Update all uses of md_apply_fix to use md_apply_fix3. Make it a void function.
[deliverable/binutils-gdb.git] / gdb / infptrace.c
1 /* Low level Unix child interface to ptrace, for GDB when running under Unix.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
3 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "gdb_string.h"
28 #include "regcache.h"
29
30 #include "gdb_wait.h"
31
32 #include "command.h"
33
34 #ifdef USG
35 #include <sys/types.h>
36 #endif
37
38 #include <sys/param.h>
39 #include "gdb_dirent.h"
40 #include <signal.h>
41 #include <sys/ioctl.h>
42
43 #ifdef HAVE_PTRACE_H
44 #include <ptrace.h>
45 #else
46 #ifdef HAVE_SYS_PTRACE_H
47 #include <sys/ptrace.h>
48 #endif
49 #endif
50
51 #if !defined (PT_READ_I)
52 #define PT_READ_I 1 /* Read word from text space */
53 #endif
54 #if !defined (PT_READ_D)
55 #define PT_READ_D 2 /* Read word from data space */
56 #endif
57 #if !defined (PT_READ_U)
58 #define PT_READ_U 3 /* Read word from kernel user struct */
59 #endif
60 #if !defined (PT_WRITE_I)
61 #define PT_WRITE_I 4 /* Write word to text space */
62 #endif
63 #if !defined (PT_WRITE_D)
64 #define PT_WRITE_D 5 /* Write word to data space */
65 #endif
66 #if !defined (PT_WRITE_U)
67 #define PT_WRITE_U 6 /* Write word to kernel user struct */
68 #endif
69 #if !defined (PT_CONTINUE)
70 #define PT_CONTINUE 7 /* Continue after signal */
71 #endif
72 #if !defined (PT_STEP)
73 #define PT_STEP 9 /* Set flag for single stepping */
74 #endif
75 #if !defined (PT_KILL)
76 #define PT_KILL 8 /* Send child a SIGKILL signal */
77 #endif
78
79 #ifndef PT_ATTACH
80 #define PT_ATTACH PTRACE_ATTACH
81 #endif
82 #ifndef PT_DETACH
83 #define PT_DETACH PTRACE_DETACH
84 #endif
85
86 #include "gdbcore.h"
87 #ifndef NO_SYS_FILE
88 #include <sys/file.h>
89 #endif
90 #if 0
91 /* Don't think this is used anymore. On the sequent (not sure whether it's
92 dynix or ptx or both), it is included unconditionally by sys/user.h and
93 not protected against multiple inclusion. */
94 #include "gdb_stat.h"
95 #endif
96
97 #if !defined (FETCH_INFERIOR_REGISTERS)
98 #include <sys/user.h> /* Probably need to poke the user structure */
99 #if defined (KERNEL_U_ADDR_BSD)
100 #include <a.out.h> /* For struct nlist */
101 #endif /* KERNEL_U_ADDR_BSD. */
102 #endif /* !FETCH_INFERIOR_REGISTERS */
103
104 #if !defined (CHILD_XFER_MEMORY)
105 static void udot_info (char *, int);
106 #endif
107
108 #if !defined (FETCH_INFERIOR_REGISTERS)
109 static void fetch_register (int);
110 static void store_register (int);
111 #endif
112
113 void _initialize_kernel_u_addr (void);
114 void _initialize_infptrace (void);
115 \f
116
117 /* This function simply calls ptrace with the given arguments.
