1 /* Intel 387 floating point stuff.
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "floatformat.h"
30 #include "i386-tdep.h"
31 #include "i387-tdep.h"
32 #include "x86-xstate.h"
34 /* Print the floating point number specified by RAW. */
37 print_i387_value (struct gdbarch
*gdbarch
,
38 const gdb_byte
*raw
, struct ui_file
*file
)
42 /* Using extract_typed_floating here might affect the representation
43 of certain numbers such as NaNs, even if GDB is running natively.
44 This is fine since our caller already detects such special
45 numbers and we print the hexadecimal representation anyway. */
46 value
= extract_typed_floating (raw
, i387_ext_type (gdbarch
));
48 /* We try to print 19 digits. The last digit may or may not contain
49 garbage, but we'd better print one too many. We need enough room
50 to print the value, 1 position for the sign, 1 for the decimal
51 point, 19 for the digits and 6 for the exponent adds up to 27. */
52 #ifdef PRINTF_HAS_LONG_DOUBLE
53 fprintf_filtered (file
, " %-+27.19Lg", (long double) value
);
55 fprintf_filtered (file
, " %-+27.19g", (double) value
);
59 /* Print the classification for the register contents RAW. */
62 print_i387_ext (struct gdbarch
*gdbarch
,
63 const gdb_byte
*raw
, struct ui_file
*file
)
67 unsigned int exponent
;
68 unsigned long fraction
[2];
71 integer
= raw
[7] & 0x80;
72 exponent
= (((raw
[9] & 0x7f) << 8) | raw
[8]);
73 fraction
[0] = ((raw
[3] << 24) | (raw
[2] << 16) | (raw
[1] << 8) | raw
[0]);
74 fraction
[1] = (((raw
[7] & 0x7f) << 24) | (raw
[6] << 16)
75 | (raw
[5] << 8) | raw
[4]);
77 if (exponent
== 0x7fff && integer
)
79 if (fraction
[0] == 0x00000000 && fraction
[1] == 0x00000000)
81 fprintf_filtered (file
, " %cInf", (sign
? '-' : '+'));
82 else if (sign
&& fraction
[0] == 0x00000000 && fraction
[1] == 0x40000000)
83 /* Real Indefinite (QNaN). */
84 fputs_unfiltered (" Real Indefinite (QNaN)", file
);
85 else if (fraction
[1] & 0x40000000)
87 fputs_filtered (" QNaN", file
);
90 fputs_filtered (" SNaN", file
);
92 else if (exponent
< 0x7fff && exponent
> 0x0000 && integer
)
94 print_i387_value (gdbarch
, raw
, file
);
95 else if (exponent
== 0x0000)
97 /* Denormal or zero. */
98 print_i387_value (gdbarch
, raw
, file
);
101 /* Pseudo-denormal. */
102 fputs_filtered (" Pseudo-denormal", file
);
103 else if (fraction
[0] || fraction
[1])
105 fputs_filtered (" Denormal", file
);
109 fputs_filtered (" Unsupported", file
);
112 /* Print the status word STATUS. If STATUS_P is false, then STATUS
116 print_i387_status_word (int status_p
,
117 unsigned int status
, struct ui_file
*file
)
119 fprintf_filtered (file
, "Status Word: ");
122 fprintf_filtered (file
, "%s\n", _("<unavailable>"));
126 fprintf_filtered (file
, "%s", hex_string_custom (status
, 4));
127 fputs_filtered (" ", file
);
128 fprintf_filtered (file
, " %s", (status
& 0x0001) ? "IE" : " ");
129 fprintf_filtered (file
, " %s", (status
& 0x0002) ? "DE" : " ");
130 fprintf_filtered (file
, " %s", (status
& 0x0004) ? "ZE" : " ");
131 fprintf_filtered (file
, " %s", (status
& 0x0008) ? "OE" : " ");
132 fprintf_filtered (file
, " %s", (status
& 0x0010) ? "UE" : " ");
133 fprintf_filtered (file
, " %s", (status
& 0x0020) ? "PE" : " ");
134 fputs_filtered (" ", file
);
135 fprintf_filtered (file
, " %s", (status
& 0x0080) ? "ES" : " ");
136 fputs_filtered (" ", file
);
137 fprintf_filtered (file
, " %s", (status
& 0x0040) ? "SF" : " ");
138 fputs_filtered (" ", file
);
139 fprintf_filtered (file
, " %s", (status
& 0x0100) ? "C0" : " ");
140 fprintf_filtered (file
, " %s", (status
& 0x0200) ? "C1" : " ");
141 fprintf_filtered (file
, " %s", (status
& 0x0400) ? "C2" : " ");
142 fprintf_filtered (file
, " %s", (status
& 0x4000) ? "C3" : " ");
144 fputs_filtered ("\n", file
);
146 fprintf_filtered (file
,
147 " TOP: %d\n", ((status
>> 11) & 7));
150 /* Print the control word CONTROL. If CONTROL_P is false, then
151 CONTROL was unavailable. */
154 print_i387_control_word (int control_p
,
155 unsigned int control
, struct ui_file
*file
)
157 fprintf_filtered (file
, "Control Word: ");
160 fprintf_filtered (file
, "%s\n", _("<unavailable>"));
164 fprintf_filtered (file
, "%s", hex_string_custom (control
, 4));
165 fputs_filtered (" ", file
);
166 fprintf_filtered (file
, " %s", (control
& 0x0001) ? "IM" : " ");
167 fprintf_filtered (file
, " %s", (control
& 0x0002) ? "DM" : " ");
168 fprintf_filtered (file
, " %s", (control
& 0x0004) ? "ZM" : " ");
169 fprintf_filtered (file
, " %s", (control
& 0x0008) ? "OM" : " ");
170 fprintf_filtered (file
, " %s", (control
& 0x0010) ? "UM" : " ");
171 fprintf_filtered (file
, " %s", (control
& 0x0020) ? "PM" : " ");
173 fputs_filtered ("\n", file
);
175 fputs_filtered (" PC: ", file
);
176 switch ((control
>> 8) & 3)
179 fputs_filtered ("Single Precision (24-bits)\n", file
);
182 fputs_filtered ("Reserved\n", file
);
185 fputs_filtered ("Double Precision (53-bits)\n", file
);
188 fputs_filtered ("Extended Precision (64-bits)\n", file
);
192 fputs_filtered (" RC: ", file
);
193 switch ((control
>> 10) & 3)
196 fputs_filtered ("Round to nearest\n", file
);
199 fputs_filtered ("Round down\n", file
);
202 fputs_filtered ("Round up\n", file
);
205 fputs_filtered ("Round toward zero\n", file
);
210 /* Print out the i387 floating point state. Note that we ignore FRAME
211 in the code below. That's OK since floating-point registers are
212 never saved on the stack. */
215 i387_print_float_info (struct gdbarch
*gdbarch
, struct ui_file
*file
,
216 struct frame_info
*frame
, const char *args
)
