6553e2a1fd290dbec44c4d80f171031052d6d7b2
[deliverable/binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "breakpoint.h"
24 #include "tracepoint.h"
25 #include "target.h"
26 #include "regcache.h"
27 #include "inferior.h"
28 #include "gdb_assert.h"
29 #include "block.h"
30 #include "gdbcore.h"
31 #include "language.h"
32 #include "objfiles.h"
33 #include "gdbcmd.h"
34 #include "command.h"
35 #include "gdb_string.h"
36 #include "infcall.h"
37 #include "dummy-frame.h"
38 #include "ada-lang.h"
39 #include "gdbthread.h"
40 #include "exceptions.h"
41
42 /* If we can't find a function's name from its address,
43 we print this instead. */
44 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
45 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
46 + 2 * sizeof (CORE_ADDR))
47
48 /* NOTE: cagney/2003-04-16: What's the future of this code?
49
50 GDB needs an asynchronous expression evaluator, that means an
51 asynchronous inferior function call implementation, and that in
52 turn means restructuring the code so that it is event driven. */
53
54 /* How you should pass arguments to a function depends on whether it
55 was defined in K&R style or prototype style. If you define a
56 function using the K&R syntax that takes a `float' argument, then
57 callers must pass that argument as a `double'. If you define the
58 function using the prototype syntax, then you must pass the
59 argument as a `float', with no promotion.
60
61 Unfortunately, on certain older platforms, the debug info doesn't
62 indicate reliably how each function was defined. A function type's
63 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
64 defined in prototype style. When calling a function whose
65 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to
66 decide what to do.
67
68 For modern targets, it is proper to assume that, if the prototype
69 flag is clear, that can be trusted: `float' arguments should be
70 promoted to `double'. For some older targets, if the prototype
71 flag is clear, that doesn't tell us anything. The default is to
72 trust the debug information; the user can override this behavior
73 with "set coerce-float-to-double 0". */
74
75 static int coerce_float_to_double_p = 1;
76 static void
77 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
78 struct cmd_list_element *c, const char *value)
79 {
80 fprintf_filtered (file,
81 _("Coercion of floats to doubles "
82 "when calling functions is %s.\n"),
83 value);
84 }
85
86 /* This boolean tells what gdb should do if a signal is received while
87 in a function called from gdb (call dummy). If set, gdb unwinds
88 the stack and restore the context to what as it was before the
89 call.
90
91 The default is to stop in the frame where the signal was received. */
92
93 int unwind_on_signal_p = 0;
94 static void
95 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file,
99 _("Unwinding of stack if a signal is "
100 "received while in a call dummy is %s.\n"),
101 value);
102 }
103
104 /* This boolean tells what gdb should do if a std::terminate call is
105 made while in a function called from gdb (call dummy).
106 As the confines of a single dummy stack prohibit out-of-frame
107 handlers from handling a raised exception, and as out-of-frame
108 handlers are common in C++, this can lead to no handler being found
109 by the unwinder, and a std::terminate call. This is a false positive.
110 If set, gdb unwinds the stack and restores the context to what it
111 was before the call.
112
113 The default is to unwind the frame if a std::terminate call is
114 made. */
115
116 static int unwind_on_terminating_exception_p = 1;
117
118 static void
119 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
121 const char *value)
122
123 {
124 fprintf_filtered (file,
125 _("Unwind stack if a C++ exception is "
126 "unhandled while in a call dummy is %s.\n"),
127 value);
128 }
129
130 /* Perform the standard coercions that are specified
131 for arguments to be passed to C or Ada functions.
