* gdb.cp/method2.cc: New test.
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49 #include "main.h"
50
51 #include "gdb_assert.h"
52 #include "mi/mi-common.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 struct execution_control_state;
78
79 static int currently_stepping (struct execution_control_state *ecs);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (void);
84
85 void _initialize_infrun (void);
86
87 int inferior_ignoring_startup_exec_events = 0;
88 int inferior_ignoring_leading_exec_events = 0;
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100
101 /* In asynchronous mode, but simulating synchronous execution. */
102
103 int sync_execution = 0;
104
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109 static ptid_t previous_inferior_ptid;
110
111 /* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114 #ifndef MAY_FOLLOW_EXEC
115 #define MAY_FOLLOW_EXEC (0)
116 #endif
117
118 static int may_follow_exec = MAY_FOLLOW_EXEC;
119
120 static int debug_infrun = 0;
121 static void
122 show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124 {
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126 }
127
128 /* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179 /* We can't step off a permanent breakpoint in the ordinary way, because we
180 can't remove it. Instead, we have to advance the PC to the next
181 instruction. This macro should expand to a pointer to a function that
182 does that, or zero if we have no such function. If we don't have a
183 definition for it, we have to report an error. */
184 #ifndef SKIP_PERMANENT_BREAKPOINT
185 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
186 static void
187 default_skip_permanent_breakpoint (void)
188 {
189 error (_("\
190 The program is stopped at a permanent breakpoint, but GDB does not know\n\
191 how to step past a permanent breakpoint on this architecture. Try using\n\
192 a command like `return' or `jump' to continue execution."));
193 }
194 #endif
195
196
197 /* Convert the #defines into values. This is temporary until wfi control
198 flow is completely sorted out. */
199
200 #ifndef HAVE_STEPPABLE_WATCHPOINT
201 #define HAVE_STEPPABLE_WATCHPOINT 0
202 #else
203 #undef HAVE_STEPPABLE_WATCHPOINT
204 #define HAVE_STEPPABLE_WATCHPOINT 1
205 #endif
206
207 #ifndef CANNOT_STEP_HW_WATCHPOINTS
208 #define CANNOT_STEP_HW_WATCHPOINTS 0
209 #else
210 #undef CANNOT_STEP_HW_WATCHPOINTS
211 #define CANNOT_STEP_HW_WATCHPOINTS 1
212 #endif
213
214 /* Tables of how to react to signals; the user sets them. */
215
216 static unsigned char *signal_stop;
217 static unsigned char *signal_print;
218 static unsigned char *signal_program;
219
220 #define SET_SIGS(nsigs,sigs,flags) \
221 do { \
222 int signum = (nsigs); \
223 while (signum-- > 0) \
224 if ((sigs)[signum]) \
225 (flags)[signum] = 1; \
226 } while (0)
227
228 #define UNSET_SIGS(nsigs,sigs,flags) \
229 do { \
230 int signum = (nsigs); \
231 while (signum-- > 0) \
232 if ((sigs)[signum]) \
233 (flags)[signum] = 0; \
234 } while (0)
235
236 /* Value to pass to target_resume() to cause all threads to resume */
237
238 #define RESUME_ALL (pid_to_ptid (-1))
239
240 /* Command list pointer for the "stop" placeholder. */
241
242 static struct cmd_list_element *stop_command;
243
244 /* Nonzero if breakpoints are now inserted in the inferior. */
245
246 static int breakpoints_inserted;
247
248 /* Function inferior was in as of last step command. */
249
250 static struct symbol *step_start_function;
251
252 /* Nonzero if we are expecting a trace trap and should proceed from it. */
253
254 static int trap_expected;
255
256 /* Nonzero if we want to give control to the user when we're notified
257 of shared library events by the dynamic linker. */
258 static int stop_on_solib_events;
259 static void
260 show_stop_on_solib_events (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
264 value);
265 }
266
267 /* Nonzero means expecting a trace trap
268 and should stop the inferior and return silently when it happens. */
269
270 int stop_after_trap;
271
272 /* Nonzero means expecting a trap and caller will handle it themselves.
273 It is used after attach, due to attaching to a process;
274 when running in the shell before the child program has been exec'd;
275 and when running some kinds of remote stuff (FIXME?). */
276
277 enum stop_kind stop_soon;
278
279 /* Nonzero if proceed is being used for a "finish" command or a similar
280 situation when stop_registers should be saved. */
281
282 int proceed_to_finish;
283
284 /* Save register contents here when about to pop a stack dummy frame,
285 if-and-only-if proceed_to_finish is set.
286 Thus this contains the return value from the called function (assuming
287 values are returned in a register). */
288
289 struct regcache *stop_registers;
290
291 /* Nonzero after stop if current stack frame should be printed. */
292
293 static int stop_print_frame;
294
295 static struct breakpoint *step_resume_breakpoint = NULL;
296
297 /* This is a cached copy of the pid/waitstatus of the last event
298 returned by target_wait()/deprecated_target_wait_hook(). This
299 information is returned by get_last_target_status(). */
300 static ptid_t target_last_wait_ptid;
301 static struct target_waitstatus target_last_waitstatus;
302
303 /* This is used to remember when a fork, vfork or exec event
304 was caught by a catchpoint, and thus the event is to be
305 followed at the next resume of the inferior, and not
306 immediately. */
307 static struct
308 {
309 enum target_waitkind kind;
310 struct
311 {
312 int parent_pid;
313 int child_pid;
314 }
315 fork_event;
316 char *execd_pathname;
317 }
318 pending_follow;
319
320 static const char follow_fork_mode_child[] = "child";
321 static const char follow_fork_mode_parent[] = "parent";
322
323 static const char *follow_fork_mode_kind_names[] = {
324 follow_fork_mode_child,
325 follow_fork_mode_parent,
326 NULL
327 };
328
329 static const char *follow_fork_mode_string = follow_fork_mode_parent;
330 static void
331 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
332 struct cmd_list_element *c, const char *value)
333 {
334 fprintf_filtered (file, _("\
335 Debugger response to a program call of fork or vfork is \"%s\".\n"),
336 value);
337 }
338 \f
339
340 static int
341 follow_fork (void)
342 {
343 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
344
345 return target_follow_fork (follow_child);
346 }
347
348 void
349 follow_inferior_reset_breakpoints (void)
350 {
351 /* Was there a step_resume breakpoint? (There was if the user
352 did a "next" at the fork() call.) If so, explicitly reset its
353 thread number.
354
355 step_resumes are a form of bp that are made to be per-thread.
356 Since we created the step_resume bp when the parent process
357 was being debugged, and now are switching to the child process,
358 from the breakpoint package's viewpoint, that's a switch of
359 "threads". We must update the bp's notion of which thread
360 it is for, or it'll be ignored when it triggers. */
361
362 if (step_resume_breakpoint)
363 breakpoint_re_set_thread (step_resume_breakpoint);
364
365 /* Reinsert all breakpoints in the child. The user may have set
366 breakpoints after catching the fork, in which case those
367 were never set in the child, but only in the parent. This makes
368 sure the inserted breakpoints match the breakpoint list. */
369
370 breakpoint_re_set ();
371 insert_breakpoints ();
372 }
373
374 /* EXECD_PATHNAME is assumed to be non-NULL. */
375
376 static void
377 follow_exec (int pid, char *execd_pathname)
378 {
379 int saved_pid = pid;
380 struct target_ops *tgt;
381
382 if (!may_follow_exec)
383 return;
384
385 /* This is an exec event that we actually wish to pay attention to.
386 Refresh our symbol table to the newly exec'd program, remove any
387 momentary bp's, etc.
388
389 If there are breakpoints, they aren't really inserted now,
390 since the exec() transformed our inferior into a fresh set
391 of instructions.
392
393 We want to preserve symbolic breakpoints on the list, since
394 we have hopes that they can be reset after the new a.out's
395 symbol table is read.
396
397 However, any "raw" breakpoints must be removed from the list
398 (e.g., the solib bp's), since their address is probably invalid
399 now.
400
401 And, we DON'T want to call delete_breakpoints() here, since
402 that may write the bp's "shadow contents" (the instruction
403 value that was overwritten witha TRAP instruction). Since
404 we now have a new a.out, those shadow contents aren't valid. */
405 update_breakpoints_after_exec ();
406
407 /* If there was one, it's gone now. We cannot truly step-to-next
408 statement through an exec(). */
409 step_resume_breakpoint = NULL;
410 step_range_start = 0;
411 step_range_end = 0;
412
413 /* What is this a.out's name? */
414 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
415
416 /* We've followed the inferior through an exec. Therefore, the
417 inferior has essentially been killed & reborn. */
418
419 /* First collect the run target in effect. */
420 tgt = find_run_target ();
421 /* If we can't find one, things are in a very strange state... */
422 if (tgt == NULL)
423 error (_("Could find run target to save before following exec"));
424
425 gdb_flush (gdb_stdout);
426 target_mourn_inferior ();
427 inferior_ptid = pid_to_ptid (saved_pid);
428 /* Because mourn_inferior resets inferior_ptid. */
429 push_target (tgt);
430
431 /* That a.out is now the one to use. */
432 exec_file_attach (execd_pathname, 0);
433
434 /* And also is where symbols can be found. */
435 symbol_file_add_main (execd_pathname, 0);
436
437 /* Reset the shared library package. This ensures that we get
438 a shlib event when the child reaches "_start", at which point
439 the dld will have had a chance to initialize the child. */
440 #if defined(SOLIB_RESTART)
441 SOLIB_RESTART ();
442 #endif
443 #ifdef SOLIB_CREATE_INFERIOR_HOOK
444 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
445 #else
446 solib_create_inferior_hook ();
447 #endif
448
449 /* Reinsert all breakpoints. (Those which were symbolic have
450 been reset to the proper address in the new a.out, thanks
451 to symbol_file_command...) */
452 insert_breakpoints ();
453
454 /* The next resume of this inferior should bring it to the shlib
455 startup breakpoints. (If the user had also set bp's on
456 "main" from the old (parent) process, then they'll auto-
457 matically get reset there in the new process.) */
458 }
459
460 /* Non-zero if we just simulating a single-step. This is needed
461 because we cannot remove the breakpoints in the inferior process
462 until after the `wait' in `wait_for_inferior'. */
463 static int singlestep_breakpoints_inserted_p = 0;
464
465 /* The thread we inserted single-step breakpoints for. */
466 static ptid_t singlestep_ptid;
467
468 /* PC when we started this single-step. */
469 static CORE_ADDR singlestep_pc;
470
471 /* If another thread hit the singlestep breakpoint, we save the original
472 thread here so that we can resume single-stepping it later. */
473 static ptid_t saved_singlestep_ptid;
474 static int stepping_past_singlestep_breakpoint;
475 \f
476
477 /* Things to clean up if we QUIT out of resume (). */
478 static void
479 resume_cleanups (void *ignore)
480 {
481 normal_stop ();
482 }
483
484 static const char schedlock_off[] = "off";
485 static const char schedlock_on[] = "on";
486 static const char schedlock_step[] = "step";
487 static const char *scheduler_enums[] = {
488 schedlock_off,
489 schedlock_on,
490 schedlock_step,
491 NULL
492 };
493 static const char *scheduler_mode = schedlock_off;
494 static void
495 show_scheduler_mode (struct ui_file *file, int from_tty,
496 struct cmd_list_element *c, const char *value)
497 {
498 fprintf_filtered (file, _("\
499 Mode for locking scheduler during execution is \"%s\".\n"),
500 value);
501 }
502
503 static void
504 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
505 {
506 if (!target_can_lock_scheduler)
507 {
508 scheduler_mode = schedlock_off;
509 error (_("Target '%s' cannot support this command."), target_shortname);
510 }
511 }
512
513
514 /* Resume the inferior, but allow a QUIT. This is useful if the user
515 wants to interrupt some lengthy single-stepping operation
516 (for child processes, the SIGINT goes to the inferior, and so
517 we get a SIGINT random_signal, but for remote debugging and perhaps
518 other targets, that's not true).
519
520 STEP nonzero if we should step (zero to continue instead).
521 SIG is the signal to give the inferior (zero for none). */
522 void
523 resume (int step, enum target_signal sig)
524 {
525 int should_resume = 1;
526 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
527 QUIT;
528
529 if (debug_infrun)
530 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
531 step, sig);
532
533 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
534
535
536 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
537 over an instruction that causes a page fault without triggering
538 a hardware watchpoint. The kernel properly notices that it shouldn't
539 stop, because the hardware watchpoint is not triggered, but it forgets
540 the step request and continues the program normally.
541 Work around the problem by removing hardware watchpoints if a step is
542 requested, GDB will check for a hardware watchpoint trigger after the
543 step anyway. */
544 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
545 remove_hw_watchpoints ();
546
547
548 /* Normally, by the time we reach `resume', the breakpoints are either
549 removed or inserted, as appropriate. The exception is if we're sitting
550 at a permanent breakpoint; we need to step over it, but permanent
551 breakpoints can't be removed. So we have to test for it here. */
552 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
553 SKIP_PERMANENT_BREAKPOINT ();
554
555 if (SOFTWARE_SINGLE_STEP_P () && step)
556 {
557 /* Do it the hard way, w/temp breakpoints */
558 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
559 /* ...and don't ask hardware to do it. */
560 step = 0;
561 /* and do not pull these breakpoints until after a `wait' in
562 `wait_for_inferior' */
563 singlestep_breakpoints_inserted_p = 1;
564 singlestep_ptid = inferior_ptid;
565 singlestep_pc = read_pc ();
566 }
567
568 /* If there were any forks/vforks/execs that were caught and are
569 now to be followed, then do so. */
570 switch (pending_follow.kind)
571 {
572 case TARGET_WAITKIND_FORKED:
573 case TARGET_WAITKIND_VFORKED:
574 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
575 if (follow_fork ())
576 should_resume = 0;
577 break;
578
579 case TARGET_WAITKIND_EXECD:
580 /* follow_exec is called as soon as the exec event is seen. */
581 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
582 break;
583
584 default:
585 break;
586 }
587
588 /* Install inferior's terminal modes. */
589 target_terminal_inferior ();
590
591 if (should_resume)
592 {
593 ptid_t resume_ptid;
594
595 resume_ptid = RESUME_ALL; /* Default */
596
597 if ((step || singlestep_breakpoints_inserted_p)
598 && (stepping_past_singlestep_breakpoint
599 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
600 {
601 /* Stepping past a breakpoint without inserting breakpoints.
602 Make sure only the current thread gets to step, so that
603 other threads don't sneak past breakpoints while they are
604 not inserted. */
605
606 resume_ptid = inferior_ptid;
607 }
608
609 if ((scheduler_mode == schedlock_on)
610 || (scheduler_mode == schedlock_step
611 && (step || singlestep_breakpoints_inserted_p)))
612 {
613 /* User-settable 'scheduler' mode requires solo thread resume. */
614 resume_ptid = inferior_ptid;
615 }
616
617 if (CANNOT_STEP_BREAKPOINT)
618 {
619 /* Most targets can step a breakpoint instruction, thus
620 executing it normally. But if this one cannot, just
621 continue and we will hit it anyway. */
622 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
623 step = 0;
624 }
625 target_resume (resume_ptid, step, sig);
626 }
627
628 discard_cleanups (old_cleanups);
629 }
630 \f
631
632 /* Clear out all variables saying what to do when inferior is continued.
