gdb: add infrun_debug_printf macro
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "target-connection.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "gdbsupport/event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67 #include "gdbsupport/gdb_select.h"
68 #include <unordered_map>
69 #include "async-event.h"
70 #include "gdbsupport/selftest.h"
71 #include "scoped-mock-context.h"
72 #include "test-target.h"
73
74 /* Prototypes for local functions */
75
76 static void sig_print_info (enum gdb_signal);
77
78 static void sig_print_header (void);
79
80 static void follow_inferior_reset_breakpoints (void);
81
82 static int currently_stepping (struct thread_info *tp);
83
84 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
85
86 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
87
88 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
89
90 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
91
92 static void resume (gdb_signal sig);
93
94 static void wait_for_inferior (inferior *inf);
95
96 /* Asynchronous signal handler registered as event loop source for
97 when we have pending events ready to be passed to the core. */
98 static struct async_event_handler *infrun_async_inferior_event_token;
99
100 /* Stores whether infrun_async was previously enabled or disabled.
101 Starts off as -1, indicating "never enabled/disabled". */
102 static int infrun_is_async = -1;
103
104 /* See infrun.h. */
105
106 void
107 infrun_debug_printf_1 (const char *func_name, const char *fmt, ...)
108 {
109 debug_printf ("[infrun] %s: ", func_name);
110
111 va_list ap;
112 va_start (ap, fmt);
113 debug_vprintf (fmt, ap);
114 va_end (ap);
115
116 debug_printf ("\n");
117 }
118
119 /* See infrun.h. */
120
121 void
122 infrun_async (int enable)
123 {
124 if (infrun_is_async != enable)
125 {
126 infrun_is_async = enable;
127
128 infrun_debug_printf ("enable=%d", enable);
129
130 if (enable)
131 mark_async_event_handler (infrun_async_inferior_event_token);
132 else
133 clear_async_event_handler (infrun_async_inferior_event_token);
134 }
135 }
136
137 /* See infrun.h. */
138
139 void
140 mark_infrun_async_event_handler (void)
141 {
142 mark_async_event_handler (infrun_async_inferior_event_token);
143 }
144
145 /* When set, stop the 'step' command if we enter a function which has
146 no line number information. The normal behavior is that we step
147 over such function. */
148 bool step_stop_if_no_debug = false;
149 static void
150 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152 {
153 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
154 }
155
156 /* proceed and normal_stop use this to notify the user when the
157 inferior stopped in a different thread than it had been running
158 in. */
159
160 static ptid_t previous_inferior_ptid;
161
162 /* If set (default for legacy reasons), when following a fork, GDB
163 will detach from one of the fork branches, child or parent.
164 Exactly which branch is detached depends on 'set follow-fork-mode'
165 setting. */
166
167 static bool detach_fork = true;
168
169 bool debug_displaced = false;
170 static void
171 show_debug_displaced (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173 {
174 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
175 }
176
177 unsigned int debug_infrun = 0;
178 static void
179 show_debug_infrun (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
183 }
184
185
186 /* Support for disabling address space randomization. */
187
188 bool disable_randomization = true;
189
190 static void
191 show_disable_randomization (struct ui_file *file, int from_tty,
192 struct cmd_list_element *c, const char *value)
193 {
194 if (target_supports_disable_randomization ())
195 fprintf_filtered (file,
196 _("Disabling randomization of debuggee's "
197 "virtual address space is %s.\n"),
198 value);
199 else
200 fputs_filtered (_("Disabling randomization of debuggee's "
201 "virtual address space is unsupported on\n"
202 "this platform.\n"), file);
203 }
204
205 static void
206 set_disable_randomization (const char *args, int from_tty,
207 struct cmd_list_element *c)
208 {
209 if (!target_supports_disable_randomization ())
210 error (_("Disabling randomization of debuggee's "
211 "virtual address space is unsupported on\n"
212 "this platform."));
213 }
214
215 /* User interface for non-stop mode. */
216
217 bool non_stop = false;
218 static bool non_stop_1 = false;
219
220 static void
221 set_non_stop (const char *args, int from_tty,
222 struct cmd_list_element *c)
223 {
224 if (target_has_execution)
225 {
226 non_stop_1 = non_stop;
227 error (_("Cannot change this setting while the inferior is running."));
228 }
229
230 non_stop = non_stop_1;
231 }
232
233 static void
234 show_non_stop (struct ui_file *file, int from_tty,
235 struct cmd_list_element *c, const char *value)
236 {
237 fprintf_filtered (file,
238 _("Controlling the inferior in non-stop mode is %s.\n"),
239 value);
240 }
241
242 /* "Observer mode" is somewhat like a more extreme version of
243 non-stop, in which all GDB operations that might affect the
244 target's execution have been disabled. */
245
246 bool observer_mode = false;
247 static bool observer_mode_1 = false;
248
249 static void
250 set_observer_mode (const char *args, int from_tty,
251 struct cmd_list_element *c)
252 {
253 if (target_has_execution)
254 {
255 observer_mode_1 = observer_mode;
256 error (_("Cannot change this setting while the inferior is running."));
257 }
258
259 observer_mode = observer_mode_1;
260
261 may_write_registers = !observer_mode;
262 may_write_memory = !observer_mode;
263 may_insert_breakpoints = !observer_mode;
264 may_insert_tracepoints = !observer_mode;
265 /* We can insert fast tracepoints in or out of observer mode,
266 but enable them if we're going into this mode. */
267 if (observer_mode)
268 may_insert_fast_tracepoints = true;
269 may_stop = !observer_mode;
270 update_target_permissions ();
271
272 /* Going *into* observer mode we must force non-stop, then
273 going out we leave it that way. */
274 if (observer_mode)
275 {
276 pagination_enabled = 0;
277 non_stop = non_stop_1 = true;
278 }
279
280 if (from_tty)
281 printf_filtered (_("Observer mode is now %s.\n"),
282 (observer_mode ? "on" : "off"));
283 }
284
285 static void
286 show_observer_mode (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
288 {
289 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
290 }
291
292 /* This updates the value of observer mode based on changes in
293 permissions. Note that we are deliberately ignoring the values of
294 may-write-registers and may-write-memory, since the user may have
295 reason to enable these during a session, for instance to turn on a
296 debugging-related global. */
297
298 void
299 update_observer_mode (void)
300 {
301 bool newval = (!may_insert_breakpoints
302 && !may_insert_tracepoints
303 && may_insert_fast_tracepoints
304 && !may_stop
305 && non_stop);
306
307 /* Let the user know if things change. */
308 if (newval != observer_mode)
309 printf_filtered (_("Observer mode is now %s.\n"),
310 (newval ? "on" : "off"));
311
312 observer_mode = observer_mode_1 = newval;
313 }
314
315 /* Tables of how to react to signals; the user sets them. */
316
317 static unsigned char signal_stop[GDB_SIGNAL_LAST];
318 static unsigned char signal_print[GDB_SIGNAL_LAST];
319 static unsigned char signal_program[GDB_SIGNAL_LAST];
320
321 /* Table of signals that are registered with "catch signal". A
322 non-zero entry indicates that the signal is caught by some "catch
323 signal" command. */
324 static unsigned char signal_catch[GDB_SIGNAL_LAST];
325
326 /* Table of signals that the target may silently handle.
327 This is automatically determined from the flags above,
328 and simply cached here. */
329 static unsigned char signal_pass[GDB_SIGNAL_LAST];
330
331 #define SET_SIGS(nsigs,sigs,flags) \
332 do { \
333 int signum = (nsigs); \
334 while (signum-- > 0) \
335 if ((sigs)[signum]) \
336 (flags)[signum] = 1; \
337 } while (0)
338
339 #define UNSET_SIGS(nsigs,sigs,flags) \
340 do { \
341 int signum = (nsigs); \
342 while (signum-- > 0) \
343 if ((sigs)[signum]) \
344 (flags)[signum] = 0; \
345 } while (0)
346
347 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
348 this function is to avoid exporting `signal_program'. */
349
350 void
351 update_signals_program_target (void)
352 {
353 target_program_signals (signal_program);
354 }
355
356 /* Value to pass to target_resume() to cause all threads to resume. */
357
358 #define RESUME_ALL minus_one_ptid
359
360 /* Command list pointer for the "stop" placeholder. */
361
362 static struct cmd_list_element *stop_command;
363
364 /* Nonzero if we want to give control to the user when we're notified
365 of shared library events by the dynamic linker. */
366 int stop_on_solib_events;
367
368 /* Enable or disable optional shared library event breakpoints
369 as appropriate when the above flag is changed. */
370
371 static void
372 set_stop_on_solib_events (const char *args,
373 int from_tty, struct cmd_list_element *c)
374 {
375 update_solib_breakpoints ();
376 }
377
378 static void
379 show_stop_on_solib_events (struct ui_file *file, int from_tty,
380 struct cmd_list_element *c, const char *value)
381 {
382 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
383 value);
384 }
385
386 /* Nonzero after stop if current stack frame should be printed. */
387
388 static int stop_print_frame;
389
390 /* This is a cached copy of the target/ptid/waitstatus of the last
391 event returned by target_wait()/deprecated_target_wait_hook().
392 This information is returned by get_last_target_status(). */
393 static process_stratum_target *target_last_proc_target;
394 static ptid_t target_last_wait_ptid;
395 static struct target_waitstatus target_last_waitstatus;
396
397 void init_thread_stepping_state (struct thread_info *tss);
398
399 static const char follow_fork_mode_child[] = "child";
400 static const char follow_fork_mode_parent[] = "parent";
401
402 static const char *const follow_fork_mode_kind_names[] = {
403 follow_fork_mode_child,
404 follow_fork_mode_parent,
405 NULL
406 };
407
408 static const char *follow_fork_mode_string = follow_fork_mode_parent;
409 static void
410 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
411 struct cmd_list_element *c, const char *value)
412 {
413 fprintf_filtered (file,
414 _("Debugger response to a program "
415 "call of fork or vfork is \"%s\".\n"),
416 value);
417 }
418 \f
419
420 /* Handle changes to the inferior list based on the type of fork,
421 which process is being followed, and whether the other process
422 should be detached. On entry inferior_ptid must be the ptid of
423 the fork parent. At return inferior_ptid is the ptid of the
424 followed inferior. */
425
426 static bool
427 follow_fork_inferior (bool follow_child, bool detach_fork)
428 {
429 int has_vforked;
430 ptid_t parent_ptid, child_ptid;
431
432 has_vforked = (inferior_thread ()->pending_follow.kind
433 == TARGET_WAITKIND_VFORKED);
434 parent_ptid = inferior_ptid;
435 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
436
437 if (has_vforked
438 && !non_stop /* Non-stop always resumes both branches. */
439 && current_ui->prompt_state == PROMPT_BLOCKED
440 && !(follow_child || detach_fork || sched_multi))
441 {
442 /* The parent stays blocked inside the vfork syscall until the
443 child execs or exits. If we don't let the child run, then
444 the parent stays blocked. If we're telling the parent to run
445 in the foreground, the user will not be able to ctrl-c to get
446 back the terminal, effectively hanging the debug session. */
447 fprintf_filtered (gdb_stderr, _("\
448 Can not resume the parent process over vfork in the foreground while\n\
449 holding the child stopped. Try \"set detach-on-fork\" or \
450 \"set schedule-multiple\".\n"));
451 return 1;
452 }
453
454 if (!follow_child)
455 {
456 /* Detach new forked process? */
457 if (detach_fork)
458 {
459 /* Before detaching from the child, remove all breakpoints
460 from it. If we forked, then this has already been taken
461 care of by infrun.c. If we vforked however, any
462 breakpoint inserted in the parent is visible in the
463 child, even those added while stopped in a vfork
464 catchpoint. This will remove the breakpoints from the
465 parent also, but they'll be reinserted below. */
466 if (has_vforked)
467 {
468 /* Keep breakpoints list in sync. */
469 remove_breakpoints_inf (current_inferior ());
470 }
471
472 if (print_inferior_events)
473 {
474 /* Ensure that we have a process ptid. */
475 ptid_t process_ptid = ptid_t (child_ptid.pid ());
476
477 target_terminal::ours_for_output ();
478 fprintf_filtered (gdb_stdlog,
479 _("[Detaching after %s from child %s]\n"),
480 has_vforked ? "vfork" : "fork",
481 target_pid_to_str (process_ptid).c_str ());
482 }
483 }
484 else
485 {
486 struct inferior *parent_inf, *child_inf;
487
488 /* Add process to GDB's tables. */
489 child_inf = add_inferior (child_ptid.pid ());
490
491 parent_inf = current_inferior ();
492 child_inf->attach_flag = parent_inf->attach_flag;
493 copy_terminal_info (child_inf, parent_inf);
494 child_inf->gdbarch = parent_inf->gdbarch;
495 copy_inferior_target_desc_info (child_inf, parent_inf);
496
497 scoped_restore_current_pspace_and_thread restore_pspace_thread;
498
499 set_current_inferior (child_inf);
500 switch_to_no_thread ();
501 child_inf->symfile_flags = SYMFILE_NO_READ;
502 push_target (parent_inf->process_target ());
503 thread_info *child_thr
504 = add_thread_silent (child_inf->process_target (), child_ptid);
505
506 /* If this is a vfork child, then the address-space is
507 shared with the parent. */
508 if (has_vforked)
509 {
510 child_inf->pspace = parent_inf->pspace;
511 child_inf->aspace = parent_inf->aspace;
512
513 exec_on_vfork ();
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522
523 /* Now that the inferiors and program spaces are all
524 wired up, we can switch to the child thread (which
525 switches inferior and program space too). */
526 switch_to_thread (child_thr);
527 }
528 else
529 {
530 child_inf->aspace = new_address_space ();
531 child_inf->pspace = new program_space (child_inf->aspace);
532 child_inf->removable = 1;
533 set_current_program_space (child_inf->pspace);
534 clone_program_space (child_inf->pspace, parent_inf->pspace);
535
536 /* solib_create_inferior_hook relies on the current
537 thread. */
538 switch_to_thread (child_thr);
539
540 /* Let the shared library layer (e.g., solib-svr4) learn
541 about this new process, relocate the cloned exec, pull
542 in shared libraries, and install the solib event
543 breakpoint. If a "cloned-VM" event was propagated
544 better throughout the core, this wouldn't be
545 required. */
546 solib_create_inferior_hook (0);
547 }
548 }
549
550 if (has_vforked)
551 {
552 struct inferior *parent_inf;
553
554 parent_inf = current_inferior ();
555
556 /* If we detached from the child, then we have to be careful
557 to not insert breakpoints in the parent until the child
558 is done with the shared memory region. However, if we're
559 staying attached to the child, then we can and should
560 insert breakpoints, so that we can debug it. A
561 subsequent child exec or exit is enough to know when does
562 the child stops using the parent's address space. */
563 parent_inf->waiting_for_vfork_done = detach_fork;
564 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
565 }
566 }
567 else
568 {
569 /* Follow the child. */
570 struct inferior *parent_inf, *child_inf;
571 struct program_space *parent_pspace;
572
573 if (print_inferior_events)
574 {
575 std::string parent_pid = target_pid_to_str (parent_ptid);
576 std::string child_pid = target_pid_to_str (child_ptid);
577
578 target_terminal::ours_for_output ();
579 fprintf_filtered (gdb_stdlog,
580 _("[Attaching after %s %s to child %s]\n"),
581 parent_pid.c_str (),
582 has_vforked ? "vfork" : "fork",
583 child_pid.c_str ());
584 }
585
586 /* Add the new inferior first, so that the target_detach below
587 doesn't unpush the target. */
588
589 child_inf = add_inferior (child_ptid.pid ());
590
591 parent_inf = current_inferior ();
592 child_inf->attach_flag = parent_inf->attach_flag;
593 copy_terminal_info (child_inf, parent_inf);
594 child_inf->gdbarch = parent_inf->gdbarch;
595 copy_inferior_target_desc_info (child_inf, parent_inf);
596
597 parent_pspace = parent_inf->pspace;
598
599 process_stratum_target *target = parent_inf->process_target ();
600
601 {
602 /* Hold a strong reference to the target while (maybe)
603 detaching the parent. Otherwise detaching could close the
604 target. */
605 auto target_ref = target_ops_ref::new_reference (target);
606
607 /* If we're vforking, we want to hold on to the parent until
608 the child exits or execs. At child exec or exit time we
609 can remove the old breakpoints from the parent and detach
610 or resume debugging it. Otherwise, detach the parent now;
611 we'll want to reuse it's program/address spaces, but we
612 can't set them to the child before removing breakpoints
613 from the parent, otherwise, the breakpoints module could
614 decide to remove breakpoints from the wrong process (since
615 they'd be assigned to the same address space). */
616
617 if (has_vforked)
618 {
619 gdb_assert (child_inf->vfork_parent == NULL);
620 gdb_assert (parent_inf->vfork_child == NULL);
621 child_inf->vfork_parent = parent_inf;
622 child_inf->pending_detach = 0;
623 parent_inf->vfork_child = child_inf;
624 parent_inf->pending_detach = detach_fork;
625 parent_inf->waiting_for_vfork_done = 0;
626 }
627 else if (detach_fork)
628 {
629 if (print_inferior_events)
630 {
631 /* Ensure that we have a process ptid. */
632 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
633
634 target_terminal::ours_for_output ();
635 fprintf_filtered (gdb_stdlog,
636 _("[Detaching after fork from "
637 "parent %s]\n"),
638 target_pid_to_str (process_ptid).c_str ());
639 }
640
641 target_detach (parent_inf, 0);
642 parent_inf = NULL;
643 }
644
645 /* Note that the detach above makes PARENT_INF dangling. */
646
647 /* Add the child thread to the appropriate lists, and switch
648 to this new thread, before cloning the program space, and
649 informing the solib layer about this new process. */
650
651 set_current_inferior (child_inf);
652 push_target (target);
653 }
654
655 thread_info *child_thr = add_thread_silent (target, child_ptid);
656
657 /* If this is a vfork child, then the address-space is shared
658 with the parent. If we detached from the parent, then we can
659 reuse the parent's program/address spaces. */
660 if (has_vforked || detach_fork)
661 {
662 child_inf->pspace = parent_pspace;
663 child_inf->aspace = child_inf->pspace->aspace;
664
665 exec_on_vfork ();
666 }
667 else
668 {
669 child_inf->aspace = new_address_space ();
670 child_inf->pspace = new program_space (child_inf->aspace);
671 child_inf->removable = 1;
672 child_inf->symfile_flags = SYMFILE_NO_READ;
673 set_current_program_space (child_inf->pspace);
674 clone_program_space (child_inf->pspace, parent_pspace);
675
676 /* Let the shared library layer (e.g., solib-svr4) learn
677 about this new process, relocate the cloned exec, pull in
678 shared libraries, and install the solib event breakpoint.
679 If a "cloned-VM" event was propagated better throughout
680 the core, this wouldn't be required. */
681 solib_create_inferior_hook (0);
682 }
683
684 switch_to_thread (child_thr);
685 }
686
687 return target_follow_fork (follow_child, detach_fork);
688 }
689
690 /* Tell the target to follow the fork we're stopped at. Returns true
691 if the inferior should be resumed; false, if the target for some
692 reason decided it's best not to resume. */
693
694 static bool
695 follow_fork ()
696 {
697 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
698 bool should_resume = true;
699 struct thread_info *tp;
700
701 /* Copy user stepping state to the new inferior thread. FIXME: the
702 followed fork child thread should have a copy of most of the
703 parent thread structure's run control related fields, not just these.
704 Initialized to avoid "may be used uninitialized" warnings from gcc. */
705 struct breakpoint *step_resume_breakpoint = NULL;
706 struct breakpoint *exception_resume_breakpoint = NULL;
707 CORE_ADDR step_range_start = 0;
708 CORE_ADDR step_range_end = 0;
709 int current_line = 0;
710 symtab *current_symtab = NULL;
711 struct frame_id step_frame_id = { 0 };
712 struct thread_fsm *thread_fsm = NULL;
713
714 if (!non_stop)
715 {
716 process_stratum_target *wait_target;
717 ptid_t wait_ptid;
718 struct target_waitstatus wait_status;
719
720 /* Get the last target status returned by target_wait(). */
721 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
722
723 /* If not stopped at a fork event, then there's nothing else to
724 do. */
725 if (wait_status.kind != TARGET_WAITKIND_FORKED
726 && wait_status.kind != TARGET_WAITKIND_VFORKED)
727 return 1;
728
729 /* Check if we switched over from WAIT_PTID, since the event was
730 reported. */
731 if (wait_ptid != minus_one_ptid
732 && (current_inferior ()->process_target () != wait_target
733 || inferior_ptid != wait_ptid))
734 {
735 /* We did. Switch back to WAIT_PTID thread, to tell the
736 target to follow it (in either direction). We'll
737 afterwards refuse to resume, and inform the user what
738 happened. */
739 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
740 switch_to_thread (wait_thread);
741 should_resume = false;
742 }
743 }
744
745 tp = inferior_thread ();
746
747 /* If there were any forks/vforks that were caught and are now to be
748 followed, then do so now. */
749 switch (tp->pending_follow.kind)
750 {
751 case TARGET_WAITKIND_FORKED:
752 case TARGET_WAITKIND_VFORKED:
753 {
754 ptid_t parent, child;
755
756 /* If the user did a next/step, etc, over a fork call,
757 preserve the stepping state in the fork child. */
758 if (follow_child && should_resume)
759 {
760 step_resume_breakpoint = clone_momentary_breakpoint
761 (tp->control.step_resume_breakpoint);
762 step_range_start = tp->control.step_range_start;
763 step_range_end = tp->control.step_range_end;
764 current_line = tp->current_line;
765 current_symtab = tp->current_symtab;
766 step_frame_id = tp->control.step_frame_id;
767 exception_resume_breakpoint
768 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
769 thread_fsm = tp->thread_fsm;
770
771 /* For now, delete the parent's sr breakpoint, otherwise,
772 parent/child sr breakpoints are considered duplicates,
773 and the child version will not be installed. Remove
774 this when the breakpoints module becomes aware of
775 inferiors and address spaces. */
776 delete_step_resume_breakpoint (tp);
777 tp->control.step_range_start = 0;
778 tp->control.step_range_end = 0;
779 tp->control.step_frame_id = null_frame_id;
780 delete_exception_resume_breakpoint (tp);
781 tp->thread_fsm = NULL;
782 }
783
784 parent = inferior_ptid;
785 child = tp->pending_follow.value.related_pid;
786
787 process_stratum_target *parent_targ = tp->inf->process_target ();
788 /* Set up inferior(s) as specified by the caller, and tell the
789 target to do whatever is necessary to follow either parent
790 or child. */
791 if (follow_fork_inferior (follow_child, detach_fork))
792 {
793 /* Target refused to follow, or there's some other reason
794 we shouldn't resume. */
795 should_resume = 0;
796 }
797 else
798 {
799 /* This pending follow fork event is now handled, one way
800 or another. The previous selected thread may be gone
801 from the lists by now, but if it is still around, need
802 to clear the pending follow request. */
803 tp = find_thread_ptid (parent_targ, parent);
804 if (tp)
805 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
806
807 /* This makes sure we don't try to apply the "Switched
808 over from WAIT_PID" logic above. */
809 nullify_last_target_wait_ptid ();
810
811 /* If we followed the child, switch to it... */
812 if (follow_child)
813 {
814 thread_info *child_thr = find_thread_ptid (parent_targ, child);
815 switch_to_thread (child_thr);
816
817 /* ... and preserve the stepping state, in case the
818 user was stepping over the fork call. */
819 if (should_resume)
820 {
821 tp = inferior_thread ();
822 tp->control.step_resume_breakpoint
823 = step_resume_breakpoint;
824 tp->control.step_range_start = step_range_start;
825 tp->control.step_range_end = step_range_end;
826 tp->current_line = current_line;
827 tp->current_symtab = current_symtab;
828 tp->control.step_frame_id = step_frame_id;
829 tp->control.exception_resume_breakpoint
830 = exception_resume_breakpoint;
831 tp->thread_fsm = thread_fsm;
832 }
833 else
834 {
835 /* If we get here, it was because we're trying to
836 resume from a fork catchpoint, but, the user
837 has switched threads away from the thread that
838 forked. In that case, the resume command
839 issued is most likely not applicable to the
840 child, so just warn, and refuse to resume. */
841 warning (_("Not resuming: switched threads "
842 "before following fork child."));
843 }
844
845 /* Reset breakpoints in the child as appropriate. */
846 follow_inferior_reset_breakpoints ();
847 }
848 }
849 }
850 break;
851 case TARGET_WAITKIND_SPURIOUS:
852 /* Nothing to follow. */
853 break;
854 default:
855 internal_error (__FILE__, __LINE__,
856 "Unexpected pending_follow.kind %d\n",
857 tp->pending_follow.kind);
858 break;
859 }
860
861 return should_resume;
862 }
863
864 static void
865 follow_inferior_reset_breakpoints (void)
866 {
867 struct thread_info *tp = inferior_thread ();
868
869 /* Was there a step_resume breakpoint? (There was if the user
870 did a "next" at the fork() call.) If so, explicitly reset its
871 thread number. Cloned step_resume breakpoints are disabled on
872 creation, so enable it here now that it is associated with the
873 correct thread.
874
875 step_resumes are a form of bp that are made to be per-thread.
876 Since we created the step_resume bp when the parent process
877 was being debugged, and now are switching to the child process,
878 from the breakpoint package's viewpoint, that's a switch of
879 "threads". We must update the bp's notion of which thread
880 it is for, or it'll be ignored when it triggers. */
881
882 if (tp->control.step_resume_breakpoint)
883 {
884 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
885 tp->control.step_resume_breakpoint->loc->enabled = 1;
886 }
887
888 /* Treat exception_resume breakpoints like step_resume breakpoints. */
889 if (tp->control.exception_resume_breakpoint)
890 {
891 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
892 tp->control.exception_resume_breakpoint->loc->enabled = 1;
893 }
894
895 /* Reinsert all breakpoints in the child. The user may have set
896 breakpoints after catching the fork, in which case those
897 were never set in the child, but only in the parent. This makes
898 sure the inserted breakpoints match the breakpoint list. */
899
900 breakpoint_re_set ();
901 insert_breakpoints ();
902 }
903
904 /* The child has exited or execed: resume threads of the parent the
905 user wanted to be executing. */
906
907 static int
908 proceed_after_vfork_done (struct thread_info *thread,
909 void *arg)
910 {
911 int pid = * (int *) arg;
912
913 if (thread->ptid.pid () == pid
914 && thread->state == THREAD_RUNNING
915 && !thread->executing
916 && !thread->stop_requested
917 && thread->suspend.stop_signal == GDB_SIGNAL_0)
918 {
919 infrun_debug_printf ("resuming vfork parent thread %s",
920 target_pid_to_str (thread->ptid).c_str ());
921
922 switch_to_thread (thread);
923 clear_proceed_status (0);
924 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
925 }
926
927 return 0;
928 }
929
930 /* Called whenever we notice an exec or exit event, to handle
931 detaching or resuming a vfork parent. */
932
933 static void
934 handle_vfork_child_exec_or_exit (int exec)
935 {
936 struct inferior *inf = current_inferior ();
937
938 if (inf->vfork_parent)
939 {
940 int resume_parent = -1;
941
942 /* This exec or exit marks the end of the shared memory region
943 between the parent and the child. Break the bonds. */
944 inferior *vfork_parent = inf->vfork_parent;
945 inf->vfork_parent->vfork_child = NULL;
946 inf->vfork_parent = NULL;
947
948 /* If the user wanted to detach from the parent, now is the
949 time. */
950 if (vfork_parent->pending_detach)
951 {
952 struct program_space *pspace;
953 struct address_space *aspace;
954
955 /* follow-fork child, detach-on-fork on. */
956
957 vfork_parent->pending_detach = 0;
958
959 scoped_restore_current_pspace_and_thread restore_thread;
960
961 /* We're letting loose of the parent. */
962 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
963 switch_to_thread (tp);
964
965 /* We're about to detach from the parent, which implicitly
966 removes breakpoints from its address space. There's a
967 catch here: we want to reuse the spaces for the child,
968 but, parent/child are still sharing the pspace at this
969 point, although the exec in reality makes the kernel give
970 the child a fresh set of new pages. The problem here is
971 that the breakpoints module being unaware of this, would
972 likely chose the child process to write to the parent
973 address space. Swapping the child temporarily away from
974 the spaces has the desired effect. Yes, this is "sort
975 of" a hack. */
976
977 pspace = inf->pspace;
978 aspace = inf->aspace;
979 inf->aspace = NULL;
980 inf->pspace = NULL;
981
982 if (print_inferior_events)
983 {
984 std::string pidstr
985 = target_pid_to_str (ptid_t (vfork_parent->pid));
986
987 target_terminal::ours_for_output ();
988
989 if (exec)
990 {
991 fprintf_filtered (gdb_stdlog,
992 _("[Detaching vfork parent %s "
993 "after child exec]\n"), pidstr.c_str ());
994 }
995 else
996 {
997 fprintf_filtered (gdb_stdlog,
998 _("[Detaching vfork parent %s "
999 "after child exit]\n"), pidstr.c_str ());
1000 }
1001 }
1002
1003 target_detach (vfork_parent, 0);
1004
1005 /* Put it back. */
1006 inf->pspace = pspace;
1007 inf->aspace = aspace;
1008 }
1009 else if (exec)
1010 {
1011 /* We're staying attached to the parent, so, really give the
1012 child a new address space. */
1013 inf->pspace = new program_space (maybe_new_address_space ());
1014 inf->aspace = inf->pspace->aspace;
1015 inf->removable = 1;
1016 set_current_program_space (inf->pspace);
1017
1018 resume_parent = vfork_parent->pid;
1019 }
1020 else
1021 {
1022 /* If this is a vfork child exiting, then the pspace and
1023 aspaces were shared with the parent. Since we're
1024 reporting the process exit, we'll be mourning all that is
1025 found in the address space, and switching to null_ptid,
1026 preparing to start a new inferior. But, since we don't
1027 want to clobber the parent's address/program spaces, we
1028 go ahead and create a new one for this exiting
1029 inferior. */
1030
1031 /* Switch to no-thread while running clone_program_space, so
1032 that clone_program_space doesn't want to read the
1033 selected frame of a dead process. */
1034 scoped_restore_current_thread restore_thread;
1035 switch_to_no_thread ();
1036
1037 inf->pspace = new program_space (maybe_new_address_space ());
1038 inf->aspace = inf->pspace->aspace;
1039 set_current_program_space (inf->pspace);
1040 inf->removable = 1;
1041 inf->symfile_flags = SYMFILE_NO_READ;
1042 clone_program_space (inf->pspace, vfork_parent->pspace);
1043
1044 resume_parent = vfork_parent->pid;
1045 }
1046
1047 gdb_assert (current_program_space == inf->pspace);
1048
1049 if (non_stop && resume_parent != -1)
1050 {
1051 /* If the user wanted the parent to be running, let it go
1052 free now. */
1053 scoped_restore_current_thread restore_thread;
1054
1055 infrun_debug_printf ("resuming vfork parent process %d",
1056 resume_parent);
1057
1058 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1059 }
1060 }
1061 }
1062
1063 /* Enum strings for "set|show follow-exec-mode". */
1064
1065 static const char follow_exec_mode_new[] = "new";
1066 static const char follow_exec_mode_same[] = "same";
1067 static const char *const follow_exec_mode_names[] =
1068 {
1069 follow_exec_mode_new,
1070 follow_exec_mode_same,
1071 NULL,
1072 };
1073
1074 static const char *follow_exec_mode_string = follow_exec_mode_same;
1075 static void
1076 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1077 struct cmd_list_element *c, const char *value)
1078 {
1079 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1080 }
1081
1082 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1083
1084 static void
1085 follow_exec (ptid_t ptid, const char *exec_file_target)
1086 {
1087 struct inferior *inf = current_inferior ();
1088 int pid = ptid.pid ();
1089 ptid_t process_ptid;
1090
1091 /* Switch terminal for any messages produced e.g. by
1092 breakpoint_re_set. */
1093 target_terminal::ours_for_output ();
1094
1095 /* This is an exec event that we actually wish to pay attention to.