132
133 If PARAM_TYPE is non-NULL, it is the expected parameter type.
134 IS_PROTOTYPED is non-zero if the function declaration is prototyped.
135 SP is the stack pointer were additional data can be pushed (updating
136 its value as needed). */
137
138 static struct value *
139 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
140 struct type *param_type, int is_prototyped, CORE_ADDR *sp)
141 {
142 const struct builtin_type *builtin = builtin_type (gdbarch);
143 struct type *arg_type = check_typedef (value_type (arg));
144 struct type *type
145 = param_type ? check_typedef (param_type) : arg_type;
146
147 /* Perform any Ada-specific coercion first. */
148 if (current_language->la_language == language_ada)
149 arg = ada_convert_actual (arg, type);
150
151 /* Force the value to the target if we will need its address. At
152 this point, we could allocate arguments on the stack instead of
153 calling malloc if we knew that their addresses would not be
154 saved by the called function. */
155 arg = value_coerce_to_target (arg);
156
157 switch (TYPE_CODE (type))
158 {
159 case TYPE_CODE_REF:
160 {
161 struct value *new_value;
162
163 if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
164 return value_cast_pointers (type, arg);
165
166 /* Cast the value to the reference's target type, and then
167 convert it back to a reference. This will issue an error
168 if the value was not previously in memory - in some cases
169 we should clearly be allowing this, but how? */
170 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
171 new_value = value_ref (new_value);
172 return new_value;
173 }
174 case TYPE_CODE_INT:
175 case TYPE_CODE_CHAR:
176 case TYPE_CODE_BOOL:
177 case TYPE_CODE_ENUM:
178 /* If we don't have a prototype, coerce to integer type if necessary. */
179 if (!is_prototyped)
180 {
181 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
182 type = builtin->builtin_int;
183 }
184 /* Currently all target ABIs require at least the width of an integer
185 type for an argument. We may have to conditionalize the following
186 type coercion for future targets. */
187 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
188 type = builtin->builtin_int;
189 break;
190 case TYPE_CODE_FLT:
191 if (!is_prototyped && coerce_float_to_double_p)
192 {
193 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
194 type = builtin->builtin_double;
195 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
196 type = builtin->builtin_long_double;
197 }
198 break;
199 case TYPE_CODE_FUNC:
200 type = lookup_pointer_type (type);
201 break;
202 case TYPE_CODE_ARRAY:
203 /* Arrays are coerced to pointers to their first element, unless
204 they are vectors, in which case we want to leave them alone,
205 because they are passed by value. */
206 if (current_language->c_style_arrays)
207 if (!TYPE_VECTOR (type))
208 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
209 break;
210 case TYPE_CODE_UNDEF:
211 case TYPE_CODE_PTR:
212 case TYPE_CODE_STRUCT:
213 case TYPE_CODE_UNION:
214 case TYPE_CODE_VOID:
215 case TYPE_CODE_SET:
216 case TYPE_CODE_RANGE:
217 case TYPE_CODE_STRING:
218 case TYPE_CODE_BITSTRING:
219 case TYPE_CODE_ERROR:
220 case TYPE_CODE_MEMBERPTR:
221 case TYPE_CODE_METHODPTR:
222 case TYPE_CODE_METHOD:
223 case TYPE_CODE_COMPLEX:
224 default:
225 break;
226 }
227
228 return value_cast (type, arg);
229 }
230
231 /* Return the return type of a function with its first instruction exactly at
232 the PC address. Return NULL otherwise. */
233
234 static struct type *
235 find_function_return_type (CORE_ADDR pc)
236 {
237 struct symbol *sym = find_pc_function (pc);
238
239 if (sym != NULL && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == pc
240 && SYMBOL_TYPE (sym) != NULL)
241 return TYPE_TARGET_TYPE (SYMBOL_TYPE (sym));
242
243 return NULL;
244 }
245
246 /* Determine a function's address and its return type from its value.
247 Calls error() if the function is not valid for calling. */
248
249 CORE_ADDR
250 find_function_addr (struct value *function, struct type **retval_type)
251 {
252 struct type *ftype = check_typedef (value_type (function));
253 struct gdbarch *gdbarch = get_type_arch (ftype);
254 struct type *value_type = NULL;
255 /* Initialize it just to avoid a GCC false warning. */
256 CORE_ADDR funaddr = 0;
257
258 /* If it's a member function, just look at the function
259 part of it. */
260
261 /* Determine address to call. */
262 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
263 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
264 funaddr = value_address (function);
265 else if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
266 {
267 funaddr = value_as_address (function);
268 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
269 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
270 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
271 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
272 &current_target);
273 }
274 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
275 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
276 {
277 value_type = TYPE_TARGET_TYPE (ftype);
278
279 if (TYPE_GNU_IFUNC (ftype))
280 {
281 funaddr = gnu_ifunc_resolve_addr (gdbarch, funaddr);
282
283 /* Skip querying the function symbol if no RETVAL_TYPE has been
284 asked for. */
285 if (retval_type)
286 value_type = find_function_return_type (funaddr);
287 }
288 }
289 else if (TYPE_CODE (ftype) == TYPE_CODE_INT)
290 {
291 /* Handle the case of functions lacking debugging info.
292 Their values are characters since their addresses are char. */
293 if (TYPE_LENGTH (ftype) == 1)
294 funaddr = value_as_address (value_addr (function));
295 else
296 {
297 /* Handle function descriptors lacking debug info. */
298 int found_descriptor = 0;
299
300 funaddr = 0; /* pacify "gcc -Werror" */
301 if (VALUE_LVAL (function) == lval_memory)
302 {
303 CORE_ADDR nfunaddr;
304
305 funaddr = value_as_address (value_addr (function));
306 nfunaddr = funaddr;
307 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
308 &current_target);
309 if (funaddr != nfunaddr)
310 found_descriptor = 1;
311 }
312 if (!found_descriptor)
313 /* Handle integer used as address of a function. */
314 funaddr = (CORE_ADDR) value_as_long (function);
315 }
316 }
317 else
318 error (_("Invalid data type for function to be called."));
319
320 if (retval_type != NULL)
321 *retval_type = value_type;
322 return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
323 }
324
325 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
326 function returns to. */
327
328 static CORE_ADDR
329 push_dummy_code (struct gdbarch *gdbarch,
330 CORE_ADDR sp, CORE_ADDR funaddr,
331 struct value **args, int nargs,
332 struct type *value_type,
333 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
334 struct regcache *regcache)
335 {
336 gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
337
338 return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
339 args, nargs, value_type, real_pc, bp_addr,
340 regcache);
341 }
342
343 /* Fetch the name of the function at FUNADDR.
