1 /* Intel 387 floating point stuff.
3 Copyright 1988, 1989, 1991, 1992, 1993, 1994, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
25 #include "floatformat.h"
33 #include "gdb_assert.h"
34 #include "gdb_string.h"
36 #include "i386-tdep.h"
37 #include "i387-tdep.h"
39 /* Print the floating point number specified by RAW. */
42 print_i387_value (char *raw
, struct ui_file
*file
)
46 /* Using extract_typed_floating here might affect the representation
47 of certain numbers such as NaNs, even if GDB is running natively.
48 This is fine since our caller already detects such special
49 numbers and we print the hexadecimal representation anyway. */
50 value
= extract_typed_floating (raw
, builtin_type_i387_ext
);
52 /* We try to print 19 digits. The last digit may or may not contain
53 garbage, but we'd better print one too many. We need enough room
54 to print the value, 1 position for the sign, 1 for the decimal
55 point, 19 for the digits and 6 for the exponent adds up to 27. */
56 #ifdef PRINTF_HAS_LONG_DOUBLE
57 fprintf_filtered (file
, " %-+27.19Lg", (long double) value
);
59 fprintf_filtered (file
, " %-+27.19g", (double) value
);
63 /* Print the classification for the register contents RAW. */
66 print_i387_ext (unsigned char *raw
, struct ui_file
*file
)
70 unsigned int exponent
;
71 unsigned long fraction
[2];
74 integer
= raw
[7] & 0x80;
75 exponent
= (((raw
[9] & 0x7f) << 8) | raw
[8]);
76 fraction
[0] = ((raw
[3] << 24) | (raw
[2] << 16) | (raw
[1] << 8) | raw
[0]);
77 fraction
[1] = (((raw
[7] & 0x7f) << 24) | (raw
[6] << 16)
78 | (raw
[5] << 8) | raw
[4]);
80 if (exponent
== 0x7fff && integer
)
82 if (fraction
[0] == 0x00000000 && fraction
[1] == 0x00000000)
84 fprintf_filtered (file
, " %cInf", (sign
? '-' : '+'));
85 else if (sign
&& fraction
[0] == 0x00000000 && fraction
[1] == 0x40000000)
86 /* Real Indefinite (QNaN). */
87 fputs_unfiltered (" Real Indefinite (QNaN)", file
);
88 else if (fraction
[1] & 0x40000000)
90 fputs_filtered (" QNaN", file
);
93 fputs_filtered (" SNaN", file
);
95 else if (exponent
< 0x7fff && exponent
> 0x0000 && integer
)
97 print_i387_value (raw
, file
);
98 else if (exponent
== 0x0000)
100 /* Denormal or zero. */
101 print_i387_value (raw
, file
);
104 /* Pseudo-denormal. */
105 fputs_filtered (" Pseudo-denormal", file
);
106 else if (fraction
[0] || fraction
[1])
108 fputs_filtered (" Denormal", file
);
112 fputs_filtered (" Unsupported", file
);
115 /* Print the status word STATUS. */
118 print_i387_status_word (unsigned int status
, struct ui_file
*file
)
120 fprintf_filtered (file
, "Status Word: %s",
121 hex_string_custom (status
, 4));
122 fputs_filtered (" ", file
);
123 fprintf_filtered (file
, " %s", (status
& 0x0001) ? "IE" : " ");
124 fprintf_filtered (file
, " %s", (status
& 0x0002) ? "DE" : " ");
125 fprintf_filtered (file
, " %s", (status
& 0x0004) ? "ZE" : " ");
126 fprintf_filtered (file
, " %s", (status
& 0x0008) ? "OE" : " ");
127 fprintf_filtered (file
, " %s", (status
& 0x0010) ? "UE" : " ");
128 fprintf_filtered (file
, " %s", (status
& 0x0020) ? "PE" : " ");
129 fputs_filtered (" ", file
);
130 fprintf_filtered (file
, " %s", (status
& 0x0080) ? "ES" : " ");
131 fputs_filtered (" ", file
);
132 fprintf_filtered (file
, " %s", (status
& 0x0040) ? "SF" : " ");
