt->builtin_int64, 2));
2262 append_composite_type_field (t, "uint128", bt->builtin_int128);
2263
2264 TYPE_VECTOR (t) = 1;
2265 TYPE_NAME (t) = "builtin_type_vec128i";
2266 tdep->i386_sse_type = t;
2267 }
2268
2269 return tdep->i386_sse_type;
2270 }
2271
2272 /* Return the GDB type object for the "standard" data type of data in
2273 register REGNUM. Perhaps %esi and %edi should go here, but
2274 potentially they could be used for things other than address. */
2275
2276 static struct type *
2277 i386_register_type (struct gdbarch *gdbarch, int regnum)
2278 {
2279 if (regnum == I386_EIP_REGNUM)
2280 return builtin_type (gdbarch)->builtin_func_ptr;
2281
2282 if (regnum == I386_EFLAGS_REGNUM)
2283 return i386_eflags_type (gdbarch);
2284
2285 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
2286 return builtin_type (gdbarch)->builtin_data_ptr;
2287
2288 if (i386_fp_regnum_p (gdbarch, regnum))
2289 return i387_ext_type (gdbarch);
2290
2291 if (i386_mmx_regnum_p (gdbarch, regnum))
2292 return i386_mmx_type (gdbarch);
2293
2294 if (i386_sse_regnum_p (gdbarch, regnum))
2295 return i386_sse_type (gdbarch);
2296
2297 if (regnum == I387_MXCSR_REGNUM (gdbarch_tdep (gdbarch)))
2298 return i386_mxcsr_type (gdbarch);
2299
2300 return builtin_type (gdbarch)->builtin_int;
2301 }
2302
2303 /* Map a cooked register onto a raw register or memory. For the i386,
2304 the MMX registers need to be mapped onto floating point registers. */
2305
2306 static int
2307 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2308 {
2309 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2310 int mmxreg, fpreg;
2311 ULONGEST fstat;
2312 int tos;
2313
2314 mmxreg = regnum - tdep->mm0_regnum;
2315 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2316 tos = (fstat >> 11) & 0x7;
2317 fpreg = (mmxreg + tos) % 8;
2318
2319 return (I387_ST0_REGNUM (tdep) + fpreg);
2320 }
2321
2322 static void
2323 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2324 int regnum, gdb_byte *buf)
2325 {
2326 if (i386_mmx_regnum_p (gdbarch, regnum))
2327 {
2328 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
2329 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2330
2331 /* Extract (always little endian). */
2332 regcache_raw_read (regcache, fpnum, mmx_buf);
2333 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
2334 }
2335 else
2336 regcache_raw_read (regcache, regnum, buf);
2337 }
2338
2339 static void
2340 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2341 int regnum, const gdb_byte *buf)
2342 {
2343 if (i386_mmx_regnum_p (gdbarch, regnum))
2344 {
2345 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
2346 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2347
2348 /* Read ... */
2349 regcache_raw_read (regcache, fpnum, mmx_buf);
2350 /* ... Modify ... (always little endian). */
2351 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
2352 /* ... Write. */
2353 regcache_raw_write (regcache, fpnum, mmx_buf);
2354 }
2355 else
2356 regcache_raw_write (regcache, regnum, buf);
2357 }
2358 \f
2359
2360 /* Return the register number of the register allocated by GCC after
2361 REGNUM, or -1 if there is no such register. */
2362
2363 static int
2364 i386_next_regnum (int regnum)
2365 {
2366 /* GCC allocates the registers in the order:
2367
2368 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2369
2370 Since storing a variable in %esp doesn't make any sense we return
2371 -1 for %ebp and for %esp itself. */
2372 static int next_regnum[] =
2373 {
2374 I386_EDX_REGNUM, /* Slot for %eax. */
2375 I386_EBX_REGNUM, /* Slot for %ecx. */
2376 I386_ECX_REGNUM, /* Slot for %edx. */
2377 I386_ESI_REGNUM, /* Slot for %ebx. */
2378 -1, -1, /* Slots for %esp and %ebp. */
2379 I386_EDI_REGNUM, /* Slot for %esi. */
2380 I386_EBP_REGNUM /* Slot for %edi. */
2381 };
2382
2383 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2384 return next_regnum[regnum];
2385
2386 return -1;
2387 }
2388
2389 /* Return nonzero if a value of type TYPE stored in register REGNUM
2390 needs any special handling. */
2391
2392 static int
2393 i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
2394 {
2395 int len = TYPE_LENGTH (type);
2396
2397 /* Values may be spread across multiple registers. Most debugging
2398 formats aren't expressive enough to specify the locations, so
2399 some heuristics is involved. Right now we only handle types that
2400 have a length that is a multiple of the word size, since GCC
2401 doesn't seem to put any other types into registers. */
2402 if (len > 4 && len % 4 == 0)
2403 {
2404 int last_regnum = regnum;
2405
2406 while (len > 4)
2407 {
2408 last_regnum = i386_next_regnum (last_regnum);
2409 len -= 4;
2410 }
2411
2412 if (last_regnum != -1)
2413 return 1;
2414 }
2415
2416 return i387_convert_register_p (gdbarch, regnum, type);
2417 }
2418
2419 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
2420 return its contents in TO. */
2421
2422 static void
2423 i386_register_to_value (struct frame_info *frame, int regnum,
2424 struct type *type, gdb_byte *to)
2425 {
2426 struct gdbarch *gdbarch = get_frame_arch (frame);
2427 int len = TYPE_LENGTH (type);
2428
2429 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2430 available in FRAME (i.e. if it wasn't saved)? */
2431
2432 if (i386_fp_regnum_p (gdbarch, regnum))
2433 {
2434 i387_register_to_value (frame, regnum, type, to);
2435 return;
2436 }
2437
2438 /* Read a value spread across multiple registers. */
2439
2440 gdb_assert (len > 4 && len % 4 == 0);
2441
2442 while (len > 0)
2443 {
2444 gdb_assert (regnum != -1);
2445 gdb_assert (register_size (gdbarch, regnum) == 4);
2446
2447 get_frame_register (frame, regnum, to);
2448 regnum = i386_next_regnum (regnum);
2449 len -= 4;
2450 to += 4;
2451 }
2452 }
2453
2454 /* Write the contents FROM of a value of type TYPE into register
2455 REGNUM in frame FRAME. */
2456
2457 static void
2458 i386_value_to_register (struct frame_info *frame, int regnum,
2459 struct type *type, const gdb_byte *from)
2460 {
2461 int len = TYPE_LENGTH (type);
2462
2463 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
2464 {
2465 i387_value_to_register (frame, regnum, type, from);
2466 return;
2467 }
2468
2469 /* Write a value spread across multiple registers. */
2470
2471 gdb_assert (len > 4 && len % 4 == 0);
2472
2473 while (len > 0)
2474 {
2475 gdb_assert (regnum != -1);
2476 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
2477
2478 put_frame_register (frame, regnum, from);
2479 regnum = i386_next_regnum (regnum);
2480 len -= 4;
2481 from += 4;
2482 }
2483 }
2484 \f
2485 /* Supply register REGNUM from the buffer specified by GREGS and LEN
2486 in the general-purpose register set REGSET to register cache
2487 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2488
2489 void
2490 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2491 int regnum, const void *gregs, size_t len)
2492 {
2493 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2494 const gdb_byte *regs = gregs;
2495 int i;
2496
2497 gdb_assert (len == tdep->sizeof_gregset);
2498
2499 for (i = 0; i < tdep->gregset_num_regs; i++)
2500 {
2501 if ((regnum == i || regnum == -1)
2502 && tdep->gregset_reg_offset[i] != -1)
2503 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2504 }
2505 }
2506
2507 /* Collect register REGNUM from the register cache REGCACHE and store
2508 it in the buffer specified by GREGS and LEN as described by the
2509 general-purpose register set REGSET. If REGNUM is -1, do this for
2510 all registers in REGSET. */
2511
2512 void
2513 i386_collect_gregset (const struct regset *regset,
2514 const struct regcache *regcache,
2515 int regnum, void *gregs, size_t len)
2516 {
2517 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2518 gdb_byte *regs = gregs;
2519 int i;
2520
2521 gdb_assert (len == tdep->sizeof_gregset);
2522
2523 for (i = 0; i < tdep->gregset_num_regs; i++)
2524 {
2525 if ((regnum == i || regnum == -1)
2526 && tdep->gregset_reg_offset[i] != -1)
2527 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2528 }
2529 }
2530
2531 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2532 in the floating-point register set REGSET to register cache
2533 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2534
2535 static void
2536 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2537 int regnum, const void *fpregs, size_t len)
2538 {
2539 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2540
2541 if (len == I387_SIZEOF_FXSAVE)
2542 {
2543 i387_supply_fxsave (regcache, regnum, fpregs);
2544 return;
2545 }
2546
2547 gdb_assert (len == tdep->sizeof_fpregset);
2548 i387_supply_fsave (regcache, regnum, fpregs);
2549 }
2550
2551 /* Collect register REGNUM from the register cache REGCACHE and store
2552 it in the buffer specified by FPREGS and LEN as described by the
2553 floating-point register set REGSET. If REGNUM is -1, do this for
2554 all registers in REGSET. */
2555
2556 static void
2557 i386_collect_fpregset (const struct regset *regset,
2558 const struct regcache *regcache,
2559 int regnum, void *fpregs, size_t len)
2560 {
2561 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2562
2563 if (len == I387_SIZEOF_FXSAVE)
2564 {
2565 i387_collect_fxsave (regcache, regnum, fpregs);
2566 return;
2567 }
2568
2569 gdb_assert (len == tdep->sizeof_fpregset);
2570 i387_collect_fsave (regcache, regnum, fpregs);
2571 }
2572
2573 /* Return the appropriate register set for the core section identified
2574 by SECT_NAME and SECT_SIZE. */
2575
2576 const struct regset *
2577 i386_regset_from_core_section (struct gdbarch *gdbarch,
2578 const char *sect_name, size_t sect_size)
2579 {
2580 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2581
2582 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2583 {
2584 if (tdep->gregset == NULL)
2585 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2586 i386_collect_gregset);
2587 return tdep->gregset;
2588 }
2589
2590 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2591 || (strcmp (sect_name, ".reg-xfp") == 0
2592 && sect_size == I387_SIZEOF_FXSAVE))
2593 {
2594 if (tdep->fpregset == NULL)
2595 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2596 i386_collect_fpregset);
2597 return tdep->fpregset;
2598 }
2599
2600 return NULL;
2601 }
2602 \f
2603
2604 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2605
2606 CORE_ADDR
2607 i386_pe_skip_trampoline_code (struct frame_info *frame,
2608 CORE_ADDR pc, char *name)
2609 {
2610 struct gdbarch *gdbarch = get_frame_arch (frame);
2611 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2612
2613 /* jmp *(dest) */
2614 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
2615 {
2616 unsigned long indirect =
2617 read_memory_unsigned_integer (pc + 2, 4, byte_order);
2618 struct minimal_symbol *indsym =
2619 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2620 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2621
2622 if (symname)
2623 {
2624 if (strncmp (symname, "__imp_", 6) == 0
2625 || strncmp (symname, "_imp_", 5) == 0)
2626 return name ? 1 :
2627 read_memory_unsigned_integer (indirect, 4, byte_order);
2628 }
2629 }
2630 return 0; /* Not a trampoline. */
2631 }
2632 \f
2633
2634 /* Return whether the THIS_FRAME corresponds to a sigtramp
2635 routine. */
2636
2637 int
2638 i386_sigtramp_p (struct frame_info *this_frame)
2639 {
2640 CORE_ADDR pc = get_frame_pc (this_frame);
2641 char *name;
2642
2643 find_pc_partial_function (pc, &name, NULL, NULL);
2644 return (name && strcmp ("_sigtramp", name) == 0);
2645 }
2646 \f
2647
2648 /* We have two flavours of disassembly. The machinery on this page
2649 deals with switching between those. */
2650
2651 static int
2652 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2653 {
2654 gdb_assert (disassembly_flavor == att_flavor
2655 || disassembly_flavor == intel_flavor);
2656
2657 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2658 constified, cast to prevent a compiler warning. */
2659 info->disassembler_options = (char *) disassembly_flavor;
2660
2661 return print_insn_i386 (pc, info);
2662 }
2663 \f
2664
2665 /* There are a few i386 architecture variants that differ only
2666 slightly from the generic i386 target. For now, we don't give them
2667 their own source file, but include them here. As a consequence,
2668 they'll always be included. */
2669
2670 /* System V Release 4 (SVR4). */
2671
2672 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2673 routine. */
2674
2675 static int
2676 i386_svr4_sigtramp_p (struct frame_info *this_frame)
2677 {
2678 CORE_ADDR pc = get_frame_pc (this_frame);
2679 char *name;
2680
2681 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2682 currently unknown. */
