Kill init_sal
[deliverable/binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "infcall.h"
22 #include "breakpoint.h"
23 #include "tracepoint.h"
24 #include "target.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "block.h"
29 #include "gdbcore.h"
30 #include "language.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "dummy-frame.h"
35 #include "ada-lang.h"
36 #include "gdbthread.h"
37 #include "event-top.h"
38 #include "observer.h"
39 #include "top.h"
40 #include "interps.h"
41 #include "thread-fsm.h"
42
43 /* If we can't find a function's name from its address,
44 we print this instead. */
45 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
46 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
47 + 2 * sizeof (CORE_ADDR))
48
49 /* NOTE: cagney/2003-04-16: What's the future of this code?
50
51 GDB needs an asynchronous expression evaluator, that means an
52 asynchronous inferior function call implementation, and that in
53 turn means restructuring the code so that it is event driven. */
54
55 /* How you should pass arguments to a function depends on whether it
56 was defined in K&R style or prototype style. If you define a
57 function using the K&R syntax that takes a `float' argument, then
58 callers must pass that argument as a `double'. If you define the
59 function using the prototype syntax, then you must pass the
60 argument as a `float', with no promotion.
61
62 Unfortunately, on certain older platforms, the debug info doesn't
63 indicate reliably how each function was defined. A function type's
64 TYPE_PROTOTYPED flag may be clear, even if the function was defined
65 in prototype style. When calling a function whose TYPE_PROTOTYPED
66 flag is clear, GDB consults this flag to decide what to do.
67
68 For modern targets, it is proper to assume that, if the prototype
69 flag is clear, that can be trusted: `float' arguments should be
70 promoted to `double'. For some older targets, if the prototype
71 flag is clear, that doesn't tell us anything. The default is to
72 trust the debug information; the user can override this behavior
73 with "set coerce-float-to-double 0". */
74
75 static int coerce_float_to_double_p = 1;
76 static void
77 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
78 struct cmd_list_element *c, const char *value)
79 {
80 fprintf_filtered (file,
81 _("Coercion of floats to doubles "
82 "when calling functions is %s.\n"),
83 value);
84 }
85
86 /* This boolean tells what gdb should do if a signal is received while
87 in a function called from gdb (call dummy). If set, gdb unwinds
88 the stack and restore the context to what as it was before the
89 call.
90
91 The default is to stop in the frame where the signal was received. */
92
93 static int unwind_on_signal_p = 0;
94 static void
95 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file,
99 _("Unwinding of stack if a signal is "
100 "received while in a call dummy is %s.\n"),
101 value);
102 }
103
104 /* This boolean tells what gdb should do if a std::terminate call is
105 made while in a function called from gdb (call dummy).
106 As the confines of a single dummy stack prohibit out-of-frame
107 handlers from handling a raised exception, and as out-of-frame
108 handlers are common in C++, this can lead to no handler being found
109 by the unwinder, and a std::terminate call. This is a false positive.
110 If set, gdb unwinds the stack and restores the context to what it
111 was before the call.
112
113 The default is to unwind the frame if a std::terminate call is
114 made. */
115
116 static int unwind_on_terminating_exception_p = 1;
117
118 static void
119 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
121 const char *value)
122
123 {
124 fprintf_filtered (file,
125 _("Unwind stack if a C++ exception is "
126 "unhandled while in a call dummy is %s.\n"),
127 value);
128 }
129
130 /* Perform the standard coercions that are specified
131 for arguments to be passed to C or Ada functions.
132
133 If PARAM_TYPE is non-NULL, it is the expected parameter type.
134 IS_PROTOTYPED is non-zero if the function declaration is prototyped.
135 SP is the stack pointer were additional data can be pushed (updating
136 its value as needed). */
137
138 static struct value *
139 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
140 struct type *param_type, int is_prototyped, CORE_ADDR *sp)
141 {
142 const struct builtin_type *builtin = builtin_type (gdbarch);
143 struct type *arg_type = check_typedef (value_type (arg));
144 struct type *type
145 = param_type ? check_typedef (param_type) : arg_type;
146
147 /* Perform any Ada-specific coercion first. */
148 if (current_language->la_language == language_ada)
149 arg = ada_convert_actual (arg, type);
150
151 /* Force the value to the target if we will need its address. At
152 this point, we could allocate arguments on the stack instead of
153 calling malloc if we knew that their addresses would not be
154 saved by the called function. */
155 arg = value_coerce_to_target (arg);
156
157 switch (TYPE_CODE (type))
158 {
159 case TYPE_CODE_REF:
160 case TYPE_CODE_RVALUE_REF:
161 {
162 struct value *new_value;
163
164 if (TYPE_IS_REFERENCE (arg_type))
165 return value_cast_pointers (type, arg, 0);
166
167 /* Cast the value to the reference's target type, and then
168 convert it back to a reference. This will issue an error
169 if the value was not previously in memory - in some cases
170 we should clearly be allowing this, but how? */
171 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
172 new_value = value_ref (new_value, TYPE_CODE (type));
173 return new_value;
174 }
175 case TYPE_CODE_INT:
176 case TYPE_CODE_CHAR:
177 case TYPE_CODE_BOOL:
178 case TYPE_CODE_ENUM:
179 /* If we don't have a prototype, coerce to integer type if necessary. */
180 if (!is_prototyped)
181 {
182 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
183 type = builtin->builtin_int;
184 }
185 /* Currently all target ABIs require at least the width of an integer
186 type for an argument. We may have to conditionalize the following
187 type coercion for future targets. */
188 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
189 type = builtin->builtin_int;
190 break;
191 case TYPE_CODE_FLT:
192 if (!is_prototyped && coerce_float_to_double_p)
193 {
194 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
195 type = builtin->builtin_double;
196 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
197 type = builtin->builtin_long_double;
198 }
199 break;
200 case TYPE_CODE_FUNC:
201 type = lookup_pointer_type (type);
202 break;
203 case TYPE_CODE_ARRAY:
204 /* Arrays are coerced to pointers to their first element, unless
205 they are vectors, in which case we want to leave them alone,
206 because they are passed by value. */
207 if (current_language->c_style_arrays)
208 if (!TYPE_VECTOR (type))
209 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
210 break;
211 case TYPE_CODE_UNDEF:
212 case TYPE_CODE_PTR:
213 case TYPE_CODE_STRUCT:
214 case TYPE_CODE_UNION:
215 case TYPE_CODE_VOID:
216 case TYPE_CODE_SET:
217 case TYPE_CODE_RANGE:
218 case TYPE_CODE_STRING:
219 case TYPE_CODE_ERROR:
220 case TYPE_CODE_MEMBERPTR:
221 case TYPE_CODE_METHODPTR:
222 case TYPE_CODE_METHOD:
223 case TYPE_CODE_COMPLEX:
224 default:
225 break;
226 }
227
228 return value_cast (type, arg);
229 }
230
231 /* Return the return type of a function with its first instruction exactly at
232 the PC address. Return NULL otherwise. */
233
234 static struct type *
235 find_function_return_type (CORE_ADDR pc)
236 {
237 struct symbol *sym = find_pc_function (pc);
238
239 if (sym != NULL && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == pc
240 && SYMBOL_TYPE (sym) != NULL)
241 return TYPE_TARGET_TYPE (SYMBOL_TYPE (sym));
242
243 return NULL;
244 }
245
246 /* Determine a function's address and its return type from its value.