133 fputs_filtered (" ", file
);
134 fprintf_filtered (file
, " %s", (status
& 0x0100) ? "C0" : " ");
135 fprintf_filtered (file
, " %s", (status
& 0x0200) ? "C1" : " ");
136 fprintf_filtered (file
, " %s", (status
& 0x0400) ? "C2" : " ");
137 fprintf_filtered (file
, " %s", (status
& 0x4000) ? "C3" : " ");
139 fputs_filtered ("\n", file
);
141 fprintf_filtered (file
,
142 " TOP: %d\n", ((status
>> 11) & 7));
145 /* Print the control word CONTROL. */
148 print_i387_control_word (unsigned int control
, struct ui_file
*file
)
150 fprintf_filtered (file
, "Control Word: %s",
151 hex_string_custom (control
, 4));
152 fputs_filtered (" ", file
);
153 fprintf_filtered (file
, " %s", (control
& 0x0001) ? "IM" : " ");
154 fprintf_filtered (file
, " %s", (control
& 0x0002) ? "DM" : " ");
155 fprintf_filtered (file
, " %s", (control
& 0x0004) ? "ZM" : " ");
156 fprintf_filtered (file
, " %s", (control
& 0x0008) ? "OM" : " ");
157 fprintf_filtered (file
, " %s", (control
& 0x0010) ? "UM" : " ");
158 fprintf_filtered (file
, " %s", (control
& 0x0020) ? "PM" : " ");
160 fputs_filtered ("\n", file
);
162 fputs_filtered (" PC: ", file
);
163 switch ((control
>> 8) & 3)
166 fputs_filtered ("Single Precision (24-bits)\n", file
);
169 fputs_filtered ("Reserved\n", file
);
172 fputs_filtered ("Double Precision (53-bits)\n", file
);
175 fputs_filtered ("Extended Precision (64-bits)\n", file
);
179 fputs_filtered (" RC: ", file
);
180 switch ((control
>> 10) & 3)
183 fputs_filtered ("Round to nearest\n", file
);
186 fputs_filtered ("Round down\n", file
);
189 fputs_filtered ("Round up\n", file
);
192 fputs_filtered ("Round toward zero\n", file
);
197 /* Print out the i387 floating point state. Note that we ignore FRAME
198 in the code below. That's OK since floating-point registers are
199 never saved on the stack. */
202 i387_print_float_info (struct gdbarch
*gdbarch
, struct ui_file
*file
,
203 struct frame_info
*frame
, const char *args
)
205 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_frame_arch (frame
));
218 gdb_assert (gdbarch
== get_frame_arch (frame
));
220 /* Define I387_ST0_REGNUM such that we use the proper definitions
221 for FRAME's architecture. */
222 #define I387_ST0_REGNUM tdep->st0_regnum
224 fctrl
= get_frame_register_unsigned (frame
, I387_FCTRL_REGNUM
);
225 fstat
= get_frame_register_unsigned (frame
, I387_FSTAT_REGNUM
);
226 ftag
= get_frame_register_unsigned (frame
, I387_FTAG_REGNUM
);
227 fiseg
= get_frame_register_unsigned (frame
, I387_FISEG_REGNUM
);
228 fioff
= get_frame_register_unsigned (frame
, I387_FIOFF_REGNUM
);
229 foseg
= get_frame_register_unsigned (frame
, I387_FOSEG_REGNUM
);
230 fooff
= get_frame_register_unsigned (frame
, I387_FOOFF_REGNUM
);
231 fop
= get_frame_register_unsigned (frame
, I387_FOP_REGNUM
);
233 top
= ((fstat
>> 11) & 7);
235 for (fpreg
= 7; fpreg
>= 0; fpreg
--)
237 unsigned char raw
[I386_MAX_REGISTER_SIZE
];
238 int tag
= (ftag
>> (fpreg
* 2)) & 3;
241 fprintf_filtered (file
, "%sR%d: ", fpreg
== top
? "=>" : " ", fpreg
);
246 fputs_filtered ("Valid ", file
);
249 fputs_filtered ("Zero ", file
);
252 fputs_filtered ("Special ", file
);
255 fputs_filtered ("Empty ", file
);
259 get_frame_register (frame
, (fpreg
+ 8 - top
) % 8 + I387_ST0_REGNUM
, raw
);
261 fputs_filtered ("0x", file
);