633 First do this, then set the ones you want, then call `proceed'. */
634
635 void
636 clear_proceed_status (void)
637 {
638 trap_expected = 0;
639 step_range_start = 0;
640 step_range_end = 0;
641 step_frame_id = null_frame_id;
642 step_over_calls = STEP_OVER_UNDEBUGGABLE;
643 stop_after_trap = 0;
644 stop_soon = NO_STOP_QUIETLY;
645 proceed_to_finish = 0;
646 breakpoint_proceeded = 1; /* We're about to proceed... */
647
648 /* Discard any remaining commands or status from previous stop. */
649 bpstat_clear (&stop_bpstat);
650 }
651
652 /* This should be suitable for any targets that support threads. */
653
654 static int
655 prepare_to_proceed (void)
656 {
657 ptid_t wait_ptid;
658 struct target_waitstatus wait_status;
659
660 /* Get the last target status returned by target_wait(). */
661 get_last_target_status (&wait_ptid, &wait_status);
662
663 /* Make sure we were stopped either at a breakpoint, or because
664 of a Ctrl-C. */
665 if (wait_status.kind != TARGET_WAITKIND_STOPPED
666 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
667 && wait_status.value.sig != TARGET_SIGNAL_INT))
668 {
669 return 0;
670 }
671
672 if (!ptid_equal (wait_ptid, minus_one_ptid)
673 && !ptid_equal (inferior_ptid, wait_ptid))
674 {
675 /* Switched over from WAIT_PID. */
676 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
677
678 if (wait_pc != read_pc ())
679 {
680 /* Switch back to WAIT_PID thread. */
681 inferior_ptid = wait_ptid;
682
683 /* FIXME: This stuff came from switch_to_thread() in
684 thread.c (which should probably be a public function). */
685 reinit_frame_cache ();
686 registers_changed ();
687 stop_pc = wait_pc;
688 }
689
690 /* We return 1 to indicate that there is a breakpoint here,
691 so we need to step over it before continuing to avoid
692 hitting it straight away. */
693 if (breakpoint_here_p (wait_pc))
694 return 1;
695 }
696
697 return 0;
698
699 }
700
701 /* Record the pc of the program the last time it stopped. This is
702 just used internally by wait_for_inferior, but need to be preserved
703 over calls to it and cleared when the inferior is started. */
704 static CORE_ADDR prev_pc;
705
706 /* Basic routine for continuing the program in various fashions.
707
708 ADDR is the address to resume at, or -1 for resume where stopped.
709 SIGGNAL is the signal to give it, or 0 for none,
710 or -1 for act according to how it stopped.
711 STEP is nonzero if should trap after one instruction.
712 -1 means return after that and print nothing.
713 You should probably set various step_... variables
714 before calling here, if you are stepping.
715
716 You should call clear_proceed_status before calling proceed. */
717
718 void
719 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
720 {
721 int oneproc = 0;
722
723 if (step > 0)
724 step_start_function = find_pc_function (read_pc ());
725 if (step < 0)
726 stop_after_trap = 1;
727
728 if (addr == (CORE_ADDR) -1)
729 {
730 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
731 /* There is a breakpoint at the address we will resume at,
732 step one instruction before inserting breakpoints so that
733 we do not stop right away (and report a second hit at this
734 breakpoint). */
735 oneproc = 1;
736 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
737 && gdbarch_single_step_through_delay (current_gdbarch,
738 get_current_frame ()))
739 /* We stepped onto an instruction that needs to be stepped
740 again before re-inserting the breakpoint, do so. */
741 oneproc = 1;
742 }
743 else
744 {
745 write_pc (addr);
746 }
747
748 if (debug_infrun)
749 fprintf_unfiltered (gdb_stdlog,
750 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
751 paddr_nz (addr), siggnal, step);
752
753 /* In a multi-threaded task we may select another thread
754 and then continue or step.
755
756 But if the old thread was stopped at a breakpoint, it
757 will immediately cause another breakpoint stop without
758 any execution (i.e. it will report a breakpoint hit
759 incorrectly). So we must step over it first.
760
761 prepare_to_proceed checks the current thread against the thread
762 that reported the most recent event. If a step-over is required
763 it returns TRUE and sets the current thread to the old thread. */
764 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
765 oneproc = 1;
766
767 if (oneproc)
768 /* We will get a trace trap after one instruction.
769 Continue it automatically and insert breakpoints then. */
770 trap_expected = 1;
771 else
772 {
773 insert_breakpoints ();
774 /* If we get here there was no call to error() in
775 insert breakpoints -- so they were inserted. */
776 breakpoints_inserted = 1;
777 }
778
779 if (siggnal != TARGET_SIGNAL_DEFAULT)
780 stop_signal = siggnal;
781 /* If this signal should not be seen by program,
782 give it zero. Used for debugging signals. */
783 else if (!signal_program[stop_signal])
784 stop_signal = TARGET_SIGNAL_0;
785
786 annotate_starting ();
787
788 /* Make sure that output from GDB appears before output from the
789 inferior. */
790 gdb_flush (gdb_stdout);
791
792 /* Refresh prev_pc value just prior to resuming. This used to be
793 done in stop_stepping, however, setting prev_pc there did not handle
794 scenarios such as inferior function calls or returning from
795 a function via the return command. In those cases, the prev_pc
796 value was not set properly for subsequent commands. The prev_pc value
797 is used to initialize the starting line number in the ecs. With an
798 invalid value, the gdb next command ends up stopping at the position
799 represented by the next line table entry past our start position.
800 On platforms that generate one line table entry per line, this
801 is not a problem. However, on the ia64, the compiler generates
802 extraneous line table entries that do not increase the line number.
803 When we issue the gdb next command on the ia64 after an inferior call
804 or a return command, we often end up a few instructions forward, still
805 within the original line we started.
806
807 An attempt was made to have init_execution_control_state () refresh
808 the prev_pc value before calculating the line number. This approach
809 did not work because on platforms that use ptrace, the pc register
810 cannot be read unless the inferior is stopped. At that point, we
811 are not guaranteed the inferior is stopped and so the read_pc ()
812 call can fail. Setting the prev_pc value here ensures the value is
813 updated correctly when the inferior is stopped. */
814 prev_pc = read_pc ();
815
816 /* Resume inferior. */
817 resume (oneproc || step || bpstat_should_step (), stop_signal);
818
819 /* Wait for it to stop (if not standalone)
820 and in any case decode why it stopped, and act accordingly. */
821 /* Do this only if we are not using the event loop, or if the target
822 does not support asynchronous execution. */
823 if (!target_can_async_p ())
824 {
825 wait_for_inferior ();
826 normal_stop ();
827 }
828 }
829 \f
830
831 /* Start remote-debugging of a machine over a serial link. */
832
833 void
834 start_remote (int from_tty)
835 {
836 init_thread_list ();
837 init_wait_for_inferior ();
838 stop_soon = STOP_QUIETLY;
839 trap_expected = 0;
840
841 /* Always go on waiting for the target, regardless of the mode. */
842 /* FIXME: cagney/1999-09-23: At present it isn't possible to
843 indicate to wait_for_inferior that a target should timeout if
844 nothing is returned (instead of just blocking). Because of this,
845 targets expecting an immediate response need to, internally, set
846 things up so that the target_wait() is forced to eventually
847 timeout. */
848 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
849 differentiate to its caller what the state of the target is after
850 the initial open has been performed. Here we're assuming that
851 the target has stopped. It should be possible to eventually have
852 target_open() return to the caller an indication that the target
853 is currently running and GDB state should be set to the same as
854 for an async run. */
855 wait_for_inferior ();
856
857 /* Now that the inferior has stopped, do any bookkeeping like
858 loading shared libraries. We want to do this before normal_stop,
859 so that the displayed frame is up to date. */
860 post_create_inferior (&current_target, from_tty);
861
862 normal_stop ();
863 }
864
865 /* Initialize static vars when a new inferior begins. */
866
867 void
868 init_wait_for_inferior (void)
869 {
870 /* These are meaningless until the first time through wait_for_inferior. */
871 prev_pc = 0;
872
873 breakpoints_inserted = 0;
874 breakpoint_init_inferior (inf_starting);
875
876 /* Don't confuse first call to proceed(). */
877 stop_signal = TARGET_SIGNAL_0;
878
879 /* The first resume is not following a fork/vfork/exec. */
880 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
881
882 clear_proceed_status ();
883
884 stepping_past_singlestep_breakpoint = 0;
885 }
886 \f
887 /* This enum encodes possible reasons for doing a target_wait, so that
888 wfi can call target_wait in one place. (Ultimately the call will be
889 moved out of the infinite loop entirely.) */
890
891 enum infwait_states
892 {
893 infwait_normal_state,
894 infwait_thread_hop_state,
895 infwait_nonstep_watch_state
896 };
897
898 /* Why did the inferior stop? Used to print the appropriate messages
899 to the interface from within handle_inferior_event(). */
900 enum inferior_stop_reason
901 {
902 /* Step, next, nexti, stepi finished. */
903 END_STEPPING_RANGE,
904 /* Inferior terminated by signal. */
905 SIGNAL_EXITED,
906 /* Inferior exited. */
907 EXITED,
908 /* Inferior received signal, and user asked to be notified. */
909 SIGNAL_RECEIVED
910 };
911
912 /* This structure contains what used to be local variables in
913 wait_for_inferior. Probably many of them can return to being
914 locals in handle_inferior_event. */
915
916 struct execution_control_state
917 {
918 struct target_waitstatus ws;
919 struct target_waitstatus *wp;
920 int another_trap;
921 int random_signal;
922 CORE_ADDR stop_func_start;
923 CORE_ADDR stop_func_end;
924 char *stop_func_name;
925 struct symtab_and_line sal;
926 int current_line;
927 struct symtab *current_symtab;
928 int handling_longjmp; /* FIXME */
929 ptid_t ptid;
930 ptid_t saved_inferior_ptid;
931 int step_after_step_resume_breakpoint;
932 int stepping_through_solib_after_catch;
933 bpstat stepping_through_solib_catchpoints;
934 int new_thread_event;
935 struct target_waitstatus tmpstatus;
936 enum infwait_states infwait_state;
937 ptid_t waiton_ptid;
938 int wait_some_more;
939 };
940
941 void init_execution_control_state (struct execution_control_state *ecs);
942
943 void handle_inferior_event (struct execution_control_state *ecs);
944
945 static void step_into_function (struct execution_control_state *ecs);
946 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
947 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
948 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
949 struct frame_id sr_id);
950 static void stop_stepping (struct execution_control_state *ecs);
951 static void prepare_to_wait (struct execution_control_state *ecs);
952 static void keep_going (struct execution_control_state *ecs);
953 static void print_stop_reason (enum inferior_stop_reason stop_reason,
954 int stop_info);
955
956 /* Wait for control to return from inferior to debugger.
957 If inferior gets a signal, we may decide to start it up again
958 instead of returning. That is why there is a loop in this function.
959 When this function actually returns it means the inferior
960 should be left stopped and GDB should read more commands. */
961
962 void
963 wait_for_inferior (void)
964 {
965 struct cleanup *old_cleanups;
966 struct execution_control_state ecss;
967 struct execution_control_state *ecs;
968
969 if (debug_infrun)
970 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
971
972 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
973 &step_resume_breakpoint);
974
975 /* wfi still stays in a loop, so it's OK just to take the address of
976 a local to get the ecs pointer. */
977 ecs = &ecss;
978
979 /* Fill in with reasonable starting values. */
980 init_execution_control_state (ecs);
981
982 /* We'll update this if & when we switch to a new thread. */
983 previous_inferior_ptid = inferior_ptid;
984
985 overlay_cache_invalid = 1;
986
987 /* We have to invalidate the registers BEFORE calling target_wait
988 because they can be loaded from the target while in target_wait.
989 This makes remote debugging a bit more efficient for those
990 targets that provide critical registers as part of their normal
991 status mechanism. */
992
993 registers_changed ();
994
995 while (1)
996 {
997 if (deprecated_target_wait_hook)
998 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
999 else
1000 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1001
1002 /* Now figure out what to do with the result of the result. */
1003 handle_inferior_event (ecs);
1004
1005 if (!ecs->wait_some_more)
1006 break;
1007 }
1008 do_cleanups (old_cleanups);
1009 }
1010
1011 /* Asynchronous version of wait_for_inferior. It is called by the
1012 event loop whenever a change of state is detected on the file
1013 descriptor corresponding to the target. It can be called more than
1014 once to complete a single execution command. In such cases we need
1015 to keep the state in a global variable ASYNC_ECSS. If it is the
1016 last time that this function is called for a single execution
1017 command, then report to the user that the inferior has stopped, and
1018 do the necessary cleanups. */
1019
1020 struct execution_control_state async_ecss;
1021 struct execution_control_state *async_ecs;
1022
1023 void
1024 fetch_inferior_event (void *client_data)
1025 {
1026 static struct cleanup *old_cleanups;
1027
1028 async_ecs = &async_ecss;
1029
1030 if (!async_ecs->wait_some_more)
1031 {
1032 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1033 &step_resume_breakpoint);
1034
1035 /* Fill in with reasonable starting values. */
1036 init_execution_control_state (async_ecs);
1037
1038 /* We'll update this if & when we switch to a new thread. */
1039 previous_inferior_ptid = inferior_ptid;
1040
1041 overlay_cache_invalid = 1;
1042
1043 /* We have to invalidate the registers BEFORE calling target_wait
1044 because they can be loaded from the target while in target_wait.
1045 This makes remote debugging a bit more efficient for those
1046 targets that provide critical registers as part of their normal
1047 status mechanism. */
1048
1049 registers_changed ();
1050 }
1051
1052 if (deprecated_target_wait_hook)
1053 async_ecs->ptid =
1054 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1055 else
1056 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1057
1058 /* Now figure out what to do with the result of the result. */
1059 handle_inferior_event (async_ecs);
1060
1061 if (!async_ecs->wait_some_more)
1062 {
1063 /* Do only the cleanups that have been added by this
1064 function. Let the continuations for the commands do the rest,
1065 if there are any. */
1066 do_exec_cleanups (old_cleanups);
1067 normal_stop ();
1068 if (step_multi && stop_step)
1069 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1070 else
1071 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1072 }
1073 }
1074
1075 /* Prepare an execution control state for looping through a
1076 wait_for_inferior-type loop. */
1077
1078 void
1079 init_execution_control_state (struct execution_control_state *ecs)
1080 {
1081 ecs->another_trap = 0;
1082 ecs->random_signal = 0;
1083 ecs->step_after_step_resume_breakpoint = 0;
1084 ecs->handling_longjmp = 0; /* FIXME */
1085 ecs->stepping_through_solib_after_catch = 0;
1086 ecs->stepping_through_solib_catchpoints = NULL;
1087 ecs->sal = find_pc_line (prev_pc, 0);
1088 ecs->current_line = ecs->sal.line;
1089 ecs->current_symtab = ecs->sal.symtab;
1090 ecs->infwait_state = infwait_normal_state;
1091 ecs->waiton_ptid = pid_to_ptid (-1);
1092 ecs->wp = &(ecs->ws);
1093 }
1094
1095 /* Return the cached copy of the last pid/waitstatus returned by
1096 target_wait()/deprecated_target_wait_hook(). The data is actually
1097 cached by handle_inferior_event(), which gets called immediately
1098 after target_wait()/deprecated_target_wait_hook(). */
1099
1100 void
1101 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1102 {
1103 *ptidp = target_last_wait_ptid;
1104 *status = target_last_waitstatus;
1105 }
1106
1107 void
1108 nullify_last_target_wait_ptid (void)
1109 {
1110 target_last_wait_ptid = minus_one_ptid;
1111 }
1112
1113 /* Switch thread contexts, maintaining "infrun state". */
1114
1115 static void
1116 context_switch (struct execution_control_state *ecs)
1117 {
1118 /* Caution: it may happen that the new thread (or the old one!)
1119 is not in the thread list. In this case we must not attempt
1120 to "switch context", or we run the risk that our context may
1121 be lost. This may happen as a result of the target module
1122 mishandling thread creation. */
1123
1124 if (debug_infrun)
1125 {
1126 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1127 target_pid_to_str (inferior_ptid));
1128 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1129 target_pid_to_str (ecs->ptid));
1130 }
1131
1132 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1133 { /* Perform infrun state context switch: */
1134 /* Save infrun state for the old thread. */
1135 save_infrun_state (inferior_ptid, prev_pc,
1136 trap_expected, step_resume_breakpoint,
1137 step_range_start,
1138 step_range_end, &step_frame_id,
1139 ecs->handling_longjmp, ecs->another_trap,
1140 ecs->stepping_through_solib_after_catch,
1141 ecs->stepping_through_solib_catchpoints,
1142 ecs->current_line, ecs->current_symtab);
1143
1144 /* Load infrun state for the new thread. */
1145 load_infrun_state (ecs->ptid, &prev_pc,
1146 &trap_expected, &step_resume_breakpoint,
1147 &step_range_start,
1148 &step_range_end, &step_frame_id,
1149 &ecs->handling_longjmp, &ecs->another_trap,
1150 &ecs->stepping_through_solib_after_catch,
1151 &ecs->stepping_through_solib_catchpoints,
1152 &ecs->current_line, &ecs->current_symtab);
1153 }
1154 inferior_ptid = ecs->ptid;
1155 reinit_frame_cache ();
1156 }
1157
1158 static void
1159 adjust_pc_after_break (struct execution_control_state *ecs)
1160 {
1161 CORE_ADDR breakpoint_pc;
1162
1163 /* If this target does not decrement the PC after breakpoints, then
1164 we have nothing to do. */
1165 if (DECR_PC_AFTER_BREAK == 0)
1166 return;
1167
1168 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1169 we aren't, just return.