118 It exists so that all calls to ptrace are isolated in this
119 machine-dependent file. */
120 int
121 call_ptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
122 {
123 int pt_status = 0;
124
125 #if 0
126 int saved_errno;
127
128 printf ("call_ptrace(request=%d, pid=%d, addr=0x%x, data=0x%x)",
129 request, pid, addr, data);
130 #endif
131 #if defined(PT_SETTRC)
132 /* If the parent can be told to attach to us, try to do it. */
133 if (request == PT_SETTRC)
134 {
135 errno = 0;
136 #if !defined (FIVE_ARG_PTRACE)
137 pt_status = ptrace (PT_SETTRC, pid, addr, data);
138 #else
139 /* Deal with HPUX 8.0 braindamage. We never use the
140 calls which require the fifth argument. */
141 pt_status = ptrace (PT_SETTRC, pid, addr, data, 0);
142 #endif
143 if (errno)
144 perror_with_name ("ptrace");
145 #if 0
146 printf (" = %d\n", pt_status);
147 #endif
148 if (pt_status < 0)
149 return pt_status;
150 else
151 return parent_attach_all (pid, addr, data);
152 }
153 #endif
154
155 #if defined(PT_CONTIN1)
156 /* On HPUX, PT_CONTIN1 is a form of continue that preserves pending
157 signals. If it's available, use it. */
158 if (request == PT_CONTINUE)
159 request = PT_CONTIN1;
160 #endif
161
162 #if defined(PT_SINGLE1)
163 /* On HPUX, PT_SINGLE1 is a form of step that preserves pending
164 signals. If it's available, use it. */
165 if (request == PT_STEP)
166 request = PT_SINGLE1;
167 #endif
168
169 #if 0
170 saved_errno = errno;
171 errno = 0;
172 #endif
173 #if !defined (FIVE_ARG_PTRACE)
174 pt_status = ptrace (request, pid, addr, data);
175 #else
176 /* Deal with HPUX 8.0 braindamage. We never use the
177 calls which require the fifth argument. */
178 pt_status = ptrace (request, pid, addr, data, 0);
179 #endif
180
181 #if 0
182 if (errno)
183 printf (" [errno = %d]", errno);
184
185 errno = saved_errno;
186 printf (" = 0x%x\n", pt_status);
187 #endif
188 return pt_status;
189 }
190
191
192 #if defined (DEBUG_PTRACE) || defined (FIVE_ARG_PTRACE)
193 /* For the rest of the file, use an extra level of indirection */
194 /* This lets us breakpoint usefully on call_ptrace. */
195 #define ptrace call_ptrace
196 #endif
197
198 /* Wait for a process to finish, possibly running a target-specific
199 hook before returning. */
200
201 int
202 ptrace_wait (ptid_t ptid, int *status)
203 {
204 int wstate;
205
206 wstate = wait (status);
207 target_post_wait (pid_to_ptid (wstate), *status);
208 return wstate;
209 }
210
211 void
212 kill_inferior (void)
213 {
214 int status;
215 int pid = PIDGET (inferior_ptid);
216
217 if (pid == 0)
218 return;
219
220 /* This once used to call "kill" to kill the inferior just in case
221 the inferior was still running. As others have noted in the past
222 (kingdon) there shouldn't be any way to get here if the inferior
223 is still running -- else there's a major problem elsewere in gdb
224 and it needs to be fixed.
225
226 The kill call causes problems under hpux10, so it's been removed;
227 if this causes problems we'll deal with them as they arise. */
228 ptrace (PT_KILL, pid, (PTRACE_ARG3_TYPE) 0, 0);
229 ptrace_wait (null_ptid, &status);
230 target_mourn_inferior ();
231 }
232
233 #ifndef CHILD_RESUME
234
235 /* Resume execution of the inferior process.
236 If STEP is nonzero, single-step it.
237 If SIGNAL is nonzero, give it that signal. */
238
239 void
240 child_resume (ptid_t ptid, int step, enum target_signal signal)
241 {
242 int pid = PIDGET (ptid);
243
244 errno = 0;
245
246 if (pid == -1)
247 /* Resume all threads. */
248 /* I think this only gets used in the non-threaded case, where "resume
249 all threads" and "resume inferior_ptid" are the same. */
250 pid = PIDGET (inferior_ptid);
251
252 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
253 it was. (If GDB wanted it to start some other way, we have already
254 written a new PC value to the child.)
255
256 If this system does not support PT_STEP, a higher level function will
257 have called single_step() to transmute the step request into a
258 continue request (by setting breakpoints on all possible successor
259 instructions), so we don't have to worry about that here. */
260
261 if (step)
262 {
263 if (SOFTWARE_SINGLE_STEP_P ())
264 internal_error (__FILE__, __LINE__, "failed internal consistency check"); /* Make sure this doesn't happen. */
265 else
266 ptrace (PT_STEP, pid, (PTRACE_ARG3_TYPE) 1,
267 target_signal_to_host (signal));
268 }
269 else
270 ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1,
271 target_signal_to_host (signal));
272
273 if (errno)
274 {
275 perror_with_name ("ptrace");
276 }
277 }
278 #endif /* CHILD_RESUME */
279 \f
280
281 #ifdef ATTACH_DETACH
282 /* Start debugging the process whose number is PID. */
283 int
284 attach (int pid)
285 {
286 errno = 0;
287 ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
288 if (errno)
289 perror_with_name ("ptrace");
290 attach_flag = 1;
291 return pid;
292 }
293
294 /* Stop debugging the process whose number is PID
295 and continue it with signal number SIGNAL.