262 for (i
= 9; i
>= 0; i
--)
263 fprintf_filtered (file
, "%02x", raw
[i
]);
266 print_i387_ext (raw
, file
);
268 fputs_filtered ("\n", file
);
271 fputs_filtered ("\n", file
);
273 print_i387_status_word (fstat
, file
);
274 print_i387_control_word (fctrl
, file
);
275 fprintf_filtered (file
, "Tag Word: %s\n",
276 hex_string_custom (ftag
, 4));
277 fprintf_filtered (file
, "Instruction Pointer: %s:",
278 hex_string_custom (fiseg
, 2));
279 fprintf_filtered (file
, "%s\n", hex_string_custom (fioff
, 8));
280 fprintf_filtered (file
, "Operand Pointer: %s:",
281 hex_string_custom (foseg
, 2));
282 fprintf_filtered (file
, "%s\n", hex_string_custom (fooff
, 8));
283 fprintf_filtered (file
, "Opcode: %s\n",
284 hex_string_custom (fop
? (fop
| 0xd800) : 0, 4));
286 #undef I387_ST0_REGNUM
290 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
291 return its contents in TO. */
294 i387_register_to_value (struct frame_info
*frame
, int regnum
,
295 struct type
*type
, gdb_byte
*to
)
297 char from
[I386_MAX_REGISTER_SIZE
];
299 gdb_assert (i386_fp_regnum_p (regnum
));
301 /* We only support floating-point values. */
302 if (TYPE_CODE (type
) != TYPE_CODE_FLT
)
304 warning (_("Cannot convert floating-point register value "
305 "to non-floating-point type."));
309 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
310 the extended floating-point format used by the FPU. */
311 get_frame_register (frame
, regnum
, from
);
312 convert_typed_floating (from
, builtin_type_i387_ext
, to
, type
);
315 /* Write the contents FROM of a value of type TYPE into register
316 REGNUM in frame FRAME. */
319 i387_value_to_register (struct frame_info
*frame
, int regnum
,
320 struct type
*type
, const gdb_byte
*from
)
322 char to
[I386_MAX_REGISTER_SIZE
];
324 gdb_assert (i386_fp_regnum_p (regnum
));
326 /* We only support floating-point values. */
327 if (TYPE_CODE (type
) != TYPE_CODE_FLT
)
329 warning (_("Cannot convert non-floating-point type "
330 "to floating-point register value."));
334 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
335 to the extended floating-point format used by the FPU. */
336 convert_typed_floating (from
, type
, to
, builtin_type_i387_ext
);
337 put_frame_register (frame
, regnum
, to
);
341 /* Handle FSAVE and FXSAVE formats. */
343 /* At fsave_offset[REGNUM] you'll find the offset to the location in
344 the data structure used by the "fsave" instruction where GDB
345 register REGNUM is stored. */
347 static int fsave_offset
[] =
349 28 + 0 * 10, /* %st(0) ... */
356 28 + 7 * 10, /* ... %st(7). */
357 0, /* `fctrl' (16 bits). */
358 4, /* `fstat' (16 bits). */
359 8, /* `ftag' (16 bits). */
360 16, /* `fiseg' (16 bits). */
362 24, /* `foseg' (16 bits). */
364 18 /* `fop' (bottom 11 bits). */
367 #define FSAVE_ADDR(fsave, regnum) \
368 (fsave + fsave_offset[regnum - I387_ST0_REGNUM])
371 /* Fill register REGNUM in REGCACHE with the appropriate value from
372 *FSAVE. This function masks off any of the reserved bits in
376 i387_supply_fsave (struct regcache
*regcache
, int regnum
, const void *fsave
)
378 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_regcache_arch (regcache
));
379 const char *regs
= fsave
;
382 gdb_assert (tdep
->st0_regnum
>= I386_ST0_REGNUM
);
384 /* Define I387_ST0_REGNUM and I387_NUM_XMM_REGS such that we use the