1096 Refresh our symbol table to the newly exec'd program, remove any
1097 momentary bp's, etc.
1098
1099 If there are breakpoints, they aren't really inserted now,
1100 since the exec() transformed our inferior into a fresh set
1101 of instructions.
1102
1103 We want to preserve symbolic breakpoints on the list, since
1104 we have hopes that they can be reset after the new a.out's
1105 symbol table is read.
1106
1107 However, any "raw" breakpoints must be removed from the list
1108 (e.g., the solib bp's), since their address is probably invalid
1109 now.
1110
1111 And, we DON'T want to call delete_breakpoints() here, since
1112 that may write the bp's "shadow contents" (the instruction
1113 value that was overwritten with a TRAP instruction). Since
1114 we now have a new a.out, those shadow contents aren't valid. */
1115
1116 mark_breakpoints_out ();
1117
1118 /* The target reports the exec event to the main thread, even if
1119 some other thread does the exec, and even if the main thread was
1120 stopped or already gone. We may still have non-leader threads of
1121 the process on our list. E.g., on targets that don't have thread
1122 exit events (like remote); or on native Linux in non-stop mode if
1123 there were only two threads in the inferior and the non-leader
1124 one is the one that execs (and nothing forces an update of the
1125 thread list up to here). When debugging remotely, it's best to
1126 avoid extra traffic, when possible, so avoid syncing the thread
1127 list with the target, and instead go ahead and delete all threads
1128 of the process but one that reported the event. Note this must
1129 be done before calling update_breakpoints_after_exec, as
1130 otherwise clearing the threads' resources would reference stale
1131 thread breakpoints -- it may have been one of these threads that
1132 stepped across the exec. We could just clear their stepping
1133 states, but as long as we're iterating, might as well delete
1134 them. Deleting them now rather than at the next user-visible
1135 stop provides a nicer sequence of events for user and MI
1136 notifications. */
1137 for (thread_info *th : all_threads_safe ())
1138 if (th->ptid.pid () == pid && th->ptid != ptid)
1139 delete_thread (th);
1140
1141 /* We also need to clear any left over stale state for the
1142 leader/event thread. E.g., if there was any step-resume
1143 breakpoint or similar, it's gone now. We cannot truly
1144 step-to-next statement through an exec(). */
1145 thread_info *th = inferior_thread ();
1146 th->control.step_resume_breakpoint = NULL;
1147 th->control.exception_resume_breakpoint = NULL;
1148 th->control.single_step_breakpoints = NULL;
1149 th->control.step_range_start = 0;
1150 th->control.step_range_end = 0;
1151
1152 /* The user may have had the main thread held stopped in the
1153 previous image (e.g., schedlock on, or non-stop). Release
1154 it now. */
1155 th->stop_requested = 0;
1156
1157 update_breakpoints_after_exec ();
1158
1159 /* What is this a.out's name? */
1160 process_ptid = ptid_t (pid);
1161 printf_unfiltered (_("%s is executing new program: %s\n"),
1162 target_pid_to_str (process_ptid).c_str (),
1163 exec_file_target);
1164
1165 /* We've followed the inferior through an exec. Therefore, the
1166 inferior has essentially been killed & reborn. */
1167
1168 breakpoint_init_inferior (inf_execd);
1169
1170 gdb::unique_xmalloc_ptr<char> exec_file_host
1171 = exec_file_find (exec_file_target, NULL);
1172
1173 /* If we were unable to map the executable target pathname onto a host
1174 pathname, tell the user that. Otherwise GDB's subsequent behavior
1175 is confusing. Maybe it would even be better to stop at this point
1176 so that the user can specify a file manually before continuing. */
1177 if (exec_file_host == NULL)
1178 warning (_("Could not load symbols for executable %s.\n"
1179 "Do you need \"set sysroot\"?"),
1180 exec_file_target);
1181
1182 /* Reset the shared library package. This ensures that we get a
1183 shlib event when the child reaches "_start", at which point the
1184 dld will have had a chance to initialize the child. */
1185 /* Also, loading a symbol file below may trigger symbol lookups, and
1186 we don't want those to be satisfied by the libraries of the
1187 previous incarnation of this process. */
1188 no_shared_libraries (NULL, 0);
1189
1190 if (follow_exec_mode_string == follow_exec_mode_new)
1191 {
1192 /* The user wants to keep the old inferior and program spaces
1193 around. Create a new fresh one, and switch to it. */
1194
1195 /* Do exit processing for the original inferior before setting the new
1196 inferior's pid. Having two inferiors with the same pid would confuse
1197 find_inferior_p(t)id. Transfer the terminal state and info from the
1198 old to the new inferior. */
1199 inf = add_inferior_with_spaces ();
1200 swap_terminal_info (inf, current_inferior ());
1201 exit_inferior_silent (current_inferior ());
1202
1203 inf->pid = pid;
1204 target_follow_exec (inf, exec_file_target);
1205
1206 inferior *org_inferior = current_inferior ();
1207 switch_to_inferior_no_thread (inf);
1208 push_target (org_inferior->process_target ());
1209 thread_info *thr = add_thread (inf->process_target (), ptid);
1210 switch_to_thread (thr);
1211 }
1212 else
1213 {
1214 /* The old description may no longer be fit for the new image.
1215 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1216 old description; we'll read a new one below. No need to do
1217 this on "follow-exec-mode new", as the old inferior stays
1218 around (its description is later cleared/refetched on
1219 restart). */
1220 target_clear_description ();
1221 }
1222
1223 gdb_assert (current_program_space == inf->pspace);
1224
1225 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1226 because the proper displacement for a PIE (Position Independent
1227 Executable) main symbol file will only be computed by
1228 solib_create_inferior_hook below. breakpoint_re_set would fail
1229 to insert the breakpoints with the zero displacement. */
1230 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1231
1232 /* If the target can specify a description, read it. Must do this
1233 after flipping to the new executable (because the target supplied
1234 description must be compatible with the executable's
1235 architecture, and the old executable may e.g., be 32-bit, while
1236 the new one 64-bit), and before anything involving memory or
1237 registers. */
1238 target_find_description ();
1239
1240 solib_create_inferior_hook (0);
1241
1242 jit_inferior_created_hook ();
1243
1244 breakpoint_re_set ();
1245
1246 /* Reinsert all breakpoints. (Those which were symbolic have
1247 been reset to the proper address in the new a.out, thanks
1248 to symbol_file_command...). */
1249 insert_breakpoints ();
1250
1251 /* The next resume of this inferior should bring it to the shlib
1252 startup breakpoints. (If the user had also set bp's on
1253 "main" from the old (parent) process, then they'll auto-
1254 matically get reset there in the new process.). */
1255 }
1256
1257 /* The queue of threads that need to do a step-over operation to get
1258 past e.g., a breakpoint. What technique is used to step over the
1259 breakpoint/watchpoint does not matter -- all threads end up in the
1260 same queue, to maintain rough temporal order of execution, in order
1261 to avoid starvation, otherwise, we could e.g., find ourselves
1262 constantly stepping the same couple threads past their breakpoints
1263 over and over, if the single-step finish fast enough. */
1264 struct thread_info *step_over_queue_head;
1265
1266 /* Bit flags indicating what the thread needs to step over. */
1267
1268 enum step_over_what_flag
1269 {
1270 /* Step over a breakpoint. */
1271 STEP_OVER_BREAKPOINT = 1,
1272
1273 /* Step past a non-continuable watchpoint, in order to let the
1274 instruction execute so we can evaluate the watchpoint
1275 expression. */
1276 STEP_OVER_WATCHPOINT = 2
1277 };
1278 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1279
1280 /* Info about an instruction that is being stepped over. */
1281
1282 struct step_over_info
1283 {
1284 /* If we're stepping past a breakpoint, this is the address space
1285 and address of the instruction the breakpoint is set at. We'll
1286 skip inserting all breakpoints here. Valid iff ASPACE is
1287 non-NULL. */
1288 const address_space *aspace;
1289 CORE_ADDR address;
1290
1291 /* The instruction being stepped over triggers a nonsteppable
1292 watchpoint. If true, we'll skip inserting watchpoints. */
1293 int nonsteppable_watchpoint_p;
1294
1295 /* The thread's global number. */
1296 int thread;
1297 };
1298
1299 /* The step-over info of the location that is being stepped over.
1300
1301 Note that with async/breakpoint always-inserted mode, a user might
1302 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1303 being stepped over. As setting a new breakpoint inserts all
1304 breakpoints, we need to make sure the breakpoint being stepped over
1305 isn't inserted then. We do that by only clearing the step-over
1306 info when the step-over is actually finished (or aborted).
1307
1308 Presently GDB can only step over one breakpoint at any given time.
1309 Given threads that can't run code in the same address space as the
1310 breakpoint's can't really miss the breakpoint, GDB could be taught
1311 to step-over at most one breakpoint per address space (so this info
1312 could move to the address space object if/when GDB is extended).
1313 The set of breakpoints being stepped over will normally be much
1314 smaller than the set of all breakpoints, so a flag in the
1315 breakpoint location structure would be wasteful. A separate list
1316 also saves complexity and run-time, as otherwise we'd have to go
1317 through all breakpoint locations clearing their flag whenever we
1318 start a new sequence. Similar considerations weigh against storing
1319 this info in the thread object. Plus, not all step overs actually
1320 have breakpoint locations -- e.g., stepping past a single-step
1321 breakpoint, or stepping to complete a non-continuable
1322 watchpoint. */
1323 static struct step_over_info step_over_info;
1324
1325 /* Record the address of the breakpoint/instruction we're currently
1326 stepping over.
1327 N.B. We record the aspace and address now, instead of say just the thread,
1328 because when we need the info later the thread may be running. */
1329
1330 static void
1331 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1332 int nonsteppable_watchpoint_p,
1333 int thread)
1334 {
1335 step_over_info.aspace = aspace;
1336 step_over_info.address = address;
1337 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1338 step_over_info.thread = thread;
1339 }
1340
1341 /* Called when we're not longer stepping over a breakpoint / an
1342 instruction, so all breakpoints are free to be (re)inserted. */
1343
1344 static void
1345 clear_step_over_info (void)
1346 {
1347 infrun_debug_printf ("clearing step over info");
1348 step_over_info.aspace = NULL;
1349 step_over_info.address = 0;
1350 step_over_info.nonsteppable_watchpoint_p = 0;
1351 step_over_info.thread = -1;
1352 }
1353
1354 /* See infrun.h. */
1355
1356 int
1357 stepping_past_instruction_at (struct address_space *aspace,
1358 CORE_ADDR address)
1359 {
1360 return (step_over_info.aspace != NULL
1361 && breakpoint_address_match (aspace, address,
1362 step_over_info.aspace,
1363 step_over_info.address));
1364 }
1365
1366 /* See infrun.h. */
1367
1368 int
1369 thread_is_stepping_over_breakpoint (int thread)
1370 {
1371 return (step_over_info.thread != -1
1372 && thread == step_over_info.thread);
1373 }
1374
1375 /* See infrun.h. */
1376
1377 int
1378 stepping_past_nonsteppable_watchpoint (void)
1379 {
1380 return step_over_info.nonsteppable_watchpoint_p;
1381 }
1382
1383 /* Returns true if step-over info is valid. */
1384
1385 static int
1386 step_over_info_valid_p (void)
1387 {
1388 return (step_over_info.aspace != NULL
1389 || stepping_past_nonsteppable_watchpoint ());
1390 }
1391
1392 \f
1393 /* Displaced stepping. */
1394
1395 /* In non-stop debugging mode, we must take special care to manage
1396 breakpoints properly; in particular, the traditional strategy for
1397 stepping a thread past a breakpoint it has hit is unsuitable.
1398 'Displaced stepping' is a tactic for stepping one thread past a
1399 breakpoint it has hit while ensuring that other threads running
1400 concurrently will hit the breakpoint as they should.
1401
1402 The traditional way to step a thread T off a breakpoint in a
1403 multi-threaded program in all-stop mode is as follows:
1404
1405 a0) Initially, all threads are stopped, and breakpoints are not
1406 inserted.
1407 a1) We single-step T, leaving breakpoints uninserted.
1408 a2) We insert breakpoints, and resume all threads.
1409
1410 In non-stop debugging, however, this strategy is unsuitable: we
1411 don't want to have to stop all threads in the system in order to
1412 continue or step T past a breakpoint. Instead, we use displaced
1413 stepping:
1414
1415 n0) Initially, T is stopped, other threads are running, and
1416 breakpoints are inserted.
1417 n1) We copy the instruction "under" the breakpoint to a separate
1418 location, outside the main code stream, making any adjustments
1419 to the instruction, register, and memory state as directed by
1420 T's architecture.
1421 n2) We single-step T over the instruction at its new location.
1422 n3) We adjust the resulting register and memory state as directed
1423 by T's architecture. This includes resetting T's PC to point
1424 back into the main instruction stream.
1425 n4) We resume T.
1426
1427 This approach depends on the following gdbarch methods:
1428
1429 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1430 indicate where to copy the instruction, and how much space must
1431 be reserved there. We use these in step n1.
1432
1433 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1434 address, and makes any necessary adjustments to the instruction,
1435 register contents, and memory. We use this in step n1.
1436
1437 - gdbarch_displaced_step_fixup adjusts registers and memory after
1438 we have successfully single-stepped the instruction, to yield the
1439 same effect the instruction would have had if we had executed it
1440 at its original address. We use this in step n3.
1441
1442 The gdbarch_displaced_step_copy_insn and
1443 gdbarch_displaced_step_fixup functions must be written so that
1444 copying an instruction with gdbarch_displaced_step_copy_insn,
1445 single-stepping across the copied instruction, and then applying
1446 gdbarch_displaced_insn_fixup should have the same effects on the
1447 thread's memory and registers as stepping the instruction in place
1448 would have. Exactly which responsibilities fall to the copy and
1449 which fall to the fixup is up to the author of those functions.
1450
1451 See the comments in gdbarch.sh for details.
1452
1453 Note that displaced stepping and software single-step cannot
1454 currently be used in combination, although with some care I think
1455 they could be made to. Software single-step works by placing
1456 breakpoints on all possible subsequent instructions; if the
1457 displaced instruction is a PC-relative jump, those breakpoints
1458 could fall in very strange places --- on pages that aren't
1459 executable, or at addresses that are not proper instruction
1460 boundaries. (We do generally let other threads run while we wait
1461 to hit the software single-step breakpoint, and they might
1462 encounter such a corrupted instruction.) One way to work around
1463 this would be to have gdbarch_displaced_step_copy_insn fully
1464 simulate the effect of PC-relative instructions (and return NULL)
1465 on architectures that use software single-stepping.
1466
1467 In non-stop mode, we can have independent and simultaneous step
1468 requests, so more than one thread may need to simultaneously step
1469 over a breakpoint. The current implementation assumes there is
1470 only one scratch space per process. In this case, we have to
1471 serialize access to the scratch space. If thread A wants to step
1472 over a breakpoint, but we are currently waiting for some other
1473 thread to complete a displaced step, we leave thread A stopped and
1474 place it in the displaced_step_request_queue. Whenever a displaced
1475 step finishes, we pick the next thread in the queue and start a new
1476 displaced step operation on it. See displaced_step_prepare and
1477 displaced_step_fixup for details. */
1478
1479 /* Default destructor for displaced_step_closure. */
1480
1481 displaced_step_closure::~displaced_step_closure () = default;
1482
1483 /* Get the displaced stepping state of process PID. */
1484
1485 static displaced_step_inferior_state *
1486 get_displaced_stepping_state (inferior *inf)
1487 {
1488 return &inf->displaced_step_state;
1489 }
1490
1491 /* Returns true if any inferior has a thread doing a displaced
1492 step. */
1493
1494 static bool
1495 displaced_step_in_progress_any_inferior ()
1496 {
1497 for (inferior *i : all_inferiors ())
1498 {
1499 if (i->displaced_step_state.step_thread != nullptr)
1500 return true;
1501 }
1502
1503 return false;
1504 }
1505
1506 /* Return true if thread represented by PTID is doing a displaced
1507 step. */
1508
1509 static int
1510 displaced_step_in_progress_thread (thread_info *thread)
1511 {
1512 gdb_assert (thread != NULL);
1513
1514 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1515 }
1516
1517 /* Return true if process PID has a thread doing a displaced step. */
1518
1519 static int
1520 displaced_step_in_progress (inferior *inf)
1521 {
1522 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1523 }
1524
1525 /* If inferior is in displaced stepping, and ADDR equals to starting address
1526 of copy area, return corresponding displaced_step_closure. Otherwise,
1527 return NULL. */
1528
1529 struct displaced_step_closure*
1530 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1531 {
1532 displaced_step_inferior_state *displaced
1533 = get_displaced_stepping_state (current_inferior ());
1534
1535 /* If checking the mode of displaced instruction in copy area. */
1536 if (displaced->step_thread != nullptr
1537 && displaced->step_copy == addr)
1538 return displaced->step_closure.get ();
1539
1540 return NULL;
1541 }
1542
1543 static void
1544 infrun_inferior_exit (struct inferior *inf)
1545 {
1546 inf->displaced_step_state.reset ();
1547 }
1548
1549 /* If ON, and the architecture supports it, GDB will use displaced
1550 stepping to step over breakpoints. If OFF, or if the architecture
1551 doesn't support it, GDB will instead use the traditional
1552 hold-and-step approach. If AUTO (which is the default), GDB will
1553 decide which technique to use to step over breakpoints depending on
1554 whether the target works in a non-stop way (see use_displaced_stepping). */
1555
1556 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1557
1558 static void
1559 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1560 struct cmd_list_element *c,
1561 const char *value)
1562 {
1563 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1564 fprintf_filtered (file,
1565 _("Debugger's willingness to use displaced stepping "
1566 "to step over breakpoints is %s (currently %s).\n"),
1567 value, target_is_non_stop_p () ? "on" : "off");
1568 else
1569 fprintf_filtered (file,
1570 _("Debugger's willingness to use displaced stepping "
1571 "to step over breakpoints is %s.\n"), value);
1572 }
1573
1574 /* Return true if the gdbarch implements the required methods to use
1575 displaced stepping. */
1576
1577 static bool
1578 gdbarch_supports_displaced_stepping (gdbarch *arch)
1579 {
1580 /* Only check for the presence of step_copy_insn. Other required methods
1581 are checked by the gdbarch validation. */
1582 return gdbarch_displaced_step_copy_insn_p (arch);
1583 }
1584
1585 /* Return non-zero if displaced stepping can/should be used to step
1586 over breakpoints of thread TP. */
1587
1588 static bool
1589 use_displaced_stepping (thread_info *tp)
1590 {
1591 /* If the user disabled it explicitly, don't use displaced stepping. */
1592 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1593 return false;
1594
1595 /* If "auto", only use displaced stepping if the target operates in a non-stop
1596 way. */
1597 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1598 && !target_is_non_stop_p ())
1599 return false;
1600
1601 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1602
1603 /* If the architecture doesn't implement displaced stepping, don't use
1604 it. */
1605 if (!gdbarch_supports_displaced_stepping (gdbarch))
1606 return false;
1607
1608 /* If recording, don't use displaced stepping. */
1609 if (find_record_target () != nullptr)
1610 return false;
1611
1612 displaced_step_inferior_state *displaced_state
1613 = get_displaced_stepping_state (tp->inf);
1614
1615 /* If displaced stepping failed before for this inferior, don't bother trying
1616 again. */
1617 if (displaced_state->failed_before)
1618 return false;
1619
1620 return true;
1621 }
1622
1623 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1624
1625 static void
1626 displaced_step_reset (displaced_step_inferior_state *displaced)
1627 {
1628 displaced->reset ();
1629 }
1630
1631 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1632 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1633
1634 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1635
1636 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1637 void
1638 displaced_step_dump_bytes (struct ui_file *file,
1639 const gdb_byte *buf,
1640 size_t len)
1641 {
1642 int i;
1643
1644 for (i = 0; i < len; i++)
1645 fprintf_unfiltered (file, "%02x ", buf[i]);
1646 fputs_unfiltered ("\n", file);
1647 }
1648
1649 /* Prepare to single-step, using displaced stepping.
1650
1651 Note that we cannot use displaced stepping when we have a signal to
1652 deliver. If we have a signal to deliver and an instruction to step
1653 over, then after the step, there will be no indication from the
1654 target whether the thread entered a signal handler or ignored the
1655 signal and stepped over the instruction successfully --- both cases
1656 result in a simple SIGTRAP. In the first case we mustn't do a
1657 fixup, and in the second case we must --- but we can't tell which.
1658 Comments in the code for 'random signals' in handle_inferior_event
1659 explain how we handle this case instead.