247 Calls error() if the function is not valid for calling. */
248
249 CORE_ADDR
250 find_function_addr (struct value *function, struct type **retval_type)
251 {
252 struct type *ftype = check_typedef (value_type (function));
253 struct gdbarch *gdbarch = get_type_arch (ftype);
254 struct type *value_type = NULL;
255 /* Initialize it just to avoid a GCC false warning. */
256 CORE_ADDR funaddr = 0;
257
258 /* If it's a member function, just look at the function
259 part of it. */
260
261 /* Determine address to call. */
262 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
263 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
264 funaddr = value_address (function);
265 else if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
266 {
267 funaddr = value_as_address (function);
268 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
269 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
270 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
271 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
272 &current_target);
273 }
274 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
275 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
276 {
277 value_type = TYPE_TARGET_TYPE (ftype);
278
279 if (TYPE_GNU_IFUNC (ftype))
280 {
281 funaddr = gnu_ifunc_resolve_addr (gdbarch, funaddr);
282
283 /* Skip querying the function symbol if no RETVAL_TYPE has been
284 asked for. */
285 if (retval_type)
286 value_type = find_function_return_type (funaddr);
287 }
288 }
289 else if (TYPE_CODE (ftype) == TYPE_CODE_INT)
290 {
291 /* Handle the case of functions lacking debugging info.
292 Their values are characters since their addresses are char. */
293 if (TYPE_LENGTH (ftype) == 1)
294 funaddr = value_as_address (value_addr (function));
295 else
296 {
297 /* Handle function descriptors lacking debug info. */
298 int found_descriptor = 0;
299
300 funaddr = 0; /* pacify "gcc -Werror" */
301 if (VALUE_LVAL (function) == lval_memory)
302 {
303 CORE_ADDR nfunaddr;
304
305 funaddr = value_as_address (value_addr (function));
306 nfunaddr = funaddr;
307 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
308 &current_target);
309 if (funaddr != nfunaddr)
310 found_descriptor = 1;
311 }
312 if (!found_descriptor)
313 /* Handle integer used as address of a function. */
314 funaddr = (CORE_ADDR) value_as_long (function);
315 }
316 }
317 else
318 error (_("Invalid data type for function to be called."));
319
320 if (retval_type != NULL)
321 *retval_type = value_type;
322 return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
323 }
324
325 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
326 function returns to. */
327
328 static CORE_ADDR
329 push_dummy_code (struct gdbarch *gdbarch,
330 CORE_ADDR sp, CORE_ADDR funaddr,
331 struct value **args, int nargs,
332 struct type *value_type,
333 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
334 struct regcache *regcache)
335 {
336 gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
337
338 return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
339 args, nargs, value_type, real_pc, bp_addr,
340 regcache);
341 }
342
343 /* Fetch the name of the function at FUNADDR.
344 This is used in printing an error message for call_function_by_hand.
345 BUF is used to print FUNADDR in hex if the function name cannot be
346 determined. It must be large enough to hold formatted result of
347 RAW_FUNCTION_ADDRESS_FORMAT. */
348
349 static const char *
350 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
351 {
352 {
353 struct symbol *symbol = find_pc_function (funaddr);
354
355 if (symbol)
356 return SYMBOL_PRINT_NAME (symbol);
357 }
358
359 {
360 /* Try the minimal symbols. */
361 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (funaddr);
362
363 if (msymbol.minsym)
364 return MSYMBOL_PRINT_NAME (msymbol.minsym);
365 }
366
367 {
368 char *tmp = xstrprintf (_(RAW_FUNCTION_ADDRESS_FORMAT),
369 hex_string (funaddr));
370
371 gdb_assert (strlen (tmp) + 1 <= buf_size);
372 strcpy (buf, tmp);
373 xfree (tmp);
374 return buf;
375 }
376 }
377
378 /* All the meta data necessary to extract the call's return value. */
379
380 struct call_return_meta_info
381 {
382 /* The caller frame's architecture. */
383 struct gdbarch *gdbarch;
384
385 /* The called function. */
386 struct value *function;
387
388 /* The return value's type. */
389 struct type *value_type;
390
391 /* Are we returning a value using a structure return or a normal
392 value return? */
393 int struct_return_p;
394
395 /* If using a structure return, this is the structure's address. */
396 CORE_ADDR struct_addr;
397
398 /* Whether stack temporaries are enabled. */
399 int stack_temporaries_enabled;
400 };
401
402 /* Extract the called function's return value. */
403
404 static struct value *
405 get_call_return_value (struct call_return_meta_info *ri)
406 {
407 struct value *retval = NULL;
408 int stack_temporaries = thread_stack_temporaries_enabled_p (inferior_ptid);
409
410 if (TYPE_CODE (ri->value_type) == TYPE_CODE_VOID)
411 retval = allocate_value (ri->value_type);
412 else if (ri->struct_return_p)
413 {
414 if (stack_temporaries)
415 {
416 retval = value_from_contents_and_address (ri->value_type, NULL,
417 ri->struct_addr);
418 push_thread_stack_temporary (inferior_ptid, retval);
419 }
420 else
421 {
422 retval = allocate_value (ri->value_type);
423 read_value_memory (retval, 0, 1, ri->struct_addr,
424 value_contents_raw (retval),
425 TYPE_LENGTH (ri->value_type));
426 }
427 }
428 else
429 {
430 retval = allocate_value (ri->value_type);
431 gdbarch_return_value (ri->gdbarch, ri->function, ri->value_type,
432 get_current_regcache (),
433 value_contents_raw (retval), NULL);
434 if (stack_temporaries && class_or_union_p (ri->value_type))
435 {
436 /* Values of class type returned in registers are copied onto
437 the stack and their lval_type set to lval_memory. This is
438 required because further evaluation of the expression
439 could potentially invoke methods on the return value
440 requiring GDB to evaluate the "this" pointer. To evaluate
441 the this pointer, GDB needs the memory address of the
442 value. */
443 value_force_lval (retval, ri->struct_addr);
444 push_thread_stack_temporary (inferior_ptid, retval);
445 }
446 }
447
448 gdb_assert (retval != NULL);
449 return retval;