2683 find_pc_partial_function (pc, &name, NULL, NULL);
2684 return (name && (strcmp ("_sigreturn", name) == 0
2685 || strcmp ("_sigacthandler", name) == 0
2686 || strcmp ("sigvechandler", name) == 0));
2687 }
2688
2689 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
2690 address of the associated sigcontext (ucontext) structure. */
2691
2692 static CORE_ADDR
2693 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
2694 {
2695 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2696 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2697 gdb_byte buf[4];
2698 CORE_ADDR sp;
2699
2700 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2701 sp = extract_unsigned_integer (buf, 4, byte_order);
2702
2703 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
2704 }
2705 \f
2706
2707 /* Generic ELF. */
2708
2709 void
2710 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2711 {
2712 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2713 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2714 }
2715
2716 /* System V Release 4 (SVR4). */
2717
2718 void
2719 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2720 {
2721 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2722
2723 /* System V Release 4 uses ELF. */
2724 i386_elf_init_abi (info, gdbarch);
2725
2726 /* System V Release 4 has shared libraries. */
2727 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2728
2729 tdep->sigtramp_p = i386_svr4_sigtramp_p;
2730 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
2731 tdep->sc_pc_offset = 36 + 14 * 4;
2732 tdep->sc_sp_offset = 36 + 17 * 4;
2733
2734 tdep->jb_pc_offset = 20;
2735 }
2736
2737 /* DJGPP. */
2738
2739 static void
2740 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2741 {
2742 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2743
2744 /* DJGPP doesn't have any special frames for signal handlers. */
2745 tdep->sigtramp_p = NULL;
2746
2747 tdep->jb_pc_offset = 36;
2748
2749 /* DJGPP does not support the SSE registers. */
2750 tdep->num_xmm_regs = 0;
2751 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
2752
2753 /* Native compiler is GCC, which uses the SVR4 register numbering
2754 even in COFF and STABS. See the comment in i386_gdbarch_init,
2755 before the calls to set_gdbarch_stab_reg_to_regnum and
2756 set_gdbarch_sdb_reg_to_regnum. */
2757 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2758 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2759 }
2760 \f
2761
2762 /* i386 register groups. In addition to the normal groups, add "mmx"
2763 and "sse". */
2764
2765 static struct reggroup *i386_sse_reggroup;
2766 static struct reggroup *i386_mmx_reggroup;
2767
2768 static void
2769 i386_init_reggroups (void)
2770 {
2771 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2772 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2773 }
2774
2775 static void
2776 i386_add_reggroups (struct gdbarch *gdbarch)
2777 {
2778 reggroup_add (gdbarch, i386_sse_reggroup);
2779 reggroup_add (gdbarch, i386_mmx_reggroup);
2780 reggroup_add (gdbarch, general_reggroup);
2781 reggroup_add (gdbarch, float_reggroup);
2782 reggroup_add (gdbarch, all_reggroup);
2783 reggroup_add (gdbarch, save_reggroup);
2784 reggroup_add (gdbarch, restore_reggroup);
2785 reggroup_add (gdbarch, vector_reggroup);
2786 reggroup_add (gdbarch, system_reggroup);
2787 }
2788
2789 int
2790 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2791 struct reggroup *group)
2792 {
2793 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2794 || i386_mxcsr_regnum_p (gdbarch, regnum));
2795 int fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
2796 || i386_fpc_regnum_p (gdbarch, regnum));
2797 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2798
2799 if (group == i386_mmx_reggroup)
2800 return mmx_regnum_p;
2801 if (group == i386_sse_reggroup)
2802 return sse_regnum_p;
2803 if (group == vector_reggroup)
2804 return (mmx_regnum_p || sse_regnum_p);
2805 if (group == float_reggroup)
2806 return fp_regnum_p;
2807 if (group == general_reggroup)
2808 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2809
2810 return default_register_reggroup_p (gdbarch, regnum, group);
2811 }
2812 \f
2813
2814 /* Get the ARGIth function argument for the current function. */
2815
2816 static CORE_ADDR
2817 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2818 struct type *type)
2819 {
2820 struct gdbarch *gdbarch = get_frame_arch (frame);
2821 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2822 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2823 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
2824 }
2825
2826 static void
2827 i386_skip_permanent_breakpoint (struct regcache *regcache)
2828 {
2829 CORE_ADDR current_pc = regcache_read_pc (regcache);
2830
2831 /* On i386, breakpoint is exactly 1 byte long, so we just
2832 adjust the PC in the regcache. */
2833 current_pc += 1;
2834 regcache_write_pc (regcache, current_pc);
2835 }
2836
2837
2838 #define PREFIX_REPZ 0x01
2839 #define PREFIX_REPNZ 0x02
2840 #define PREFIX_LOCK 0x04
2841 #define PREFIX_DATA 0x08
2842 #define PREFIX_ADDR 0x10
2843
2844 /* operand size */
2845 enum
2846 {
2847 OT_BYTE = 0,
2848 OT_WORD,
2849 OT_LONG,
2850 OT_QUAD,
2851 };
2852
2853 /* i386 arith/logic operations */
2854 enum
2855 {
2856 OP_ADDL,
2857 OP_ORL,
2858 OP_ADCL,
2859 OP_SBBL,
2860 OP_ANDL,
2861 OP_SUBL,
2862 OP_XORL,
2863 OP_CMPL,
2864 };
2865
2866 struct i386_record_s
2867 {
2868 struct gdbarch *gdbarch;
2869 struct regcache *regcache;
2870 CORE_ADDR orig_addr;
2871 CORE_ADDR addr;
2872 int aflag;
2873 int dflag;
2874 int override;
2875 uint8_t modrm;
2876 uint8_t mod, reg, rm;
2877 int ot;
2878 uint8_t rex_x;
2879 uint8_t rex_b;
2880 int rip_offset;
2881 int popl_esp_hack;
2882 const int *regmap;
2883 };
2884
2885 /* Parse "modrm" part in current memory address that irp->addr point to
2886 Return -1 if something wrong. */
2887
2888 static int
2889 i386_record_modrm (struct i386_record_s *irp)
2890 {
2891 struct gdbarch *gdbarch = irp->gdbarch;
2892
2893 if (target_read_memory (irp->addr, &irp->modrm, 1))
2894 {
2895 if (record_debug)
2896 printf_unfiltered (_("Process record: error reading memory at "
2897 "addr %s len = 1.\n"),
2898 paddress (gdbarch, irp->addr));
2899 return -1;
2900 }
2901 irp->addr++;
2902 irp->mod = (irp->modrm >> 6) & 3;
2903 irp->reg = (irp->modrm >> 3) & 7;
2904 irp->rm = irp->modrm & 7;
2905
2906 return 0;
2907 }
2908
2909 /* Get the memory address that current instruction write to and set it to
2910 the argument "addr".
2911 Return -1 if something wrong. */
2912
2913 static int
2914 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
2915 {
2916 struct gdbarch *gdbarch = irp->gdbarch;
2917 uint8_t tmpu8;
2918 int16_t tmpi16;
2919 int32_t tmpi32;
2920 ULONGEST tmpulongest;
2921
2922 *addr = 0;
2923 if (irp->aflag)
2924 {
2925 /* 32 bits */
2926 int havesib = 0;
2927 uint8_t scale = 0;
2928 uint8_t index = 0;
2929 uint8_t base = irp->rm;
2930
2931 if (base == 4)
2932 {
2933 havesib = 1;
2934 if (target_read_memory (irp->addr, &tmpu8, 1))
2935 {
2936 if (record_debug)
2937 printf_unfiltered (_("Process record: error reading memory "
2938 "at addr %s len = 1.\n"),
2939 paddress (gdbarch, irp->addr));
2940 return -1;
2941 }
2942 irp->addr++;
2943 scale = (tmpu8 >> 6) & 3;
2944 index = ((tmpu8 >> 3) & 7) | irp->rex_x;
2945 base = (tmpu8 & 7);
2946 }
2947 base |= irp->rex_b;
2948
2949 switch (irp->mod)
2950 {
2951 case 0:
2952 if ((base & 7) == 5)
2953 {
2954 base = 0xff;
2955 if (target_read_memory (irp->addr, (gdb_byte *) &tmpi32, 4))
2956 {
2957 if (record_debug)
2958 printf_unfiltered (_("Process record: error reading "
2959 "memory at addr %s len = 4.\n"),
2960 paddress (gdbarch, irp->addr));
2961 return -1;
2962 }
2963 irp->addr += 4;
2964 *addr = tmpi32;
2965 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
2966 *addr += irp->addr + irp->rip_offset;
2967 }
2968 else
2969 {
2970 *addr = 0;
2971 }
2972 break;
2973 case 1:
2974 if (target_read_memory (irp->addr, &tmpu8, 1))
2975 {
2976 if (record_debug)
2977 printf_unfiltered (_("Process record: error reading memory "
2978 "at addr %s len = 1.\n"),
2979 paddress (gdbarch, irp->addr));
2980 return -1;
2981 }
2982 irp->addr++;
2983 *addr = (int8_t) tmpu8;
2984 break;
2985 case 2:
2986 if (target_read_memory (irp->addr, (gdb_byte *) &tmpi32, 4))
2987 {
2988 if (record_debug)
2989 printf_unfiltered (_("Process record: error reading memory "
2990 "at addr %s len = 4.\n"),
2991 paddress (gdbarch, irp->addr));
2992 return -1;
2993 }
2994 *addr = tmpi32;
2995 irp->addr += 4;
2996 break;
2997 }
2998
2999 tmpulongest = 0;
3000 if (base != 0xff)
3001 {
3002 if (base == 4 && irp->popl_esp_hack)
3003 *addr += irp->popl_esp_hack;
3004 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
3005 &tmpulongest);
3006 }
3007 if (irp->aflag == 2)
3008 {
3009 *addr += tmpulongest;
3010 }
3011 else
3012 *addr = (uint32_t) (tmpulongest + *addr);
3013
3014 if (havesib && (index != 4 || scale != 0))
3015 {
3016 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
3017 &tmpulongest);
3018 if (irp->aflag == 2)
3019 *addr += tmpulongest << scale;
3020 else
3021 *addr = (uint32_t) (*addr + (tmpulongest << scale));
3022 }
3023 }
3024 else
3025 {
3026 /* 16 bits */
3027 switch (irp->mod)
3028 {
3029 case 0:
3030 if (irp->rm == 6)
3031 {
3032 if (target_read_memory
3033 (irp->addr, (gdb_byte *) &tmpi16, 2))
3034 {
3035 if (record_debug)
3036 printf_unfiltered (_("Process record: error reading "
3037 "memory at addr %s len = 2.\n"),
3038 paddress (gdbarch, irp->addr));
3039 return -1;
3040 }
3041 irp->addr += 2;
3042 *addr = tmpi16;
3043 irp->rm = 0;
3044 goto no_rm;
3045 }
3046 else
3047 {
3048 *addr = 0;
3049 }
3050 break;
3051 case 1:
3052 if (target_read_memory (irp->addr, &tmpu8, 1))
3053 {
3054 if (record_debug)
3055 printf_unfiltered (_("Process record: error reading memory "
3056 "at addr %s len = 1.\n"),
3057 paddress (gdbarch, irp->addr));
3058 return -1;
3059 }
3060 irp->addr++;
3061 *addr = (int8_t) tmpu8;
3062 break;
3063 case 2:
3064 if (target_read_memory (irp->addr, (gdb_byte *) &tmpi16, 2))
3065 {
3066 if (record_debug)
3067 printf_unfiltered (_("Process record: error reading memory "
3068 "at addr %s len = 2.\n"),
3069 paddress (gdbarch, irp->addr));
3070 return -1;
3071 }
3072 irp->addr += 2;
3073 *addr = tmpi16;
3074 break;
3075 }
3076
3077 switch (irp->rm)
3078 {
3079 case 0:
3080 regcache_raw_read_unsigned (irp->regcache,
3081 irp->regmap[X86_RECORD_REBX_REGNUM],
3082 &tmpulongest);
3083 *addr = (uint32_t) (*addr + tmpulongest);
3084 regcache_raw_read_unsigned (irp->regcache,
3085 irp->regmap[X86_RECORD_RESI_REGNUM],
3086 &tmpulongest);
3087 *addr = (uint32_t) (*addr + tmpulongest);
3088 break;
3089 case 1:
3090 regcache_raw_read_unsigned (irp->regcache,
3091 irp->regmap[X86_RECORD_REBX_REGNUM],
3092 &tmpulongest);
3093 *addr = (uint32_t) (*addr + tmpulongest);
3094 regcache_raw_read_unsigned (irp->regcache,
3095 irp->regmap[X86_RECORD_REDI_REGNUM],
3096 &tmpulongest);
3097 *addr = (uint32_t) (*addr + tmpulongest);
3098 break;
3099 case 2:
3100 regcache_raw_read_unsigned (irp->regcache,
3101 irp->regmap[X86_RECORD_REBP_REGNUM],
3102 &tmpulongest);
3103 *addr = (uint32_t) (*addr + tmpulongest);
3104 regcache_raw_read_unsigned (irp->regcache,
3105 irp->regmap[X86_RECORD_RESI_REGNUM],
3106 &tmpulongest);
3107 *addr = (uint32_t) (*addr + tmpulongest);
3108 break;
3109 case 3:
3110 regcache_raw_read_unsigned (irp->regcache,
3111 irp->regmap[X86_RECORD_REBP_REGNUM],
3112 &tmpulongest);
3113 *addr = (uint32_t) (*addr + tmpulongest);
3114 regcache_raw_read_unsigned (irp->regcache,
3115 irp->regmap[X86_RECORD_REDI_REGNUM],
3116 &tmpulongest);
3117 *addr = (uint32_t) (*addr + tmpulongest);
3118 break;
3119 case 4:
3120 regcache_raw_read_unsigned (irp->regcache,
3121 irp->regmap[X86_RECORD_RESI_REGNUM],
3122 &tmpulongest);
3123 *addr = (uint32_t) (*addr + tmpulongest);
3124 break;
3125 case 5:
3126 regcache_raw_read_unsigned (irp->regcache,
3127 irp->regmap[X86_RECORD_REDI_REGNUM],
3128 &tmpulongest);
3129 *addr = (uint32_t) (*addr + tmpulongest);
3130 break;
3131 case 6:
3132 regcache_raw_read_unsigned (irp->regcache,
3133 irp->regmap[X86_RECORD_REBP_REGNUM],
3134 &tmpulongest);
3135 *addr = (uint32_t) (*addr + tmpulongest);
3136 break;
3137 case 7:
3138 regcache_raw_read_unsigned (irp->regcache,
3139 irp->regmap[X86_RECORD_REBX_REGNUM],
3140 &tmpulongest);
3141 *addr = (uint32_t) (*addr + tmpulongest);
3142 break;
3143 }
3144 *addr &= 0xffff;
3145 }
3146
3147 no_rm:
3148 return 0;
3149 }
3150
3151 /* Record the value of the memory that willbe changed in current instruction
3152 to "record_arch_list".
