Check all inline frames if they are marked for skip
[deliverable/binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "infcall.h"
22 #include "breakpoint.h"
23 #include "tracepoint.h"
24 #include "target.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "block.h"
29 #include "gdbcore.h"
30 #include "language.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "dummy-frame.h"
35 #include "ada-lang.h"
36 #include "f-lang.h"
37 #include "gdbthread.h"
38 #include "event-top.h"
39 #include "observable.h"
40 #include "top.h"
41 #include "interps.h"
42 #include "thread-fsm.h"
43 #include <algorithm>
44 #include "gdbsupport/scope-exit.h"
45
46 /* If we can't find a function's name from its address,
47 we print this instead. */
48 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
49 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
50 + 2 * sizeof (CORE_ADDR))
51
52 /* NOTE: cagney/2003-04-16: What's the future of this code?
53
54 GDB needs an asynchronous expression evaluator, that means an
55 asynchronous inferior function call implementation, and that in
56 turn means restructuring the code so that it is event driven. */
57
58 static bool may_call_functions_p = true;
59 static void
60 show_may_call_functions_p (struct ui_file *file, int from_tty,
61 struct cmd_list_element *c,
62 const char *value)
63 {
64 fprintf_filtered (file,
65 _("Permission to call functions in the program is %s.\n"),
66 value);
67 }
68
69 /* How you should pass arguments to a function depends on whether it
70 was defined in K&R style or prototype style. If you define a
71 function using the K&R syntax that takes a `float' argument, then
72 callers must pass that argument as a `double'. If you define the
73 function using the prototype syntax, then you must pass the
74 argument as a `float', with no promotion.
75
76 Unfortunately, on certain older platforms, the debug info doesn't
77 indicate reliably how each function was defined. A function type's
78 TYPE_PROTOTYPED flag may be clear, even if the function was defined
79 in prototype style. When calling a function whose TYPE_PROTOTYPED
80 flag is clear, GDB consults this flag to decide what to do.
81
82 For modern targets, it is proper to assume that, if the prototype
83 flag is clear, that can be trusted: `float' arguments should be
84 promoted to `double'. For some older targets, if the prototype
85 flag is clear, that doesn't tell us anything. The default is to
86 trust the debug information; the user can override this behavior
87 with "set coerce-float-to-double 0". */
88
89 static bool coerce_float_to_double_p = true;
90 static void
91 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
92 struct cmd_list_element *c, const char *value)
93 {
94 fprintf_filtered (file,
95 _("Coercion of floats to doubles "
96 "when calling functions is %s.\n"),
97 value);
98 }
99
100 /* This boolean tells what gdb should do if a signal is received while
101 in a function called from gdb (call dummy). If set, gdb unwinds
102 the stack and restore the context to what as it was before the
103 call.
104
105 The default is to stop in the frame where the signal was received. */
106
107 static bool unwind_on_signal_p = false;
108 static void
109 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111 {
112 fprintf_filtered (file,
113 _("Unwinding of stack if a signal is "
114 "received while in a call dummy is %s.\n"),
115 value);
116 }
117
118 /* This boolean tells what gdb should do if a std::terminate call is
119 made while in a function called from gdb (call dummy).
120 As the confines of a single dummy stack prohibit out-of-frame
121 handlers from handling a raised exception, and as out-of-frame
122 handlers are common in C++, this can lead to no handler being found
123 by the unwinder, and a std::terminate call. This is a false positive.
124 If set, gdb unwinds the stack and restores the context to what it
125 was before the call.
126
127 The default is to unwind the frame if a std::terminate call is
128 made. */
129
130 static bool unwind_on_terminating_exception_p = true;
131
132 static void
133 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136
137 {
138 fprintf_filtered (file,
139 _("Unwind stack if a C++ exception is "
140 "unhandled while in a call dummy is %s.\n"),
141 value);
142 }
143
144 /* Perform the standard coercions that are specified
145 for arguments to be passed to C, Ada or Fortran functions.
146
147 If PARAM_TYPE is non-NULL, it is the expected parameter type.
148 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
149
150 static struct value *
151 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
152 struct type *param_type, int is_prototyped)
153 {
154 const struct builtin_type *builtin = builtin_type (gdbarch);
155 struct type *arg_type = check_typedef (value_type (arg));
156 struct type *type
157 = param_type ? check_typedef (param_type) : arg_type;
158
159 /* Perform any Ada- and Fortran-specific coercion first. */
160 if (current_language->la_language == language_ada)
161 arg = ada_convert_actual (arg, type);
162 else if (current_language->la_language == language_fortran)
163 type = fortran_preserve_arg_pointer (arg, type);
164
165 /* Force the value to the target if we will need its address. At
166 this point, we could allocate arguments on the stack instead of
167 calling malloc if we knew that their addresses would not be
168 saved by the called function. */
169 arg = value_coerce_to_target (arg);
170
171 switch (TYPE_CODE (type))
172 {
173 case TYPE_CODE_REF:
174 case TYPE_CODE_RVALUE_REF:
175 {
176 struct value *new_value;
177
178 if (TYPE_IS_REFERENCE (arg_type))
179 return value_cast_pointers (type, arg, 0);
180
181 /* Cast the value to the reference's target type, and then
182 convert it back to a reference. This will issue an error
183 if the value was not previously in memory - in some cases
184 we should clearly be allowing this, but how? */
185 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
186 new_value = value_ref (new_value, TYPE_CODE (type));