344 This is used in printing an error message for call_function_by_hand.
345 BUF is used to print FUNADDR in hex if the function name cannot be
346 determined. It must be large enough to hold formatted result of
347 RAW_FUNCTION_ADDRESS_FORMAT. */
348
349 static const char *
350 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
351 {
352 {
353 struct symbol *symbol = find_pc_function (funaddr);
354
355 if (symbol)
356 return SYMBOL_PRINT_NAME (symbol);
357 }
358
359 {
360 /* Try the minimal symbols. */
361 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
362
363 if (msymbol)
364 return SYMBOL_PRINT_NAME (msymbol);
365 }
366
367 {
368 char *tmp = xstrprintf (_(RAW_FUNCTION_ADDRESS_FORMAT),
369 hex_string (funaddr));
370
371 gdb_assert (strlen (tmp) + 1 <= buf_size);
372 strcpy (buf, tmp);
373 xfree (tmp);
374 return buf;
375 }
376 }
377
378 /* Subroutine of call_function_by_hand to simplify it.
379 Start up the inferior and wait for it to stop.
380 Return the exception if there's an error, or an exception with
381 reason >= 0 if there's no error.
382
383 This is done inside a TRY_CATCH so the caller needn't worry about
384 thrown errors. The caller should rethrow if there's an error. */
385
386 static struct gdb_exception
387 run_inferior_call (struct thread_info *call_thread, CORE_ADDR real_pc)
388 {
389 volatile struct gdb_exception e;
390 int saved_async = 0;
391 int saved_in_infcall = call_thread->control.in_infcall;
392 ptid_t call_thread_ptid = call_thread->ptid;
393 char *saved_target_shortname = xstrdup (target_shortname);
394
395 call_thread->control.in_infcall = 1;
396
397 clear_proceed_status ();
398
399 disable_watchpoints_before_interactive_call_start ();
400
401 /* We want stop_registers, please... */
402 call_thread->control.proceed_to_finish = 1;
403
404 if (target_can_async_p ())
405 saved_async = target_async_mask (0);
406
407 TRY_CATCH (e, RETURN_MASK_ALL)
408 proceed (real_pc, TARGET_SIGNAL_0, 0);
409
410 /* At this point the current thread may have changed. Refresh
411 CALL_THREAD as it could be invalid if its thread has exited. */
412 call_thread = find_thread_ptid (call_thread_ptid);
413
414 /* Don't restore the async mask if the target has changed,
415 saved_async is for the original target. */
416 if (saved_async
417 && strcmp (saved_target_shortname, target_shortname) == 0)
418 target_async_mask (saved_async);
419
420 enable_watchpoints_after_interactive_call_stop ();
421
422 /* Call breakpoint_auto_delete on the current contents of the bpstat
423 of inferior call thread.
424 If all error()s out of proceed ended up calling normal_stop
425 (and perhaps they should; it already does in the special case
426 of error out of resume()), then we wouldn't need this. */
427 if (e.reason < 0)
428 {
429 if (call_thread != NULL)
430 breakpoint_auto_delete (call_thread->control.stop_bpstat);
431 }
432
433 if (call_thread != NULL)
434 call_thread->control.in_infcall = saved_in_infcall;
435
436 xfree (saved_target_shortname);
437
438 return e;
439 }
440
441 /* A cleanup function that calls delete_std_terminate_breakpoint. */
442 static void
443 cleanup_delete_std_terminate_breakpoint (void *ignore)
444 {
445 delete_std_terminate_breakpoint ();
446 }
447
448 /* All this stuff with a dummy frame may seem unnecessarily complicated
449 (why not just save registers in GDB?). The purpose of pushing a dummy
450 frame which looks just like a real frame is so that if you call a
451 function and then hit a breakpoint (get a signal, etc), "backtrace"
452 will look right. Whether the backtrace needs to actually show the
453 stack at the time the inferior function was called is debatable, but
454 it certainly needs to not display garbage. So if you are contemplating
455 making dummy frames be different from normal frames, consider that. */
456
457 /* Perform a function call in the inferior.
458 ARGS is a vector of values of arguments (NARGS of them).
459 FUNCTION is a value, the function to be called.
460 Returns a value representing what the function returned.
461 May fail to return, if a breakpoint or signal is hit
462 during the execution of the function.