1660
1661 Returns 1 if preparing was successful -- this thread is going to be
1662 stepped now; 0 if displaced stepping this thread got queued; or -1
1663 if this instruction can't be displaced stepped. */
1664
1665 static int
1666 displaced_step_prepare_throw (thread_info *tp)
1667 {
1668 regcache *regcache = get_thread_regcache (tp);
1669 struct gdbarch *gdbarch = regcache->arch ();
1670 const address_space *aspace = regcache->aspace ();
1671 CORE_ADDR original, copy;
1672 ULONGEST len;
1673 int status;
1674
1675 /* We should never reach this function if the architecture does not
1676 support displaced stepping. */
1677 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1678
1679 /* Nor if the thread isn't meant to step over a breakpoint. */
1680 gdb_assert (tp->control.trap_expected);
1681
1682 /* Disable range stepping while executing in the scratch pad. We
1683 want a single-step even if executing the displaced instruction in
1684 the scratch buffer lands within the stepping range (e.g., a
1685 jump/branch). */
1686 tp->control.may_range_step = 0;
1687
1688 /* We have to displaced step one thread at a time, as we only have
1689 access to a single scratch space per inferior. */
1690
1691 displaced_step_inferior_state *displaced
1692 = get_displaced_stepping_state (tp->inf);
1693
1694 if (displaced->step_thread != nullptr)
1695 {
1696 /* Already waiting for a displaced step to finish. Defer this
1697 request and place in queue. */
1698
1699 if (debug_displaced)
1700 fprintf_unfiltered (gdb_stdlog,
1701 "displaced: deferring step of %s\n",
1702 target_pid_to_str (tp->ptid).c_str ());
1703
1704 thread_step_over_chain_enqueue (tp);
1705 return 0;
1706 }
1707 else
1708 {
1709 if (debug_displaced)
1710 fprintf_unfiltered (gdb_stdlog,
1711 "displaced: stepping %s now\n",
1712 target_pid_to_str (tp->ptid).c_str ());
1713 }
1714
1715 displaced_step_reset (displaced);
1716
1717 scoped_restore_current_thread restore_thread;
1718
1719 switch_to_thread (tp);
1720
1721 original = regcache_read_pc (regcache);
1722
1723 copy = gdbarch_displaced_step_location (gdbarch);
1724 len = gdbarch_max_insn_length (gdbarch);
1725
1726 if (breakpoint_in_range_p (aspace, copy, len))
1727 {
1728 /* There's a breakpoint set in the scratch pad location range
1729 (which is usually around the entry point). We'd either
1730 install it before resuming, which would overwrite/corrupt the
1731 scratch pad, or if it was already inserted, this displaced
1732 step would overwrite it. The latter is OK in the sense that
1733 we already assume that no thread is going to execute the code
1734 in the scratch pad range (after initial startup) anyway, but
1735 the former is unacceptable. Simply punt and fallback to
1736 stepping over this breakpoint in-line. */
1737 if (debug_displaced)
1738 {
1739 fprintf_unfiltered (gdb_stdlog,
1740 "displaced: breakpoint set in scratch pad. "
1741 "Stepping over breakpoint in-line instead.\n");
1742 }
1743
1744 return -1;
1745 }
1746
1747 /* Save the original contents of the copy area. */
1748 displaced->step_saved_copy.resize (len);
1749 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1750 if (status != 0)
1751 throw_error (MEMORY_ERROR,
1752 _("Error accessing memory address %s (%s) for "
1753 "displaced-stepping scratch space."),
1754 paddress (gdbarch, copy), safe_strerror (status));
1755 if (debug_displaced)
1756 {
1757 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1758 paddress (gdbarch, copy));
1759 displaced_step_dump_bytes (gdb_stdlog,
1760 displaced->step_saved_copy.data (),
1761 len);
1762 };
1763
1764 displaced->step_closure
1765 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1766 if (displaced->step_closure == NULL)
1767 {
1768 /* The architecture doesn't know how or want to displaced step
1769 this instruction or instruction sequence. Fallback to
1770 stepping over the breakpoint in-line. */
1771 return -1;
1772 }
1773
1774 /* Save the information we need to fix things up if the step
1775 succeeds. */
1776 displaced->step_thread = tp;
1777 displaced->step_gdbarch = gdbarch;
1778 displaced->step_original = original;
1779 displaced->step_copy = copy;
1780
1781 {
1782 displaced_step_reset_cleanup cleanup (displaced);
1783
1784 /* Resume execution at the copy. */
1785 regcache_write_pc (regcache, copy);
1786
1787 cleanup.release ();
1788 }
1789
1790 if (debug_displaced)
1791 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1792 paddress (gdbarch, copy));
1793
1794 return 1;
1795 }
1796
1797 /* Wrapper for displaced_step_prepare_throw that disabled further
1798 attempts at displaced stepping if we get a memory error. */
1799
1800 static int
1801 displaced_step_prepare (thread_info *thread)
1802 {
1803 int prepared = -1;
1804
1805 try
1806 {
1807 prepared = displaced_step_prepare_throw (thread);
1808 }
1809 catch (const gdb_exception_error &ex)
1810 {
1811 struct displaced_step_inferior_state *displaced_state;
1812
1813 if (ex.error != MEMORY_ERROR
1814 && ex.error != NOT_SUPPORTED_ERROR)
1815 throw;
1816
1817 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1818 ex.what ());
1819
1820 /* Be verbose if "set displaced-stepping" is "on", silent if
1821 "auto". */
1822 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1823 {
1824 warning (_("disabling displaced stepping: %s"),
1825 ex.what ());
1826 }
1827
1828 /* Disable further displaced stepping attempts. */
1829 displaced_state
1830 = get_displaced_stepping_state (thread->inf);
1831 displaced_state->failed_before = 1;
1832 }
1833
1834 return prepared;
1835 }
1836
1837 static void
1838 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1839 const gdb_byte *myaddr, int len)
1840 {
1841 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1842
1843 inferior_ptid = ptid;
1844 write_memory (memaddr, myaddr, len);
1845 }
1846
1847 /* Restore the contents of the copy area for thread PTID. */
1848
1849 static void
1850 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1851 ptid_t ptid)
1852 {
1853 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1854
1855 write_memory_ptid (ptid, displaced->step_copy,
1856 displaced->step_saved_copy.data (), len);
1857 if (debug_displaced)
1858 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1859 target_pid_to_str (ptid).c_str (),
1860 paddress (displaced->step_gdbarch,
1861 displaced->step_copy));
1862 }
1863
1864 /* If we displaced stepped an instruction successfully, adjust
1865 registers and memory to yield the same effect the instruction would
1866 have had if we had executed it at its original address, and return
1867 1. If the instruction didn't complete, relocate the PC and return
1868 -1. If the thread wasn't displaced stepping, return 0. */
1869
1870 static int
1871 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1872 {
1873 struct displaced_step_inferior_state *displaced
1874 = get_displaced_stepping_state (event_thread->inf);
1875 int ret;
1876
1877 /* Was this event for the thread we displaced? */
1878 if (displaced->step_thread != event_thread)
1879 return 0;
1880
1881 /* Fixup may need to read memory/registers. Switch to the thread
1882 that we're fixing up. Also, target_stopped_by_watchpoint checks
1883 the current thread, and displaced_step_restore performs ptid-dependent
1884 memory accesses using current_inferior() and current_top_target(). */
1885 switch_to_thread (event_thread);
1886
1887 displaced_step_reset_cleanup cleanup (displaced);
1888
1889 displaced_step_restore (displaced, displaced->step_thread->ptid);
1890
1891 /* Did the instruction complete successfully? */
1892 if (signal == GDB_SIGNAL_TRAP
1893 && !(target_stopped_by_watchpoint ()
1894 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1895 || target_have_steppable_watchpoint)))
1896 {
1897 /* Fix up the resulting state. */
1898 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1899 displaced->step_closure.get (),
1900 displaced->step_original,
1901 displaced->step_copy,
1902 get_thread_regcache (displaced->step_thread));
1903 ret = 1;
1904 }
1905 else
1906 {
1907 /* Since the instruction didn't complete, all we can do is
1908 relocate the PC. */
1909 struct regcache *regcache = get_thread_regcache (event_thread);
1910 CORE_ADDR pc = regcache_read_pc (regcache);
1911
1912 pc = displaced->step_original + (pc - displaced->step_copy);
1913 regcache_write_pc (regcache, pc);
1914 ret = -1;
1915 }
1916
1917 return ret;
1918 }
1919
1920 /* Data to be passed around while handling an event. This data is
1921 discarded between events. */
1922 struct execution_control_state
1923 {
1924 process_stratum_target *target;
1925 ptid_t ptid;
1926 /* The thread that got the event, if this was a thread event; NULL
1927 otherwise. */
1928 struct thread_info *event_thread;
1929
1930 struct target_waitstatus ws;
1931 int stop_func_filled_in;
1932 CORE_ADDR stop_func_start;
1933 CORE_ADDR stop_func_end;
1934 const char *stop_func_name;
1935 int wait_some_more;
1936
1937 /* True if the event thread hit the single-step breakpoint of
1938 another thread. Thus the event doesn't cause a stop, the thread
1939 needs to be single-stepped past the single-step breakpoint before
1940 we can switch back to the original stepping thread. */
1941 int hit_singlestep_breakpoint;
1942 };
1943
1944 /* Clear ECS and set it to point at TP. */
1945
1946 static void
1947 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1948 {
1949 memset (ecs, 0, sizeof (*ecs));
1950 ecs->event_thread = tp;
1951 ecs->ptid = tp->ptid;
1952 }
1953
1954 static void keep_going_pass_signal (struct execution_control_state *ecs);
1955 static void prepare_to_wait (struct execution_control_state *ecs);
1956 static int keep_going_stepped_thread (struct thread_info *tp);
1957 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1958
1959 /* Are there any pending step-over requests? If so, run all we can
1960 now and return true. Otherwise, return false. */
1961
1962 static int
1963 start_step_over (void)
1964 {
1965 struct thread_info *tp, *next;
1966
1967 /* Don't start a new step-over if we already have an in-line
1968 step-over operation ongoing. */
1969 if (step_over_info_valid_p ())
1970 return 0;
1971
1972 for (tp = step_over_queue_head; tp != NULL; tp = next)
1973 {
1974 struct execution_control_state ecss;
1975 struct execution_control_state *ecs = &ecss;
1976 step_over_what step_what;
1977 int must_be_in_line;
1978
1979 gdb_assert (!tp->stop_requested);
1980
1981 next = thread_step_over_chain_next (tp);
1982
1983 /* If this inferior already has a displaced step in process,
1984 don't start a new one. */
1985 if (displaced_step_in_progress (tp->inf))
1986 continue;
1987
1988 step_what = thread_still_needs_step_over (tp);
1989 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1990 || ((step_what & STEP_OVER_BREAKPOINT)
1991 && !use_displaced_stepping (tp)));
1992
1993 /* We currently stop all threads of all processes to step-over
1994 in-line. If we need to start a new in-line step-over, let
1995 any pending displaced steps finish first. */
1996 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1997 return 0;
1998
1999 thread_step_over_chain_remove (tp);
2000
2001 if (step_over_queue_head == NULL)
2002 infrun_debug_printf ("step-over queue now empty");
2003
2004 if (tp->control.trap_expected
2005 || tp->resumed
2006 || tp->executing)
2007 {
2008 internal_error (__FILE__, __LINE__,
2009 "[%s] has inconsistent state: "
2010 "trap_expected=%d, resumed=%d, executing=%d\n",
2011 target_pid_to_str (tp->ptid).c_str (),
2012 tp->control.trap_expected,
2013 tp->resumed,
2014 tp->executing);
2015 }
2016
2017 infrun_debug_printf ("resuming [%s] for step-over",
2018 target_pid_to_str (tp->ptid).c_str ());
2019
2020 /* keep_going_pass_signal skips the step-over if the breakpoint
2021 is no longer inserted. In all-stop, we want to keep looking
2022 for a thread that needs a step-over instead of resuming TP,
2023 because we wouldn't be able to resume anything else until the
2024 target stops again. In non-stop, the resume always resumes
2025 only TP, so it's OK to let the thread resume freely. */
2026 if (!target_is_non_stop_p () && !step_what)
2027 continue;
2028
2029 switch_to_thread (tp);
2030 reset_ecs (ecs, tp);
2031 keep_going_pass_signal (ecs);
2032
2033 if (!ecs->wait_some_more)
2034 error (_("Command aborted."));
2035
2036 gdb_assert (tp->resumed);
2037
2038 /* If we started a new in-line step-over, we're done. */
2039 if (step_over_info_valid_p ())
2040 {
2041 gdb_assert (tp->control.trap_expected);
2042 return 1;
2043 }
2044
2045 if (!target_is_non_stop_p ())
2046 {
2047 /* On all-stop, shouldn't have resumed unless we needed a
2048 step over. */
2049 gdb_assert (tp->control.trap_expected
2050 || tp->step_after_step_resume_breakpoint);
2051
2052 /* With remote targets (at least), in all-stop, we can't
2053 issue any further remote commands until the program stops
2054 again. */
2055 return 1;
2056 }
2057
2058 /* Either the thread no longer needed a step-over, or a new
2059 displaced stepping sequence started. Even in the latter
2060 case, continue looking. Maybe we can also start another
2061 displaced step on a thread of other process. */
2062 }
2063
2064 return 0;
2065 }
2066
2067 /* Update global variables holding ptids to hold NEW_PTID if they were
2068 holding OLD_PTID. */
2069 static void
2070 infrun_thread_ptid_changed (process_stratum_target *target,
2071 ptid_t old_ptid, ptid_t new_ptid)
2072 {
2073 if (inferior_ptid == old_ptid
2074 && current_inferior ()->process_target () == target)
2075 inferior_ptid = new_ptid;
2076 }
2077
2078 \f
2079
2080 static const char schedlock_off[] = "off";
2081 static const char schedlock_on[] = "on";
2082 static const char schedlock_step[] = "step";
2083 static const char schedlock_replay[] = "replay";
2084 static const char *const scheduler_enums[] = {
2085 schedlock_off,
2086 schedlock_on,
2087 schedlock_step,
2088 schedlock_replay,
2089 NULL
2090 };
2091 static const char *scheduler_mode = schedlock_replay;
2092 static void
2093 show_scheduler_mode (struct ui_file *file, int from_tty,
2094 struct cmd_list_element *c, const char *value)
2095 {
2096 fprintf_filtered (file,
2097 _("Mode for locking scheduler "
2098 "during execution is \"%s\".\n"),
2099 value);
2100 }
2101
2102 static void
2103 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2104 {
2105 if (!target_can_lock_scheduler)
2106 {
2107 scheduler_mode = schedlock_off;
2108 error (_("Target '%s' cannot support this command."), target_shortname);
2109 }
2110 }
2111
2112 /* True if execution commands resume all threads of all processes by
2113 default; otherwise, resume only threads of the current inferior
2114 process. */
2115 bool sched_multi = false;
2116
2117 /* Try to setup for software single stepping over the specified location.
2118 Return 1 if target_resume() should use hardware single step.
2119
2120 GDBARCH the current gdbarch.
2121 PC the location to step over. */
2122
2123 static int
2124 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2125 {
2126 int hw_step = 1;
2127
2128 if (execution_direction == EXEC_FORWARD
2129 && gdbarch_software_single_step_p (gdbarch))
2130 hw_step = !insert_single_step_breakpoints (gdbarch);
2131
2132 return hw_step;
2133 }
2134
2135 /* See infrun.h. */
2136
2137 ptid_t
2138 user_visible_resume_ptid (int step)
2139 {
2140 ptid_t resume_ptid;
2141
2142 if (non_stop)
2143 {
2144 /* With non-stop mode on, threads are always handled
2145 individually. */
2146 resume_ptid = inferior_ptid;
2147 }
2148 else if ((scheduler_mode == schedlock_on)
2149 || (scheduler_mode == schedlock_step && step))
2150 {
2151 /* User-settable 'scheduler' mode requires solo thread
2152 resume. */
2153 resume_ptid = inferior_ptid;
2154 }
2155 else if ((scheduler_mode == schedlock_replay)
2156 && target_record_will_replay (minus_one_ptid, execution_direction))
2157 {
2158 /* User-settable 'scheduler' mode requires solo thread resume in replay
2159 mode. */
2160 resume_ptid = inferior_ptid;
2161 }
2162 else if (!sched_multi && target_supports_multi_process ())
2163 {
2164 /* Resume all threads of the current process (and none of other
2165 processes). */
2166 resume_ptid = ptid_t (inferior_ptid.pid ());
2167 }
2168 else
2169 {
2170 /* Resume all threads of all processes. */
2171 resume_ptid = RESUME_ALL;
2172 }
2173
2174 return resume_ptid;
2175 }
2176
2177 /* See infrun.h. */
2178
2179 process_stratum_target *
2180 user_visible_resume_target (ptid_t resume_ptid)
2181 {
2182 return (resume_ptid == minus_one_ptid && sched_multi
2183 ? NULL
2184 : current_inferior ()->process_target ());
2185 }
2186
2187 /* Return a ptid representing the set of threads that we will resume,
2188 in the perspective of the target, assuming run control handling
2189 does not require leaving some threads stopped (e.g., stepping past
2190 breakpoint). USER_STEP indicates whether we're about to start the
2191 target for a stepping command. */
2192
2193 static ptid_t
2194 internal_resume_ptid (int user_step)
2195 {
2196 /* In non-stop, we always control threads individually. Note that
2197 the target may always work in non-stop mode even with "set
2198 non-stop off", in which case user_visible_resume_ptid could
2199 return a wildcard ptid. */
2200 if (target_is_non_stop_p ())
2201 return inferior_ptid;
2202 else
2203 return user_visible_resume_ptid (user_step);
2204 }
2205
2206 /* Wrapper for target_resume, that handles infrun-specific
2207 bookkeeping. */
2208
2209 static void
2210 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2211 {
2212 struct thread_info *tp = inferior_thread ();
2213
2214 gdb_assert (!tp->stop_requested);
2215
2216 /* Install inferior's terminal modes. */
2217 target_terminal::inferior ();
2218
2219 /* Avoid confusing the next resume, if the next stop/resume
2220 happens to apply to another thread. */
2221 tp->suspend.stop_signal = GDB_SIGNAL_0;
2222
2223 /* Advise target which signals may be handled silently.
2224
2225 If we have removed breakpoints because we are stepping over one
2226 in-line (in any thread), we need to receive all signals to avoid
2227 accidentally skipping a breakpoint during execution of a signal
2228 handler.
2229
2230 Likewise if we're displaced stepping, otherwise a trap for a
2231 breakpoint in a signal handler might be confused with the
2232 displaced step finishing. We don't make the displaced_step_fixup
2233 step distinguish the cases instead, because:
2234
2235 - a backtrace while stopped in the signal handler would show the
2236 scratch pad as frame older than the signal handler, instead of
2237 the real mainline code.
2238
2239 - when the thread is later resumed, the signal handler would
2240 return to the scratch pad area, which would no longer be
2241 valid. */
2242 if (step_over_info_valid_p ()
2243 || displaced_step_in_progress (tp->inf))
2244 target_pass_signals ({});
2245 else
2246 target_pass_signals (signal_pass);
2247
2248 target_resume (resume_ptid, step, sig);
2249
2250 target_commit_resume ();
2251
2252 if (target_can_async_p ())
2253 target_async (1);
2254 }
2255
2256 /* Resume the inferior. SIG is the signal to give the inferior
2257 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2258 call 'resume', which handles exceptions. */
2259
2260 static void
2261 resume_1 (enum gdb_signal sig)
2262 {
2263 struct regcache *regcache = get_current_regcache ();
2264 struct gdbarch *gdbarch = regcache->arch ();
2265 struct thread_info *tp = inferior_thread ();
2266 const address_space *aspace = regcache->aspace ();
2267 ptid_t resume_ptid;
2268 /* This represents the user's step vs continue request. When
2269 deciding whether "set scheduler-locking step" applies, it's the
2270 user's intention that counts. */
2271 const int user_step = tp->control.stepping_command;
2272 /* This represents what we'll actually request the target to do.
2273 This can decay from a step to a continue, if e.g., we need to
2274 implement single-stepping with breakpoints (software
2275 single-step). */
2276 int step;
2277
2278 gdb_assert (!tp->stop_requested);
2279 gdb_assert (!thread_is_in_step_over_chain (tp));
2280
2281 if (tp->suspend.waitstatus_pending_p)
2282 {
2283 infrun_debug_printf
2284 ("thread %s has pending wait "
2285 "status %s (currently_stepping=%d).",
2286 target_pid_to_str (tp->ptid).c_str (),
2287 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2288 currently_stepping (tp));
2289
2290 tp->inf->process_target ()->threads_executing = true;
2291 tp->resumed = true;
2292
2293 /* FIXME: What should we do if we are supposed to resume this
2294 thread with a signal? Maybe we should maintain a queue of
2295 pending signals to deliver. */
2296 if (sig != GDB_SIGNAL_0)
2297 {
2298 warning (_("Couldn't deliver signal %s to %s."),
2299 gdb_signal_to_name (sig),
2300 target_pid_to_str (tp->ptid).c_str ());
2301 }
2302
2303 tp->suspend.stop_signal = GDB_SIGNAL_0;
2304
2305 if (target_can_async_p ())
2306 {
2307 target_async (1);
2308 /* Tell the event loop we have an event to process. */
2309 mark_async_event_handler (infrun_async_inferior_event_token);
2310 }
2311 return;
2312 }
2313
2314 tp->stepped_breakpoint = 0;
2315
2316 /* Depends on stepped_breakpoint. */
2317 step = currently_stepping (tp);
2318
2319 if (current_inferior ()->waiting_for_vfork_done)
2320 {
2321 /* Don't try to single-step a vfork parent that is waiting for
2322 the child to get out of the shared memory region (by exec'ing
2323 or exiting). This is particularly important on software
2324 single-step archs, as the child process would trip on the
2325 software single step breakpoint inserted for the parent
2326 process. Since the parent will not actually execute any
2327 instruction until the child is out of the shared region (such
2328 are vfork's semantics), it is safe to simply continue it.
2329 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2330 the parent, and tell it to `keep_going', which automatically
2331 re-sets it stepping. */
2332 infrun_debug_printf ("resume : clear step");
2333 step = 0;
2334 }
2335
2336 CORE_ADDR pc = regcache_read_pc (regcache);
2337
2338 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2339 "current thread [%s] at %s",
2340 step, gdb_signal_to_symbol_string (sig),
2341 tp->control.trap_expected,
2342 target_pid_to_str (inferior_ptid).c_str (),
2343 paddress (gdbarch, pc));
2344
2345 /* Normally, by the time we reach `resume', the breakpoints are either
2346 removed or inserted, as appropriate. The exception is if we're sitting
2347 at a permanent breakpoint; we need to step over it, but permanent
2348 breakpoints can't be removed. So we have to test for it here. */
2349 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2350 {
2351 if (sig != GDB_SIGNAL_0)
2352 {
2353 /* We have a signal to pass to the inferior. The resume
2354 may, or may not take us to the signal handler. If this
2355 is a step, we'll need to stop in the signal handler, if
2356 there's one, (if the target supports stepping into
2357 handlers), or in the next mainline instruction, if
2358 there's no handler. If this is a continue, we need to be
2359 sure to run the handler with all breakpoints inserted.
2360 In all cases, set a breakpoint at the current address
2361 (where the handler returns to), and once that breakpoint
2362 is hit, resume skipping the permanent breakpoint. If
2363 that breakpoint isn't hit, then we've stepped into the
2364 signal handler (or hit some other event). We'll delete
2365 the step-resume breakpoint then. */
2366
2367 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2368 "deliver signal first");
2369
2370 clear_step_over_info ();
2371 tp->control.trap_expected = 0;
2372
2373 if (tp->control.step_resume_breakpoint == NULL)
2374 {
2375 /* Set a "high-priority" step-resume, as we don't want
2376 user breakpoints at PC to trigger (again) when this
2377 hits. */
2378 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2379 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2380
2381 tp->step_after_step_resume_breakpoint = step;
2382 }
2383
2384 insert_breakpoints ();
2385 }
2386 else
2387 {
2388 /* There's no signal to pass, we can go ahead and skip the
2389 permanent breakpoint manually. */
2390 infrun_debug_printf ("skipping permanent breakpoint");
2391 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2392 /* Update pc to reflect the new address from which we will
2393 execute instructions. */
2394 pc = regcache_read_pc (regcache);
2395
2396 if (step)
2397 {
2398 /* We've already advanced the PC, so the stepping part
2399 is done. Now we need to arrange for a trap to be
2400 reported to handle_inferior_event. Set a breakpoint
2401 at the current PC, and run to it. Don't update
2402 prev_pc, because if we end in
2403 switch_back_to_stepped_thread, we want the "expected
2404 thread advanced also" branch to be taken. IOW, we
2405 don't want this thread to step further from PC
2406 (overstep). */
2407 gdb_assert (!step_over_info_valid_p ());
2408 insert_single_step_breakpoint (gdbarch, aspace, pc);
2409 insert_breakpoints ();
2410
2411 resume_ptid = internal_resume_ptid (user_step);
2412 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2413 tp->resumed = true;
2414 return;
2415 }
2416 }
2417 }
2418
2419 /* If we have a breakpoint to step over, make sure to do a single
2420 step only. Same if we have software watchpoints. */
2421 if (tp->control.trap_expected || bpstat_should_step ())
2422 tp->control.may_range_step = 0;
2423
2424 /* If displaced stepping is enabled, step over breakpoints by executing a
2425 copy of the instruction at a different address.
2426
2427 We can't use displaced stepping when we have a signal to deliver;
2428 the comments for displaced_step_prepare explain why. The
2429 comments in the handle_inferior event for dealing with 'random
2430 signals' explain what we do instead.
2431
2432 We can't use displaced stepping when we are waiting for vfork_done
2433 event, displaced stepping breaks the vfork child similarly as single
2434 step software breakpoint. */
2435 if (tp->control.trap_expected
2436 && use_displaced_stepping (tp)
2437 && !step_over_info_valid_p ()
2438 && sig == GDB_SIGNAL_0
2439 && !current_inferior ()->waiting_for_vfork_done)
2440 {
2441 int prepared = displaced_step_prepare (tp);
2442
2443 if (prepared == 0)
2444 {
2445 infrun_debug_printf ("Got placed in step-over queue");
2446
2447 tp->control.trap_expected = 0;
2448 return;
2449 }
2450 else if (prepared < 0)
2451 {
2452 /* Fallback to stepping over the breakpoint in-line. */
2453
2454 if (target_is_non_stop_p ())
2455 stop_all_threads ();
2456
2457 set_step_over_info (regcache->aspace (),
2458 regcache_read_pc (regcache), 0, tp->global_num);
2459
2460 step = maybe_software_singlestep (gdbarch, pc);
2461
2462 insert_breakpoints ();
2463 }
2464 else if (prepared > 0)
2465 {
2466 struct displaced_step_inferior_state *displaced;
2467
2468 /* Update pc to reflect the new address from which we will
2469 execute instructions due to displaced stepping. */
2470 pc = regcache_read_pc (get_thread_regcache (tp));
2471
2472 displaced = get_displaced_stepping_state (tp->inf);
2473 step = gdbarch_displaced_step_hw_singlestep
2474 (gdbarch, displaced->step_closure.get ());
2475 }
2476 }
2477
2478 /* Do we need to do it the hard way, w/temp breakpoints? */
2479 else if (step)
2480 step = maybe_software_singlestep (gdbarch, pc);
2481
2482 /* Currently, our software single-step implementation leads to different
2483 results than hardware single-stepping in one situation: when stepping
2484 into delivering a signal which has an associated signal handler,
2485 hardware single-step will stop at the first instruction of the handler,
2486 while software single-step will simply skip execution of the handler.
2487
2488 For now, this difference in behavior is accepted since there is no
2489 easy way to actually implement single-stepping into a signal handler
2490 without kernel support.
2491
2492 However, there is one scenario where this difference leads to follow-on
2493 problems: if we're stepping off a breakpoint by removing all breakpoints
2494 and then single-stepping. In this case, the software single-step
2495 behavior means that even if there is a *breakpoint* in the signal
2496 handler, GDB still would not stop.
2497
2498 Fortunately, we can at least fix this particular issue. We detect
2499 here the case where we are about to deliver a signal while software
2500 single-stepping with breakpoints removed. In this situation, we
2501 revert the decisions to remove all breakpoints and insert single-
2502 step breakpoints, and instead we install a step-resume breakpoint
2503 at the current address, deliver the signal without stepping, and
2504 once we arrive back at the step-resume breakpoint, actually step
2505 over the breakpoint we originally wanted to step over. */
2506 if (thread_has_single_step_breakpoints_set (tp)
2507 && sig != GDB_SIGNAL_0
2508 && step_over_info_valid_p ())
2509 {
2510 /* If we have nested signals or a pending signal is delivered
2511 immediately after a handler returns, might already have
2512 a step-resume breakpoint set on the earlier handler. We cannot
2513 set another step-resume breakpoint; just continue on until the
2514 original breakpoint is hit. */
2515 if (tp->control.step_resume_breakpoint == NULL)
2516 {
2517 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2518 tp->step_after_step_resume_breakpoint = 1;
2519 }
2520
2521 delete_single_step_breakpoints (tp);
2522
2523 clear_step_over_info ();
2524 tp->control.trap_expected = 0;
2525
2526 insert_breakpoints ();
2527 }
2528
2529 /* If STEP is set, it's a request to use hardware stepping
2530 facilities. But in that case, we should never
2531 use singlestep breakpoint. */
2532 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2533
2534 /* Decide the set of threads to ask the target to resume. */
2535 if (tp->control.trap_expected)
2536 {
2537 /* We're allowing a thread to run past a breakpoint it has
2538 hit, either by single-stepping the thread with the breakpoint
2539 removed, or by displaced stepping, with the breakpoint inserted.
2540 In the former case, we need to single-step only this thread,
2541 and keep others stopped, as they can miss this breakpoint if
2542 allowed to run. That's not really a problem for displaced
2543 stepping, but, we still keep other threads stopped, in case
2544 another thread is also stopped for a breakpoint waiting for
2545 its turn in the displaced stepping queue. */
2546 resume_ptid = inferior_ptid;
2547 }
2548 else
2549 resume_ptid = internal_resume_ptid (user_step);
2550
2551 if (execution_direction != EXEC_REVERSE
2552 && step && breakpoint_inserted_here_p (aspace, pc))
2553 {
2554 /* There are two cases where we currently need to step a
2555 breakpoint instruction when we have a signal to deliver:
2556
2557 - See handle_signal_stop where we handle random signals that
2558 could take out us out of the stepping range. Normally, in
2559 that case we end up continuing (instead of stepping) over the
2560 signal handler with a breakpoint at PC, but there are cases
2561 where we should _always_ single-step, even if we have a
2562 step-resume breakpoint, like when a software watchpoint is
2563 set. Assuming single-stepping and delivering a signal at the
2564 same time would takes us to the signal handler, then we could
2565 have removed the breakpoint at PC to step over it. However,
2566 some hardware step targets (like e.g., Mac OS) can't step
2567 into signal handlers, and for those, we need to leave the
2568 breakpoint at PC inserted, as otherwise if the handler
2569 recurses and executes PC again, it'll miss the breakpoint.
2570 So we leave the breakpoint inserted anyway, but we need to
2571 record that we tried to step a breakpoint instruction, so
2572 that adjust_pc_after_break doesn't end up confused.
2573
2574 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2575 in one thread after another thread that was stepping had been
2576 momentarily paused for a step-over. When we re-resume the
2577 stepping thread, it may be resumed from that address with a
2578 breakpoint that hasn't trapped yet. Seen with
2579 gdb.threads/non-stop-fair-events.exp, on targets that don't
2580 do displaced stepping. */
2581
2582 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2583 target_pid_to_str (tp->ptid).c_str ());
2584
2585 tp->stepped_breakpoint = 1;
2586
2587 /* Most targets can step a breakpoint instruction, thus
2588 executing it normally. But if this one cannot, just
2589 continue and we will hit it anyway. */
2590 if (gdbarch_cannot_step_breakpoint (gdbarch))
2591 step = 0;
2592 }
2593
2594 if (debug_displaced
2595 && tp->control.trap_expected
2596 && use_displaced_stepping (tp)
2597 && !step_over_info_valid_p ())
2598 {
2599 struct regcache *resume_regcache = get_thread_regcache (tp);
2600 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2601 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2602 gdb_byte buf[4];
2603
2604 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2605 paddress (resume_gdbarch, actual_pc));
2606 read_memory (actual_pc, buf, sizeof (buf));
2607 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2608 }
2609
2610 if (tp->control.may_range_step)
2611 {
2612 /* If we're resuming a thread with the PC out of the step
2613 range, then we're doing some nested/finer run control
2614 operation, like stepping the thread out of the dynamic
2615 linker or the displaced stepping scratch pad. We
2616 shouldn't have allowed a range step then. */
2617 gdb_assert (pc_in_thread_step_range (pc, tp));
2618 }
2619
2620 do_target_resume (resume_ptid, step, sig);
2621 tp->resumed = true;
2622 }
2623
2624 /* Resume the inferior. SIG is the signal to give the inferior
2625 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2626 rolls back state on error. */
2627
2628 static void
2629 resume (gdb_signal sig)
2630 {
2631 try
2632 {
2633 resume_1 (sig);
2634 }
2635 catch (const gdb_exception &ex)
2636 {
2637 /* If resuming is being aborted for any reason, delete any
2638 single-step breakpoint resume_1 may have created, to avoid
2639 confusing the following resumption, and to avoid leaving
2640 single-step breakpoints perturbing other threads, in case
2641 we're running in non-stop mode. */
2642 if (inferior_ptid != null_ptid)
2643 delete_single_step_breakpoints (inferior_thread ());
2644 throw;
2645 }
2646 }
2647
2648 \f
2649 /* Proceeding. */
2650
2651 /* See infrun.h. */
2652
2653 /* Counter that tracks number of user visible stops. This can be used
2654 to tell whether a command has proceeded the inferior past the
2655 current location. This allows e.g., inferior function calls in
2656 breakpoint commands to not interrupt the command list. When the
2657 call finishes successfully, the inferior is standing at the same
2658 breakpoint as if nothing happened (and so we don't call
2659 normal_stop). */
2660 static ULONGEST current_stop_id;
2661
2662 /* See infrun.h. */
2663
2664 ULONGEST
2665 get_stop_id (void)
2666 {
2667 return current_stop_id;
2668 }
2669
2670 /* Called when we report a user visible stop. */
2671
2672 static void
2673 new_stop_id (void)
2674 {
2675 current_stop_id++;
2676 }
2677
2678 /* Clear out all variables saying what to do when inferior is continued.