218 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_frame_arch (frame
));
238 gdb_assert (gdbarch
== get_frame_arch (frame
));
240 fctrl_p
= read_frame_register_unsigned (frame
,
241 I387_FCTRL_REGNUM (tdep
), &fctrl
);
242 fstat_p
= read_frame_register_unsigned (frame
,
243 I387_FSTAT_REGNUM (tdep
), &fstat
);
244 ftag_p
= read_frame_register_unsigned (frame
,
245 I387_FTAG_REGNUM (tdep
), &ftag
);
246 fiseg_p
= read_frame_register_unsigned (frame
,
247 I387_FISEG_REGNUM (tdep
), &fiseg
);
248 fioff_p
= read_frame_register_unsigned (frame
,
249 I387_FIOFF_REGNUM (tdep
), &fioff
);
250 foseg_p
= read_frame_register_unsigned (frame
,
251 I387_FOSEG_REGNUM (tdep
), &foseg
);
252 fooff_p
= read_frame_register_unsigned (frame
,
253 I387_FOOFF_REGNUM (tdep
), &fooff
);
254 fop_p
= read_frame_register_unsigned (frame
,
255 I387_FOP_REGNUM (tdep
), &fop
);
259 top
= ((fstat
>> 11) & 7);
261 for (fpreg
= 7; fpreg
>= 0; fpreg
--)
263 struct value
*regval
;
268 fprintf_filtered (file
, "%sR%d: ", fpreg
== top
? "=>" : " ", fpreg
);
272 tag
= (ftag
>> (fpreg
* 2)) & 3;
277 fputs_filtered ("Valid ", file
);
280 fputs_filtered ("Zero ", file
);
283 fputs_filtered ("Special ", file
);
286 fputs_filtered ("Empty ", file
);
291 fputs_filtered ("Unknown ", file
);
293 regnum
= (fpreg
+ 8 - top
) % 8 + I387_ST0_REGNUM (tdep
);
294 regval
= get_frame_register_value (frame
, regnum
);
296 if (value_entirely_available (regval
))
298 const gdb_byte
*raw
= value_contents (regval
);
300 fputs_filtered ("0x", file
);
301 for (i
= 9; i
>= 0; i
--)
302 fprintf_filtered (file
, "%02x", raw
[i
]);
304 if (tag
!= -1 && tag
!= 3)
305 print_i387_ext (gdbarch
, raw
, file
);
308 fprintf_filtered (file
, "%s", _("<unavailable>"));
310 fputs_filtered ("\n", file
);
314 fputs_filtered ("\n", file
);
315 print_i387_status_word (fstat_p
, fstat
, file
);
316 print_i387_control_word (fctrl_p
, fctrl
, file
);
317 fprintf_filtered (file
, "Tag Word: %s\n",
318 ftag_p
? hex_string_custom (ftag
, 4) : _("<unavailable>"));
319 fprintf_filtered (file
, "Instruction Pointer: %s:",
320 fiseg_p
? hex_string_custom (fiseg
, 2) : _("<unavailable>"));
321 fprintf_filtered (file
, "%s\n",
322 fioff_p
? hex_string_custom (fioff
, 8) : _("<unavailable>"));
323 fprintf_filtered (file
, "Operand Pointer: %s:",
324 foseg_p
? hex_string_custom (foseg
, 2) : _("<unavailable>"));
325 fprintf_filtered (file
, "%s\n",
326 fooff_p
? hex_string_custom (fooff
, 8) : _("<unavailable>"));
327 fprintf_filtered (file
, "Opcode: %s\n",
329 ? (hex_string_custom (fop
? (fop
| 0xd800) : 0, 4))
330 : _("<unavailable>"));
334 /* Return nonzero if a value of type TYPE stored in register REGNUM
335 needs any special handling. */
338 i387_convert_register_p (struct gdbarch
*gdbarch
, int regnum
,
341 if (i386_fp_regnum_p (gdbarch
, regnum
))
343 /* Floating point registers must be converted unless we are
344 accessing them in their hardware type. */
345 if (type
== i387_ext_type (gdbarch
))
354 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
355 return its contents in TO. */
358 i387_register_to_value (struct frame_info
*frame
, int regnum
,
359 struct type
*type
, gdb_byte
*to
,
360 int *optimizedp
, int *unavailablep
)
362 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
363 gdb_byte from
[I386_MAX_REGISTER_SIZE
];
365 gdb_assert (i386_fp_regnum_p (gdbarch
, regnum
));
367 /* We only support floating-point values. */
368 if (TYPE_CODE (type
) != TYPE_CODE_FLT
)
370 warning (_("Cannot convert floating-point register value "
371 "to non-floating-point type."));
372 *optimizedp
= *unavailablep
= 0;
376 /* Convert to TYPE. */
377 if (!get_frame_register_bytes (frame
, regnum
, 0, TYPE_LENGTH (type
),
378 from
, optimizedp
, unavailablep
))
381 convert_typed_floating (from
, i387_ext_type (gdbarch
), to
, type
);
382 *optimizedp
= *unavailablep
= 0;
386 /* Write the contents FROM of a value of type TYPE into register
387 REGNUM in frame FRAME. */
390 i387_value_to_register (struct frame_info
*frame
, int regnum
,
391 struct type
*type
, const gdb_byte
*from
)
393 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
394 gdb_byte to
[I386_MAX_REGISTER_SIZE
];
396 gdb_assert (i386_fp_regnum_p (gdbarch
, regnum
));
398 /* We only support floating-point values. */
399 if (TYPE_CODE (type
) != TYPE_CODE_FLT
)
401 warning (_("Cannot convert non-floating-point type "
402 "to floating-point register value."));
406 /* Convert from TYPE. */
407 convert_typed_floating (from
, type
, to
, i387_ext_type (gdbarch
));
408 put_frame_register (frame
, regnum
, to
);
412 /* Handle FSAVE and FXSAVE formats. */
414 /* At fsave_offset[REGNUM] you'll find the offset to the location in
415 the data structure used by the "fsave" instruction where GDB
416 register REGNUM is stored. */
418 static int fsave_offset
[] =
420 28 + 0 * 10, /* %st(0) ... */
427 28 + 7 * 10, /* ... %st(7). */
428 0, /* `fctrl' (16 bits). */
429 4, /* `fstat' (16 bits). */
430 8, /* `ftag' (16 bits). */
431 16, /* `fiseg' (16 bits). */
433 24, /* `foseg' (16 bits). */
435 18 /* `fop' (bottom 11 bits). */
438 #define FSAVE_ADDR(tdep, fsave, regnum) \
439 (fsave + fsave_offset[regnum - I387_ST0_REGNUM (tdep)])
442 /* Fill register REGNUM in REGCACHE with the appropriate value from
443 *FSAVE. This function masks off any of the reserved bits in
447 i387_supply_fsave (struct regcache
*regcache
, int regnum
, const void *fsave
)
449 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
450 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
451 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
452 const gdb_byte