463
464 ARGS is modified to contain coerced values. */
465
466 struct value *
467 call_function_by_hand (struct value *function, int nargs, struct value **args)
468 {
469 CORE_ADDR sp;
470 struct type *values_type, *target_values_type;
471 unsigned char struct_return = 0, lang_struct_return = 0;
472 CORE_ADDR struct_addr = 0;
473 struct infcall_control_state *inf_status;
474 struct cleanup *inf_status_cleanup;
475 struct infcall_suspend_state *caller_state;
476 CORE_ADDR funaddr;
477 CORE_ADDR real_pc;
478 struct type *ftype = check_typedef (value_type (function));
479 CORE_ADDR bp_addr;
480 struct frame_id dummy_id;
481 struct cleanup *args_cleanup;
482 struct frame_info *frame;
483 struct gdbarch *gdbarch;
484 struct cleanup *terminate_bp_cleanup;
485 ptid_t call_thread_ptid;
486 struct gdb_exception e;
487 char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
488
489 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
490 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
491
492 if (!target_has_execution)
493 noprocess ();
494
495 if (get_traceframe_number () >= 0)
496 error (_("May not call functions while looking at trace frames."));
497
498 if (execution_direction == EXEC_REVERSE)
499 error (_("Cannot call functions in reverse mode."));
500
501 frame = get_current_frame ();
502 gdbarch = get_frame_arch (frame);
503
504 if (!gdbarch_push_dummy_call_p (gdbarch))
505 error (_("This target does not support function calls."));
506
507 /* A cleanup for the inferior status.
508 This is only needed while we're preparing the inferior function call. */
509 inf_status = save_infcall_control_state ();
510 inf_status_cleanup
511 = make_cleanup_restore_infcall_control_state (inf_status);
512
513 /* Save the caller's registers and other state associated with the
514 inferior itself so that they can be restored once the
515 callee returns. To allow nested calls the registers are (further
516 down) pushed onto a dummy frame stack. Include a cleanup (which
517 is tossed once the regcache has been pushed). */
518 caller_state = save_infcall_suspend_state ();
519 make_cleanup_restore_infcall_suspend_state (caller_state);
520
521 /* Ensure that the initial SP is correctly aligned. */
522 {
523 CORE_ADDR old_sp = get_frame_sp (frame);
524
525 if (gdbarch_frame_align_p (gdbarch))
526 {
527 sp = gdbarch_frame_align (gdbarch, old_sp);
528 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
529 ABIs, a function can use memory beyond the inner most stack
530 address. AMD64 called that region the "red zone". Skip at
531 least the "red zone" size before allocating any space on
532 the stack. */
533 if (gdbarch_inner_than (gdbarch, 1, 2))
534 sp -= gdbarch_frame_red_zone_size (gdbarch);
535 else
536 sp += gdbarch_frame_red_zone_size (gdbarch);
537 /* Still aligned? */
538 gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
539 /* NOTE: cagney/2002-09-18:
540
541 On a RISC architecture, a void parameterless generic dummy
542 frame (i.e., no parameters, no result) typically does not
543 need to push anything the stack and hence can leave SP and
544 FP. Similarly, a frameless (possibly leaf) function does
545 not push anything on the stack and, hence, that too can
546 leave FP and SP unchanged. As a consequence, a sequence of
547 void parameterless generic dummy frame calls to frameless
548 functions will create a sequence of effectively identical
549 frames (SP, FP and TOS and PC the same). This, not
550 suprisingly, results in what appears to be a stack in an
551 infinite loop --- when GDB tries to find a generic dummy
552 frame on the internal dummy frame stack, it will always
553 find the first one.
554
555 To avoid this problem, the code below always grows the
556 stack. That way, two dummy frames can never be identical.
557 It does burn a few bytes of stack but that is a small price
558 to pay :-). */
559 if (sp == old_sp)
560 {
561 if (gdbarch_inner_than (gdbarch, 1, 2))
562 /* Stack grows down. */
563 sp = gdbarch_frame_align (gdbarch, old_sp - 1);
564 else
565 /* Stack grows up. */
566 sp = gdbarch_frame_align (gdbarch, old_sp + 1);
567 }
568 /* SP may have underflown address zero here from OLD_SP. Memory access
569 functions will probably fail in such case but that is a target's
570 problem. */
571 }
572 else
573 /* FIXME: cagney/2002-09-18: Hey, you loose!
574
575 Who knows how badly aligned the SP is!
576
577 If the generic dummy frame ends up empty (because nothing is
578 pushed) GDB won't be able to correctly perform back traces.
579 If a target is having trouble with backtraces, first thing to
580 do is add FRAME_ALIGN() to the architecture vector. If that
581 fails, try dummy_id().