450 }
451
452 /* Data for the FSM that manages an infcall. It's main job is to
453 record the called function's return value. */
454
455 struct call_thread_fsm
456 {
457 /* The base class. */
458 struct thread_fsm thread_fsm;
459
460 /* All the info necessary to be able to extract the return
461 value. */
462 struct call_return_meta_info return_meta_info;
463
464 /* The called function's return value. This is extracted from the
465 target before the dummy frame is popped. */
466 struct value *return_value;
467
468 /* The top level that started the infcall (and is synchronously
469 waiting for it to end). */
470 struct ui *waiting_ui;
471 };
472
473 static int call_thread_fsm_should_stop (struct thread_fsm *self,
474 struct thread_info *thread);
475 static int call_thread_fsm_should_notify_stop (struct thread_fsm *self);
476
477 /* call_thread_fsm's vtable. */
478
479 static struct thread_fsm_ops call_thread_fsm_ops =
480 {
481 NULL, /*dtor */
482 NULL, /* clean_up */
483 call_thread_fsm_should_stop,
484 NULL, /* return_value */
485 NULL, /* async_reply_reason*/
486 call_thread_fsm_should_notify_stop,
487 };
488
489 /* Allocate a new call_thread_fsm object. */
490
491 static struct call_thread_fsm *
492 new_call_thread_fsm (struct ui *waiting_ui, struct interp *cmd_interp,
493 struct gdbarch *gdbarch, struct value *function,
494 struct type *value_type,
495 int struct_return_p, CORE_ADDR struct_addr)
496 {
497 struct call_thread_fsm *sm;
498
499 sm = XCNEW (struct call_thread_fsm);
500 thread_fsm_ctor (&sm->thread_fsm, &call_thread_fsm_ops, cmd_interp);
501
502 sm->return_meta_info.gdbarch = gdbarch;
503 sm->return_meta_info.function = function;
504 sm->return_meta_info.value_type = value_type;
505 sm->return_meta_info.struct_return_p = struct_return_p;
506 sm->return_meta_info.struct_addr = struct_addr;
507
508 sm->waiting_ui = waiting_ui;
509
510 return sm;
511 }
512
513 /* Implementation of should_stop method for infcalls. */
514
515 static int
516 call_thread_fsm_should_stop (struct thread_fsm *self,
517 struct thread_info *thread)
518 {
519 struct call_thread_fsm *f = (struct call_thread_fsm *) self;
520
521 if (stop_stack_dummy == STOP_STACK_DUMMY)
522 {
523 /* Done. */
524 thread_fsm_set_finished (self);
525
526 /* Stash the return value before the dummy frame is popped and
527 registers are restored to what they were before the
528 call.. */
529 f->return_value = get_call_return_value (&f->return_meta_info);
530
531 /* Break out of wait_sync_command_done. */
532 scoped_restore save_ui = make_scoped_restore (&current_ui, f->waiting_ui);
533 target_terminal_ours ();
534 f->waiting_ui->prompt_state = PROMPT_NEEDED;
535 }
536
537 return 1;
538 }
539
540 /* Implementation of should_notify_stop method for infcalls. */
541
542 static int
543 call_thread_fsm_should_notify_stop (struct thread_fsm *self)
544 {
545 if (thread_fsm_finished_p (self))
546 {
547 /* Infcall succeeded. Be silent and proceed with evaluating the
548 expression. */
549 return 0;
550 }
551
552 /* Something wrong happened. E.g., an unexpected breakpoint
553 triggered, or a signal was intercepted. Notify the stop. */
554 return 1;
555 }
556
557 /* Subroutine of call_function_by_hand to simplify it.
558 Start up the inferior and wait for it to stop.
559 Return the exception if there's an error, or an exception with
560 reason >= 0 if there's no error.
561
562 This is done inside a TRY_CATCH so the caller needn't worry about
563 thrown errors. The caller should rethrow if there's an error. */
564
565 static struct gdb_exception
566 run_inferior_call (struct call_thread_fsm *sm,
567 struct thread_info *call_thread, CORE_ADDR real_pc)
568 {
569 struct gdb_exception caught_error = exception_none;
570 int saved_in_infcall = call_thread->control.in_infcall;
571 ptid_t call_thread_ptid = call_thread->ptid;
572 enum prompt_state saved_prompt_state = current_ui->prompt_state;
573 int was_running = call_thread->state == THREAD_RUNNING;
574 int saved_ui_async = current_ui->async;
575
576 /* Infcalls run synchronously, in the foreground. */
577 current_ui->prompt_state = PROMPT_BLOCKED;
578 /* So that we don't print the prompt prematurely in
579 fetch_inferior_event. */
580 current_ui->async = 0;
581
582 delete_file_handler (current_ui->input_fd);
583
584 call_thread->control.in_infcall = 1;
585
586 clear_proceed_status (0);
587
588 /* Associate the FSM with the thread after clear_proceed_status
589 (otherwise it'd clear this FSM), and before anything throws, so
590 we don't leak it (and any resources it manages). */
591 call_thread->thread_fsm = &sm->thread_fsm;
592
593 disable_watchpoints_before_interactive_call_start ();
594
595 /* We want to print return value, please... */
596 call_thread->control.proceed_to_finish = 1;
597
598 TRY
599 {
600 proceed (real_pc, GDB_SIGNAL_0);
601
602 /* Inferior function calls are always synchronous, even if the
603 target supports asynchronous execution. */
604 wait_sync_command_done ();
605 }
606 CATCH (e, RETURN_MASK_ALL)
607 {
608 caught_error = e;
609 }
610 END_CATCH
611
612 /* If GDB has the prompt blocked before, then ensure that it remains
613 so. normal_stop calls async_enable_stdin, so reset the prompt
614 state again here. In other cases, stdin will be re-enabled by
615 inferior_event_handler, when an exception is thrown. */
616 current_ui->prompt_state = saved_prompt_state;
617 if (current_ui->prompt_state == PROMPT_BLOCKED)
618 delete_file_handler (current_ui->input_fd);
619 else
620 ui_register_input_event_handler (current_ui);
621 current_ui->async = saved_ui_async;
622
623 /* At this point the current thread may have changed. Refresh
624 CALL_THREAD as it could be invalid if its thread has exited. */
625 call_thread = find_thread_ptid (call_thread_ptid);
626
627 /* If the infcall does NOT succeed, normal_stop will have already
628 finished the thread states. However, on success, normal_stop
629 defers here, so that we can set back the thread states to what
630 they were before the call. Note that we must also finish the
631 state of new threads that might have spawned while the call was
632 running. The main cases to handle are:
633
634 - "(gdb) print foo ()", or any other command that evaluates an
635 expression at the prompt. (The thread was marked stopped before.)