187 return new_value;
188 }
189 case TYPE_CODE_INT:
190 case TYPE_CODE_CHAR:
191 case TYPE_CODE_BOOL:
192 case TYPE_CODE_ENUM:
193 /* If we don't have a prototype, coerce to integer type if necessary. */
194 if (!is_prototyped)
195 {
196 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
197 type = builtin->builtin_int;
198 }
199 /* Currently all target ABIs require at least the width of an integer
200 type for an argument. We may have to conditionalize the following
201 type coercion for future targets. */
202 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
203 type = builtin->builtin_int;
204 break;
205 case TYPE_CODE_FLT:
206 if (!is_prototyped && coerce_float_to_double_p)
207 {
208 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
209 type = builtin->builtin_double;
210 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
211 type = builtin->builtin_long_double;
212 }
213 break;
214 case TYPE_CODE_FUNC:
215 type = lookup_pointer_type (type);
216 break;
217 case TYPE_CODE_ARRAY:
218 /* Arrays are coerced to pointers to their first element, unless
219 they are vectors, in which case we want to leave them alone,
220 because they are passed by value. */
221 if (current_language->c_style_arrays)
222 if (!TYPE_VECTOR (type))
223 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
224 break;
225 case TYPE_CODE_UNDEF:
226 case TYPE_CODE_PTR:
227 case TYPE_CODE_STRUCT:
228 case TYPE_CODE_UNION:
229 case TYPE_CODE_VOID:
230 case TYPE_CODE_SET:
231 case TYPE_CODE_RANGE:
232 case TYPE_CODE_STRING:
233 case TYPE_CODE_ERROR:
234 case TYPE_CODE_MEMBERPTR:
235 case TYPE_CODE_METHODPTR:
236 case TYPE_CODE_METHOD:
237 case TYPE_CODE_COMPLEX:
238 default:
239 break;
240 }
241
242 return value_cast (type, arg);
243 }
244
245 /* See infcall.h. */
246
247 CORE_ADDR
248 find_function_addr (struct value *function,
249 struct type **retval_type,
250 struct type **function_type)
251 {
252 struct type *ftype = check_typedef (value_type (function));
253 struct gdbarch *gdbarch = get_type_arch (ftype);
254 struct type *value_type = NULL;
255 /* Initialize it just to avoid a GCC false warning. */
256 CORE_ADDR funaddr = 0;
257
258 /* If it's a member function, just look at the function
259 part of it. */
260
261 /* Determine address to call. */
262 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
263 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
264 funaddr = value_address (function);
265 else if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
266 {
267 funaddr = value_as_address (function);
268 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
269 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
270 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
271 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
272 current_top_target ());
273 }
274 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
275 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
276 {
277 if (TYPE_GNU_IFUNC (ftype))
278 {
279 CORE_ADDR resolver_addr = funaddr;
280
281 /* Resolve the ifunc. Note this may call the resolver
282 function in the inferior. */
283 funaddr = gnu_ifunc_resolve_addr (gdbarch, resolver_addr);
284
285 /* Skip querying the function symbol if no RETVAL_TYPE or
286 FUNCTION_TYPE have been asked for. */
287 if (retval_type != NULL || function_type != NULL)
288 {
289 type *target_ftype = find_function_type (funaddr);
290 /* If we don't have debug info for the target function,
291 see if we can instead extract the target function's
292 type from the type that the resolver returns. */
293 if (target_ftype == NULL)
294 target_ftype = find_gnu_ifunc_target_type (resolver_addr);
295 if (target_ftype != NULL)
296 {
297 value_type = TYPE_TARGET_TYPE (check_typedef (target_ftype));
298 ftype = target_ftype;
299 }
300 }
301 }
302 else
303 value_type = TYPE_TARGET_TYPE (ftype);
304 }
305 else if (TYPE_CODE (ftype) == TYPE_CODE_INT)
306 {
307 /* Handle the case of functions lacking debugging info.
308 Their values are characters since their addresses are char. */
309 if (TYPE_LENGTH (ftype) == 1)
310 funaddr = value_as_address (value_addr (function));
311 else
312 {
313 /* Handle function descriptors lacking debug info. */
314 int found_descriptor = 0;
315
316 funaddr = 0; /* pacify "gcc -Werror" */
317 if (VALUE_LVAL (function) == lval_memory)
318 {
319 CORE_ADDR nfunaddr;
320
321 funaddr = value_as_address (value_addr (function));
322 nfunaddr = funaddr;
323 funaddr
324 = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
325 current_top_target ());
326 if (funaddr != nfunaddr)
327 found_descriptor = 1;
328 }
329 if (!found_descriptor)
330 /* Handle integer used as address of a function. */
331 funaddr = (CORE_ADDR) value_as_long (function);
332 }
333 }
334 else
335 error (_("Invalid data type for function to be called."));
336
337 if (retval_type != NULL)
338 *retval_type = value_type;
339 if (function_type != NULL)
340 *function_type = ftype;
341 return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
342 }
343
344 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
345 function returns to. */
346
347 static CORE_ADDR
348 push_dummy_code (struct gdbarch *gdbarch,
349 CORE_ADDR sp, CORE_ADDR funaddr,
350 gdb::array_view<value *> args,
351 struct type *value_type,
352 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
353 struct regcache *regcache)
354 {
355 gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
356
357 return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
358 args.data (), args.size (),
359 value_type, real_pc, bp_addr,
360 regcache);
361 }
362
363 /* See infcall.h. */
364
365 void
366 error_call_unknown_return_type (const char *func_name)
367 {
368 if (func_name != NULL)
369 error (_("'%s' has unknown return type; "
370 "cast the call to its declared return type"),
371 func_name);
372 else
373 error (_("function has unknown return type; "
374 "cast the call to its declared return type"));
375 }
376
377 /* Fetch the name of the function at FUNADDR.
