0d8d5b2178e8dcfbf54b9e3e47d2e9858dd85465
[deliverable/binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "infcall.h"
22 #include "breakpoint.h"
23 #include "tracepoint.h"
24 #include "target.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "block.h"
29 #include "gdbcore.h"
30 #include "language.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "dummy-frame.h"
35 #include "ada-lang.h"
36 #include "f-lang.h"
37 #include "gdbthread.h"
38 #include "event-top.h"
39 #include "observable.h"
40 #include "top.h"
41 #include "interps.h"
42 #include "thread-fsm.h"
43 #include <algorithm>
44 #include "gdbsupport/scope-exit.h"
45
46 /* If we can't find a function's name from its address,
47 we print this instead. */
48 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
49 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
50 + 2 * sizeof (CORE_ADDR))
51
52 /* NOTE: cagney/2003-04-16: What's the future of this code?
53
54 GDB needs an asynchronous expression evaluator, that means an
55 asynchronous inferior function call implementation, and that in
56 turn means restructuring the code so that it is event driven. */
57
58 static bool may_call_functions_p = true;
59 static void
60 show_may_call_functions_p (struct ui_file *file, int from_tty,
61 struct cmd_list_element *c,
62 const char *value)
63 {
64 fprintf_filtered (file,
65 _("Permission to call functions in the program is %s.\n"),
66 value);
67 }
68
69 /* How you should pass arguments to a function depends on whether it
70 was defined in K&R style or prototype style. If you define a
71 function using the K&R syntax that takes a `float' argument, then
72 callers must pass that argument as a `double'. If you define the
73 function using the prototype syntax, then you must pass the
74 argument as a `float', with no promotion.
75
76 Unfortunately, on certain older platforms, the debug info doesn't
77 indicate reliably how each function was defined. A function type's
78 TYPE_PROTOTYPED flag may be clear, even if the function was defined
79 in prototype style. When calling a function whose TYPE_PROTOTYPED
80 flag is clear, GDB consults this flag to decide what to do.
81
82 For modern targets, it is proper to assume that, if the prototype
83 flag is clear, that can be trusted: `float' arguments should be
84 promoted to `double'. For some older targets, if the prototype
85 flag is clear, that doesn't tell us anything. The default is to
86 trust the debug information; the user can override this behavior
87 with "set coerce-float-to-double 0". */
88
89 static bool coerce_float_to_double_p = true;
90 static void
91 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
92 struct cmd_list_element *c, const char *value)
93 {
94 fprintf_filtered (file,
95 _("Coercion of floats to doubles "
96 "when calling functions is %s.\n"),
97 value);
98 }
99
100 /* This boolean tells what gdb should do if a signal is received while
101 in a function called from gdb (call dummy). If set, gdb unwinds
102 the stack and restore the context to what as it was before the
103 call.
104
105 The default is to stop in the frame where the signal was received. */
106
107 static bool unwind_on_signal_p = false;
108 static void
109 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111 {
112 fprintf_filtered (file,
113 _("Unwinding of stack if a signal is "
114 "received while in a call dummy is %s.\n"),
115 value);
116 }
117
118 /* This boolean tells what gdb should do if a std::terminate call is
119 made while in a function called from gdb (call dummy).
120 As the confines of a single dummy stack prohibit out-of-frame
121 handlers from handling a raised exception, and as out-of-frame
122 handlers are common in C++, this can lead to no handler being found
123 by the unwinder, and a std::terminate call. This is a false positive.
124 If set, gdb unwinds the stack and restores the context to what it
125 was before the call.
126
127 The default is to unwind the frame if a std::terminate call is
128 made. */
129
130 static bool unwind_on_terminating_exception_p = true;
131
132 static void
133 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136
137 {
138 fprintf_filtered (file,
139 _("Unwind stack if a C++ exception is "
140 "unhandled while in a call dummy is %s.\n"),
141 value);
142 }
143
144 /* Perform the standard coercions that are specified
145 for arguments to be passed to C, Ada or Fortran functions.
146
147 If PARAM_TYPE is non-NULL, it is the expected parameter type.
148 IS_PROTOTYPED is non-zero if the function declaration is prototyped.
149 SP is the stack pointer were additional data can be pushed (updating
150 its value as needed). */
151
152 static struct value *
153 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
154 struct type *param_type, int is_prototyped, CORE_ADDR *sp)
155 {
156 const struct builtin_type *builtin = builtin_type (gdbarch);
157 struct type *arg_type = check_typedef (value_type (arg));
158 struct type *type
159 = param_type ? check_typedef (param_type) : arg_type;
160
161 /* Perform any Ada- and Fortran-specific coercion first. */
162 if (current_language->la_language == language_ada)
163 arg = ada_convert_actual (arg, type);
164 else if (current_language->la_language == language_fortran)
165 type = fortran_preserve_arg_pointer (arg, type);
166
167 /* Force the value to the target if we will need its address. At
168 this point, we could allocate arguments on the stack instead of
169 calling malloc if we knew that their addresses would not be
170 saved by the called function. */
171 arg = value_coerce_to_target (arg);
172
173 switch (TYPE_CODE (type))
174 {
175 case TYPE_CODE_REF:
176 case TYPE_CODE_RVALUE_REF:
177 {
178 struct value *new_value;
179
180 if (TYPE_IS_REFERENCE (arg_type))
181 return value_cast_pointers (type, arg, 0);
182
183 /* Cast the value to the reference's target type, and then
184 convert it back to a reference. This will issue an error
185 if the value was not previously in memory - in some cases
186 we should clearly be allowing this, but how? */
187 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