582
583 If the ABI specifies a "Red Zone" (see the doco) the code
584 below will quietly trash it. */
585 sp = old_sp;
586 }
587
588 funaddr = find_function_addr (function, &values_type);
589 if (!values_type)
590 values_type = builtin_type (gdbarch)->builtin_int;
591
592 CHECK_TYPEDEF (values_type);
593
594 /* Are we returning a value using a structure return (passing a
595 hidden argument pointing to storage) or a normal value return?
596 There are two cases: language-mandated structure return and
597 target ABI structure return. The variable STRUCT_RETURN only
598 describes the latter. The language version is handled by passing
599 the return location as the first parameter to the function,
600 even preceding "this". This is different from the target
601 ABI version, which is target-specific; for instance, on ia64
602 the first argument is passed in out0 but the hidden structure
603 return pointer would normally be passed in r8. */
604
605 if (language_pass_by_reference (values_type))
606 {
607 lang_struct_return = 1;
608
609 /* Tell the target specific argument pushing routine not to
610 expect a value. */
611 target_values_type = builtin_type (gdbarch)->builtin_void;
612 }
613 else
614 {
615 struct_return = using_struct_return (gdbarch,
616 value_type (function), values_type);
617 target_values_type = values_type;
618 }
619
620 /* Determine the location of the breakpoint (and possibly other
621 stuff) that the called function will return to. The SPARC, for a
622 function returning a structure or union, needs to make space for
623 not just the breakpoint but also an extra word containing the
624 size (?) of the structure being passed. */
625
626 /* The actual breakpoint (at BP_ADDR) is inserted separatly so there
627 is no need to write that out. */
628
629 switch (gdbarch_call_dummy_location (gdbarch))
630 {
631 case ON_STACK:
632 sp = push_dummy_code (gdbarch, sp, funaddr,
633 args, nargs, target_values_type,
634 &real_pc, &bp_addr, get_current_regcache ());
635 break;
636 case AT_ENTRY_POINT:
637 {
638 CORE_ADDR dummy_addr;
639
640 real_pc = funaddr;
641 dummy_addr = entry_point_address ();
642 /* A call dummy always consists of just a single breakpoint, so
643 its address is the same as the address of the dummy. */
644 bp_addr = dummy_addr;
645 break;
646 }
647 case AT_SYMBOL:
648 /* Some executables define a symbol __CALL_DUMMY_ADDRESS whose
649 address is the location where the breakpoint should be
650 placed. Once all targets are using the overhauled frame code
651 this can be deleted - ON_STACK is a better option. */
652 {
653 struct minimal_symbol *sym;
654 CORE_ADDR dummy_addr;
655
656 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
657 real_pc = funaddr;
658 if (sym)
659 {
660 dummy_addr = SYMBOL_VALUE_ADDRESS (sym);
661 /* Make certain that the address points at real code, and not
662 a function descriptor. */
663 dummy_addr = gdbarch_convert_from_func_ptr_addr (gdbarch,
664 dummy_addr,
665 &current_target);
666 }
667 else
668 dummy_addr = entry_point_address ();
669 /* A call dummy always consists of just a single breakpoint,
670 so it's address is the same as the address of the dummy. */
671 bp_addr = dummy_addr;
672 break;
673 }
674 default:
675 internal_error (__FILE__, __LINE__, _("bad switch"));
676 }
677
678 if (nargs < TYPE_NFIELDS (ftype))
679 error (_("Too few arguments in function call."));
680
681 {
682 int i;
683
684 for (i = nargs - 1; i >= 0; i--)
685 {
686 int prototyped;
687 struct type *param_type;
688
689 /* FIXME drow/2002-05-31: Should just always mark methods as
690 prototyped. Can we respect TYPE_VARARGS? Probably not. */
691 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
692 prototyped = 1;
693 else if (i < TYPE_NFIELDS (ftype))
694 prototyped = TYPE_PROTOTYPED (ftype);
695 else
696 prototyped = 0;
697
698 if (i < TYPE_NFIELDS (ftype))
699 param_type = TYPE_FIELD_TYPE (ftype, i);
700 else
701 param_type = NULL;
702
703 args[i] = value_arg_coerce (gdbarch, args[i],
704 param_type, prototyped, &sp);
705
706 if (param_type != NULL && language_pass_by_reference (param_type))
707 args[i] = value_addr (args[i]);
708 }
709 }
710
711 /* Reserve space for the return structure to be written on the
712 stack, if necessary. Make certain that the value is correctly
713 aligned. */
714
715 if (struct_return || lang_struct_return)
716 {
717 int len = TYPE_LENGTH (values_type);
718
719 if (gdbarch_inner_than (gdbarch, 1, 2))
720 {
721 /* Stack grows downward. Align STRUCT_ADDR and SP after
722 making space for the return value. */
723 sp -= len;
724 if (gdbarch_frame_align_p (gdbarch))
725 sp = gdbarch_frame_align (gdbarch, sp);
726 struct_addr = sp;
727 }
728 else
729 {
730 /* Stack grows upward. Align the frame, allocate space, and
731 then again, re-align the frame??? */
732 if (gdbarch_frame_align_p (gdbarch))
733 sp = gdbarch_frame_align (gdbarch, sp);
734 struct_addr = sp;
735 sp += len;
736 if (gdbarch_frame_align_p (gdbarch))
737 sp = gdbarch_frame_align (gdbarch, sp);
738 }
739 }
740
741 if (lang_struct_return)
742 {
743 struct value **new_args;
744
745 /* Add the new argument to the front of the argument list. */
746 new_args = xmalloc (sizeof (struct value *) * (nargs + 1));
747 new_args[0] = value_from_pointer (lookup_pointer_type (values_type),
748 struct_addr);
749 memcpy (&new_args[1], &args[0], sizeof (struct value *) * nargs);
750 args = new_args;