1170
1171 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1172 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1173 by software breakpoints should be handled through the normal breakpoint
1174 layer.
1175
1176 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1177 different signals (SIGILL or SIGEMT for instance), but it is less
1178 clear where the PC is pointing afterwards. It may not match
1179 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1180 these signals at breakpoints (the code has been in GDB since at least
1181 1992) so I can not guess how to handle them here.
1182
1183 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1184 would have the PC after hitting a watchpoint affected by
1185 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1186 in GDB history, and it seems unlikely to be correct, so
1187 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1188
1189 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1190 return;
1191
1192 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1193 return;
1194
1195 /* Find the location where (if we've hit a breakpoint) the
1196 breakpoint would be. */
1197 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1198
1199 if (SOFTWARE_SINGLE_STEP_P ())
1200 {
1201 /* When using software single-step, a SIGTRAP can only indicate
1202 an inserted breakpoint. This actually makes things
1203 easier. */
1204 if (singlestep_breakpoints_inserted_p)
1205 /* When software single stepping, the instruction at [prev_pc]
1206 is never a breakpoint, but the instruction following
1207 [prev_pc] (in program execution order) always is. Assume
1208 that following instruction was reached and hence a software
1209 breakpoint was hit. */
1210 write_pc_pid (breakpoint_pc, ecs->ptid);
1211 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1212 /* The inferior was free running (i.e., no single-step
1213 breakpoints inserted) and it hit a software breakpoint. */
1214 write_pc_pid (breakpoint_pc, ecs->ptid);
1215 }
1216 else
1217 {
1218 /* When using hardware single-step, a SIGTRAP is reported for
1219 both a completed single-step and a software breakpoint. Need
1220 to differentiate between the two as the latter needs
1221 adjusting but the former does not.
1222
1223 When the thread to be examined does not match the current thread
1224 context we can't use currently_stepping, so assume no
1225 single-stepping in this case. */
1226 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1227 {
1228 if (prev_pc == breakpoint_pc
1229 && software_breakpoint_inserted_here_p (breakpoint_pc))
1230 /* Hardware single-stepped a software breakpoint (as
1231 occures when the inferior is resumed with PC pointing
1232 at not-yet-hit software breakpoint). Since the
1233 breakpoint really is executed, the inferior needs to be
1234 backed up to the breakpoint address. */
1235 write_pc_pid (breakpoint_pc, ecs->ptid);
1236 }
1237 else
1238 {
1239 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1240 /* The inferior was free running (i.e., no hardware
1241 single-step and no possibility of a false SIGTRAP) and
1242 hit a software breakpoint. */
1243 write_pc_pid (breakpoint_pc, ecs->ptid);
1244 }
1245 }
1246 }
1247
1248 /* Given an execution control state that has been freshly filled in
1249 by an event from the inferior, figure out what it means and take
1250 appropriate action. */
1251
1252 int stepped_after_stopped_by_watchpoint;
1253
1254 void
1255 handle_inferior_event (struct execution_control_state *ecs)
1256 {
1257 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1258 that the variable stepped_after_stopped_by_watchpoint isn't used,
1259 then you're wrong! See remote.c:remote_stopped_data_address. */
1260
1261 int sw_single_step_trap_p = 0;
1262 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1263
1264 /* Cache the last pid/waitstatus. */
1265 target_last_wait_ptid = ecs->ptid;
1266 target_last_waitstatus = *ecs->wp;
1267
1268 adjust_pc_after_break (ecs);
1269
1270 switch (ecs->infwait_state)
1271 {
1272 case infwait_thread_hop_state:
1273 if (debug_infrun)
1274 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1275 /* Cancel the waiton_ptid. */
1276 ecs->waiton_ptid = pid_to_ptid (-1);
1277 break;
1278
1279 case infwait_normal_state:
1280 if (debug_infrun)
1281 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1282 stepped_after_stopped_by_watchpoint = 0;
1283 break;
1284
1285 case infwait_nonstep_watch_state:
1286 if (debug_infrun)
1287 fprintf_unfiltered (gdb_stdlog,
1288 "infrun: infwait_nonstep_watch_state\n");
1289 insert_breakpoints ();
1290
1291 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1292 handle things like signals arriving and other things happening
1293 in combination correctly? */
1294 stepped_after_stopped_by_watchpoint = 1;
1295 break;
1296
1297 default:
1298 internal_error (__FILE__, __LINE__, _("bad switch"));
1299 }
1300 ecs->infwait_state = infwait_normal_state;
1301
1302 reinit_frame_cache ();
1303
1304 /* If it's a new process, add it to the thread database */
1305
1306 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1307 && !ptid_equal (ecs->ptid, minus_one_ptid)
1308 && !in_thread_list (ecs->ptid));
1309
1310 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1311 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1312 {
1313 add_thread (ecs->ptid);
1314
1315 ui_out_text (uiout, "[New ");
1316 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1317 ui_out_text (uiout, "]\n");
1318 }
1319
1320 switch (ecs->ws.kind)
1321 {
1322 case TARGET_WAITKIND_LOADED:
1323 if (debug_infrun)
1324 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1325 /* Ignore gracefully during startup of the inferior, as it
1326 might be the shell which has just loaded some objects,
1327 otherwise add the symbols for the newly loaded objects. */
1328 #ifdef SOLIB_ADD
1329 if (stop_soon == NO_STOP_QUIETLY)
1330 {
1331 /* Remove breakpoints, SOLIB_ADD might adjust
1332 breakpoint addresses via breakpoint_re_set. */
1333 if (breakpoints_inserted)
1334 remove_breakpoints ();
1335
1336 /* Check for any newly added shared libraries if we're
1337 supposed to be adding them automatically. Switch
1338 terminal for any messages produced by
1339 breakpoint_re_set. */
1340 target_terminal_ours_for_output ();
1341 /* NOTE: cagney/2003-11-25: Make certain that the target
1342 stack's section table is kept up-to-date. Architectures,
1343 (e.g., PPC64), use the section table to perform
1344 operations such as address => section name and hence
1345 require the table to contain all sections (including
1346 those found in shared libraries). */
1347 /* NOTE: cagney/2003-11-25: Pass current_target and not
1348 exec_ops to SOLIB_ADD. This is because current GDB is
1349 only tooled to propagate section_table changes out from
1350 the "current_target" (see target_resize_to_sections), and
1351 not up from the exec stratum. This, of course, isn't
1352 right. "infrun.c" should only interact with the
1353 exec/process stratum, instead relying on the target stack
1354 to propagate relevant changes (stop, section table
1355 changed, ...) up to other layers. */
1356 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1357 target_terminal_inferior ();
1358
1359 /* Reinsert breakpoints and continue. */
1360 if (breakpoints_inserted)
1361 insert_breakpoints ();
1362 }
1363 #endif
1364 resume (0, TARGET_SIGNAL_0);
1365 prepare_to_wait (ecs);
1366 return;
1367
1368 case TARGET_WAITKIND_SPURIOUS:
1369 if (debug_infrun)
1370 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1371 resume (0, TARGET_SIGNAL_0);
1372 prepare_to_wait (ecs);
1373 return;
1374
1375 case TARGET_WAITKIND_EXITED:
1376 if (debug_infrun)
1377 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1378 target_terminal_ours (); /* Must do this before mourn anyway */
1379 print_stop_reason (EXITED, ecs->ws.value.integer);
1380
1381 /* Record the exit code in the convenience variable $_exitcode, so
1382 that the user can inspect this again later. */
1383 set_internalvar (lookup_internalvar ("_exitcode"),
1384 value_from_longest (builtin_type_int,
1385 (LONGEST) ecs->ws.value.integer));
1386 gdb_flush (gdb_stdout);
1387 target_mourn_inferior ();
1388 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1389 stop_print_frame = 0;
1390 stop_stepping (ecs);
1391 return;
1392
1393 case TARGET_WAITKIND_SIGNALLED:
1394 if (debug_infrun)
1395 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1396 stop_print_frame = 0;
1397 stop_signal = ecs->ws.value.sig;
1398 target_terminal_ours (); /* Must do this before mourn anyway */
1399
1400 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1401 reach here unless the inferior is dead. However, for years
1402 target_kill() was called here, which hints that fatal signals aren't
1403 really fatal on some systems. If that's true, then some changes
1404 may be needed. */
1405 target_mourn_inferior ();
1406
1407 print_stop_reason (SIGNAL_EXITED, stop_signal);
1408 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1409 stop_stepping (ecs);
1410 return;
1411
1412 /* The following are the only cases in which we keep going;
1413 the above cases end in a continue or goto. */
1414 case TARGET_WAITKIND_FORKED:
1415 case TARGET_WAITKIND_VFORKED:
1416 if (debug_infrun)
1417 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1418 stop_signal = TARGET_SIGNAL_TRAP;
1419 pending_follow.kind = ecs->ws.kind;
1420
1421 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1422 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1423
1424 if (!ptid_equal (ecs->ptid, inferior_ptid))
1425 {
1426 context_switch (ecs);
1427 reinit_frame_cache ();
1428 }
1429
1430 stop_pc = read_pc ();
1431
1432 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1433
1434 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1435
1436 /* If no catchpoint triggered for this, then keep going. */
1437 if (ecs->random_signal)
1438 {
1439 stop_signal = TARGET_SIGNAL_0;
1440 keep_going (ecs);
1441 return;
1442 }
1443 goto process_event_stop_test;
1444
1445 case TARGET_WAITKIND_EXECD:
1446 if (debug_infrun)
1447 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1448 stop_signal = TARGET_SIGNAL_TRAP;
1449
1450 /* NOTE drow/2002-12-05: This code should be pushed down into the
1451 target_wait function. Until then following vfork on HP/UX 10.20
1452 is probably broken by this. Of course, it's broken anyway. */
1453 /* Is this a target which reports multiple exec events per actual
1454 call to exec()? (HP-UX using ptrace does, for example.) If so,
1455 ignore all but the last one. Just resume the exec'r, and wait
1456 for the next exec event. */
1457 if (inferior_ignoring_leading_exec_events)
1458 {
1459 inferior_ignoring_leading_exec_events--;
1460 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1461 prepare_to_wait (ecs);
1462 return;
1463 }
1464 inferior_ignoring_leading_exec_events =
1465 target_reported_exec_events_per_exec_call () - 1;
1466
1467 pending_follow.execd_pathname =
1468 savestring (ecs->ws.value.execd_pathname,
1469 strlen (ecs->ws.value.execd_pathname));
1470
1471 /* This causes the eventpoints and symbol table to be reset. Must
1472 do this now, before trying to determine whether to stop. */
1473 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1474 xfree (pending_follow.execd_pathname);
1475
1476 stop_pc = read_pc_pid (ecs->ptid);
1477 ecs->saved_inferior_ptid = inferior_ptid;
1478 inferior_ptid = ecs->ptid;
1479
1480 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1481
1482 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1483 inferior_ptid = ecs->saved_inferior_ptid;
1484
1485 if (!ptid_equal (ecs->ptid, inferior_ptid))
1486 {
1487 context_switch (ecs);
1488 reinit_frame_cache ();
1489 }
1490
1491 /* If no catchpoint triggered for this, then keep going. */
1492 if (ecs->random_signal)
1493 {
1494 stop_signal = TARGET_SIGNAL_0;
1495 keep_going (ecs);
1496 return;
1497 }
1498 goto process_event_stop_test;
1499
1500 /* Be careful not to try to gather much state about a thread
1501 that's in a syscall. It's frequently a losing proposition. */
1502 case TARGET_WAITKIND_SYSCALL_ENTRY:
1503 if (debug_infrun)
1504 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1505 resume (0, TARGET_SIGNAL_0);
1506 prepare_to_wait (ecs);
1507 return;
1508
1509 /* Before examining the threads further, step this thread to
1510 get it entirely out of the syscall. (We get notice of the
1511 event when the thread is just on the verge of exiting a
1512 syscall. Stepping one instruction seems to get it back
1513 into user code.) */
1514 case TARGET_WAITKIND_SYSCALL_RETURN:
1515 if (debug_infrun)
1516 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1517 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1518 prepare_to_wait (ecs);
1519 return;
1520
1521 case TARGET_WAITKIND_STOPPED:
1522 if (debug_infrun)
1523 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1524 stop_signal = ecs->ws.value.sig;
1525 break;
1526
1527 /* We had an event in the inferior, but we are not interested
1528 in handling it at this level. The lower layers have already
1529 done what needs to be done, if anything.
1530
1531 One of the possible circumstances for this is when the
1532 inferior produces output for the console. The inferior has
1533 not stopped, and we are ignoring the event. Another possible
1534 circumstance is any event which the lower level knows will be
1535 reported multiple times without an intervening resume. */
1536 case TARGET_WAITKIND_IGNORE:
1537 if (debug_infrun)
1538 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1539 prepare_to_wait (ecs);
1540 return;
1541 }
1542
1543 /* We may want to consider not doing a resume here in order to give
1544 the user a chance to play with the new thread. It might be good
1545 to make that a user-settable option. */
1546
1547 /* At this point, all threads are stopped (happens automatically in
1548 either the OS or the native code). Therefore we need to continue
1549 all threads in order to make progress. */
1550 if (ecs->new_thread_event)
1551 {
1552 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1553 prepare_to_wait (ecs);
1554 return;
1555 }
1556
1557 stop_pc = read_pc_pid (ecs->ptid);
1558
1559 if (debug_infrun)
1560 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1561
1562 if (stepping_past_singlestep_breakpoint)
1563 {
1564 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1565 && singlestep_breakpoints_inserted_p);
1566 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1567 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1568
1569 stepping_past_singlestep_breakpoint = 0;
1570
1571 /* We've either finished single-stepping past the single-step
1572 breakpoint, or stopped for some other reason. It would be nice if
1573 we could tell, but we can't reliably. */
1574 if (stop_signal == TARGET_SIGNAL_TRAP)
1575 {
1576 if (debug_infrun)
1577 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1578 /* Pull the single step breakpoints out of the target. */
1579 SOFTWARE_SINGLE_STEP (0, 0);
1580 singlestep_breakpoints_inserted_p = 0;
1581
1582 ecs->random_signal = 0;
1583
1584 ecs->ptid = saved_singlestep_ptid;
1585 context_switch (ecs);
1586 if (deprecated_context_hook)
1587 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1588
1589 resume (1, TARGET_SIGNAL_0);
1590 prepare_to_wait (ecs);
1591 return;
1592 }
1593 }
1594
1595 stepping_past_singlestep_breakpoint = 0;
1596
1597 /* See if a thread hit a thread-specific breakpoint that was meant for
1598 another thread. If so, then step that thread past the breakpoint,
1599 and continue it. */
1600
1601 if (stop_signal == TARGET_SIGNAL_TRAP)
1602 {
1603 int thread_hop_needed = 0;
1604
1605 /* Check if a regular breakpoint has been hit before checking
1606 for a potential single step breakpoint. Otherwise, GDB will
1607 not see this breakpoint hit when stepping onto breakpoints. */
1608 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1609 {
1610 ecs->random_signal = 0;
1611 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1612 thread_hop_needed = 1;
1613 }
1614 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1615 {
1616 /* We have not context switched yet, so this should be true
1617 no matter which thread hit the singlestep breakpoint. */
1618 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1619 if (debug_infrun)
1620 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1621 "trap for %s\n",
1622 target_pid_to_str (ecs->ptid));
1623
1624 ecs->random_signal = 0;
1625 /* The call to in_thread_list is necessary because PTIDs sometimes
1626 change when we go from single-threaded to multi-threaded. If
1627 the singlestep_ptid is still in the list, assume that it is
1628 really different from ecs->ptid. */
1629 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1630 && in_thread_list (singlestep_ptid))
1631 {
1632 /* If the PC of the thread we were trying to single-step
1633 has changed, discard this event (which we were going
1634 to ignore anyway), and pretend we saw that thread
1635 trap. This prevents us continuously moving the
1636 single-step breakpoint forward, one instruction at a
1637 time. If the PC has changed, then the thread we were
1638 trying to single-step has trapped or been signalled,
1639 but the event has not been reported to GDB yet.