378 This is used in printing an error message for call_function_by_hand.
379 BUF is used to print FUNADDR in hex if the function name cannot be
380 determined. It must be large enough to hold formatted result of
381 RAW_FUNCTION_ADDRESS_FORMAT. */
382
383 static const char *
384 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
385 {
386 {
387 struct symbol *symbol = find_pc_function (funaddr);
388
389 if (symbol)
390 return symbol->print_name ();
391 }
392
393 {
394 /* Try the minimal symbols. */
395 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (funaddr);
396
397 if (msymbol.minsym)
398 return msymbol.minsym->print_name ();
399 }
400
401 {
402 std::string tmp = string_printf (_(RAW_FUNCTION_ADDRESS_FORMAT),
403 hex_string (funaddr));
404
405 gdb_assert (tmp.length () + 1 <= buf_size);
406 return strcpy (buf, tmp.c_str ());
407 }
408 }
409
410 /* All the meta data necessary to extract the call's return value. */
411
412 struct call_return_meta_info
413 {
414 /* The caller frame's architecture. */
415 struct gdbarch *gdbarch;
416
417 /* The called function. */
418 struct value *function;
419
420 /* The return value's type. */
421 struct type *value_type;
422
423 /* Are we returning a value using a structure return or a normal
424 value return? */
425 int struct_return_p;
426
427 /* If using a structure return, this is the structure's address. */
428 CORE_ADDR struct_addr;
429 };
430
431 /* Extract the called function's return value. */
432
433 static struct value *
434 get_call_return_value (struct call_return_meta_info *ri)
435 {
436 struct value *retval = NULL;
437 thread_info *thr = inferior_thread ();
438 bool stack_temporaries = thread_stack_temporaries_enabled_p (thr);
439
440 if (TYPE_CODE (ri->value_type) == TYPE_CODE_VOID)
441 retval = allocate_value (ri->value_type);
442 else if (ri->struct_return_p)
443 {
444 if (stack_temporaries)
445 {
446 retval = value_from_contents_and_address (ri->value_type, NULL,
447 ri->struct_addr);
448 push_thread_stack_temporary (thr, retval);
449 }
450 else
451 {
452 retval = allocate_value (ri->value_type);
453 read_value_memory (retval, 0, 1, ri->struct_addr,
454 value_contents_raw (retval),
455 TYPE_LENGTH (ri->value_type));
456 }
457 }
458 else
459 {
460 retval = allocate_value (ri->value_type);
461 gdbarch_return_value (ri->gdbarch, ri->function, ri->value_type,
462 get_current_regcache (),
463 value_contents_raw (retval), NULL);
464 if (stack_temporaries && class_or_union_p (ri->value_type))
465 {
466 /* Values of class type returned in registers are copied onto
467 the stack and their lval_type set to lval_memory. This is
468 required because further evaluation of the expression
469 could potentially invoke methods on the return value
470 requiring GDB to evaluate the "this" pointer. To evaluate
471 the this pointer, GDB needs the memory address of the
472 value. */
473 value_force_lval (retval, ri->struct_addr);
474 push_thread_stack_temporary (thr, retval);
475 }
476 }
477
478 gdb_assert (retval != NULL);
479 return retval;
480 }
481
482 /* Data for the FSM that manages an infcall. It's main job is to
483 record the called function's return value. */
484
485 struct call_thread_fsm : public thread_fsm
486 {
487 /* All the info necessary to be able to extract the return
488 value. */
489 struct call_return_meta_info return_meta_info;
490
491 /* The called function's return value. This is extracted from the
492 target before the dummy frame is popped. */
493 struct value *return_value = nullptr;
494
495 /* The top level that started the infcall (and is synchronously
496 waiting for it to end). */
497 struct ui *waiting_ui;
498
499 call_thread_fsm (struct ui *waiting_ui, struct interp *cmd_interp,
500 struct gdbarch *gdbarch, struct value *function,
501 struct type *value_type,
502 int struct_return_p, CORE_ADDR struct_addr);
503
504 bool should_stop (struct thread_info *thread) override;
505
506 bool should_notify_stop () override;
507 };
508
509 /* Allocate a new call_thread_fsm object. */
510
511 call_thread_fsm::call_thread_fsm (struct ui *waiting_ui,
512 struct interp *cmd_interp,
513 struct gdbarch *gdbarch,
514 struct value *function,
515 struct type *value_type,
516 int struct_return_p, CORE_ADDR struct_addr)
517 : thread_fsm (cmd_interp),
518 waiting_ui (waiting_ui)
519 {
520 return_meta_info.gdbarch = gdbarch;
521 return_meta_info.function = function;
522 return_meta_info.value_type = value_type;
523 return_meta_info.struct_return_p = struct_return_p;
524 return_meta_info.struct_addr = struct_addr;
525 }
526
527 /* Implementation of should_stop method for infcalls. */
528
529 bool
530 call_thread_fsm::should_stop (struct thread_info *thread)
531 {
532 if (stop_stack_dummy == STOP_STACK_DUMMY)
533 {
534 /* Done. */
535 set_finished ();
536
537 /* Stash the return value before the dummy frame is popped and
538 registers are restored to what they were before the
539 call.. */
540 return_value = get_call_return_value (&return_meta_info);
541
542 /* Break out of wait_sync_command_done. */
543 scoped_restore save_ui = make_scoped_restore (&current_ui, waiting_ui);
544 target_terminal::ours ();
545 waiting_ui->prompt_state = PROMPT_NEEDED;
546 }
547
548 return true;
549 }
550
551 /* Implementation of should_notify_stop method for infcalls. */
552
553 bool
554 call_thread_fsm::should_notify_stop ()
555 {
556 if (finished_p ())
557 {
558 /* Infcall succeeded. Be silent and proceed with evaluating the
559 expression. */
560 return false;
561 }
562
563 /* Something wrong happened. E.g., an unexpected breakpoint
564 triggered, or a signal was intercepted. Notify the stop. */
565 return true;
566 }
567
568 /* Subroutine of call_function_by_hand to simplify it.
569 Start up the inferior and wait for it to stop.
570 Return the exception if there's an error, or an exception with
571 reason >= 0 if there's no error.
572
573 This is done inside a TRY_CATCH so the caller needn't worry about
574 thrown errors. The caller should rethrow if there's an error. */
575
576 static struct gdb_exception
577 run_inferior_call (struct call_thread_fsm *sm,
578 struct thread_info *call_thread, CORE_ADDR real_pc)
579 {
580 struct gdb_exception caught_error;
581 int saved_in_infcall = call_thread->control.in_infcall;
582 ptid_t call_thread_ptid = call_thread->ptid;
583 enum prompt_state saved_prompt_state = current_ui->prompt_state;
584 int was_running = call_thread->state == THREAD_RUNNING;
585 int saved_ui_async = current_ui->async;
586
587 /* Infcalls run synchronously, in the foreground. */
588 current_ui->prompt_state = PROMPT_BLOCKED;
589 /* So that we don't print the prompt prematurely in
590 fetch_inferior_event. */
591 current_ui->async = 0;
592
593 delete_file_handler (current_ui->input_fd);
594
595 call_thread->control.in_infcall = 1;
596
597 clear_proceed_status (0);
598
599 /* Associate the FSM with the thread after clear_proceed_status
600 (otherwise it'd clear this FSM), and before anything throws, so
601 we don't leak it (and any resources it manages). */
602 call_thread->thread_fsm = sm;
603
604 disable_watchpoints_before_interactive_call_start ();
605
606 /* We want to print return value, please... */
607 call_thread->control.proceed_to_finish = 1;
608
609 try
610 {
611 proceed (real_pc, GDB_SIGNAL_0);
612
613 /* Inferior function calls are always synchronous, even if the
614 target supports asynchronous execution. */
615 wait_sync_command_done ();
616 }
617 catch (gdb_exception &e)
618 {
619 caught_error = std::move (e);
620 }
621
622 /* If GDB has the prompt blocked before, then ensure that it remains
623 so. normal_stop calls async_enable_stdin, so reset the prompt
624 state again here. In other cases, stdin will be re-enabled by
625 inferior_event_handler, when an exception is thrown. */
626 current_ui->prompt_state = saved_prompt_state;
627 if (current_ui->prompt_state == PROMPT_BLOCKED)
628 delete_file_handler (current_ui->input_fd);
629 else
630 ui_register_input_event_handler (current_ui);
631 current_ui->async = saved_ui_async;
632
633 /* If the infcall does NOT succeed, normal_stop will have already
634 finished the thread states. However, on success, normal_stop
635 defers here, so that we can set back the thread states to what
636 they were before the call. Note that we must also finish the
637 state of new threads that might have spawned while the call was
638 running. The main cases to handle are:
639
640 - "(gdb) print foo ()", or any other command that evaluates an
641 expression at the prompt. (The thread was marked stopped before.)