*regs
= (const gdb_byte
*) fsave
;
455 gdb_assert (tdep
->st0_regnum
>= I386_ST0_REGNUM
);
457 for (i
= I387_ST0_REGNUM (tdep
); i
< I387_XMM0_REGNUM (tdep
); i
++)
458 if (regnum
== -1 || regnum
== i
)
462 regcache_raw_supply (regcache
, i
, NULL
);
466 /* Most of the FPU control registers occupy only 16 bits in the
467 fsave area. Give those a special treatment. */
468 if (i
>= I387_FCTRL_REGNUM (tdep
)
469 && i
!= I387_FIOFF_REGNUM (tdep
) && i
!= I387_FOOFF_REGNUM (tdep
))
473 memcpy (val
, FSAVE_ADDR (tdep
, regs
, i
), 2);
475 if (i
== I387_FOP_REGNUM (tdep
))
476 val
[1] &= ((1 << 3) - 1);
477 regcache_raw_supply (regcache
, i
, val
);
480 regcache_raw_supply (regcache
, i
, FSAVE_ADDR (tdep
, regs
, i
));
483 /* Provide dummy values for the SSE registers. */
484 for (i
= I387_XMM0_REGNUM (tdep
); i
< I387_MXCSR_REGNUM (tdep
); i
++)
485 if (regnum
== -1 || regnum
== i
)
486 regcache_raw_supply (regcache
, i
, NULL
);
487 if (regnum
== -1 || regnum
== I387_MXCSR_REGNUM (tdep
))
491 store_unsigned_integer (buf
, 4, byte_order
, 0x1f80);
492 regcache_raw_supply (regcache
, I387_MXCSR_REGNUM (tdep
), buf
);
496 /* Fill register REGNUM (if it is a floating-point register) in *FSAVE
497 with the value from REGCACHE. If REGNUM is -1, do this for all
498 registers. This function doesn't touch any of the reserved bits in
502 i387_collect_fsave (const struct regcache
*regcache
, int regnum
, void *fsave
)
504 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_regcache_arch (regcache
));
505 gdb_byte
*regs
= (gdb_byte
*) fsave
;
508 gdb_assert (tdep
->st0_regnum
>= I386_ST0_REGNUM
);
510 for (i
= I387_ST0_REGNUM (tdep
); i
< I387_XMM0_REGNUM (tdep
); i
++)
511 if (regnum
== -1 || regnum
== i
)
513 /* Most of the FPU control registers occupy only 16 bits in
514 the fsave area. Give those a special treatment. */
515 if (i
>= I387_FCTRL_REGNUM (tdep
)
516 && i
!= I387_FIOFF_REGNUM (tdep
) && i
!= I387_FOOFF_REGNUM (tdep
))
520 regcache_raw_collect (regcache
, i
, buf
);
522 if (i
== I387_FOP_REGNUM (tdep
))
524 /* The opcode occupies only 11 bits. Make sure we
525 don't touch the other bits. */
526 buf
[1] &= ((1 << 3) - 1);
527 buf
[1] |= ((FSAVE_ADDR (tdep
, regs
, i
))[1] & ~((1 << 3) - 1));
529 memcpy (FSAVE_ADDR (tdep
, regs
, i
), buf
, 2);
532 regcache_raw_collect (regcache
, i
, FSAVE_ADDR (tdep
, regs
, i
));
537 /* At fxsave_offset[REGNUM] you'll find the offset to the location in
538 the data structure used by the "fxsave" instruction where GDB
539 register REGNUM is stored. */
541 static int fxsave_offset
[] =
543 32, /* %st(0) through ... */
550 144, /* ... %st(7) (80 bits each). */
551 0, /* `fctrl' (16 bits). */
552 2, /* `fstat' (16 bits). */
553 4, /* `ftag' (16 bits). */
554 12, /* `fiseg' (16 bits). */
556 20, /* `foseg' (16 bits). */
558 6, /* `fop' (bottom 11 bits). */
559 160 + 0 * 16, /* %xmm0 through ... */
574 160 + 15 * 16, /* ... %xmm15 (128 bits each). */
577 #define FXSAVE_ADDR(tdep, fxsave, regnum) \
578 (fxsave + fxsave_offset[regnum - I387_ST0_REGNUM (tdep)])
580 /* We made an unfortunate choice in putting %mxcsr after the SSE
581 registers %xmm0-%xmm7 instead of before, since it makes supporting
582 the registers %xmm8-%xmm15 on AMD64 a bit involved. Therefore we
583 don't include the offset for %mxcsr here above. */
585 #define FXSAVE_MXCSR_ADDR(fxsave) (fxsave + 24)
587 static int i387_tag (const gdb_byte
*raw
);
590 /* Fill register REGNUM in REGCACHE with the appropriate
591 floating-point or SSE register value from *FXSAVE. This function
592 masks off any of the reserved bits in *FXSAVE. */
595 i387_supply_fxsave (struct regcache
*regcache
, int regnum
, const void *fxsave
)
597 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_regcache_arch (regcache
));
598 const gdb_byte
*regs
= (const gdb_byte
*) fxsave
;
601 gdb_assert (tdep
->st0_regnum
>= I386_ST0_REGNUM
);
602 gdb_assert (tdep
->num_xmm_regs
> 0);
604 for (i
= I387_ST0_REGNUM (tdep
); i
< I387_MXCSR_REGNUM (tdep
); i
++)
605 if (regnum
== -1 || regnum
== i
)
609 regcache_raw_supply (regcache
, i
, NULL
);
613 /* Most of the FPU control registers occupy only 16 bits in
614 the fxsave area. Give those a special treatment. */
615 if (i
>= I387_FCTRL_REGNUM (tdep
) && i
< I387_XMM0_REGNUM (tdep
)
616 && i
!= I387_FIOFF_REGNUM (tdep
) && i
!= I387_FOOFF_REGNUM (tdep
))
620 memcpy (val
, FXSAVE_ADDR (tdep
, regs
, i
), 2);
622 if (i
== I387_FOP_REGNUM (tdep
))
623 val
[1] &= ((1 << 3) - 1);
624 else if (i
== I387_FTAG_REGNUM (tdep
))
626 /* The fxsave area contains a simplified version of
627 the tag word. We have to look at the actual 80-bit
628 FP data to recreate the traditional i387 tag word. */
630 unsigned long ftag
= 0;
634 top
= ((FXSAVE_ADDR (tdep
, regs
,
635 I387_FSTAT_REGNUM (tdep
)))[1] >> 3);
638 for (fpreg
= 7; fpreg
>= 0; fpreg
--)
642 if (val
[0] & (1 << fpreg
))
644 int thisreg
= (fpreg
+ 8 - top
) % 8
645 + I387_ST0_REGNUM (tdep
);
646 tag
= i387_tag (FXSAVE_ADDR (tdep
, regs
, thisreg
));
651 ftag
|= tag
<< (2 * fpreg
);
653 val
[0] = ftag
& 0xff;
654 val
[1] = (ftag
>> 8) & 0xff;
656 regcache_raw_supply (regcache
, i
, val
);
659 regcache_raw_supply (regcache
, i
, FXSAVE_ADDR (tdep
, regs
, i
));
662 if (regnum
== I387_MXCSR_REGNUM (tdep
) || regnum
== -1)
665 regcache_raw_supply (regcache
, I387_MXCSR_REGNUM (tdep
), NULL
);
667 regcache_raw_supply (regcache
, I387_MXCSR_REGNUM (tdep
),
668 FXSAVE_MXCSR_ADDR (regs
));
672 /* Fill register REGNUM (if it is a floating-point or SSE register) in
673 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