188 new_value = value_ref (new_value, TYPE_CODE (type));
189 return new_value;
190 }
191 case TYPE_CODE_INT:
192 case TYPE_CODE_CHAR:
193 case TYPE_CODE_BOOL:
194 case TYPE_CODE_ENUM:
195 /* If we don't have a prototype, coerce to integer type if necessary. */
196 if (!is_prototyped)
197 {
198 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
199 type = builtin->builtin_int;
200 }
201 /* Currently all target ABIs require at least the width of an integer
202 type for an argument. We may have to conditionalize the following
203 type coercion for future targets. */
204 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
205 type = builtin->builtin_int;
206 break;
207 case TYPE_CODE_FLT:
208 if (!is_prototyped && coerce_float_to_double_p)
209 {
210 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
211 type = builtin->builtin_double;
212 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
213 type = builtin->builtin_long_double;
214 }
215 break;
216 case TYPE_CODE_FUNC:
217 type = lookup_pointer_type (type);
218 break;
219 case TYPE_CODE_ARRAY:
220 /* Arrays are coerced to pointers to their first element, unless
221 they are vectors, in which case we want to leave them alone,
222 because they are passed by value. */
223 if (current_language->c_style_arrays)
224 if (!TYPE_VECTOR (type))
225 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
226 break;
227 case TYPE_CODE_UNDEF:
228 case TYPE_CODE_PTR:
229 case TYPE_CODE_STRUCT:
230 case TYPE_CODE_UNION:
231 case TYPE_CODE_VOID:
232 case TYPE_CODE_SET:
233 case TYPE_CODE_RANGE:
234 case TYPE_CODE_STRING:
235 case TYPE_CODE_ERROR:
236 case TYPE_CODE_MEMBERPTR:
237 case TYPE_CODE_METHODPTR:
238 case TYPE_CODE_METHOD:
239 case TYPE_CODE_COMPLEX:
240 default:
241 break;
242 }
243
244 return value_cast (type, arg);
245 }
246
247 /* See infcall.h. */
248
249 CORE_ADDR
250 find_function_addr (struct value *function,
251 struct type **retval_type,
252 struct type **function_type)
253 {
254 struct type *ftype = check_typedef (value_type (function));
255 struct gdbarch *gdbarch = get_type_arch (ftype);
256 struct type *value_type = NULL;
257 /* Initialize it just to avoid a GCC false warning. */
258 CORE_ADDR funaddr = 0;
259
260 /* If it's a member function, just look at the function
261 part of it. */
262
263 /* Determine address to call. */
264 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
265 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
266 funaddr = value_address (function);
267 else if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
268 {
269 funaddr = value_as_address (function);
270 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
271 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
272 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
273 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
274 current_top_target ());
275 }
276 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
277 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
278 {
279 if (TYPE_GNU_IFUNC (ftype))
280 {
281 CORE_ADDR resolver_addr = funaddr;
282
283 /* Resolve the ifunc. Note this may call the resolver
284 function in the inferior. */
285 funaddr = gnu_ifunc_resolve_addr (gdbarch, resolver_addr);
286
287 /* Skip querying the function symbol if no RETVAL_TYPE or
288 FUNCTION_TYPE have been asked for. */
289 if (retval_type != NULL || function_type != NULL)
290 {
291 type *target_ftype = find_function_type (funaddr);
292 /* If we don't have debug info for the target function,
293 see if we can instead extract the target function's
294 type from the type that the resolver returns. */
295 if (target_ftype == NULL)
296 target_ftype = find_gnu_ifunc_target_type (resolver_addr);
297 if (target_ftype != NULL)
298 {
299 value_type = TYPE_TARGET_TYPE (check_typedef (target_ftype));
300 ftype = target_ftype;
301 }
302 }
303 }
304 else
305 value_type = TYPE_TARGET_TYPE (ftype);
306 }
307 else if (TYPE_CODE (ftype) == TYPE_CODE_INT)
308 {
309 /* Handle the case of functions lacking debugging info.
310 Their values are characters since their addresses are char. */
311 if (TYPE_LENGTH (ftype) == 1)
312 funaddr = value_as_address (value_addr (function));
313 else
314 {
315 /* Handle function descriptors lacking debug info. */
316 int found_descriptor = 0;
317
318 funaddr = 0; /* pacify "gcc -Werror" */
319 if (VALUE_LVAL (function) == lval_memory)
320 {
321 CORE_ADDR nfunaddr;
322
323 funaddr = value_as_address (value_addr (function));
324 nfunaddr = funaddr;
325 funaddr
326 = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
327 current_top_target ());
328 if (funaddr != nfunaddr)
329 found_descriptor = 1;
330 }
331 if (!found_descriptor)
332 /* Handle integer used as address of a function. */
333 funaddr = (CORE_ADDR) value_as_long (function);
334 }
335 }
336 else
337 error (_("Invalid data type for function to be called."));
338
339 if (retval_type != NULL)
340 *retval_type = value_type;
341 if (function_type != NULL)
342 *function_type = ftype;
343 return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
344 }
345
346 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
347 function returns to. */
348
349 static CORE_ADDR
350 push_dummy_code (struct gdbarch *gdbarch,
351 CORE_ADDR sp, CORE_ADDR funaddr,
352 gdb::array_view<value *> args,
353 struct type *value_type,
354 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
355 struct regcache *regcache)
356 {
357 gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
358
359 return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
360 args.data (), args.size (),
361 value_type, real_pc, bp_addr,
362 regcache);
363 }
364
365 /* See infcall.h. */
366
367 void
368 error_call_unknown_return_type (const char *func_name)
369 {
370 if (func_name != NULL)
371 error (_("'%s' has unknown return type; "
372 "cast the call to its declared return type"),
373 func_name);
374 else
375 error (_("function has unknown return type; "
376 "cast the call to its declared return type"));
377 }
378
379 /* Fetch the name of the function at FUNADDR.