3153 Return -1 if something wrong. */
3154
3155 static int
3156 i386_record_lea_modrm (struct i386_record_s *irp)
3157 {
3158 struct gdbarch *gdbarch = irp->gdbarch;
3159 uint64_t addr;
3160
3161 if (irp->override >= 0)
3162 {
3163 warning (_("Process record ignores the memory change "
3164 "of instruction at address %s because it "
3165 "can't get the value of the segment register."),
3166 paddress (gdbarch, irp->orig_addr));
3167 return 0;
3168 }
3169
3170 if (i386_record_lea_modrm_addr (irp, &addr))
3171 return -1;
3172
3173 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3174 return -1;
3175
3176 return 0;
3177 }
3178
3179 /* Record the push operation to "record_arch_list".
3180 Return -1 if something wrong. */
3181
3182 static int
3183 i386_record_push (struct i386_record_s *irp, int size)
3184 {
3185 ULONGEST tmpulongest;
3186
3187 if (record_arch_list_add_reg (irp->regcache,
3188 irp->regmap[X86_RECORD_RESP_REGNUM]))
3189 return -1;
3190 regcache_raw_read_unsigned (irp->regcache,
3191 irp->regmap[X86_RECORD_RESP_REGNUM],
3192 &tmpulongest);
3193 if (record_arch_list_add_mem ((CORE_ADDR) tmpulongest - size, size))
3194 return -1;
3195
3196 return 0;
3197 }
3198
3199
3200 /* Defines contents to record. */
3201 #define I386_SAVE_FPU_REGS 0xfffd
3202 #define I386_SAVE_FPU_ENV 0xfffe
3203 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3204
3205 /* Record the value of floating point registers which will be changed by the
3206 current instruction to "record_arch_list". Return -1 if something is wrong.
3207 */
3208
3209 static int i386_record_floats (struct gdbarch *gdbarch,
3210 struct i386_record_s *ir,
3211 uint32_t iregnum)
3212 {
3213 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3214 int i;
3215
3216 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3217 happen. Currently we store st0-st7 registers, but we need not store all
3218 registers all the time, in future we use ftag register and record only
3219 those who are not marked as an empty. */
3220
3221 if (I386_SAVE_FPU_REGS == iregnum)
3222 {
3223 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3224 {
3225 if (record_arch_list_add_reg (ir->regcache, i))
3226 return -1;
3227 }
3228 }
3229 else if (I386_SAVE_FPU_ENV == iregnum)
3230 {
3231 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3232 {
3233 if (record_arch_list_add_reg (ir->regcache, i))
3234 return -1;
3235 }
3236 }
3237 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3238 {
3239 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3240 {
3241 if (record_arch_list_add_reg (ir->regcache, i))
3242 return -1;
3243 }
3244 }
3245 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3246 (iregnum <= I387_FOP_REGNUM (tdep)))
3247 {
3248 if (record_arch_list_add_reg (ir->regcache,iregnum))
3249 return -1;
3250 }
3251 else
3252 {
3253 /* Parameter error. */
3254 return -1;
3255 }
3256 if(I386_SAVE_FPU_ENV != iregnum)
3257 {
3258 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3259 {
3260 if (record_arch_list_add_reg (ir->regcache, i))
3261 return -1;
3262 }
3263 }
3264 return 0;
3265 }
3266
3267 /* Parse the current instruction and record the values of the registers and
3268 memory that will be changed in current instruction to "record_arch_list".
3269 Return -1 if something wrong. */
3270
3271 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3272 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3273
3274 int
3275 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3276 CORE_ADDR addr)
3277 {
3278 int prefixes = 0;
3279 uint8_t tmpu8;
3280 uint16_t tmpu16;
3281 uint32_t tmpu32;
3282 ULONGEST tmpulongest;
3283 uint32_t opcode;
3284 struct i386_record_s ir;
3285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3286 int rex = 0;
3287 uint8_t rex_w = -1;
3288 uint8_t rex_r = 0;
3289
3290 memset (&ir, 0, sizeof (struct i386_record_s));
3291 ir.regcache = regcache;
3292 ir.addr = addr;
3293 ir.orig_addr = addr;
3294 ir.aflag = 1;
3295 ir.dflag = 1;
3296 ir.override = -1;
3297 ir.popl_esp_hack = 0;
3298 ir.regmap = gdbarch_tdep (gdbarch)->record_regmap;
3299 ir.gdbarch = gdbarch;
3300
3301 if (record_debug > 1)
3302 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
3303 "addr = %s\n",
3304 paddress (gdbarch, ir.addr));
3305
3306 /* prefixes */
3307 while (1)
3308 {
3309 if (target_read_memory (ir.addr, &tmpu8, 1))
3310 {
3311 if (record_debug)
3312 printf_unfiltered (_("Process record: error reading memory at "
3313 "addr %s len = 1.\n"),
3314 paddress (gdbarch, ir.addr));
3315 return -1;
3316 }
3317 ir.addr++;
3318 switch (tmpu8) /* Instruction prefixes */
3319 {
3320 case REPE_PREFIX_OPCODE:
3321 prefixes |= PREFIX_REPZ;
3322 break;
3323 case REPNE_PREFIX_OPCODE:
3324 prefixes |= PREFIX_REPNZ;
3325 break;
3326 case LOCK_PREFIX_OPCODE:
3327 prefixes |= PREFIX_LOCK;
3328 break;
3329 case CS_PREFIX_OPCODE:
3330 ir.override = X86_RECORD_CS_REGNUM;
3331 break;
3332 case SS_PREFIX_OPCODE:
3333 ir.override = X86_RECORD_SS_REGNUM;
3334 break;
3335 case DS_PREFIX_OPCODE:
3336 ir.override = X86_RECORD_DS_REGNUM;
3337 break;
3338 case ES_PREFIX_OPCODE:
3339 ir.override = X86_RECORD_ES_REGNUM;
3340 break;
3341 case FS_PREFIX_OPCODE:
3342 ir.override = X86_RECORD_FS_REGNUM;
3343 break;
3344 case GS_PREFIX_OPCODE:
3345 ir.override = X86_RECORD_GS_REGNUM;
3346 break;
3347 case DATA_PREFIX_OPCODE:
3348 prefixes |= PREFIX_DATA;
3349 break;
3350 case ADDR_PREFIX_OPCODE:
3351 prefixes |= PREFIX_ADDR;
3352 break;
3353 case 0x40: /* i386 inc %eax */
3354 case 0x41: /* i386 inc %ecx */
3355 case 0x42: /* i386 inc %edx */
3356 case 0x43: /* i386 inc %ebx */
3357 case 0x44: /* i386 inc %esp */
3358 case 0x45: /* i386 inc %ebp */
3359 case 0x46: /* i386 inc %esi */
3360 case 0x47: /* i386 inc %edi */
3361 case 0x48: /* i386 dec %eax */
3362 case 0x49: /* i386 dec %ecx */
3363 case 0x4a: /* i386 dec %edx */
3364 case 0x4b: /* i386 dec %ebx */
3365 case 0x4c: /* i386 dec %esp */
3366 case 0x4d: /* i386 dec %ebp */
3367 case 0x4e: /* i386 dec %esi */
3368 case 0x4f: /* i386 dec %edi */
3369 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
3370 {
3371 /* REX */
3372 rex = 1;
3373 rex_w = (tmpu8 >> 3) & 1;
3374 rex_r = (tmpu8 & 0x4) << 1;
3375 ir.rex_x = (tmpu8 & 0x2) << 2;
3376 ir.rex_b = (tmpu8 & 0x1) << 3;
3377 }
3378 else /* 32 bit target */
3379 goto out_prefixes;
3380 break;
3381 default:
3382 goto out_prefixes;
3383 break;
3384 }
3385 }
3386 out_prefixes:
3387 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
3388 {
3389 ir.dflag = 2;
3390 }
3391 else
3392 {
3393 if (prefixes & PREFIX_DATA)
3394 ir.dflag ^= 1;
3395 }
3396 if (prefixes & PREFIX_ADDR)
3397 ir.aflag ^= 1;
3398 else if (ir.regmap[X86_RECORD_R8_REGNUM])
3399 ir.aflag = 2;
3400
3401 /* now check op code */
3402 opcode = (uint32_t) tmpu8;
3403 reswitch:
3404 switch (opcode)
3405 {
3406 case 0x0f:
3407 if (target_read_memory (ir.addr, &tmpu8, 1))
3408 {
3409 if (record_debug)
3410 printf_unfiltered (_("Process record: error reading memory at "
3411 "addr %s len = 1.\n"),
3412 paddress (gdbarch, ir.addr));
3413 return -1;
3414 }
3415 ir.addr++;
3416 opcode = (uint16_t) tmpu8 | 0x0f00;
3417 goto reswitch;
3418 break;
3419
3420 case 0x00: /* arith & logic */
3421 case 0x01:
3422 case 0x02:
3423 case 0x03:
3424 case 0x04:
3425 case 0x05:
3426 case 0x08:
3427 case 0x09:
3428 case 0x0a:
3429 case 0x0b:
3430 case 0x0c:
3431 case 0x0d:
3432 case 0x10:
3433 case 0x11:
3434 case 0x12:
3435 case 0x13:
3436 case 0x14:
3437 case 0x15:
3438 case 0x18:
3439 case 0x19:
3440 case 0x1a:
3441 case 0x1b:
3442 case 0x1c:
3443 case 0x1d:
3444 case 0x20:
3445 case 0x21:
3446 case 0x22:
3447 case 0x23:
3448 case 0x24:
3449 case 0x25:
3450 case 0x28:
3451 case 0x29:
3452 case 0x2a:
3453 case 0x2b:
3454 case 0x2c:
3455 case 0x2d:
3456 case 0x30:
3457 case 0x31:
3458 case 0x32:
3459 case 0x33:
3460 case 0x34:
3461 case 0x35:
3462 case 0x38:
3463 case 0x39:
3464 case 0x3a:
3465 case 0x3b:
3466 case 0x3c:
3467 case 0x3d:
3468 if (((opcode >> 3) & 7) != OP_CMPL)
3469 {
3470 if ((opcode & 1) == 0)
3471 ir.ot = OT_BYTE;
3472 else
3473 ir.ot = ir.dflag + OT_WORD;
3474
3475 switch ((opcode >> 1) & 3)
3476 {
3477 case 0: /* OP Ev, Gv */
3478 if (i386_record_modrm (&ir))
3479 return -1;
3480 if (ir.mod != 3)
3481 {
3482 if (i386_record_lea_modrm (&ir))
3483 return -1;
3484 }
3485 else
3486 {
3487 ir.rm |= ir.rex_b;
3488 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3489 ir.rm &= 0x3;
3490 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3491 }
3492 break;
3493 case 1: /* OP Gv, Ev */
3494 if (i386_record_modrm (&ir))
3495 return -1;
3496 ir.reg |= rex_r;
3497 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3498 ir.reg &= 0x3;
3499 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3500 break;
3501 case 2: /* OP A, Iv */
3502 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3503 break;
3504 }
3505 }
3506 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3507 break;
3508
3509 case 0x80: /* GRP1 */
3510 case 0x81:
3511 case 0x82:
3512 case 0x83:
3513 if (i386_record_modrm (&ir))
3514 return -1;
3515
3516 if (ir.reg != OP_CMPL)
3517 {
3518 if ((opcode & 1) == 0)
3519 ir.ot = OT_BYTE;
3520 else
3521 ir.ot = ir.dflag + OT_WORD;
3522
3523 if (ir.mod != 3)
3524 {
3525 if (opcode == 0x83)
3526 ir.rip_offset = 1;
3527 else
3528 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3529 if (i386_record_lea_modrm (&ir))
3530 return -1;
3531 }
3532 else
3533 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
3534 }
3535 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3536 break;
3537
3538 case 0x40: /* inc */
3539 case 0x41:
3540 case 0x42:
3541 case 0x43:
3542 case 0x44:
3543 case 0x45:
3544 case 0x46:
3545 case 0x47:
3546
3547 case 0x48: /* dec */
3548 case 0x49:
3549 case 0x4a:
3550 case 0x4b:
3551 case 0x4c:
3552 case 0x4d:
3553 case 0x4e:
3554 case 0x4f:
3555
3556 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
3557 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3558 break;
3559
3560 case 0xf6: /* GRP3 */
3561 case 0xf7:
3562 if ((opcode & 1) == 0)
3563 ir.ot = OT_BYTE;
3564 else
3565 ir.ot = ir.dflag + OT_WORD;
3566 if (i386_record_modrm (&ir))
3567 return -1;
3568
3569 if (ir.mod != 3 && ir.reg == 0)
3570 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3571
3572 switch (ir.reg)
3573 {
3574 case 0: /* test */
3575 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3576 break;
3577 case 2: /* not */
3578 case 3: /* neg */
3579 if (ir.mod != 3)
3580 {
3581 if (i386_record_lea_modrm (&ir))
3582 return -1;
3583 }
3584 else
3585 {
3586 ir.rm |= ir.rex_b;
3587 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3588 ir.rm &= 0x3;
3589 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3590 }
3591 if (ir.reg == 3) /* neg */
3592 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3593 break;
3594 case 4: /* mul */
3595 case 5: /* imul */
3596 case 6: /* div */
3597 case 7: /* idiv */
3598 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3599 if (ir.ot != OT_BYTE)
3600 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3601 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3602 break;
3603 default:
3604 ir.addr -= 2;
3605 opcode = opcode << 8 | ir.modrm;
3606 goto no_support;
3607 break;
3608 }
3609 break;
3610
3611 case 0xfe: /* GRP4 */
3612 case 0xff: /* GRP5 */
3613 if (i386_record_modrm (&ir))
3614 return -1;
3615 if (ir.reg >= 2 && opcode == 0xfe)
3616 {