674 all registers. This function doesn't touch any of the reserved
678 i387_collect_fxsave (const struct regcache
*regcache
, int regnum
, void *fxsave
)
680 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_regcache_arch (regcache
));
681 gdb_byte
*regs
= (gdb_byte
*) fxsave
;
684 gdb_assert (tdep
->st0_regnum
>= I386_ST0_REGNUM
);
685 gdb_assert (tdep
->num_xmm_regs
> 0);
687 for (i
= I387_ST0_REGNUM (tdep
); i
< I387_MXCSR_REGNUM (tdep
); i
++)
688 if (regnum
== -1 || regnum
== i
)
690 /* Most of the FPU control registers occupy only 16 bits in
691 the fxsave area. Give those a special treatment. */
692 if (i
>= I387_FCTRL_REGNUM (tdep
) && i
< I387_XMM0_REGNUM (tdep
)
693 && i
!= I387_FIOFF_REGNUM (tdep
) && i
!= I387_FOOFF_REGNUM (tdep
))
697 regcache_raw_collect (regcache
, i
, buf
);
699 if (i
== I387_FOP_REGNUM (tdep
))
701 /* The opcode occupies only 11 bits. Make sure we
702 don't touch the other bits. */
703 buf
[1] &= ((1 << 3) - 1);
704 buf
[1] |= ((FXSAVE_ADDR (tdep
, regs
, i
))[1] & ~((1 << 3) - 1));
706 else if (i
== I387_FTAG_REGNUM (tdep
))
708 /* Converting back is much easier. */
713 ftag
= (buf
[1] << 8) | buf
[0];
717 for (fpreg
= 7; fpreg
>= 0; fpreg
--)
719 int tag
= (ftag
>> (fpreg
* 2)) & 3;
722 buf
[0] |= (1 << fpreg
);
725 memcpy (FXSAVE_ADDR (tdep
, regs
, i
), buf
, 2);
728 regcache_raw_collect (regcache
, i
, FXSAVE_ADDR (tdep
, regs
, i
));
731 if (regnum
== I387_MXCSR_REGNUM (tdep
) || regnum
== -1)
732 regcache_raw_collect (regcache
, I387_MXCSR_REGNUM (tdep
),
733 FXSAVE_MXCSR_ADDR (regs
));
736 /* `xstate_bv' is at byte offset 512. */
737 #define XSAVE_XSTATE_BV_ADDR(xsave) (xsave + 512)
739 /* At xsave_avxh_offset[REGNUM] you'll find the offset to the location in
740 the upper 128bit of AVX register data structure used by the "xsave"
741 instruction where GDB register REGNUM is stored. */
743 static int xsave_avxh_offset
[] =
745 576 + 0 * 16, /* Upper 128bit of %ymm0 through ... */
760 576 + 15 * 16 /* Upper 128bit of ... %ymm15 (128 bits each). */
763 #define XSAVE_AVXH_ADDR(tdep, xsave, regnum) \
764 (xsave + xsave_avxh_offset[regnum - I387_YMM0H_REGNUM (tdep)])
766 /* At xsave_ymm_avx512_offset[REGNUM] you'll find the offset to the location in
767 the upper 128bit of ZMM register data structure used by the "xsave"
768 instruction where GDB register REGNUM is stored. */
770 static int xsave_ymm_avx512_offset
[] =
772 /* HI16_ZMM_area + 16 bytes + regnum* 64 bytes. */
773 1664 + 16 + 0 * 64, /* %ymm16 through... */
788 1664 + 16 + 15 * 64 /* ... %ymm31 (128 bits each). */
791 #define XSAVE_YMM_AVX512_ADDR(tdep, xsave, regnum) \
792 (xsave + xsave_ymm_avx512_offset[regnum - I387_YMM16H_REGNUM (tdep)])
794 static int xsave_xmm_avx512_offset
[] =
796 1664 + 0 * 64, /* %ymm16 through... */
811 1664 + 15 * 64 /* ... %ymm31 (128 bits each). */
814 #define XSAVE_XMM_AVX512_ADDR(tdep, xsave, regnum) \
815 (xsave + xsave_xmm_avx512_offset[regnum - I387_XMM16_REGNUM (tdep)])
817 static int xsave_mpx_offset
[] = {
818 960 + 0 * 16, /* bnd0r...bnd3r registers. */
822 1024 + 0 * 8, /* bndcfg ... bndstatus. */
826 #define XSAVE_MPX_ADDR(tdep, xsave, regnum) \
827 (xsave + xsave_mpx_offset[regnum - I387_BND0R_REGNUM (tdep)])
829 /* At xsave_avx512__h_offset[REGNUM] you find the offset to the location
830 of the AVX512 opmask register data structure used by the "xsave"
831 instruction where GDB register REGNUM is stored. */
833 static int xsave_avx512_k_offset
[] =
835 1088 + 0 * 8, /* %k0 through... */
842 1088 + 7 * 8 /* %k7 (64 bits each). */
845 #define XSAVE_AVX512_K_ADDR(tdep, xsave, regnum) \
846 (xsave + xsave_avx512_k_offset[regnum - I387_K0_REGNUM (tdep)])
848 /* At xsave_avx512_zmm_h_offset[REGNUM] you find the offset to the location in
849 the upper 256bit of AVX512 ZMMH register data structure used by the "xsave"
850 instruction where GDB register REGNUM is stored. */
852 static int xsave_avx512_zmm_h_offset
[] =
855 1152 + 1 * 32, /* Upper 256bit of %zmmh0 through... */
869 1152 + 15 * 32, /* Upper 256bit of... %zmmh15 (256 bits each). */
870 1664 + 32 + 0 * 64, /* Upper 256bit of... %zmmh16 (256 bits each). */
885 1664 + 32 + 15 * 64 /* Upper 256bit of... %zmmh31 (256 bits each). */
888 #define XSAVE_AVX512_ZMM_H_ADDR(tdep, xsave, regnum) \
889 (xsave + xsave_avx512_zmm_h_offset[regnum - I387_ZMM0H_REGNUM (tdep)])
891 /* At xsave_pkeys_offset[REGNUM] you find the offset to the location
892 of the PKRU register data structure used by the "xsave"
893 instruction where GDB register REGNUM is stored. */
895 static int xsave_pkeys_offset
[] =
897 2688 + 0 * 8 /* %pkru (64 bits in XSTATE, 32-bit actually used by
898 instructions and applications). */
901 #define XSAVE_PKEYS_ADDR(tdep, xsave, regnum) \
902 (xsave + xsave_pkeys_offset[regnum - I387_PKRU_REGNUM (tdep)])
904 /* Similar to i387_supply_fxsave, but use XSAVE extended state. */
907 i387_supply_xsave (struct regcache
*regcache
, int regnum
,
910 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
911 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
912 const gdb_byte
*regs
= (const gdb_byte
*) xsave
;
915 static const gdb_byte zero
[I386_MAX_REGISTER_SIZE
] = { 0 };
925 avx512_ymmh_avx512
= 0x40,
926 avx512_xmm_avx512
= 0x80,
928 all
= x87
| sse
| avxh
| mpx
| avx512_k
| avx512_zmm_h
929 | avx512_ymmh_avx512
| avx512_xmm_avx512
| pkeys
932 gdb_assert (regs
!= NULL
);
933 gdb_assert (tdep
->st0_regnum
>= I386_ST0_REGNUM
);
934 gdb_assert (tdep
->num_xmm_regs
> 0);
938 else if (regnum
>= I387_PKRU_REGNUM (tdep
)
939 && regnum
< I387_PKEYSEND_REGNUM (tdep
))
941 else if (regnum