642
643 - "(gdb) break foo if return_false()" or similar cases where we
644 do an infcall while handling an event (while the thread is still
645 marked running). In this example, whether the condition
646 evaluates true and thus we'll present a user-visible stop is
647 decided elsewhere. */
648 if (!was_running
649 && call_thread_ptid == inferior_ptid
650 && stop_stack_dummy == STOP_STACK_DUMMY)
651 finish_thread_state (user_visible_resume_ptid (0));
652
653 enable_watchpoints_after_interactive_call_stop ();
654
655 /* Call breakpoint_auto_delete on the current contents of the bpstat
656 of inferior call thread.
657 If all error()s out of proceed ended up calling normal_stop
658 (and perhaps they should; it already does in the special case
659 of error out of resume()), then we wouldn't need this. */
660 if (caught_error.reason < 0)
661 {
662 if (call_thread->state != THREAD_EXITED)
663 breakpoint_auto_delete (call_thread->control.stop_bpstat);
664 }
665
666 call_thread->control.in_infcall = saved_in_infcall;
667
668 return caught_error;
669 }
670
671 /* Reserve space on the stack for a value of the given type.
672 Return the address of the allocated space.
673 Make certain that the value is correctly aligned.
674 The SP argument is modified. */
675
676 static CORE_ADDR
677 reserve_stack_space (const type *values_type, CORE_ADDR &sp)
678 {
679 struct frame_info *frame = get_current_frame ();
680 struct gdbarch *gdbarch = get_frame_arch (frame);
681 CORE_ADDR addr = 0;
682
683 if (gdbarch_inner_than (gdbarch, 1, 2))
684 {
685 /* Stack grows downward. Align STRUCT_ADDR and SP after
686 making space. */
687 sp -= TYPE_LENGTH (values_type);
688 if (gdbarch_frame_align_p (gdbarch))
689 sp = gdbarch_frame_align (gdbarch, sp);
690 addr = sp;
691 }
692 else
693 {
694 /* Stack grows upward. Align the frame, allocate space, and
695 then again, re-align the frame??? */
696 if (gdbarch_frame_align_p (gdbarch))
697 sp = gdbarch_frame_align (gdbarch, sp);
698 addr = sp;
699 sp += TYPE_LENGTH (values_type);
700 if (gdbarch_frame_align_p (gdbarch))
701 sp = gdbarch_frame_align (gdbarch, sp);
702 }
703
704 return addr;
705 }
706
707 /* See infcall.h. */
708
709 struct value *
710 call_function_by_hand (struct value *function,
711 type *default_return_type,
712 gdb::array_view<value *> args)
713 {
714 return call_function_by_hand_dummy (function, default_return_type,
715 args, NULL, NULL);
716 }
717
718 /* All this stuff with a dummy frame may seem unnecessarily complicated
719 (why not just save registers in GDB?). The purpose of pushing a dummy
720 frame which looks just like a real frame is so that if you call a
721 function and then hit a breakpoint (get a signal, etc), "backtrace"
722 will look right. Whether the backtrace needs to actually show the
723 stack at the time the inferior function was called is debatable, but
724 it certainly needs to not display garbage. So if you are contemplating
725 making dummy frames be different from normal frames, consider that. */
726
727 /* Perform a function call in the inferior.
728 ARGS is a vector of values of arguments.
729 FUNCTION is a value, the function to be called.
730 Returns a value representing what the function returned.
731 May fail to return, if a breakpoint or signal is hit
732 during the execution of the function.
733
734 ARGS is modified to contain coerced values. */
735
736 struct value *
737 call_function_by_hand_dummy (struct value *function,
738 type *default_return_type,
739 gdb::array_view<value *> args,
740 dummy_frame_dtor_ftype *dummy_dtor,
741 void *dummy_dtor_data)
742 {
743 CORE_ADDR sp;
744 struct type *target_values_type;
745 function_call_return_method return_method = return_method_normal;
746 CORE_ADDR struct_addr = 0;
747 CORE_ADDR real_pc;
748 CORE_ADDR bp_addr;
749 struct frame_id dummy_id;
750 struct frame_info *frame;
751 struct gdbarch *gdbarch;
752 ptid_t call_thread_ptid;
753 struct gdb_exception e;
754 char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
755
756 if (!may_call_functions_p)
757 error (_("Cannot call functions in the program: "
758 "may-call-functions is off."));
759
760 if (!target_has_execution)
761 noprocess ();
762
763 if (get_traceframe_number () >= 0)
764 error (_("May not call functions while looking at trace frames."));
765
766 if (execution_direction == EXEC_REVERSE)
767 error (_("Cannot call functions in reverse mode."));
768
769 /* We're going to run the target, and inspect the thread's state
770 afterwards. Hold a strong reference so that the pointer remains
771 valid even if the thread exits. */
772 thread_info_ref call_thread
773 = thread_info_ref::new_reference (inferior_thread ());
774
775 bool stack_temporaries = thread_stack_temporaries_enabled_p (call_thread.get ());
776
777 frame = get_current_frame ();
778 gdbarch = get_frame_arch (frame);
779
780 if (!gdbarch_push_dummy_call_p (gdbarch))
781 error (_("This target does not support function calls."));
782
783 /* Find the function type and do a sanity check. */
784 type *ftype;
785 type *values_type;
786 CORE_ADDR funaddr = find_function_addr (function, &values_type, &ftype);
787
788 if (values_type == NULL)
789 values_type = default_return_type;
790 if (values_type == NULL)
791 {
792 const char *name = get_function_name (funaddr,
793 name_buf, sizeof (name_buf));
794 error (_("'%s' has unknown return type; "
795 "cast the call to its declared return type"),
796 name);
797 }
798
799 values_type = check_typedef (values_type);
800
801 if (args.size () < TYPE_NFIELDS (ftype))
802 error (_("Too few arguments in function call."));
803
804 /* A holder for the inferior status.