3617 ir.addr -= 2;
3618 opcode = opcode << 8 | ir.modrm;
3619 goto no_support;
3620 }
3621 switch (ir.reg)
3622 {
3623 case 0: /* inc */
3624 case 1: /* dec */
3625 if ((opcode & 1) == 0)
3626 ir.ot = OT_BYTE;
3627 else
3628 ir.ot = ir.dflag + OT_WORD;
3629 if (ir.mod != 3)
3630 {
3631 if (i386_record_lea_modrm (&ir))
3632 return -1;
3633 }
3634 else
3635 {
3636 ir.rm |= ir.rex_b;
3637 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3638 ir.rm &= 0x3;
3639 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3640 }
3641 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3642 break;
3643 case 2: /* call */
3644 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
3645 ir.dflag = 2;
3646 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3647 return -1;
3648 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3649 break;
3650 case 3: /* lcall */
3651 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
3652 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3653 return -1;
3654 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3655 break;
3656 case 4: /* jmp */
3657 case 5: /* ljmp */
3658 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3659 break;
3660 case 6: /* push */
3661 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
3662 ir.dflag = 2;
3663 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3664 return -1;
3665 break;
3666 default:
3667 ir.addr -= 2;
3668 opcode = opcode << 8 | ir.modrm;
3669 goto no_support;
3670 break;
3671 }
3672 break;
3673
3674 case 0x84: /* test */
3675 case 0x85:
3676 case 0xa8:
3677 case 0xa9:
3678 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3679 break;
3680
3681 case 0x98: /* CWDE/CBW */
3682 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3683 break;
3684
3685 case 0x99: /* CDQ/CWD */
3686 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3687 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3688 break;
3689
3690 case 0x0faf: /* imul */
3691 case 0x69:
3692 case 0x6b:
3693 ir.ot = ir.dflag + OT_WORD;
3694 if (i386_record_modrm (&ir))
3695 return -1;
3696 if (opcode == 0x69)
3697 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3698 else if (opcode == 0x6b)
3699 ir.rip_offset = 1;
3700 ir.reg |= rex_r;
3701 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3702 ir.reg &= 0x3;
3703 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3704 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3705 break;
3706
3707 case 0x0fc0: /* xadd */
3708 case 0x0fc1:
3709 if ((opcode & 1) == 0)
3710 ir.ot = OT_BYTE;
3711 else
3712 ir.ot = ir.dflag + OT_WORD;
3713 if (i386_record_modrm (&ir))
3714 return -1;
3715 ir.reg |= rex_r;
3716 if (ir.mod == 3)
3717 {
3718 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3719 ir.reg &= 0x3;
3720 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3721 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3722 ir.rm &= 0x3;
3723 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3724 }
3725 else
3726 {
3727 if (i386_record_lea_modrm (&ir))
3728 return -1;
3729 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3730 ir.reg &= 0x3;
3731 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3732 }
3733 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3734 break;
3735
3736 case 0x0fb0: /* cmpxchg */
3737 case 0x0fb1:
3738 if ((opcode & 1) == 0)
3739 ir.ot = OT_BYTE;
3740 else
3741 ir.ot = ir.dflag + OT_WORD;
3742 if (i386_record_modrm (&ir))
3743 return -1;
3744 if (ir.mod == 3)
3745 {
3746 ir.reg |= rex_r;
3747 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3748 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3749 ir.reg &= 0x3;
3750 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3751 }
3752 else
3753 {
3754 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3755 if (i386_record_lea_modrm (&ir))
3756 return -1;
3757 }
3758 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3759 break;
3760
3761 case 0x0fc7: /* cmpxchg8b */
3762 if (i386_record_modrm (&ir))
3763 return -1;
3764 if (ir.mod == 3)
3765 {
3766 ir.addr -= 2;
3767 opcode = opcode << 8 | ir.modrm;
3768 goto no_support;
3769 }
3770 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3771 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3772 if (i386_record_lea_modrm (&ir))
3773 return -1;
3774 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3775 break;
3776
3777 case 0x50: /* push */
3778 case 0x51:
3779 case 0x52:
3780 case 0x53:
3781 case 0x54:
3782 case 0x55:
3783 case 0x56:
3784 case 0x57:
3785 case 0x68:
3786 case 0x6a:
3787 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
3788 ir.dflag = 2;
3789 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3790 return -1;
3791 break;
3792
3793 case 0x06: /* push es */
3794 case 0x0e: /* push cs */
3795 case 0x16: /* push ss */
3796 case 0x1e: /* push ds */
3797 if (ir.regmap[X86_RECORD_R8_REGNUM])
3798 {
3799 ir.addr -= 1;
3800 goto no_support;
3801 }
3802 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3803 return -1;
3804 break;
3805
3806 case 0x0fa0: /* push fs */
3807 case 0x0fa8: /* push gs */
3808 if (ir.regmap[X86_RECORD_R8_REGNUM])
3809 {
3810 ir.addr -= 2;
3811 goto no_support;
3812 }
3813 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3814 return -1;
3815 break;
3816
3817 case 0x60: /* pusha */
3818 if (ir.regmap[X86_RECORD_R8_REGNUM])
3819 {
3820 ir.addr -= 1;
3821 goto no_support;
3822 }
3823 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
3824 return -1;
3825 break;
3826
3827 case 0x58: /* pop */
3828 case 0x59:
3829 case 0x5a:
3830 case 0x5b:
3831 case 0x5c:
3832 case 0x5d:
3833 case 0x5e:
3834 case 0x5f:
3835 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3836 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
3837 break;
3838
3839 case 0x61: /* popa */
3840 if (ir.regmap[X86_RECORD_R8_REGNUM])
3841 {
3842 ir.addr -= 1;
3843 goto no_support;
3844 }
3845 for (tmpu8 = X86_RECORD_REAX_REGNUM; tmpu8 <= X86_RECORD_REDI_REGNUM;
3846 tmpu8++)
3847 I386_RECORD_ARCH_LIST_ADD_REG (tmpu8);
3848 break;
3849
3850 case 0x8f: /* pop */
3851 if (ir.regmap[X86_RECORD_R8_REGNUM])
3852 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
3853 else
3854 ir.ot = ir.dflag + OT_WORD;
3855 if (i386_record_modrm (&ir))
3856 return -1;
3857 if (ir.mod == 3)
3858 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
3859 else
3860 {
3861 ir.popl_esp_hack = 1 << ir.ot;
3862 if (i386_record_lea_modrm (&ir))
3863 return -1;
3864 }
3865 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3866 break;
3867
3868 case 0xc8: /* enter */
3869 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
3870 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
3871 ir.dflag = 2;
3872 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
3873 return -1;
3874 break;
3875
3876 case 0xc9: /* leave */
3877 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3878 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
3879 break;
3880
3881 case 0x07: /* pop es */
3882 if (ir.regmap[X86_RECORD_R8_REGNUM])
3883 {
3884 ir.addr -= 1;
3885 goto no_support;
3886 }
3887 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3888 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
3889 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3890 break;
3891
3892 case 0x17: /* pop ss */
3893 if (ir.regmap[X86_RECORD_R8_REGNUM])
3894 {
3895 ir.addr -= 1;
3896 goto no_support;
3897 }
3898 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3899 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
3900 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3901 break;
3902
3903 case 0x1f: /* pop ds */
3904 if (ir.regmap[X86_RECORD_R8_REGNUM])
3905 {
3906 ir.addr -= 1;
3907 goto no_support;
3908 }
3909 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3910 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
3911 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3912 break;
3913
3914 case 0x0fa1: /* pop fs */
3915 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3916 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
3917 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3918 break;
3919
3920 case 0x0fa9: /* pop gs */
3921 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
3922 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
3923 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3924 break;
3925
3926 case 0x88: /* mov */
3927 case 0x89:
3928 case 0xc6:
3929 case 0xc7:
3930 if ((opcode & 1) == 0)
3931 ir.ot = OT_BYTE;
3932 else
3933 ir.ot = ir.dflag + OT_WORD;
3934
3935 if (i386_record_modrm (&ir))
3936 return -1;
3937
3938 if (ir.mod != 3)
3939 {
3940 if (opcode == 0xc6 || opcode == 0xc7)
3941 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3942 if (i386_record_lea_modrm (&ir))
3943 return -1;
3944 }
3945 else
3946 {
3947 if (opcode == 0xc6 || opcode == 0xc7)
3948 ir.rm |= ir.rex_b;
3949 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3950 ir.rm &= 0x3;
3951 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3952 }
3953 break;
3954
3955 case 0x8a: /* mov */
3956 case 0x8b:
3957 if ((opcode & 1) == 0)
3958 ir.ot = OT_BYTE;
3959 else
3960 ir.ot = ir.dflag + OT_WORD;
3961 if (i386_record_modrm (&ir))
3962 return -1;
3963 ir.reg |= rex_r;
3964 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3965 ir.reg &= 0x3;
3966 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3967 break;
3968
3969 case 0x8c: /* mov seg */
3970 if (i386_record_modrm (&ir))
3971 return -1;
3972 if (ir.reg > 5)
3973 {
3974 ir.addr -= 2;
3975 opcode = opcode << 8 | ir.modrm;
3976 goto no_support;
3977 }
3978
3979 if (ir.mod == 3)
3980 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3981 else
3982 {
3983 ir.ot = OT_WORD;
3984 if (i386_record_lea_modrm (&ir))
3985 return -1;
3986 }
3987 break;
3988
3989 case 0x8e: /* mov seg */
3990 if (i386_record_modrm (&ir))
3991 return -1;
3992 switch (ir.reg)
3993 {
3994 case 0:
3995 tmpu8 = X86_RECORD_ES_REGNUM;
3996 break;
3997 case 2:
3998 tmpu8 = X86_RECORD_SS_REGNUM;
3999 break;
4000 case 3:
4001 tmpu8 = X86_RECORD_DS_REGNUM;
4002 break;
4003 case 4:
4004 tmpu8 = X86_RECORD_FS_REGNUM;
4005 break;
4006 case 5:
4007 tmpu8 = X86_RECORD_GS_REGNUM;
4008 break;
4009 default:
4010 ir.addr -= 2;
4011 opcode = opcode << 8 | ir.modrm;
4012 goto no_support;
4013 break;
4014 }
4015 I386_RECORD_ARCH_LIST_ADD_REG (tmpu8);
4016 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4017 break;
4018
4019 case 0x0fb6: /* movzbS */
4020 case 0x0fb7: /* movzwS */
4021 case 0x0fbe: /* movsbS */
4022 case 0x0fbf: /* movswS */
4023 if (i386_record_modrm (&ir))
4024 return -1;
4025 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4026 break;
4027
4028 case 0x8d: /* lea */
4029 if (i386_record_modrm (&ir))
4030 return -1;
4031 if (ir.mod == 3)
4032 {
4033 ir.addr -= 2;
4034 opcode = opcode << 8 | ir.modrm;
4035 goto no_support;
4036 }
4037 ir.ot = ir.dflag;
4038 ir.reg |= rex_r;
4039 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4040 ir.reg &= 0x3;
4041 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4042 break;
4043
4044 case 0xa0: /* mov EAX */
4045 case 0xa1:
4046
4047 case 0xd7: /* xlat */
4048 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4049 break;
4050
4051 case 0xa2: /* mov EAX */
4052 case 0xa3:
4053 if (ir.override >= 0)
4054 {
4055 warning (_("Process record ignores the memory change "
4056 "of instruction at address %s because "
4057 "it can't get the value of the segment "