751 nargs++;
752 args_cleanup = make_cleanup (xfree, args);
753 }
754 else
755 args_cleanup = make_cleanup (null_cleanup, NULL);
756
757 /* Create the dummy stack frame. Pass in the call dummy address as,
758 presumably, the ABI code knows where, in the call dummy, the
759 return address should be pointed. */
760 sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
761 bp_addr, nargs, args,
762 sp, struct_return, struct_addr);
763
764 do_cleanups (args_cleanup);
765
766 /* Set up a frame ID for the dummy frame so we can pass it to
767 set_momentary_breakpoint. We need to give the breakpoint a frame
768 ID so that the breakpoint code can correctly re-identify the
769 dummy breakpoint. */
770 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
771 saved as the dummy-frame TOS, and used by dummy_id to form
772 the frame ID's stack address. */
773 dummy_id = frame_id_build (sp, bp_addr);
774
775 /* Create a momentary breakpoint at the return address of the
776 inferior. That way it breaks when it returns. */
777
778 {
779 struct breakpoint *bpt;
780 struct symtab_and_line sal;
781
782 init_sal (&sal); /* initialize to zeroes */
783 sal.pspace = current_program_space;
784 sal.pc = bp_addr;
785 sal.section = find_pc_overlay (sal.pc);
786 /* Sanity. The exact same SP value is returned by
787 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
788 dummy_id to form the frame ID's stack address. */
789 bpt = set_momentary_breakpoint (gdbarch, sal, dummy_id, bp_call_dummy);
790 bpt->disposition = disp_del;
791 }
792
793 /* Create a breakpoint in std::terminate.
794 If a C++ exception is raised in the dummy-frame, and the
795 exception handler is (normally, and expected to be) out-of-frame,
796 the default C++ handler will (wrongly) be called in an inferior
797 function call. This is wrong, as an exception can be normally
798 and legally handled out-of-frame. The confines of the dummy frame
799 prevent the unwinder from finding the correct handler (or any
800 handler, unless it is in-frame). The default handler calls
801 std::terminate. This will kill the inferior. Assert that
802 terminate should never be called in an inferior function
803 call. Place a momentary breakpoint in the std::terminate function
804 and if triggered in the call, rewind. */
805 if (unwind_on_terminating_exception_p)
806 set_std_terminate_breakpoint ();
807
808 /* Everything's ready, push all the info needed to restore the
809 caller (and identify the dummy-frame) onto the dummy-frame
810 stack. */
811 dummy_frame_push (caller_state, &dummy_id);
812
813 /* Discard both inf_status and caller_state cleanups.
814 From this point on we explicitly restore the associated state
815 or discard it. */
816 discard_cleanups (inf_status_cleanup);
817
818 /* Register a clean-up for unwind_on_terminating_exception_breakpoint. */
819 terminate_bp_cleanup = make_cleanup (cleanup_delete_std_terminate_breakpoint,
820 NULL);
821
822 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
823 If you're looking to implement asynchronous dummy-frames, then
824 just below is the place to chop this function in two.. */
825
826 /* TP is invalid after run_inferior_call returns, so enclose this
827 in a block so that it's only in scope during the time it's valid. */
828 {
829 struct thread_info *tp = inferior_thread ();
830
831 /* Save this thread's ptid, we need it later but the thread
832 may have exited. */
833 call_thread_ptid = tp->ptid;
834
835 /* Run the inferior until it stops. */
836
837 e = run_inferior_call (tp, real_pc);
838 }
839
840 /* Rethrow an error if we got one trying to run the inferior. */
841
842 if (e.reason < 0)
843 {
844 const char *name = get_function_name (funaddr,
845 name_buf, sizeof (name_buf));
846
847 discard_infcall_control_state (inf_status);
848
849 /* We could discard the dummy frame here if the program exited,
850 but it will get garbage collected the next time the program is
851 run anyway. */
852
853 switch (e.reason)
854 {
855 case RETURN_ERROR:
856 throw_error (e.error, _("%s\n\
857 An error occurred while in a function called from GDB.\n\
858 Evaluation of the expression containing the function\n\
859 (%s) will be abandoned.\n\
860 When the function is done executing, GDB will silently stop."),
861 e.message, name);
862 case RETURN_QUIT:
863 default:
864 throw_exception (e);
865 }
866 }
867
868 /* If the program has exited, or we stopped at a different thread,
869 exit and inform the user. */
870
871 if (! target_has_execution)
872 {
873 const char *name = get_function_name (funaddr,
874 name_buf, sizeof (name_buf));
875
876 /* If we try to restore the inferior status,
877 we'll crash as the inferior is no longer running. */
878 discard_infcall_control_state (inf_status);
879
880 /* We could discard the dummy frame here given that the program exited,
881 but it will get garbage collected the next time the program is
882 run anyway. */
883
884 error (_("The program being debugged exited while in a function "
885 "called from GDB.\n"
886 "Evaluation of the expression containing the function\n"
887 "(%s) will be abandoned."),
888 name);
889 }
890
891 if (! ptid_equal (call_thread_ptid, inferior_ptid))
892 {
893 const char *name = get_function_name (funaddr,
894 name_buf, sizeof (name_buf));
895
896 /* We've switched threads. This can happen if another thread gets a
897 signal or breakpoint while our thread was running.