385 proper definitions for REGCACHE's architecture. */
387 #define I387_ST0_REGNUM tdep->st0_regnum
388 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
390 for (i
= I387_ST0_REGNUM
; i
< I387_XMM0_REGNUM
; i
++)
391 if (regnum
== -1 || regnum
== i
)
395 regcache_raw_supply (regcache
, i
, NULL
);
399 /* Most of the FPU control registers occupy only 16 bits in the
400 fsave area. Give those a special treatment. */
401 if (i
>= I387_FCTRL_REGNUM
402 && i
!= I387_FIOFF_REGNUM
&& i
!= I387_FOOFF_REGNUM
)
404 unsigned char val
[4];
406 memcpy (val
, FSAVE_ADDR (regs
, i
), 2);
408 if (i
== I387_FOP_REGNUM
)
409 val
[1] &= ((1 << 3) - 1);
410 regcache_raw_supply (regcache
, i
, val
);
413 regcache_raw_supply (regcache
, i
, FSAVE_ADDR (regs
, i
));
416 /* Provide dummy values for the SSE registers. */
417 for (i
= I387_XMM0_REGNUM
; i
< I387_MXCSR_REGNUM
; i
++)
418 if (regnum
== -1 || regnum
== i
)
419 regcache_raw_supply (regcache
, i
, NULL
);
420 if (regnum
== -1 || regnum
== I387_MXCSR_REGNUM
)
424 store_unsigned_integer (buf
, 4, 0x1f80);
425 regcache_raw_supply (regcache
, I387_MXCSR_REGNUM
, buf
);
428 #undef I387_ST0_REGNUM
429 #undef I387_NUM_XMM_REGS
432 /* Fill register REGNUM (if it is a floating-point register) in *FSAVE
433 with the value from REGCACHE. If REGNUM is -1, do this for all
434 registers. This function doesn't touch any of the reserved bits in
438 i387_collect_fsave (const struct regcache
*regcache
, int regnum
, void *fsave
)
440 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
444 gdb_assert (tdep
->st0_regnum
>= I386_ST0_REGNUM
);
446 /* Define I387_ST0_REGNUM such that we use the proper definitions
447 for REGCACHE's architecture. */
448 #define I387_ST0_REGNUM tdep->st0_regnum
450 for (i
= I387_ST0_REGNUM
; i
< I387_XMM0_REGNUM
; i
++)
451 if (regnum
== -1 || regnum
== i
)
453 /* Most of the FPU control registers occupy only 16 bits in
454 the fsave area. Give those a special treatment. */
455 if (i
>= I387_FCTRL_REGNUM
456 && i
!= I387_FIOFF_REGNUM
&& i
!= I387_FOOFF_REGNUM
)
458 unsigned char buf
[4];
460 regcache_raw_collect (regcache
, i
, buf
);
462 if (i
== I387_FOP_REGNUM
)
464 /* The opcode occupies only 11 bits. Make sure we
465 don't touch the other bits. */
466 buf
[1] &= ((1 << 3) - 1);
467 buf
[1] |= ((FSAVE_ADDR (regs
, i
))[1] & ~((1 << 3) - 1));
469 memcpy (FSAVE_ADDR (regs
, i
), buf
, 2);
472 regcache_raw_collect (regcache
, i
, FSAVE_ADDR (regs
, i
));
474 #undef I387_ST0_REGNUM
477 /* Fill register REGNUM (if it is a floating-point register) in *FSAVE
478 with the value in GDB's register cache. If REGNUM is -1, do this
479 for all registers. This function doesn't touch any of the reserved
483 i387_fill_fsave (void *fsave
, int regnum
)
485 i387_collect_fsave (current_regcache
, regnum
, fsave
);
489 /* At fxsave_offset[REGNUM] you'll find the offset to the location in
490 the data structure used by the "fxsave" instruction where GDB
491 register REGNUM is stored. */
493 static int fxsave_offset
[] =
495 32, /* %st(0) through ... */
502 144, /* ... %st(7) (80 bits each). */
503 0, /* `fctrl' (16 bits). */
504 2, /* `fstat' (16 bits). */
505 4, /* `ftag' (16 bits). */
506 12, /* `fiseg' (16 bits). */
508 20, /* `foseg' (16 bits). */
510 6, /* `fop' (bottom 11 bits). */