1640
1641 There might be some cases where this loses signal
1642 information, if a signal has arrived at exactly the
1643 same time that the PC changed, but this is the best
1644 we can do with the information available. Perhaps we
1645 should arrange to report all events for all threads
1646 when they stop, or to re-poll the remote looking for
1647 this particular thread (i.e. temporarily enable
1648 schedlock). */
1649 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1650 {
1651 if (debug_infrun)
1652 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1653 " but expected thread advanced also\n");
1654
1655 /* The current context still belongs to
1656 singlestep_ptid. Don't swap here, since that's
1657 the context we want to use. Just fudge our
1658 state and continue. */
1659 ecs->ptid = singlestep_ptid;
1660 stop_pc = read_pc_pid (ecs->ptid);
1661 }
1662 else
1663 {
1664 if (debug_infrun)
1665 fprintf_unfiltered (gdb_stdlog,
1666 "infrun: unexpected thread\n");
1667
1668 thread_hop_needed = 1;
1669 stepping_past_singlestep_breakpoint = 1;
1670 saved_singlestep_ptid = singlestep_ptid;
1671 }
1672 }
1673 }
1674
1675 if (thread_hop_needed)
1676 {
1677 int remove_status;
1678
1679 if (debug_infrun)
1680 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1681
1682 /* Saw a breakpoint, but it was hit by the wrong thread.
1683 Just continue. */
1684
1685 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1686 {
1687 /* Pull the single step breakpoints out of the target. */
1688 SOFTWARE_SINGLE_STEP (0, 0);
1689 singlestep_breakpoints_inserted_p = 0;
1690 }
1691
1692 remove_status = remove_breakpoints ();
1693 /* Did we fail to remove breakpoints? If so, try
1694 to set the PC past the bp. (There's at least
1695 one situation in which we can fail to remove
1696 the bp's: On HP-UX's that use ttrace, we can't
1697 change the address space of a vforking child
1698 process until the child exits (well, okay, not
1699 then either :-) or execs. */
1700 if (remove_status != 0)
1701 {
1702 /* FIXME! This is obviously non-portable! */
1703 write_pc_pid (stop_pc + 4, ecs->ptid);
1704 /* We need to restart all the threads now,
1705 * unles we're running in scheduler-locked mode.
1706 * Use currently_stepping to determine whether to
1707 * step or continue.
1708 */
1709 /* FIXME MVS: is there any reason not to call resume()? */
1710 if (scheduler_mode == schedlock_on)
1711 target_resume (ecs->ptid,
1712 currently_stepping (ecs), TARGET_SIGNAL_0);
1713 else
1714 target_resume (RESUME_ALL,
1715 currently_stepping (ecs), TARGET_SIGNAL_0);
1716 prepare_to_wait (ecs);
1717 return;
1718 }
1719 else
1720 { /* Single step */
1721 breakpoints_inserted = 0;
1722 if (!ptid_equal (inferior_ptid, ecs->ptid))
1723 context_switch (ecs);
1724 ecs->waiton_ptid = ecs->ptid;
1725 ecs->wp = &(ecs->ws);
1726 ecs->another_trap = 1;
1727
1728 ecs->infwait_state = infwait_thread_hop_state;
1729 keep_going (ecs);
1730 registers_changed ();
1731 return;
1732 }
1733 }
1734 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1735 {
1736 sw_single_step_trap_p = 1;
1737 ecs->random_signal = 0;
1738 }
1739 }
1740 else
1741 ecs->random_signal = 1;
1742
1743 /* See if something interesting happened to the non-current thread. If
1744 so, then switch to that thread. */
1745 if (!ptid_equal (ecs->ptid, inferior_ptid))
1746 {
1747 if (debug_infrun)
1748 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1749
1750 context_switch (ecs);
1751
1752 if (deprecated_context_hook)
1753 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1754 }
1755
1756 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1757 {
1758 /* Pull the single step breakpoints out of the target. */
1759 SOFTWARE_SINGLE_STEP (0, 0);
1760 singlestep_breakpoints_inserted_p = 0;
1761 }
1762
1763 /* It may not be necessary to disable the watchpoint to stop over
1764 it. For example, the PA can (with some kernel cooperation)
1765 single step over a watchpoint without disabling the watchpoint. */
1766 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1767 {
1768 if (debug_infrun)
1769 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1770 resume (1, 0);
1771 prepare_to_wait (ecs);
1772 return;
1773 }
1774
1775 /* It is far more common to need to disable a watchpoint to step
1776 the inferior over it. FIXME. What else might a debug
1777 register or page protection watchpoint scheme need here? */
1778 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1779 {
1780 /* At this point, we are stopped at an instruction which has
1781 attempted to write to a piece of memory under control of
1782 a watchpoint. The instruction hasn't actually executed
1783 yet. If we were to evaluate the watchpoint expression
1784 now, we would get the old value, and therefore no change
1785 would seem to have occurred.
1786
1787 In order to make watchpoints work `right', we really need
1788 to complete the memory write, and then evaluate the
1789 watchpoint expression. The following code does that by
1790 removing the watchpoint (actually, all watchpoints and
1791 breakpoints), single-stepping the target, re-inserting
1792 watchpoints, and then falling through to let normal
1793 single-step processing handle proceed. Since this
1794 includes evaluating watchpoints, things will come to a
1795 stop in the correct manner. */
1796
1797 if (debug_infrun)
1798 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1799 remove_breakpoints ();
1800 registers_changed ();
1801 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1802
1803 ecs->waiton_ptid = ecs->ptid;
1804 ecs->wp = &(ecs->ws);
1805 ecs->infwait_state = infwait_nonstep_watch_state;
1806 prepare_to_wait (ecs);
1807 return;
1808 }
1809
1810 /* It may be possible to simply continue after a watchpoint. */
1811 if (HAVE_CONTINUABLE_WATCHPOINT)
1812 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1813
1814 ecs->stop_func_start = 0;
1815 ecs->stop_func_end = 0;
1816 ecs->stop_func_name = 0;
1817 /* Don't care about return value; stop_func_start and stop_func_name
1818 will both be 0 if it doesn't work. */
1819 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1820 &ecs->stop_func_start, &ecs->stop_func_end);
1821 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1822 ecs->another_trap = 0;
1823 bpstat_clear (&stop_bpstat);
1824 stop_step = 0;
1825 stop_stack_dummy = 0;
1826 stop_print_frame = 1;
1827 ecs->random_signal = 0;
1828 stopped_by_random_signal = 0;
1829
1830 if (stop_signal == TARGET_SIGNAL_TRAP
1831 && trap_expected
1832 && gdbarch_single_step_through_delay_p (current_gdbarch)
1833 && currently_stepping (ecs))
1834 {
1835 /* We're trying to step of a breakpoint. Turns out that we're
1836 also on an instruction that needs to be stepped multiple
1837 times before it's been fully executing. E.g., architectures
1838 with a delay slot. It needs to be stepped twice, once for
1839 the instruction and once for the delay slot. */
1840 int step_through_delay
1841 = gdbarch_single_step_through_delay (current_gdbarch,
1842 get_current_frame ());
1843 if (debug_infrun && step_through_delay)
1844 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1845 if (step_range_end == 0 && step_through_delay)
1846 {
1847 /* The user issued a continue when stopped at a breakpoint.
1848 Set up for another trap and get out of here. */
1849 ecs->another_trap = 1;
1850 keep_going (ecs);
1851 return;
1852 }
1853 else if (step_through_delay)
1854 {
1855 /* The user issued a step when stopped at a breakpoint.
1856 Maybe we should stop, maybe we should not - the delay
1857 slot *might* correspond to a line of source. In any
1858 case, don't decide that here, just set ecs->another_trap,
1859 making sure we single-step again before breakpoints are
1860 re-inserted. */
1861 ecs->another_trap = 1;
1862 }
1863 }
1864
1865 /* Look at the cause of the stop, and decide what to do.
1866 The alternatives are:
1867 1) break; to really stop and return to the debugger,
1868 2) drop through to start up again
1869 (set ecs->another_trap to 1 to single step once)
1870 3) set ecs->random_signal to 1, and the decision between 1 and 2
1871 will be made according to the signal handling tables. */
1872
1873 /* First, distinguish signals caused by the debugger from signals
1874 that have to do with the program's own actions. Note that
1875 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1876 on the operating system version. Here we detect when a SIGILL or
1877 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1878 something similar for SIGSEGV, since a SIGSEGV will be generated
1879 when we're trying to execute a breakpoint instruction on a
1880 non-executable stack. This happens for call dummy breakpoints
1881 for architectures like SPARC that place call dummies on the
1882 stack. */
1883
1884 if (stop_signal == TARGET_SIGNAL_TRAP
1885 || (breakpoints_inserted
1886 && (stop_signal == TARGET_SIGNAL_ILL
1887 || stop_signal == TARGET_SIGNAL_SEGV
1888 || stop_signal == TARGET_SIGNAL_EMT))
1889 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1890 {
1891 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1892 {
1893 if (debug_infrun)
1894 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1895 stop_print_frame = 0;
1896 stop_stepping (ecs);
1897 return;
1898 }
1899
1900 /* This is originated from start_remote(), start_inferior() and
1901 shared libraries hook functions. */
1902 if (stop_soon == STOP_QUIETLY)
1903 {
1904 if (debug_infrun)
1905 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1906 stop_stepping (ecs);
1907 return;
1908 }
1909
1910 /* This originates from attach_command(). We need to overwrite
1911 the stop_signal here, because some kernels don't ignore a
1912 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1913 See more comments in inferior.h. */
1914 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1915 {
1916 stop_stepping (ecs);
1917 if (stop_signal == TARGET_SIGNAL_STOP)
1918 stop_signal = TARGET_SIGNAL_0;
1919 return;
1920 }
1921
1922 /* Don't even think about breakpoints if just proceeded over a
1923 breakpoint. */
1924 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1925 {
1926 if (debug_infrun)
1927 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1928 bpstat_clear (&stop_bpstat);
1929 }
1930 else
1931 {
1932 /* See if there is a breakpoint at the current PC. */
1933 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1934 stopped_by_watchpoint);
1935
1936 /* Following in case break condition called a
1937 function. */
1938 stop_print_frame = 1;
1939 }
1940
1941 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1942 at one stage in the past included checks for an inferior
1943 function call's call dummy's return breakpoint. The original
1944 comment, that went with the test, read:
1945
1946 ``End of a stack dummy. Some systems (e.g. Sony news) give
1947 another signal besides SIGTRAP, so check here as well as
1948 above.''
1949
1950 If someone ever tries to get get call dummys on a
1951 non-executable stack to work (where the target would stop
1952 with something like a SIGSEGV), then those tests might need
1953 to be re-instated. Given, however, that the tests were only
1954 enabled when momentary breakpoints were not being used, I
1955 suspect that it won't be the case.
1956
1957 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1958 be necessary for call dummies on a non-executable stack on
1959 SPARC. */
1960
1961 if (stop_signal == TARGET_SIGNAL_TRAP)
1962 ecs->random_signal
1963 = !(bpstat_explains_signal (stop_bpstat)
1964 || trap_expected
1965 || (step_range_end && step_resume_breakpoint == NULL));
1966 else
1967 {
1968 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1969 if (!ecs->random_signal)
1970 stop_signal = TARGET_SIGNAL_TRAP;
1971 }
1972 }
1973
1974 /* When we reach this point, we've pretty much decided
1975 that the reason for stopping must've been a random
1976 (unexpected) signal. */
1977
1978 else
1979 ecs->random_signal = 1;
1980
1981 process_event_stop_test:
1982 /* For the program's own signals, act according to
1983 the signal handling tables. */
1984
1985 if (ecs->random_signal)
1986 {
1987 /* Signal not for debugging purposes. */
1988 int printed = 0;
1989
1990 if (debug_infrun)
1991 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1992
1993 stopped_by_random_signal = 1;
1994
1995 if (signal_print[stop_signal])
1996 {
1997 printed = 1;
1998 target_terminal_ours_for_output ();
1999 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2000 }
2001 if (signal_stop[stop_signal])
2002 {
2003 stop_stepping (ecs);
2004 return;
2005 }
2006 /* If not going to stop, give terminal back
2007 if we took it away. */
2008 else if (printed)
2009 target_terminal_inferior ();
2010
2011 /* Clear the signal if it should not be passed. */
2012 if (signal_program[stop_signal] == 0)
2013 stop_signal = TARGET_SIGNAL_0;
2014
2015 if (prev_pc == read_pc ()
2016 && !breakpoints_inserted
2017 && breakpoint_here_p (read_pc ())
2018 && step_resume_breakpoint == NULL)
2019 {
2020 /* We were just starting a new sequence, attempting to
2021 single-step off of a breakpoint and expecting a SIGTRAP.
2022 Intead this signal arrives. This signal will take us out
2023 of the stepping range so GDB needs to remember to, when
2024 the signal handler returns, resume stepping off that
2025 breakpoint. */
2026 /* To simplify things, "continue" is forced to use the same
2027 code paths as single-step - set a breakpoint at the
2028 signal return address and then, once hit, step off that
2029 breakpoint. */
2030 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2031 ecs->step_after_step_resume_breakpoint = 1;
2032 keep_going (ecs);
2033 return;
2034 }
2035
2036 if (step_range_end != 0
2037 && stop_signal != TARGET_SIGNAL_0
2038 && stop_pc >= step_range_start && stop_pc < step_range_end
2039 && frame_id_eq (get_frame_id (get_current_frame ()),
2040 step_frame_id)
2041 && step_resume_breakpoint == NULL)
2042 {
2043 /* The inferior is about to take a signal that will take it
2044 out of the single step range. Set a breakpoint at the
2045 current PC (which is presumably where the signal handler
2046 will eventually return) and then allow the inferior to
2047 run free.
2048
2049 Note that this is only needed for a signal delivered
2050 while in the single-step range. Nested signals aren't a
2051 problem as they eventually all return. */
2052 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2053 keep_going (ecs);
2054 return;
2055 }
2056
2057 /* Note: step_resume_breakpoint may be non-NULL. This occures
2058 when either there's a nested signal, or when there's a
2059 pending signal enabled just as the signal handler returns
2060 (leaving the inferior at the step-resume-breakpoint without
2061 actually executing it). Either way continue until the
2062 breakpoint is really hit. */
2063 keep_going (ecs);
2064 return;
2065 }
2066
2067 /* Handle cases caused by hitting a breakpoint. */
2068 {
2069 CORE_ADDR jmp_buf_pc;
2070 struct bpstat_what what;
2071
2072 what = bpstat_what (stop_bpstat);
2073
2074 if (what.call_dummy)
2075 {
2076 stop_stack_dummy = 1;
2077 }
2078
2079 switch (what.main_action)
2080 {
2081 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2082 /* If we hit the breakpoint at longjmp, disable it for the
2083 duration of this command. Then, install a temporary
2084 breakpoint at the target of the jmp_buf. */
2085 if (debug_infrun)
2086 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2087 disable_longjmp_breakpoint ();
2088 remove_breakpoints ();
2089 breakpoints_inserted = 0;
2090 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2091 {
2092 keep_going (ecs);
2093 return;
2094 }
2095
2096 /* Need to blow away step-resume breakpoint, as it
2097 interferes with us */
2098 if (step_resume_breakpoint != NULL)
2099 {
2100 delete_step_resume_breakpoint (&step_resume_breakpoint);
2101 }
2102
2103 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2104 ecs->handling_longjmp = 1; /* FIXME */
2105 keep_going (ecs);
2106 return;
2107
2108 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2109 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2110 if (debug_infrun)
2111 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2112 remove_breakpoints ();
2113 breakpoints_inserted = 0;
2114 disable_longjmp_breakpoint ();
2115 ecs->handling_longjmp = 0; /* FIXME */
2116 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2117 break;
2118 /* else fallthrough */
2119
2120 case BPSTAT_WHAT_SINGLE:
2121 if (debug_infrun)
2122 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2123 if (breakpoints_inserted)
2124 remove_breakpoints ();
2125 breakpoints_inserted = 0;
2126 ecs->another_trap = 1;
2127 /* Still need to check other stuff, at least the case
2128 where we are stepping and step out of the right range. */
2129 break;
2130
2131 case BPSTAT_WHAT_STOP_NOISY:
2132 if (debug_infrun)
2133 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2134 stop_print_frame = 1;
2135
2136 /* We are about to nuke the step_resume_breakpointt via the
2137 cleanup chain, so no need to worry about it here. */
2138
2139 stop_stepping (ecs);
2140 return;
2141
2142 case BPSTAT_WHAT_STOP_SILENT:
2143 if (debug_infrun)
2144 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2145 stop_print_frame = 0;
2146
2147 /* We are about to nuke the step_resume_breakpoin via the
2148 cleanup chain, so no need to worry about it here. */
2149
2150 stop_stepping (ecs);
2151 return;
2152
2153 case BPSTAT_WHAT_STEP_RESUME:
2154 /* This proably demands a more elegant solution, but, yeah
2155 right...