>= I387_ZMM0H_REGNUM (tdep
)
942 && regnum
< I387_ZMMENDH_REGNUM (tdep
))
943 regclass
= avx512_zmm_h
;
944 else if (regnum
>= I387_K0_REGNUM (tdep
)
945 && regnum
< I387_KEND_REGNUM (tdep
))
947 else if (regnum
>= I387_YMM16H_REGNUM (tdep
)
948 && regnum
< I387_YMMH_AVX512_END_REGNUM (tdep
))
949 regclass
= avx512_ymmh_avx512
;
950 else if (regnum
>= I387_XMM16_REGNUM (tdep
)
951 && regnum
< I387_XMM_AVX512_END_REGNUM (tdep
))
952 regclass
= avx512_xmm_avx512
;
953 else if (regnum
>= I387_YMM0H_REGNUM (tdep
)
954 && regnum
< I387_YMMENDH_REGNUM (tdep
))
956 else if (regnum
>= I387_BND0R_REGNUM (tdep
)
957 && regnum
< I387_MPXEND_REGNUM (tdep
))
959 else if (regnum
>= I387_XMM0_REGNUM (tdep
)
960 && regnum
< I387_MXCSR_REGNUM (tdep
))
962 else if (regnum
>= I387_ST0_REGNUM (tdep
)
963 && regnum
< I387_FCTRL_REGNUM (tdep
))
968 if (regclass
!= none
)
970 /* Get `xstat_bv'. The supported bits in `xstat_bv' are 8 bytes. */
971 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
972 ULONGEST xstate_bv
= 0;
974 xstate_bv
= extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs
),
977 /* Clear part in vector registers if its bit in xstat_bv is zero. */
978 clear_bv
= (~(xstate_bv
)) & tdep
->xcr0
;
981 clear_bv
= X86_XSTATE_ALL_MASK
;
983 /* With the delayed xsave mechanism, in between the program
984 starting, and the program accessing the vector registers for the
985 first time, the register's values are invalid. The kernel
986 initializes register states to zero when they are set the first
987 time in a program. This means that from the user-space programs'
988 perspective, it's the same as if the registers have always been
989 zero from the start of the program. Therefore, the debugger
990 should provide the same illusion to the user. */
998 if ((clear_bv
& X86_XSTATE_PKRU
))
999 regcache_raw_supply (regcache
, regnum
, zero
);
1001 regcache_raw_supply (regcache
, regnum
,
1002 XSAVE_PKEYS_ADDR (tdep
, regs
, regnum
));
1006 if ((clear_bv
& (X86_XSTATE_ZMM_H
| X86_XSTATE_ZMM
)))
1007 regcache_raw_supply (regcache
, regnum
, zero
);
1009 regcache_raw_supply (regcache
, regnum
,
1010 XSAVE_AVX512_ZMM_H_ADDR (tdep
, regs
, regnum
));
1014 if ((clear_bv
& X86_XSTATE_K
))
1015 regcache_raw_supply (regcache
, regnum
, zero
);
1017 regcache_raw_supply (regcache
, regnum
,
1018 XSAVE_AVX512_K_ADDR (tdep
, regs
, regnum
));
1021 case avx512_ymmh_avx512
:
1022 if ((clear_bv
& X86_XSTATE_ZMM
))
1023 regcache_raw_supply (regcache
, regnum
, zero
);
1025 regcache_raw_supply (regcache
, regnum
,
1026 XSAVE_YMM_AVX512_ADDR (tdep
, regs
, regnum
));
1029 case avx512_xmm_avx512
:
1030 if ((clear_bv
& X86_XSTATE_ZMM
))
1031 regcache_raw_supply (regcache
, regnum
, zero
);
1033 regcache_raw_supply (regcache
, regnum
,
1034 XSAVE_XMM_AVX512_ADDR (tdep
, regs
, regnum
));
1038 if ((clear_bv
& X86_XSTATE_AVX
))
1039 regcache_raw_supply (regcache
, regnum
, zero
);
1041 regcache_raw_supply (regcache
, regnum
,
1042 XSAVE_AVXH_ADDR (tdep
, regs
, regnum
));
1046 if ((clear_bv
& X86_XSTATE_BNDREGS
))
1047 regcache_raw_supply (regcache
, regnum
, zero
);
1049 regcache_raw_supply (regcache
, regnum
,
1050 XSAVE_MPX_ADDR (tdep
, regs
, regnum
));
1054 if ((clear_bv
& X86_XSTATE_SSE
))
1055 regcache_raw_supply (regcache
, regnum
, zero
);
1057 regcache_raw_supply (regcache
, regnum
,
1058 FXSAVE_ADDR (tdep
, regs
, regnum
));
1062 if ((clear_bv
& X86_XSTATE_X87
))
1063 regcache_raw_supply (regcache
, regnum
, zero
);
1065 regcache_raw_supply (regcache
, regnum
,
1066 FXSAVE_ADDR (tdep
, regs
, regnum
));
1070 /* Handle PKEYS registers. */
1071 if ((tdep
->xcr0
& X86_XSTATE_PKRU
))
1073 if ((clear_bv
& X86_XSTATE_PKRU
))
1075 for (i
= I387_PKRU_REGNUM (tdep
);
1076 i
< I387_PKEYSEND_REGNUM (tdep
);
1078 regcache_raw_supply (regcache
, i
, zero
);
1082 for (i
= I387_PKRU_REGNUM (tdep
);
1083 i
< I387_PKEYSEND_REGNUM (tdep
);
1085 regcache_raw_supply (regcache
, i
,
1086 XSAVE_PKEYS_ADDR (tdep
, regs
, i
));
1090 /* Handle the upper ZMM registers. */
1091 if ((tdep
->xcr0
& (X86_XSTATE_ZMM_H
| X86_XSTATE_ZMM
)))
1093 if ((clear_bv
& (X86_XSTATE_ZMM_H
| X86_XSTATE_ZMM
)))
1095 for (i
= I387_ZMM0H_REGNUM (tdep
);
1096 i
< I387_ZMMENDH_REGNUM (tdep
);
1098 regcache_raw_supply (regcache
, i
, zero
);
1102 for (i
= I387_ZMM0H_REGNUM (tdep
);
1103 i
< I387_ZMMENDH_REGNUM (tdep
);
1105 regcache_raw_supply (regcache
, i
,
1106 XSAVE_AVX512_ZMM_H_ADDR (tdep
, regs
, i
));
1110 /* Handle AVX512 OpMask registers. */
1111 if ((tdep
->xcr0
& X86_XSTATE_K
))
1113 if ((clear_bv
& X86_XSTATE_K
))
1115 for (i
= I387_K0_REGNUM (tdep
);
1116 i
< I387_KEND_REGNUM (tdep
);
1118 regcache_raw_supply (regcache
, i
, zero
);
1122 for (i
= I387_K0_REGNUM (tdep
);
1123 i
< I387_KEND_REGNUM (tdep
);
1125 regcache_raw_supply (regcache
, i
,
1126 XSAVE_AVX512_K_ADDR (tdep
, regs
, i
));
1130 /* Handle the YMM_AVX512 registers. */
1131 if ((tdep
->xcr0
& X86_XSTATE_ZMM
))
1133 if ((clear_bv
& X86_XSTATE_ZMM
))
1135 for (i
= I387_YMM16H_REGNUM (tdep
);
1136 i
< I387_YMMH_AVX512_END_REGNUM (tdep
);
1138 regcache_raw_supply (regcache
, i
, zero
);
1139 for (i
= I387_XMM16_REGNUM (tdep
);
1140 i
< I387_XMM_AVX512_END_REGNUM (tdep
);
1142 regcache_raw_supply (regcache
, i
, zero
);
1146 for (i
= I387_YMM16H_REGNUM (tdep
);
1147 i
< I387_YMMH_AVX512_END_REGNUM (tdep
);
1149 regcache_raw_supply (regcache
, i
,
1150 XSAVE_YMM_AVX512_ADDR (tdep
, regs
, i
));
1151 for (i
= I387_XMM16_REGNUM (tdep
);
1152 i
< I387_XMM_AVX512_END_REGNUM (tdep
);
1154 regcache_raw_supply (regcache
, i
,
1155 XSAVE_XMM_AVX512_ADDR (tdep
, regs
, i