898 There's no point in restoring the inferior status,
899 we're in a different thread. */
900 discard_infcall_control_state (inf_status);
901 /* Keep the dummy frame record, if the user switches back to the
902 thread with the hand-call, we'll need it. */
903 if (stopped_by_random_signal)
904 error (_("\
905 The program received a signal in another thread while\n\
906 making a function call from GDB.\n\
907 Evaluation of the expression containing the function\n\
908 (%s) will be abandoned.\n\
909 When the function is done executing, GDB will silently stop."),
910 name);
911 else
912 error (_("\
913 The program stopped in another thread while making a function call from GDB.\n\
914 Evaluation of the expression containing the function\n\
915 (%s) will be abandoned.\n\
916 When the function is done executing, GDB will silently stop."),
917 name);
918 }
919
920 if (stopped_by_random_signal || stop_stack_dummy != STOP_STACK_DUMMY)
921 {
922 const char *name = get_function_name (funaddr,
923 name_buf, sizeof (name_buf));
924
925 if (stopped_by_random_signal)
926 {
927 /* We stopped inside the FUNCTION because of a random
928 signal. Further execution of the FUNCTION is not
929 allowed. */
930
931 if (unwind_on_signal_p)
932 {
933 /* The user wants the context restored. */
934
935 /* We must get back to the frame we were before the
936 dummy call. */
937 dummy_frame_pop (dummy_id);
938
939 /* We also need to restore inferior status to that before the
940 dummy call. */
941 restore_infcall_control_state (inf_status);
942
943 /* FIXME: Insert a bunch of wrap_here; name can be very
944 long if it's a C++ name with arguments and stuff. */
945 error (_("\
946 The program being debugged was signaled while in a function called from GDB.\n\
947 GDB has restored the context to what it was before the call.\n\
948 To change this behavior use \"set unwindonsignal off\".\n\
949 Evaluation of the expression containing the function\n\
950 (%s) will be abandoned."),
951 name);
952 }
953 else
954 {
955 /* The user wants to stay in the frame where we stopped
956 (default).
957 Discard inferior status, we're not at the same point
958 we started at. */
959 discard_infcall_control_state (inf_status);
960
961 /* FIXME: Insert a bunch of wrap_here; name can be very
962 long if it's a C++ name with arguments and stuff. */
963 error (_("\
964 The program being debugged was signaled while in a function called from GDB.\n\
965 GDB remains in the frame where the signal was received.\n\
966 To change this behavior use \"set unwindonsignal on\".\n\
967 Evaluation of the expression containing the function\n\
968 (%s) will be abandoned.\n\
969 When the function is done executing, GDB will silently stop."),
970 name);
971 }
972 }
973
974 if (stop_stack_dummy == STOP_STD_TERMINATE)
975 {
976 /* We must get back to the frame we were before the dummy
977 call. */
978 dummy_frame_pop (dummy_id);
979
980 /* We also need to restore inferior status to that before
981 the dummy call. */
982 restore_infcall_control_state (inf_status);
983
984 error (_("\
985 The program being debugged entered a std::terminate call, most likely\n\
986 caused by an unhandled C++ exception. GDB blocked this call in order\n\
987 to prevent the program from being terminated, and has restored the\n\
988 context to its original state before the call.\n\
989 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
990 Evaluation of the expression containing the function (%s)\n\
991 will be abandoned."),
992 name);
993 }
994 else if (stop_stack_dummy == STOP_NONE)
995 {
996
997 /* We hit a breakpoint inside the FUNCTION.
998 Keep the dummy frame, the user may want to examine its state.
999 Discard inferior status, we're not at the same point
1000 we started at. */
1001 discard_infcall_control_state (inf_status);
1002
1003 /* The following error message used to say "The expression
1004 which contained the function call has been discarded."