2156
2157 This function's use of the simple variable
2158 step_resume_breakpoint doesn't seem to accomodate
2159 simultaneously active step-resume bp's, although the
2160 breakpoint list certainly can.
2161
2162 If we reach here and step_resume_breakpoint is already
2163 NULL, then apparently we have multiple active
2164 step-resume bp's. We'll just delete the breakpoint we
2165 stopped at, and carry on.
2166
2167 Correction: what the code currently does is delete a
2168 step-resume bp, but it makes no effort to ensure that
2169 the one deleted is the one currently stopped at. MVS */
2170
2171 if (debug_infrun)
2172 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2173
2174 if (step_resume_breakpoint == NULL)
2175 {
2176 step_resume_breakpoint =
2177 bpstat_find_step_resume_breakpoint (stop_bpstat);
2178 }
2179 delete_step_resume_breakpoint (&step_resume_breakpoint);
2180 if (ecs->step_after_step_resume_breakpoint)
2181 {
2182 /* Back when the step-resume breakpoint was inserted, we
2183 were trying to single-step off a breakpoint. Go back
2184 to doing that. */
2185 ecs->step_after_step_resume_breakpoint = 0;
2186 remove_breakpoints ();
2187 breakpoints_inserted = 0;
2188 ecs->another_trap = 1;
2189 keep_going (ecs);
2190 return;
2191 }
2192 break;
2193
2194 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2195 if (debug_infrun)
2196 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_THROUGH_SIGTRAMP\n");
2197 /* If were waiting for a trap, hitting the step_resume_break
2198 doesn't count as getting it. */
2199 if (trap_expected)
2200 ecs->another_trap = 1;
2201 break;
2202
2203 case BPSTAT_WHAT_CHECK_SHLIBS:
2204 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2205 {
2206 if (debug_infrun)
2207 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2208 /* Remove breakpoints, we eventually want to step over the
2209 shlib event breakpoint, and SOLIB_ADD might adjust
2210 breakpoint addresses via breakpoint_re_set. */
2211 if (breakpoints_inserted)
2212 remove_breakpoints ();
2213 breakpoints_inserted = 0;
2214
2215 /* Check for any newly added shared libraries if we're
2216 supposed to be adding them automatically. Switch
2217 terminal for any messages produced by
2218 breakpoint_re_set. */
2219 target_terminal_ours_for_output ();
2220 /* NOTE: cagney/2003-11-25: Make certain that the target
2221 stack's section table is kept up-to-date. Architectures,
2222 (e.g., PPC64), use the section table to perform
2223 operations such as address => section name and hence
2224 require the table to contain all sections (including
2225 those found in shared libraries). */
2226 /* NOTE: cagney/2003-11-25: Pass current_target and not
2227 exec_ops to SOLIB_ADD. This is because current GDB is
2228 only tooled to propagate section_table changes out from
2229 the "current_target" (see target_resize_to_sections), and
2230 not up from the exec stratum. This, of course, isn't
2231 right. "infrun.c" should only interact with the
2232 exec/process stratum, instead relying on the target stack
2233 to propagate relevant changes (stop, section table
2234 changed, ...) up to other layers. */
2235 #ifdef SOLIB_ADD
2236 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2237 #else
2238 solib_add (NULL, 0, &current_target, auto_solib_add);
2239 #endif
2240 target_terminal_inferior ();
2241
2242 /* Try to reenable shared library breakpoints, additional
2243 code segments in shared libraries might be mapped in now. */
2244 re_enable_breakpoints_in_shlibs ();
2245
2246 /* If requested, stop when the dynamic linker notifies
2247 gdb of events. This allows the user to get control
2248 and place breakpoints in initializer routines for
2249 dynamically loaded objects (among other things). */
2250 if (stop_on_solib_events || stop_stack_dummy)
2251 {
2252 stop_stepping (ecs);
2253 return;
2254 }
2255
2256 /* If we stopped due to an explicit catchpoint, then the
2257 (see above) call to SOLIB_ADD pulled in any symbols
2258 from a newly-loaded library, if appropriate.
2259
2260 We do want the inferior to stop, but not where it is
2261 now, which is in the dynamic linker callback. Rather,
2262 we would like it stop in the user's program, just after
2263 the call that caused this catchpoint to trigger. That
2264 gives the user a more useful vantage from which to
2265 examine their program's state. */
2266 else if (what.main_action
2267 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2268 {
2269 /* ??rehrauer: If I could figure out how to get the
2270 right return PC from here, we could just set a temp
2271 breakpoint and resume. I'm not sure we can without
2272 cracking open the dld's shared libraries and sniffing
2273 their unwind tables and text/data ranges, and that's
2274 not a terribly portable notion.
2275
2276 Until that time, we must step the inferior out of the
2277 dld callback, and also out of the dld itself (and any
2278 code or stubs in libdld.sl, such as "shl_load" and
2279 friends) until we reach non-dld code. At that point,
2280 we can stop stepping. */
2281 bpstat_get_triggered_catchpoints (stop_bpstat,
2282 &ecs->
2283 stepping_through_solib_catchpoints);
2284 ecs->stepping_through_solib_after_catch = 1;
2285
2286 /* Be sure to lift all breakpoints, so the inferior does
2287 actually step past this point... */
2288 ecs->another_trap = 1;
2289 break;
2290 }
2291 else
2292 {
2293 /* We want to step over this breakpoint, then keep going. */
2294 ecs->another_trap = 1;
2295 break;
2296 }
2297 }
2298 break;
2299
2300 case BPSTAT_WHAT_LAST:
2301 /* Not a real code, but listed here to shut up gcc -Wall. */
2302
2303 case BPSTAT_WHAT_KEEP_CHECKING:
2304 break;
2305 }
2306 }
2307
2308 /* We come here if we hit a breakpoint but should not
2309 stop for it. Possibly we also were stepping
2310 and should stop for that. So fall through and
2311 test for stepping. But, if not stepping,
2312 do not stop. */
2313
2314 /* Are we stepping to get the inferior out of the dynamic linker's
2315 hook (and possibly the dld itself) after catching a shlib
2316 event? */
2317 if (ecs->stepping_through_solib_after_catch)
2318 {
2319 #if defined(SOLIB_ADD)
2320 /* Have we reached our destination? If not, keep going. */
2321 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2322 {
2323 if (debug_infrun)
2324 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2325 ecs->another_trap = 1;
2326 keep_going (ecs);
2327 return;
2328 }
2329 #endif
2330 if (debug_infrun)
2331 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2332 /* Else, stop and report the catchpoint(s) whose triggering
2333 caused us to begin stepping. */
2334 ecs->stepping_through_solib_after_catch = 0;
2335 bpstat_clear (&stop_bpstat);
2336 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2337 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2338 stop_print_frame = 1;
2339 stop_stepping (ecs);
2340 return;
2341 }
2342
2343 if (step_resume_breakpoint)
2344 {
2345 if (debug_infrun)
2346 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
2347
2348 /* Having a step-resume breakpoint overrides anything
2349 else having to do with stepping commands until
2350 that breakpoint is reached. */
2351 keep_going (ecs);
2352 return;
2353 }
2354
2355 if (step_range_end == 0)
2356 {
2357 if (debug_infrun)
2358 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2359 /* Likewise if we aren't even stepping. */
2360 keep_going (ecs);
2361 return;
2362 }
2363
2364 /* If stepping through a line, keep going if still within it.
2365
2366 Note that step_range_end is the address of the first instruction
2367 beyond the step range, and NOT the address of the last instruction
2368 within it! */
2369 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2370 {
2371 if (debug_infrun)
2372 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2373 paddr_nz (step_range_start),
2374 paddr_nz (step_range_end));
2375 keep_going (ecs);
2376 return;
2377 }
2378
2379 /* We stepped out of the stepping range. */
2380
2381 /* If we are stepping at the source level and entered the runtime
2382 loader dynamic symbol resolution code, we keep on single stepping
2383 until we exit the run time loader code and reach the callee's
2384 address. */
2385 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2386 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2387 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2388 #else
2389 && in_solib_dynsym_resolve_code (stop_pc)
2390 #endif
2391 )
2392 {
2393 CORE_ADDR pc_after_resolver =
2394 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2395
2396 if (debug_infrun)
2397 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2398
2399 if (pc_after_resolver)
2400 {
2401 /* Set up a step-resume breakpoint at the address
2402 indicated by SKIP_SOLIB_RESOLVER. */
2403 struct symtab_and_line sr_sal;
2404 init_sal (&sr_sal);
2405 sr_sal.pc = pc_after_resolver;
2406
2407 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2408 }
2409
2410 keep_going (ecs);
2411 return;
2412 }
2413
2414 if (step_range_end != 1
2415 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2416 || step_over_calls == STEP_OVER_ALL)
2417 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2418 {
2419 if (debug_infrun)
2420 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2421 /* The inferior, while doing a "step" or "next", has ended up in
2422 a signal trampoline (either by a signal being delivered or by
2423 the signal handler returning). Just single-step until the
2424 inferior leaves the trampoline (either by calling the handler
2425 or returning). */
2426 keep_going (ecs);
2427 return;
2428 }
2429
2430 /* Check for subroutine calls. The check for the current frame
2431 equalling the step ID is not necessary - the check of the
2432 previous frame's ID is sufficient - but it is a common case and
2433 cheaper than checking the previous frame's ID.
2434
2435 NOTE: frame_id_eq will never report two invalid frame IDs as
2436 being equal, so to get into this block, both the current and
2437 previous frame must have valid frame IDs. */
2438 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2439 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2440 {
2441 CORE_ADDR real_stop_pc;
2442
2443 if (debug_infrun)
2444 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2445
2446 if ((step_over_calls == STEP_OVER_NONE)
2447 || ((step_range_end == 1)
2448 && in_prologue (prev_pc, ecs->stop_func_start)))
2449 {
2450 /* I presume that step_over_calls is only 0 when we're
2451 supposed to be stepping at the assembly language level
2452 ("stepi"). Just stop. */
2453 /* Also, maybe we just did a "nexti" inside a prolog, so we
2454 thought it was a subroutine call but it was not. Stop as
2455 well. FENN */
2456 stop_step = 1;
2457 print_stop_reason (END_STEPPING_RANGE, 0);
2458 stop_stepping (ecs);
2459 return;
2460 }
2461
2462 if (step_over_calls == STEP_OVER_ALL)
2463 {
2464 /* We're doing a "next", set a breakpoint at callee's return
2465 address (the address at which the caller will
2466 resume). */
2467 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2468 keep_going (ecs);
2469 return;
2470 }
2471
2472 /* If we are in a function call trampoline (a stub between the
2473 calling routine and the real function), locate the real
2474 function. That's what tells us (a) whether we want to step
2475 into it at all, and (b) what prologue we want to run to the
2476 end of, if we do step into it. */
2477 real_stop_pc = skip_language_trampoline (stop_pc);
2478 if (real_stop_pc == 0)
2479 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2480 if (real_stop_pc != 0)
2481 ecs->stop_func_start = real_stop_pc;
2482
2483 if (
2484 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2485 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2486 #else
2487 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2488 #endif
2489 )
2490 {
2491 struct symtab_and_line sr_sal;
2492 init_sal (&sr_sal);
2493 sr_sal.pc = ecs->stop_func_start;
2494
2495 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2496 keep_going (ecs);
2497 return;
2498 }
2499
2500 /* If we have line number information for the function we are
2501 thinking of stepping into, step into it.
2502
2503 If there are several symtabs at that PC (e.g. with include
2504 files), just want to know whether *any* of them have line
2505 numbers. find_pc_line handles this. */
2506 {
2507 struct symtab_and_line tmp_sal;
2508
2509 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2510 if (tmp_sal.line != 0)
2511 {
2512 step_into_function (ecs);
2513 return;
2514 }
2515 }
2516
2517 /* If we have no line number and the step-stop-if-no-debug is
2518 set, we stop the step so that the user has a chance to switch
2519 in assembly mode. */
2520 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2521 {
2522 stop_step = 1;
2523 print_stop_reason (END_STEPPING_RANGE, 0);
2524 stop_stepping (ecs);
2525 return;
2526 }
2527
2528 /* Set a breakpoint at callee's return address (the address at
2529 which the caller will resume). */
2530 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2531 keep_going (ecs);
2532 return;
2533 }
2534
2535 /* If we're in the return path from a shared library trampoline,
2536 we want to proceed through the trampoline when stepping. */
2537 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2538 {
2539 /* Determine where this trampoline returns. */
2540 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2541
2542 if (debug_infrun)
2543 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2544
2545 /* Only proceed through if we know where it's going. */
2546 if (real_stop_pc)
2547 {
2548 /* And put the step-breakpoint there and go until there. */
2549 struct symtab_and_line sr_sal;
2550
2551 init_sal (&sr_sal); /* initialize to zeroes */
2552 sr_sal.pc = real_stop_pc;
2553 sr_sal.section = find_pc_overlay (sr_sal.pc);
2554
2555 /* Do not specify what the fp should be when we stop since
2556 on some machines the prologue is where the new fp value
2557 is established. */
2558 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2559
2560 /* Restart without fiddling with the step ranges or
2561 other state. */
2562 keep_going (ecs);
2563 return;
2564 }
2565 }
2566
2567 ecs->sal = find_pc_line (stop_pc, 0);
2568
2569 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2570 the trampoline processing logic, however, there are some trampolines
2571 that have no names, so we should do trampoline handling first. */
2572 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2573 && ecs->stop_func_name == NULL
2574 && ecs->sal.line == 0)
2575 {
2576 if (debug_infrun)
2577 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2578
2579 /* The inferior just stepped into, or returned to, an
2580 undebuggable function (where there is no debugging information
2581 and no line number corresponding to the address where the
2582 inferior stopped). Since we want to skip this kind of code,
2583 we keep going until the inferior returns from this
2584 function - unless the user has asked us not to (via
2585 set step-mode) or we no longer know how to get back
2586 to the call site. */
2587 if (step_stop_if_no_debug
2588 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2589 {
2590 /* If we have no line number and the step-stop-if-no-debug
2591 is set, we stop the step so that the user has a chance to
2592 switch in assembly mode. */
2593 stop_step = 1;
2594 print_stop_reason (END_STEPPING_RANGE, 0);
2595 stop_stepping (ecs);
2596 return;
2597 }
2598 else
2599 {
2600 /* Set a breakpoint at callee's return address (the address
2601 at which the caller will resume). */
2602 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2603 keep_going (ecs);
2604 return;
2605 }
2606 }
2607
2608 if (step_range_end == 1)
2609 {
2610 /* It is stepi or nexti. We always want to stop stepping after
2611 one instruction. */
2612 if (debug_infrun)
2613 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2614 stop_step = 1;
2615 print_stop_reason (END_STEPPING_RANGE, 0);
2616 stop_stepping (ecs);
2617 return;
2618 }
2619
2620 if (ecs->sal.line == 0)
2621 {
2622 /* We have no line number information. That means to stop
2623 stepping (does this always happen right after one instruction,
2624 when we do "s" in a function with no line numbers,
2625 or can this happen as a result of a return or longjmp?). */
2626 if (debug_infrun)
2627 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2628 stop_step = 1;
2629 print_stop_reason (END_STEPPING_RANGE, 0);
2630 stop_stepping (ecs);
2631 return;
2632 }
2633
2634 if ((stop_pc == ecs->sal.pc)
2635 && (ecs->current_line != ecs->sal.line
2636 || ecs->current_symtab != ecs->sal.symtab))
2637 {
2638 /* We are at the start of a different line. So stop. Note that
2639 we don't stop if we step into the middle of a different line.