));
1158 /* Handle the upper YMM registers. */
1159 if ((tdep
->xcr0
& X86_XSTATE_AVX
))
1161 if ((clear_bv
& X86_XSTATE_AVX
))
1163 for (i
= I387_YMM0H_REGNUM (tdep
);
1164 i
< I387_YMMENDH_REGNUM (tdep
);
1166 regcache_raw_supply (regcache
, i
, zero
);
1170 for (i
= I387_YMM0H_REGNUM (tdep
);
1171 i
< I387_YMMENDH_REGNUM (tdep
);
1173 regcache_raw_supply (regcache
, i
,
1174 XSAVE_AVXH_ADDR (tdep
, regs
, i
));
1178 /* Handle the MPX registers. */
1179 if ((tdep
->xcr0
& X86_XSTATE_BNDREGS
))
1181 if (clear_bv
& X86_XSTATE_BNDREGS
)
1183 for (i
= I387_BND0R_REGNUM (tdep
);
1184 i
< I387_BNDCFGU_REGNUM (tdep
); i
++)
1185 regcache_raw_supply (regcache
, i
, zero
);
1189 for (i
= I387_BND0R_REGNUM (tdep
);
1190 i
< I387_BNDCFGU_REGNUM (tdep
); i
++)
1191 regcache_raw_supply (regcache
, i
,
1192 XSAVE_MPX_ADDR (tdep
, regs
, i
));
1196 /* Handle the MPX registers. */
1197 if ((tdep
->xcr0
& X86_XSTATE_BNDCFG
))
1199 if (clear_bv
& X86_XSTATE_BNDCFG
)
1201 for (i
= I387_BNDCFGU_REGNUM (tdep
);
1202 i
< I387_MPXEND_REGNUM (tdep
); i
++)
1203 regcache_raw_supply (regcache
, i
, zero
);
1207 for (i
= I387_BNDCFGU_REGNUM (tdep
);
1208 i
< I387_MPXEND_REGNUM (tdep
); i
++)
1209 regcache_raw_supply (regcache
, i
,
1210 XSAVE_MPX_ADDR (tdep
, regs
, i
));
1214 /* Handle the XMM registers. */
1215 if ((tdep
->xcr0
& X86_XSTATE_SSE
))
1217 if ((clear_bv
& X86_XSTATE_SSE
))
1219 for (i
= I387_XMM0_REGNUM (tdep
);
1220 i
< I387_MXCSR_REGNUM (tdep
);
1222 regcache_raw_supply (regcache
, i
, zero
);
1226 for (i
= I387_XMM0_REGNUM (tdep
);
1227 i
< I387_MXCSR_REGNUM (tdep
); i
++)
1228 regcache_raw_supply (regcache
, i
,
1229 FXSAVE_ADDR (tdep
, regs
, i
));
1233 /* Handle the x87 registers. */
1234 if ((tdep
->xcr0
& X86_XSTATE_X87
))
1236 if ((clear_bv
& X86_XSTATE_X87
))
1238 for (i
= I387_ST0_REGNUM (tdep
);
1239 i
< I387_FCTRL_REGNUM (tdep
);
1241 regcache_raw_supply (regcache
, i
, zero
);
1245 for (i
= I387_ST0_REGNUM (tdep
);
1246 i
< I387_FCTRL_REGNUM (tdep
);
1248 regcache_raw_supply (regcache
, i
, FXSAVE_ADDR (tdep
, regs
, i
));
1254 /* Only handle x87 control registers. */
1255 for (i
= I387_FCTRL_REGNUM (tdep
); i
< I387_XMM0_REGNUM (tdep
); i
++)
1256 if (regnum
== -1 || regnum
== i
)
1258 /* Most of the FPU control registers occupy only 16 bits in
1259 the xsave extended state. Give those a special treatment. */
1260 if (i
!= I387_FIOFF_REGNUM (tdep
)
1261 && i
!= I387_FOOFF_REGNUM (tdep
))
1265 memcpy (val
, FXSAVE_ADDR (tdep
, regs
, i
), 2);
1266 val
[2] = val
[3] = 0;
1267 if (i
== I387_FOP_REGNUM (tdep
))
1268 val
[1] &= ((1 << 3) - 1);
1269 else if (i
== I387_FTAG_REGNUM (tdep
))
1271 /* The fxsave area contains a simplified version of
1272 the tag word. We have to look at the actual 80-bit
1273 FP data to recreate the traditional i387 tag word. */
1275 unsigned long ftag
= 0;
1279 top
= ((FXSAVE_ADDR (tdep
, regs
,
1280 I387_FSTAT_REGNUM (tdep
)))[1] >> 3);
1283 for (fpreg
= 7; fpreg
>= 0; fpreg
--)
1287 if (val
[0] & (1 << fpreg
))
1289 int thisreg
= (fpreg
+ 8 - top
) % 8
1290 + I387_ST0_REGNUM (tdep
);
1291 tag
= i387_tag (FXSAVE_ADDR (tdep
, regs
, thisreg
));
1294 tag
= 3; /* Empty */
1296 ftag
|= tag
<< (2 * fpreg
);
1298 val
[0] = ftag
& 0xff;
1299 val
[1] = (ftag
>> 8) & 0xff;
1301 regcache_raw_supply (regcache
, i
, val
);
1304 regcache_raw_supply (regcache
, i
, FXSAVE_ADDR (tdep
, regs
, i
));
1307 if (regnum
== I387_MXCSR_REGNUM (tdep
) || regnum
== -1)
1308 regcache_raw_supply (regcache
, I387_MXCSR_REGNUM (tdep
),
1309 FXSAVE_MXCSR_ADDR (regs
));
1312 /* Similar to i387_collect_fxsave, but use XSAVE extended state. */
1315 i387_collect_xsave (const struct regcache
*regcache
, int regnum
,
1316 void *xsave
, int gcore
)
1318 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
1319 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
1320 gdb_byte
*regs
= (gdb_byte
*) xsave
;
1330 avx512_k
= 0x20 | check
,
1331 avx512_zmm_h
= 0x40 | check
,
1332 avx512_ymmh_avx512
= 0x80 | check
,
1333 avx512_xmm_avx512
= 0x100 | check
,
1334 pkeys
= 0x200 | check
,
1335 all
= x87
| sse
| avxh
| mpx
| avx512_k
| avx512_zmm_h
1336 | avx512_ymmh_avx512
| avx512_xmm_avx512
| pkeys
1339 gdb_assert (tdep
->st0_regnum
>= I386_ST0_REGNUM
);
1340 gdb_assert (tdep
->num_xmm_regs
> 0);
1344 else if (regnum
>= I387_PKRU_REGNUM (tdep
)
1345 && regnum
< I387_PKEYSEND_REGNUM (tdep
))
1347 else if (regnum
>= I387_ZMM0H_REGNUM (tdep
)
1348 && regnum
< I387_ZMMENDH_REGNUM (tdep
))
1349 regclass
= avx512_zmm_h
;
1350 else if (regnum
>= I387_K0_REGNUM (tdep
)
1351 && regnum
< I387_KEND_REGNUM (tdep
))
1352 regclass
= avx512_k
;
1353 else if (regnum
>= I387_YMM16H_REGNUM (tdep
)
1354 && regnum
< I387_YMMH_AVX512_END_REGNUM (tdep
))
1355 regclass
= avx512_ymmh_avx512
;
1356 else if (regnum
>= I387_XMM16_REGNUM (tdep
)
1357 && regnum
< I387_XMM_AVX512_END_REGNUM (tdep
))
1358 regclass
= avx512_xmm_avx512
;
1359 else if (regnum
>= I387_YMM0H_REGNUM (tdep
)
1360 && regnum
< I387_YMMENDH_REGNUM (tdep
))
1362 else if (regnum
>= I387_BND0R_REGNUM (tdep
)
1363 && regnum
< I387_MPXEND_REGNUM (tdep
))
1365 else if (regnum
>= I387_XMM0_REGNUM (tdep
)
1366 && regnum
< I387_MXCSR_REGNUM (tdep
))
1368 else if (regnum
>= I387_ST0_REGNUM (tdep
)
1369 && regnum
< I387_FCTRL_REGNUM (tdep
))
1376 /* Clear XSAVE extended state. */
1377 memset (regs
, 0, X86_XSTATE_SIZE (tdep
->xcr0
));
1379 /* Update XCR0 and `xstate_bv' with XCR0 for gcore. */
1380 if (tdep
->xsave_xcr0_offset
!= -1)
1381 memcpy (regs
+ tdep
->xsave_xcr0_offset
, &tdep
->xcr0
, 8);
1382 memcpy (XSAVE_XSTATE_BV_ADDR (regs
), &tdep
->xcr0