2679 First do this, then set the ones you want, then call `proceed'. */
2680
2681 static void
2682 clear_proceed_status_thread (struct thread_info *tp)
2683 {
2684 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
2685
2686 /* If we're starting a new sequence, then the previous finished
2687 single-step is no longer relevant. */
2688 if (tp->suspend.waitstatus_pending_p)
2689 {
2690 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2691 {
2692 infrun_debug_printf ("pending event of %s was a finished step. "
2693 "Discarding.",
2694 target_pid_to_str (tp->ptid).c_str ());
2695
2696 tp->suspend.waitstatus_pending_p = 0;
2697 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2698 }
2699 else
2700 {
2701 infrun_debug_printf
2702 ("thread %s has pending wait status %s (currently_stepping=%d).",
2703 target_pid_to_str (tp->ptid).c_str (),
2704 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2705 currently_stepping (tp));
2706 }
2707 }
2708
2709 /* If this signal should not be seen by program, give it zero.
2710 Used for debugging signals. */
2711 if (!signal_pass_state (tp->suspend.stop_signal))
2712 tp->suspend.stop_signal = GDB_SIGNAL_0;
2713
2714 delete tp->thread_fsm;
2715 tp->thread_fsm = NULL;
2716
2717 tp->control.trap_expected = 0;
2718 tp->control.step_range_start = 0;
2719 tp->control.step_range_end = 0;
2720 tp->control.may_range_step = 0;
2721 tp->control.step_frame_id = null_frame_id;
2722 tp->control.step_stack_frame_id = null_frame_id;
2723 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2724 tp->control.step_start_function = NULL;
2725 tp->stop_requested = 0;
2726
2727 tp->control.stop_step = 0;
2728
2729 tp->control.proceed_to_finish = 0;
2730
2731 tp->control.stepping_command = 0;
2732
2733 /* Discard any remaining commands or status from previous stop. */
2734 bpstat_clear (&tp->control.stop_bpstat);
2735 }
2736
2737 void
2738 clear_proceed_status (int step)
2739 {
2740 /* With scheduler-locking replay, stop replaying other threads if we're
2741 not replaying the user-visible resume ptid.
2742
2743 This is a convenience feature to not require the user to explicitly
2744 stop replaying the other threads. We're assuming that the user's
2745 intent is to resume tracing the recorded process. */
2746 if (!non_stop && scheduler_mode == schedlock_replay
2747 && target_record_is_replaying (minus_one_ptid)
2748 && !target_record_will_replay (user_visible_resume_ptid (step),
2749 execution_direction))
2750 target_record_stop_replaying ();
2751
2752 if (!non_stop && inferior_ptid != null_ptid)
2753 {
2754 ptid_t resume_ptid = user_visible_resume_ptid (step);
2755 process_stratum_target *resume_target
2756 = user_visible_resume_target (resume_ptid);
2757
2758 /* In all-stop mode, delete the per-thread status of all threads
2759 we're about to resume, implicitly and explicitly. */
2760 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2761 clear_proceed_status_thread (tp);
2762 }
2763
2764 if (inferior_ptid != null_ptid)
2765 {
2766 struct inferior *inferior;
2767
2768 if (non_stop)
2769 {
2770 /* If in non-stop mode, only delete the per-thread status of
2771 the current thread. */
2772 clear_proceed_status_thread (inferior_thread ());
2773 }
2774
2775 inferior = current_inferior ();
2776 inferior->control.stop_soon = NO_STOP_QUIETLY;
2777 }
2778
2779 gdb::observers::about_to_proceed.notify ();
2780 }
2781
2782 /* Returns true if TP is still stopped at a breakpoint that needs
2783 stepping-over in order to make progress. If the breakpoint is gone
2784 meanwhile, we can skip the whole step-over dance. */
2785
2786 static int
2787 thread_still_needs_step_over_bp (struct thread_info *tp)
2788 {
2789 if (tp->stepping_over_breakpoint)
2790 {
2791 struct regcache *regcache = get_thread_regcache (tp);
2792
2793 if (breakpoint_here_p (regcache->aspace (),
2794 regcache_read_pc (regcache))
2795 == ordinary_breakpoint_here)
2796 return 1;
2797
2798 tp->stepping_over_breakpoint = 0;
2799 }
2800
2801 return 0;
2802 }
2803
2804 /* Check whether thread TP still needs to start a step-over in order
2805 to make progress when resumed. Returns an bitwise or of enum
2806 step_over_what bits, indicating what needs to be stepped over. */
2807
2808 static step_over_what
2809 thread_still_needs_step_over (struct thread_info *tp)
2810 {
2811 step_over_what what = 0;
2812
2813 if (thread_still_needs_step_over_bp (tp))
2814 what |= STEP_OVER_BREAKPOINT;
2815
2816 if (tp->stepping_over_watchpoint
2817 && !target_have_steppable_watchpoint)
2818 what |= STEP_OVER_WATCHPOINT;
2819
2820 return what;
2821 }
2822
2823 /* Returns true if scheduler locking applies. STEP indicates whether
2824 we're about to do a step/next-like command to a thread. */
2825
2826 static int
2827 schedlock_applies (struct thread_info *tp)
2828 {
2829 return (scheduler_mode == schedlock_on
2830 || (scheduler_mode == schedlock_step
2831 && tp->control.stepping_command)
2832 || (scheduler_mode == schedlock_replay
2833 && target_record_will_replay (minus_one_ptid,
2834 execution_direction)));
2835 }
2836
2837 /* Calls target_commit_resume on all targets. */
2838
2839 static void
2840 commit_resume_all_targets ()
2841 {
2842 scoped_restore_current_thread restore_thread;
2843
2844 /* Map between process_target and a representative inferior. This
2845 is to avoid committing a resume in the same target more than
2846 once. Resumptions must be idempotent, so this is an
2847 optimization. */
2848 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2849
2850 for (inferior *inf : all_non_exited_inferiors ())
2851 if (inf->has_execution ())
2852 conn_inf[inf->process_target ()] = inf;
2853
2854 for (const auto &ci : conn_inf)
2855 {
2856 inferior *inf = ci.second;
2857 switch_to_inferior_no_thread (inf);
2858 target_commit_resume ();
2859 }
2860 }
2861
2862 /* Check that all the targets we're about to resume are in non-stop
2863 mode. Ideally, we'd only care whether all targets support
2864 target-async, but we're not there yet. E.g., stop_all_threads
2865 doesn't know how to handle all-stop targets. Also, the remote
2866 protocol in all-stop mode is synchronous, irrespective of
2867 target-async, which means that things like a breakpoint re-set
2868 triggered by one target would try to read memory from all targets
2869 and fail. */
2870
2871 static void
2872 check_multi_target_resumption (process_stratum_target *resume_target)
2873 {
2874 if (!non_stop && resume_target == nullptr)
2875 {
2876 scoped_restore_current_thread restore_thread;
2877
2878 /* This is used to track whether we're resuming more than one
2879 target. */
2880 process_stratum_target *first_connection = nullptr;
2881
2882 /* The first inferior we see with a target that does not work in
2883 always-non-stop mode. */
2884 inferior *first_not_non_stop = nullptr;
2885
2886 for (inferior *inf : all_non_exited_inferiors (resume_target))
2887 {
2888 switch_to_inferior_no_thread (inf);
2889
2890 if (!target_has_execution)
2891 continue;
2892
2893 process_stratum_target *proc_target
2894 = current_inferior ()->process_target();
2895
2896 if (!target_is_non_stop_p ())
2897 first_not_non_stop = inf;
2898
2899 if (first_connection == nullptr)
2900 first_connection = proc_target;
2901 else if (first_connection != proc_target
2902 && first_not_non_stop != nullptr)
2903 {
2904 switch_to_inferior_no_thread (first_not_non_stop);
2905
2906 proc_target = current_inferior ()->process_target();
2907
2908 error (_("Connection %d (%s) does not support "
2909 "multi-target resumption."),
2910 proc_target->connection_number,
2911 make_target_connection_string (proc_target).c_str ());
2912 }
2913 }
2914 }
2915 }
2916
2917 /* Basic routine for continuing the program in various fashions.
2918
2919 ADDR is the address to resume at, or -1 for resume where stopped.
2920 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2921 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2922
2923 You should call clear_proceed_status before calling proceed. */
2924
2925 void
2926 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2927 {
2928 struct regcache *regcache;
2929 struct gdbarch *gdbarch;
2930 CORE_ADDR pc;
2931 struct execution_control_state ecss;
2932 struct execution_control_state *ecs = &ecss;
2933 int started;
2934
2935 /* If we're stopped at a fork/vfork, follow the branch set by the
2936 "set follow-fork-mode" command; otherwise, we'll just proceed
2937 resuming the current thread. */
2938 if (!follow_fork ())
2939 {
2940 /* The target for some reason decided not to resume. */
2941 normal_stop ();
2942 if (target_can_async_p ())
2943 inferior_event_handler (INF_EXEC_COMPLETE);
2944 return;
2945 }
2946
2947 /* We'll update this if & when we switch to a new thread. */
2948 previous_inferior_ptid = inferior_ptid;
2949
2950 regcache = get_current_regcache ();
2951 gdbarch = regcache->arch ();
2952 const address_space *aspace = regcache->aspace ();
2953
2954 pc = regcache_read_pc_protected (regcache);
2955
2956 thread_info *cur_thr = inferior_thread ();
2957
2958 /* Fill in with reasonable starting values. */
2959 init_thread_stepping_state (cur_thr);
2960
2961 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2962
2963 ptid_t resume_ptid
2964 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2965 process_stratum_target *resume_target
2966 = user_visible_resume_target (resume_ptid);
2967
2968 check_multi_target_resumption (resume_target);
2969
2970 if (addr == (CORE_ADDR) -1)
2971 {
2972 if (pc == cur_thr->suspend.stop_pc
2973 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2974 && execution_direction != EXEC_REVERSE)
2975 /* There is a breakpoint at the address we will resume at,
2976 step one instruction before inserting breakpoints so that
2977 we do not stop right away (and report a second hit at this
2978 breakpoint).
2979
2980 Note, we don't do this in reverse, because we won't
2981 actually be executing the breakpoint insn anyway.
2982 We'll be (un-)executing the previous instruction. */
2983 cur_thr->stepping_over_breakpoint = 1;
2984 else if (gdbarch_single_step_through_delay_p (gdbarch)
2985 && gdbarch_single_step_through_delay (gdbarch,
2986 get_current_frame ()))
2987 /* We stepped onto an instruction that needs to be stepped
2988 again before re-inserting the breakpoint, do so. */
2989 cur_thr->stepping_over_breakpoint = 1;
2990 }
2991 else
2992 {
2993 regcache_write_pc (regcache, addr);
2994 }
2995
2996 if (siggnal != GDB_SIGNAL_DEFAULT)
2997 cur_thr->suspend.stop_signal = siggnal;
2998
2999 /* If an exception is thrown from this point on, make sure to
3000 propagate GDB's knowledge of the executing state to the
3001 frontend/user running state. */
3002 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3003
3004 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3005 threads (e.g., we might need to set threads stepping over
3006 breakpoints first), from the user/frontend's point of view, all
3007 threads in RESUME_PTID are now running. Unless we're calling an
3008 inferior function, as in that case we pretend the inferior
3009 doesn't run at all. */
3010 if (!cur_thr->control.in_infcall)
3011 set_running (resume_target, resume_ptid, true);
3012
3013 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
3014 gdb_signal_to_symbol_string (siggnal));
3015
3016 annotate_starting ();
3017
3018 /* Make sure that output from GDB appears before output from the
3019 inferior. */
3020 gdb_flush (gdb_stdout);
3021
3022 /* Since we've marked the inferior running, give it the terminal. A
3023 QUIT/Ctrl-C from here on is forwarded to the target (which can
3024 still detect attempts to unblock a stuck connection with repeated
3025 Ctrl-C from within target_pass_ctrlc). */
3026 target_terminal::inferior ();
3027
3028 /* In a multi-threaded task we may select another thread and
3029 then continue or step.
3030
3031 But if a thread that we're resuming had stopped at a breakpoint,
3032 it will immediately cause another breakpoint stop without any
3033 execution (i.e. it will report a breakpoint hit incorrectly). So
3034 we must step over it first.
3035
3036 Look for threads other than the current (TP) that reported a
3037 breakpoint hit and haven't been resumed yet since. */
3038
3039 /* If scheduler locking applies, we can avoid iterating over all
3040 threads. */
3041 if (!non_stop && !schedlock_applies (cur_thr))
3042 {
3043 for (thread_info *tp : all_non_exited_threads (resume_target,
3044 resume_ptid))
3045 {
3046 switch_to_thread_no_regs (tp);
3047
3048 /* Ignore the current thread here. It's handled
3049 afterwards. */
3050 if (tp == cur_thr)
3051 continue;
3052
3053 if (!thread_still_needs_step_over (tp))
3054 continue;
3055
3056 gdb_assert (!thread_is_in_step_over_chain (tp));
3057
3058 infrun_debug_printf ("need to step-over [%s] first",
3059 target_pid_to_str (tp->ptid).c_str ());
3060
3061 thread_step_over_chain_enqueue (tp);
3062 }
3063
3064 switch_to_thread (cur_thr);
3065 }
3066
3067 /* Enqueue the current thread last, so that we move all other
3068 threads over their breakpoints first. */
3069 if (cur_thr->stepping_over_breakpoint)
3070 thread_step_over_chain_enqueue (cur_thr);
3071
3072 /* If the thread isn't started, we'll still need to set its prev_pc,
3073 so that switch_back_to_stepped_thread knows the thread hasn't
3074 advanced. Must do this before resuming any thread, as in
3075 all-stop/remote, once we resume we can't send any other packet
3076 until the target stops again. */
3077 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3078
3079 {
3080 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3081
3082 started = start_step_over ();
3083
3084 if (step_over_info_valid_p ())
3085 {
3086 /* Either this thread started a new in-line step over, or some
3087 other thread was already doing one. In either case, don't
3088 resume anything else until the step-over is finished. */
3089 }
3090 else if (started && !target_is_non_stop_p ())
3091 {
3092 /* A new displaced stepping sequence was started. In all-stop,
3093 we can't talk to the target anymore until it next stops. */
3094 }
3095 else if (!non_stop && target_is_non_stop_p ())
3096 {
3097 /* In all-stop, but the target is always in non-stop mode.
3098 Start all other threads that are implicitly resumed too. */
3099 for (thread_info *tp : all_non_exited_threads (resume_target,
3100 resume_ptid))
3101 {
3102 switch_to_thread_no_regs (tp);
3103
3104 if (!tp->inf->has_execution ())
3105 {
3106 infrun_debug_printf ("[%s] target has no execution",
3107 target_pid_to_str (tp->ptid).c_str ());
3108 continue;
3109 }
3110
3111 if (tp->resumed)
3112 {
3113 infrun_debug_printf ("[%s] resumed",
3114 target_pid_to_str (tp->ptid).c_str ());
3115 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3116 continue;
3117 }
3118
3119 if (thread_is_in_step_over_chain (tp))
3120 {
3121 infrun_debug_printf ("[%s] needs step-over",
3122 target_pid_to_str (tp->ptid).c_str ());
3123 continue;
3124 }
3125
3126 infrun_debug_printf ("resuming %s",
3127 target_pid_to_str (tp->ptid).c_str ());
3128
3129 reset_ecs (ecs, tp);
3130 switch_to_thread (tp);
3131 keep_going_pass_signal (ecs);
3132 if (!ecs->wait_some_more)
3133 error (_("Command aborted."));
3134 }
3135 }
3136 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3137 {
3138 /* The thread wasn't started, and isn't queued, run it now. */
3139 reset_ecs (ecs, cur_thr);
3140 switch_to_thread (cur_thr);
3141 keep_going_pass_signal (ecs);
3142 if (!ecs->wait_some_more)
3143 error (_("Command aborted."));
3144 }
3145 }
3146
3147 commit_resume_all_targets ();
3148
3149 finish_state.release ();
3150
3151 /* If we've switched threads above, switch back to the previously
3152 current thread. We don't want the user to see a different
3153 selected thread. */
3154 switch_to_thread (cur_thr);
3155
3156 /* Tell the event loop to wait for it to stop. If the target
3157 supports asynchronous execution, it'll do this from within
3158 target_resume. */
3159 if (!target_can_async_p ())
3160 mark_async_event_handler (infrun_async_inferior_event_token);
3161 }
3162 \f
3163
3164 /* Start remote-debugging of a machine over a serial link. */
3165
3166 void
3167 start_remote (int from_tty)
3168 {
3169 inferior *inf = current_inferior ();
3170 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3171
3172 /* Always go on waiting for the target, regardless of the mode. */
3173 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3174 indicate to wait_for_inferior that a target should timeout if
3175 nothing is returned (instead of just blocking). Because of this,
3176 targets expecting an immediate response need to, internally, set
3177 things up so that the target_wait() is forced to eventually
3178 timeout. */
3179 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3180 differentiate to its caller what the state of the target is after
3181 the initial open has been performed. Here we're assuming that
3182 the target has stopped. It should be possible to eventually have
3183 target_open() return to the caller an indication that the target
3184 is currently running and GDB state should be set to the same as
3185 for an async run. */
3186 wait_for_inferior (inf);
3187
3188 /* Now that the inferior has stopped, do any bookkeeping like
3189 loading shared libraries. We want to do this before normal_stop,
3190 so that the displayed frame is up to date. */
3191 post_create_inferior (current_top_target (), from_tty);
3192
3193 normal_stop ();
3194 }
3195
3196 /* Initialize static vars when a new inferior begins. */
3197
3198 void
3199 init_wait_for_inferior (void)
3200 {
3201 /* These are meaningless until the first time through wait_for_inferior. */
3202
3203 breakpoint_init_inferior (inf_starting);
3204
3205 clear_proceed_status (0);
3206
3207 nullify_last_target_wait_ptid ();
3208
3209 previous_inferior_ptid = inferior_ptid;
3210 }
3211
3212 \f
3213
3214 static void handle_inferior_event (struct execution_control_state *ecs);
3215
3216 static void handle_step_into_function (struct gdbarch *gdbarch,
3217 struct execution_control_state *ecs);
3218 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3219 struct execution_control_state *ecs);
3220 static void handle_signal_stop (struct execution_control_state *ecs);
3221 static void check_exception_resume (struct execution_control_state *,
3222 struct frame_info *);
3223
3224 static void end_stepping_range (struct execution_control_state *ecs);
3225 static void stop_waiting (struct execution_control_state *ecs);
3226 static void keep_going (struct execution_control_state *ecs);
3227 static void process_event_stop_test (struct execution_control_state *ecs);
3228 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3229
3230 /* This function is attached as a "thread_stop_requested" observer.
3231 Cleanup local state that assumed the PTID was to be resumed, and
3232 report the stop to the frontend. */
3233
3234 static void
3235 infrun_thread_stop_requested (ptid_t ptid)
3236 {
3237 process_stratum_target *curr_target = current_inferior ()->process_target ();
3238
3239 /* PTID was requested to stop. If the thread was already stopped,
3240 but the user/frontend doesn't know about that yet (e.g., the
3241 thread had been temporarily paused for some step-over), set up
3242 for reporting the stop now. */
3243 for (thread_info *tp : all_threads (curr_target, ptid))
3244 {
3245 if (tp->state != THREAD_RUNNING)
3246 continue;
3247 if (tp->executing)
3248 continue;
3249
3250 /* Remove matching threads from the step-over queue, so
3251 start_step_over doesn't try to resume them
3252 automatically. */
3253 if (thread_is_in_step_over_chain (tp))
3254 thread_step_over_chain_remove (tp);
3255
3256 /* If the thread is stopped, but the user/frontend doesn't
3257 know about that yet, queue a pending event, as if the
3258 thread had just stopped now. Unless the thread already had
3259 a pending event. */
3260 if (!tp->suspend.waitstatus_pending_p)
3261 {
3262 tp->suspend.waitstatus_pending_p = 1;
3263 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3264 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3265 }
3266
3267 /* Clear the inline-frame state, since we're re-processing the
3268 stop. */
3269 clear_inline_frame_state (tp);
3270
3271 /* If this thread was paused because some other thread was
3272 doing an inline-step over, let that finish first. Once
3273 that happens, we'll restart all threads and consume pending
3274 stop events then. */
3275 if (step_over_info_valid_p ())
3276 continue;
3277
3278 /* Otherwise we can process the (new) pending event now. Set
3279 it so this pending event is considered by
3280 do_target_wait. */
3281 tp->resumed = true;
3282 }
3283 }
3284
3285 static void
3286 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3287 {
3288 if (target_last_proc_target == tp->inf->process_target ()
3289 && target_last_wait_ptid == tp->ptid)
3290 nullify_last_target_wait_ptid ();
3291 }
3292
3293 /* Delete the step resume, single-step and longjmp/exception resume
3294 breakpoints of TP. */
3295
3296 static void
3297 delete_thread_infrun_breakpoints (struct thread_info *tp)
3298 {
3299 delete_step_resume_breakpoint (tp);
3300 delete_exception_resume_breakpoint (tp);
3301 delete_single_step_breakpoints (tp);
3302 }
3303
3304 /* If the target still has execution, call FUNC for each thread that
3305 just stopped. In all-stop, that's all the non-exited threads; in
3306 non-stop, that's the current thread, only. */
3307
3308 typedef void (*for_each_just_stopped_thread_callback_func)
3309 (struct thread_info *tp);
3310
3311 static void
3312 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3313 {
3314 if (!target_has_execution || inferior_ptid == null_ptid)
3315 return;
3316
3317 if (target_is_non_stop_p ())
3318 {
3319 /* If in non-stop mode, only the current thread stopped. */
3320 func (inferior_thread ());
3321 }
3322 else
3323 {
3324 /* In all-stop mode, all threads have stopped. */
3325 for (thread_info *tp : all_non_exited_threads ())
3326 func (tp);
3327 }
3328 }
3329
3330 /* Delete the step resume and longjmp/exception resume breakpoints of
3331 the threads that just stopped. */
3332
3333 static void
3334 delete_just_stopped_threads_infrun_breakpoints (void)
3335 {
3336 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3337 }
3338
3339 /* Delete the single-step breakpoints of the threads that just
3340 stopped. */
3341
3342 static void
3343 delete_just_stopped_threads_single_step_breakpoints (void)
3344 {
3345 for_each_just_stopped_thread (delete_single_step_breakpoints);
3346 }
3347
3348 /* See infrun.h. */
3349
3350 void
3351 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3352 const struct target_waitstatus *ws)
3353 {
3354 std::string status_string = target_waitstatus_to_string (ws);
3355 string_file stb;
3356
3357 /* The text is split over several lines because it was getting too long.
3358 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3359 output as a unit; we want only one timestamp printed if debug_timestamp
3360 is set. */
3361
3362 stb.printf ("[infrun] target_wait (%d.%ld.%ld",
3363 waiton_ptid.pid (),
3364 waiton_ptid.lwp (),
3365 waiton_ptid.tid ());
3366 if (waiton_ptid.pid () != -1)
3367 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3368 stb.printf (", status) =\n");
3369 stb.printf ("[infrun] %d.%ld.%ld [%s],\n",
3370 result_ptid.pid (),
3371 result_ptid.lwp (),
3372 result_ptid.tid (),
3373 target_pid_to_str (result_ptid).c_str ());
3374 stb.printf ("[infrun] %s\n", status_string.c_str ());
3375
3376 /* This uses %s in part to handle %'s in the text, but also to avoid
3377 a gcc error: the format attribute requires a string literal. */
3378 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3379 }
3380
3381 /* Select a thread at random, out of those which are resumed and have
3382 had events. */
3383
3384 static struct thread_info *
3385 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3386 {
3387 int num_events = 0;
3388
3389 auto has_event = [&] (thread_info *tp)
3390 {
3391 return (tp->ptid.matches (waiton_ptid)
3392 && tp->resumed
3393 && tp->suspend.waitstatus_pending_p);
3394 };
3395
3396 /* First see how many events we have. Count only resumed threads
3397 that have an event pending. */
3398 for (thread_info *tp : inf->non_exited_threads ())
3399 if (has_event (tp))
3400 num_events++;
3401
3402 if (num_events == 0)
3403 return NULL;
3404
3405 /* Now randomly pick a thread out of those that have had events. */
3406 int random_selector = (int) ((num_events * (double) rand ())
3407 / (RAND_MAX + 1.0));
3408
3409 if (num_events > 1)
3410 infrun_debug_printf ("Found %d events, selecting #%d",
3411 num_events, random_selector);
3412
3413 /* Select the Nth thread that has had an event. */
3414 for (thread_info *tp : inf->non_exited_threads ())
3415 if (has_event (tp))
3416 if (random_selector-- == 0)
3417 return tp;
3418
3419 gdb_assert_not_reached ("event thread not found");
3420 }
3421
3422 /* Wrapper for target_wait that first checks whether threads have
3423 pending statuses to report before actually asking the target for
3424 more events. INF is the inferior we're using to call target_wait
3425 on. */
3426
3427 static ptid_t
3428 do_target_wait_1 (inferior *inf, ptid_t ptid,
3429 target_waitstatus *status, int options)
3430 {
3431 ptid_t event_ptid;
3432 struct thread_info *tp;
3433
3434 /* We know that we are looking for an event in the target of inferior
3435 INF, but we don't know which thread the event might come from. As
3436 such we want to make sure that INFERIOR_PTID is reset so that none of
3437 the wait code relies on it - doing so is always a mistake. */
3438 switch_to_inferior_no_thread (inf);
3439
3440 /* First check if there is a resumed thread with a wait status
3441 pending. */
3442 if (ptid == minus_one_ptid || ptid.is_pid ())
3443 {
3444 tp = random_pending_event_thread (inf, ptid);
3445 }
3446 else
3447 {
3448 infrun_debug_printf ("Waiting for specific thread %s.",
3449 target_pid_to_str (ptid).c_str ());
3450
3451 /* We have a specific thread to check. */
3452 tp = find_thread_ptid (inf, ptid);
3453 gdb_assert (tp != NULL);
3454 if (!tp->suspend.waitstatus_pending_p)
3455 tp = NULL;
3456 }
3457
3458 if (tp != NULL
3459 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3460 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3461 {
3462 struct regcache *regcache = get_thread_regcache (tp);
3463 struct gdbarch *gdbarch = regcache->arch ();
3464 CORE_ADDR pc;
3465 int discard = 0;
3466
3467 pc = regcache_read_pc (regcache);
3468
3469 if (pc != tp->suspend.stop_pc)
3470 {
3471 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3472 target_pid_to_str (tp->ptid).c_str (),
3473 paddress (gdbarch, tp->suspend.stop_pc),
3474 paddress (gdbarch, pc));
3475 discard = 1;
3476 }
3477 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3478 {
3479 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3480 target_pid_to_str (tp->ptid).c_str (),
3481 paddress (gdbarch, pc));
3482
3483 discard = 1;
3484 }
3485
3486 if (discard)
3487 {
3488 infrun_debug_printf ("pending event of %s cancelled.",
3489 target_pid_to_str (tp->ptid).c_str ());
3490
3491 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3492 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3493 }
3494 }
3495
3496 if (tp != NULL)
3497 {
3498 infrun_debug_printf ("Using pending wait status %s for %s.",
3499 target_waitstatus_to_string
3500 (&tp->suspend.waitstatus).c_str (),
3501 target_pid_to_str (tp->ptid).c_str ());
3502
3503 /* Now that we've selected our final event LWP, un-adjust its PC
3504 if it was a software breakpoint (and the target doesn't
3505 always adjust the PC itself). */
3506 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3507 && !target_supports_stopped_by_sw_breakpoint ())
3508 {
3509 struct regcache *regcache;
3510 struct gdbarch *gdbarch;
3511 int decr_pc;
3512
3513 regcache = get_thread_regcache (tp);
3514 gdbarch = regcache->arch ();
3515
3516 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3517 if (decr_pc != 0)
3518 {
3519 CORE_ADDR pc;
3520
3521 pc = regcache_read_pc (regcache);
3522 regcache_write_pc (regcache, pc + decr_pc);
3523 }
3524 }
3525
3526 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3527 *status = tp->suspend.waitstatus;
3528 tp->suspend.waitstatus_pending_p = 0;
3529
3530 /* Wake up the event loop again, until all pending events are
3531 processed. */
3532 if (target_is_async_p ())
3533 mark_async_event_handler (infrun_async_inferior_event_token);
3534 return tp->ptid;
3535 }
3536
3537 /* But if we don't find one, we'll have to wait. */
3538
3539 if (deprecated_target_wait_hook)
3540 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3541 else
3542 event_ptid = target_wait (ptid, status, options);
3543
3544 return event_ptid;
3545 }
3546
3547 /* Wrapper for target_wait that first checks whether threads have
3548 pending statuses to report before actually asking the target for
3549 more events. Polls for events from all inferiors/targets. */
3550
3551 static bool
3552 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3553 {
3554 int num_inferiors = 0;
3555 int random_selector;
3556
3557 /* For fairness, we pick the first inferior/target to poll at random
3558 out of all inferiors that may report events, and then continue
3559 polling the rest of the inferior list starting from that one in a
3560 circular fashion until the whole list is polled once. */
3561
3562 auto inferior_matches = [&wait_ptid] (inferior *inf)
3563 {
3564 return (inf->process_target () != NULL
3565 && ptid_t (inf->pid).matches (wait_ptid));
3566 };
3567
3568 /* First see how many matching inferiors we have. */
3569 for (inferior *inf : all_inferiors ())
3570 if (inferior_matches (inf))
3571 num_inferiors++;
3572
3573 if (num_inferiors == 0)
3574 {
3575 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3576 return false;
3577 }
3578
3579 /* Now randomly pick an inferior out of those that matched. */
3580 random_selector = (int)
3581 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3582
3583 if (num_inferiors > 1)
3584 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3585 num_inferiors, random_selector);
3586
3587 /* Select the Nth inferior that matched. */
3588
3589 inferior *selected = nullptr;
3590
3591 for (inferior *inf : all_inferiors ())
3592 if (inferior_matches (inf))
3593 if (random_selector-- == 0)
3594 {
3595 selected = inf;
3596 break;
3597 }
3598
3599 /* Now poll for events out of each of the matching inferior's
3600 targets, starting from the selected one. */
3601
3602 auto do_wait = [&] (inferior *inf)
3603 {
3604 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3605 ecs->target = inf->process_target ();
3606 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3607 };
3608
3609 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3610 here spuriously after the target is all stopped and we've already
3611 reported the stop to the user, polling for events. */
3612 scoped_restore_current_thread restore_thread;
3613
3614 int inf_num = selected->num;
3615 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3616 if (inferior_matches (inf))
3617 if (do_wait (inf))
3618 return true;
3619
3620 for (inferior *inf = inferior_list;
3621 inf != NULL && inf->num < inf_num;
3622 inf = inf->next)
3623 if (inferior_matches (inf))
3624 if (do_wait (inf))
3625 return true;
3626
3627 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3628 return false;
3629 }
3630
3631 /* Prepare and stabilize the inferior for detaching it. E.g.,
3632 detaching while a thread is displaced stepping is a recipe for
3633 crashing it, as nothing would readjust the PC out of the scratch
3634 pad. */
3635
3636 void
3637 prepare_for_detach (void)
3638 {
3639 struct inferior *inf = current_inferior ();
3640 ptid_t pid_ptid = ptid_t (inf->pid);
3641
3642 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3643
3644 /* Is any thread of this process displaced stepping? If not,
3645 there's nothing else to do. */
3646 if (displaced->step_thread == nullptr)
3647 return;
3648
3649 infrun_debug_printf ("displaced-stepping in-process while detaching");
3650
3651 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3652
3653 while (displaced->step_thread != nullptr)
3654 {
3655 struct execution_control_state ecss;
3656 struct execution_control_state *ecs;
3657
3658 ecs = &ecss;
3659 memset (ecs, 0, sizeof (*ecs));
3660
3661 overlay_cache_invalid = 1;
3662 /* Flush target cache before starting to handle each event.