2640 That is said to make things like for (;;) statements work
2641 better. */
2642 if (debug_infrun)
2643 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2644 stop_step = 1;
2645 print_stop_reason (END_STEPPING_RANGE, 0);
2646 stop_stepping (ecs);
2647 return;
2648 }
2649
2650 /* We aren't done stepping.
2651
2652 Optimize by setting the stepping range to the line.
2653 (We might not be in the original line, but if we entered a
2654 new line in mid-statement, we continue stepping. This makes
2655 things like for(;;) statements work better.) */
2656
2657 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2658 {
2659 /* If this is the last line of the function, don't keep stepping
2660 (it would probably step us out of the function).
2661 This is particularly necessary for a one-line function,
2662 in which after skipping the prologue we better stop even though
2663 we will be in mid-line. */
2664 if (debug_infrun)
2665 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2666 stop_step = 1;
2667 print_stop_reason (END_STEPPING_RANGE, 0);
2668 stop_stepping (ecs);
2669 return;
2670 }
2671 step_range_start = ecs->sal.pc;
2672 step_range_end = ecs->sal.end;
2673 step_frame_id = get_frame_id (get_current_frame ());
2674 ecs->current_line = ecs->sal.line;
2675 ecs->current_symtab = ecs->sal.symtab;
2676
2677 /* In the case where we just stepped out of a function into the
2678 middle of a line of the caller, continue stepping, but
2679 step_frame_id must be modified to current frame */
2680 #if 0
2681 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2682 generous. It will trigger on things like a step into a frameless
2683 stackless leaf function. I think the logic should instead look
2684 at the unwound frame ID has that should give a more robust
2685 indication of what happened. */
2686 if (step - ID == current - ID)
2687 still stepping in same function;
2688 else if (step - ID == unwind (current - ID))
2689 stepped into a function;
2690 else
2691 stepped out of a function;
2692 /* Of course this assumes that the frame ID unwind code is robust
2693 and we're willing to introduce frame unwind logic into this
2694 function. Fortunately, those days are nearly upon us. */
2695 #endif
2696 {
2697 struct frame_id current_frame = get_frame_id (get_current_frame ());
2698 if (!(frame_id_inner (current_frame, step_frame_id)))
2699 step_frame_id = current_frame;
2700 }
2701
2702 if (debug_infrun)
2703 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2704 keep_going (ecs);
2705 }
2706
2707 /* Are we in the middle of stepping? */
2708
2709 static int
2710 currently_stepping (struct execution_control_state *ecs)
2711 {
2712 return ((!ecs->handling_longjmp
2713 && ((step_range_end && step_resume_breakpoint == NULL)
2714 || trap_expected))
2715 || ecs->stepping_through_solib_after_catch
2716 || bpstat_should_step ());
2717 }
2718
2719 /* Subroutine call with source code we should not step over. Do step
2720 to the first line of code in it. */
2721
2722 static void
2723 step_into_function (struct execution_control_state *ecs)
2724 {
2725 struct symtab *s;
2726 struct symtab_and_line sr_sal;
2727
2728 s = find_pc_symtab (stop_pc);
2729 if (s && s->language != language_asm)
2730 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2731
2732 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2733 /* Use the step_resume_break to step until the end of the prologue,
2734 even if that involves jumps (as it seems to on the vax under
2735 4.2). */
2736 /* If the prologue ends in the middle of a source line, continue to
2737 the end of that source line (if it is still within the function).
2738 Otherwise, just go to end of prologue. */
2739 if (ecs->sal.end
2740 && ecs->sal.pc != ecs->stop_func_start
2741 && ecs->sal.end < ecs->stop_func_end)
2742 ecs->stop_func_start = ecs->sal.end;
2743
2744 /* Architectures which require breakpoint adjustment might not be able
2745 to place a breakpoint at the computed address. If so, the test
2746 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2747 ecs->stop_func_start to an address at which a breakpoint may be
2748 legitimately placed.
2749
2750 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2751 made, GDB will enter an infinite loop when stepping through
2752 optimized code consisting of VLIW instructions which contain
2753 subinstructions corresponding to different source lines. On
2754 FR-V, it's not permitted to place a breakpoint on any but the
2755 first subinstruction of a VLIW instruction. When a breakpoint is
2756 set, GDB will adjust the breakpoint address to the beginning of
2757 the VLIW instruction. Thus, we need to make the corresponding
2758 adjustment here when computing the stop address. */
2759
2760 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2761 {
2762 ecs->stop_func_start
2763 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2764 ecs->stop_func_start);
2765 }
2766
2767 if (ecs->stop_func_start == stop_pc)
2768 {
2769 /* We are already there: stop now. */
2770 stop_step = 1;
2771 print_stop_reason (END_STEPPING_RANGE, 0);
2772 stop_stepping (ecs);
2773 return;
2774 }
2775 else
2776 {
2777 /* Put the step-breakpoint there and go until there. */
2778 init_sal (&sr_sal); /* initialize to zeroes */
2779 sr_sal.pc = ecs->stop_func_start;
2780 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2781
2782 /* Do not specify what the fp should be when we stop since on
2783 some machines the prologue is where the new fp value is
2784 established. */
2785 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2786
2787 /* And make sure stepping stops right away then. */
2788 step_range_end = step_range_start;
2789 }
2790 keep_going (ecs);
2791 }
2792
2793 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2794 This is used to both functions and to skip over code. */
2795
2796 static void
2797 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2798 struct frame_id sr_id)
2799 {
2800 /* There should never be more than one step-resume breakpoint per
2801 thread, so we should never be setting a new
2802 step_resume_breakpoint when one is already active. */
2803 gdb_assert (step_resume_breakpoint == NULL);
2804 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2805 bp_step_resume);
2806 if (breakpoints_inserted)
2807 insert_breakpoints ();
2808 }
2809
2810 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2811 to skip a potential signal handler.
2812
2813 This is called with the interrupted function's frame. The signal
2814 handler, when it returns, will resume the interrupted function at
2815 RETURN_FRAME.pc. */
2816
2817 static void
2818 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2819 {
2820 struct symtab_and_line sr_sal;
2821
2822 init_sal (&sr_sal); /* initialize to zeros */
2823
2824 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2825 sr_sal.section = find_pc_overlay (sr_sal.pc);
2826
2827 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2828 }
2829
2830 /* Similar to insert_step_resume_breakpoint_at_frame, except
2831 but a breakpoint at the previous frame's PC. This is used to
2832 skip a function after stepping into it (for "next" or if the called
2833 function has no debugging information).
2834
2835 The current function has almost always been reached by single
2836 stepping a call or return instruction. NEXT_FRAME belongs to the
2837 current function, and the breakpoint will be set at the caller's
2838 resume address.
2839
2840 This is a separate function rather than reusing
2841 insert_step_resume_breakpoint_at_frame in order to avoid
2842 get_prev_frame, which may stop prematurely (see the implementation
2843 of frame_unwind_id for an example). */
2844
2845 static void
2846 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2847 {
2848 struct symtab_and_line sr_sal;
2849
2850 /* We shouldn't have gotten here if we don't know where the call site
2851 is. */
2852 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2853
2854 init_sal (&sr_sal); /* initialize to zeros */
2855
2856 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (next_frame));
2857 sr_sal.section = find_pc_overlay (sr_sal.pc);
2858
2859 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2860 }
2861
2862 static void
2863 stop_stepping (struct execution_control_state *ecs)
2864 {
2865 if (debug_infrun)
2866 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2867
2868 /* Let callers know we don't want to wait for the inferior anymore. */
2869 ecs->wait_some_more = 0;
2870 }
2871
2872 /* This function handles various cases where we need to continue
2873 waiting for the inferior. */
2874 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2875
2876 static void
2877 keep_going (struct execution_control_state *ecs)
2878 {
2879 /* Save the pc before execution, to compare with pc after stop. */
2880 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2881
2882 /* If we did not do break;, it means we should keep running the
2883 inferior and not return to debugger. */
2884
2885 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2886 {
2887 /* We took a signal (which we are supposed to pass through to
2888 the inferior, else we'd have done a break above) and we
2889 haven't yet gotten our trap. Simply continue. */
2890 resume (currently_stepping (ecs), stop_signal);
2891 }
2892 else
2893 {
2894 /* Either the trap was not expected, but we are continuing
2895 anyway (the user asked that this signal be passed to the
2896 child)
2897 -- or --
2898 The signal was SIGTRAP, e.g. it was our signal, but we
2899 decided we should resume from it.
2900
2901 We're going to run this baby now! */
2902
2903 if (!breakpoints_inserted && !ecs->another_trap)
2904 {
2905 /* Stop stepping when inserting breakpoints
2906 has failed. */
2907 if (insert_breakpoints () != 0)
2908 {
2909 stop_stepping (ecs);
2910 return;
2911 }
2912 breakpoints_inserted = 1;
2913 }
2914
2915 trap_expected = ecs->another_trap;
2916
2917 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2918 specifies that such a signal should be delivered to the
2919 target program).
2920
2921 Typically, this would occure when a user is debugging a
2922 target monitor on a simulator: the target monitor sets a
2923 breakpoint; the simulator encounters this break-point and
2924 halts the simulation handing control to GDB; GDB, noteing
2925 that the break-point isn't valid, returns control back to the
2926 simulator; the simulator then delivers the hardware
2927 equivalent of a SIGNAL_TRAP to the program being debugged. */
2928
2929 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2930 stop_signal = TARGET_SIGNAL_0;
2931
2932
2933 resume (currently_stepping (ecs), stop_signal);
2934 }
2935
2936 prepare_to_wait (ecs);
2937 }
2938
2939 /* This function normally comes after a resume, before
2940 handle_inferior_event exits. It takes care of any last bits of
2941 housekeeping, and sets the all-important wait_some_more flag. */
2942
2943 static void
2944 prepare_to_wait (struct execution_control_state *ecs)
2945 {
2946 if (debug_infrun)
2947 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2948 if (ecs->infwait_state == infwait_normal_state)
2949 {
2950 overlay_cache_invalid = 1;
2951
2952 /* We have to invalidate the registers BEFORE calling
2953 target_wait because they can be loaded from the target while
2954 in target_wait. This makes remote debugging a bit more
2955 efficient for those targets that provide critical registers
2956 as part of their normal status mechanism. */
2957
2958 registers_changed ();
2959 ecs->waiton_ptid = pid_to_ptid (-1);
2960 ecs->wp = &(ecs->ws);
2961 }
2962 /* This is the old end of the while loop. Let everybody know we
2963 want to wait for the inferior some more and get called again
2964 soon. */
2965 ecs->wait_some_more = 1;
2966 }
2967
2968 /* Print why the inferior has stopped. We always print something when
2969 the inferior exits, or receives a signal. The rest of the cases are
2970 dealt with later on in normal_stop() and print_it_typical(). Ideally
2971 there should be a call to this function from handle_inferior_event()
2972 each time stop_stepping() is called.*/
2973 static void
2974 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2975 {
2976 switch (stop_reason)
2977 {
2978 case END_STEPPING_RANGE:
2979 /* We are done with a step/next/si/ni command. */
2980 /* For now print nothing. */
2981 /* Print a message only if not in the middle of doing a "step n"
2982 operation for n > 1 */
2983 if (!step_multi || !stop_step)
2984 if (ui_out_is_mi_like_p (uiout))
2985 ui_out_field_string
2986 (uiout, "reason",
2987 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2988 break;
2989 case SIGNAL_EXITED:
2990 /* The inferior was terminated by a signal. */
2991 annotate_signalled ();
2992 if (ui_out_is_mi_like_p (uiout))
2993 ui_out_field_string
2994 (uiout, "reason",
2995 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2996 ui_out_text (uiout, "\nProgram terminated with signal ");
2997 annotate_signal_name ();
2998 ui_out_field_string (uiout, "signal-name",
2999 target_signal_to_name (stop_info));
3000 annotate_signal_name_end ();
3001 ui_out_text (uiout, ", ");
3002 annotate_signal_string ();
3003 ui_out_field_string (uiout, "signal-meaning",
3004 target_signal_to_string (stop_info));
3005 annotate_signal_string_end ();
3006 ui_out_text (uiout, ".\n");
3007 ui_out_text (uiout, "The program no longer exists.\n");
3008 break;
3009 case EXITED:
3010 /* The inferior program is finished. */
3011 annotate_exited (stop_info);
3012 if (stop_info)
3013 {
3014 if (ui_out_is_mi_like_p (uiout))
3015 ui_out_field_string (uiout, "reason",
3016 async_reason_lookup (EXEC_ASYNC_EXITED));
3017 ui_out_text (uiout, "\nProgram exited with code ");
3018 ui_out_field_fmt (uiout, "exit-code", "0%o",
3019 (unsigned int) stop_info);
3020 ui_out_text (uiout, ".\n");
3021 }
3022 else
3023 {
3024 if (ui_out_is_mi_like_p (uiout))
3025 ui_out_field_string
3026 (uiout, "reason",
3027 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3028 ui_out_text (uiout, "\nProgram exited normally.\n");
3029 }
3030 /* Support the --return-child-result option. */
3031 return_child_result_value = stop_info;
3032 break;
3033 case SIGNAL_RECEIVED:
3034 /* Signal received. The signal table tells us to print about
3035 it. */
3036 annotate_signal ();
3037 ui_out_text (uiout, "\nProgram received signal ");
3038 annotate_signal_name ();
3039 if (ui_out_is_mi_like_p (uiout))
3040 ui_out_field_string
3041 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3042 ui_out_field_string (uiout, "signal-name",
3043 target_signal_to_name (stop_info));
3044 annotate_signal_name_end ();
3045 ui_out_text (uiout, ", ");
3046 annotate_signal_string ();
3047 ui_out_field_string (uiout, "signal-meaning",
3048 target_signal_to_string (stop_info));
3049 annotate_signal_string_end ();
3050 ui_out_text (uiout, ".\n");
3051 break;
3052 default:
3053 internal_error (__FILE__, __LINE__,
3054 _("print_stop_reason: unrecognized enum value"));
3055 break;
3056 }
3057 }
3058 \f
3059
3060 /* Here to return control to GDB when the inferior stops for real.
3061 Print appropriate messages, remove breakpoints, give terminal our modes.
3062
3063 STOP_PRINT_FRAME nonzero means print the executing frame
3064 (pc, function, args, file, line number and line text).
3065 BREAKPOINTS_FAILED nonzero means stop was due to error
3066 attempting to insert breakpoints. */
3067
3068 void
3069 normal_stop (void)
3070 {
3071 struct target_waitstatus last;
3072 ptid_t last_ptid;
3073
3074 get_last_target_status (&last_ptid, &last);
3075
3076 /* As with the notification of thread events, we want to delay
3077 notifying the user that we've switched thread context until
3078 the inferior actually stops.
3079
3080 There's no point in saying anything if the inferior has exited.
3081 Note that SIGNALLED here means "exited with a signal", not
3082 "received a signal". */
3083 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3084 && target_has_execution
3085 && last.kind != TARGET_WAITKIND_SIGNALLED
3086 && last.kind != TARGET_WAITKIND_EXITED)
3087 {
3088 target_terminal_ours_for_output ();
3089 printf_filtered (_("[Switching to %s]\n"),
3090 target_pid_or_tid_to_str (inferior_ptid));
3091 previous_inferior_ptid = inferior_ptid;
3092 }
3093
3094 /* NOTE drow/2004-01-17: Is this still necessary? */
3095 /* Make sure that the current_frame's pc is correct. This
3096 is a correction for setting up the frame info before doing
3097 DECR_PC_AFTER_BREAK */
3098 if (target_has_execution)
3099 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3100 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3101 frame code to check for this and sort out any resultant mess.