, 8);
1385 if ((regclass
& check
))
1387 gdb_byte raw
[I386_MAX_REGISTER_SIZE
];
1388 ULONGEST initial_xstate_bv
, clear_bv
, xstate_bv
= 0;
1390 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1392 /* The supported bits in `xstat_bv' are 8 bytes. */
1393 initial_xstate_bv
= extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs
),
1395 clear_bv
= (~(initial_xstate_bv
)) & tdep
->xcr0
;
1397 /* Clear register set if its bit in xstat_bv is zero. */
1400 if ((clear_bv
& X86_XSTATE_PKRU
))
1401 for (i
= I387_PKRU_REGNUM (tdep
);
1402 i
< I387_PKEYSEND_REGNUM (tdep
); i
++)
1403 memset (XSAVE_PKEYS_ADDR (tdep
, regs
, i
), 0, 4);
1405 if ((clear_bv
& X86_XSTATE_BNDREGS
))
1406 for (i
= I387_BND0R_REGNUM (tdep
);
1407 i
< I387_BNDCFGU_REGNUM (tdep
); i
++)
1408 memset (XSAVE_MPX_ADDR (tdep
, regs
, i
), 0, 16);
1410 if ((clear_bv
& X86_XSTATE_BNDCFG
))
1411 for (i
= I387_BNDCFGU_REGNUM (tdep
);
1412 i
< I387_MPXEND_REGNUM (tdep
); i
++)
1413 memset (XSAVE_MPX_ADDR (tdep
, regs
, i
), 0, 8);
1415 if ((clear_bv
& (X86_XSTATE_ZMM_H
| X86_XSTATE_ZMM
)))
1416 for (i
= I387_ZMM0H_REGNUM (tdep
);
1417 i
< I387_ZMMENDH_REGNUM (tdep
); i
++)
1418 memset (XSAVE_AVX512_ZMM_H_ADDR (tdep
, regs
, i
), 0, 32);
1420 if ((clear_bv
& X86_XSTATE_K
))
1421 for (i
= I387_K0_REGNUM (tdep
);
1422 i
< I387_KEND_REGNUM (tdep
); i
++)
1423 memset (XSAVE_AVX512_K_ADDR (tdep
, regs
, i
), 0, 8);
1425 if ((clear_bv
& X86_XSTATE_ZMM
))
1427 for (i
= I387_YMM16H_REGNUM (tdep
);
1428 i
< I387_YMMH_AVX512_END_REGNUM (tdep
); i
++)
1429 memset (XSAVE_YMM_AVX512_ADDR (tdep
, regs
, i
), 0, 16);
1430 for (i
= I387_XMM16_REGNUM (tdep
);
1431 i
< I387_XMM_AVX512_END_REGNUM (tdep
); i
++)
1432 memset (XSAVE_XMM_AVX512_ADDR (tdep
, regs
, i
), 0, 16);
1435 if ((clear_bv
& X86_XSTATE_AVX
))
1436 for (i
= I387_YMM0H_REGNUM (tdep
);
1437 i
< I387_YMMENDH_REGNUM (tdep
); i
++)
1438 memset (XSAVE_AVXH_ADDR (tdep
, regs
, i
), 0, 16);
1440 if ((clear_bv
& X86_XSTATE_SSE
))
1441 for (i
= I387_XMM0_REGNUM (tdep
);
1442 i
< I387_MXCSR_REGNUM (tdep
); i
++)
1443 memset (FXSAVE_ADDR (tdep
, regs
, i
), 0, 16);
1445 if ((clear_bv
& X86_XSTATE_X87
))
1446 for (i
= I387_ST0_REGNUM (tdep
);
1447 i
< I387_FCTRL_REGNUM (tdep
); i
++)
1448 memset (FXSAVE_ADDR (tdep
, regs
, i
), 0, 10);
1451 if (regclass
== all
)
1453 /* Check if any PKEYS registers are changed. */
1454 if ((tdep
->xcr0
& X86_XSTATE_PKRU
))
1455 for (i
= I387_PKRU_REGNUM (tdep
);
1456 i
< I387_PKEYSEND_REGNUM (tdep
); i
++)
1458 regcache_raw_collect (regcache
, i
, raw
);
1459 p
= XSAVE_PKEYS_ADDR (tdep
, regs
, i
);
1460 if (memcmp (raw
, p
, 4) != 0)
1462 xstate_bv
|= X86_XSTATE_PKRU
;
1467 /* Check if any ZMMH registers are changed. */
1468 if ((tdep
->xcr0
& (X86_XSTATE_ZMM_H
| X86_XSTATE_ZMM
)))
1469 for (i
= I387_ZMM0H_REGNUM (tdep
);
1470 i
< I387_ZMMENDH_REGNUM (tdep
); i
++)
1472 regcache_raw_collect (regcache
, i
, raw
);
1473 p
= XSAVE_AVX512_ZMM_H_ADDR (tdep
, regs
, i
);
1474 if (memcmp (raw
, p
, 32) != 0)
1476 xstate_bv
|= (X86_XSTATE_ZMM_H
| X86_XSTATE_ZMM
);
1477 memcpy (p
, raw
, 32);
1481 /* Check if any K registers are changed. */
1482 if ((tdep
->xcr0
& X86_XSTATE_K
))
1483 for (i
= I387_K0_REGNUM (tdep
);
1484 i
< I387_KEND_REGNUM (tdep
); i
++)
1486 regcache_raw_collect (regcache
, i
, raw
);
1487 p
= XSAVE_AVX512_K_ADDR (tdep
, regs
, i
);
1488 if (memcmp (raw
, p
, 8) != 0)
1490 xstate_bv
|= X86_XSTATE_K
;
1495 /* Check if any XMM or upper YMM registers are changed. */
1496 if ((tdep
->xcr0
& X86_XSTATE_ZMM
))
1498 for (i
= I387_YMM16H_REGNUM (tdep
);
1499 i
< I387_YMMH_AVX512_END_REGNUM (tdep
); i
++)
1501 regcache_raw_collect (regcache
, i
, raw
);
1502 p
= XSAVE_YMM_AVX512_ADDR (tdep
, regs
, i
);
1503 if (memcmp (raw
, p
, 16) != 0)
1505 xstate_bv
|= X86_XSTATE_ZMM
;
1506 memcpy (p
, raw
, 16);
1509 for (i
= I387_XMM16_REGNUM (tdep
);
1510 i
< I387_XMM_AVX512_END_REGNUM (tdep
); i
++)
1512 regcache_raw_collect (regcache
, i
, raw
);
1513 p
= XSAVE_XMM_AVX512_ADDR (tdep
, regs
, i
);
1514 if (memcmp (raw
, p
, 16) != 0)
1516 xstate_bv
|= X86_XSTATE_ZMM
;
1517 memcpy (p
, raw
, 16);
1522 /* Check if any upper YMM registers are changed. */
1523 if ((tdep
->xcr0
& X86_XSTATE_AVX
))
1524 for (i
= I387_YMM0H_REGNUM (tdep
);
1525 i
< I387_YMMENDH_REGNUM (tdep
); i
++)
1527 regcache_raw_collect (regcache
, i
, raw
);
1528 p
= XSAVE_AVXH_ADDR (tdep
, regs
, i
);
1529 if (memcmp (raw
, p
, 16))
1531 xstate_bv
|= X86_XSTATE_AVX
;
1532 memcpy (p
, raw
, 16);
1535 /* Check if any upper MPX registers are changed. */
1536 if ((tdep
->xcr0
& X86_XSTATE_BNDREGS
))
1537 for (i
= I387_BND0R_REGNUM (tdep
);
1538 i
< I387_BNDCFGU_REGNUM (tdep
); i
++)
1540 regcache_raw_collect (regcache
, i
, raw
);
1541 p
= XSAVE_MPX_ADDR (tdep
, regs
, i
);
1542 if (memcmp (raw
, p
, 16))
1544 xstate_bv
|= X86_XSTATE_BNDREGS
;
1545 memcpy (p
, raw
, 16);
1549 /* Check if any upper MPX registers are changed. */
1550 if ((tdep
->xcr0
& X86_XSTATE_BNDCFG
))
1551 for (i
= I387_BNDCFGU_REGNUM (tdep
);
1552 i
< I387_MPXEND_REGNUM (tdep
); i
++)
1554 regcache_raw_collect (regcache
, i
, raw
);
1555 p
= XSAVE_MPX_ADDR (tdep
, regs
, i
);
1556 if (memcmp (raw
, p
, 8))
1558 xstate_bv
|= X86_XSTATE_BNDCFG
;
1563 /* Check if any SSE registers are changed. */
1564 if ((tdep
->xcr0
& X86_XSTATE_SSE
))
1565 for (i
= I387_XMM0_REGNUM (tdep
);
1566 i
< I387_MXCSR_REGNUM (tdep
); i
++)
1568 regcache_raw_collect (regcache
, i
, raw
);
1569 p
= FXSAVE_ADDR (tdep
, regs
, i
);
1570 if (memcmp (raw
, p
, 16))
1572 xstate_bv
|= X86_XSTATE_SSE
;
1573 memcpy (p
, raw
, 16);