380 This is used in printing an error message for call_function_by_hand.
381 BUF is used to print FUNADDR in hex if the function name cannot be
382 determined. It must be large enough to hold formatted result of
383 RAW_FUNCTION_ADDRESS_FORMAT. */
384
385 static const char *
386 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
387 {
388 {
389 struct symbol *symbol = find_pc_function (funaddr);
390
391 if (symbol)
392 return SYMBOL_PRINT_NAME (symbol);
393 }
394
395 {
396 /* Try the minimal symbols. */
397 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (funaddr);
398
399 if (msymbol.minsym)
400 return MSYMBOL_PRINT_NAME (msymbol.minsym);
401 }
402
403 {
404 std::string tmp = string_printf (_(RAW_FUNCTION_ADDRESS_FORMAT),
405 hex_string (funaddr));
406
407 gdb_assert (tmp.length () + 1 <= buf_size);
408 return strcpy (buf, tmp.c_str ());
409 }
410 }
411
412 /* All the meta data necessary to extract the call's return value. */
413
414 struct call_return_meta_info
415 {
416 /* The caller frame's architecture. */
417 struct gdbarch *gdbarch;
418
419 /* The called function. */
420 struct value *function;
421
422 /* The return value's type. */
423 struct type *value_type;
424
425 /* Are we returning a value using a structure return or a normal
426 value return? */
427 int struct_return_p;
428
429 /* If using a structure return, this is the structure's address. */
430 CORE_ADDR struct_addr;
431 };
432
433 /* Extract the called function's return value. */
434
435 static struct value *
436 get_call_return_value (struct call_return_meta_info *ri)
437 {
438 struct value *retval = NULL;
439 thread_info *thr = inferior_thread ();
440 bool stack_temporaries = thread_stack_temporaries_enabled_p (thr);
441
442 if (TYPE_CODE (ri->value_type) == TYPE_CODE_VOID)
443 retval = allocate_value (ri->value_type);
444 else if (ri->struct_return_p)
445 {
446 if (stack_temporaries)
447 {
448 retval = value_from_contents_and_address (ri->value_type, NULL,
449 ri->struct_addr);
450 push_thread_stack_temporary (thr, retval);
451 }
452 else
453 {
454 retval = allocate_value (ri->value_type);
455 read_value_memory (retval, 0, 1, ri->struct_addr,
456 value_contents_raw (retval),
457 TYPE_LENGTH (ri->value_type));
458 }
459 }
460 else
461 {
462 retval = allocate_value (ri->value_type);
463 gdbarch_return_value (ri->gdbarch, ri->function, ri->value_type,
464 get_current_regcache (),
465 value_contents_raw (retval), NULL);
466 if (stack_temporaries && class_or_union_p (ri->value_type))
467 {
468 /* Values of class type returned in registers are copied onto
469 the stack and their lval_type set to lval_memory. This is
470 required because further evaluation of the expression
471 could potentially invoke methods on the return value
472 requiring GDB to evaluate the "this" pointer. To evaluate
473 the this pointer, GDB needs the memory address of the
474 value. */
475 value_force_lval (retval, ri->struct_addr);
476 push_thread_stack_temporary (thr, retval);
477 }
478 }
479
480 gdb_assert (retval != NULL);
481 return retval;
482 }
483
484 /* Data for the FSM that manages an infcall. It's main job is to
485 record the called function's return value. */
486
487 struct call_thread_fsm : public thread_fsm
488 {
489 /* All the info necessary to be able to extract the return
490 value. */
491 struct call_return_meta_info return_meta_info;
492
493 /* The called function's return value. This is extracted from the
494 target before the dummy frame is popped. */
495 struct value *return_value = nullptr;
496
497 /* The top level that started the infcall (and is synchronously
498 waiting for it to end). */
499 struct ui *waiting_ui;
500
501 call_thread_fsm (struct ui *waiting_ui, struct interp *cmd_interp,
502 struct gdbarch *gdbarch, struct value *function,
503 struct type *value_type,
504 int struct_return_p, CORE_ADDR struct_addr);
505
506 bool should_stop (struct thread_info *thread) override;
507
508 bool should_notify_stop () override;
509 };
510
511 /* Allocate a new call_thread_fsm object. */
512
513 call_thread_fsm::call_thread_fsm (struct ui *waiting_ui,
514 struct interp *cmd_interp,
515 struct gdbarch *gdbarch,
516 struct value *function,
517 struct type *value_type,
518 int struct_return_p, CORE_ADDR struct_addr)
519 : thread_fsm (cmd_interp),
520 waiting_ui (waiting_ui)
521 {
522 return_meta_info.gdbarch = gdbarch;
523 return_meta_info.function = function;
524 return_meta_info.value_type = value_type;
525 return_meta_info.struct_return_p = struct_return_p;
526 return_meta_info.struct_addr = struct_addr;
527 }
528
529 /* Implementation of should_stop method for infcalls. */
530
531 bool
532 call_thread_fsm::should_stop (struct thread_info *thread)
533 {
534 if (stop_stack_dummy == STOP_STACK_DUMMY)
535 {
536 /* Done. */
537 set_finished ();
538
539 /* Stash the return value before the dummy frame is popped and
540 registers are restored to what they were before the
541 call.. */
542 return_value = get_call_return_value (&return_meta_info);
543
544 /* Break out of wait_sync_command_done. */
545 scoped_restore save_ui = make_scoped_restore (&current_ui, waiting_ui);
546 target_terminal::ours ();
547 waiting_ui->prompt_state = PROMPT_NEEDED;
548 }
549
550 return true;
551 }
552
553 /* Implementation of should_notify_stop method for infcalls. */
554
555 bool
556 call_thread_fsm::should_notify_stop ()
557 {
558 if (finished_p ())
559 {
560 /* Infcall succeeded. Be silent and proceed with evaluating the
561 expression. */
562 return false;
563 }
564
565 /* Something wrong happened. E.g., an unexpected breakpoint
566 triggered, or a signal was intercepted. Notify the stop. */
567 return true;
568 }
569
570 /* Subroutine of call_function_by_hand to simplify it.
571 Start up the inferior and wait for it to stop.
572 Return the exception if there's an error, or an exception with
573 reason >= 0 if there's no error.