3102 DECR_PC_AFTER_BREAK needs to just go away. */
3103 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3104
3105 if (target_has_execution && breakpoints_inserted)
3106 {
3107 if (remove_breakpoints ())
3108 {
3109 target_terminal_ours_for_output ();
3110 printf_filtered (_("\
3111 Cannot remove breakpoints because program is no longer writable.\n\
3112 It might be running in another process.\n\
3113 Further execution is probably impossible.\n"));
3114 }
3115 }
3116 breakpoints_inserted = 0;
3117
3118 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3119 Delete any breakpoint that is to be deleted at the next stop. */
3120
3121 breakpoint_auto_delete (stop_bpstat);
3122
3123 /* If an auto-display called a function and that got a signal,
3124 delete that auto-display to avoid an infinite recursion. */
3125
3126 if (stopped_by_random_signal)
3127 disable_current_display ();
3128
3129 /* Don't print a message if in the middle of doing a "step n"
3130 operation for n > 1 */
3131 if (step_multi && stop_step)
3132 goto done;
3133
3134 target_terminal_ours ();
3135
3136 /* Set the current source location. This will also happen if we
3137 display the frame below, but the current SAL will be incorrect
3138 during a user hook-stop function. */
3139 if (target_has_stack && !stop_stack_dummy)
3140 set_current_sal_from_frame (get_current_frame (), 1);
3141
3142 /* Look up the hook_stop and run it (CLI internally handles problem
3143 of stop_command's pre-hook not existing). */
3144 if (stop_command)
3145 catch_errors (hook_stop_stub, stop_command,
3146 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3147
3148 if (!target_has_stack)
3149 {
3150
3151 goto done;
3152 }
3153
3154 /* Select innermost stack frame - i.e., current frame is frame 0,
3155 and current location is based on that.
3156 Don't do this on return from a stack dummy routine,
3157 or if the program has exited. */
3158
3159 if (!stop_stack_dummy)
3160 {
3161 select_frame (get_current_frame ());
3162
3163 /* Print current location without a level number, if
3164 we have changed functions or hit a breakpoint.
3165 Print source line if we have one.
3166 bpstat_print() contains the logic deciding in detail
3167 what to print, based on the event(s) that just occurred. */
3168
3169 if (stop_print_frame)
3170 {
3171 int bpstat_ret;
3172 int source_flag;
3173 int do_frame_printing = 1;
3174
3175 bpstat_ret = bpstat_print (stop_bpstat);
3176 switch (bpstat_ret)
3177 {
3178 case PRINT_UNKNOWN:
3179 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3180 (or should) carry around the function and does (or
3181 should) use that when doing a frame comparison. */
3182 if (stop_step
3183 && frame_id_eq (step_frame_id,
3184 get_frame_id (get_current_frame ()))
3185 && step_start_function == find_pc_function (stop_pc))
3186 source_flag = SRC_LINE; /* finished step, just print source line */
3187 else
3188 source_flag = SRC_AND_LOC; /* print location and source line */
3189 break;
3190 case PRINT_SRC_AND_LOC:
3191 source_flag = SRC_AND_LOC; /* print location and source line */
3192 break;
3193 case PRINT_SRC_ONLY:
3194 source_flag = SRC_LINE;
3195 break;
3196 case PRINT_NOTHING:
3197 source_flag = SRC_LINE; /* something bogus */
3198 do_frame_printing = 0;
3199 break;
3200 default:
3201 internal_error (__FILE__, __LINE__, _("Unknown value."));
3202 }
3203 /* For mi, have the same behavior every time we stop:
3204 print everything but the source line. */
3205 if (ui_out_is_mi_like_p (uiout))
3206 source_flag = LOC_AND_ADDRESS;
3207
3208 if (ui_out_is_mi_like_p (uiout))
3209 ui_out_field_int (uiout, "thread-id",
3210 pid_to_thread_id (inferior_ptid));
3211 /* The behavior of this routine with respect to the source
3212 flag is:
3213 SRC_LINE: Print only source line
3214 LOCATION: Print only location
3215 SRC_AND_LOC: Print location and source line */
3216 if (do_frame_printing)
3217 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3218
3219 /* Display the auto-display expressions. */
3220 do_displays ();
3221 }
3222 }
3223
3224 /* Save the function value return registers, if we care.
3225 We might be about to restore their previous contents. */
3226 if (proceed_to_finish)
3227 /* NB: The copy goes through to the target picking up the value of
3228 all the registers. */
3229 regcache_cpy (stop_registers, current_regcache);
3230
3231 if (stop_stack_dummy)
3232 {
3233 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3234 ends with a setting of the current frame, so we can use that
3235 next. */
3236 frame_pop (get_current_frame ());
3237 /* Set stop_pc to what it was before we called the function.
3238 Can't rely on restore_inferior_status because that only gets
3239 called if we don't stop in the called function. */
3240 stop_pc = read_pc ();
3241 select_frame (get_current_frame ());
3242 }
3243
3244 done:
3245 annotate_stopped ();
3246 observer_notify_normal_stop (stop_bpstat);
3247 }
3248
3249 static int
3250 hook_stop_stub (void *cmd)
3251 {
3252 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3253 return (0);
3254 }
3255 \f
3256 int
3257 signal_stop_state (int signo)
3258 {
3259 return signal_stop[signo];
3260 }
3261
3262 int
3263 signal_print_state (int signo)
3264 {
3265 return signal_print[signo];
3266 }
3267
3268 int
3269 signal_pass_state (int signo)
3270 {
3271 return signal_program[signo];
3272 }
3273
3274 int
3275 signal_stop_update (int signo, int state)
3276 {
3277 int ret = signal_stop[signo];
3278 signal_stop[signo] = state;
3279 return ret;
3280 }
3281
3282 int
3283 signal_print_update (int signo, int state)
3284 {
3285 int ret = signal_print[signo];
3286 signal_print[signo] = state;
3287 return ret;
3288 }
3289
3290 int
3291 signal_pass_update (int signo, int state)
3292 {
3293 int ret = signal_program[signo];
3294 signal_program[signo] = state;
3295 return ret;
3296 }
3297
3298 static void
3299 sig_print_header (void)
3300 {
3301 printf_filtered (_("\
3302 Signal Stop\tPrint\tPass to program\tDescription\n"));
3303 }
3304
3305 static void
3306 sig_print_info (enum target_signal oursig)
3307 {
3308 char *name = target_signal_to_name (oursig);
3309 int name_padding = 13 - strlen (name);
3310
3311 if (name_padding <= 0)
3312 name_padding = 0;
3313
3314 printf_filtered ("%s", name);
3315 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3316 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3317 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3318 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3319 printf_filtered ("%s\n", target_signal_to_string (oursig));
3320 }
3321
3322 /* Specify how various signals in the inferior should be handled. */
3323
3324 static void
3325 handle_command (char *args, int from_tty)
3326 {
3327 char **argv;
3328 int digits, wordlen;
3329 int sigfirst, signum, siglast;
3330 enum target_signal oursig;
3331 int allsigs;
3332 int nsigs;
3333 unsigned char *sigs;
3334 struct cleanup *old_chain;
3335
3336 if (args == NULL)
3337 {
3338 error_no_arg (_("signal to handle"));
3339 }
3340
3341 /* Allocate and zero an array of flags for which signals to handle. */
3342
3343 nsigs = (int) TARGET_SIGNAL_LAST;
3344 sigs = (unsigned char *) alloca (nsigs);
3345 memset (sigs, 0, nsigs);
3346
3347 /* Break the command line up into args. */
3348
3349 argv = buildargv (args);
3350 if (argv == NULL)
3351 {
3352 nomem (0);
3353 }
3354 old_chain = make_cleanup_freeargv (argv);
3355
3356 /* Walk through the args, looking for signal oursigs, signal names, and
3357 actions. Signal numbers and signal names may be interspersed with
3358 actions, with the actions being performed for all signals cumulatively
3359 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3360
3361 while (*argv != NULL)
3362 {
3363 wordlen = strlen (*argv);
3364 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3365 {;
3366 }
3367 allsigs = 0;
3368 sigfirst = siglast = -1;
3369
3370 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3371 {
3372 /* Apply action to all signals except those used by the
3373 debugger. Silently skip those. */
3374 allsigs = 1;
3375 sigfirst = 0;
3376 siglast = nsigs - 1;
3377 }
3378 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3379 {
3380 SET_SIGS (nsigs, sigs, signal_stop);
3381 SET_SIGS (nsigs, sigs, signal_print);
3382 }
3383 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3384 {
3385 UNSET_SIGS (nsigs, sigs, signal_program);
3386 }
3387 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3388 {
3389 SET_SIGS (nsigs, sigs, signal_print);
3390 }
3391 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3392 {
3393 SET_SIGS (nsigs, sigs, signal_program);
3394 }
3395 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3396 {
3397 UNSET_SIGS (nsigs, sigs, signal_stop);
3398 }
3399 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3400 {
3401 SET_SIGS (nsigs, sigs, signal_program);
3402 }
3403 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3404 {
3405 UNSET_SIGS (nsigs, sigs, signal_print);
3406 UNSET_SIGS (nsigs, sigs, signal_stop);
3407 }
3408 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3409 {
3410 UNSET_SIGS (nsigs, sigs, signal_program);
3411 }
3412 else if (digits > 0)
3413 {
3414 /* It is numeric. The numeric signal refers to our own
3415 internal signal numbering from target.h, not to host/target
3416 signal number. This is a feature; users really should be
3417 using symbolic names anyway, and the common ones like
3418 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3419
3420 sigfirst = siglast = (int)
3421 target_signal_from_command (atoi (*argv));
3422 if ((*argv)[digits] == '-')
3423 {
3424 siglast = (int)
3425 target_signal_from_command (atoi ((*argv) + digits + 1));
3426 }
3427 if (sigfirst > siglast)
3428 {
3429 /* Bet he didn't figure we'd think of this case... */
3430 signum = sigfirst;
3431 sigfirst = siglast;
3432 siglast = signum;
3433 }
3434 }
3435 else
3436 {
3437 oursig = target_signal_from_name (*argv);
3438 if (oursig != TARGET_SIGNAL_UNKNOWN)
3439 {
3440 sigfirst = siglast = (int) oursig;
3441 }
3442 else
3443 {
3444 /* Not a number and not a recognized flag word => complain. */
3445 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3446 }
3447 }
3448
3449 /* If any signal numbers or symbol names were found, set flags for
3450 which signals to apply actions to. */
3451
3452 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3453 {
3454 switch ((enum target_signal) signum)
3455 {
3456 case TARGET_SIGNAL_TRAP:
3457 case TARGET_SIGNAL_INT:
3458 if (!allsigs && !sigs[signum])
3459 {
3460 if (query ("%s is used by the debugger.\n\
3461 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3462 {
3463 sigs[signum] = 1;
3464 }
3465 else
3466 {
3467 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3468 gdb_flush (gdb_stdout);
3469 }
3470 }
3471 break;
3472 case TARGET_SIGNAL_0:
3473 case TARGET_SIGNAL_DEFAULT:
3474 case TARGET_SIGNAL_UNKNOWN:
3475 /* Make sure that "all" doesn't print these. */
3476 break;
3477 default:
3478 sigs[signum] = 1;
3479 break;
3480 }
3481 }
3482
3483 argv++;
3484 }
3485
3486 target_notice_signals (inferior_ptid);
3487
3488 if (from_tty)
3489 {
3490 /* Show the results. */
3491 sig_print_header ();
3492 for (signum = 0; signum < nsigs; signum++)
3493 {
3494 if (sigs[signum])
3495 {
3496 sig_print_info (signum);
3497 }
3498 }
3499 }
3500
3501 do_cleanups (old_chain);
3502 }
3503
3504 static void
3505 xdb_handle_command (char *args, int from_tty)
3506 {
3507 char **argv;
3508 struct cleanup *old_chain;
3509
3510 /* Break the command line up into args. */
3511
3512 argv = buildargv (args);
3513 if (argv == NULL)
3514 {
3515 nomem (0);
3516 }
3517 old_chain = make_cleanup_freeargv (argv);
3518 if (argv[1] != (char *) NULL)
3519 {
3520 char *argBuf;
3521 int bufLen;
3522
3523 bufLen = strlen (argv[0]) + 20;
3524 argBuf = (char *) xmalloc (bufLen);
3525 if (argBuf)
3526 {
3527 int validFlag = 1;
3528 enum target_signal oursig;
3529
3530 oursig = target_signal_from_name (argv[0]);
3531 memset (argBuf, 0, bufLen);
3532 if (strcmp (argv[1], "Q") == 0)
3533 sprintf (argBuf, "%s %s", argv[0], "noprint");
3534 else
3535 {
3536 if (strcmp (argv[1], "s") == 0)
3537 {
3538 if (!signal_stop[oursig])
3539 sprintf (argBuf, "%s %s", argv[0], "stop");
3540 else
3541 sprintf (argBuf, "%s %s", argv[0], "nostop");
3542 }
3543 else if (strcmp (argv[1], "i") == 0)
3544 {
3545 if (!signal_program[oursig])
3546 sprintf (argBuf, "%s %s", argv[0], "pass");
3547 else
3548 sprintf (argBuf, "%s %s", argv[0], "nopass");
3549 }
3550 else if (strcmp (argv[1], "r") == 0)
3551 {
3552 if (!signal_print[oursig])
3553 sprintf (argBuf, "%s %s", argv[0], "print");
3554 else
3555 sprintf (argBuf, "%s %s", argv[0], "noprint");
3556 }
3557 else
3558 validFlag = 0;
3559 }
3560 if (validFlag)
3561 handle_command (argBuf, from_tty);
3562 else
3563 printf_filtered (_("Invalid signal handling flag.\n"));
3564 if (argBuf)
3565 xfree (argBuf);
3566 }
3567 }
3568 do_cleanups (old_chain);
3569 }
3570
3571 /* Print current contents of the tables set by the handle command.
3572 It is possible we should just be printing signals actually used
3573 by the current target (but for things to work right when switching
3574 targets, all signals should be in the signal tables). */
3575
3576 static void
3577 signals_info (char *signum_exp, int from_tty)
3578 {
3579 enum target_signal oursig;
3580 sig_print_header ();
3581
3582 if (signum_exp)
3583 {
3584 /* First see if this is a symbol name. */
3585 oursig = target_signal_from_name (signum_exp);
3586 if (oursig == TARGET_SIGNAL_UNKNOWN)
3587 {
3588 /* No, try numeric. */
3589 oursig =
3590 target_signal_from_command (parse_and_eval_long (signum_exp));
3591 }
3592 sig_print_info (oursig);
3593 return;
3594 }
3595
3596 printf_filtered ("\n");
3597 /* These ugly casts brought to you by the native VAX compiler. */
3598 for (oursig = TARGET_SIGNAL_FIRST;
3599 (int) oursig < (int) TARGET_SIGNAL_LAST;
3600 oursig = (enum target_signal) ((int) oursig + 1))
3601 {
3602 QUIT;
3603
3604 if (oursig != TARGET_SIGNAL_UNKNOWN
3605 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3606 sig_print_info (oursig);
3607 }
3608
3609 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3610 }
3611 \f
3612 struct inferior_status
3613 {
3614 enum target_signal stop_signal;
3615 CORE_ADDR stop_pc;
3616 bpstat stop_bpstat;
3617 int stop_step;
3618 int stop_stack_dummy;
3619 int stopped_by_random_signal;
3620 int trap_expected;
3621 CORE_ADDR step_range_start;
3622 CORE_ADDR step_range_end;
3623 struct frame_id step_frame_id;
3624 enum step_over_calls_kind step_over_calls;
3625 CORE_ADDR step_resume_break_address;
3626 int stop_after_trap;
3627 int stop_soon;
3628 struct regcache *stop_registers;
3629
3630 /* These are here because if call_function_by_hand has written some
3631 registers and then decides to call error(), we better not have changed
3632 any registers. */
3633 struct regcache *registers;
3634
3635 /* A frame unique identifier. */
3636 struct frame_id selected_frame_id;
3637
3638 int breakpoint_proceeded;
3639 int restore_stack_info;
3640 int proceed_to_finish;
3641 };
3642
3643 void
3644 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3645 LONGEST val)
3646 {
3647 int size = register_size (current_gdbarch, regno);
3648 void *buf = alloca (size);
3649 store_signed_integer (buf, size, val);
3650 regcache_raw_write (inf_status->registers, regno, buf);
3651 }
3652
3653 /* Save all of the information associated with the inferior<==>gdb
3654 connection. INF_STATUS is a pointer to a "struct inferior_status"
3655 (defined in inferior.h). */
3656
3657 struct inferior_status *
3658 save_inferior_status (int restore_stack_info)
3659 {
3660 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3661
3662 inf_status->stop_signal = stop_signal;
3663 inf_status->stop_pc = stop_pc;
3664 inf_status->stop_step = stop_step;
3665 inf_status->stop_stack_dummy = stop_stack_dummy;
3666 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3667 inf_status->trap_expected = trap_expected;
3668 inf_status->step_range_start = step_range_start;
3669 inf_status->step_range_end = step_range_end;
3670 inf_status->step_frame_id = step_frame_id;
3671 inf_status->step_over_calls = step_over_calls;
3672 inf_status->stop_after_trap = stop_after_trap;
3673 inf_status->stop_soon = stop_soon;
3674 /* Save original bpstat chain here; replace it with copy of chain.