1005 It is a hard concept to explain in a few words. Ideally,
1006 GDB would be able to resume evaluation of the expression
1007 when the function finally is done executing. Perhaps
1008 someday this will be implemented (it would not be easy). */
1009 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1010 a C++ name with arguments and stuff. */
1011 error (_("\
1012 The program being debugged stopped while in a function called from GDB.\n\
1013 Evaluation of the expression containing the function\n\
1014 (%s) will be abandoned.\n\
1015 When the function is done executing, GDB will silently stop."),
1016 name);
1017 }
1018
1019 /* The above code errors out, so ... */
1020 internal_error (__FILE__, __LINE__, _("... should not be here"));
1021 }
1022
1023 do_cleanups (terminate_bp_cleanup);
1024
1025 /* If we get here the called FUNCTION ran to completion,
1026 and the dummy frame has already been popped. */
1027
1028 {
1029 struct address_space *aspace = get_regcache_aspace (stop_registers);
1030 struct regcache *retbuf = regcache_xmalloc (gdbarch, aspace);
1031 struct cleanup *retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
1032 struct value *retval = NULL;
1033
1034 regcache_cpy_no_passthrough (retbuf, stop_registers);
1035
1036 /* Inferior call is successful. Restore the inferior status.
1037 At this stage, leave the RETBUF alone. */
1038 restore_infcall_control_state (inf_status);
1039
1040 /* Figure out the value returned by the function. */
1041 retval = allocate_value (values_type);
1042
1043 if (lang_struct_return)
1044 read_value_memory (retval, 0, 1, struct_addr,
1045 value_contents_raw (retval),
1046 TYPE_LENGTH (values_type));
1047 else if (TYPE_CODE (target_values_type) != TYPE_CODE_VOID)
1048 {
1049 /* If the function returns void, don't bother fetching the
1050 return value. */
1051 switch (gdbarch_return_value (gdbarch, value_type (function),
1052 target_values_type, NULL, NULL, NULL))
1053 {
1054 case RETURN_VALUE_REGISTER_CONVENTION:
1055 case RETURN_VALUE_ABI_RETURNS_ADDRESS:
1056 case RETURN_VALUE_ABI_PRESERVES_ADDRESS:
1057 gdbarch_return_value (gdbarch, value_type (function), values_type,
1058 retbuf, value_contents_raw (retval), NULL);
1059 break;
1060 case RETURN_VALUE_STRUCT_CONVENTION:
1061 read_value_memory (retval, 0, 1, struct_addr,
1062 value_contents_raw (retval),
1063 TYPE_LENGTH (values_type));
1064 break;
1065 }
1066 }
1067
1068 do_cleanups (retbuf_cleanup);
1069
1070 gdb_assert (retval);
1071 return retval;
1072 }
1073 }
1074 \f
1075
1076 /* Provide a prototype to silence -Wmissing-prototypes. */
1077 void _initialize_infcall (void);
1078
1079 void
1080 _initialize_infcall (void)
1081 {
1082 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1083 &coerce_float_to_double_p, _("\
1084 Set coercion of floats to doubles when calling functions."), _("\
1085 Show coercion of floats to doubles when calling functions"), _("\
1086 Variables of type float should generally be converted to doubles before\n\
1087 calling an unprototyped function, and left alone when calling a prototyped\n\
1088 function. However, some older debug info formats do not provide enough\n\
1089 information to determine that a function is prototyped. If this flag is\n\
1090 set, GDB will perform the conversion for a function it considers\n\
1091 unprototyped.\n\
1092 The default is to perform the conversion.\n"),
1093 NULL,
1094 show_coerce_float_to_double_p,
1095 &setlist, &showlist);
1096
1097 add_setshow_boolean_cmd ("unwindonsignal", no_class,
1098 &unwind_on_signal_p, _("\
1099 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1100 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1101 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1102 is received while in a function called from gdb (call dummy). If set, gdb\n\
1103 unwinds the stack and restore the context to what as it was before the call.\n\
1104 The default is to stop in the frame where the signal was received."),
1105 NULL,
1106 show_unwind_on_signal_p,
1107 &setlist, &showlist);
1108
1109 add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1110 &unwind_on_terminating_exception_p, _("\
1111 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1112 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1113 _("\
1114 The unwind on terminating exception flag lets the user determine\n\
1115 what gdb should do if a std::terminate() call is made from the\n\
1116 default exception handler. If set, gdb unwinds the stack and restores\n\
1117 the context to what it was before the call. If unset, gdb allows the\n\
1118 std::terminate call to proceed.\n\
1119 The default is to unwind the frame."),
1120 NULL,
1121 show_unwind_on_terminating_exception_p,
1122 &setlist, &showlist);
1123
1124 }
This page took 0.052352 seconds and 3 git commands to generate.