805 This is only needed while we're preparing the inferior function call. */
806 infcall_control_state_up inf_status (save_infcall_control_state ());
807
808 /* Save the caller's registers and other state associated with the
809 inferior itself so that they can be restored once the
810 callee returns. To allow nested calls the registers are (further
811 down) pushed onto a dummy frame stack. This unique pointer
812 is released once the regcache has been pushed). */
813 infcall_suspend_state_up caller_state (save_infcall_suspend_state ());
814
815 /* Ensure that the initial SP is correctly aligned. */
816 {
817 CORE_ADDR old_sp = get_frame_sp (frame);
818
819 if (gdbarch_frame_align_p (gdbarch))
820 {
821 sp = gdbarch_frame_align (gdbarch, old_sp);
822 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
823 ABIs, a function can use memory beyond the inner most stack
824 address. AMD64 called that region the "red zone". Skip at
825 least the "red zone" size before allocating any space on
826 the stack. */
827 if (gdbarch_inner_than (gdbarch, 1, 2))
828 sp -= gdbarch_frame_red_zone_size (gdbarch);
829 else
830 sp += gdbarch_frame_red_zone_size (gdbarch);
831 /* Still aligned? */
832 gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
833 /* NOTE: cagney/2002-09-18:
834
835 On a RISC architecture, a void parameterless generic dummy
836 frame (i.e., no parameters, no result) typically does not
837 need to push anything the stack and hence can leave SP and
838 FP. Similarly, a frameless (possibly leaf) function does
839 not push anything on the stack and, hence, that too can
840 leave FP and SP unchanged. As a consequence, a sequence of
841 void parameterless generic dummy frame calls to frameless
842 functions will create a sequence of effectively identical
843 frames (SP, FP and TOS and PC the same). This, not
844 surprisingly, results in what appears to be a stack in an
845 infinite loop --- when GDB tries to find a generic dummy
846 frame on the internal dummy frame stack, it will always
847 find the first one.
848
849 To avoid this problem, the code below always grows the
850 stack. That way, two dummy frames can never be identical.
851 It does burn a few bytes of stack but that is a small price
852 to pay :-). */
853 if (sp == old_sp)
854 {
855 if (gdbarch_inner_than (gdbarch, 1, 2))
856 /* Stack grows down. */
857 sp = gdbarch_frame_align (gdbarch, old_sp - 1);
858 else
859 /* Stack grows up. */
860 sp = gdbarch_frame_align (gdbarch, old_sp + 1);
861 }
862 /* SP may have underflown address zero here from OLD_SP. Memory access
863 functions will probably fail in such case but that is a target's
864 problem. */
865 }
866 else
867 /* FIXME: cagney/2002-09-18: Hey, you loose!
868
869 Who knows how badly aligned the SP is!
870
871 If the generic dummy frame ends up empty (because nothing is
872 pushed) GDB won't be able to correctly perform back traces.
873 If a target is having trouble with backtraces, first thing to
874 do is add FRAME_ALIGN() to the architecture vector. If that
875 fails, try dummy_id().
876
877 If the ABI specifies a "Red Zone" (see the doco) the code
878 below will quietly trash it. */
879 sp = old_sp;
880
881 /* Skip over the stack temporaries that might have been generated during
882 the evaluation of an expression. */
883 if (stack_temporaries)
884 {
885 struct value *lastval;
886
887 lastval = get_last_thread_stack_temporary (call_thread.get ());
888 if (lastval != NULL)
889 {
890 CORE_ADDR lastval_addr = value_address (lastval);
891
892 if (gdbarch_inner_than (gdbarch, 1, 2))
893 {
894 gdb_assert (sp >= lastval_addr);
895 sp = lastval_addr;
896 }
897 else
898 {
899 gdb_assert (sp <= lastval_addr);
900 sp = lastval_addr + TYPE_LENGTH (value_type (lastval));
901 }
902
903 if (gdbarch_frame_align_p (gdbarch))
904 sp = gdbarch_frame_align (gdbarch, sp);
905 }
906 }
907 }
908
909 /* Are we returning a value using a structure return? */
910
911 if (gdbarch_return_in_first_hidden_param_p (gdbarch, values_type))
912 {
913 return_method = return_method_hidden_param;
914
915 /* Tell the target specific argument pushing routine not to
916 expect a value. */
917 target_values_type = builtin_type (gdbarch)->builtin_void;
918 }
919 else
920 {
921 if (using_struct_return (gdbarch, function, values_type))
922 return_method = return_method_struct;
923 target_values_type = values_type;
924 }
925
926 gdb::observers::inferior_call_pre.notify (inferior_ptid, funaddr);
927
928 /* Determine the location of the breakpoint (and possibly other
929 stuff) that the called function will return to. The SPARC, for a
930 function returning a structure or union, needs to make space for
931 not just the breakpoint but also an extra word containing the
932 size (?) of the structure being passed. */
933
934 switch (gdbarch_call_dummy_location (gdbarch))
935 {
936 case ON_STACK:
937 {
938 const gdb_byte *bp_bytes;
939 CORE_ADDR bp_addr_as_address;
940 int bp_size;
941
942 /* Be careful BP_ADDR is in inferior PC encoding while
943 BP_ADDR_AS_ADDRESS is a plain memory address. */
944
945 sp = push_dummy_code (gdbarch, sp, funaddr, args,
946 target_values_type, &real_pc, &bp_addr,
947 get_current_regcache ());
948
949 /* Write a legitimate instruction at the point where the infcall
950 breakpoint is going to be inserted. While this instruction
951 is never going to be executed, a user investigating the
952 memory from GDB would see this instruction instead of random
953 uninitialized bytes. We chose the breakpoint instruction
954 as it may look as the most logical one to the user and also
955 valgrind 3.7.0 needs it for proper vgdb inferior calls.