4058 "register."),
4059 paddress (gdbarch, ir.orig_addr));
4060 }
4061 else
4062 {
4063 if ((opcode & 1) == 0)
4064 ir.ot = OT_BYTE;
4065 else
4066 ir.ot = ir.dflag + OT_WORD;
4067 if (ir.aflag == 2)
4068 {
4069 if (target_read_memory (ir.addr, (gdb_byte *) &addr, 8))
4070 {
4071 if (record_debug)
4072 printf_unfiltered (_("Process record: error reading "
4073 "memory at addr 0x%s len = 8.\n"),
4074 paddress (gdbarch, ir.addr));
4075 return -1;
4076 }
4077 ir.addr += 8;
4078 }
4079 else if (ir.aflag)
4080 {
4081 if (target_read_memory (ir.addr, (gdb_byte *) &tmpu32, 4))
4082 {
4083 if (record_debug)
4084 printf_unfiltered (_("Process record: error reading "
4085 "memory at addr 0x%s len = 4.\n"),
4086 paddress (gdbarch, ir.addr));
4087 return -1;
4088 }
4089 ir.addr += 4;
4090 addr = tmpu32;
4091 }
4092 else
4093 {
4094 if (target_read_memory (ir.addr, (gdb_byte *) &tmpu16, 2))
4095 {
4096 if (record_debug)
4097 printf_unfiltered (_("Process record: error reading "
4098 "memory at addr 0x%s len = 2.\n"),
4099 paddress (gdbarch, ir.addr));
4100 return -1;
4101 }
4102 ir.addr += 2;
4103 addr = tmpu16;
4104 }
4105 if (record_arch_list_add_mem (addr, 1 << ir.ot))
4106 return -1;
4107 }
4108 break;
4109
4110 case 0xb0: /* mov R, Ib */
4111 case 0xb1:
4112 case 0xb2:
4113 case 0xb3:
4114 case 0xb4:
4115 case 0xb5:
4116 case 0xb6:
4117 case 0xb7:
4118 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4119 ? ((opcode & 0x7) | ir.rex_b)
4120 : ((opcode & 0x7) & 0x3));
4121 break;
4122
4123 case 0xb8: /* mov R, Iv */
4124 case 0xb9:
4125 case 0xba:
4126 case 0xbb:
4127 case 0xbc:
4128 case 0xbd:
4129 case 0xbe:
4130 case 0xbf:
4131 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4132 break;
4133
4134 case 0x91: /* xchg R, EAX */
4135 case 0x92:
4136 case 0x93:
4137 case 0x94:
4138 case 0x95:
4139 case 0x96:
4140 case 0x97:
4141 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4142 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
4143 break;
4144
4145 case 0x86: /* xchg Ev, Gv */
4146 case 0x87:
4147 if ((opcode & 1) == 0)
4148 ir.ot = OT_BYTE;
4149 else
4150 ir.ot = ir.dflag + OT_WORD;
4151 if (i386_record_modrm (&ir))
4152 return -1;
4153 if (ir.mod == 3)
4154 {
4155 ir.rm |= ir.rex_b;
4156 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4157 ir.rm &= 0x3;
4158 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4159 }
4160 else
4161 {
4162 if (i386_record_lea_modrm (&ir))
4163 return -1;
4164 }
4165 ir.reg |= rex_r;
4166 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4167 ir.reg &= 0x3;
4168 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4169 break;
4170
4171 case 0xc4: /* les Gv */
4172 case 0xc5: /* lds Gv */
4173 if (ir.regmap[X86_RECORD_R8_REGNUM])
4174 {
4175 ir.addr -= 1;
4176 goto no_support;
4177 }
4178 case 0x0fb2: /* lss Gv */
4179 case 0x0fb4: /* lfs Gv */
4180 case 0x0fb5: /* lgs Gv */
4181 if (i386_record_modrm (&ir))
4182 return -1;
4183 if (ir.mod == 3)
4184 {
4185 if (opcode > 0xff)
4186 ir.addr -= 3;
4187 else
4188 ir.addr -= 2;
4189 opcode = opcode << 8 | ir.modrm;
4190 goto no_support;
4191 }
4192 switch (opcode)
4193 {
4194 case 0xc4: /* les Gv */
4195 tmpu8 = X86_RECORD_ES_REGNUM;
4196 break;
4197 case 0xc5: /* lds Gv */
4198 tmpu8 = X86_RECORD_DS_REGNUM;
4199 break;
4200 case 0x0fb2: /* lss Gv */
4201 tmpu8 = X86_RECORD_SS_REGNUM;
4202 break;
4203 case 0x0fb4: /* lfs Gv */
4204 tmpu8 = X86_RECORD_FS_REGNUM;
4205 break;
4206 case 0x0fb5: /* lgs Gv */
4207 tmpu8 = X86_RECORD_GS_REGNUM;
4208 break;
4209 }
4210 I386_RECORD_ARCH_LIST_ADD_REG (tmpu8);
4211 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4212 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4213 break;
4214
4215 case 0xc0: /* shifts */
4216 case 0xc1:
4217 case 0xd0:
4218 case 0xd1:
4219 case 0xd2:
4220 case 0xd3:
4221 if ((opcode & 1) == 0)
4222 ir.ot = OT_BYTE;
4223 else
4224 ir.ot = ir.dflag + OT_WORD;
4225 if (i386_record_modrm (&ir))
4226 return -1;
4227 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4228 {
4229 if (i386_record_lea_modrm (&ir))
4230 return -1;
4231 }
4232 else
4233 {
4234 ir.rm |= ir.rex_b;
4235 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4236 ir.rm &= 0x3;
4237 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4238 }
4239 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4240 break;
4241
4242 case 0x0fa4:
4243 case 0x0fa5:
4244 case 0x0fac:
4245 case 0x0fad:
4246 if (i386_record_modrm (&ir))
4247 return -1;
4248 if (ir.mod == 3)
4249 {
4250 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4251 return -1;
4252 }
4253 else
4254 {
4255 if (i386_record_lea_modrm (&ir))
4256 return -1;
4257 }
4258 break;
4259
4260 case 0xd8: /* Floats. */
4261 case 0xd9:
4262 case 0xda:
4263 case 0xdb:
4264 case 0xdc:
4265 case 0xdd:
4266 case 0xde:
4267 case 0xdf:
4268 if (i386_record_modrm (&ir))
4269 return -1;
4270 ir.reg |= ((opcode & 7) << 3);
4271 if (ir.mod != 3)
4272 {
4273 /* Memory. */
4274 uint64_t tmpu64;
4275
4276 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
4277 return -1;
4278 switch (ir.reg)
4279 {
4280 case 0x02:
4281 case 0x12:
4282 case 0x22:
4283 case 0x32:
4284 /* For fcom, ficom nothing to do. */
4285 break;
4286 case 0x03:
4287 case 0x13:
4288 case 0x23:
4289 case 0x33:
4290 /* For fcomp, ficomp pop FPU stack, store all. */
4291 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4292 return -1;
4293 break;
4294 case 0x00:
4295 case 0x01:
4296 case 0x04:
4297 case 0x05:
4298 case 0x06:
4299 case 0x07:
4300 case 0x10:
4301 case 0x11:
4302 case 0x14:
4303 case 0x15:
4304 case 0x16:
4305 case 0x17:
4306 case 0x20:
4307 case 0x21:
4308 case 0x24:
4309 case 0x25:
4310 case 0x26:
4311 case 0x27:
4312 case 0x30:
4313 case 0x31:
4314 case 0x34:
4315 case 0x35:
4316 case 0x36:
4317 case 0x37:
4318 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4319 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4320 of code, always affects st(0) register. */
4321 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4322 return -1;
4323 break;
4324 case 0x08:
4325 case 0x0a:
4326 case 0x0b:
4327 case 0x18:
4328 case 0x19:
4329 case 0x1a:
4330 case 0x1b:
4331 case 0x1d:
4332 case 0x28:
4333 case 0x29:
4334 case 0x2a:
4335 case 0x2b:
4336 case 0x38:
4337 case 0x39:
4338 case 0x3a:
4339 case 0x3b:
4340 case 0x3c:
4341 case 0x3d:
4342 switch (ir.reg & 7)
4343 {
4344 case 0:
4345 /* Handling fld, fild. */
4346 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4347 return -1;
4348 break;
4349 case 1:
4350 switch (ir.reg >> 4)
4351 {
4352 case 0:
4353 if (record_arch_list_add_mem (tmpu64, 4))
4354 return -1;
4355 break;
4356 case 2:
4357 if (record_arch_list_add_mem (tmpu64, 8))
4358 return -1;
4359 break;
4360 case 3:
4361 break;
4362 default:
4363 if (record_arch_list_add_mem (tmpu64, 2))
4364 return -1;
4365 break;
4366 }
4367 break;
4368 default:
4369 switch (ir.reg >> 4)
4370 {
4371 case 0:
4372 if (record_arch_list_add_mem (tmpu64, 4))
4373 return -1;
4374 if (3 == (ir.reg & 7))
4375 {
4376 /* For fstp m32fp. */
4377 if (i386_record_floats (gdbarch, &ir,
4378 I386_SAVE_FPU_REGS))
4379 return -1;
4380 }
4381 break;
4382 case 1:
4383 if (record_arch_list_add_mem (tmpu64, 4))
4384 return -1;
4385 if ((3 == (ir.reg & 7))
4386 || (5 == (ir.reg & 7))
4387 || (7 == (ir.reg & 7)))
4388 {
4389 /* For fstp insn. */
4390 if (i386_record_floats (gdbarch, &ir,
4391 I386_SAVE_FPU_REGS))
4392 return -1;
4393 }
4394 break;
4395 case 2:
4396 if (record_arch_list_add_mem (tmpu64, 8))
4397 return -1;
4398 if (3 == (ir.reg & 7))
4399 {
4400 /* For fstp m64fp. */
4401 if (i386_record_floats (gdbarch, &ir,
4402 I386_SAVE_FPU_REGS))
4403 return -1;
4404 }
4405 break;
4406 case 3:
4407 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
4408 {
4409 /* For fistp, fbld, fild, fbstp. */
4410 if (i386_record_floats (gdbarch, &ir,
4411 I386_SAVE_FPU_REGS))
4412 return -1;
4413 }
4414 /* Fall through */
4415 default:
4416 if (record_arch_list_add_mem (tmpu64, 2))
4417 return -1;
4418 break;
4419 }
4420 break;
4421 }
4422 break;
4423 case 0x0c:
4424 /* Insn fldenv. */
4425 if (i386_record_floats (gdbarch, &ir,
4426 I386_SAVE_FPU_ENV_REG_STACK))
4427 return -1;
4428 break;
4429 case 0x0d:
4430 /* Insn fldcw. */
4431 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
4432 return -1;
4433 break;
4434 case 0x2c:
4435 /* Insn frstor. */
4436 if (i386_record_floats (gdbarch, &ir,
4437 I386_SAVE_FPU_ENV_REG_STACK))
4438 return -1;
4439 break;
4440 case 0x0e:
4441 if (ir.dflag)
4442 {
4443 if (record_arch_list_add_mem (tmpu64, 28))
4444 return -1;
4445 }
4446 else
4447 {
4448 if (record_arch_list_add_mem (tmpu64, 14))
4449 return -1;
4450 }
4451 break;
4452 case 0x0f:
4453 case 0x2f:
4454 if (record_arch_list_add_mem (tmpu64, 2))
4455 return -1;
4456 /* Insn fstp, fbstp. */
4457 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4458 return -1;
4459 break;
4460 case 0x1f:
4461 case 0x3e:
4462 if (record_arch_list_add_mem (tmpu64, 10))
4463 return -1;
4464 break;
4465 case 0x2e:
4466 if (ir.dflag)
4467 {
4468 if (record_arch_list_add_mem (tmpu64, 28))
4469 return -1;
4470 tmpu64 += 28;
4471 }
4472 else
4473 {
4474 if (record_arch_list_add_mem (tmpu64, 14))
4475 return -1;
4476 tmpu64 += 14;
4477 }
4478 if (record_arch_list_add_mem (tmpu64, 80))
4479 return -1;
4480 /* Insn fsave. */
4481 if (i386_record_floats (gdbarch, &ir,
4482 I386_SAVE_FPU_ENV_REG_STACK))
4483 return -1;
4484 break;
4485 case 0x3f:
4486 if (record_arch_list_add_mem (tmpu64, 8))
4487 return -1;
4488 /* Insn fistp. */
4489 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4490 return -1;
4491 break;
4492 default:
4493 ir.addr -= 2;
4494 opcode = opcode << 8 | ir.modrm;
4495 goto no_support;
4496 break;
4497 }
4498 }
4499 /* Opcode is an extension of modR/M byte. */
4500 else
4501 {
4502 switch (opcode)
4503 {
4504 case 0xd8:
4505 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4506 return -1;
4507 break;
4508 case 0xd9:
4509 if (0x0c == (ir.modrm >> 4))
4510 {
4511 if ((ir.modrm & 0x0f) <= 7)
4512 {
4513 if (i386_record_floats (gdbarch, &ir,
4514 I386_SAVE_FPU_REGS))
4515 return -1;
4516 }
4517 else
4518 {
4519 if (i386_record_floats (gdbarch, &ir,
4520 I387_ST0_REGNUM (tdep)))
4521 return -1;
4522 /* If only st(0) is changing, then we have already
4523 recorded. */
4524 if ((ir.modrm & 0x0f) - 0x08)
4525 {
4526 if (i386_record_floats (gdbarch, &ir,
4527 I387_ST0_REGNUM (tdep) +
4528 ((ir.modrm & 0x0f) - 0x08)))
4529 return -1;
4530 }
4531 }
4532 }
4533 else
4534 {
4535 switch (ir.modrm)
4536 {
4537 case 0xe0:
4538 case 0xe1:
4539 case 0xf0:
4540 case 0xf5:
4541 case 0xf8:
4542 case 0xfa:
4543 case 0xfc:
4544 case 0xfe:
4545 case 0xff:
4546 if (i386_record_floats (gdbarch, &ir,
4547 I387_ST0_REGNUM (tdep)))
4548 return -1;
4549 break;
4550 case 0xf1:
4551 case 0xf2:
4552 case 0xf3:
4553 case 0xf4:
4554 case 0xf6:
4555 case 0xf7:
4556 case 0xe8:
4557 case 0xe9:
4558 case 0xea:
4559 case 0xeb:
4560 case 0xec:
4561 case 0xed:
4562 case 0xee:
4563 case 0xf9:
4564 case 0xfb:
4565 if (i386_record_floats (gdbarch, &ir,
4566 I386_SAVE_FPU_REGS))
4567 return -1;
4568 break;
4569 case 0xfd:
4570 if (i386_record_floats (gdbarch, &ir,
4571 I387_ST0_REGNUM (tdep)))
4572 return -1;
4573 if (i386_record_floats (gdbarch, &ir,
4574 I387_ST0_REGNUM (tdep) + 1))
4575 return -1;
4576 break;
4577 }
4578 }
4579 break;
4580 case 0xda:
4581 if (0xe9 == ir.modrm)
4582 {