574
575 This is done inside a TRY_CATCH so the caller needn't worry about
576 thrown errors. The caller should rethrow if there's an error. */
577
578 static struct gdb_exception
579 run_inferior_call (struct call_thread_fsm *sm,
580 struct thread_info *call_thread, CORE_ADDR real_pc)
581 {
582 struct gdb_exception caught_error;
583 int saved_in_infcall = call_thread->control.in_infcall;
584 ptid_t call_thread_ptid = call_thread->ptid;
585 enum prompt_state saved_prompt_state = current_ui->prompt_state;
586 int was_running = call_thread->state == THREAD_RUNNING;
587 int saved_ui_async = current_ui->async;
588
589 /* Infcalls run synchronously, in the foreground. */
590 current_ui->prompt_state = PROMPT_BLOCKED;
591 /* So that we don't print the prompt prematurely in
592 fetch_inferior_event. */
593 current_ui->async = 0;
594
595 delete_file_handler (current_ui->input_fd);
596
597 call_thread->control.in_infcall = 1;
598
599 clear_proceed_status (0);
600
601 /* Associate the FSM with the thread after clear_proceed_status
602 (otherwise it'd clear this FSM), and before anything throws, so
603 we don't leak it (and any resources it manages). */
604 call_thread->thread_fsm = sm;
605
606 disable_watchpoints_before_interactive_call_start ();
607
608 /* We want to print return value, please... */
609 call_thread->control.proceed_to_finish = 1;
610
611 try
612 {
613 proceed (real_pc, GDB_SIGNAL_0);
614
615 /* Inferior function calls are always synchronous, even if the
616 target supports asynchronous execution. */
617 wait_sync_command_done ();
618 }
619 catch (gdb_exception &e)
620 {
621 caught_error = std::move (e);
622 }
623
624 /* If GDB has the prompt blocked before, then ensure that it remains
625 so. normal_stop calls async_enable_stdin, so reset the prompt
626 state again here. In other cases, stdin will be re-enabled by
627 inferior_event_handler, when an exception is thrown. */
628 current_ui->prompt_state = saved_prompt_state;
629 if (current_ui->prompt_state == PROMPT_BLOCKED)
630 delete_file_handler (current_ui->input_fd);
631 else
632 ui_register_input_event_handler (current_ui);
633 current_ui->async = saved_ui_async;
634
635 /* If the infcall does NOT succeed, normal_stop will have already
636 finished the thread states. However, on success, normal_stop
637 defers here, so that we can set back the thread states to what
638 they were before the call. Note that we must also finish the
639 state of new threads that might have spawned while the call was
640 running. The main cases to handle are:
641
642 - "(gdb) print foo ()", or any other command that evaluates an
643 expression at the prompt. (The thread was marked stopped before.)
644
645 - "(gdb) break foo if return_false()" or similar cases where we
646 do an infcall while handling an event (while the thread is still
647 marked running). In this example, whether the condition
648 evaluates true and thus we'll present a user-visible stop is
649 decided elsewhere. */
650 if (!was_running
651 && call_thread_ptid == inferior_ptid
652 && stop_stack_dummy == STOP_STACK_DUMMY)
653 finish_thread_state (user_visible_resume_ptid (0));
654
655 enable_watchpoints_after_interactive_call_stop ();
656
657 /* Call breakpoint_auto_delete on the current contents of the bpstat
658 of inferior call thread.
659 If all error()s out of proceed ended up calling normal_stop
660 (and perhaps they should; it already does in the special case
661 of error out of resume()), then we wouldn't need this. */
662 if (caught_error.reason < 0)
663 {
664 if (call_thread->state != THREAD_EXITED)
665 breakpoint_auto_delete (call_thread->control.stop_bpstat);
666 }
667
668 call_thread->control.in_infcall = saved_in_infcall;
669
670 return caught_error;
671 }
672
673 /* See infcall.h. */
674
675 struct value *
676 call_function_by_hand (struct value *function,
677 type *default_return_type,
678 gdb::array_view<value *> args)
679 {
680 return call_function_by_hand_dummy (function, default_return_type,
681 args, NULL, NULL);
682 }
683
684 /* All this stuff with a dummy frame may seem unnecessarily complicated
685 (why not just save registers in GDB?). The purpose of pushing a dummy
686 frame which looks just like a real frame is so that if you call a
687 function and then hit a breakpoint (get a signal, etc), "backtrace"
688 will look right. Whether the backtrace needs to actually show the
689 stack at the time the inferior function was called is debatable, but
690 it certainly needs to not display garbage. So if you are contemplating
691 making dummy frames be different from normal frames, consider that. */
692
693 /* Perform a function call in the inferior.
694 ARGS is a vector of values of arguments (NARGS of them).
695 FUNCTION is a value, the function to be called.
696 Returns a value representing what the function returned.
697 May fail to return, if a breakpoint or signal is hit
698 during the execution of the function.
699
700 ARGS is modified to contain coerced values. */
701
702 struct value *
703 call_function_by_hand_dummy (struct value *function,
704 type *default_return_type,
705 gdb::array_view<value *> args,
706 dummy_frame_dtor_ftype *dummy_dtor,
707 void *dummy_dtor_data)
708 {
709 CORE_ADDR sp;
710 struct type *target_values_type;
711 function_call_return_method return_method = return_method_normal;
712 CORE_ADDR struct_addr = 0;
713 CORE_ADDR real_pc;
714 CORE_ADDR bp_addr;
715 struct frame_id dummy_id;
716 struct frame_info *frame;
717 struct gdbarch *gdbarch;
718 ptid_t call_thread_ptid;
719 struct gdb_exception e;
720 char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
721
722 if (!may_call_functions_p)
723 error (_("Cannot call functions in the program: "
724 "may-call-functions is off."));
725
726 if (!target_has_execution)
727 noprocess ();
728
729 if (get_traceframe_number () >= 0)
730 error (_("May not call functions while looking at trace frames."));
731
732 if (execution_direction == EXEC_REVERSE)
733 error (_("Cannot call functions in reverse mode."));
734
735 /* We're going to run the target, and inspect the thread's state
736 afterwards. Hold a strong reference so that the pointer remains
737 valid even if the thread exits. */
738 thread_info_ref call_thread
739 = thread_info_ref::new_reference (inferior_thread ());
740
741 bool stack_temporaries = thread_stack_temporaries_enabled_p (call_thread.get ());
742
743 frame = get_current_frame ();
744 gdbarch = get_frame_arch (frame);
745
746 if (!gdbarch_push_dummy_call_p (gdbarch))
747 error (_("This target does not support function calls."));
748
749 /* Find the function type and do a sanity check. */
750 type *ftype;
751 type *values_type;
752 CORE_ADDR funaddr = find_function_addr (function, &values_type, &ftype);
753
754 if (values_type == NULL)
755 values_type = default_return_type;
756 if (values_type == NULL)
757 {
758 const char *name = get_function_name (funaddr,
759 name_buf, sizeof (name_buf));
760 error (_("'%s' has unknown return type; "
761 "cast the call to its declared return type"),
762 name);
763 }
764
765 values_type = check_typedef (values_type);
766
767 if (args.size () < TYPE_NFIELDS (ftype))
768 error (_("Too few arguments in function call."));
769
770 /* A holder for the inferior status.