956
957 If software breakpoints are unsupported for this target we
958 leave the user visible memory content uninitialized. */
959
960 bp_addr_as_address = bp_addr;
961 bp_bytes = gdbarch_breakpoint_from_pc (gdbarch, &bp_addr_as_address,
962 &bp_size);
963 if (bp_bytes != NULL)
964 write_memory (bp_addr_as_address, bp_bytes, bp_size);
965 }
966 break;
967 case AT_ENTRY_POINT:
968 {
969 CORE_ADDR dummy_addr;
970
971 real_pc = funaddr;
972 dummy_addr = entry_point_address ();
973
974 /* A call dummy always consists of just a single breakpoint, so
975 its address is the same as the address of the dummy.
976
977 The actual breakpoint is inserted separatly so there is no need to
978 write that out. */
979 bp_addr = dummy_addr;
980 break;
981 }
982 default:
983 internal_error (__FILE__, __LINE__, _("bad switch"));
984 }
985
986 for (int i = args.size () - 1; i >= 0; i--)
987 {
988 int prototyped;
989 struct type *param_type;
990
991 /* FIXME drow/2002-05-31: Should just always mark methods as
992 prototyped. Can we respect TYPE_VARARGS? Probably not. */
993 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
994 prototyped = 1;
995 if (TYPE_TARGET_TYPE (ftype) == NULL && TYPE_NFIELDS (ftype) == 0
996 && default_return_type != NULL)
997 {
998 /* Calling a no-debug function with the return type
999 explicitly cast. Assume the function is prototyped,
1000 with a prototype matching the types of the arguments.
1001 E.g., with:
1002 float mult (float v1, float v2) { return v1 * v2; }
1003 This:
1004 (gdb) p (float) mult (2.0f, 3.0f)
1005 Is a simpler alternative to:
1006 (gdb) p ((float (*) (float, float)) mult) (2.0f, 3.0f)
1007 */
1008 prototyped = 1;
1009 }
1010 else if (i < TYPE_NFIELDS (ftype))
1011 prototyped = TYPE_PROTOTYPED (ftype);
1012 else
1013 prototyped = 0;
1014
1015 if (i < TYPE_NFIELDS (ftype))
1016 param_type = TYPE_FIELD_TYPE (ftype, i);
1017 else
1018 param_type = NULL;
1019
1020 args[i] = value_arg_coerce (gdbarch, args[i],
1021 param_type, prototyped);
1022
1023 if (param_type != NULL && language_pass_by_reference (param_type))
1024 args[i] = value_addr (args[i]);
1025 }
1026
1027 /* Reserve space for the return structure to be written on the
1028 stack, if necessary.
1029
1030 While evaluating expressions, we reserve space on the stack for
1031 return values of class type even if the language ABI and the target
1032 ABI do not require that the return value be passed as a hidden first
1033 argument. This is because we want to store the return value as an
1034 on-stack temporary while the expression is being evaluated. This
1035 enables us to have chained function calls in expressions.
1036
1037 Keeping the return values as on-stack temporaries while the expression
1038 is being evaluated is OK because the thread is stopped until the
1039 expression is completely evaluated. */
1040
1041 if (return_method != return_method_normal
1042 || (stack_temporaries && class_or_union_p (values_type)))
1043 struct_addr = reserve_stack_space (values_type, sp);
1044
1045 std::vector<struct value *> new_args;
1046 if (return_method == return_method_hidden_param)
1047 {
1048 /* Add the new argument to the front of the argument list. */
1049 new_args.reserve (args.size ());
1050 new_args.push_back
1051 (value_from_pointer (lookup_pointer_type (values_type), struct_addr));
1052 new_args.insert (new_args.end (), args.begin (), args.end ());
1053 args = new_args;
1054 }
1055
1056 /* Create the dummy stack frame. Pass in the call dummy address as,
1057 presumably, the ABI code knows where, in the call dummy, the
1058 return address should be pointed. */
1059 sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
1060 bp_addr, args.size (), args.data (),
1061 sp, return_method, struct_addr);
1062
1063 /* Set up a frame ID for the dummy frame so we can pass it to
1064 set_momentary_breakpoint. We need to give the breakpoint a frame
1065 ID so that the breakpoint code can correctly re-identify the
1066 dummy breakpoint. */
1067 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
1068 saved as the dummy-frame TOS, and used by dummy_id to form
1069 the frame ID's stack address. */
1070 dummy_id = frame_id_build (sp, bp_addr);
1071
1072 /* Create a momentary breakpoint at the return address of the
1073 inferior. That way it breaks when it returns. */
1074
1075 {
1076 symtab_and_line sal;
1077 sal.pspace = current_program_space;
1078 sal.pc = bp_addr;
1079 sal.section = find_pc_overlay (sal.pc);
1080
1081 /* Sanity. The exact same SP value is returned by
1082 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
1083 dummy_id to form the frame ID's stack address. */
1084 breakpoint *bpt
1085 = set_momentary_breakpoint (gdbarch, sal,
1086 dummy_id, bp_call_dummy).release ();
1087
1088 /* set_momentary_breakpoint invalidates FRAME. */
1089 frame = NULL;
1090
1091 bpt->disposition = disp_del;
1092 gdb_assert (bpt->related_breakpoint == bpt);
1093
1094 breakpoint *longjmp_b = set_longjmp_breakpoint_for_call_dummy ();
1095 if (longjmp_b)
1096 {
1097 /* Link BPT into the chain of LONGJMP_B. */
1098 bpt->related_breakpoint = longjmp_b;
1099 while (longjmp_b->related_breakpoint != bpt->related_breakpoint)
1100 longjmp_b = longjmp_b->related_breakpoint;
1101 longjmp_b->related_breakpoint = bpt;
1102 }
1103 }
1104
1105 /* Create a breakpoint in std::terminate.