636
637 - "(gdb) break foo if return_false()" or similar cases where we
638 do an infcall while handling an event (while the thread is still
639 marked running). In this example, whether the condition
640 evaluates true and thus we'll present a user-visible stop is
641 decided elsewhere. */
642 if (!was_running
643 && ptid_equal (call_thread_ptid, inferior_ptid)
644 && stop_stack_dummy == STOP_STACK_DUMMY)
645 finish_thread_state (user_visible_resume_ptid (0));
646
647 enable_watchpoints_after_interactive_call_stop ();
648
649 /* Call breakpoint_auto_delete on the current contents of the bpstat
650 of inferior call thread.
651 If all error()s out of proceed ended up calling normal_stop
652 (and perhaps they should; it already does in the special case
653 of error out of resume()), then we wouldn't need this. */
654 if (caught_error.reason < 0)
655 {
656 if (call_thread != NULL)
657 breakpoint_auto_delete (call_thread->control.stop_bpstat);
658 }
659
660 if (call_thread != NULL)
661 call_thread->control.in_infcall = saved_in_infcall;
662
663 return caught_error;
664 }
665
666 /* A cleanup function that calls delete_std_terminate_breakpoint. */
667 static void
668 cleanup_delete_std_terminate_breakpoint (void *ignore)
669 {
670 delete_std_terminate_breakpoint ();
671 }
672
673 /* See infcall.h. */
674
675 struct value *
676 call_function_by_hand (struct value *function, int nargs, struct value **args)
677 {
678 return call_function_by_hand_dummy (function, nargs, args, NULL, NULL);
679 }
680
681 /* All this stuff with a dummy frame may seem unnecessarily complicated
682 (why not just save registers in GDB?). The purpose of pushing a dummy
683 frame which looks just like a real frame is so that if you call a
684 function and then hit a breakpoint (get a signal, etc), "backtrace"
685 will look right. Whether the backtrace needs to actually show the
686 stack at the time the inferior function was called is debatable, but
687 it certainly needs to not display garbage. So if you are contemplating
688 making dummy frames be different from normal frames, consider that. */
689
690 /* Perform a function call in the inferior.
691 ARGS is a vector of values of arguments (NARGS of them).
692 FUNCTION is a value, the function to be called.
693 Returns a value representing what the function returned.
694 May fail to return, if a breakpoint or signal is hit
695 during the execution of the function.
696
697 ARGS is modified to contain coerced values. */
698
699 struct value *
700 call_function_by_hand_dummy (struct value *function,
701 int nargs, struct value **args,
702 dummy_frame_dtor_ftype *dummy_dtor,
703 void *dummy_dtor_data)
704 {
705 CORE_ADDR sp;
706 struct type *values_type, *target_values_type;
707 unsigned char struct_return = 0, hidden_first_param_p = 0;
708 CORE_ADDR struct_addr = 0;
709 struct infcall_control_state *inf_status;
710 struct cleanup *inf_status_cleanup;
711 struct infcall_suspend_state *caller_state;
712 CORE_ADDR funaddr;
713 CORE_ADDR real_pc;
714 struct type *ftype = check_typedef (value_type (function));
715 CORE_ADDR bp_addr;
716 struct frame_id dummy_id;
717 struct cleanup *args_cleanup;
718 struct frame_info *frame;
719 struct gdbarch *gdbarch;
720 struct cleanup *terminate_bp_cleanup;
721 ptid_t call_thread_ptid;
722 struct gdb_exception e;
723 char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
724 int stack_temporaries = thread_stack_temporaries_enabled_p (inferior_ptid);
725
726 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
727 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
728
729 if (!target_has_execution)
730 noprocess ();
731
732 if (get_traceframe_number () >= 0)
733 error (_("May not call functions while looking at trace frames."));
734
735 if (execution_direction == EXEC_REVERSE)
736 error (_("Cannot call functions in reverse mode."));
737
738 frame = get_current_frame ();
739 gdbarch = get_frame_arch (frame);
740
741 if (!gdbarch_push_dummy_call_p (gdbarch))
742 error (_("This target does not support function calls."));
743
744 /* A cleanup for the inferior status.