3663 Target was running and cache could be stale. This is just a
3664 heuristic. Running threads may modify target memory, but we
3665 don't get any event. */
3666 target_dcache_invalidate ();
3667
3668 do_target_wait (pid_ptid, ecs, 0);
3669
3670 if (debug_infrun)
3671 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3672
3673 /* If an error happens while handling the event, propagate GDB's
3674 knowledge of the executing state to the frontend/user running
3675 state. */
3676 scoped_finish_thread_state finish_state (inf->process_target (),
3677 minus_one_ptid);
3678
3679 /* Now figure out what to do with the result of the result. */
3680 handle_inferior_event (ecs);
3681
3682 /* No error, don't finish the state yet. */
3683 finish_state.release ();
3684
3685 /* Breakpoints and watchpoints are not installed on the target
3686 at this point, and signals are passed directly to the
3687 inferior, so this must mean the process is gone. */
3688 if (!ecs->wait_some_more)
3689 {
3690 restore_detaching.release ();
3691 error (_("Program exited while detaching"));
3692 }
3693 }
3694
3695 restore_detaching.release ();
3696 }
3697
3698 /* Wait for control to return from inferior to debugger.
3699
3700 If inferior gets a signal, we may decide to start it up again
3701 instead of returning. That is why there is a loop in this function.
3702 When this function actually returns it means the inferior
3703 should be left stopped and GDB should read more commands. */
3704
3705 static void
3706 wait_for_inferior (inferior *inf)
3707 {
3708 infrun_debug_printf ("wait_for_inferior ()");
3709
3710 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3711
3712 /* If an error happens while handling the event, propagate GDB's
3713 knowledge of the executing state to the frontend/user running
3714 state. */
3715 scoped_finish_thread_state finish_state
3716 (inf->process_target (), minus_one_ptid);
3717
3718 while (1)
3719 {
3720 struct execution_control_state ecss;
3721 struct execution_control_state *ecs = &ecss;
3722
3723 memset (ecs, 0, sizeof (*ecs));
3724
3725 overlay_cache_invalid = 1;
3726
3727 /* Flush target cache before starting to handle each event.
3728 Target was running and cache could be stale. This is just a
3729 heuristic. Running threads may modify target memory, but we
3730 don't get any event. */
3731 target_dcache_invalidate ();
3732
3733 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3734 ecs->target = inf->process_target ();
3735
3736 if (debug_infrun)
3737 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3738
3739 /* Now figure out what to do with the result of the result. */
3740 handle_inferior_event (ecs);
3741
3742 if (!ecs->wait_some_more)
3743 break;
3744 }
3745
3746 /* No error, don't finish the state yet. */
3747 finish_state.release ();
3748 }
3749
3750 /* Cleanup that reinstalls the readline callback handler, if the
3751 target is running in the background. If while handling the target
3752 event something triggered a secondary prompt, like e.g., a
3753 pagination prompt, we'll have removed the callback handler (see
3754 gdb_readline_wrapper_line). Need to do this as we go back to the
3755 event loop, ready to process further input. Note this has no
3756 effect if the handler hasn't actually been removed, because calling
3757 rl_callback_handler_install resets the line buffer, thus losing
3758 input. */
3759
3760 static void
3761 reinstall_readline_callback_handler_cleanup ()
3762 {
3763 struct ui *ui = current_ui;
3764
3765 if (!ui->async)
3766 {
3767 /* We're not going back to the top level event loop yet. Don't
3768 install the readline callback, as it'd prep the terminal,
3769 readline-style (raw, noecho) (e.g., --batch). We'll install
3770 it the next time the prompt is displayed, when we're ready
3771 for input. */
3772 return;
3773 }
3774
3775 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3776 gdb_rl_callback_handler_reinstall ();
3777 }
3778
3779 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3780 that's just the event thread. In all-stop, that's all threads. */
3781
3782 static void
3783 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3784 {
3785 if (ecs->event_thread != NULL
3786 && ecs->event_thread->thread_fsm != NULL)
3787 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3788
3789 if (!non_stop)
3790 {
3791 for (thread_info *thr : all_non_exited_threads ())
3792 {
3793 if (thr->thread_fsm == NULL)
3794 continue;
3795 if (thr == ecs->event_thread)
3796 continue;
3797
3798 switch_to_thread (thr);
3799 thr->thread_fsm->clean_up (thr);
3800 }
3801
3802 if (ecs->event_thread != NULL)
3803 switch_to_thread (ecs->event_thread);
3804 }
3805 }
3806
3807 /* Helper for all_uis_check_sync_execution_done that works on the
3808 current UI. */
3809
3810 static void
3811 check_curr_ui_sync_execution_done (void)
3812 {
3813 struct ui *ui = current_ui;
3814
3815 if (ui->prompt_state == PROMPT_NEEDED
3816 && ui->async
3817 && !gdb_in_secondary_prompt_p (ui))
3818 {
3819 target_terminal::ours ();
3820 gdb::observers::sync_execution_done.notify ();
3821 ui_register_input_event_handler (ui);
3822 }
3823 }
3824
3825 /* See infrun.h. */
3826
3827 void
3828 all_uis_check_sync_execution_done (void)
3829 {
3830 SWITCH_THRU_ALL_UIS ()
3831 {
3832 check_curr_ui_sync_execution_done ();
3833 }
3834 }
3835
3836 /* See infrun.h. */
3837
3838 void
3839 all_uis_on_sync_execution_starting (void)
3840 {
3841 SWITCH_THRU_ALL_UIS ()
3842 {
3843 if (current_ui->prompt_state == PROMPT_NEEDED)
3844 async_disable_stdin ();
3845 }
3846 }
3847
3848 /* Asynchronous version of wait_for_inferior. It is called by the
3849 event loop whenever a change of state is detected on the file
3850 descriptor corresponding to the target. It can be called more than
3851 once to complete a single execution command. In such cases we need
3852 to keep the state in a global variable ECSS. If it is the last time
3853 that this function is called for a single execution command, then
3854 report to the user that the inferior has stopped, and do the
3855 necessary cleanups. */
3856
3857 void
3858 fetch_inferior_event ()
3859 {
3860 struct execution_control_state ecss;
3861 struct execution_control_state *ecs = &ecss;
3862 int cmd_done = 0;
3863
3864 memset (ecs, 0, sizeof (*ecs));
3865
3866 /* Events are always processed with the main UI as current UI. This
3867 way, warnings, debug output, etc. are always consistently sent to
3868 the main console. */
3869 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3870
3871 /* End up with readline processing input, if necessary. */
3872 {
3873 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3874
3875 /* We're handling a live event, so make sure we're doing live
3876 debugging. If we're looking at traceframes while the target is
3877 running, we're going to need to get back to that mode after
3878 handling the event. */
3879 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3880 if (non_stop)
3881 {
3882 maybe_restore_traceframe.emplace ();
3883 set_current_traceframe (-1);
3884 }
3885
3886 /* The user/frontend should not notice a thread switch due to
3887 internal events. Make sure we revert to the user selected
3888 thread and frame after handling the event and running any
3889 breakpoint commands. */
3890 scoped_restore_current_thread restore_thread;
3891
3892 overlay_cache_invalid = 1;
3893 /* Flush target cache before starting to handle each event. Target
3894 was running and cache could be stale. This is just a heuristic.
3895 Running threads may modify target memory, but we don't get any
3896 event. */
3897 target_dcache_invalidate ();
3898
3899 scoped_restore save_exec_dir
3900 = make_scoped_restore (&execution_direction,
3901 target_execution_direction ());
3902
3903 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3904 return;
3905
3906 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3907
3908 /* Switch to the target that generated the event, so we can do
3909 target calls. Any inferior bound to the target will do, so we
3910 just switch to the first we find. */
3911 for (inferior *inf : all_inferiors (ecs->target))
3912 {
3913 switch_to_inferior_no_thread (inf);
3914 break;
3915 }
3916
3917 if (debug_infrun)
3918 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3919
3920 /* If an error happens while handling the event, propagate GDB's
3921 knowledge of the executing state to the frontend/user running
3922 state. */
3923 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3924 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3925
3926 /* Get executed before scoped_restore_current_thread above to apply
3927 still for the thread which has thrown the exception. */
3928 auto defer_bpstat_clear
3929 = make_scope_exit (bpstat_clear_actions);
3930 auto defer_delete_threads
3931 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3932
3933 /* Now figure out what to do with the result of the result. */
3934 handle_inferior_event (ecs);
3935
3936 if (!ecs->wait_some_more)
3937 {
3938 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
3939 int should_stop = 1;
3940 struct thread_info *thr = ecs->event_thread;
3941
3942 delete_just_stopped_threads_infrun_breakpoints ();
3943
3944 if (thr != NULL)
3945 {
3946 struct thread_fsm *thread_fsm = thr->thread_fsm;
3947
3948 if (thread_fsm != NULL)
3949 should_stop = thread_fsm->should_stop (thr);
3950 }
3951
3952 if (!should_stop)
3953 {
3954 keep_going (ecs);
3955 }
3956 else
3957 {
3958 bool should_notify_stop = true;
3959 int proceeded = 0;
3960
3961 clean_up_just_stopped_threads_fsms (ecs);
3962
3963 if (thr != NULL && thr->thread_fsm != NULL)
3964 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3965
3966 if (should_notify_stop)
3967 {
3968 /* We may not find an inferior if this was a process exit. */
3969 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3970 proceeded = normal_stop ();
3971 }
3972
3973 if (!proceeded)
3974 {
3975 inferior_event_handler (INF_EXEC_COMPLETE);
3976 cmd_done = 1;
3977 }
3978
3979 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3980 previously selected thread is gone. We have two
3981 choices - switch to no thread selected, or restore the
3982 previously selected thread (now exited). We chose the
3983 later, just because that's what GDB used to do. After
3984 this, "info threads" says "The current thread <Thread
3985 ID 2> has terminated." instead of "No thread
3986 selected.". */
3987 if (!non_stop
3988 && cmd_done
3989 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3990 restore_thread.dont_restore ();
3991 }
3992 }
3993
3994 defer_delete_threads.release ();
3995 defer_bpstat_clear.release ();
3996
3997 /* No error, don't finish the thread states yet. */
3998 finish_state.release ();
3999
4000 /* This scope is used to ensure that readline callbacks are
4001 reinstalled here. */
4002 }
4003
4004 /* If a UI was in sync execution mode, and now isn't, restore its
4005 prompt (a synchronous execution command has finished, and we're
4006 ready for input). */
4007 all_uis_check_sync_execution_done ();
4008
4009 if (cmd_done
4010 && exec_done_display_p
4011 && (inferior_ptid == null_ptid
4012 || inferior_thread ()->state != THREAD_RUNNING))
4013 printf_unfiltered (_("completed.\n"));
4014 }
4015
4016 /* See infrun.h. */
4017
4018 void
4019 set_step_info (thread_info *tp, struct frame_info *frame,
4020 struct symtab_and_line sal)
4021 {
4022 /* This can be removed once this function no longer implicitly relies on the
4023 inferior_ptid value. */
4024 gdb_assert (inferior_ptid == tp->ptid);
4025
4026 tp->control.step_frame_id = get_frame_id (frame);
4027 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4028
4029 tp->current_symtab = sal.symtab;
4030 tp->current_line = sal.line;
4031 }
4032
4033 /* Clear context switchable stepping state. */
4034
4035 void
4036 init_thread_stepping_state (struct thread_info *tss)
4037 {
4038 tss->stepped_breakpoint = 0;
4039 tss->stepping_over_breakpoint = 0;
4040 tss->stepping_over_watchpoint = 0;
4041 tss->step_after_step_resume_breakpoint = 0;
4042 }
4043
4044 /* See infrun.h. */
4045
4046 void
4047 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4048 target_waitstatus status)
4049 {
4050 target_last_proc_target = target;
4051 target_last_wait_ptid = ptid;
4052 target_last_waitstatus = status;
4053 }
4054
4055 /* See infrun.h. */
4056
4057 void
4058 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4059 target_waitstatus *status)
4060 {
4061 if (target != nullptr)
4062 *target = target_last_proc_target;
4063 if (ptid != nullptr)
4064 *ptid = target_last_wait_ptid;
4065 if (status != nullptr)
4066 *status = target_last_waitstatus;
4067 }
4068
4069 /* See infrun.h. */
4070
4071 void
4072 nullify_last_target_wait_ptid (void)
4073 {
4074 target_last_proc_target = nullptr;
4075 target_last_wait_ptid = minus_one_ptid;
4076 target_last_waitstatus = {};
4077 }
4078
4079 /* Switch thread contexts. */
4080
4081 static void
4082 context_switch (execution_control_state *ecs)
4083 {
4084 if (ecs->ptid != inferior_ptid
4085 && (inferior_ptid == null_ptid
4086 || ecs->event_thread != inferior_thread ()))
4087 {
4088 infrun_debug_printf ("Switching context from %s to %s",
4089 target_pid_to_str (inferior_ptid).c_str (),
4090 target_pid_to_str (ecs->ptid).c_str ());
4091 }
4092
4093 switch_to_thread (ecs->event_thread);
4094 }
4095
4096 /* If the target can't tell whether we've hit breakpoints
4097 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4098 check whether that could have been caused by a breakpoint. If so,
4099 adjust the PC, per gdbarch_decr_pc_after_break. */
4100
4101 static void
4102 adjust_pc_after_break (struct thread_info *thread,
4103 struct target_waitstatus *ws)
4104 {
4105 struct regcache *regcache;
4106 struct gdbarch *gdbarch;
4107 CORE_ADDR breakpoint_pc, decr_pc;
4108
4109 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4110 we aren't, just return.
4111
4112 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4113 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4114 implemented by software breakpoints should be handled through the normal
4115 breakpoint layer.
4116
4117 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4118 different signals (SIGILL or SIGEMT for instance), but it is less
4119 clear where the PC is pointing afterwards. It may not match
4120 gdbarch_decr_pc_after_break. I don't know any specific target that
4121 generates these signals at breakpoints (the code has been in GDB since at
4122 least 1992) so I can not guess how to handle them here.
4123
4124 In earlier versions of GDB, a target with
4125 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4126 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4127 target with both of these set in GDB history, and it seems unlikely to be
4128 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4129
4130 if (ws->kind != TARGET_WAITKIND_STOPPED)
4131 return;
4132
4133 if (ws->value.sig != GDB_SIGNAL_TRAP)
4134 return;
4135
4136 /* In reverse execution, when a breakpoint is hit, the instruction
4137 under it has already been de-executed. The reported PC always
4138 points at the breakpoint address, so adjusting it further would
4139 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4140 architecture:
4141
4142 B1 0x08000000 : INSN1
4143 B2 0x08000001 : INSN2
4144 0x08000002 : INSN3
4145 PC -> 0x08000003 : INSN4
4146
4147 Say you're stopped at 0x08000003 as above. Reverse continuing
4148 from that point should hit B2 as below. Reading the PC when the
4149 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4150 been de-executed already.
4151
4152 B1 0x08000000 : INSN1
4153 B2 PC -> 0x08000001 : INSN2
4154 0x08000002 : INSN3
4155 0x08000003 : INSN4
4156
4157 We can't apply the same logic as for forward execution, because
4158 we would wrongly adjust the PC to 0x08000000, since there's a
4159 breakpoint at PC - 1. We'd then report a hit on B1, although
4160 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4161 behaviour. */
4162 if (execution_direction == EXEC_REVERSE)
4163 return;
4164
4165 /* If the target can tell whether the thread hit a SW breakpoint,
4166 trust it. Targets that can tell also adjust the PC
4167 themselves. */
4168 if (target_supports_stopped_by_sw_breakpoint ())
4169 return;
4170
4171 /* Note that relying on whether a breakpoint is planted in memory to
4172 determine this can fail. E.g,. the breakpoint could have been
4173 removed since. Or the thread could have been told to step an
4174 instruction the size of a breakpoint instruction, and only
4175 _after_ was a breakpoint inserted at its address. */
4176
4177 /* If this target does not decrement the PC after breakpoints, then
4178 we have nothing to do. */
4179 regcache = get_thread_regcache (thread);
4180 gdbarch = regcache->arch ();
4181
4182 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4183 if (decr_pc == 0)
4184 return;
4185
4186 const address_space *aspace = regcache->aspace ();
4187
4188 /* Find the location where (if we've hit a breakpoint) the
4189 breakpoint would be. */
4190 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4191
4192 /* If the target can't tell whether a software breakpoint triggered,
4193 fallback to figuring it out based on breakpoints we think were
4194 inserted in the target, and on whether the thread was stepped or
4195 continued. */
4196
4197 /* Check whether there actually is a software breakpoint inserted at
4198 that location.
4199
4200 If in non-stop mode, a race condition is possible where we've
4201 removed a breakpoint, but stop events for that breakpoint were
4202 already queued and arrive later. To suppress those spurious
4203 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4204 and retire them after a number of stop events are reported. Note
4205 this is an heuristic and can thus get confused. The real fix is
4206 to get the "stopped by SW BP and needs adjustment" info out of
4207 the target/kernel (and thus never reach here; see above). */
4208 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4209 || (target_is_non_stop_p ()
4210 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4211 {
4212 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4213
4214 if (record_full_is_used ())
4215 restore_operation_disable.emplace
4216 (record_full_gdb_operation_disable_set ());
4217
4218 /* When using hardware single-step, a SIGTRAP is reported for both
4219 a completed single-step and a software breakpoint. Need to
4220 differentiate between the two, as the latter needs adjusting
4221 but the former does not.
4222
4223 The SIGTRAP can be due to a completed hardware single-step only if
4224 - we didn't insert software single-step breakpoints
4225 - this thread is currently being stepped
4226
4227 If any of these events did not occur, we must have stopped due
4228 to hitting a software breakpoint, and have to back up to the
4229 breakpoint address.
4230
4231 As a special case, we could have hardware single-stepped a
4232 software breakpoint. In this case (prev_pc == breakpoint_pc),
4233 we also need to back up to the breakpoint address. */
4234
4235 if (thread_has_single_step_breakpoints_set (thread)
4236 || !currently_stepping (thread)
4237 || (thread->stepped_breakpoint
4238 && thread->prev_pc == breakpoint_pc))
4239 regcache_write_pc (regcache, breakpoint_pc);
4240 }
4241 }
4242
4243 static int
4244 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4245 {
4246 for (frame = get_prev_frame (frame);
4247 frame != NULL;
4248 frame = get_prev_frame (frame))
4249 {
4250 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4251 return 1;
4252 if (get_frame_type (frame) != INLINE_FRAME)
4253 break;
4254 }
4255
4256 return 0;
4257 }
4258
4259 /* Look for an inline frame that is marked for skip.
4260 If PREV_FRAME is TRUE start at the previous frame,
4261 otherwise start at the current frame. Stop at the
4262 first non-inline frame, or at the frame where the
4263 step started. */
4264
4265 static bool
4266 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4267 {
4268 struct frame_info *frame = get_current_frame ();
4269
4270 if (prev_frame)
4271 frame = get_prev_frame (frame);
4272
4273 for (; frame != NULL; frame = get_prev_frame (frame))
4274 {
4275 const char *fn = NULL;
4276 symtab_and_line sal;
4277 struct symbol *sym;
4278
4279 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4280 break;
4281 if (get_frame_type (frame) != INLINE_FRAME)
4282 break;
4283
4284 sal = find_frame_sal (frame);
4285 sym = get_frame_function (frame);
4286
4287 if (sym != NULL)
4288 fn = sym->print_name ();
4289
4290 if (sal.line != 0
4291 && function_name_is_marked_for_skip (fn, sal))
4292 return true;
4293 }
4294
4295 return false;
4296 }
4297
4298 /* If the event thread has the stop requested flag set, pretend it
4299 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4300 target_stop). */
4301
4302 static bool
4303 handle_stop_requested (struct execution_control_state *ecs)
4304 {
4305 if (ecs->event_thread->stop_requested)
4306 {
4307 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4308 ecs->ws.value.sig = GDB_SIGNAL_0;
4309 handle_signal_stop (ecs);
4310 return true;
4311 }
4312 return false;
4313 }
4314
4315 /* Auxiliary function that handles syscall entry/return events.
4316 It returns 1 if the inferior should keep going (and GDB
4317 should ignore the event), or 0 if the event deserves to be
4318 processed. */
4319
4320 static int
4321 handle_syscall_event (struct execution_control_state *ecs)
4322 {
4323 struct regcache *regcache;
4324 int syscall_number;
4325
4326 context_switch (ecs);
4327
4328 regcache = get_thread_regcache (ecs->event_thread);
4329 syscall_number = ecs->ws.value.syscall_number;
4330 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4331
4332 if (catch_syscall_enabled () > 0
4333 && catching_syscall_number (syscall_number) > 0)
4334 {
4335 infrun_debug_printf ("syscall number=%d", syscall_number);
4336
4337 ecs->event_thread->control.stop_bpstat
4338 = bpstat_stop_status (regcache->aspace (),
4339 ecs->event_thread->suspend.stop_pc,
4340 ecs->event_thread, &ecs->ws);
4341
4342 if (handle_stop_requested (ecs))
4343 return 0;
4344
4345 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4346 {
4347 /* Catchpoint hit. */
4348 return 0;
4349 }
4350 }
4351
4352 if (handle_stop_requested (ecs))
4353 return 0;
4354
4355 /* If no catchpoint triggered for this, then keep going. */
4356 keep_going (ecs);
4357 return 1;
4358 }
4359
4360 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4361
4362 static void
4363 fill_in_stop_func (struct gdbarch *gdbarch,
4364 struct execution_control_state *ecs)
4365 {
4366 if (!ecs->stop_func_filled_in)
4367 {
4368 const block *block;
4369
4370 /* Don't care about return value; stop_func_start and stop_func_name
4371 will both be 0 if it doesn't work. */
4372 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4373 &ecs->stop_func_name,
4374 &ecs->stop_func_start,
4375 &ecs->stop_func_end,
4376 &block);
4377
4378 /* The call to find_pc_partial_function, above, will set
4379 stop_func_start and stop_func_end to the start and end
4380 of the range containing the stop pc. If this range
4381 contains the entry pc for the block (which is always the
4382 case for contiguous blocks), advance stop_func_start past
4383 the function's start offset and entrypoint. Note that
4384 stop_func_start is NOT advanced when in a range of a
4385 non-contiguous block that does not contain the entry pc. */
4386 if (block != nullptr
4387 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4388 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4389 {
4390 ecs->stop_func_start
4391 += gdbarch_deprecated_function_start_offset (gdbarch);
4392
4393 if (gdbarch_skip_entrypoint_p (gdbarch))
4394 ecs->stop_func_start
4395 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4396 }
4397
4398 ecs->stop_func_filled_in = 1;
4399 }
4400 }
4401
4402
4403 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4404
4405 static enum stop_kind
4406 get_inferior_stop_soon (execution_control_state *ecs)
4407 {
4408 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4409
4410 gdb_assert (inf != NULL);
4411 return inf->control.stop_soon;
4412 }
4413
4414 /* Poll for one event out of the current target. Store the resulting
4415 waitstatus in WS, and return the event ptid. Does not block. */
4416
4417 static ptid_t
4418 poll_one_curr_target (struct target_waitstatus *ws)
4419 {
4420 ptid_t event_ptid;
4421
4422 overlay_cache_invalid = 1;
4423
4424 /* Flush target cache before starting to handle each event.