771 This is only needed while we're preparing the inferior function call. */
772 infcall_control_state_up inf_status (save_infcall_control_state ());
773
774 /* Save the caller's registers and other state associated with the
775 inferior itself so that they can be restored once the
776 callee returns. To allow nested calls the registers are (further
777 down) pushed onto a dummy frame stack. This unique pointer
778 is released once the regcache has been pushed). */
779 infcall_suspend_state_up caller_state (save_infcall_suspend_state ());
780
781 /* Ensure that the initial SP is correctly aligned. */
782 {
783 CORE_ADDR old_sp = get_frame_sp (frame);
784
785 if (gdbarch_frame_align_p (gdbarch))
786 {
787 sp = gdbarch_frame_align (gdbarch, old_sp);
788 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
789 ABIs, a function can use memory beyond the inner most stack
790 address. AMD64 called that region the "red zone". Skip at
791 least the "red zone" size before allocating any space on
792 the stack. */
793 if (gdbarch_inner_than (gdbarch, 1, 2))
794 sp -= gdbarch_frame_red_zone_size (gdbarch);
795 else
796 sp += gdbarch_frame_red_zone_size (gdbarch);
797 /* Still aligned? */
798 gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
799 /* NOTE: cagney/2002-09-18:
800
801 On a RISC architecture, a void parameterless generic dummy
802 frame (i.e., no parameters, no result) typically does not
803 need to push anything the stack and hence can leave SP and
804 FP. Similarly, a frameless (possibly leaf) function does
805 not push anything on the stack and, hence, that too can
806 leave FP and SP unchanged. As a consequence, a sequence of
807 void parameterless generic dummy frame calls to frameless
808 functions will create a sequence of effectively identical
809 frames (SP, FP and TOS and PC the same). This, not
810 suprisingly, results in what appears to be a stack in an
811 infinite loop --- when GDB tries to find a generic dummy
812 frame on the internal dummy frame stack, it will always
813 find the first one.
814
815 To avoid this problem, the code below always grows the
816 stack. That way, two dummy frames can never be identical.
817 It does burn a few bytes of stack but that is a small price
818 to pay :-). */
819 if (sp == old_sp)
820 {
821 if (gdbarch_inner_than (gdbarch, 1, 2))
822 /* Stack grows down. */
823 sp = gdbarch_frame_align (gdbarch, old_sp - 1);
824 else
825 /* Stack grows up. */
826 sp = gdbarch_frame_align (gdbarch, old_sp + 1);
827 }
828 /* SP may have underflown address zero here from OLD_SP. Memory access
829 functions will probably fail in such case but that is a target's
830 problem. */
831 }
832 else
833 /* FIXME: cagney/2002-09-18: Hey, you loose!
834
835 Who knows how badly aligned the SP is!
836
837 If the generic dummy frame ends up empty (because nothing is
838 pushed) GDB won't be able to correctly perform back traces.
839 If a target is having trouble with backtraces, first thing to
840 do is add FRAME_ALIGN() to the architecture vector. If that
841 fails, try dummy_id().
842
843 If the ABI specifies a "Red Zone" (see the doco) the code
844 below will quietly trash it. */
845 sp = old_sp;
846
847 /* Skip over the stack temporaries that might have been generated during
848 the evaluation of an expression. */
849 if (stack_temporaries)
850 {
851 struct value *lastval;
852
853 lastval = get_last_thread_stack_temporary (call_thread.get ());
854 if (lastval != NULL)
855 {
856 CORE_ADDR lastval_addr = value_address (lastval);
857
858 if (gdbarch_inner_than (gdbarch, 1, 2))
859 {
860 gdb_assert (sp >= lastval_addr);
861 sp = lastval_addr;
862 }
863 else
864 {
865 gdb_assert (sp <= lastval_addr);
866 sp = lastval_addr + TYPE_LENGTH (value_type (lastval));
867 }
868
869 if (gdbarch_frame_align_p (gdbarch))
870 sp = gdbarch_frame_align (gdbarch, sp);
871 }
872 }
873 }
874
875 /* Are we returning a value using a structure return? */
876
877 if (gdbarch_return_in_first_hidden_param_p (gdbarch, values_type))
878 {
879 return_method = return_method_hidden_param;
880
881 /* Tell the target specific argument pushing routine not to
882 expect a value. */
883 target_values_type = builtin_type (gdbarch)->builtin_void;
884 }
885 else
886 {
887 if (using_struct_return (gdbarch, function, values_type))
888 return_method = return_method_struct;
889 target_values_type = values_type;
890 }
891
892 gdb::observers::inferior_call_pre.notify (inferior_ptid, funaddr);
893
894 /* Determine the location of the breakpoint (and possibly other
895 stuff) that the called function will return to. The SPARC, for a
896 function returning a structure or union, needs to make space for
897 not just the breakpoint but also an extra word containing the
898 size (?) of the structure being passed. */
899
900 switch (gdbarch_call_dummy_location (gdbarch))
901 {
902 case ON_STACK:
903 {
904 const gdb_byte *bp_bytes;
905 CORE_ADDR bp_addr_as_address;
906 int bp_size;
907
908 /* Be careful BP_ADDR is in inferior PC encoding while
909 BP_ADDR_AS_ADDRESS is a plain memory address. */
910
911 sp = push_dummy_code (gdbarch, sp, funaddr, args,
912 target_values_type, &real_pc, &bp_addr,
913 get_current_regcache ());
914
915 /* Write a legitimate instruction at the point where the infcall
916 breakpoint is going to be inserted. While this instruction
917 is never going to be executed, a user investigating the
918 memory from GDB would see this instruction instead of random
919 uninitialized bytes. We chose the breakpoint instruction
920 as it may look as the most logical one to the user and also
921 valgrind 3.7.0 needs it for proper vgdb inferior calls.
922
923 If software breakpoints are unsupported for this target we
924 leave the user visible memory content uninitialized. */
925
926 bp_addr_as_address = bp_addr;
927 bp_bytes = gdbarch_breakpoint_from_pc (gdbarch, &bp_addr_as_address,
928 &bp_size);
929 if (bp_bytes != NULL)
930 write_memory (bp_addr_as_address, bp_bytes, bp_size);
931 }
932 break;
933 case AT_ENTRY_POINT:
934 {
935 CORE_ADDR dummy_addr;
936
937 real_pc = funaddr;
938 dummy_addr = entry_point_address ();
939
940 /* A call dummy always consists of just a single breakpoint, so
941 its address is the same as the address of the dummy.