1577 /* Check if any X87 registers are changed. */
1578 if ((tdep
->xcr0
& X86_XSTATE_X87
))
1579 for (i
= I387_ST0_REGNUM (tdep
);
1580 i
< I387_FCTRL_REGNUM (tdep
); i
++)
1582 regcache_raw_collect (regcache
, i
, raw
);
1583 p
= FXSAVE_ADDR (tdep
, regs
, i
);
1584 if (memcmp (raw
, p
, 10))
1586 xstate_bv
|= X86_XSTATE_X87
;
1587 memcpy (p
, raw
, 10);
1593 /* Check if REGNUM is changed. */
1594 regcache_raw_collect (regcache
, regnum
, raw
);
1599 internal_error (__FILE__
, __LINE__
,
1600 _("invalid i387 regclass"));
1603 /* This is a PKEYS register. */
1604 p
= XSAVE_PKEYS_ADDR (tdep
, regs
, regnum
);
1605 if (memcmp (raw
, p
, 4) != 0)
1607 xstate_bv
|= X86_XSTATE_PKRU
;
1613 /* This is a ZMM register. */
1614 p
= XSAVE_AVX512_ZMM_H_ADDR (tdep
, regs
, regnum
);
1615 if (memcmp (raw
, p
, 32) != 0)
1617 xstate_bv
|= (X86_XSTATE_ZMM_H
| X86_XSTATE_ZMM
);
1618 memcpy (p
, raw
, 32);
1622 /* This is a AVX512 mask register. */
1623 p
= XSAVE_AVX512_K_ADDR (tdep
, regs
, regnum
);
1624 if (memcmp (raw
, p
, 8) != 0)
1626 xstate_bv
|= X86_XSTATE_K
;
1631 case avx512_ymmh_avx512
:
1632 /* This is an upper YMM16-31 register. */
1633 p
= XSAVE_YMM_AVX512_ADDR (tdep
, regs
, regnum
);
1634 if (memcmp (raw
, p
, 16) != 0)
1636 xstate_bv
|= X86_XSTATE_ZMM
;
1637 memcpy (p
, raw
, 16);
1641 case avx512_xmm_avx512
:
1642 /* This is an upper XMM16-31 register. */
1643 p
= XSAVE_XMM_AVX512_ADDR (tdep
, regs
, regnum
);
1644 if (memcmp (raw
, p
, 16) != 0)
1646 xstate_bv
|= X86_XSTATE_ZMM
;
1647 memcpy (p
, raw
, 16);
1652 /* This is an upper YMM register. */
1653 p
= XSAVE_AVXH_ADDR (tdep
, regs
, regnum
);
1654 if (memcmp (raw
, p
, 16))
1656 xstate_bv
|= X86_XSTATE_AVX
;
1657 memcpy (p
, raw
, 16);
1662 if (regnum
< I387_BNDCFGU_REGNUM (tdep
))
1664 regcache_raw_collect (regcache
, regnum
, raw
);
1665 p
= XSAVE_MPX_ADDR (tdep
, regs
, regnum
);
1666 if (memcmp (raw
, p
, 16))
1668 xstate_bv
|= X86_XSTATE_BNDREGS
;
1669 memcpy (p
, raw
, 16);
1674 p
= XSAVE_MPX_ADDR (tdep
, regs
, regnum
);
1675 xstate_bv
|= X86_XSTATE_BNDCFG
;
1681 /* This is an SSE register. */
1682 p
= FXSAVE_ADDR (tdep
, regs
, regnum
);
1683 if (memcmp (raw
, p
, 16))
1685 xstate_bv
|= X86_XSTATE_SSE
;
1686 memcpy (p
, raw
, 16);
1691 /* This is an x87 register. */
1692 p
= FXSAVE_ADDR (tdep
, regs
, regnum
);
1693 if (memcmp (raw
, p
, 10))
1695 xstate_bv
|= X86_XSTATE_X87
;
1696 memcpy (p
, raw
, 10);
1702 /* Update the corresponding bits in `xstate_bv' if any SSE/AVX
1703 registers are changed. */
1706 /* The supported bits in `xstat_bv' are 8 bytes. */
1707 initial_xstate_bv
|= xstate_bv
;
1708 store_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs
),
1715 internal_error (__FILE__
, __LINE__
,
1716 _("invalid i387 regclass"));
1727 case avx512_ymmh_avx512
:
1728 case avx512_xmm_avx512
:
1730 /* Register REGNUM has been updated. Return. */
1736 /* Return if REGNUM isn't changed. */
1737 if (regclass
!= all
)
1742 /* Only handle x87 control registers. */
1743 for (i
= I387_FCTRL_REGNUM (tdep
); i
< I387_XMM0_REGNUM (tdep
); i
++)
1744 if (regnum
== -1 || regnum
== i
)
1746 /* Most of the FPU control registers occupy only 16 bits in
1747 the xsave extended state. Give those a special treatment. */
1748 if (i
!= I387_FIOFF_REGNUM (tdep
)
1749 && i
!= I387_FOOFF_REGNUM (tdep
))
1753 regcache_raw_collect (regcache
, i
, buf
);
1755 if (i
== I387_FOP_REGNUM (tdep
))
1757 /* The opcode occupies only 11 bits. Make sure we
1758 don't touch the other bits. */
1759 buf
[1] &= ((1 << 3) - 1);
1760 buf
[1] |= ((FXSAVE_ADDR (tdep
, regs
, i
))[1] & ~((1 << 3) - 1));
1762 else if (i
== I387_FTAG_REGNUM (tdep
))
1764 /* Converting back is much easier. */
1766 unsigned short ftag
;
1769 ftag
= (buf
[1] << 8) | buf
[0];
1773 for (fpreg
= 7; fpreg
>= 0; fpreg
--)
1775 int tag
= (ftag
>> (fpreg
* 2)) & 3;
1778 buf
[0] |= (1 << fpreg
);
1781 memcpy (FXSAVE_ADDR (tdep
, regs
, i
), buf
, 2);
1784 regcache_raw_collect (regcache
, i
, FXSAVE_ADDR (tdep
, regs
, i
));
1787 if (regnum
== I387_MXCSR_REGNUM (tdep
) || regnum
== -1)
1788 regcache_raw_collect (regcache
, I387_MXCSR_REGNUM (tdep
),
1789 FXSAVE_MXCSR_ADDR (regs
));
1792 /* Recreate the FTW (tag word) valid bits from the 80-bit FP data in
1796 i387_tag (const gdb_byte
*raw
)
1799 unsigned int exponent
;
1800 unsigned long fraction
[2];
1802 integer
= raw
[7] & 0x80;
1803 exponent
= (((raw
[9] & 0x7f) << 8) | raw
[8]);
1804 fraction
[0] = ((raw
[3] << 24) | (raw
[2] << 16) | (raw
[1] << 8) | raw
[0]);
1805 fraction
[1] = (((raw
[7] & 0x7f) << 24) | (raw
[6] << 16)
1806 | (raw
[5] << 8) | raw
[4]);
1808 if (exponent
== 0x7fff)
1813 else if (exponent
== 0x0000)
1815 if (fraction
[0] == 0x0000 && fraction
[1] == 0x0000 && !integer
)
1841 /* Prepare the FPU stack in REGCACHE for a function return. */
1844 i387_return_value (struct gdbarch
*gdbarch
, struct regcache
*regcache
)
1846 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
1849 /* Set the top of the floating-point register stack to 7. The
1850 actual value doesn't really matter, but 7 is what a normal
1851 function return would end up with if the program started out with
1852 a freshly initialized FPU. */
1853 regcache_raw_read_unsigned (regcache
, I387_FSTAT_REGNUM (tdep
), &fstat
);
1855 regcache_raw_write_unsigned (regcache
, I387_FSTAT_REGNUM (tdep
), fstat
);
1857 /* Mark %st(1) through %st(7) as empty. Since we set the top of the
1858 floating-point register stack to 7, the appropriate value for the
1859 tag word is 0x3fff. */
1860 regcache_raw_write_unsigned (regcache
, I387_FTAG_REGNUM (tdep
), 0x3fff);