4425 Target was running and cache could be stale. This is just a
4426 heuristic. Running threads may modify target memory, but we
4427 don't get any event. */
4428 target_dcache_invalidate ();
4429
4430 if (deprecated_target_wait_hook)
4431 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4432 else
4433 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4434
4435 if (debug_infrun)
4436 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4437
4438 return event_ptid;
4439 }
4440
4441 /* An event reported by wait_one. */
4442
4443 struct wait_one_event
4444 {
4445 /* The target the event came out of. */
4446 process_stratum_target *target;
4447
4448 /* The PTID the event was for. */
4449 ptid_t ptid;
4450
4451 /* The waitstatus. */
4452 target_waitstatus ws;
4453 };
4454
4455 /* Wait for one event out of any target. */
4456
4457 static wait_one_event
4458 wait_one ()
4459 {
4460 while (1)
4461 {
4462 for (inferior *inf : all_inferiors ())
4463 {
4464 process_stratum_target *target = inf->process_target ();
4465 if (target == NULL
4466 || !target->is_async_p ()
4467 || !target->threads_executing)
4468 continue;
4469
4470 switch_to_inferior_no_thread (inf);
4471
4472 wait_one_event event;
4473 event.target = target;
4474 event.ptid = poll_one_curr_target (&event.ws);
4475
4476 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4477 {
4478 /* If nothing is resumed, remove the target from the
4479 event loop. */
4480 target_async (0);
4481 }
4482 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4483 return event;
4484 }
4485
4486 /* Block waiting for some event. */
4487
4488 fd_set readfds;
4489 int nfds = 0;
4490
4491 FD_ZERO (&readfds);
4492
4493 for (inferior *inf : all_inferiors ())
4494 {
4495 process_stratum_target *target = inf->process_target ();
4496 if (target == NULL
4497 || !target->is_async_p ()
4498 || !target->threads_executing)
4499 continue;
4500
4501 int fd = target->async_wait_fd ();
4502 FD_SET (fd, &readfds);
4503 if (nfds <= fd)
4504 nfds = fd + 1;
4505 }
4506
4507 if (nfds == 0)
4508 {
4509 /* No waitable targets left. All must be stopped. */
4510 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4511 }
4512
4513 QUIT;
4514
4515 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4516 if (numfds < 0)
4517 {
4518 if (errno == EINTR)
4519 continue;
4520 else
4521 perror_with_name ("interruptible_select");
4522 }
4523 }
4524 }
4525
4526 /* Save the thread's event and stop reason to process it later. */
4527
4528 static void
4529 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4530 {
4531 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4532 target_waitstatus_to_string (ws).c_str (),
4533 tp->ptid.pid (),
4534 tp->ptid.lwp (),
4535 tp->ptid.tid ());
4536
4537 /* Record for later. */
4538 tp->suspend.waitstatus = *ws;
4539 tp->suspend.waitstatus_pending_p = 1;
4540
4541 struct regcache *regcache = get_thread_regcache (tp);
4542 const address_space *aspace = regcache->aspace ();
4543
4544 if (ws->kind == TARGET_WAITKIND_STOPPED
4545 && ws->value.sig == GDB_SIGNAL_TRAP)
4546 {
4547 CORE_ADDR pc = regcache_read_pc (regcache);
4548
4549 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4550
4551 scoped_restore_current_thread restore_thread;
4552 switch_to_thread (tp);
4553
4554 if (target_stopped_by_watchpoint ())
4555 {
4556 tp->suspend.stop_reason
4557 = TARGET_STOPPED_BY_WATCHPOINT;
4558 }
4559 else if (target_supports_stopped_by_sw_breakpoint ()
4560 && target_stopped_by_sw_breakpoint ())
4561 {
4562 tp->suspend.stop_reason
4563 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4564 }
4565 else if (target_supports_stopped_by_hw_breakpoint ()
4566 && target_stopped_by_hw_breakpoint ())
4567 {
4568 tp->suspend.stop_reason
4569 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4570 }
4571 else if (!target_supports_stopped_by_hw_breakpoint ()
4572 && hardware_breakpoint_inserted_here_p (aspace,
4573 pc))
4574 {
4575 tp->suspend.stop_reason
4576 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4577 }
4578 else if (!target_supports_stopped_by_sw_breakpoint ()
4579 && software_breakpoint_inserted_here_p (aspace,
4580 pc))
4581 {
4582 tp->suspend.stop_reason
4583 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4584 }
4585 else if (!thread_has_single_step_breakpoints_set (tp)
4586 && currently_stepping (tp))
4587 {
4588 tp->suspend.stop_reason
4589 = TARGET_STOPPED_BY_SINGLE_STEP;
4590 }
4591 }
4592 }
4593
4594 /* Mark the non-executing threads accordingly. In all-stop, all
4595 threads of all processes are stopped when we get any event
4596 reported. In non-stop mode, only the event thread stops. */
4597
4598 static void
4599 mark_non_executing_threads (process_stratum_target *target,
4600 ptid_t event_ptid,
4601 struct target_waitstatus ws)
4602 {
4603 ptid_t mark_ptid;
4604
4605 if (!target_is_non_stop_p ())
4606 mark_ptid = minus_one_ptid;
4607 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4608 || ws.kind == TARGET_WAITKIND_EXITED)
4609 {
4610 /* If we're handling a process exit in non-stop mode, even
4611 though threads haven't been deleted yet, one would think
4612 that there is nothing to do, as threads of the dead process
4613 will be soon deleted, and threads of any other process were
4614 left running. However, on some targets, threads survive a
4615 process exit event. E.g., for the "checkpoint" command,
4616 when the current checkpoint/fork exits, linux-fork.c
4617 automatically switches to another fork from within
4618 target_mourn_inferior, by associating the same
4619 inferior/thread to another fork. We haven't mourned yet at
4620 this point, but we must mark any threads left in the
4621 process as not-executing so that finish_thread_state marks
4622 them stopped (in the user's perspective) if/when we present
4623 the stop to the user. */
4624 mark_ptid = ptid_t (event_ptid.pid ());
4625 }
4626 else
4627 mark_ptid = event_ptid;
4628
4629 set_executing (target, mark_ptid, false);
4630
4631 /* Likewise the resumed flag. */
4632 set_resumed (target, mark_ptid, false);
4633 }
4634
4635 /* See infrun.h. */
4636
4637 void
4638 stop_all_threads (void)
4639 {
4640 /* We may need multiple passes to discover all threads. */
4641 int pass;
4642 int iterations = 0;
4643
4644 gdb_assert (exists_non_stop_target ());
4645
4646 infrun_debug_printf ("starting");
4647
4648 scoped_restore_current_thread restore_thread;
4649
4650 /* Enable thread events of all targets. */
4651 for (auto *target : all_non_exited_process_targets ())
4652 {
4653 switch_to_target_no_thread (target);
4654 target_thread_events (true);
4655 }
4656
4657 SCOPE_EXIT
4658 {
4659 /* Disable thread events of all targets. */
4660 for (auto *target : all_non_exited_process_targets ())
4661 {
4662 switch_to_target_no_thread (target);
4663 target_thread_events (false);
4664 }
4665
4666 /* Use infrun_debug_printf_1 directly to get a meaningful function
4667 name. */
4668 if (debug_infrun)
4669 infrun_debug_printf_1 ("stop_all_threads", "done");
4670 };
4671
4672 /* Request threads to stop, and then wait for the stops. Because
4673 threads we already know about can spawn more threads while we're
4674 trying to stop them, and we only learn about new threads when we
4675 update the thread list, do this in a loop, and keep iterating
4676 until two passes find no threads that need to be stopped. */
4677 for (pass = 0; pass < 2; pass++, iterations++)
4678 {
4679 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
4680 while (1)
4681 {
4682 int waits_needed = 0;
4683
4684 for (auto *target : all_non_exited_process_targets ())
4685 {
4686 switch_to_target_no_thread (target);
4687 update_thread_list ();
4688 }
4689
4690 /* Go through all threads looking for threads that we need
4691 to tell the target to stop. */
4692 for (thread_info *t : all_non_exited_threads ())
4693 {
4694 /* For a single-target setting with an all-stop target,
4695 we would not even arrive here. For a multi-target
4696 setting, until GDB is able to handle a mixture of
4697 all-stop and non-stop targets, simply skip all-stop
4698 targets' threads. This should be fine due to the
4699 protection of 'check_multi_target_resumption'. */
4700
4701 switch_to_thread_no_regs (t);
4702 if (!target_is_non_stop_p ())
4703 continue;
4704
4705 if (t->executing)
4706 {
4707 /* If already stopping, don't request a stop again.
4708 We just haven't seen the notification yet. */
4709 if (!t->stop_requested)
4710 {
4711 infrun_debug_printf (" %s executing, need stop",
4712 target_pid_to_str (t->ptid).c_str ());
4713 target_stop (t->ptid);
4714 t->stop_requested = 1;
4715 }
4716 else
4717 {
4718 infrun_debug_printf (" %s executing, already stopping",
4719 target_pid_to_str (t->ptid).c_str ());
4720 }
4721
4722 if (t->stop_requested)
4723 waits_needed++;
4724 }
4725 else
4726 {
4727 infrun_debug_printf (" %s not executing",
4728 target_pid_to_str (t->ptid).c_str ());
4729
4730 /* The thread may be not executing, but still be
4731 resumed with a pending status to process. */
4732 t->resumed = false;
4733 }
4734 }
4735
4736 if (waits_needed == 0)
4737 break;
4738
4739 /* If we find new threads on the second iteration, restart
4740 over. We want to see two iterations in a row with all
4741 threads stopped. */
4742 if (pass > 0)
4743 pass = -1;
4744
4745 for (int i = 0; i < waits_needed; i++)
4746 {
4747 wait_one_event event = wait_one ();
4748
4749 infrun_debug_printf
4750 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4751 target_pid_to_str (event.ptid).c_str ());
4752
4753 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4754 {
4755 /* All resumed threads exited. */
4756 break;
4757 }
4758 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4759 || event.ws.kind == TARGET_WAITKIND_EXITED
4760 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4761 {
4762 /* One thread/process exited/signalled. */
4763
4764 thread_info *t = nullptr;
4765
4766 /* The target may have reported just a pid. If so, try
4767 the first non-exited thread. */
4768 if (event.ptid.is_pid ())
4769 {
4770 int pid = event.ptid.pid ();
4771 inferior *inf = find_inferior_pid (event.target, pid);
4772 for (thread_info *tp : inf->non_exited_threads ())
4773 {
4774 t = tp;
4775 break;
4776 }
4777
4778 /* If there is no available thread, the event would
4779 have to be appended to a per-inferior event list,
4780 which does not exist (and if it did, we'd have
4781 to adjust run control command to be able to
4782 resume such an inferior). We assert here instead
4783 of going into an infinite loop. */
4784 gdb_assert (t != nullptr);
4785
4786 infrun_debug_printf
4787 ("using %s", target_pid_to_str (t->ptid).c_str ());
4788 }
4789 else
4790 {
4791 t = find_thread_ptid (event.target, event.ptid);
4792 /* Check if this is the first time we see this thread.
4793 Don't bother adding if it individually exited. */
4794 if (t == nullptr
4795 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4796 t = add_thread (event.target, event.ptid);
4797 }
4798
4799 if (t != nullptr)
4800 {
4801 /* Set the threads as non-executing to avoid
4802 another stop attempt on them. */
4803 switch_to_thread_no_regs (t);
4804 mark_non_executing_threads (event.target, event.ptid,
4805 event.ws);
4806 save_waitstatus (t, &event.ws);
4807 t->stop_requested = false;
4808 }
4809 }
4810 else
4811 {
4812 thread_info *t = find_thread_ptid (event.target, event.ptid);
4813 if (t == NULL)
4814 t = add_thread (event.target, event.ptid);
4815
4816 t->stop_requested = 0;
4817 t->executing = 0;
4818 t->resumed = false;
4819 t->control.may_range_step = 0;
4820
4821 /* This may be the first time we see the inferior report
4822 a stop. */
4823 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4824 if (inf->needs_setup)
4825 {
4826 switch_to_thread_no_regs (t);
4827 setup_inferior (0);
4828 }
4829
4830 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4831 && event.ws.value.sig == GDB_SIGNAL_0)
4832 {
4833 /* We caught the event that we intended to catch, so
4834 there's no event pending. */
4835 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4836 t->suspend.waitstatus_pending_p = 0;
4837
4838 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4839 {
4840 /* Add it back to the step-over queue. */
4841 infrun_debug_printf
4842 ("displaced-step of %s canceled: adding back to "
4843 "the step-over queue",
4844 target_pid_to_str (t->ptid).c_str ());
4845
4846 t->control.trap_expected = 0;
4847 thread_step_over_chain_enqueue (t);
4848 }
4849 }
4850 else
4851 {
4852 enum gdb_signal sig;
4853 struct regcache *regcache;
4854
4855 infrun_debug_printf
4856 ("target_wait %s, saving status for %d.%ld.%ld",
4857 target_waitstatus_to_string (&event.ws).c_str (),
4858 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
4859
4860 /* Record for later. */
4861 save_waitstatus (t, &event.ws);
4862
4863 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4864 ? event.ws.value.sig : GDB_SIGNAL_0);
4865
4866 if (displaced_step_fixup (t, sig) < 0)
4867 {
4868 /* Add it back to the step-over queue. */
4869 t->control.trap_expected = 0;
4870 thread_step_over_chain_enqueue (t);
4871 }
4872
4873 regcache = get_thread_regcache (t);
4874 t->suspend.stop_pc = regcache_read_pc (regcache);
4875
4876 infrun_debug_printf ("saved stop_pc=%s for %s "
4877 "(currently_stepping=%d)",
4878 paddress (target_gdbarch (),
4879 t->suspend.stop_pc),
4880 target_pid_to_str (t->ptid).c_str (),
4881 currently_stepping (t));
4882 }
4883 }
4884 }
4885 }
4886 }
4887 }
4888
4889 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4890
4891 static int
4892 handle_no_resumed (struct execution_control_state *ecs)
4893 {
4894 if (target_can_async_p ())
4895 {
4896 int any_sync = 0;
4897
4898 for (ui *ui : all_uis ())
4899 {
4900 if (ui->prompt_state == PROMPT_BLOCKED)
4901 {
4902 any_sync = 1;
4903 break;
4904 }
4905 }
4906 if (!any_sync)
4907 {
4908 /* There were no unwaited-for children left in the target, but,
4909 we're not synchronously waiting for events either. Just
4910 ignore. */
4911
4912 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
4913 prepare_to_wait (ecs);
4914 return 1;
4915 }
4916 }
4917
4918 /* Otherwise, if we were running a synchronous execution command, we
4919 may need to cancel it and give the user back the terminal.
4920
4921 In non-stop mode, the target can't tell whether we've already
4922 consumed previous stop events, so it can end up sending us a
4923 no-resumed event like so:
4924
4925 #0 - thread 1 is left stopped
4926
4927 #1 - thread 2 is resumed and hits breakpoint
4928 -> TARGET_WAITKIND_STOPPED
4929
4930 #2 - thread 3 is resumed and exits
4931 this is the last resumed thread, so
4932 -> TARGET_WAITKIND_NO_RESUMED
4933
4934 #3 - gdb processes stop for thread 2 and decides to re-resume
4935 it.
4936
4937 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4938 thread 2 is now resumed, so the event should be ignored.
4939
4940 IOW, if the stop for thread 2 doesn't end a foreground command,
4941 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4942 event. But it could be that the event meant that thread 2 itself
4943 (or whatever other thread was the last resumed thread) exited.
4944
4945 To address this we refresh the thread list and check whether we
4946 have resumed threads _now_. In the example above, this removes
4947 thread 3 from the thread list. If thread 2 was re-resumed, we
4948 ignore this event. If we find no thread resumed, then we cancel
4949 the synchronous command and show "no unwaited-for " to the
4950 user. */
4951
4952 inferior *curr_inf = current_inferior ();
4953
4954 scoped_restore_current_thread restore_thread;
4955
4956 for (auto *target : all_non_exited_process_targets ())
4957 {
4958 switch_to_target_no_thread (target);
4959 update_thread_list ();
4960 }
4961
4962 /* If:
4963
4964 - the current target has no thread executing, and
4965 - the current inferior is native, and
4966 - the current inferior is the one which has the terminal, and
4967 - we did nothing,
4968
4969 then a Ctrl-C from this point on would remain stuck in the
4970 kernel, until a thread resumes and dequeues it. That would
4971 result in the GDB CLI not reacting to Ctrl-C, not able to
4972 interrupt the program. To address this, if the current inferior
4973 no longer has any thread executing, we give the terminal to some
4974 other inferior that has at least one thread executing. */
4975 bool swap_terminal = true;
4976
4977 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4978 whether to report it to the user. */
4979 bool ignore_event = false;
4980
4981 for (thread_info *thread : all_non_exited_threads ())
4982 {
4983 if (swap_terminal && thread->executing)
4984 {
4985 if (thread->inf != curr_inf)
4986 {
4987 target_terminal::ours ();
4988
4989 switch_to_thread (thread);
4990 target_terminal::inferior ();
4991 }
4992 swap_terminal = false;
4993 }
4994
4995 if (!ignore_event
4996 && (thread->executing
4997 || thread->suspend.waitstatus_pending_p))
4998 {
4999 /* Either there were no unwaited-for children left in the
5000 target at some point, but there are now, or some target
5001 other than the eventing one has unwaited-for children
5002 left. Just ignore. */
5003 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
5004 "(ignoring: found resumed)");
5005
5006 ignore_event = true;
5007 }
5008
5009 if (ignore_event && !swap_terminal)
5010 break;
5011 }
5012
5013 if (ignore_event)
5014 {
5015 switch_to_inferior_no_thread (curr_inf);
5016 prepare_to_wait (ecs);
5017 return 1;
5018 }
5019
5020 /* Go ahead and report the event. */
5021 return 0;
5022 }
5023
5024 /* Given an execution control state that has been freshly filled in by
5025 an event from the inferior, figure out what it means and take
5026 appropriate action.
5027
5028 The alternatives are:
5029
5030 1) stop_waiting and return; to really stop and return to the
5031 debugger.
5032
5033 2) keep_going and return; to wait for the next event (set
5034 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5035 once). */
5036
5037 static void
5038 handle_inferior_event (struct execution_control_state *ecs)
5039 {
5040 /* Make sure that all temporary struct value objects that were
5041 created during the handling of the event get deleted at the
5042 end. */
5043 scoped_value_mark free_values;
5044
5045 enum stop_kind stop_soon;
5046
5047 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5048
5049 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5050 {
5051 /* We had an event in the inferior, but we are not interested in
5052 handling it at this level. The lower layers have already
5053 done what needs to be done, if anything.
5054
5055 One of the possible circumstances for this is when the
5056 inferior produces output for the console. The inferior has
5057 not stopped, and we are ignoring the event. Another possible
5058 circumstance is any event which the lower level knows will be
5059 reported multiple times without an intervening resume. */
5060 prepare_to_wait (ecs);
5061 return;
5062 }
5063
5064 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5065 {
5066 prepare_to_wait (ecs);
5067 return;
5068 }
5069
5070 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5071 && handle_no_resumed (ecs))
5072 return;
5073
5074 /* Cache the last target/ptid/waitstatus. */
5075 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5076
5077 /* Always clear state belonging to the previous time we stopped. */
5078 stop_stack_dummy = STOP_NONE;
5079
5080 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5081 {
5082 /* No unwaited-for children left. IOW, all resumed children
5083 have exited. */
5084 stop_print_frame = 0;
5085 stop_waiting (ecs);
5086 return;
5087 }
5088
5089 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5090 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5091 {
5092 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5093 /* If it's a new thread, add it to the thread database. */
5094 if (ecs->event_thread == NULL)
5095 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5096
5097 /* Disable range stepping. If the next step request could use a
5098 range, this will be end up re-enabled then. */
5099 ecs->event_thread->control.may_range_step = 0;
5100 }
5101
5102 /* Dependent on valid ECS->EVENT_THREAD. */
5103 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5104
5105 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5106 reinit_frame_cache ();
5107
5108 breakpoint_retire_moribund ();
5109
5110 /* First, distinguish signals caused by the debugger from signals
5111 that have to do with the program's own actions. Note that
5112 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5113 on the operating system version. Here we detect when a SIGILL or
5114 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5115 something similar for SIGSEGV, since a SIGSEGV will be generated
5116 when we're trying to execute a breakpoint instruction on a
5117 non-executable stack. This happens for call dummy breakpoints
5118 for architectures like SPARC that place call dummies on the
5119 stack. */
5120 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5121 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5122 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5123 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5124 {
5125 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5126
5127 if (breakpoint_inserted_here_p (regcache->aspace (),
5128 regcache_read_pc (regcache)))
5129 {
5130 infrun_debug_printf ("Treating signal as SIGTRAP");
5131 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5132 }
5133 }
5134
5135 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5136
5137 switch (ecs->ws.kind)
5138 {
5139 case TARGET_WAITKIND_LOADED:
5140 context_switch (ecs);
5141 /* Ignore gracefully during startup of the inferior, as it might
5142 be the shell which has just loaded some objects, otherwise
5143 add the symbols for the newly loaded objects. Also ignore at
5144 the beginning of an attach or remote session; we will query
5145 the full list of libraries once the connection is
5146 established. */
5147
5148 stop_soon = get_inferior_stop_soon (ecs);
5149 if (stop_soon == NO_STOP_QUIETLY)
5150 {
5151 struct regcache *regcache;
5152
5153 regcache = get_thread_regcache (ecs->event_thread);
5154
5155 handle_solib_event ();
5156
5157 ecs->event_thread->control.stop_bpstat
5158 = bpstat_stop_status (regcache->aspace (),
5159 ecs->event_thread->suspend.stop_pc,
5160 ecs->event_thread, &ecs->ws);
5161
5162 if (handle_stop_requested (ecs))
5163 return;
5164
5165 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5166 {
5167 /* A catchpoint triggered. */
5168 process_event_stop_test (ecs);
5169 return;
5170 }
5171
5172 /* If requested, stop when the dynamic linker notifies
5173 gdb of events. This allows the user to get control
5174 and place breakpoints in initializer routines for
5175 dynamically loaded objects (among other things). */
5176 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5177 if (stop_on_solib_events)
5178 {
5179 /* Make sure we print "Stopped due to solib-event" in
5180 normal_stop. */
5181 stop_print_frame = 1;
5182
5183 stop_waiting (ecs);
5184 return;
5185 }
5186 }
5187
5188 /* If we are skipping through a shell, or through shared library
5189 loading that we aren't interested in, resume the program. If
5190 we're running the program normally, also resume. */
5191 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5192 {
5193 /* Loading of shared libraries might have changed breakpoint
5194 addresses. Make sure new breakpoints are inserted. */
5195 if (stop_soon == NO_STOP_QUIETLY)
5196 insert_breakpoints ();
5197 resume (GDB_SIGNAL_0);
5198 prepare_to_wait (ecs);
5199 return;
5200 }
5201
5202 /* But stop if we're attaching or setting up a remote
5203 connection. */
5204 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5205 || stop_soon == STOP_QUIETLY_REMOTE)
5206 {
5207 infrun_debug_printf ("quietly stopped");
5208 stop_waiting (ecs);
5209 return;
5210 }
5211
5212 internal_error (__FILE__, __LINE__,
5213 _("unhandled stop_soon: %d"), (int) stop_soon);
5214
5215 case TARGET_WAITKIND_SPURIOUS:
5216 if (handle_stop_requested (ecs))
5217 return;
5218 context_switch (ecs);
5219 resume (GDB_SIGNAL_0);
5220 prepare_to_wait (ecs);
5221 return;
5222
5223 case TARGET_WAITKIND_THREAD_CREATED:
5224 if (handle_stop_requested (ecs))
5225 return;
5226 context_switch (ecs);
5227 if (!switch_back_to_stepped_thread (ecs))
5228 keep_going (ecs);
5229 return;
5230
5231 case TARGET_WAITKIND_EXITED:
5232 case TARGET_WAITKIND_SIGNALLED:
5233 {
5234 /* Depending on the system, ecs->ptid may point to a thread or
5235 to a process. On some targets, target_mourn_inferior may
5236 need to have access to the just-exited thread. That is the
5237 case of GNU/Linux's "checkpoint" support, for example.
5238 Call the switch_to_xxx routine as appropriate. */
5239 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5240 if (thr != nullptr)
5241 switch_to_thread (thr);
5242 else
5243 {
5244 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5245 switch_to_inferior_no_thread (inf);
5246 }
5247 }
5248 handle_vfork_child_exec_or_exit (0);
5249 target_terminal::ours (); /* Must do this before mourn anyway. */
5250
5251 /* Clearing any previous state of convenience variables. */
5252 clear_exit_convenience_vars ();
5253
5254 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5255 {
5256 /* Record the exit code in the convenience variable $_exitcode, so
5257 that the user can inspect this again later. */
5258 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5259 (LONGEST) ecs->ws.value.integer);
5260
5261 /* Also record this in the inferior itself. */
5262 current_inferior ()->has_exit_code = 1;
5263 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5264
5265 /* Support the --return-child-result option. */
5266 return_child_result_value = ecs->ws.value.integer;
5267
5268 gdb::observers::exited.notify (ecs->ws.value.integer);
5269 }
5270 else
5271 {
5272 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5273
5274 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5275 {
5276 /* Set the value of the internal variable $_exitsignal,
5277 which holds the signal uncaught by the inferior. */
5278 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5279 gdbarch_gdb_signal_to_target (gdbarch,
5280 ecs->ws.value.sig));
5281 }
5282 else
5283 {
5284 /* We don't have access to the target's method used for
5285 converting between signal numbers (GDB's internal
5286 representation <-> target's representation).
5287 Therefore, we cannot do a good job at displaying this
5288 information to the user. It's better to just warn
5289 her about it (if infrun debugging is enabled), and
5290 give up. */
5291 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5292 "signal number.");
5293 }
5294
5295 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5296 }
5297
5298 gdb_flush (gdb_stdout);
5299 target_mourn_inferior (inferior_ptid);
5300 stop_print_frame = 0;
5301 stop_waiting (ecs);
5302 return;
5303
5304 case TARGET_WAITKIND_FORKED:
5305 case TARGET_WAITKIND_VFORKED:
5306 /* Check whether the inferior is displaced stepping. */
5307 {
5308 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5309 struct gdbarch *gdbarch = regcache->arch ();
5310
5311 /* If checking displaced stepping is supported, and thread
5312 ecs->ptid is displaced stepping. */
5313 if (displaced_step_in_progress_thread (ecs->event_thread))
5314 {
5315 struct inferior *parent_inf
5316 = find_inferior_ptid (ecs->target, ecs->ptid);
5317 struct regcache *child_regcache;
5318 CORE_ADDR parent_pc;
5319
5320 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5321 {
5322 struct displaced_step_inferior_state *displaced
5323 = get_displaced_stepping_state (parent_inf);
5324
5325 /* Restore scratch pad for child process. */
5326 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5327 }
5328
5329 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5330 indicating that the displaced stepping of syscall instruction
5331 has been done. Perform cleanup for parent process here. Note
5332 that this operation also cleans up the child process for vfork,
5333 because their pages are shared. */
5334 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5335 /* Start a new step-over in another thread if there's one
5336 that needs it. */
5337 start_step_over ();
5338
5339 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5340 the child's PC is also within the scratchpad. Set the child's PC
5341 to the parent's PC value, which has already been fixed up.
5342 FIXME: we use the parent's aspace here, although we're touching
5343 the child, because the child hasn't been added to the inferior
5344 list yet at this point. */
5345
5346 child_regcache
5347 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5348 ecs->ws.value.related_pid,
5349 gdbarch,
5350 parent_inf->aspace);
5351 /* Read PC value of parent process. */
5352 parent_pc = regcache_read_pc (regcache);
5353
5354 if (debug_displaced)
5355 fprintf_unfiltered (gdb_stdlog,
5356 "displaced: write child pc from %s to %s\n",
5357 paddress (gdbarch,
5358 regcache_read_pc (child_regcache)),
5359 paddress (gdbarch, parent_pc));
5360
5361 regcache_write_pc (child_regcache, parent_pc);
5362 }
5363 }
5364
5365 context_switch (ecs);
5366
5367 /* Immediately detach breakpoints from the child before there's
5368 any chance of letting the user delete breakpoints from the
5369 breakpoint lists. If we don't do this early, it's easy to
5370 leave left over traps in the child, vis: "break foo; catch
5371 fork; c; <fork>; del; c; <child calls foo>". We only follow
5372 the fork on the last `continue', and by that time the
5373 breakpoint at "foo" is long gone from the breakpoint table.