942
943 The actual breakpoint is inserted separatly so there is no need to
944 write that out. */
945 bp_addr = dummy_addr;
946 break;
947 }
948 default:
949 internal_error (__FILE__, __LINE__, _("bad switch"));
950 }
951
952 for (int i = args.size () - 1; i >= 0; i--)
953 {
954 int prototyped;
955 struct type *param_type;
956
957 /* FIXME drow/2002-05-31: Should just always mark methods as
958 prototyped. Can we respect TYPE_VARARGS? Probably not. */
959 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
960 prototyped = 1;
961 if (TYPE_TARGET_TYPE (ftype) == NULL && TYPE_NFIELDS (ftype) == 0
962 && default_return_type != NULL)
963 {
964 /* Calling a no-debug function with the return type
965 explicitly cast. Assume the function is prototyped,
966 with a prototype matching the types of the arguments.
967 E.g., with:
968 float mult (float v1, float v2) { return v1 * v2; }
969 This:
970 (gdb) p (float) mult (2.0f, 3.0f)
971 Is a simpler alternative to:
972 (gdb) p ((float (*) (float, float)) mult) (2.0f, 3.0f)
973 */
974 prototyped = 1;
975 }
976 else if (i < TYPE_NFIELDS (ftype))
977 prototyped = TYPE_PROTOTYPED (ftype);
978 else
979 prototyped = 0;
980
981 if (i < TYPE_NFIELDS (ftype))
982 param_type = TYPE_FIELD_TYPE (ftype, i);
983 else
984 param_type = NULL;
985
986 args[i] = value_arg_coerce (gdbarch, args[i],
987 param_type, prototyped, &sp);
988
989 if (param_type != NULL && language_pass_by_reference (param_type))
990 args[i] = value_addr (args[i]);
991 }
992
993 /* Reserve space for the return structure to be written on the
994 stack, if necessary. Make certain that the value is correctly
995 aligned.
996
997 While evaluating expressions, we reserve space on the stack for
998 return values of class type even if the language ABI and the target
999 ABI do not require that the return value be passed as a hidden first
1000 argument. This is because we want to store the return value as an
1001 on-stack temporary while the expression is being evaluated. This
1002 enables us to have chained function calls in expressions.
1003
1004 Keeping the return values as on-stack temporaries while the expression
1005 is being evaluated is OK because the thread is stopped until the
1006 expression is completely evaluated. */
1007
1008 if (return_method != return_method_normal
1009 || (stack_temporaries && class_or_union_p (values_type)))
1010 {
1011 if (gdbarch_inner_than (gdbarch, 1, 2))
1012 {
1013 /* Stack grows downward. Align STRUCT_ADDR and SP after
1014 making space for the return value. */
1015 sp -= TYPE_LENGTH (values_type);
1016 if (gdbarch_frame_align_p (gdbarch))
1017 sp = gdbarch_frame_align (gdbarch, sp);
1018 struct_addr = sp;
1019 }
1020 else
1021 {
1022 /* Stack grows upward. Align the frame, allocate space, and
1023 then again, re-align the frame??? */
1024 if (gdbarch_frame_align_p (gdbarch))
1025 sp = gdbarch_frame_align (gdbarch, sp);
1026 struct_addr = sp;
1027 sp += TYPE_LENGTH (values_type);
1028 if (gdbarch_frame_align_p (gdbarch))
1029 sp = gdbarch_frame_align (gdbarch, sp);
1030 }
1031 }
1032
1033 std::vector<struct value *> new_args;
1034 if (return_method == return_method_hidden_param)
1035 {
1036 /* Add the new argument to the front of the argument list. */
1037 new_args.reserve (args.size ());
1038 new_args.push_back
1039 (value_from_pointer (lookup_pointer_type (values_type), struct_addr));
1040 new_args.insert (new_args.end (), args.begin (), args.end ());
1041 args = new_args;
1042 }
1043
1044 /* Create the dummy stack frame. Pass in the call dummy address as,
1045 presumably, the ABI code knows where, in the call dummy, the
1046 return address should be pointed. */
1047 sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
1048 bp_addr, args.size (), args.data (),
1049 sp, return_method, struct_addr);
1050
1051 /* Set up a frame ID for the dummy frame so we can pass it to
1052 set_momentary_breakpoint. We need to give the breakpoint a frame
1053 ID so that the breakpoint code can correctly re-identify the
1054 dummy breakpoint. */
1055 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
1056 saved as the dummy-frame TOS, and used by dummy_id to form
1057 the frame ID's stack address. */
1058 dummy_id = frame_id_build (sp, bp_addr);
1059
1060 /* Create a momentary breakpoint at the return address of the
1061 inferior. That way it breaks when it returns. */
1062
1063 {
1064 symtab_and_line sal;
1065 sal.pspace = current_program_space;
1066 sal.pc = bp_addr;
1067 sal.section = find_pc_overlay (sal.pc);
1068
1069 /* Sanity. The exact same SP value is returned by
1070 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
1071 dummy_id to form the frame ID's stack address. */
1072 breakpoint *bpt
1073 = set_momentary_breakpoint (gdbarch, sal,
1074 dummy_id, bp_call_dummy).release ();
1075
1076 /* set_momentary_breakpoint invalidates FRAME. */
1077 frame = NULL;
1078
1079 bpt->disposition = disp_del;
1080 gdb_assert (bpt->related_breakpoint == bpt);
1081
1082 breakpoint *longjmp_b = set_longjmp_breakpoint_for_call_dummy ();
1083 if (longjmp_b)
1084 {
1085 /* Link BPT into the chain of LONGJMP_B. */
1086 bpt->related_breakpoint = longjmp_b;
1087 while (longjmp_b->related_breakpoint != bpt->related_breakpoint)
1088 longjmp_b = longjmp_b->related_breakpoint;
1089 longjmp_b->related_breakpoint = bpt;
1090 }
1091 }
1092
1093 /* Create a breakpoint in std::terminate.