1106 If a C++ exception is raised in the dummy-frame, and the
1107 exception handler is (normally, and expected to be) out-of-frame,
1108 the default C++ handler will (wrongly) be called in an inferior
1109 function call. This is wrong, as an exception can be normally
1110 and legally handled out-of-frame. The confines of the dummy frame
1111 prevent the unwinder from finding the correct handler (or any
1112 handler, unless it is in-frame). The default handler calls
1113 std::terminate. This will kill the inferior. Assert that
1114 terminate should never be called in an inferior function
1115 call. Place a momentary breakpoint in the std::terminate function
1116 and if triggered in the call, rewind. */
1117 if (unwind_on_terminating_exception_p)
1118 set_std_terminate_breakpoint ();
1119
1120 /* Everything's ready, push all the info needed to restore the
1121 caller (and identify the dummy-frame) onto the dummy-frame
1122 stack. */
1123 dummy_frame_push (caller_state.release (), &dummy_id, call_thread.get ());
1124 if (dummy_dtor != NULL)
1125 register_dummy_frame_dtor (dummy_id, call_thread.get (),
1126 dummy_dtor, dummy_dtor_data);
1127
1128 /* Register a clean-up for unwind_on_terminating_exception_breakpoint. */
1129 SCOPE_EXIT { delete_std_terminate_breakpoint (); };
1130
1131 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
1132 If you're looking to implement asynchronous dummy-frames, then
1133 just below is the place to chop this function in two.. */
1134
1135 {
1136 struct thread_fsm *saved_sm;
1137 struct call_thread_fsm *sm;
1138
1139 /* Save the current FSM. We'll override it. */
1140 saved_sm = call_thread->thread_fsm;
1141 call_thread->thread_fsm = NULL;
1142
1143 /* Save this thread's ptid, we need it later but the thread
1144 may have exited. */
1145 call_thread_ptid = call_thread->ptid;
1146
1147 /* Run the inferior until it stops. */
1148
1149 /* Create the FSM used to manage the infcall. It tells infrun to
1150 not report the stop to the user, and captures the return value
1151 before the dummy frame is popped. run_inferior_call registers
1152 it with the thread ASAP. */
1153 sm = new call_thread_fsm (current_ui, command_interp (),
1154 gdbarch, function,
1155 values_type,
1156 return_method != return_method_normal,
1157 struct_addr);
1158
1159 e = run_inferior_call (sm, call_thread.get (), real_pc);
1160
1161 gdb::observers::inferior_call_post.notify (call_thread_ptid, funaddr);
1162
1163 if (call_thread->state != THREAD_EXITED)
1164 {
1165 /* The FSM should still be the same. */
1166 gdb_assert (call_thread->thread_fsm == sm);
1167
1168 if (call_thread->thread_fsm->finished_p ())
1169 {
1170 struct value *retval;
1171
1172 /* The inferior call is successful. Pop the dummy frame,
1173 which runs its destructors and restores the inferior's
1174 suspend state, and restore the inferior control
1175 state. */
1176 dummy_frame_pop (dummy_id, call_thread.get ());
1177 restore_infcall_control_state (inf_status.release ());
1178
1179 /* Get the return value. */
1180 retval = sm->return_value;
1181
1182 /* Clean up / destroy the call FSM, and restore the
1183 original one. */
1184 call_thread->thread_fsm->clean_up (call_thread.get ());
1185 delete call_thread->thread_fsm;
1186 call_thread->thread_fsm = saved_sm;
1187
1188 maybe_remove_breakpoints ();
1189
1190 gdb_assert (retval != NULL);
1191 return retval;
1192 }
1193
1194 /* Didn't complete. Clean up / destroy the call FSM, and restore the
1195 previous state machine, and handle the error. */
1196 call_thread->thread_fsm->clean_up (call_thread.get ());
1197 delete call_thread->thread_fsm;
1198 call_thread->thread_fsm = saved_sm;
1199 }
1200 }
1201
1202 /* Rethrow an error if we got one trying to run the inferior. */
1203
1204 if (e.reason < 0)
1205 {
1206 const char *name = get_function_name (funaddr,
1207 name_buf, sizeof (name_buf));
1208
1209 discard_infcall_control_state (inf_status.release ());
1210
1211 /* We could discard the dummy frame here if the program exited,
1212 but it will get garbage collected the next time the program is
1213 run anyway. */
1214
1215 switch (e.reason)
1216 {
1217 case RETURN_ERROR:
1218 throw_error (e.error, _("%s\n\
1219 An error occurred while in a function called from GDB.\n\
1220 Evaluation of the expression containing the function\n\
1221 (%s) will be abandoned.\n\
1222 When the function is done executing, GDB will silently stop."),
1223 e.what (), name);
1224 case RETURN_QUIT:
1225 default:
1226 throw_exception (std::move (e));
1227 }
1228 }
1229
1230 /* If the program has exited, or we stopped at a different thread,
1231 exit and inform the user. */
1232
1233 if (! target_has_execution)
1234 {
1235 const char *name = get_function_name (funaddr,
1236 name_buf, sizeof (name_buf));
1237
1238 /* If we try to restore the inferior status,
1239 we'll crash as the inferior is no longer running. */
1240 discard_infcall_control_state (inf_status.release ());
1241
1242 /* We could discard the dummy frame here given that the program exited,
1243 but it will get garbage collected the next time the program is
1244 run anyway. */
1245
1246 error (_("The program being debugged exited while in a function "
1247 "called from GDB.\n"
1248 "Evaluation of the expression containing the function\n"
1249 "(%s) will be abandoned."),
1250 name);
1251 }
1252
1253 if (call_thread_ptid != inferior_ptid)
1254 {
1255 const char *name = get_function_name (funaddr,
1256 name_buf, sizeof (name_buf));
1257
1258 /* We've switched threads. This can happen if another thread gets a
1259 signal or breakpoint while our thread was running.