4583 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4584 return -1;
4585 }
4586 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4587 {
4588 if (i386_record_floats (gdbarch, &ir,
4589 I387_ST0_REGNUM (tdep)))
4590 return -1;
4591 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4592 {
4593 if (i386_record_floats (gdbarch, &ir,
4594 I387_ST0_REGNUM (tdep) +
4595 (ir.modrm & 0x0f)))
4596 return -1;
4597 }
4598 else if ((ir.modrm & 0x0f) - 0x08)
4599 {
4600 if (i386_record_floats (gdbarch, &ir,
4601 I387_ST0_REGNUM (tdep) +
4602 ((ir.modrm & 0x0f) - 0x08)))
4603 return -1;
4604 }
4605 }
4606 break;
4607 case 0xdb:
4608 if (0xe3 == ir.modrm)
4609 {
4610 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
4611 return -1;
4612 }
4613 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4614 {
4615 if (i386_record_floats (gdbarch, &ir,
4616 I387_ST0_REGNUM (tdep)))
4617 return -1;
4618 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4619 {
4620 if (i386_record_floats (gdbarch, &ir,
4621 I387_ST0_REGNUM (tdep) +
4622 (ir.modrm & 0x0f)))
4623 return -1;
4624 }
4625 else if ((ir.modrm & 0x0f) - 0x08)
4626 {
4627 if (i386_record_floats (gdbarch, &ir,
4628 I387_ST0_REGNUM (tdep) +
4629 ((ir.modrm & 0x0f) - 0x08)))
4630 return -1;
4631 }
4632 }
4633 break;
4634 case 0xdc:
4635 if ((0x0c == ir.modrm >> 4)
4636 || (0x0d == ir.modrm >> 4)
4637 || (0x0f == ir.modrm >> 4))
4638 {
4639 if ((ir.modrm & 0x0f) <= 7)
4640 {
4641 if (i386_record_floats (gdbarch, &ir,
4642 I387_ST0_REGNUM (tdep) +
4643 (ir.modrm & 0x0f)))
4644 return -1;
4645 }
4646 else
4647 {
4648 if (i386_record_floats (gdbarch, &ir,
4649 I387_ST0_REGNUM (tdep) +
4650 ((ir.modrm & 0x0f) - 0x08)))
4651 return -1;
4652 }
4653 }
4654 break;
4655 case 0xdd:
4656 if (0x0c == ir.modrm >> 4)
4657 {
4658 if (i386_record_floats (gdbarch, &ir,
4659 I387_FTAG_REGNUM (tdep)))
4660 return -1;
4661 }
4662 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
4663 {
4664 if ((ir.modrm & 0x0f) <= 7)
4665 {
4666 if (i386_record_floats (gdbarch, &ir,
4667 I387_ST0_REGNUM (tdep) +
4668 (ir.modrm & 0x0f)))
4669 return -1;
4670 }
4671 else
4672 {
4673 if (i386_record_floats (gdbarch, &ir,
4674 I386_SAVE_FPU_REGS))
4675 return -1;
4676 }
4677 }
4678 break;
4679 case 0xde:
4680 if ((0x0c == ir.modrm >> 4)
4681 || (0x0e == ir.modrm >> 4)
4682 || (0x0f == ir.modrm >> 4)
4683 || (0xd9 == ir.modrm))
4684 {
4685 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4686 return -1;
4687 }
4688 break;
4689 case 0xdf:
4690 if (0xe0 == ir.modrm)
4691 {
4692 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4693 return -1;
4694 }
4695 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
4696 {
4697 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4698 return -1;
4699 }
4700 break;
4701 }
4702 }
4703 break;
4704 /* string ops */
4705 case 0xa4: /* movsS */
4706 case 0xa5:
4707 case 0xaa: /* stosS */
4708 case 0xab:
4709 case 0x6c: /* insS */
4710 case 0x6d:
4711 regcache_raw_read_unsigned (ir.regcache,
4712 ir.regmap[X86_RECORD_RECX_REGNUM],
4713 &tmpulongest);
4714 if (tmpulongest)
4715 {
4716 ULONGEST es, ds;
4717
4718 if ((opcode & 1) == 0)
4719 ir.ot = OT_BYTE;
4720 else
4721 ir.ot = ir.dflag + OT_WORD;
4722 regcache_raw_read_unsigned (ir.regcache,
4723 ir.regmap[X86_RECORD_REDI_REGNUM],
4724 &tmpulongest);
4725
4726 regcache_raw_read_unsigned (ir.regcache,
4727 ir.regmap[X86_RECORD_ES_REGNUM],
4728 &es);
4729 regcache_raw_read_unsigned (ir.regcache,
4730 ir.regmap[X86_RECORD_DS_REGNUM],
4731 &ds);
4732 if (ir.aflag && (es != ds))
4733 {
4734 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
4735 warning (_("Process record ignores the memory "
4736 "change of instruction at address %s "
4737 "because it can't get the value of the "
4738 "ES segment register."),
4739 paddress (gdbarch, ir.orig_addr));
4740 }
4741 else
4742 {
4743 if (record_arch_list_add_mem (tmpulongest, 1 << ir.ot))
4744 return -1;
4745 }
4746
4747 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4748 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
4749 if (opcode == 0xa4 || opcode == 0xa5)
4750 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
4751 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
4752 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4753 }
4754 break;
4755
4756 case 0xa6: /* cmpsS */
4757 case 0xa7:
4758 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
4759 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
4760 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4761 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
4762 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4763 break;
4764
4765 case 0xac: /* lodsS */
4766 case 0xad:
4767 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4768 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
4769 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4770 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
4771 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4772 break;
4773
4774 case 0xae: /* scasS */
4775 case 0xaf:
4776 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
4777 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4778 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
4779 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4780 break;
4781
4782 case 0x6e: /* outsS */
4783 case 0x6f:
4784 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
4785 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4786 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
4787 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4788 break;
4789
4790 case 0xe4: /* port I/O */
4791 case 0xe5:
4792 case 0xec:
4793 case 0xed:
4794 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4795 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4796 break;
4797
4798 case 0xe6:
4799 case 0xe7:
4800 case 0xee:
4801 case 0xef:
4802 break;
4803
4804 /* control */
4805 case 0xc2: /* ret im */
4806 case 0xc3: /* ret */
4807 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4808 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4809 break;
4810
4811 case 0xca: /* lret im */
4812 case 0xcb: /* lret */
4813 case 0xcf: /* iret */
4814 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4815 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4816 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4817 break;
4818
4819 case 0xe8: /* call im */
4820 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4821 ir.dflag = 2;
4822 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4823 return -1;
4824 break;
4825
4826 case 0x9a: /* lcall im */
4827 if (ir.regmap[X86_RECORD_R8_REGNUM])
4828 {
4829 ir.addr -= 1;
4830 goto no_support;
4831 }
4832 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4833 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4834 return -1;
4835 break;
4836
4837 case 0xe9: /* jmp im */
4838 case 0xea: /* ljmp im */
4839 case 0xeb: /* jmp Jb */
4840 case 0x70: /* jcc Jb */
4841 case 0x71:
4842 case 0x72:
4843 case 0x73:
4844 case 0x74:
4845 case 0x75:
4846 case 0x76:
4847 case 0x77:
4848 case 0x78:
4849 case 0x79:
4850 case 0x7a:
4851 case 0x7b:
4852 case 0x7c:
4853 case 0x7d:
4854 case 0x7e:
4855 case 0x7f:
4856 case 0x0f80: /* jcc Jv */
4857 case 0x0f81:
4858 case 0x0f82:
4859 case 0x0f83:
4860 case 0x0f84:
4861 case 0x0f85:
4862 case 0x0f86:
4863 case 0x0f87:
4864 case 0x0f88:
4865 case 0x0f89:
4866 case 0x0f8a:
4867 case 0x0f8b:
4868 case 0x0f8c:
4869 case 0x0f8d:
4870 case 0x0f8e:
4871 case 0x0f8f:
4872 break;
4873
4874 case 0x0f90: /* setcc Gv */
4875 case 0x0f91:
4876 case 0x0f92:
4877 case 0x0f93:
4878 case 0x0f94:
4879 case 0x0f95:
4880 case 0x0f96:
4881 case 0x0f97:
4882 case 0x0f98:
4883 case 0x0f99:
4884 case 0x0f9a:
4885 case 0x0f9b:
4886 case 0x0f9c:
4887 case 0x0f9d:
4888 case 0x0f9e:
4889 case 0x0f9f:
4890 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4891 ir.ot = OT_BYTE;
4892 if (i386_record_modrm (&ir))
4893 return -1;
4894 if (ir.mod == 3)
4895 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
4896 : (ir.rm & 0x3));
4897 else
4898 {
4899 if (i386_record_lea_modrm (&ir))
4900 return -1;
4901 }
4902 break;
4903
4904 case 0x0f40: /* cmov Gv, Ev */
4905 case 0x0f41:
4906 case 0x0f42:
4907 case 0x0f43:
4908 case 0x0f44:
4909 case 0x0f45:
4910 case 0x0f46:
4911 case 0x0f47:
4912 case 0x0f48:
4913 case 0x0f49:
4914 case 0x0f4a:
4915 case 0x0f4b:
4916 case 0x0f4c:
4917 case 0x0f4d:
4918 case 0x0f4e:
4919 case 0x0f4f:
4920 if (i386_record_modrm (&ir))
4921 return -1;
4922 ir.reg |= rex_r;
4923 if (ir.dflag == OT_BYTE)
4924 ir.reg &= 0x3;
4925 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4926 break;
4927
4928 /* flags */
4929 case 0x9c: /* pushf */
4930 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4931 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4932 ir.dflag = 2;
4933 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4934 return -1;
4935 break;
4936
4937 case 0x9d: /* popf */
4938 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4939 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4940 break;
4941
4942 case 0x9e: /* sahf */
4943 if (ir.regmap[X86_RECORD_R8_REGNUM])
4944 {
4945 ir.addr -= 1;
4946 goto no_support;
4947 }
4948 case 0xf5: /* cmc */
4949 case 0xf8: /* clc */
4950 case 0xf9: /* stc */
4951 case 0xfc: /* cld */
4952 case 0xfd: /* std */
4953 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4954 break;
4955
4956 case 0x9f: /* lahf */
4957 if (ir.regmap[X86_RECORD_R8_REGNUM])
4958 {
4959 ir.addr -= 1;
4960 goto no_support;
4961 }
4962 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4963 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4964 break;
4965
4966 /* bit operations */
4967 case 0x0fba: /* bt/bts/btr/btc Gv, im */
4968 ir.ot = ir.dflag + OT_WORD;
4969 if (i386_record_modrm (&ir))
4970 return -1;
4971 if (ir.reg < 4)
4972 {
4973 ir.addr -= 2;
4974 opcode = opcode << 8 | ir.modrm;
4975 goto no_support;
4976 }
4977 if (ir.reg != 4)
4978 {
4979 if (ir.mod == 3)
4980 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4981 else
4982 {
4983 if (i386_record_lea_modrm (&ir))
4984 return -1;
4985 }
4986 }
4987 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4988 break;
4989
4990 case 0x0fa3: /* bt Gv, Ev */
4991 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4992 break;
4993
4994 case 0x0fab: /* bts */
4995 case 0x0fb3: /* btr */
4996 case 0x0fbb: /* btc */
4997 ir.ot = ir.dflag + OT_WORD;
4998 if (i386_record_modrm (&ir))
4999 return -1;
5000 if (ir.mod == 3)
5001 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5002 else
5003 {
5004 uint64_t tmpu64;
5005 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
5006 return -1;
5007 regcache_raw_read_unsigned (ir.regcache,
5008 ir.regmap[ir.reg | rex_r],
5009 &tmpulongest);
5010 switch (ir.dflag)
5011 {
5012 case 0:
5013 tmpu64 += ((int16_t) tmpulongest >> 4) << 4;
5014 break;
5015 case 1:
5016 tmpu64 += ((int32_t) tmpulongest >> 5) << 5;
5017 break;
5018 case 2:
5019 tmpu64 += ((int64_t) tmpulongest >> 6) << 6;
5020 break;
5021 }
5022 if (record_arch_list_add_mem (tmpu64, 1 << ir.ot))
5023 return -1;
5024 if (i386_record_lea_modrm (&ir))
5025 return -1;
5026 }
5027 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5028 break;
5029
5030 case 0x0fbc: /* bsf */
5031 case 0x0fbd: /* bsr */
5032 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5033 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5034 break;