745 This is only needed while we're preparing the inferior function call. */
746 inf_status = save_infcall_control_state ();
747 inf_status_cleanup
748 = make_cleanup_restore_infcall_control_state (inf_status);
749
750 /* Save the caller's registers and other state associated with the
751 inferior itself so that they can be restored once the
752 callee returns. To allow nested calls the registers are (further
753 down) pushed onto a dummy frame stack. Include a cleanup (which
754 is tossed once the regcache has been pushed). */
755 caller_state = save_infcall_suspend_state ();
756 make_cleanup_restore_infcall_suspend_state (caller_state);
757
758 /* Ensure that the initial SP is correctly aligned. */
759 {
760 CORE_ADDR old_sp = get_frame_sp (frame);
761
762 if (gdbarch_frame_align_p (gdbarch))
763 {
764 sp = gdbarch_frame_align (gdbarch, old_sp);
765 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
766 ABIs, a function can use memory beyond the inner most stack
767 address. AMD64 called that region the "red zone". Skip at
768 least the "red zone" size before allocating any space on
769 the stack. */
770 if (gdbarch_inner_than (gdbarch, 1, 2))
771 sp -= gdbarch_frame_red_zone_size (gdbarch);
772 else
773 sp += gdbarch_frame_red_zone_size (gdbarch);
774 /* Still aligned? */
775 gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
776 /* NOTE: cagney/2002-09-18:
777
778 On a RISC architecture, a void parameterless generic dummy
779 frame (i.e., no parameters, no result) typically does not
780 need to push anything the stack and hence can leave SP and
781 FP. Similarly, a frameless (possibly leaf) function does
782 not push anything on the stack and, hence, that too can
783 leave FP and SP unchanged. As a consequence, a sequence of
784 void parameterless generic dummy frame calls to frameless
785 functions will create a sequence of effectively identical
786 frames (SP, FP and TOS and PC the same). This, not
787 suprisingly, results in what appears to be a stack in an
788 infinite loop --- when GDB tries to find a generic dummy
789 frame on the internal dummy frame stack, it will always
790 find the first one.
791
792 To avoid this problem, the code below always grows the
793 stack. That way, two dummy frames can never be identical.
794 It does burn a few bytes of stack but that is a small price
795 to pay :-). */
796 if (sp == old_sp)
797 {
798 if (gdbarch_inner_than (gdbarch, 1, 2))
799 /* Stack grows down. */
800 sp = gdbarch_frame_align (gdbarch, old_sp - 1);
801 else
802 /* Stack grows up. */
803 sp = gdbarch_frame_align (gdbarch, old_sp + 1);
804 }
805 /* SP may have underflown address zero here from OLD_SP. Memory access
806 functions will probably fail in such case but that is a target's
807 problem. */
808 }
809 else
810 /* FIXME: cagney/2002-09-18: Hey, you loose!
811
812 Who knows how badly aligned the SP is!
813
814 If the generic dummy frame ends up empty (because nothing is
815 pushed) GDB won't be able to correctly perform back traces.
816 If a target is having trouble with backtraces, first thing to
817 do is add FRAME_ALIGN() to the architecture vector. If that
818 fails, try dummy_id().
819
820 If the ABI specifies a "Red Zone" (see the doco) the code
821 below will quietly trash it. */
822 sp = old_sp;
823
824 /* Skip over the stack temporaries that might have been generated during
825 the evaluation of an expression. */
826 if (stack_temporaries)
827 {
828 struct value *lastval;
829
830 lastval = get_last_thread_stack_temporary (inferior_ptid);
831 if (lastval != NULL)
832 {
833 CORE_ADDR lastval_addr = value_address (lastval);
834
835 if (gdbarch_inner_than (gdbarch, 1, 2))
836 {
837 gdb_assert (sp >= lastval_addr);
838 sp = lastval_addr;
839 }
840 else
841 {
842 gdb_assert (sp <= lastval_addr);
843 sp = lastval_addr + TYPE_LENGTH (value_type (lastval));
844 }
845
846 if (gdbarch_frame_align_p (gdbarch))
847 sp = gdbarch_frame_align (gdbarch, sp);
848 }
849 }
850 }
851
852 funaddr = find_function_addr (function, &values_type);
853 if (!values_type)
854 values_type = builtin_type (gdbarch)->builtin_int;
855
856 values_type = check_typedef (values_type);
857
858 /* Are we returning a value using a structure return (passing a
859 hidden argument pointing to storage) or a normal value return?
860 There are two cases: language-mandated structure return and
861 target ABI structure return. The variable STRUCT_RETURN only
862 describes the latter. The language version is handled by passing
863 the return location as the first parameter to the function,
864 even preceding "this". This is different from the target
865 ABI version, which is target-specific; for instance, on ia64
866 the first argument is passed in out0 but the hidden structure
867 return pointer would normally be passed in r8. */
868
869 if (gdbarch_return_in_first_hidden_param_p (gdbarch, values_type))
870 {
871 hidden_first_param_p = 1;
872
873 /* Tell the target specific argument pushing routine not to
874 expect a value. */
875 target_values_type = builtin_type (gdbarch)->builtin_void;
876 }
877 else
878 {
879 struct_return = using_struct_return (gdbarch, function, values_type);
880 target_values_type = values_type;
881 }
882
883 observer_notify_inferior_call_pre (inferior_ptid, funaddr);
884
885 /* Determine the location of the breakpoint (and possibly other
886 stuff) that the called function will return to. The SPARC, for a
887 function returning a structure or union, needs to make space for
888 not just the breakpoint but also an extra word containing the
889 size (?) of the structure being passed. */
890
891 switch (gdbarch_call_dummy_location (gdbarch))
892 {
893 case ON_STACK:
894 {
895 const gdb_byte *bp_bytes;
896 CORE_ADDR bp_addr_as_address;
897 int bp_size;
898
899 /* Be careful BP_ADDR is in inferior PC encoding while
900 BP_ADDR_AS_ADDRESS is a plain memory address. */
901
902 sp = push_dummy_code (gdbarch, sp, funaddr, args, nargs,
903 target_values_type, &real_pc, &bp_addr,
904 get_current_regcache ());
905
906 /* Write a legitimate instruction at the point where the infcall
907 breakpoint is going to be inserted. While this instruction
908 is never going to be executed, a user investigating the
909 memory from GDB would see this instruction instead of random
910 uninitialized bytes. We chose the breakpoint instruction
911 as it may look as the most logical one to the user and also
912 valgrind 3.7.0 needs it for proper vgdb inferior calls.
913
914 If software breakpoints are unsupported for this target we
915 leave the user visible memory content uninitialized. */
916
917 bp_addr_as_address = bp_addr;
918 bp_bytes = gdbarch_breakpoint_from_pc (gdbarch, &bp_addr_as_address,
919 &bp_size);
920 if (bp_bytes != NULL)
921 write_memory (bp_addr_as_address, bp_bytes, bp_size);
922 }
923 break;
924 case AT_ENTRY_POINT:
925 {
926 CORE_ADDR dummy_addr;
927
928 real_pc = funaddr;
929 dummy_addr = entry_point_address ();
930
931 /* A call dummy always consists of just a single breakpoint, so
932 its address is the same as the address of the dummy.