296 SIGNAL = 0 means just continue it. */
297
298 void
299 detach (int signal)
300 {
301 errno = 0;
302 ptrace (PT_DETACH, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) 1,
303 signal);
304 if (errno)
305 perror_with_name ("ptrace");
306 attach_flag = 0;
307 }
308 #endif /* ATTACH_DETACH */
309 \f
310 /* Default the type of the ptrace transfer to int. */
311 #ifndef PTRACE_XFER_TYPE
312 #define PTRACE_XFER_TYPE int
313 #endif
314
315 /* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
316 to get the offset in the core file of the register values. */
317 #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
318 /* Get kernel_u_addr using BSD-style nlist(). */
319 CORE_ADDR kernel_u_addr;
320 #endif /* KERNEL_U_ADDR_BSD. */
321
322 void
323 _initialize_kernel_u_addr (void)
324 {
325 #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
326 struct nlist names[2];
327
328 names[0].n_un.n_name = "_u";
329 names[1].n_un.n_name = NULL;
330 if (nlist ("/vmunix", names) == 0)
331 kernel_u_addr = names[0].n_value;
332 else
333 internal_error (__FILE__, __LINE__,
334 "Unable to get kernel u area address.");
335 #endif /* KERNEL_U_ADDR_BSD. */
336 }
337
338 #if !defined (FETCH_INFERIOR_REGISTERS)
339
340 #if !defined (offsetof)
341 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
342 #endif
343
344 /* U_REGS_OFFSET is the offset of the registers within the u area. */
345 #if !defined (U_REGS_OFFSET)
346 #define U_REGS_OFFSET \
347 ptrace (PT_READ_U, PIDGET (inferior_ptid), \
348 (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
349 - KERNEL_U_ADDR
350 #endif
351
352 /* Fetch one register. */
353
354 static void
355 fetch_register (int regno)
356 {
357 /* This isn't really an address. But ptrace thinks of it as one. */
358 CORE_ADDR regaddr;
359 char mess[128]; /* For messages */
360 register int i;
361 unsigned int offset; /* Offset of registers within the u area. */
362 char buf[MAX_REGISTER_RAW_SIZE];
363 int tid;
364
365 if (CANNOT_FETCH_REGISTER (regno))
366 {
367 memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
368 supply_register (regno, buf);
369 return;
370 }
371
372 /* Overload thread id onto process id */
373 if ((tid = TIDGET (inferior_ptid)) == 0)
374 tid = PIDGET (inferior_ptid); /* no thread id, just use process id */
375
376 offset = U_REGS_OFFSET;
377
378 regaddr = register_addr (regno, offset);
379 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
380 {
381 errno = 0;
382 *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
383 (PTRACE_ARG3_TYPE) regaddr, 0);
384 regaddr += sizeof (PTRACE_XFER_TYPE);
385 if (errno != 0)
386 {
387 sprintf (mess, "reading register %s (#%d)",
388 REGISTER_NAME (regno), regno);
389 perror_with_name (mess);
390 }
391 }
392 supply_register (regno, buf);
393 }
394
395
396 /* Fetch register values from the inferior.
397 If REGNO is negative, do this for all registers.
398 Otherwise, REGNO specifies which register (so we can save time). */
399
400 void
401 fetch_inferior_registers (int regno)
402 {
403 if (regno >= 0)
404 {
405 fetch_register (regno);
406 }
407 else
408 {
409 for (regno = 0; regno < NUM_REGS; regno++)
410 {
411 fetch_register (regno);
412 }
413 }
414 }
415
416 /* Store one register. */
417
418 static void
419 store_register (int regno)
420 {
421 /* This isn't really an address. But ptrace thinks of it as one. */
422 CORE_ADDR regaddr;
423 char mess[128]; /* For messages */
424 register int i;
425 unsigned int offset; /* Offset of registers within the u area. */
426 int tid;
427
428 if (CANNOT_STORE_REGISTER (regno))
429 {
430 return;
431 }
432
433 /* Overload thread id onto process id */
434 if ((tid = TIDGET (inferior_ptid)) == 0)
435 tid = PIDGET (inferior_ptid); /* no thread id, just use process id */
436
437 offset = U_REGS_OFFSET;
438
439 regaddr = register_addr (regno, offset);
440 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
441 {
442 errno = 0;
443 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
444 *(PTRACE_XFER_TYPE *) & registers[REGISTER_BYTE (regno) + i]);
445 regaddr += sizeof (PTRACE_XFER_TYPE);
446 if (errno != 0)
447 {
448 sprintf (mess, "writing register %s (#%d)",
449 REGISTER_NAME (regno), regno);
450 perror_with_name (mess);
451 }
452 }
453 }
454
455 /* Store our register values back into the inferior.
456 If REGNO is negative, do this for all registers.
457 Otherwise, REGNO specifies which register (so we can save time). */
458
459 void
460 store_inferior_registers (int regno)
461 {
462 if (regno >= 0)
463 {
464 store_register (regno);
465 }
466 else
467 {
468 for (regno = 0; regno < NUM_REGS; regno++)
469 {
470 store_register (regno);
471 }
472 }
473 }
474 #endif /* !defined (FETCH_INFERIOR_REGISTERS). */
475 \f
476
477 #if !defined (CHILD_XFER_MEMORY)
478 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
479 in the NEW_SUN_PTRACE case. It ought to be straightforward. But
480 it appears that writing did not write the data that I specified. I
481 cannot understand where it got the data that it actually did write. */
482
483 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR to
484 debugger memory starting at MYADDR. Copy to inferior if WRITE is
485 nonzero. TARGET is ignored.