1094 If a C++ exception is raised in the dummy-frame, and the
1095 exception handler is (normally, and expected to be) out-of-frame,
1096 the default C++ handler will (wrongly) be called in an inferior
1097 function call. This is wrong, as an exception can be normally
1098 and legally handled out-of-frame. The confines of the dummy frame
1099 prevent the unwinder from finding the correct handler (or any
1100 handler, unless it is in-frame). The default handler calls
1101 std::terminate. This will kill the inferior. Assert that
1102 terminate should never be called in an inferior function
1103 call. Place a momentary breakpoint in the std::terminate function
1104 and if triggered in the call, rewind. */
1105 if (unwind_on_terminating_exception_p)
1106 set_std_terminate_breakpoint ();
1107
1108 /* Everything's ready, push all the info needed to restore the
1109 caller (and identify the dummy-frame) onto the dummy-frame
1110 stack. */
1111 dummy_frame_push (caller_state.release (), &dummy_id, call_thread.get ());
1112 if (dummy_dtor != NULL)
1113 register_dummy_frame_dtor (dummy_id, call_thread.get (),
1114 dummy_dtor, dummy_dtor_data);
1115
1116 /* Register a clean-up for unwind_on_terminating_exception_breakpoint. */
1117 SCOPE_EXIT { delete_std_terminate_breakpoint (); };
1118
1119 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
1120 If you're looking to implement asynchronous dummy-frames, then
1121 just below is the place to chop this function in two.. */
1122
1123 {
1124 struct thread_fsm *saved_sm;
1125 struct call_thread_fsm *sm;
1126
1127 /* Save the current FSM. We'll override it. */
1128 saved_sm = call_thread->thread_fsm;
1129 call_thread->thread_fsm = NULL;
1130
1131 /* Save this thread's ptid, we need it later but the thread
1132 may have exited. */
1133 call_thread_ptid = call_thread->ptid;
1134
1135 /* Run the inferior until it stops. */
1136
1137 /* Create the FSM used to manage the infcall. It tells infrun to
1138 not report the stop to the user, and captures the return value
1139 before the dummy frame is popped. run_inferior_call registers
1140 it with the thread ASAP. */
1141 sm = new call_thread_fsm (current_ui, command_interp (),
1142 gdbarch, function,
1143 values_type,
1144 return_method != return_method_normal,
1145 struct_addr);
1146
1147 e = run_inferior_call (sm, call_thread.get (), real_pc);
1148
1149 gdb::observers::inferior_call_post.notify (call_thread_ptid, funaddr);
1150
1151 if (call_thread->state != THREAD_EXITED)
1152 {
1153 /* The FSM should still be the same. */
1154 gdb_assert (call_thread->thread_fsm == sm);
1155
1156 if (call_thread->thread_fsm->finished_p ())
1157 {
1158 struct value *retval;
1159
1160 /* The inferior call is successful. Pop the dummy frame,
1161 which runs its destructors and restores the inferior's
1162 suspend state, and restore the inferior control
1163 state. */
1164 dummy_frame_pop (dummy_id, call_thread.get ());
1165 restore_infcall_control_state (inf_status.release ());
1166
1167 /* Get the return value. */
1168 retval = sm->return_value;
1169
1170 /* Clean up / destroy the call FSM, and restore the
1171 original one. */
1172 call_thread->thread_fsm->clean_up (call_thread.get ());
1173 delete call_thread->thread_fsm;
1174 call_thread->thread_fsm = saved_sm;
1175
1176 maybe_remove_breakpoints ();
1177
1178 gdb_assert (retval != NULL);
1179 return retval;
1180 }
1181
1182 /* Didn't complete. Clean up / destroy the call FSM, and restore the
1183 previous state machine, and handle the error. */
1184 call_thread->thread_fsm->clean_up (call_thread.get ());
1185 delete call_thread->thread_fsm;
1186 call_thread->thread_fsm = saved_sm;
1187 }
1188 }
1189
1190 /* Rethrow an error if we got one trying to run the inferior. */
1191
1192 if (e.reason < 0)
1193 {
1194 const char *name = get_function_name (funaddr,
1195 name_buf, sizeof (name_buf));
1196
1197 discard_infcall_control_state (inf_status.release ());
1198
1199 /* We could discard the dummy frame here if the program exited,
1200 but it will get garbage collected the next time the program is
1201 run anyway. */
1202
1203 switch (e.reason)
1204 {
1205 case RETURN_ERROR:
1206 throw_error (e.error, _("%s\n\
1207 An error occurred while in a function called from GDB.\n\
1208 Evaluation of the expression containing the function\n\
1209 (%s) will be abandoned.\n\
1210 When the function is done executing, GDB will silently stop."),
1211 e.what (), name);
1212 case RETURN_QUIT:
1213 default:
1214 throw_exception (std::move (e));
1215 }
1216 }
1217
1218 /* If the program has exited, or we stopped at a different thread,
1219 exit and inform the user. */
1220
1221 if (! target_has_execution)
1222 {
1223 const char *name = get_function_name (funaddr,
1224 name_buf, sizeof (name_buf));
1225
1226 /* If we try to restore the inferior status,
1227 we'll crash as the inferior is no longer running. */
1228 discard_infcall_control_state (inf_status.release ());
1229
1230 /* We could discard the dummy frame here given that the program exited,
1231 but it will get garbage collected the next time the program is
1232 run anyway. */
1233
1234 error (_("The program being debugged exited while in a function "
1235 "called from GDB.\n"
1236 "Evaluation of the expression containing the function\n"
1237 "(%s) will be abandoned."),
1238 name);
1239 }
1240
1241 if (call_thread_ptid != inferior_ptid)
1242 {
1243 const char *name = get_function_name (funaddr,
1244 name_buf, sizeof (name_buf));
1245
1246 /* We've switched threads. This can happen if another thread gets a
1247 signal or breakpoint while our thread was running.