933
934 The actual breakpoint is inserted separatly so there is no need to
935 write that out. */
936 bp_addr = dummy_addr;
937 break;
938 }
939 default:
940 internal_error (__FILE__, __LINE__, _("bad switch"));
941 }
942
943 if (nargs < TYPE_NFIELDS (ftype))
944 error (_("Too few arguments in function call."));
945
946 {
947 int i;
948
949 for (i = nargs - 1; i >= 0; i--)
950 {
951 int prototyped;
952 struct type *param_type;
953
954 /* FIXME drow/2002-05-31: Should just always mark methods as
955 prototyped. Can we respect TYPE_VARARGS? Probably not. */
956 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
957 prototyped = 1;
958 else if (i < TYPE_NFIELDS (ftype))
959 prototyped = TYPE_PROTOTYPED (ftype);
960 else
961 prototyped = 0;
962
963 if (i < TYPE_NFIELDS (ftype))
964 param_type = TYPE_FIELD_TYPE (ftype, i);
965 else
966 param_type = NULL;
967
968 args[i] = value_arg_coerce (gdbarch, args[i],
969 param_type, prototyped, &sp);
970
971 if (param_type != NULL && language_pass_by_reference (param_type))
972 args[i] = value_addr (args[i]);
973 }
974 }
975
976 /* Reserve space for the return structure to be written on the
977 stack, if necessary. Make certain that the value is correctly
978 aligned.
979
980 While evaluating expressions, we reserve space on the stack for
981 return values of class type even if the language ABI and the target
982 ABI do not require that the return value be passed as a hidden first
983 argument. This is because we want to store the return value as an
984 on-stack temporary while the expression is being evaluated. This
985 enables us to have chained function calls in expressions.
986
987 Keeping the return values as on-stack temporaries while the expression
988 is being evaluated is OK because the thread is stopped until the
989 expression is completely evaluated. */
990
991 if (struct_return || hidden_first_param_p
992 || (stack_temporaries && class_or_union_p (values_type)))
993 {
994 if (gdbarch_inner_than (gdbarch, 1, 2))
995 {
996 /* Stack grows downward. Align STRUCT_ADDR and SP after
997 making space for the return value. */
998 sp -= TYPE_LENGTH (values_type);
999 if (gdbarch_frame_align_p (gdbarch))
1000 sp = gdbarch_frame_align (gdbarch, sp);
1001 struct_addr = sp;
1002 }
1003 else
1004 {
1005 /* Stack grows upward. Align the frame, allocate space, and
1006 then again, re-align the frame??? */
1007 if (gdbarch_frame_align_p (gdbarch))
1008 sp = gdbarch_frame_align (gdbarch, sp);
1009 struct_addr = sp;
1010 sp += TYPE_LENGTH (values_type);
1011 if (gdbarch_frame_align_p (gdbarch))
1012 sp = gdbarch_frame_align (gdbarch, sp);
1013 }
1014 }
1015
1016 if (hidden_first_param_p)
1017 {
1018 struct value **new_args;
1019
1020 /* Add the new argument to the front of the argument list. */
1021 new_args = XNEWVEC (struct value *, nargs + 1);
1022 new_args[0] = value_from_pointer (lookup_pointer_type (values_type),
1023 struct_addr);
1024 memcpy (&new_args[1], &args[0], sizeof (struct value *) * nargs);
1025 args = new_args;
1026 nargs++;
1027 args_cleanup = make_cleanup (xfree, args);
1028 }
1029 else
1030 args_cleanup = make_cleanup (null_cleanup, NULL);
1031
1032 /* Create the dummy stack frame. Pass in the call dummy address as,
1033 presumably, the ABI code knows where, in the call dummy, the
1034 return address should be pointed. */
1035 sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
1036 bp_addr, nargs, args,
1037 sp, struct_return, struct_addr);
1038
1039 do_cleanups (args_cleanup);
1040
1041 /* Set up a frame ID for the dummy frame so we can pass it to
1042 set_momentary_breakpoint. We need to give the breakpoint a frame
1043 ID so that the breakpoint code can correctly re-identify the
1044 dummy breakpoint. */
1045 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
1046 saved as the dummy-frame TOS, and used by dummy_id to form
1047 the frame ID's stack address. */
1048 dummy_id = frame_id_build (sp, bp_addr);
1049
1050 /* Create a momentary breakpoint at the return address of the
1051 inferior. That way it breaks when it returns. */
1052
1053 {
1054 symtab_and_line sal;
1055 sal.pspace = current_program_space;
1056 sal.pc = bp_addr;
1057 sal.section = find_pc_overlay (sal.pc);
1058
1059 /* Sanity. The exact same SP value is returned by
1060 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
1061 dummy_id to form the frame ID's stack address. */
1062 breakpoint *bpt = set_momentary_breakpoint (gdbarch, sal,
1063 dummy_id, bp_call_dummy);
1064
1065 /* set_momentary_breakpoint invalidates FRAME. */
1066 frame = NULL;
1067
1068 bpt->disposition = disp_del;
1069 gdb_assert (bpt->related_breakpoint == bpt);
1070
1071 breakpoint *longjmp_b = set_longjmp_breakpoint_for_call_dummy ();
1072 if (longjmp_b)
1073 {
1074 /* Link BPT into the chain of LONGJMP_B. */
1075 bpt->related_breakpoint = longjmp_b;
1076 while (longjmp_b->related_breakpoint != bpt->related_breakpoint)
1077 longjmp_b = longjmp_b->related_breakpoint;
1078 longjmp_b->related_breakpoint = bpt;
1079 }
1080 }
1081
1082 /* Create a breakpoint in std::terminate.
1083 If a C++ exception is raised in the dummy-frame, and the
1084 exception handler is (normally, and expected to be) out-of-frame,
1085 the default C++ handler will (wrongly) be called in an inferior
1086 function call. This is wrong, as an exception can be normally
1087 and legally handled out-of-frame. The confines of the dummy frame
1088 prevent the unwinder from finding the correct handler (or any
1089 handler, unless it is in-frame). The default handler calls
1090 std::terminate. This will kill the inferior. Assert that
1091 terminate should never be called in an inferior function
1092 call. Place a momentary breakpoint in the std::terminate function
1093 and if triggered in the call, rewind. */
1094 if (unwind_on_terminating_exception_p)
1095 set_std_terminate_breakpoint ();
1096
1097 /* Discard both inf_status and caller_state cleanups.