5374 If we vforked, then we don't need to unpatch here, since both
5375 parent and child are sharing the same memory pages; we'll
5376 need to unpatch at follow/detach time instead to be certain
5377 that new breakpoints added between catchpoint hit time and
5378 vfork follow are detached. */
5379 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5380 {
5381 /* This won't actually modify the breakpoint list, but will
5382 physically remove the breakpoints from the child. */
5383 detach_breakpoints (ecs->ws.value.related_pid);
5384 }
5385
5386 delete_just_stopped_threads_single_step_breakpoints ();
5387
5388 /* In case the event is caught by a catchpoint, remember that
5389 the event is to be followed at the next resume of the thread,
5390 and not immediately. */
5391 ecs->event_thread->pending_follow = ecs->ws;
5392
5393 ecs->event_thread->suspend.stop_pc
5394 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5395
5396 ecs->event_thread->control.stop_bpstat
5397 = bpstat_stop_status (get_current_regcache ()->aspace (),
5398 ecs->event_thread->suspend.stop_pc,
5399 ecs->event_thread, &ecs->ws);
5400
5401 if (handle_stop_requested (ecs))
5402 return;
5403
5404 /* If no catchpoint triggered for this, then keep going. Note
5405 that we're interested in knowing the bpstat actually causes a
5406 stop, not just if it may explain the signal. Software
5407 watchpoints, for example, always appear in the bpstat. */
5408 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5409 {
5410 bool follow_child
5411 = (follow_fork_mode_string == follow_fork_mode_child);
5412
5413 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5414
5415 process_stratum_target *targ
5416 = ecs->event_thread->inf->process_target ();
5417
5418 bool should_resume = follow_fork ();
5419
5420 /* Note that one of these may be an invalid pointer,
5421 depending on detach_fork. */
5422 thread_info *parent = ecs->event_thread;
5423 thread_info *child
5424 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5425
5426 /* At this point, the parent is marked running, and the
5427 child is marked stopped. */
5428
5429 /* If not resuming the parent, mark it stopped. */
5430 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5431 parent->set_running (false);
5432
5433 /* If resuming the child, mark it running. */
5434 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5435 child->set_running (true);
5436
5437 /* In non-stop mode, also resume the other branch. */
5438 if (!detach_fork && (non_stop
5439 || (sched_multi && target_is_non_stop_p ())))
5440 {
5441 if (follow_child)
5442 switch_to_thread (parent);
5443 else
5444 switch_to_thread (child);
5445
5446 ecs->event_thread = inferior_thread ();
5447 ecs->ptid = inferior_ptid;
5448 keep_going (ecs);
5449 }
5450
5451 if (follow_child)
5452 switch_to_thread (child);
5453 else
5454 switch_to_thread (parent);
5455
5456 ecs->event_thread = inferior_thread ();
5457 ecs->ptid = inferior_ptid;
5458
5459 if (should_resume)
5460 keep_going (ecs);
5461 else
5462 stop_waiting (ecs);
5463 return;
5464 }
5465 process_event_stop_test (ecs);
5466 return;
5467
5468 case TARGET_WAITKIND_VFORK_DONE:
5469 /* Done with the shared memory region. Re-insert breakpoints in
5470 the parent, and keep going. */
5471
5472 context_switch (ecs);
5473
5474 current_inferior ()->waiting_for_vfork_done = 0;
5475 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5476
5477 if (handle_stop_requested (ecs))
5478 return;
5479
5480 /* This also takes care of reinserting breakpoints in the
5481 previously locked inferior. */
5482 keep_going (ecs);
5483 return;
5484
5485 case TARGET_WAITKIND_EXECD:
5486
5487 /* Note we can't read registers yet (the stop_pc), because we
5488 don't yet know the inferior's post-exec architecture.
5489 'stop_pc' is explicitly read below instead. */
5490 switch_to_thread_no_regs (ecs->event_thread);
5491
5492 /* Do whatever is necessary to the parent branch of the vfork. */
5493 handle_vfork_child_exec_or_exit (1);
5494
5495 /* This causes the eventpoints and symbol table to be reset.
5496 Must do this now, before trying to determine whether to
5497 stop. */
5498 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5499
5500 /* In follow_exec we may have deleted the original thread and
5501 created a new one. Make sure that the event thread is the
5502 execd thread for that case (this is a nop otherwise). */
5503 ecs->event_thread = inferior_thread ();
5504
5505 ecs->event_thread->suspend.stop_pc
5506 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5507
5508 ecs->event_thread->control.stop_bpstat
5509 = bpstat_stop_status (get_current_regcache ()->aspace (),
5510 ecs->event_thread->suspend.stop_pc,
5511 ecs->event_thread, &ecs->ws);
5512
5513 /* Note that this may be referenced from inside
5514 bpstat_stop_status above, through inferior_has_execd. */
5515 xfree (ecs->ws.value.execd_pathname);
5516 ecs->ws.value.execd_pathname = NULL;
5517
5518 if (handle_stop_requested (ecs))
5519 return;
5520
5521 /* If no catchpoint triggered for this, then keep going. */
5522 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5523 {
5524 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5525 keep_going (ecs);
5526 return;
5527 }
5528 process_event_stop_test (ecs);
5529 return;
5530
5531 /* Be careful not to try to gather much state about a thread
5532 that's in a syscall. It's frequently a losing proposition. */
5533 case TARGET_WAITKIND_SYSCALL_ENTRY:
5534 /* Getting the current syscall number. */
5535 if (handle_syscall_event (ecs) == 0)
5536 process_event_stop_test (ecs);
5537 return;
5538
5539 /* Before examining the threads further, step this thread to
5540 get it entirely out of the syscall. (We get notice of the
5541 event when the thread is just on the verge of exiting a
5542 syscall. Stepping one instruction seems to get it back
5543 into user code.) */
5544 case TARGET_WAITKIND_SYSCALL_RETURN:
5545 if (handle_syscall_event (ecs) == 0)
5546 process_event_stop_test (ecs);
5547 return;
5548
5549 case TARGET_WAITKIND_STOPPED:
5550 handle_signal_stop (ecs);
5551 return;
5552
5553 case TARGET_WAITKIND_NO_HISTORY:
5554 /* Reverse execution: target ran out of history info. */
5555
5556 /* Switch to the stopped thread. */
5557 context_switch (ecs);
5558 infrun_debug_printf ("stopped");
5559
5560 delete_just_stopped_threads_single_step_breakpoints ();
5561 ecs->event_thread->suspend.stop_pc
5562 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5563
5564 if (handle_stop_requested (ecs))
5565 return;
5566
5567 gdb::observers::no_history.notify ();
5568 stop_waiting (ecs);
5569 return;
5570 }
5571 }
5572
5573 /* Restart threads back to what they were trying to do back when we
5574 paused them for an in-line step-over. The EVENT_THREAD thread is
5575 ignored. */
5576
5577 static void
5578 restart_threads (struct thread_info *event_thread)
5579 {
5580 /* In case the instruction just stepped spawned a new thread. */
5581 update_thread_list ();
5582
5583 for (thread_info *tp : all_non_exited_threads ())
5584 {
5585 switch_to_thread_no_regs (tp);
5586
5587 if (tp == event_thread)
5588 {
5589 infrun_debug_printf ("restart threads: [%s] is event thread",
5590 target_pid_to_str (tp->ptid).c_str ());
5591 continue;
5592 }
5593
5594 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5595 {
5596 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5597 target_pid_to_str (tp->ptid).c_str ());
5598 continue;
5599 }
5600
5601 if (tp->resumed)
5602 {
5603 infrun_debug_printf ("restart threads: [%s] resumed",
5604 target_pid_to_str (tp->ptid).c_str ());
5605 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5606 continue;
5607 }
5608
5609 if (thread_is_in_step_over_chain (tp))
5610 {
5611 infrun_debug_printf ("restart threads: [%s] needs step-over",
5612 target_pid_to_str (tp->ptid).c_str ());
5613 gdb_assert (!tp->resumed);
5614 continue;
5615 }
5616
5617
5618 if (tp->suspend.waitstatus_pending_p)
5619 {
5620 infrun_debug_printf ("restart threads: [%s] has pending status",
5621 target_pid_to_str (tp->ptid).c_str ());
5622 tp->resumed = true;
5623 continue;
5624 }
5625
5626 gdb_assert (!tp->stop_requested);
5627
5628 /* If some thread needs to start a step-over at this point, it
5629 should still be in the step-over queue, and thus skipped
5630 above. */
5631 if (thread_still_needs_step_over (tp))
5632 {
5633 internal_error (__FILE__, __LINE__,
5634 "thread [%s] needs a step-over, but not in "
5635 "step-over queue\n",
5636 target_pid_to_str (tp->ptid).c_str ());
5637 }
5638
5639 if (currently_stepping (tp))
5640 {
5641 infrun_debug_printf ("restart threads: [%s] was stepping",
5642 target_pid_to_str (tp->ptid).c_str ());
5643 keep_going_stepped_thread (tp);
5644 }
5645 else
5646 {
5647 struct execution_control_state ecss;
5648 struct execution_control_state *ecs = &ecss;
5649
5650 infrun_debug_printf ("restart threads: [%s] continuing",
5651 target_pid_to_str (tp->ptid).c_str ());
5652 reset_ecs (ecs, tp);
5653 switch_to_thread (tp);
5654 keep_going_pass_signal (ecs);
5655 }
5656 }
5657 }
5658
5659 /* Callback for iterate_over_threads. Find a resumed thread that has
5660 a pending waitstatus. */
5661
5662 static int
5663 resumed_thread_with_pending_status (struct thread_info *tp,
5664 void *arg)
5665 {
5666 return (tp->resumed
5667 && tp->suspend.waitstatus_pending_p);
5668 }
5669
5670 /* Called when we get an event that may finish an in-line or
5671 out-of-line (displaced stepping) step-over started previously.
5672 Return true if the event is processed and we should go back to the
5673 event loop; false if the caller should continue processing the
5674 event. */
5675
5676 static int
5677 finish_step_over (struct execution_control_state *ecs)
5678 {
5679 int had_step_over_info;
5680
5681 displaced_step_fixup (ecs->event_thread,
5682 ecs->event_thread->suspend.stop_signal);
5683
5684 had_step_over_info = step_over_info_valid_p ();
5685
5686 if (had_step_over_info)
5687 {
5688 /* If we're stepping over a breakpoint with all threads locked,
5689 then only the thread that was stepped should be reporting
5690 back an event. */
5691 gdb_assert (ecs->event_thread->control.trap_expected);
5692
5693 clear_step_over_info ();
5694 }
5695
5696 if (!target_is_non_stop_p ())
5697 return 0;
5698
5699 /* Start a new step-over in another thread if there's one that
5700 needs it. */
5701 start_step_over ();
5702
5703 /* If we were stepping over a breakpoint before, and haven't started
5704 a new in-line step-over sequence, then restart all other threads
5705 (except the event thread). We can't do this in all-stop, as then
5706 e.g., we wouldn't be able to issue any other remote packet until
5707 these other threads stop. */
5708 if (had_step_over_info && !step_over_info_valid_p ())
5709 {
5710 struct thread_info *pending;
5711
5712 /* If we only have threads with pending statuses, the restart
5713 below won't restart any thread and so nothing re-inserts the
5714 breakpoint we just stepped over. But we need it inserted
5715 when we later process the pending events, otherwise if
5716 another thread has a pending event for this breakpoint too,
5717 we'd discard its event (because the breakpoint that
5718 originally caused the event was no longer inserted). */
5719 context_switch (ecs);
5720 insert_breakpoints ();
5721
5722 restart_threads (ecs->event_thread);
5723
5724 /* If we have events pending, go through handle_inferior_event
5725 again, picking up a pending event at random. This avoids
5726 thread starvation. */
5727
5728 /* But not if we just stepped over a watchpoint in order to let
5729 the instruction execute so we can evaluate its expression.
5730 The set of watchpoints that triggered is recorded in the
5731 breakpoint objects themselves (see bp->watchpoint_triggered).
5732 If we processed another event first, that other event could
5733 clobber this info. */
5734 if (ecs->event_thread->stepping_over_watchpoint)
5735 return 0;
5736
5737 pending = iterate_over_threads (resumed_thread_with_pending_status,
5738 NULL);
5739 if (pending != NULL)
5740 {
5741 struct thread_info *tp = ecs->event_thread;
5742 struct regcache *regcache;
5743
5744 infrun_debug_printf ("found resumed threads with "
5745 "pending events, saving status");
5746
5747 gdb_assert (pending != tp);
5748
5749 /* Record the event thread's event for later. */
5750 save_waitstatus (tp, &ecs->ws);
5751 /* This was cleared early, by handle_inferior_event. Set it
5752 so this pending event is considered by
5753 do_target_wait. */
5754 tp->resumed = true;
5755
5756 gdb_assert (!tp->executing);
5757
5758 regcache = get_thread_regcache (tp);
5759 tp->suspend.stop_pc = regcache_read_pc (regcache);
5760
5761 infrun_debug_printf ("saved stop_pc=%s for %s "
5762 "(currently_stepping=%d)",
5763 paddress (target_gdbarch (),
5764 tp->suspend.stop_pc),
5765 target_pid_to_str (tp->ptid).c_str (),
5766 currently_stepping (tp));
5767
5768 /* This in-line step-over finished; clear this so we won't
5769 start a new one. This is what handle_signal_stop would
5770 do, if we returned false. */
5771 tp->stepping_over_breakpoint = 0;
5772
5773 /* Wake up the event loop again. */
5774 mark_async_event_handler (infrun_async_inferior_event_token);
5775
5776 prepare_to_wait (ecs);
5777 return 1;
5778 }
5779 }
5780
5781 return 0;
5782 }
5783
5784 /* Come here when the program has stopped with a signal. */
5785
5786 static void
5787 handle_signal_stop (struct execution_control_state *ecs)
5788 {
5789 struct frame_info *frame;
5790 struct gdbarch *gdbarch;
5791 int stopped_by_watchpoint;
5792 enum stop_kind stop_soon;
5793 int random_signal;
5794
5795 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5796
5797 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5798
5799 /* Do we need to clean up the state of a thread that has
5800 completed a displaced single-step? (Doing so usually affects
5801 the PC, so do it here, before we set stop_pc.) */
5802 if (finish_step_over (ecs))
5803 return;
5804
5805 /* If we either finished a single-step or hit a breakpoint, but
5806 the user wanted this thread to be stopped, pretend we got a
5807 SIG0 (generic unsignaled stop). */
5808 if (ecs->event_thread->stop_requested
5809 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5810 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5811
5812 ecs->event_thread->suspend.stop_pc
5813 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5814
5815 if (debug_infrun)
5816 {
5817 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5818 struct gdbarch *reg_gdbarch = regcache->arch ();
5819
5820 switch_to_thread (ecs->event_thread);
5821
5822 infrun_debug_printf ("stop_pc=%s",
5823 paddress (reg_gdbarch,
5824 ecs->event_thread->suspend.stop_pc));
5825 if (target_stopped_by_watchpoint ())
5826 {
5827 CORE_ADDR addr;
5828
5829 infrun_debug_printf ("stopped by watchpoint");
5830
5831 if (target_stopped_data_address (current_top_target (), &addr))
5832 infrun_debug_printf ("stopped data address=%s",
5833 paddress (reg_gdbarch, addr));
5834 else
5835 infrun_debug_printf ("(no data address available)");
5836 }
5837 }
5838
5839 /* This is originated from start_remote(), start_inferior() and
5840 shared libraries hook functions. */
5841 stop_soon = get_inferior_stop_soon (ecs);
5842 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5843 {
5844 context_switch (ecs);
5845 infrun_debug_printf ("quietly stopped");
5846 stop_print_frame = 1;
5847 stop_waiting (ecs);
5848 return;
5849 }
5850
5851 /* This originates from attach_command(). We need to overwrite
5852 the stop_signal here, because some kernels don't ignore a
5853 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5854 See more comments in inferior.h. On the other hand, if we
5855 get a non-SIGSTOP, report it to the user - assume the backend
5856 will handle the SIGSTOP if it should show up later.
5857
5858 Also consider that the attach is complete when we see a
5859 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5860 target extended-remote report it instead of a SIGSTOP
5861 (e.g. gdbserver). We already rely on SIGTRAP being our
5862 signal, so this is no exception.
5863
5864 Also consider that the attach is complete when we see a
5865 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5866 the target to stop all threads of the inferior, in case the
5867 low level attach operation doesn't stop them implicitly. If
5868 they weren't stopped implicitly, then the stub will report a
5869 GDB_SIGNAL_0, meaning: stopped for no particular reason
5870 other than GDB's request. */
5871 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5872 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5873 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5874 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5875 {
5876 stop_print_frame = 1;
5877 stop_waiting (ecs);
5878 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5879 return;
5880 }
5881
5882 /* See if something interesting happened to the non-current thread. If
5883 so, then switch to that thread. */
5884 if (ecs->ptid != inferior_ptid)
5885 {
5886 infrun_debug_printf ("context switch");
5887
5888 context_switch (ecs);
5889
5890 if (deprecated_context_hook)
5891 deprecated_context_hook (ecs->event_thread->global_num);
5892 }
5893
5894 /* At this point, get hold of the now-current thread's frame. */
5895 frame = get_current_frame ();
5896 gdbarch = get_frame_arch (frame);
5897
5898 /* Pull the single step breakpoints out of the target. */
5899 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5900 {
5901 struct regcache *regcache;
5902 CORE_ADDR pc;
5903
5904 regcache = get_thread_regcache (ecs->event_thread);
5905 const address_space *aspace = regcache->aspace ();
5906
5907 pc = regcache_read_pc (regcache);
5908
5909 /* However, before doing so, if this single-step breakpoint was
5910 actually for another thread, set this thread up for moving
5911 past it. */
5912 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5913 aspace, pc))
5914 {
5915 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5916 {
5917 infrun_debug_printf ("[%s] hit another thread's single-step "
5918 "breakpoint",
5919 target_pid_to_str (ecs->ptid).c_str ());
5920 ecs->hit_singlestep_breakpoint = 1;
5921 }
5922 }
5923 else
5924 {
5925 infrun_debug_printf ("[%s] hit its single-step breakpoint",
5926 target_pid_to_str (ecs->ptid).c_str ());
5927 }
5928 }
5929 delete_just_stopped_threads_single_step_breakpoints ();
5930
5931 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5932 && ecs->event_thread->control.trap_expected
5933 && ecs->event_thread->stepping_over_watchpoint)
5934 stopped_by_watchpoint = 0;
5935 else
5936 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5937
5938 /* If necessary, step over this watchpoint. We'll be back to display
5939 it in a moment. */
5940 if (stopped_by_watchpoint
5941 && (target_have_steppable_watchpoint
5942 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5943 {
5944 /* At this point, we are stopped at an instruction which has
5945 attempted to write to a piece of memory under control of
5946 a watchpoint. The instruction hasn't actually executed
5947 yet. If we were to evaluate the watchpoint expression
5948 now, we would get the old value, and therefore no change
5949 would seem to have occurred.
5950
5951 In order to make watchpoints work `right', we really need
5952 to complete the memory write, and then evaluate the
5953 watchpoint expression. We do this by single-stepping the
5954 target.
5955
5956 It may not be necessary to disable the watchpoint to step over
5957 it. For example, the PA can (with some kernel cooperation)
5958 single step over a watchpoint without disabling the watchpoint.
5959
5960 It is far more common to need to disable a watchpoint to step
5961 the inferior over it. If we have non-steppable watchpoints,
5962 we must disable the current watchpoint; it's simplest to
5963 disable all watchpoints.
5964
5965 Any breakpoint at PC must also be stepped over -- if there's
5966 one, it will have already triggered before the watchpoint
5967 triggered, and we either already reported it to the user, or
5968 it didn't cause a stop and we called keep_going. In either
5969 case, if there was a breakpoint at PC, we must be trying to
5970 step past it. */
5971 ecs->event_thread->stepping_over_watchpoint = 1;
5972 keep_going (ecs);
5973 return;
5974 }
5975
5976 ecs->event_thread->stepping_over_breakpoint = 0;
5977 ecs->event_thread->stepping_over_watchpoint = 0;
5978 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5979 ecs->event_thread->control.stop_step = 0;
5980 stop_print_frame = 1;
5981 stopped_by_random_signal = 0;
5982 bpstat stop_chain = NULL;
5983
5984 /* Hide inlined functions starting here, unless we just performed stepi or
5985 nexti. After stepi and nexti, always show the innermost frame (not any
5986 inline function call sites). */
5987 if (ecs->event_thread->control.step_range_end != 1)
5988 {
5989 const address_space *aspace
5990 = get_thread_regcache (ecs->event_thread)->aspace ();
5991
5992 /* skip_inline_frames is expensive, so we avoid it if we can
5993 determine that the address is one where functions cannot have
5994 been inlined. This improves performance with inferiors that
5995 load a lot of shared libraries, because the solib event
5996 breakpoint is defined as the address of a function (i.e. not
5997 inline). Note that we have to check the previous PC as well
5998 as the current one to catch cases when we have just
5999 single-stepped off a breakpoint prior to reinstating it.
6000 Note that we're assuming that the code we single-step to is
6001 not inline, but that's not definitive: there's nothing
6002 preventing the event breakpoint function from containing
6003 inlined code, and the single-step ending up there. If the
6004 user had set a breakpoint on that inlined code, the missing
6005 skip_inline_frames call would break things. Fortunately
6006 that's an extremely unlikely scenario. */
6007 if (!pc_at_non_inline_function (aspace,
6008 ecs->event_thread->suspend.stop_pc,
6009 &ecs->ws)
6010 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6011 && ecs->event_thread->control.trap_expected
6012 && pc_at_non_inline_function (aspace,
6013 ecs->event_thread->prev_pc,
6014 &ecs->ws)))
6015 {
6016 stop_chain = build_bpstat_chain (aspace,
6017 ecs->event_thread->suspend.stop_pc,
6018 &ecs->ws);
6019 skip_inline_frames (ecs->event_thread, stop_chain);
6020
6021 /* Re-fetch current thread's frame in case that invalidated
6022 the frame cache. */
6023 frame = get_current_frame ();
6024 gdbarch = get_frame_arch (frame);
6025 }
6026 }
6027
6028 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6029 && ecs->event_thread->control.trap_expected
6030 && gdbarch_single_step_through_delay_p (gdbarch)
6031 && currently_stepping (ecs->event_thread))
6032 {
6033 /* We're trying to step off a breakpoint. Turns out that we're
6034 also on an instruction that needs to be stepped multiple
6035 times before it's been fully executing. E.g., architectures
6036 with a delay slot. It needs to be stepped twice, once for
6037 the instruction and once for the delay slot. */
6038 int step_through_delay
6039 = gdbarch_single_step_through_delay (gdbarch, frame);
6040
6041 if (step_through_delay)
6042 infrun_debug_printf ("step through delay");
6043
6044 if (ecs->event_thread->control.step_range_end == 0
6045 && step_through_delay)
6046 {
6047 /* The user issued a continue when stopped at a breakpoint.
6048 Set up for another trap and get out of here. */
6049 ecs->event_thread->stepping_over_breakpoint = 1;
6050 keep_going (ecs);
6051 return;
6052 }
6053 else if (step_through_delay)
6054 {
6055 /* The user issued a step when stopped at a breakpoint.
6056 Maybe we should stop, maybe we should not - the delay
6057 slot *might* correspond to a line of source. In any
6058 case, don't decide that here, just set
6059 ecs->stepping_over_breakpoint, making sure we
6060 single-step again before breakpoints are re-inserted. */
6061 ecs->event_thread->stepping_over_breakpoint = 1;
6062 }
6063 }
6064
6065 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6066 handles this event. */
6067 ecs->event_thread->control.stop_bpstat
6068 = bpstat_stop_status (get_current_regcache ()->aspace (),
6069 ecs->event_thread->suspend.stop_pc,
6070 ecs->event_thread, &ecs->ws, stop_chain);
6071
6072 /* Following in case break condition called a
6073 function. */
6074 stop_print_frame = 1;
6075
6076 /* This is where we handle "moribund" watchpoints. Unlike
6077 software breakpoints traps, hardware watchpoint traps are
6078 always distinguishable from random traps. If no high-level
6079 watchpoint is associated with the reported stop data address
6080 anymore, then the bpstat does not explain the signal ---
6081 simply make sure to ignore it if `stopped_by_watchpoint' is
6082 set. */
6083
6084 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6085 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6086 GDB_SIGNAL_TRAP)
6087 && stopped_by_watchpoint)
6088 {
6089 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6090 "ignoring");
6091 }
6092
6093 /* NOTE: cagney/2003-03-29: These checks for a random signal
6094 at one stage in the past included checks for an inferior
6095 function call's call dummy's return breakpoint. The original
6096 comment, that went with the test, read:
6097
6098 ``End of a stack dummy. Some systems (e.g. Sony news) give
6099 another signal besides SIGTRAP, so check here as well as
6100 above.''
6101
6102 If someone ever tries to get call dummys on a
6103 non-executable stack to work (where the target would stop
6104 with something like a SIGSEGV), then those tests might need
6105 to be re-instated. Given, however, that the tests were only
6106 enabled when momentary breakpoints were not being used, I
6107 suspect that it won't be the case.
6108
6109 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6110 be necessary for call dummies on a non-executable stack on
6111 SPARC. */
6112
6113 /* See if the breakpoints module can explain the signal. */
6114 random_signal
6115 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6116 ecs->event_thread->suspend.stop_signal);
6117
6118 /* Maybe this was a trap for a software breakpoint that has since
6119 been removed. */
6120 if (random_signal && target_stopped_by_sw_breakpoint ())
6121 {
6122 if (gdbarch_program_breakpoint_here_p (gdbarch,
6123 ecs->event_thread->suspend.stop_pc))
6124 {
6125 struct regcache *regcache;
6126 int decr_pc;
6127
6128 /* Re-adjust PC to what the program would see if GDB was not
6129 debugging it. */
6130 regcache = get_thread_regcache (ecs->event_thread);
6131 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6132 if (decr_pc != 0)
6133 {
6134 gdb::optional<scoped_restore_tmpl<int>>
6135 restore_operation_disable;
6136
6137 if (record_full_is_used ())
6138 restore_operation_disable.emplace
6139 (record_full_gdb_operation_disable_set ());
6140
6141 regcache_write_pc (regcache,
6142 ecs->event_thread->suspend.stop_pc + decr_pc);
6143 }
6144 }
6145 else
6146 {
6147 /* A delayed software breakpoint event. Ignore the trap. */
6148 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
6149 random_signal = 0;
6150 }
6151 }
6152
6153 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6154 has since been removed. */
6155 if (random_signal && target_stopped_by_hw_breakpoint ())
6156 {
6157 /* A delayed hardware breakpoint event. Ignore the trap. */
6158 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6159 "trap, ignoring");
6160 random_signal = 0;
6161 }
6162
6163 /* If not, perhaps stepping/nexting can. */
6164 if (random_signal)
6165 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6166 && currently_stepping (ecs->event_thread));
6167
6168 /* Perhaps the thread hit a single-step breakpoint of _another_
6169 thread. Single-step breakpoints are transparent to the
6170 breakpoints module. */
6171 if (random_signal)
6172 random_signal = !ecs->hit_singlestep_breakpoint;
6173
6174 /* No? Perhaps we got a moribund watchpoint. */
6175 if (random_signal)
6176 random_signal = !stopped_by_watchpoint;
6177
6178 /* Always stop if the user explicitly requested this thread to
6179 remain stopped. */
6180 if (ecs->event_thread->stop_requested)
6181 {
6182 random_signal = 1;
6183 infrun_debug_printf ("user-requested stop");
6184 }
6185
6186 /* For the program's own signals, act according to
6187 the signal handling tables. */
6188
6189 if (random_signal)
6190 {
6191 /* Signal not for debugging purposes. */
6192 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6193 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6194
6195 infrun_debug_printf ("random signal (%s)",
6196 gdb_signal_to_symbol_string (stop_signal));
6197
6198 stopped_by_random_signal = 1;
6199
6200 /* Always stop on signals if we're either just gaining control
6201 of the program, or the user explicitly requested this thread
6202 to remain stopped. */
6203 if (stop_soon != NO_STOP_QUIETLY
6204 || ecs->event_thread->stop_requested
6205 || (!inf->detaching
6206 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6207 {
6208 stop_waiting (ecs);
6209 return;
6210 }
6211
6212 /* Notify observers the signal has "handle print" set. Note we
6213 returned early above if stopping; normal_stop handles the
6214 printing in that case. */
6215 if (signal_print[ecs->event_thread->suspend.stop_signal])
6216 {
6217 /* The signal table tells us to print about this signal. */
6218 target_terminal::ours_for_output ();
6219 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6220 target_terminal::inferior ();
6221 }
6222
6223 /* Clear the signal if it should not be passed. */
6224 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6225 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6226
6227 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6228 && ecs->event_thread->control.trap_expected
6229 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6230 {
6231 /* We were just starting a new sequence, attempting to
6232 single-step off of a breakpoint and expecting a SIGTRAP.
6233 Instead this signal arrives. This signal will take us out
6234 of the stepping range so GDB needs to remember to, when
6235 the signal handler returns, resume stepping off that
6236 breakpoint. */
6237 /* To simplify things, "continue" is forced to use the same
6238 code paths as single-step - set a breakpoint at the
6239 signal return address and then, once hit, step off that
6240 breakpoint. */
6241 infrun_debug_printf ("signal arrived while stepping over breakpoint");
6242
6243 insert_hp_step_resume_breakpoint_at_frame (frame);
6244 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6245 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6246 ecs->event_thread->control.trap_expected = 0;
6247
6248 /* If we were nexting/stepping some other thread, switch to
6249 it, so that we don't continue it, losing control. */
6250 if (!switch_back_to_stepped_thread (ecs))
6251 keep_going (ecs);
6252 return;
6253 }
6254
6255 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6256 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6257 ecs->event_thread)
6258 || ecs->event_thread->control.step_range_end == 1)
6259 && frame_id_eq (get_stack_frame_id (frame),
6260 ecs->event_thread->control.step_stack_frame_id)
6261 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6262 {
6263 /* The inferior is about to take a signal that will take it
6264 out of the single step range. Set a breakpoint at the
6265 current PC (which is presumably where the signal handler
6266 will eventually return) and then allow the inferior to
6267 run free.