1248 There's no point in restoring the inferior status,
1249 we're in a different thread. */
1250 discard_infcall_control_state (inf_status.release ());
1251 /* Keep the dummy frame record, if the user switches back to the
1252 thread with the hand-call, we'll need it. */
1253 if (stopped_by_random_signal)
1254 error (_("\
1255 The program received a signal in another thread while\n\
1256 making a function call from GDB.\n\
1257 Evaluation of the expression containing the function\n\
1258 (%s) will be abandoned.\n\
1259 When the function is done executing, GDB will silently stop."),
1260 name);
1261 else
1262 error (_("\
1263 The program stopped in another thread while making a function call from GDB.\n\
1264 Evaluation of the expression containing the function\n\
1265 (%s) will be abandoned.\n\
1266 When the function is done executing, GDB will silently stop."),
1267 name);
1268 }
1269
1270 {
1271 /* Make a copy as NAME may be in an objfile freed by dummy_frame_pop. */
1272 std::string name = get_function_name (funaddr, name_buf,
1273 sizeof (name_buf));
1274
1275 if (stopped_by_random_signal)
1276 {
1277 /* We stopped inside the FUNCTION because of a random
1278 signal. Further execution of the FUNCTION is not
1279 allowed. */
1280
1281 if (unwind_on_signal_p)
1282 {
1283 /* The user wants the context restored. */
1284
1285 /* We must get back to the frame we were before the
1286 dummy call. */
1287 dummy_frame_pop (dummy_id, call_thread.get ());
1288
1289 /* We also need to restore inferior status to that before the
1290 dummy call. */
1291 restore_infcall_control_state (inf_status.release ());
1292
1293 /* FIXME: Insert a bunch of wrap_here; name can be very
1294 long if it's a C++ name with arguments and stuff. */
1295 error (_("\
1296 The program being debugged was signaled while in a function called from GDB.\n\
1297 GDB has restored the context to what it was before the call.\n\
1298 To change this behavior use \"set unwindonsignal off\".\n\
1299 Evaluation of the expression containing the function\n\
1300 (%s) will be abandoned."),
1301 name.c_str ());
1302 }
1303 else
1304 {
1305 /* The user wants to stay in the frame where we stopped
1306 (default).
1307 Discard inferior status, we're not at the same point
1308 we started at. */
1309 discard_infcall_control_state (inf_status.release ());
1310
1311 /* FIXME: Insert a bunch of wrap_here; name can be very
1312 long if it's a C++ name with arguments and stuff. */
1313 error (_("\
1314 The program being debugged was signaled while in a function called from GDB.\n\
1315 GDB remains in the frame where the signal was received.\n\
1316 To change this behavior use \"set unwindonsignal on\".\n\
1317 Evaluation of the expression containing the function\n\
1318 (%s) will be abandoned.\n\
1319 When the function is done executing, GDB will silently stop."),
1320 name.c_str ());
1321 }
1322 }
1323
1324 if (stop_stack_dummy == STOP_STD_TERMINATE)
1325 {
1326 /* We must get back to the frame we were before the dummy
1327 call. */
1328 dummy_frame_pop (dummy_id, call_thread.get ());
1329
1330 /* We also need to restore inferior status to that before
1331 the dummy call. */
1332 restore_infcall_control_state (inf_status.release ());
1333
1334 error (_("\
1335 The program being debugged entered a std::terminate call, most likely\n\
1336 caused by an unhandled C++ exception. GDB blocked this call in order\n\
1337 to prevent the program from being terminated, and has restored the\n\
1338 context to its original state before the call.\n\
1339 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
1340 Evaluation of the expression containing the function (%s)\n\
1341 will be abandoned."),
1342 name.c_str ());
1343 }
1344 else if (stop_stack_dummy == STOP_NONE)
1345 {
1346
1347 /* We hit a breakpoint inside the FUNCTION.
1348 Keep the dummy frame, the user may want to examine its state.
1349 Discard inferior status, we're not at the same point
1350 we started at. */
1351 discard_infcall_control_state (inf_status.release ());
1352
1353 /* The following error message used to say "The expression
1354 which contained the function call has been discarded."
1355 It is a hard concept to explain in a few words. Ideally,
1356 GDB would be able to resume evaluation of the expression
1357 when the function finally is done executing. Perhaps
1358 someday this will be implemented (it would not be easy). */
1359 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1360 a C++ name with arguments and stuff. */
1361 error (_("\
1362 The program being debugged stopped while in a function called from GDB.\n\
1363 Evaluation of the expression containing the function\n\
1364 (%s) will be abandoned.\n\
1365 When the function is done executing, GDB will silently stop."),
1366 name.c_str ());
1367 }
1368
1369 }
1370
1371 /* The above code errors out, so ... */
1372 gdb_assert_not_reached ("... should not be here");
1373 }
1374
1375 void
1376 _initialize_infcall (void)
1377 {
1378 add_setshow_boolean_cmd ("may-call-functions", no_class,
1379 &may_call_functions_p, _("\
1380 Set permission to call functions in the program."), _("\
1381 Show permission to call functions in the program."), _("\
1382 When this permission is on, GDB may call functions in the program.\n\
1383 Otherwise, any sort of attempt to call a function in the program\n\
1384 will result in an error."),
1385 NULL,
1386 show_may_call_functions_p,
1387 &setlist, &showlist);
1388
1389 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1390 &coerce_float_to_double_p, _("\
1391 Set coercion of floats to doubles when calling functions."), _("\
1392 Show coercion of floats to doubles when calling functions."), _("\
1393 Variables of type float should generally be converted to doubles before\n\
1394 calling an unprototyped function, and left alone when calling a prototyped\n\
1395 function. However, some older debug info formats do not provide enough\n\
1396 information to determine that a function is prototyped. If this flag is\n\
1397 set, GDB will perform the conversion for a function it considers\n\
1398 unprototyped.\n\
1399 The default is to perform the conversion."),
1400 NULL,
1401 show_coerce_float_to_double_p,
1402 &setlist, &showlist);
1403
1404 add_setshow_boolean_cmd ("unwindonsignal", no_class,
1405 &unwind_on_signal_p, _("\
1406 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1407 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1408 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1409 is received while in a function called from gdb (call dummy). If set, gdb\n\
1410 unwinds the stack and restore the context to what as it was before the call.\n\
1411 The default is to stop in the frame where the signal was received."),
1412 NULL,
1413 show_unwind_on_signal_p,
1414 &setlist, &showlist);
1415
1416 add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1417 &unwind_on_terminating_exception_p, _("\
1418 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1419 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1420 _("\
1421 The unwind on terminating exception flag lets the user determine\n\
1422 what gdb should do if a std::terminate() call is made from the\n\
1423 default exception handler. If set, gdb unwinds the stack and restores\n\
1424 the context to what it was before the call. If unset, gdb allows the\n\
1425 std::terminate call to proceed.\n\
1426 The default is to unwind the frame."),
1427 NULL,
1428 show_unwind_on_terminating_exception_p,
1429 &setlist, &showlist);
1430
1431 }
This page took 0.057753 seconds and 4 git commands to generate.