1098 From this point on we explicitly restore the associated state
1099 or discard it. */
1100 discard_cleanups (inf_status_cleanup);
1101
1102 /* Everything's ready, push all the info needed to restore the
1103 caller (and identify the dummy-frame) onto the dummy-frame
1104 stack. */
1105 dummy_frame_push (caller_state, &dummy_id, inferior_ptid);
1106 if (dummy_dtor != NULL)
1107 register_dummy_frame_dtor (dummy_id, inferior_ptid,
1108 dummy_dtor, dummy_dtor_data);
1109
1110 /* Register a clean-up for unwind_on_terminating_exception_breakpoint. */
1111 terminate_bp_cleanup = make_cleanup (cleanup_delete_std_terminate_breakpoint,
1112 NULL);
1113
1114 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
1115 If you're looking to implement asynchronous dummy-frames, then
1116 just below is the place to chop this function in two.. */
1117
1118 /* TP is invalid after run_inferior_call returns, so enclose this
1119 in a block so that it's only in scope during the time it's valid. */
1120 {
1121 struct thread_info *tp = inferior_thread ();
1122 struct thread_fsm *saved_sm;
1123 struct call_thread_fsm *sm;
1124
1125 /* Save the current FSM. We'll override it. */
1126 saved_sm = tp->thread_fsm;
1127 tp->thread_fsm = NULL;
1128
1129 /* Save this thread's ptid, we need it later but the thread
1130 may have exited. */
1131 call_thread_ptid = tp->ptid;
1132
1133 /* Run the inferior until it stops. */
1134
1135 /* Create the FSM used to manage the infcall. It tells infrun to
1136 not report the stop to the user, and captures the return value
1137 before the dummy frame is popped. run_inferior_call registers
1138 it with the thread ASAP. */
1139 sm = new_call_thread_fsm (current_ui, command_interp (),
1140 gdbarch, function,
1141 values_type,
1142 struct_return || hidden_first_param_p,
1143 struct_addr);
1144
1145 e = run_inferior_call (sm, tp, real_pc);
1146
1147 observer_notify_inferior_call_post (call_thread_ptid, funaddr);
1148
1149 tp = find_thread_ptid (call_thread_ptid);
1150 if (tp != NULL)
1151 {
1152 /* The FSM should still be the same. */
1153 gdb_assert (tp->thread_fsm == &sm->thread_fsm);
1154
1155 if (thread_fsm_finished_p (tp->thread_fsm))
1156 {
1157 struct value *retval;
1158
1159 /* The inferior call is successful. Pop the dummy frame,
1160 which runs its destructors and restores the inferior's
1161 suspend state, and restore the inferior control
1162 state. */
1163 dummy_frame_pop (dummy_id, call_thread_ptid);
1164 restore_infcall_control_state (inf_status);
1165
1166 /* Get the return value. */
1167 retval = sm->return_value;
1168
1169 /* Clean up / destroy the call FSM, and restore the
1170 original one. */
1171 thread_fsm_clean_up (tp->thread_fsm, tp);
1172 thread_fsm_delete (tp->thread_fsm);
1173 tp->thread_fsm = saved_sm;
1174
1175 maybe_remove_breakpoints ();
1176
1177 do_cleanups (terminate_bp_cleanup);
1178 gdb_assert (retval != NULL);
1179 return retval;
1180 }
1181
1182 /* Didn't complete. Restore previous state machine, and
1183 handle the error. */
1184 tp->thread_fsm = saved_sm;
1185 }
1186 }
1187
1188 /* Rethrow an error if we got one trying to run the inferior. */
1189
1190 if (e.reason < 0)
1191 {
1192 const char *name = get_function_name (funaddr,
1193 name_buf, sizeof (name_buf));
1194
1195 discard_infcall_control_state (inf_status);
1196
1197 /* We could discard the dummy frame here if the program exited,
1198 but it will get garbage collected the next time the program is
1199 run anyway. */
1200
1201 switch (e.reason)
1202 {
1203 case RETURN_ERROR:
1204 throw_error (e.error, _("%s\n\
1205 An error occurred while in a function called from GDB.\n\
1206 Evaluation of the expression containing the function\n\
1207 (%s) will be abandoned.\n\
1208 When the function is done executing, GDB will silently stop."),
1209 e.message, name);
1210 case RETURN_QUIT:
1211 default:
1212 throw_exception (e);
1213 }
1214 }
1215
1216 /* If the program has exited, or we stopped at a different thread,
1217 exit and inform the user. */
1218
1219 if (! target_has_execution)
1220 {
1221 const char *name = get_function_name (funaddr,
1222 name_buf, sizeof (name_buf));
1223
1224 /* If we try to restore the inferior status,
1225 we'll crash as the inferior is no longer running. */
1226 discard_infcall_control_state (inf_status);
1227
1228 /* We could discard the dummy frame here given that the program exited,
1229 but it will get garbage collected the next time the program is
1230 run anyway. */
1231
1232 error (_("The program being debugged exited while in a function "
1233 "called from GDB.\n"
1234 "Evaluation of the expression containing the function\n"
1235 "(%s) will be abandoned."),
1236 name);
1237 }
1238
1239 if (! ptid_equal (call_thread_ptid, inferior_ptid))
1240 {
1241 const char *name = get_function_name (funaddr,
1242 name_buf, sizeof (name_buf));
1243
1244 /* We've switched threads. This can happen if another thread gets a
1245 signal or breakpoint while our thread was running.