511 160 + 0 * 16, /* %xmm0 through ... */
526 160 + 15 * 16, /* ... %xmm15 (128 bits each). */
529 #define FXSAVE_ADDR(fxsave, regnum) \
530 (fxsave + fxsave_offset[regnum - I387_ST0_REGNUM])
532 /* We made an unfortunate choice in putting %mxcsr after the SSE
533 registers %xmm0-%xmm7 instead of before, since it makes supporting
534 the registers %xmm8-%xmm15 on AMD64 a bit involved. Therefore we
535 don't include the offset for %mxcsr here above. */
537 #define FXSAVE_MXCSR_ADDR(fxsave) (fxsave + 24)
539 static int i387_tag (const unsigned char *raw
);
542 /* Fill register REGNUM in REGCACHE with the appropriate
543 floating-point or SSE register value from *FXSAVE. This function
544 masks off any of the reserved bits in *FXSAVE. */
547 i387_supply_fxsave (struct regcache
*regcache
, int regnum
, const void *fxsave
)
549 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_regcache_arch (regcache
));
550 const char *regs
= fxsave
;
553 gdb_assert (tdep
->st0_regnum
>= I386_ST0_REGNUM
);
554 gdb_assert (tdep
->num_xmm_regs
> 0);
556 /* Define I387_ST0_REGNUM and I387_NUM_XMM_REGS such that we use the
557 proper definitions for REGCACHE's architecture. */
559 #define I387_ST0_REGNUM tdep->st0_regnum
560 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
562 for (i
= I387_ST0_REGNUM
; i
< I387_MXCSR_REGNUM
; i
++)
563 if (regnum
== -1 || regnum
== i
)
567 regcache_raw_supply (regcache
, i
, NULL
);
571 /* Most of the FPU control registers occupy only 16 bits in
572 the fxsave area. Give those a special treatment. */
573 if (i
>= I387_FCTRL_REGNUM
&& i
< I387_XMM0_REGNUM
574 && i
!= I387_FIOFF_REGNUM
&& i
!= I387_FOOFF_REGNUM
)
576 unsigned char val
[4];
578 memcpy (val
, FXSAVE_ADDR (regs
, i
), 2);
580 if (i
== I387_FOP_REGNUM
)
581 val
[1] &= ((1 << 3) - 1);
582 else if (i
== I387_FTAG_REGNUM
)
584 /* The fxsave area contains a simplified version of
585 the tag word. We have to look at the actual 80-bit
586 FP data to recreate the traditional i387 tag word. */
588 unsigned long ftag
= 0;
592 top
= ((FXSAVE_ADDR (regs
, I387_FSTAT_REGNUM
))[1] >> 3);
595 for (fpreg
= 7; fpreg
>= 0; fpreg
--)
599 if (val
[0] & (1 << fpreg
))
601 int regnum
= (fpreg
+ 8 - top
) % 8 + I387_ST0_REGNUM
;
602 tag
= i387_tag (FXSAVE_ADDR (regs
, regnum
));
607 ftag
|= tag
<< (2 * fpreg
);
609 val
[0] = ftag
& 0xff;
610 val
[1] = (ftag
>> 8) & 0xff;
612 regcache_raw_supply (regcache
, i
, val
);
615 regcache_raw_supply (regcache
, i
, FXSAVE_ADDR (regs
, i
));
618 if (regnum
== I387_MXCSR_REGNUM
|| regnum
== -1)
621 regcache_raw_supply (regcache
, I387_MXCSR_REGNUM
, NULL
);
623 regcache_raw_supply (regcache
, I387_MXCSR_REGNUM
,
624 FXSAVE_MXCSR_ADDR (regs
));
627 #undef I387_ST0_REGNUM
628 #undef I387_NUM_XMM_REGS
631 /* Fill register REGNUM (if it is a floating-point or SSE register) in
632 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
633 all registers. This function doesn't touch any of the reserved
637 i387_collect_fxsave (const struct regcache
*regcache
, int regnum
, void *fxsave
)
639 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
643 gdb_assert (tdep
->st0_regnum
>= I386_ST0_REGNUM
);
644 gdb_assert (tdep
->num_xmm_regs
> 0);
646 /* Define I387_ST0_REGNUM and I387_NUM_XMM_REGS such that we use the