5035
5036 /* bcd */
5037 case 0x27: /* daa */
5038 case 0x2f: /* das */
5039 case 0x37: /* aaa */
5040 case 0x3f: /* aas */
5041 case 0xd4: /* aam */
5042 case 0xd5: /* aad */
5043 if (ir.regmap[X86_RECORD_R8_REGNUM])
5044 {
5045 ir.addr -= 1;
5046 goto no_support;
5047 }
5048 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5049 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5050 break;
5051
5052 /* misc */
5053 case 0x90: /* nop */
5054 if (prefixes & PREFIX_LOCK)
5055 {
5056 ir.addr -= 1;
5057 goto no_support;
5058 }
5059 break;
5060
5061 case 0x9b: /* fwait */
5062 if (target_read_memory (ir.addr, &tmpu8, 1))
5063 {
5064 if (record_debug)
5065 printf_unfiltered (_("Process record: error reading memory at "
5066 "addr 0x%s len = 1.\n"),
5067 paddress (gdbarch, ir.addr));
5068 return -1;
5069 }
5070 opcode = (uint32_t) tmpu8;
5071 ir.addr++;
5072 goto reswitch;
5073 break;
5074
5075 /* XXX */
5076 case 0xcc: /* int3 */
5077 printf_unfiltered (_("Process record doesn't support instruction "
5078 "int3.\n"));
5079 ir.addr -= 1;
5080 goto no_support;
5081 break;
5082
5083 /* XXX */
5084 case 0xcd: /* int */
5085 {
5086 int ret;
5087 if (target_read_memory (ir.addr, &tmpu8, 1))
5088 {
5089 if (record_debug)
5090 printf_unfiltered (_("Process record: error reading memory "
5091 "at addr %s len = 1.\n"),
5092 paddress (gdbarch, ir.addr));
5093 return -1;
5094 }
5095 ir.addr++;
5096 if (tmpu8 != 0x80
5097 || gdbarch_tdep (gdbarch)->i386_intx80_record == NULL)
5098 {
5099 printf_unfiltered (_("Process record doesn't support "
5100 "instruction int 0x%02x.\n"),
5101 tmpu8);
5102 ir.addr -= 2;
5103 goto no_support;
5104 }
5105 ret = gdbarch_tdep (gdbarch)->i386_intx80_record (ir.regcache);
5106 if (ret)
5107 return ret;
5108 }
5109 break;
5110
5111 /* XXX */
5112 case 0xce: /* into */
5113 printf_unfiltered (_("Process record doesn't support "
5114 "instruction into.\n"));
5115 ir.addr -= 1;
5116 goto no_support;
5117 break;
5118
5119 case 0xfa: /* cli */
5120 case 0xfb: /* sti */
5121 break;
5122
5123 case 0x62: /* bound */
5124 printf_unfiltered (_("Process record doesn't support "
5125 "instruction bound.\n"));
5126 ir.addr -= 1;
5127 goto no_support;
5128 break;
5129
5130 case 0x0fc8: /* bswap reg */
5131 case 0x0fc9:
5132 case 0x0fca:
5133 case 0x0fcb:
5134 case 0x0fcc:
5135 case 0x0fcd:
5136 case 0x0fce:
5137 case 0x0fcf:
5138 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
5139 break;
5140
5141 case 0xd6: /* salc */
5142 if (ir.regmap[X86_RECORD_R8_REGNUM])
5143 {
5144 ir.addr -= 1;
5145 goto no_support;
5146 }
5147 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5148 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5149 break;
5150
5151 case 0xe0: /* loopnz */
5152 case 0xe1: /* loopz */
5153 case 0xe2: /* loop */
5154 case 0xe3: /* jecxz */
5155 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5156 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5157 break;
5158
5159 case 0x0f30: /* wrmsr */
5160 printf_unfiltered (_("Process record doesn't support "
5161 "instruction wrmsr.\n"));
5162 ir.addr -= 2;
5163 goto no_support;
5164 break;
5165
5166 case 0x0f32: /* rdmsr */
5167 printf_unfiltered (_("Process record doesn't support "
5168 "instruction rdmsr.\n"));
5169 ir.addr -= 2;
5170 goto no_support;
5171 break;
5172
5173 case 0x0f31: /* rdtsc */
5174 printf_unfiltered (_("Process record doesn't support "
5175 "instruction rdtsc.\n"));
5176 ir.addr -= 2;
5177 goto no_support;
5178 break;
5179
5180 case 0x0f34: /* sysenter */
5181 {
5182 int ret;
5183 if (ir.regmap[X86_RECORD_R8_REGNUM])
5184 {
5185 ir.addr -= 2;
5186 goto no_support;
5187 }
5188 if (gdbarch_tdep (gdbarch)->i386_sysenter_record == NULL)
5189 {
5190 printf_unfiltered (_("Process record doesn't support "
5191 "instruction sysenter.\n"));
5192 ir.addr -= 2;
5193 goto no_support;
5194 }
5195 ret = gdbarch_tdep (gdbarch)->i386_sysenter_record (ir.regcache);
5196 if (ret)
5197 return ret;
5198 }
5199 break;
5200
5201 case 0x0f35: /* sysexit */
5202 printf_unfiltered (_("Process record doesn't support "
5203 "instruction sysexit.\n"));
5204 ir.addr -= 2;
5205 goto no_support;
5206 break;
5207
5208 case 0x0f05: /* syscall */
5209 {
5210 int ret;
5211 if (gdbarch_tdep (gdbarch)->i386_syscall_record == NULL)
5212 {
5213 printf_unfiltered (_("Process record doesn't support "
5214 "instruction syscall.\n"));
5215 ir.addr -= 2;
5216 goto no_support;
5217 }
5218 ret = gdbarch_tdep (gdbarch)->i386_syscall_record (ir.regcache);
5219 if (ret)
5220 return ret;
5221 }
5222 break;
5223
5224 case 0x0f07: /* sysret */
5225 printf_unfiltered (_("Process record doesn't support "
5226 "instruction sysret.\n"));
5227 ir.addr -= 2;
5228 goto no_support;
5229 break;
5230
5231 case 0x0fa2: /* cpuid */
5232 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5233 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5234 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5235 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5236 break;
5237
5238 case 0xf4: /* hlt */
5239 printf_unfiltered (_("Process record doesn't support "
5240 "instruction hlt.\n"));
5241 ir.addr -= 1;
5242 goto no_support;
5243 break;
5244
5245 case 0x0f00:
5246 if (i386_record_modrm (&ir))
5247 return -1;
5248 switch (ir.reg)
5249 {
5250 case 0: /* sldt */
5251 case 1: /* str */
5252 if (ir.mod == 3)
5253 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5254 else
5255 {
5256 ir.ot = OT_WORD;
5257 if (i386_record_lea_modrm (&ir))
5258 return -1;
5259 }
5260 break;
5261 case 2: /* lldt */
5262 case 3: /* ltr */
5263 break;
5264 case 4: /* verr */
5265 case 5: /* verw */
5266 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5267 break;
5268 default:
5269 ir.addr -= 3;
5270 opcode = opcode << 8 | ir.modrm;
5271 goto no_support;
5272 break;
5273 }
5274 break;
5275
5276 case 0x0f01:
5277 if (i386_record_modrm (&ir))
5278 return -1;
5279 switch (ir.reg)
5280 {
5281 case 0: /* sgdt */
5282 {
5283 uint64_t tmpu64;
5284
5285 if (ir.mod == 3)
5286 {
5287 ir.addr -= 3;
5288 opcode = opcode << 8 | ir.modrm;
5289 goto no_support;
5290 }
5291 if (ir.override >= 0)
5292 {
5293 warning (_("Process record ignores the memory "
5294 "change of instruction at "
5295 "address %s because it can't get "
5296 "the value of the segment "
5297 "register."),
5298 paddress (gdbarch, ir.orig_addr));
5299 }
5300 else
5301 {
5302 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
5303 return -1;
5304 if (record_arch_list_add_mem (tmpu64, 2))
5305 return -1;
5306 tmpu64 += 2;
5307 if (ir.regmap[X86_RECORD_R8_REGNUM])
5308 {
5309 if (record_arch_list_add_mem (tmpu64, 8))
5310 return -1;
5311 }
5312 else
5313 {
5314 if (record_arch_list_add_mem (tmpu64, 4))
5315 return -1;
5316 }
5317 }
5318 }
5319 break;
5320 case 1:
5321 if (ir.mod == 3)
5322 {
5323 switch (ir.rm)
5324 {
5325 case 0: /* monitor */
5326 break;
5327 case 1: /* mwait */
5328 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5329 break;
5330 default:
5331 ir.addr -= 3;
5332 opcode = opcode << 8 | ir.modrm;
5333 goto no_support;
5334 break;
5335 }
5336 }
5337 else
5338 {
5339 /* sidt */
5340 if (ir.override >= 0)
5341 {
5342 warning (_("Process record ignores the memory "
5343 "change of instruction at "
5344 "address %s because it can't get "
5345 "the value of the segment "
5346 "register."),
5347 paddress (gdbarch, ir.orig_addr));
5348 }
5349 else
5350 {
5351 uint64_t tmpu64;
5352
5353 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
5354 return -1;
5355 if (record_arch_list_add_mem (tmpu64, 2))
5356 return -1;
5357 addr += 2;
5358 if (ir.regmap[X86_RECORD_R8_REGNUM])
5359 {
5360 if (record_arch_list_add_mem (tmpu64, 8))
5361 return -1;
5362 }
5363 else
5364 {
5365 if (record_arch_list_add_mem (tmpu64, 4))
5366 return -1;
5367 }
5368 }
5369 }
5370 break;
5371 case 2: /* lgdt */
5372 if (ir.mod == 3)
5373 {
5374 /* xgetbv */
5375 if (ir.rm == 0)
5376 {
5377 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5378 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5379 break;
5380 }
5381 /* xsetbv */
5382 else if (ir.rm == 1)
5383 break;
5384 }
5385 case 3: /* lidt */
5386 if (ir.mod == 3)
5387 {
5388 ir.addr -= 3;
5389 opcode = opcode << 8 | ir.modrm;
5390 goto no_support;
5391 }
5392 break;
5393 case 4: /* smsw */
5394 if (ir.mod == 3)
5395 {
5396 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
5397 return -1;
5398 }
5399 else
5400 {
5401 ir.ot = OT_WORD;
5402 if (i386_record_lea_modrm (&ir))
5403 return -1;
5404 }
5405 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5406 break;
5407 case 6: /* lmsw */
5408 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5409 break;
5410 case 7: /* invlpg */
5411 if (ir.mod == 3)
5412 {
5413 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
5414 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5415 else
5416 {
5417 ir.addr -= 3;
5418 opcode = opcode << 8 | ir.modrm;
5419 goto no_support;
5420 }
5421 }
5422 else
5423 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5424 break;
5425 default:
5426 ir.addr -= 3;
5427 opcode = opcode << 8 | ir.modrm;
5428 goto no_support;
5429 break;
5430 }
5431 break;
5432
5433 case 0x0f08: /* invd */
5434 case 0x0f09: /* wbinvd */
5435 break;
5436
5437 case 0x63: /* arpl */
5438 if (i386_record_modrm (&ir))
5439 return -1;
5440 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
5441 {
5442 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
5443 ? (ir.reg | rex_r) : ir.rm);
5444 }
5445 else
5446 {
5447 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
5448 if (i386_record_lea_modrm (&ir))
5449 return -1;
5450 }
5451 if (!ir.regmap[X86_RECORD_R8_REGNUM])
5452 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5453 break;
5454
5455 case 0x0f02: /* lar */
5456 case 0x0f03: /* lsl */
5457 if (i386_record_modrm (&ir))
5458 return -1;
5459 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5460 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5461 break;
5462
5463 case 0x0f18:
5464 if (i386_record_modrm (&ir))
5465 return -1;
5466 if (ir.mod == 3 && ir.reg == 3)
5467 {
5468 ir.addr -= 3;
5469 opcode = opcode << 8 | ir.modrm;
5470 goto no_support;
5471 }
5472 break;
5473
5474 case 0x0f19:
5475 case 0x0f1a:
5476 case 0x0f1b:
5477 case 0x0f1c:
5478 case 0x0f1d:
5479 case 0x0f1e:
5480 case 0x0f1f:
5481 /* nop (multi byte) */
5482 break;
5483
5484 case 0x0f20: /* mov reg, crN */
5485 case 0x0f22: /* mov crN, reg */
5486 if (i386_record_modrm (&ir))
5487 return -1;
5488 if ((ir.modrm & 0xc0) != 0xc0)
5489 {
5490 ir.addr -= 3;
5491 opcode = opcode << 8 | ir.modrm;
5492 goto no_support;
5493 }
5494 switch (ir.reg)
5495 {
5496 case 0:
5497 case 2:
5498 case 3:
5499 case 4:
5500 case 8:
5501 if (opcode & 2)
5502 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5503 else
5504 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5505 break;
5506 default:
5507 ir.addr -= 3;
5508 opcode = opcode << 8 | ir.modrm;
5509 goto no_support;
5510 break;
5511 }
5512 break;
5513
5514 case 0x0f21: /* mov reg, drN */
5515 case 0x0f23: /* mov drN, reg */
5516 if (i386_record_modrm (&ir))
5517 return -1;
5518 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
5519 || ir.reg == 5 || ir.reg >= 8)
5520 {
5521 ir.addr -= 3;
5522 opcode = opcode << 8 | ir.modrm;
5523 goto no_support;
5524 }
5525 if (opcode & 2)
5526 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5527 else