1246 There's no point in restoring the inferior status,
1247 we're in a different thread. */
1248 discard_infcall_control_state (inf_status);
1249 /* Keep the dummy frame record, if the user switches back to the
1250 thread with the hand-call, we'll need it. */
1251 if (stopped_by_random_signal)
1252 error (_("\
1253 The program received a signal in another thread while\n\
1254 making a function call from GDB.\n\
1255 Evaluation of the expression containing the function\n\
1256 (%s) will be abandoned.\n\
1257 When the function is done executing, GDB will silently stop."),
1258 name);
1259 else
1260 error (_("\
1261 The program stopped in another thread while making a function call from GDB.\n\
1262 Evaluation of the expression containing the function\n\
1263 (%s) will be abandoned.\n\
1264 When the function is done executing, GDB will silently stop."),
1265 name);
1266 }
1267
1268 {
1269 /* Make a copy as NAME may be in an objfile freed by dummy_frame_pop. */
1270 char *name = xstrdup (get_function_name (funaddr,
1271 name_buf, sizeof (name_buf)));
1272 make_cleanup (xfree, name);
1273
1274
1275 if (stopped_by_random_signal)
1276 {
1277 /* We stopped inside the FUNCTION because of a random
1278 signal. Further execution of the FUNCTION is not
1279 allowed. */
1280
1281 if (unwind_on_signal_p)
1282 {
1283 /* The user wants the context restored. */
1284
1285 /* We must get back to the frame we were before the
1286 dummy call. */
1287 dummy_frame_pop (dummy_id, call_thread_ptid);
1288
1289 /* We also need to restore inferior status to that before the
1290 dummy call. */
1291 restore_infcall_control_state (inf_status);
1292
1293 /* FIXME: Insert a bunch of wrap_here; name can be very
1294 long if it's a C++ name with arguments and stuff. */
1295 error (_("\
1296 The program being debugged was signaled while in a function called from GDB.\n\
1297 GDB has restored the context to what it was before the call.\n\
1298 To change this behavior use \"set unwindonsignal off\".\n\
1299 Evaluation of the expression containing the function\n\
1300 (%s) will be abandoned."),
1301 name);
1302 }
1303 else
1304 {
1305 /* The user wants to stay in the frame where we stopped
1306 (default).
1307 Discard inferior status, we're not at the same point
1308 we started at. */
1309 discard_infcall_control_state (inf_status);
1310
1311 /* FIXME: Insert a bunch of wrap_here; name can be very
1312 long if it's a C++ name with arguments and stuff. */
1313 error (_("\
1314 The program being debugged was signaled while in a function called from GDB.\n\
1315 GDB remains in the frame where the signal was received.\n\
1316 To change this behavior use \"set unwindonsignal on\".\n\
1317 Evaluation of the expression containing the function\n\
1318 (%s) will be abandoned.\n\
1319 When the function is done executing, GDB will silently stop."),
1320 name);
1321 }
1322 }
1323
1324 if (stop_stack_dummy == STOP_STD_TERMINATE)
1325 {
1326 /* We must get back to the frame we were before the dummy
1327 call. */
1328 dummy_frame_pop (dummy_id, call_thread_ptid);
1329
1330 /* We also need to restore inferior status to that before
1331 the dummy call. */
1332 restore_infcall_control_state (inf_status);
1333
1334 error (_("\
1335 The program being debugged entered a std::terminate call, most likely\n\
1336 caused by an unhandled C++ exception. GDB blocked this call in order\n\
1337 to prevent the program from being terminated, and has restored the\n\
1338 context to its original state before the call.\n\
1339 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
1340 Evaluation of the expression containing the function (%s)\n\
1341 will be abandoned."),
1342 name);
1343 }
1344 else if (stop_stack_dummy == STOP_NONE)
1345 {
1346
1347 /* We hit a breakpoint inside the FUNCTION.
1348 Keep the dummy frame, the user may want to examine its state.
1349 Discard inferior status, we're not at the same point
1350 we started at. */
1351 discard_infcall_control_state (inf_status);
1352
1353 /* The following error message used to say "The expression
1354 which contained the function call has been discarded."
1355 It is a hard concept to explain in a few words. Ideally,
1356 GDB would be able to resume evaluation of the expression
1357 when the function finally is done executing. Perhaps
1358 someday this will be implemented (it would not be easy). */
1359 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1360 a C++ name with arguments and stuff. */
1361 error (_("\
1362 The program being debugged stopped while in a function called from GDB.\n\
1363 Evaluation of the expression containing the function\n\
1364 (%s) will be abandoned.\n\
1365 When the function is done executing, GDB will silently stop."),
1366 name);
1367 }
1368
1369 }
1370
1371 /* The above code errors out, so ... */
1372 gdb_assert_not_reached ("... should not be here");
1373 }
1374 \f
1375
1376 /* Provide a prototype to silence -Wmissing-prototypes. */
1377 void _initialize_infcall (void);
1378
1379 void
1380 _initialize_infcall (void)
1381 {
1382 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1383 &coerce_float_to_double_p, _("\
1384 Set coercion of floats to doubles when calling functions."), _("\
1385 Show coercion of floats to doubles when calling functions"), _("\
1386 Variables of type float should generally be converted to doubles before\n\
1387 calling an unprototyped function, and left alone when calling a prototyped\n\
1388 function. However, some older debug info formats do not provide enough\n\
1389 information to determine that a function is prototyped. If this flag is\n\
1390 set, GDB will perform the conversion for a function it considers\n\
1391 unprototyped.\n\
1392 The default is to perform the conversion.\n"),
1393 NULL,
1394 show_coerce_float_to_double_p,
1395 &setlist, &showlist);
1396
1397 add_setshow_boolean_cmd ("unwindonsignal", no_class,
1398 &unwind_on_signal_p, _("\
1399 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1400 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1401 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1402 is received while in a function called from gdb (call dummy). If set, gdb\n\
1403 unwinds the stack and restore the context to what as it was before the call.\n\
1404 The default is to stop in the frame where the signal was received."),
1405 NULL,
1406 show_unwind_on_signal_p,
1407 &setlist, &showlist);
1408
1409 add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1410 &unwind_on_terminating_exception_p, _("\
1411 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1412 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1413 _("\
1414 The unwind on terminating exception flag lets the user determine\n\
1415 what gdb should do if a std::terminate() call is made from the\n\
1416 default exception handler. If set, gdb unwinds the stack and restores\n\
1417 the context to what it was before the call. If unset, gdb allows the\n\
1418 std::terminate call to proceed.\n\
1419 The default is to unwind the frame."),
1420 NULL,
1421 show_unwind_on_terminating_exception_p,
1422 &setlist, &showlist);
1423
1424 }
This page took 0.075096 seconds and 5 git commands to generate.