647 proper definitions for REGCACHE's architecture. */
649 #define I387_ST0_REGNUM tdep->st0_regnum
650 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
652 for (i
= I387_ST0_REGNUM
; i
< I387_MXCSR_REGNUM
; i
++)
653 if (regnum
== -1 || regnum
== i
)
655 /* Most of the FPU control registers occupy only 16 bits in
656 the fxsave area. Give those a special treatment. */
657 if (i
>= I387_FCTRL_REGNUM
&& i
< I387_XMM0_REGNUM
658 && i
!= I387_FIOFF_REGNUM
&& i
!= I387_FOOFF_REGNUM
)
660 unsigned char buf
[4];
662 regcache_raw_collect (regcache
, i
, buf
);
664 if (i
== I387_FOP_REGNUM
)
666 /* The opcode occupies only 11 bits. Make sure we
667 don't touch the other bits. */
668 buf
[1] &= ((1 << 3) - 1);
669 buf
[1] |= ((FXSAVE_ADDR (regs
, i
))[1] & ~((1 << 3) - 1));
671 else if (i
== I387_FTAG_REGNUM
)
673 /* Converting back is much easier. */
678 ftag
= (buf
[1] << 8) | buf
[0];
682 for (fpreg
= 7; fpreg
>= 0; fpreg
--)
684 int tag
= (ftag
>> (fpreg
* 2)) & 3;
687 buf
[0] |= (1 << fpreg
);
690 memcpy (FXSAVE_ADDR (regs
, i
), buf
, 2);
693 regcache_raw_collect (regcache
, i
, FXSAVE_ADDR (regs
, i
));
696 if (regnum
== I387_MXCSR_REGNUM
|| regnum
== -1)
697 regcache_raw_collect (regcache
, I387_MXCSR_REGNUM
,
698 FXSAVE_MXCSR_ADDR (regs
));
700 #undef I387_ST0_REGNUM
701 #undef I387_NUM_XMM_REGS
704 /* Fill register REGNUM (if it is a floating-point or SSE register) in
705 *FXSAVE with the value in GDB's register cache. If REGNUM is -1, do
706 this for all registers. This function doesn't touch any of the
707 reserved bits in *FXSAVE. */
710 i387_fill_fxsave (void *fxsave
, int regnum
)
712 i387_collect_fxsave (current_regcache
, regnum
, fxsave
);
715 /* Recreate the FTW (tag word) valid bits from the 80-bit FP data in
719 i387_tag (const unsigned char *raw
)
722 unsigned int exponent
;
723 unsigned long fraction
[2];
725 integer
= raw
[7] & 0x80;
726 exponent
= (((raw
[9] & 0x7f) << 8) | raw
[8]);
727 fraction
[0] = ((raw
[3] << 24) | (raw
[2] << 16) | (raw
[1] << 8) | raw
[0]);
728 fraction
[1] = (((raw
[7] & 0x7f) << 24) | (raw
[6] << 16)
729 | (raw
[5] << 8) | raw
[4]);
731 if (exponent
== 0x7fff)
736 else if (exponent
== 0x0000)
738 if (fraction
[0] == 0x0000 && fraction
[1] == 0x0000 && !integer
)
764 /* Prepare the FPU stack in REGCACHE for a function return. */
767 i387_return_value (struct gdbarch
*gdbarch
, struct regcache
*regcache
)
769 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
772 /* Define I387_ST0_REGNUM such that we use the proper
773 definitions for the architecture. */
774 #define I387_ST0_REGNUM tdep->st0_regnum
776 /* Set the top of the floating-point register stack to 7. The
777 actual value doesn't really matter, but 7 is what a normal
778 function return would end up with if the program started out with
779 a freshly initialized FPU. */
780 regcache_raw_read_unsigned (regcache
, I387_FSTAT_REGNUM
, &fstat
);
782 regcache_raw_write_unsigned (regcache
, I387_FSTAT_REGNUM
, fstat
);
784 /* Mark %st(1) through %st(7) as empty. Since we set the top of the
785 floating-point register stack to 7, the appropriate value for the
786 tag word is 0x3fff. */
787 regcache_raw_write_unsigned (regcache
, I387_FTAG_REGNUM
, 0x3fff);
789 #undef I387_ST0_REGNUM
This page took 0.046697 seconds and 4 git commands to generate.