1260 There's no point in restoring the inferior status,
1261 we're in a different thread. */
1262 discard_infcall_control_state (inf_status.release ());
1263 /* Keep the dummy frame record, if the user switches back to the
1264 thread with the hand-call, we'll need it. */
1265 if (stopped_by_random_signal)
1266 error (_("\
1267 The program received a signal in another thread while\n\
1268 making a function call from GDB.\n\
1269 Evaluation of the expression containing the function\n\
1270 (%s) will be abandoned.\n\
1271 When the function is done executing, GDB will silently stop."),
1272 name);
1273 else
1274 error (_("\
1275 The program stopped in another thread while making a function call from GDB.\n\
1276 Evaluation of the expression containing the function\n\
1277 (%s) will be abandoned.\n\
1278 When the function is done executing, GDB will silently stop."),
1279 name);
1280 }
1281
1282 {
1283 /* Make a copy as NAME may be in an objfile freed by dummy_frame_pop. */
1284 std::string name = get_function_name (funaddr, name_buf,
1285 sizeof (name_buf));
1286
1287 if (stopped_by_random_signal)
1288 {
1289 /* We stopped inside the FUNCTION because of a random
1290 signal. Further execution of the FUNCTION is not
1291 allowed. */
1292
1293 if (unwind_on_signal_p)
1294 {
1295 /* The user wants the context restored. */
1296
1297 /* We must get back to the frame we were before the
1298 dummy call. */
1299 dummy_frame_pop (dummy_id, call_thread.get ());
1300
1301 /* We also need to restore inferior status to that before the
1302 dummy call. */
1303 restore_infcall_control_state (inf_status.release ());
1304
1305 /* FIXME: Insert a bunch of wrap_here; name can be very
1306 long if it's a C++ name with arguments and stuff. */
1307 error (_("\
1308 The program being debugged was signaled while in a function called from GDB.\n\
1309 GDB has restored the context to what it was before the call.\n\
1310 To change this behavior use \"set unwindonsignal off\".\n\
1311 Evaluation of the expression containing the function\n\
1312 (%s) will be abandoned."),
1313 name.c_str ());
1314 }
1315 else
1316 {
1317 /* The user wants to stay in the frame where we stopped
1318 (default).
1319 Discard inferior status, we're not at the same point
1320 we started at. */
1321 discard_infcall_control_state (inf_status.release ());
1322
1323 /* FIXME: Insert a bunch of wrap_here; name can be very
1324 long if it's a C++ name with arguments and stuff. */
1325 error (_("\
1326 The program being debugged was signaled while in a function called from GDB.\n\
1327 GDB remains in the frame where the signal was received.\n\
1328 To change this behavior use \"set unwindonsignal on\".\n\
1329 Evaluation of the expression containing the function\n\
1330 (%s) will be abandoned.\n\
1331 When the function is done executing, GDB will silently stop."),
1332 name.c_str ());
1333 }
1334 }
1335
1336 if (stop_stack_dummy == STOP_STD_TERMINATE)
1337 {
1338 /* We must get back to the frame we were before the dummy
1339 call. */
1340 dummy_frame_pop (dummy_id, call_thread.get ());
1341
1342 /* We also need to restore inferior status to that before
1343 the dummy call. */
1344 restore_infcall_control_state (inf_status.release ());
1345
1346 error (_("\
1347 The program being debugged entered a std::terminate call, most likely\n\
1348 caused by an unhandled C++ exception. GDB blocked this call in order\n\
1349 to prevent the program from being terminated, and has restored the\n\
1350 context to its original state before the call.\n\
1351 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
1352 Evaluation of the expression containing the function (%s)\n\
1353 will be abandoned."),
1354 name.c_str ());
1355 }
1356 else if (stop_stack_dummy == STOP_NONE)
1357 {
1358
1359 /* We hit a breakpoint inside the FUNCTION.
1360 Keep the dummy frame, the user may want to examine its state.
1361 Discard inferior status, we're not at the same point
1362 we started at. */
1363 discard_infcall_control_state (inf_status.release ());
1364
1365 /* The following error message used to say "The expression
1366 which contained the function call has been discarded."
1367 It is a hard concept to explain in a few words. Ideally,
1368 GDB would be able to resume evaluation of the expression
1369 when the function finally is done executing. Perhaps
1370 someday this will be implemented (it would not be easy). */
1371 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1372 a C++ name with arguments and stuff. */
1373 error (_("\
1374 The program being debugged stopped while in a function called from GDB.\n\
1375 Evaluation of the expression containing the function\n\
1376 (%s) will be abandoned.\n\
1377 When the function is done executing, GDB will silently stop."),
1378 name.c_str ());
1379 }
1380
1381 }
1382
1383 /* The above code errors out, so ... */
1384 gdb_assert_not_reached ("... should not be here");
1385 }
1386
1387 void
1388 _initialize_infcall (void)
1389 {
1390 add_setshow_boolean_cmd ("may-call-functions", no_class,
1391 &may_call_functions_p, _("\
1392 Set permission to call functions in the program."), _("\
1393 Show permission to call functions in the program."), _("\
1394 When this permission is on, GDB may call functions in the program.\n\
1395 Otherwise, any sort of attempt to call a function in the program\n\
1396 will result in an error."),
1397 NULL,
1398 show_may_call_functions_p,
1399 &setlist, &showlist);
1400
1401 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1402 &coerce_float_to_double_p, _("\
1403 Set coercion of floats to doubles when calling functions."), _("\
1404 Show coercion of floats to doubles when calling functions."), _("\
1405 Variables of type float should generally be converted to doubles before\n\
1406 calling an unprototyped function, and left alone when calling a prototyped\n\
1407 function. However, some older debug info formats do not provide enough\n\
1408 information to determine that a function is prototyped. If this flag is\n\
1409 set, GDB will perform the conversion for a function it considers\n\
1410 unprototyped.\n\
1411 The default is to perform the conversion."),
1412 NULL,
1413 show_coerce_float_to_double_p,
1414 &setlist, &showlist);
1415
1416 add_setshow_boolean_cmd ("unwindonsignal", no_class,
1417 &unwind_on_signal_p, _("\
1418 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1419 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1420 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1421 is received while in a function called from gdb (call dummy). If set, gdb\n\
1422 unwinds the stack and restore the context to what as it was before the call.\n\
1423 The default is to stop in the frame where the signal was received."),
1424 NULL,
1425 show_unwind_on_signal_p,
1426 &setlist, &showlist);
1427
1428 add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1429 &unwind_on_terminating_exception_p, _("\
1430 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1431 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1432 _("\
1433 The unwind on terminating exception flag lets the user determine\n\
1434 what gdb should do if a std::terminate() call is made from the\n\
1435 default exception handler. If set, gdb unwinds the stack and restores\n\
1436 the context to what it was before the call. If unset, gdb allows the\n\
1437 std::terminate call to proceed.\n\
1438 The default is to unwind the frame."),
1439 NULL,
1440 show_unwind_on_terminating_exception_p,
1441 &setlist, &showlist);
1442
1443 }
This page took 0.059503 seconds and 4 git commands to generate.