5528 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5529 break;
5530
5531 case 0x0f06: /* clts */
5532 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5533 break;
5534
5535 /* MMX/SSE/SSE2/PNI support */
5536 /* XXX */
5537
5538 default:
5539 if (opcode > 0xff)
5540 ir.addr -= 2;
5541 else
5542 ir.addr -= 1;
5543 goto no_support;
5544 break;
5545 }
5546
5547 /* In the future, maybe still need to deal with need_dasm. */
5548 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
5549 if (record_arch_list_add_end ())
5550 return -1;
5551
5552 return 0;
5553
5554 no_support:
5555 printf_unfiltered (_("Process record doesn't support instruction 0x%02x "
5556 "at address %s.\n"),
5557 (unsigned int) (opcode), paddress (gdbarch, ir.addr));
5558 return -1;
5559 }
5560
5561 static const int i386_record_regmap[] =
5562 {
5563 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
5564 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
5565 0, 0, 0, 0, 0, 0, 0, 0,
5566 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
5567 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
5568 };
5569
5570 \f
5571 static struct gdbarch *
5572 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5573 {
5574 struct gdbarch_tdep *tdep;
5575 struct gdbarch *gdbarch;
5576
5577 /* If there is already a candidate, use it. */
5578 arches = gdbarch_list_lookup_by_info (arches, &info);
5579 if (arches != NULL)
5580 return arches->gdbarch;
5581
5582 /* Allocate space for the new architecture. */
5583 tdep = XCALLOC (1, struct gdbarch_tdep);
5584 gdbarch = gdbarch_alloc (&info, tdep);
5585
5586 /* General-purpose registers. */
5587 tdep->gregset = NULL;
5588 tdep->gregset_reg_offset = NULL;
5589 tdep->gregset_num_regs = I386_NUM_GREGS;
5590 tdep->sizeof_gregset = 0;
5591
5592 /* Floating-point registers. */
5593 tdep->fpregset = NULL;
5594 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
5595
5596 /* The default settings include the FPU registers, the MMX registers
5597 and the SSE registers. This can be overridden for a specific ABI
5598 by adjusting the members `st0_regnum', `mm0_regnum' and
5599 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
5600 will show up in the output of "info all-registers". Ideally we
5601 should try to autodetect whether they are available, such that we
5602 can prevent "info all-registers" from displaying registers that
5603 aren't available.
5604
5605 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
5606 [the SSE registers] always (even when they don't exist) or never
5607 showing them to the user (even when they do exist), I prefer the
5608 former over the latter. */
5609
5610 tdep->st0_regnum = I386_ST0_REGNUM;
5611
5612 /* The MMX registers are implemented as pseudo-registers. Put off
5613 calculating the register number for %mm0 until we know the number
5614 of raw registers. */
5615 tdep->mm0_regnum = 0;
5616
5617 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
5618 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
5619
5620 tdep->jb_pc_offset = -1;
5621 tdep->struct_return = pcc_struct_return;
5622 tdep->sigtramp_start = 0;
5623 tdep->sigtramp_end = 0;
5624 tdep->sigtramp_p = i386_sigtramp_p;
5625 tdep->sigcontext_addr = NULL;
5626 tdep->sc_reg_offset = NULL;
5627 tdep->sc_pc_offset = -1;
5628 tdep->sc_sp_offset = -1;
5629
5630 tdep->record_regmap = i386_record_regmap;
5631
5632 /* The format used for `long double' on almost all i386 targets is
5633 the i387 extended floating-point format. In fact, of all targets
5634 in the GCC 2.95 tree, only OSF/1 does it different, and insists
5635 on having a `long double' that's not `long' at all. */
5636 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
5637
5638 /* Although the i387 extended floating-point has only 80 significant
5639 bits, a `long double' actually takes up 96, probably to enforce
5640 alignment. */
5641 set_gdbarch_long_double_bit (gdbarch, 96);
5642
5643 /* The default ABI includes general-purpose registers,
5644 floating-point registers, and the SSE registers. */
5645 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
5646 set_gdbarch_register_name (gdbarch, i386_register_name);
5647 set_gdbarch_register_type (gdbarch, i386_register_type);
5648
5649 /* Register numbers of various important registers. */
5650 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
5651 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
5652 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
5653 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
5654
5655 /* NOTE: kettenis/20040418: GCC does have two possible register
5656 numbering schemes on the i386: dbx and SVR4. These schemes
5657 differ in how they number %ebp, %esp, %eflags, and the
5658 floating-point registers, and are implemented by the arrays
5659 dbx_register_map[] and svr4_dbx_register_map in
5660 gcc/config/i386.c. GCC also defines a third numbering scheme in
5661 gcc/config/i386.c, which it designates as the "default" register
5662 map used in 64bit mode. This last register numbering scheme is
5663 implemented in dbx64_register_map, and is used for AMD64; see
5664 amd64-tdep.c.
5665
5666 Currently, each GCC i386 target always uses the same register
5667 numbering scheme across all its supported debugging formats
5668 i.e. SDB (COFF), stabs and DWARF 2. This is because
5669 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
5670 DBX_REGISTER_NUMBER macro which is defined by each target's
5671 respective config header in a manner independent of the requested
5672 output debugging format.
5673
5674 This does not match the arrangement below, which presumes that
5675 the SDB and stabs numbering schemes differ from the DWARF and
5676 DWARF 2 ones. The reason for this arrangement is that it is
5677 likely to get the numbering scheme for the target's
5678 default/native debug format right. For targets where GCC is the
5679 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
5680 targets where the native toolchain uses a different numbering
5681 scheme for a particular debug format (stabs-in-ELF on Solaris)
5682 the defaults below will have to be overridden, like
5683 i386_elf_init_abi() does. */
5684
5685 /* Use the dbx register numbering scheme for stabs and COFF. */
5686 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
5687 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
5688
5689 /* Use the SVR4 register numbering scheme for DWARF 2. */
5690 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
5691
5692 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
5693 be in use on any of the supported i386 targets. */
5694
5695 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
5696
5697 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
5698
5699 /* Call dummy code. */
5700 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
5701
5702 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
5703 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
5704 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
5705
5706 set_gdbarch_return_value (gdbarch, i386_return_value);
5707
5708 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
5709
5710 /* Stack grows downward. */
5711 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5712
5713 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
5714 set_gdbarch_decr_pc_after_break (gdbarch, 1);
5715 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
5716
5717 set_gdbarch_frame_args_skip (gdbarch, 8);
5718
5719 /* Wire in the MMX registers. */
5720 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
5721 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
5722 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
5723
5724 set_gdbarch_print_insn (gdbarch, i386_print_insn);
5725
5726 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
5727
5728 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
5729
5730 /* Add the i386 register groups. */
5731 i386_add_reggroups (gdbarch);
5732 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
5733
5734 /* Helper for function argument information. */
5735 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
5736
5737 /* Hook the function epilogue frame unwinder. This unwinder is
5738 appended to the list first, so that it supercedes the Dwarf
5739 unwinder in function epilogues (where the Dwarf unwinder
5740 currently fails). */
5741 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
5742
5743 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
5744 to the list before the prologue-based unwinders, so that Dwarf
5745 CFI info will be used if it is available. */
5746 dwarf2_append_unwinders (gdbarch);
5747
5748 frame_base_set_default (gdbarch, &i386_frame_base);
5749
5750 /* Hook in ABI-specific overrides, if they have been registered. */
5751 gdbarch_init_osabi (info, gdbarch);
5752
5753 /* Hook in the legacy prologue-based unwinders last (fallback). */
5754 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
5755 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
5756
5757 /* If we have a register mapping, enable the generic core file
5758 support, unless it has already been enabled. */
5759 if (tdep->gregset_reg_offset
5760 && !gdbarch_regset_from_core_section_p (gdbarch))
5761 set_gdbarch_regset_from_core_section (gdbarch,
5762 i386_regset_from_core_section);
5763
5764 /* Unless support for MMX has been disabled, make %mm0 the first
5765 pseudo-register. */
5766 if (tdep->mm0_regnum == 0)
5767 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
5768
5769 set_gdbarch_skip_permanent_breakpoint (gdbarch,
5770 i386_skip_permanent_breakpoint);
5771
5772 return gdbarch;
5773 }
5774
5775 static enum gdb_osabi
5776 i386_coff_osabi_sniffer (bfd *abfd)
5777 {
5778 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
5779 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
5780 return GDB_OSABI_GO32;
5781
5782 return GDB_OSABI_UNKNOWN;
5783 }
5784 \f
5785
5786 /* Provide a prototype to silence -Wmissing-prototypes. */
5787 void _initialize_i386_tdep (void);
5788
5789 void
5790 _initialize_i386_tdep (void)
5791 {
5792 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
5793
5794 /* Add the variable that controls the disassembly flavor. */
5795 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
5796 &disassembly_flavor, _("\
5797 Set the disassembly flavor."), _("\
5798 Show the disassembly flavor."), _("\
5799 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
5800 NULL,
5801 NULL, /* FIXME: i18n: */
5802 &setlist, &showlist);
5803
5804 /* Add the variable that controls the convention for returning
5805 structs. */
5806 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
5807 &struct_convention, _("\
5808 Set the convention for returning small structs."), _("\
5809 Show the convention for returning small structs."), _("\
5810 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
5811 is \"default\"."),
5812 NULL,
5813 NULL, /* FIXME: i18n: */
5814 &setlist, &showlist);
5815
5816 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
5817 i386_coff_osabi_sniffer);
5818
5819 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
5820 i386_svr4_init_abi);
5821 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
5822 i386_go32_init_abi);
5823
5824 /* Initialize the i386-specific register groups. */
5825 i386_init_reggroups ();
5826 }
This page took 0.1666 seconds and 5 git commands to generate.