486
487 Returns the length copied, which is either the LEN argument or
488 zero. This xfer function does not do partial moves, since
489 child_ops doesn't allow memory operations to cross below us in the
490 target stack anyway. */
491
492 int
493 child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
494 struct mem_attrib *attrib ATTRIBUTE_UNUSED,
495 struct target_ops *target)
496 {
497 int i;
498 /* Round starting address down to longword boundary. */
499 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
500 /* Round ending address up; get number of longwords that makes. */
501 int count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
502 / sizeof (PTRACE_XFER_TYPE));
503 /* Allocate buffer of that many longwords. */
504 PTRACE_XFER_TYPE *buffer =
505 (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
506
507 if (write)
508 {
509 /* Fill start and end extra bytes of buffer with existing memory
510 data. */
511 if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE))
512 {
513 /* Need part of initial word -- fetch it. */
514 buffer[0] = ptrace (PT_READ_I, PIDGET (inferior_ptid),
515 (PTRACE_ARG3_TYPE) addr, 0);
516 }
517
518 if (count > 1) /* FIXME, avoid if even boundary. */
519 {
520 buffer[count - 1] =
521 ptrace (PT_READ_I, PIDGET (inferior_ptid),
522 ((PTRACE_ARG3_TYPE)
523 (addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))), 0);
524 }
525
526 /* Copy data to be written over corresponding part of buffer. */
527 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
528 myaddr, len);
529
530 /* Write the entire buffer. */
531 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
532 {
533 errno = 0;
534 ptrace (PT_WRITE_D, PIDGET (inferior_ptid),
535 (PTRACE_ARG3_TYPE) addr, buffer[i]);
536 if (errno)
537 {
538 /* Using the appropriate one (I or D) is necessary for
539 Gould NP1, at least. */
540 errno = 0;
541 ptrace (PT_WRITE_I, PIDGET (inferior_ptid),
542 (PTRACE_ARG3_TYPE) addr, buffer[i]);
543 }
544 if (errno)
545 return 0;
546 }
547 #ifdef CLEAR_INSN_CACHE
548 CLEAR_INSN_CACHE ();
549 #endif
550 }
551 else
552 {
553 /* Read all the longwords. */
554 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
555 {
556 errno = 0;
557 buffer[i] = ptrace (PT_READ_I, PIDGET (inferior_ptid),
558 (PTRACE_ARG3_TYPE) addr, 0);
559 if (errno)
560 return 0;
561 QUIT;
562 }
563
564 /* Copy appropriate bytes out of the buffer. */
565 memcpy (myaddr,
566 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
567 len);
568 }
569
570 return len;
571 }
572 \f
573
574 static void
575 udot_info (char *dummy1, int dummy2)
576 {
577 #if defined (KERNEL_U_SIZE)
578 int udot_off; /* Offset into user struct */
579 int udot_val; /* Value from user struct at udot_off */
580 char mess[128]; /* For messages */
581 #endif
582
583 if (!target_has_execution)
584 {
585 error ("The program is not being run.");
586 }
587
588 #if !defined (KERNEL_U_SIZE)
589
590 /* Adding support for this command is easy. Typically you just add a
591 routine, called "kernel_u_size" that returns the size of the user
592 struct, to the appropriate *-nat.c file and then add to the native
593 config file "#define KERNEL_U_SIZE kernel_u_size()" */
594 error ("Don't know how large ``struct user'' is in this version of gdb.");
595
596 #else
597
598 for (udot_off = 0; udot_off < KERNEL_U_SIZE; udot_off += sizeof (udot_val))
599 {
600 if ((udot_off % 24) == 0)
601 {
602 if (udot_off > 0)
603 {
604 printf_filtered ("\n");
605 }
606 printf_filtered ("%04x:", udot_off);
607 }
608 udot_val = ptrace (PT_READ_U, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) udot_off, 0);
609 if (errno != 0)
610 {
611 sprintf (mess, "\nreading user struct at offset 0x%x", udot_off);
612 perror_with_name (mess);
613 }
614 /* Avoid using nonportable (?) "*" in print specs */
615 printf_filtered (sizeof (int) == 4 ? " 0x%08x" : " 0x%16x", udot_val);
616 }
617 printf_filtered ("\n");
618
619 #endif
620 }
621 #endif /* !defined (CHILD_XFER_MEMORY). */
622 \f
623
624 void
625 _initialize_infptrace (void)
626 {
627 #if !defined (CHILD_XFER_MEMORY)
628 add_info ("udot", udot_info,
629 "Print contents of kernel ``struct user'' for current child.");
630 #endif
631 }
This page took 0.041045 seconds and 4 git commands to generate.