3675 If caller's caller is walking the chain, they'll be happier if we
3676 hand them back the original chain when restore_inferior_status is
3677 called. */
3678 inf_status->stop_bpstat = stop_bpstat;
3679 stop_bpstat = bpstat_copy (stop_bpstat);
3680 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3681 inf_status->restore_stack_info = restore_stack_info;
3682 inf_status->proceed_to_finish = proceed_to_finish;
3683
3684 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3685
3686 inf_status->registers = regcache_dup (current_regcache);
3687
3688 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3689 return inf_status;
3690 }
3691
3692 static int
3693 restore_selected_frame (void *args)
3694 {
3695 struct frame_id *fid = (struct frame_id *) args;
3696 struct frame_info *frame;
3697
3698 frame = frame_find_by_id (*fid);
3699
3700 /* If inf_status->selected_frame_id is NULL, there was no previously
3701 selected frame. */
3702 if (frame == NULL)
3703 {
3704 warning (_("Unable to restore previously selected frame."));
3705 return 0;
3706 }
3707
3708 select_frame (frame);
3709
3710 return (1);
3711 }
3712
3713 void
3714 restore_inferior_status (struct inferior_status *inf_status)
3715 {
3716 stop_signal = inf_status->stop_signal;
3717 stop_pc = inf_status->stop_pc;
3718 stop_step = inf_status->stop_step;
3719 stop_stack_dummy = inf_status->stop_stack_dummy;
3720 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3721 trap_expected = inf_status->trap_expected;
3722 step_range_start = inf_status->step_range_start;
3723 step_range_end = inf_status->step_range_end;
3724 step_frame_id = inf_status->step_frame_id;
3725 step_over_calls = inf_status->step_over_calls;
3726 stop_after_trap = inf_status->stop_after_trap;
3727 stop_soon = inf_status->stop_soon;
3728 bpstat_clear (&stop_bpstat);
3729 stop_bpstat = inf_status->stop_bpstat;
3730 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3731 proceed_to_finish = inf_status->proceed_to_finish;
3732
3733 /* FIXME: Is the restore of stop_registers always needed. */
3734 regcache_xfree (stop_registers);
3735 stop_registers = inf_status->stop_registers;
3736
3737 /* The inferior can be gone if the user types "print exit(0)"
3738 (and perhaps other times). */
3739 if (target_has_execution)
3740 /* NB: The register write goes through to the target. */
3741 regcache_cpy (current_regcache, inf_status->registers);
3742 regcache_xfree (inf_status->registers);
3743
3744 /* FIXME: If we are being called after stopping in a function which
3745 is called from gdb, we should not be trying to restore the
3746 selected frame; it just prints a spurious error message (The
3747 message is useful, however, in detecting bugs in gdb (like if gdb
3748 clobbers the stack)). In fact, should we be restoring the
3749 inferior status at all in that case? . */
3750
3751 if (target_has_stack && inf_status->restore_stack_info)
3752 {
3753 /* The point of catch_errors is that if the stack is clobbered,
3754 walking the stack might encounter a garbage pointer and
3755 error() trying to dereference it. */
3756 if (catch_errors
3757 (restore_selected_frame, &inf_status->selected_frame_id,
3758 "Unable to restore previously selected frame:\n",
3759 RETURN_MASK_ERROR) == 0)
3760 /* Error in restoring the selected frame. Select the innermost
3761 frame. */
3762 select_frame (get_current_frame ());
3763
3764 }
3765
3766 xfree (inf_status);
3767 }
3768
3769 static void
3770 do_restore_inferior_status_cleanup (void *sts)
3771 {
3772 restore_inferior_status (sts);
3773 }
3774
3775 struct cleanup *
3776 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3777 {
3778 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3779 }
3780
3781 void
3782 discard_inferior_status (struct inferior_status *inf_status)
3783 {
3784 /* See save_inferior_status for info on stop_bpstat. */
3785 bpstat_clear (&inf_status->stop_bpstat);
3786 regcache_xfree (inf_status->registers);
3787 regcache_xfree (inf_status->stop_registers);
3788 xfree (inf_status);
3789 }
3790
3791 int
3792 inferior_has_forked (int pid, int *child_pid)
3793 {
3794 struct target_waitstatus last;
3795 ptid_t last_ptid;
3796
3797 get_last_target_status (&last_ptid, &last);
3798
3799 if (last.kind != TARGET_WAITKIND_FORKED)
3800 return 0;
3801
3802 if (ptid_get_pid (last_ptid) != pid)
3803 return 0;
3804
3805 *child_pid = last.value.related_pid;
3806 return 1;
3807 }
3808
3809 int
3810 inferior_has_vforked (int pid, int *child_pid)
3811 {
3812 struct target_waitstatus last;
3813 ptid_t last_ptid;
3814
3815 get_last_target_status (&last_ptid, &last);
3816
3817 if (last.kind != TARGET_WAITKIND_VFORKED)
3818 return 0;
3819
3820 if (ptid_get_pid (last_ptid) != pid)
3821 return 0;
3822
3823 *child_pid = last.value.related_pid;
3824 return 1;
3825 }
3826
3827 int
3828 inferior_has_execd (int pid, char **execd_pathname)
3829 {
3830 struct target_waitstatus last;
3831 ptid_t last_ptid;
3832
3833 get_last_target_status (&last_ptid, &last);
3834
3835 if (last.kind != TARGET_WAITKIND_EXECD)
3836 return 0;
3837
3838 if (ptid_get_pid (last_ptid) != pid)
3839 return 0;
3840
3841 *execd_pathname = xstrdup (last.value.execd_pathname);
3842 return 1;
3843 }
3844
3845 /* Oft used ptids */
3846 ptid_t null_ptid;
3847 ptid_t minus_one_ptid;
3848
3849 /* Create a ptid given the necessary PID, LWP, and TID components. */
3850
3851 ptid_t
3852 ptid_build (int pid, long lwp, long tid)
3853 {
3854 ptid_t ptid;
3855
3856 ptid.pid = pid;
3857 ptid.lwp = lwp;
3858 ptid.tid = tid;
3859 return ptid;
3860 }
3861
3862 /* Create a ptid from just a pid. */
3863
3864 ptid_t
3865 pid_to_ptid (int pid)
3866 {
3867 return ptid_build (pid, 0, 0);
3868 }
3869
3870 /* Fetch the pid (process id) component from a ptid. */
3871
3872 int
3873 ptid_get_pid (ptid_t ptid)
3874 {
3875 return ptid.pid;
3876 }
3877
3878 /* Fetch the lwp (lightweight process) component from a ptid. */
3879
3880 long
3881 ptid_get_lwp (ptid_t ptid)
3882 {
3883 return ptid.lwp;
3884 }
3885
3886 /* Fetch the tid (thread id) component from a ptid. */
3887
3888 long
3889 ptid_get_tid (ptid_t ptid)
3890 {
3891 return ptid.tid;
3892 }
3893
3894 /* ptid_equal() is used to test equality of two ptids. */
3895
3896 int
3897 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3898 {
3899 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3900 && ptid1.tid == ptid2.tid);
3901 }
3902
3903 /* restore_inferior_ptid() will be used by the cleanup machinery
3904 to restore the inferior_ptid value saved in a call to
3905 save_inferior_ptid(). */
3906
3907 static void
3908 restore_inferior_ptid (void *arg)
3909 {
3910 ptid_t *saved_ptid_ptr = arg;
3911 inferior_ptid = *saved_ptid_ptr;
3912 xfree (arg);
3913 }
3914
3915 /* Save the value of inferior_ptid so that it may be restored by a
3916 later call to do_cleanups(). Returns the struct cleanup pointer
3917 needed for later doing the cleanup. */
3918
3919 struct cleanup *
3920 save_inferior_ptid (void)
3921 {
3922 ptid_t *saved_ptid_ptr;
3923
3924 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3925 *saved_ptid_ptr = inferior_ptid;
3926 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3927 }
3928 \f
3929
3930 static void
3931 build_infrun (void)
3932 {
3933 stop_registers = regcache_xmalloc (current_gdbarch);
3934 }
3935
3936 void
3937 _initialize_infrun (void)
3938 {
3939 int i;
3940 int numsigs;
3941 struct cmd_list_element *c;
3942
3943 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3944 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3945
3946 add_info ("signals", signals_info, _("\
3947 What debugger does when program gets various signals.\n\
3948 Specify a signal as argument to print info on that signal only."));
3949 add_info_alias ("handle", "signals", 0);
3950
3951 add_com ("handle", class_run, handle_command, _("\
3952 Specify how to handle a signal.\n\
3953 Args are signals and actions to apply to those signals.\n\
3954 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3955 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3956 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3957 The special arg \"all\" is recognized to mean all signals except those\n\
3958 used by the debugger, typically SIGTRAP and SIGINT.\n\
3959 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3960 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3961 Stop means reenter debugger if this signal happens (implies print).\n\
3962 Print means print a message if this signal happens.\n\
3963 Pass means let program see this signal; otherwise program doesn't know.\n\
3964 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3965 Pass and Stop may be combined."));
3966 if (xdb_commands)
3967 {
3968 add_com ("lz", class_info, signals_info, _("\
3969 What debugger does when program gets various signals.\n\
3970 Specify a signal as argument to print info on that signal only."));
3971 add_com ("z", class_run, xdb_handle_command, _("\
3972 Specify how to handle a signal.\n\
3973 Args are signals and actions to apply to those signals.\n\
3974 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3975 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3976 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3977 The special arg \"all\" is recognized to mean all signals except those\n\
3978 used by the debugger, typically SIGTRAP and SIGINT.\n\
3979 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3980 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3981 nopass), \"Q\" (noprint)\n\
3982 Stop means reenter debugger if this signal happens (implies print).\n\
3983 Print means print a message if this signal happens.\n\
3984 Pass means let program see this signal; otherwise program doesn't know.\n\
3985 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3986 Pass and Stop may be combined."));
3987 }
3988
3989 if (!dbx_commands)
3990 stop_command = add_cmd ("stop", class_obscure,
3991 not_just_help_class_command, _("\
3992 There is no `stop' command, but you can set a hook on `stop'.\n\
3993 This allows you to set a list of commands to be run each time execution\n\
3994 of the program stops."), &cmdlist);
3995
3996 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3997 Set inferior debugging."), _("\
3998 Show inferior debugging."), _("\
3999 When non-zero, inferior specific debugging is enabled."),
4000 NULL,
4001 show_debug_infrun,
4002 &setdebuglist, &showdebuglist);
4003
4004 numsigs = (int) TARGET_SIGNAL_LAST;
4005 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4006 signal_print = (unsigned char *)
4007 xmalloc (sizeof (signal_print[0]) * numsigs);
4008 signal_program = (unsigned char *)
4009 xmalloc (sizeof (signal_program[0]) * numsigs);
4010 for (i = 0; i < numsigs; i++)
4011 {
4012 signal_stop[i] = 1;
4013 signal_print[i] = 1;
4014 signal_program[i] = 1;
4015 }
4016
4017 /* Signals caused by debugger's own actions
4018 should not be given to the program afterwards. */
4019 signal_program[TARGET_SIGNAL_TRAP] = 0;
4020 signal_program[TARGET_SIGNAL_INT] = 0;
4021
4022 /* Signals that are not errors should not normally enter the debugger. */
4023 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4024 signal_print[TARGET_SIGNAL_ALRM] = 0;
4025 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4026 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4027 signal_stop[TARGET_SIGNAL_PROF] = 0;
4028 signal_print[TARGET_SIGNAL_PROF] = 0;
4029 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4030 signal_print[TARGET_SIGNAL_CHLD] = 0;
4031 signal_stop[TARGET_SIGNAL_IO] = 0;
4032 signal_print[TARGET_SIGNAL_IO] = 0;
4033 signal_stop[TARGET_SIGNAL_POLL] = 0;
4034 signal_print[TARGET_SIGNAL_POLL] = 0;
4035 signal_stop[TARGET_SIGNAL_URG] = 0;
4036 signal_print[TARGET_SIGNAL_URG] = 0;
4037 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4038 signal_print[TARGET_SIGNAL_WINCH] = 0;
4039
4040 /* These signals are used internally by user-level thread
4041 implementations. (See signal(5) on Solaris.) Like the above
4042 signals, a healthy program receives and handles them as part of
4043 its normal operation. */
4044 signal_stop[TARGET_SIGNAL_LWP] = 0;
4045 signal_print[TARGET_SIGNAL_LWP] = 0;
4046 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4047 signal_print[TARGET_SIGNAL_WAITING] = 0;
4048 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4049 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4050
4051 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4052 &stop_on_solib_events, _("\
4053 Set stopping for shared library events."), _("\
4054 Show stopping for shared library events."), _("\
4055 If nonzero, gdb will give control to the user when the dynamic linker\n\
4056 notifies gdb of shared library events. The most common event of interest\n\
4057 to the user would be loading/unloading of a new library."),
4058 NULL,
4059 show_stop_on_solib_events,
4060 &setlist, &showlist);
4061
4062 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4063 follow_fork_mode_kind_names,
4064 &follow_fork_mode_string, _("\
4065 Set debugger response to a program call of fork or vfork."), _("\
4066 Show debugger response to a program call of fork or vfork."), _("\
4067 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4068 parent - the original process is debugged after a fork\n\
4069 child - the new process is debugged after a fork\n\
4070 The unfollowed process will continue to run.\n\
4071 By default, the debugger will follow the parent process."),
4072 NULL,
4073 show_follow_fork_mode_string,
4074 &setlist, &showlist);
4075
4076 add_setshow_enum_cmd ("scheduler-locking", class_run,
4077 scheduler_enums, &scheduler_mode, _("\
4078 Set mode for locking scheduler during execution."), _("\
4079 Show mode for locking scheduler during execution."), _("\
4080 off == no locking (threads may preempt at any time)\n\
4081 on == full locking (no thread except the current thread may run)\n\
4082 step == scheduler locked during every single-step operation.\n\
4083 In this mode, no other thread may run during a step command.\n\
4084 Other threads may run while stepping over a function call ('next')."),
4085 set_schedlock_func, /* traps on target vector */
4086 show_scheduler_mode,
4087 &setlist, &showlist);
4088
4089 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4090 Set mode of the step operation."), _("\
4091 Show mode of the step operation."), _("\
4092 When set, doing a step over a function without debug line information\n\
4093 will stop at the first instruction of that function. Otherwise, the\n\
4094 function is skipped and the step command stops at a different source line."),
4095 NULL,
4096 show_step_stop_if_no_debug,
4097 &setlist, &showlist);
4098
4099 /* ptid initializations */
4100 null_ptid = ptid_build (0, 0, 0);
4101 minus_one_ptid = ptid_build (-1, 0, 0);
4102 inferior_ptid = null_ptid;
4103 target_last_wait_ptid = minus_one_ptid;
4104 }
This page took 0.11418 seconds and 4 git commands to generate.