6268
6269 Note that this is only needed for a signal delivered
6270 while in the single-step range. Nested signals aren't a
6271 problem as they eventually all return. */
6272 infrun_debug_printf ("signal may take us out of single-step range");
6273
6274 clear_step_over_info ();
6275 insert_hp_step_resume_breakpoint_at_frame (frame);
6276 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6277 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6278 ecs->event_thread->control.trap_expected = 0;
6279 keep_going (ecs);
6280 return;
6281 }
6282
6283 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6284 when either there's a nested signal, or when there's a
6285 pending signal enabled just as the signal handler returns
6286 (leaving the inferior at the step-resume-breakpoint without
6287 actually executing it). Either way continue until the
6288 breakpoint is really hit. */
6289
6290 if (!switch_back_to_stepped_thread (ecs))
6291 {
6292 infrun_debug_printf ("random signal, keep going");
6293
6294 keep_going (ecs);
6295 }
6296 return;
6297 }
6298
6299 process_event_stop_test (ecs);
6300 }
6301
6302 /* Come here when we've got some debug event / signal we can explain
6303 (IOW, not a random signal), and test whether it should cause a
6304 stop, or whether we should resume the inferior (transparently).
6305 E.g., could be a breakpoint whose condition evaluates false; we
6306 could be still stepping within the line; etc. */
6307
6308 static void
6309 process_event_stop_test (struct execution_control_state *ecs)
6310 {
6311 struct symtab_and_line stop_pc_sal;
6312 struct frame_info *frame;
6313 struct gdbarch *gdbarch;
6314 CORE_ADDR jmp_buf_pc;
6315 struct bpstat_what what;
6316
6317 /* Handle cases caused by hitting a breakpoint. */
6318
6319 frame = get_current_frame ();
6320 gdbarch = get_frame_arch (frame);
6321
6322 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6323
6324 if (what.call_dummy)
6325 {
6326 stop_stack_dummy = what.call_dummy;
6327 }
6328
6329 /* A few breakpoint types have callbacks associated (e.g.,
6330 bp_jit_event). Run them now. */
6331 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6332
6333 /* If we hit an internal event that triggers symbol changes, the
6334 current frame will be invalidated within bpstat_what (e.g., if we
6335 hit an internal solib event). Re-fetch it. */
6336 frame = get_current_frame ();
6337 gdbarch = get_frame_arch (frame);
6338
6339 switch (what.main_action)
6340 {
6341 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6342 /* If we hit the breakpoint at longjmp while stepping, we
6343 install a momentary breakpoint at the target of the
6344 jmp_buf. */
6345
6346 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6347
6348 ecs->event_thread->stepping_over_breakpoint = 1;
6349
6350 if (what.is_longjmp)
6351 {
6352 struct value *arg_value;
6353
6354 /* If we set the longjmp breakpoint via a SystemTap probe,
6355 then use it to extract the arguments. The destination PC
6356 is the third argument to the probe. */
6357 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6358 if (arg_value)
6359 {
6360 jmp_buf_pc = value_as_address (arg_value);
6361 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6362 }
6363 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6364 || !gdbarch_get_longjmp_target (gdbarch,
6365 frame, &jmp_buf_pc))
6366 {
6367 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6368 "(!gdbarch_get_longjmp_target)");
6369 keep_going (ecs);
6370 return;
6371 }
6372
6373 /* Insert a breakpoint at resume address. */
6374 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6375 }
6376 else
6377 check_exception_resume (ecs, frame);
6378 keep_going (ecs);
6379 return;
6380
6381 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6382 {
6383 struct frame_info *init_frame;
6384
6385 /* There are several cases to consider.
6386
6387 1. The initiating frame no longer exists. In this case we
6388 must stop, because the exception or longjmp has gone too
6389 far.
6390
6391 2. The initiating frame exists, and is the same as the
6392 current frame. We stop, because the exception or longjmp
6393 has been caught.
6394
6395 3. The initiating frame exists and is different from the
6396 current frame. This means the exception or longjmp has
6397 been caught beneath the initiating frame, so keep going.
6398
6399 4. longjmp breakpoint has been placed just to protect
6400 against stale dummy frames and user is not interested in
6401 stopping around longjmps. */
6402
6403 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6404
6405 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6406 != NULL);
6407 delete_exception_resume_breakpoint (ecs->event_thread);
6408
6409 if (what.is_longjmp)
6410 {
6411 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6412
6413 if (!frame_id_p (ecs->event_thread->initiating_frame))
6414 {
6415 /* Case 4. */
6416 keep_going (ecs);
6417 return;
6418 }
6419 }
6420
6421 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6422
6423 if (init_frame)
6424 {
6425 struct frame_id current_id
6426 = get_frame_id (get_current_frame ());
6427 if (frame_id_eq (current_id,
6428 ecs->event_thread->initiating_frame))
6429 {
6430 /* Case 2. Fall through. */
6431 }
6432 else
6433 {
6434 /* Case 3. */
6435 keep_going (ecs);
6436 return;
6437 }
6438 }
6439
6440 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6441 exists. */
6442 delete_step_resume_breakpoint (ecs->event_thread);
6443
6444 end_stepping_range (ecs);
6445 }
6446 return;
6447
6448 case BPSTAT_WHAT_SINGLE:
6449 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
6450 ecs->event_thread->stepping_over_breakpoint = 1;
6451 /* Still need to check other stuff, at least the case where we
6452 are stepping and step out of the right range. */
6453 break;
6454
6455 case BPSTAT_WHAT_STEP_RESUME:
6456 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
6457
6458 delete_step_resume_breakpoint (ecs->event_thread);
6459 if (ecs->event_thread->control.proceed_to_finish
6460 && execution_direction == EXEC_REVERSE)
6461 {
6462 struct thread_info *tp = ecs->event_thread;
6463
6464 /* We are finishing a function in reverse, and just hit the
6465 step-resume breakpoint at the start address of the
6466 function, and we're almost there -- just need to back up
6467 by one more single-step, which should take us back to the
6468 function call. */
6469 tp->control.step_range_start = tp->control.step_range_end = 1;
6470 keep_going (ecs);
6471 return;
6472 }
6473 fill_in_stop_func (gdbarch, ecs);
6474 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6475 && execution_direction == EXEC_REVERSE)
6476 {
6477 /* We are stepping over a function call in reverse, and just
6478 hit the step-resume breakpoint at the start address of
6479 the function. Go back to single-stepping, which should
6480 take us back to the function call. */
6481 ecs->event_thread->stepping_over_breakpoint = 1;
6482 keep_going (ecs);
6483 return;
6484 }
6485 break;
6486
6487 case BPSTAT_WHAT_STOP_NOISY:
6488 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
6489 stop_print_frame = 1;
6490
6491 /* Assume the thread stopped for a breakpoint. We'll still check
6492 whether a/the breakpoint is there when the thread is next
6493 resumed. */
6494 ecs->event_thread->stepping_over_breakpoint = 1;
6495
6496 stop_waiting (ecs);
6497 return;
6498
6499 case BPSTAT_WHAT_STOP_SILENT:
6500 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
6501 stop_print_frame = 0;
6502
6503 /* Assume the thread stopped for a breakpoint. We'll still check
6504 whether a/the breakpoint is there when the thread is next
6505 resumed. */
6506 ecs->event_thread->stepping_over_breakpoint = 1;
6507 stop_waiting (ecs);
6508 return;
6509
6510 case BPSTAT_WHAT_HP_STEP_RESUME:
6511 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
6512
6513 delete_step_resume_breakpoint (ecs->event_thread);
6514 if (ecs->event_thread->step_after_step_resume_breakpoint)
6515 {
6516 /* Back when the step-resume breakpoint was inserted, we
6517 were trying to single-step off a breakpoint. Go back to
6518 doing that. */
6519 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6520 ecs->event_thread->stepping_over_breakpoint = 1;
6521 keep_going (ecs);
6522 return;
6523 }
6524 break;
6525
6526 case BPSTAT_WHAT_KEEP_CHECKING:
6527 break;
6528 }
6529
6530 /* If we stepped a permanent breakpoint and we had a high priority
6531 step-resume breakpoint for the address we stepped, but we didn't
6532 hit it, then we must have stepped into the signal handler. The
6533 step-resume was only necessary to catch the case of _not_
6534 stepping into the handler, so delete it, and fall through to
6535 checking whether the step finished. */
6536 if (ecs->event_thread->stepped_breakpoint)
6537 {
6538 struct breakpoint *sr_bp
6539 = ecs->event_thread->control.step_resume_breakpoint;
6540
6541 if (sr_bp != NULL
6542 && sr_bp->loc->permanent
6543 && sr_bp->type == bp_hp_step_resume
6544 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6545 {
6546 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
6547 delete_step_resume_breakpoint (ecs->event_thread);
6548 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6549 }
6550 }
6551
6552 /* We come here if we hit a breakpoint but should not stop for it.
6553 Possibly we also were stepping and should stop for that. So fall
6554 through and test for stepping. But, if not stepping, do not
6555 stop. */
6556
6557 /* In all-stop mode, if we're currently stepping but have stopped in
6558 some other thread, we need to switch back to the stepped thread. */
6559 if (switch_back_to_stepped_thread (ecs))
6560 return;
6561
6562 if (ecs->event_thread->control.step_resume_breakpoint)
6563 {
6564 infrun_debug_printf ("step-resume breakpoint is inserted");
6565
6566 /* Having a step-resume breakpoint overrides anything
6567 else having to do with stepping commands until
6568 that breakpoint is reached. */
6569 keep_going (ecs);
6570 return;
6571 }
6572
6573 if (ecs->event_thread->control.step_range_end == 0)
6574 {
6575 infrun_debug_printf ("no stepping, continue");
6576 /* Likewise if we aren't even stepping. */
6577 keep_going (ecs);
6578 return;
6579 }
6580
6581 /* Re-fetch current thread's frame in case the code above caused
6582 the frame cache to be re-initialized, making our FRAME variable
6583 a dangling pointer. */
6584 frame = get_current_frame ();
6585 gdbarch = get_frame_arch (frame);
6586 fill_in_stop_func (gdbarch, ecs);
6587
6588 /* If stepping through a line, keep going if still within it.
6589
6590 Note that step_range_end is the address of the first instruction
6591 beyond the step range, and NOT the address of the last instruction
6592 within it!
6593
6594 Note also that during reverse execution, we may be stepping
6595 through a function epilogue and therefore must detect when
6596 the current-frame changes in the middle of a line. */
6597
6598 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6599 ecs->event_thread)
6600 && (execution_direction != EXEC_REVERSE
6601 || frame_id_eq (get_frame_id (frame),
6602 ecs->event_thread->control.step_frame_id)))
6603 {
6604 infrun_debug_printf
6605 ("stepping inside range [%s-%s]",
6606 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6607 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6608
6609 /* Tentatively re-enable range stepping; `resume' disables it if
6610 necessary (e.g., if we're stepping over a breakpoint or we
6611 have software watchpoints). */
6612 ecs->event_thread->control.may_range_step = 1;
6613
6614 /* When stepping backward, stop at beginning of line range
6615 (unless it's the function entry point, in which case
6616 keep going back to the call point). */
6617 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6618 if (stop_pc == ecs->event_thread->control.step_range_start
6619 && stop_pc != ecs->stop_func_start
6620 && execution_direction == EXEC_REVERSE)
6621 end_stepping_range (ecs);
6622 else
6623 keep_going (ecs);
6624
6625 return;
6626 }
6627
6628 /* We stepped out of the stepping range. */
6629
6630 /* If we are stepping at the source level and entered the runtime
6631 loader dynamic symbol resolution code...
6632
6633 EXEC_FORWARD: we keep on single stepping until we exit the run
6634 time loader code and reach the callee's address.
6635
6636 EXEC_REVERSE: we've already executed the callee (backward), and
6637 the runtime loader code is handled just like any other
6638 undebuggable function call. Now we need only keep stepping
6639 backward through the trampoline code, and that's handled further
6640 down, so there is nothing for us to do here. */
6641
6642 if (execution_direction != EXEC_REVERSE
6643 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6644 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6645 {
6646 CORE_ADDR pc_after_resolver =
6647 gdbarch_skip_solib_resolver (gdbarch,
6648 ecs->event_thread->suspend.stop_pc);
6649
6650 infrun_debug_printf ("stepped into dynsym resolve code");
6651
6652 if (pc_after_resolver)
6653 {
6654 /* Set up a step-resume breakpoint at the address
6655 indicated by SKIP_SOLIB_RESOLVER. */
6656 symtab_and_line sr_sal;
6657 sr_sal.pc = pc_after_resolver;
6658 sr_sal.pspace = get_frame_program_space (frame);
6659
6660 insert_step_resume_breakpoint_at_sal (gdbarch,
6661 sr_sal, null_frame_id);
6662 }
6663
6664 keep_going (ecs);
6665 return;
6666 }
6667
6668 /* Step through an indirect branch thunk. */
6669 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6670 && gdbarch_in_indirect_branch_thunk (gdbarch,
6671 ecs->event_thread->suspend.stop_pc))
6672 {
6673 infrun_debug_printf ("stepped into indirect branch thunk");
6674 keep_going (ecs);
6675 return;
6676 }
6677
6678 if (ecs->event_thread->control.step_range_end != 1
6679 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6680 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6681 && get_frame_type (frame) == SIGTRAMP_FRAME)
6682 {
6683 infrun_debug_printf ("stepped into signal trampoline");
6684 /* The inferior, while doing a "step" or "next", has ended up in
6685 a signal trampoline (either by a signal being delivered or by
6686 the signal handler returning). Just single-step until the
6687 inferior leaves the trampoline (either by calling the handler
6688 or returning). */
6689 keep_going (ecs);
6690 return;
6691 }
6692
6693 /* If we're in the return path from a shared library trampoline,
6694 we want to proceed through the trampoline when stepping. */
6695 /* macro/2012-04-25: This needs to come before the subroutine
6696 call check below as on some targets return trampolines look
6697 like subroutine calls (MIPS16 return thunks). */
6698 if (gdbarch_in_solib_return_trampoline (gdbarch,
6699 ecs->event_thread->suspend.stop_pc,
6700 ecs->stop_func_name)
6701 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6702 {
6703 /* Determine where this trampoline returns. */
6704 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6705 CORE_ADDR real_stop_pc
6706 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6707
6708 infrun_debug_printf ("stepped into solib return tramp");
6709
6710 /* Only proceed through if we know where it's going. */
6711 if (real_stop_pc)
6712 {
6713 /* And put the step-breakpoint there and go until there. */
6714 symtab_and_line sr_sal;
6715 sr_sal.pc = real_stop_pc;
6716 sr_sal.section = find_pc_overlay (sr_sal.pc);
6717 sr_sal.pspace = get_frame_program_space (frame);
6718
6719 /* Do not specify what the fp should be when we stop since
6720 on some machines the prologue is where the new fp value
6721 is established. */
6722 insert_step_resume_breakpoint_at_sal (gdbarch,
6723 sr_sal, null_frame_id);
6724
6725 /* Restart without fiddling with the step ranges or
6726 other state. */
6727 keep_going (ecs);
6728 return;
6729 }
6730 }
6731
6732 /* Check for subroutine calls. The check for the current frame
6733 equalling the step ID is not necessary - the check of the
6734 previous frame's ID is sufficient - but it is a common case and
6735 cheaper than checking the previous frame's ID.
6736
6737 NOTE: frame_id_eq will never report two invalid frame IDs as
6738 being equal, so to get into this block, both the current and
6739 previous frame must have valid frame IDs. */
6740 /* The outer_frame_id check is a heuristic to detect stepping
6741 through startup code. If we step over an instruction which
6742 sets the stack pointer from an invalid value to a valid value,
6743 we may detect that as a subroutine call from the mythical
6744 "outermost" function. This could be fixed by marking
6745 outermost frames as !stack_p,code_p,special_p. Then the
6746 initial outermost frame, before sp was valid, would
6747 have code_addr == &_start. See the comment in frame_id_eq
6748 for more. */
6749 if (!frame_id_eq (get_stack_frame_id (frame),
6750 ecs->event_thread->control.step_stack_frame_id)
6751 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6752 ecs->event_thread->control.step_stack_frame_id)
6753 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6754 outer_frame_id)
6755 || (ecs->event_thread->control.step_start_function
6756 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6757 {
6758 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6759 CORE_ADDR real_stop_pc;
6760
6761 infrun_debug_printf ("stepped into subroutine");
6762
6763 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6764 {
6765 /* I presume that step_over_calls is only 0 when we're
6766 supposed to be stepping at the assembly language level
6767 ("stepi"). Just stop. */
6768 /* And this works the same backward as frontward. MVS */
6769 end_stepping_range (ecs);
6770 return;
6771 }
6772
6773 /* Reverse stepping through solib trampolines. */
6774
6775 if (execution_direction == EXEC_REVERSE
6776 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6777 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6778 || (ecs->stop_func_start == 0
6779 && in_solib_dynsym_resolve_code (stop_pc))))
6780 {
6781 /* Any solib trampoline code can be handled in reverse
6782 by simply continuing to single-step. We have already
6783 executed the solib function (backwards), and a few
6784 steps will take us back through the trampoline to the
6785 caller. */
6786 keep_going (ecs);
6787 return;
6788 }
6789
6790 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6791 {
6792 /* We're doing a "next".
6793
6794 Normal (forward) execution: set a breakpoint at the
6795 callee's return address (the address at which the caller
6796 will resume).
6797
6798 Reverse (backward) execution. set the step-resume
6799 breakpoint at the start of the function that we just
6800 stepped into (backwards), and continue to there. When we
6801 get there, we'll need to single-step back to the caller. */
6802
6803 if (execution_direction == EXEC_REVERSE)
6804 {
6805 /* If we're already at the start of the function, we've either
6806 just stepped backward into a single instruction function,
6807 or stepped back out of a signal handler to the first instruction
6808 of the function. Just keep going, which will single-step back
6809 to the caller. */
6810 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6811 {
6812 /* Normal function call return (static or dynamic). */
6813 symtab_and_line sr_sal;
6814 sr_sal.pc = ecs->stop_func_start;
6815 sr_sal.pspace = get_frame_program_space (frame);
6816 insert_step_resume_breakpoint_at_sal (gdbarch,
6817 sr_sal, null_frame_id);
6818 }
6819 }
6820 else
6821 insert_step_resume_breakpoint_at_caller (frame);
6822
6823 keep_going (ecs);
6824 return;
6825 }
6826
6827 /* If we are in a function call trampoline (a stub between the
6828 calling routine and the real function), locate the real
6829 function. That's what tells us (a) whether we want to step
6830 into it at all, and (b) what prologue we want to run to the
6831 end of, if we do step into it. */
6832 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6833 if (real_stop_pc == 0)
6834 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6835 if (real_stop_pc != 0)
6836 ecs->stop_func_start = real_stop_pc;
6837
6838 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6839 {
6840 symtab_and_line sr_sal;
6841 sr_sal.pc = ecs->stop_func_start;
6842 sr_sal.pspace = get_frame_program_space (frame);
6843
6844 insert_step_resume_breakpoint_at_sal (gdbarch,
6845 sr_sal, null_frame_id);
6846 keep_going (ecs);
6847 return;
6848 }
6849
6850 /* If we have line number information for the function we are
6851 thinking of stepping into and the function isn't on the skip
6852 list, step into it.
6853
6854 If there are several symtabs at that PC (e.g. with include
6855 files), just want to know whether *any* of them have line
6856 numbers. find_pc_line handles this. */
6857 {
6858 struct symtab_and_line tmp_sal;
6859
6860 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6861 if (tmp_sal.line != 0
6862 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6863 tmp_sal)
6864 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6865 {
6866 if (execution_direction == EXEC_REVERSE)
6867 handle_step_into_function_backward (gdbarch, ecs);
6868 else
6869 handle_step_into_function (gdbarch, ecs);
6870 return;
6871 }
6872 }
6873
6874 /* If we have no line number and the step-stop-if-no-debug is
6875 set, we stop the step so that the user has a chance to switch
6876 in assembly mode. */
6877 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6878 && step_stop_if_no_debug)
6879 {
6880 end_stepping_range (ecs);
6881 return;
6882 }
6883
6884 if (execution_direction == EXEC_REVERSE)
6885 {
6886 /* If we're already at the start of the function, we've either just
6887 stepped backward into a single instruction function without line
6888 number info, or stepped back out of a signal handler to the first
6889 instruction of the function without line number info. Just keep
6890 going, which will single-step back to the caller. */
6891 if (ecs->stop_func_start != stop_pc)
6892 {
6893 /* Set a breakpoint at callee's start address.
6894 From there we can step once and be back in the caller. */
6895 symtab_and_line sr_sal;
6896 sr_sal.pc = ecs->stop_func_start;
6897 sr_sal.pspace = get_frame_program_space (frame);
6898 insert_step_resume_breakpoint_at_sal (gdbarch,
6899 sr_sal, null_frame_id);
6900 }
6901 }
6902 else
6903 /* Set a breakpoint at callee's return address (the address
6904 at which the caller will resume). */
6905 insert_step_resume_breakpoint_at_caller (frame);
6906
6907 keep_going (ecs);
6908 return;
6909 }
6910
6911 /* Reverse stepping through solib trampolines. */
6912
6913 if (execution_direction == EXEC_REVERSE
6914 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6915 {
6916 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6917
6918 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6919 || (ecs->stop_func_start == 0
6920 && in_solib_dynsym_resolve_code (stop_pc)))
6921 {
6922 /* Any solib trampoline code can be handled in reverse
6923 by simply continuing to single-step. We have already
6924 executed the solib function (backwards), and a few
6925 steps will take us back through the trampoline to the
6926 caller. */
6927 keep_going (ecs);
6928 return;
6929 }
6930 else if (in_solib_dynsym_resolve_code (stop_pc))
6931 {
6932 /* Stepped backward into the solib dynsym resolver.
6933 Set a breakpoint at its start and continue, then
6934 one more step will take us out. */
6935 symtab_and_line sr_sal;
6936 sr_sal.pc = ecs->stop_func_start;
6937 sr_sal.pspace = get_frame_program_space (frame);
6938 insert_step_resume_breakpoint_at_sal (gdbarch,
6939 sr_sal, null_frame_id);
6940 keep_going (ecs);
6941 return;
6942 }
6943 }
6944
6945 /* This always returns the sal for the inner-most frame when we are in a
6946 stack of inlined frames, even if GDB actually believes that it is in a
6947 more outer frame. This is checked for below by calls to
6948 inline_skipped_frames. */
6949 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6950
6951 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6952 the trampoline processing logic, however, there are some trampolines
6953 that have no names, so we should do trampoline handling first. */
6954 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6955 && ecs->stop_func_name == NULL
6956 && stop_pc_sal.line == 0)
6957 {
6958 infrun_debug_printf ("stepped into undebuggable function");
6959
6960 /* The inferior just stepped into, or returned to, an
6961 undebuggable function (where there is no debugging information
6962 and no line number corresponding to the address where the
6963 inferior stopped). Since we want to skip this kind of code,
6964 we keep going until the inferior returns from this
6965 function - unless the user has asked us not to (via
6966 set step-mode) or we no longer know how to get back
6967 to the call site. */
6968 if (step_stop_if_no_debug
6969 || !frame_id_p (frame_unwind_caller_id (frame)))
6970 {
6971 /* If we have no line number and the step-stop-if-no-debug
6972 is set, we stop the step so that the user has a chance to
6973 switch in assembly mode. */
6974 end_stepping_range (ecs);
6975 return;
6976 }
6977 else
6978 {
6979 /* Set a breakpoint at callee's return address (the address
6980 at which the caller will resume). */
6981 insert_step_resume_breakpoint_at_caller (frame);
6982 keep_going (ecs);
6983 return;
6984 }
6985 }
6986
6987 if (ecs->event_thread->control.step_range_end == 1)
6988 {
6989 /* It is stepi or nexti. We always want to stop stepping after
6990 one instruction. */
6991 infrun_debug_printf ("stepi/nexti");
6992 end_stepping_range (ecs);
6993 return;
6994 }
6995
6996 if (stop_pc_sal.line == 0)
6997 {
6998 /* We have no line number information. That means to stop
6999 stepping (does this always happen right after one instruction,
7000 when we do "s" in a function with no line numbers,
7001 or can this happen as a result of a return or longjmp?). */
7002 infrun_debug_printf ("line number info");
7003 end_stepping_range (ecs);
7004 return;
7005 }
7006
7007 /* Look for "calls" to inlined functions, part one. If the inline
7008 frame machinery detected some skipped call sites, we have entered
7009 a new inline function. */
7010
7011 if (frame_id_eq (get_frame_id (get_current_frame ()),
7012 ecs->event_thread->control.step_frame_id)
7013 && inline_skipped_frames (ecs->event_thread))
7014 {
7015 infrun_debug_printf ("stepped into inlined function");
7016
7017 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7018
7019 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7020 {
7021 /* For "step", we're going to stop. But if the call site
7022 for this inlined function is on the same source line as
7023 we were previously stepping, go down into the function
7024 first. Otherwise stop at the call site. */
7025
7026 if (call_sal.line == ecs->event_thread->current_line
7027 && call_sal.symtab == ecs->event_thread->current_symtab)
7028 {
7029 step_into_inline_frame (ecs->event_thread);
7030 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7031 {
7032 keep_going (ecs);
7033 return;
7034 }
7035 }
7036
7037 end_stepping_range (ecs);
7038 return;
7039 }
7040 else
7041 {
7042 /* For "next", we should stop at the call site if it is on a
7043 different source line. Otherwise continue through the
7044 inlined function. */
7045 if (call_sal.line == ecs->event_thread->current_line
7046 && call_sal.symtab == ecs->event_thread->current_symtab)
7047 keep_going (ecs);
7048 else
7049 end_stepping_range (ecs);
7050 return;
7051 }
7052 }
7053
7054 /* Look for "calls" to inlined functions, part two. If we are still
7055 in the same real function we were stepping through, but we have
7056 to go further up to find the exact frame ID, we are stepping
7057 through a more inlined call beyond its call site. */
7058
7059 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7060 && !frame_id_eq (get_frame_id (get_current_frame ()),
7061 ecs->event_thread->control.step_frame_id)
7062 && stepped_in_from (get_current_frame (),
7063 ecs->event_thread->control.step_frame_id))
7064 {
7065 infrun_debug_printf ("stepping through inlined function");
7066
7067 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7068 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7069 keep_going (ecs);
7070 else
7071 end_stepping_range (ecs);
7072 return;
7073 }
7074
7075 bool refresh_step_info = true;
7076 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7077 && (ecs->event_thread->current_line != stop_pc_sal.line
7078 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7079 {
7080 if (stop_pc_sal.is_stmt)
7081 {
7082 /* We are at the start of a different line. So stop. Note that
7083 we don't stop if we step into the middle of a different line.
7084 That is said to make things like for (;;) statements work
7085 better. */
7086 infrun_debug_printf ("stepped to a different line");
7087 end_stepping_range (ecs);
7088 return;
7089 }
7090 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7091 ecs->event_thread->control.step_frame_id))
7092 {
7093 /* We are at the start of a different line, however, this line is
7094 not marked as a statement, and we have not changed frame. We
7095 ignore this line table entry, and continue stepping forward,
7096 looking for a better place to stop. */
7097 refresh_step_info = false;
7098 infrun_debug_printf ("stepped to a different line, but "
7099 "it's not the start of a statement");
7100 }
7101 }
7102
7103 /* We aren't done stepping.
7104
7105 Optimize by setting the stepping range to the line.
7106 (We might not be in the original line, but if we entered a
7107 new line in mid-statement, we continue stepping. This makes
7108 things like for(;;) statements work better.)
7109
7110 If we entered a SAL that indicates a non-statement line table entry,
7111 then we update the stepping range, but we don't update the step info,
7112 which includes things like the line number we are stepping away from.
7113 This means we will stop when we find a line table entry that is marked
7114 as is-statement, even if it matches the non-statement one we just
7115 stepped into. */
7116
7117 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7118 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7119 ecs->event_thread->control.may_range_step = 1;
7120 if (refresh_step_info)
7121 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7122
7123 infrun_debug_printf ("keep going");
7124 keep_going (ecs);
7125 }
7126
7127 /* In all-stop mode, if we're currently stepping but have stopped in
7128 some other thread, we may need to switch back to the stepped
7129 thread. Returns true we set the inferior running, false if we left
7130 it stopped (and the event needs further processing). */
7131
7132 static int
7133 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7134 {
7135 if (!target_is_non_stop_p ())
7136 {
7137 struct thread_info *stepping_thread;
7138
7139 /* If any thread is blocked on some internal breakpoint, and we
7140 simply need to step over that breakpoint to get it going
7141 again, do that first. */
7142
7143 /* However, if we see an event for the stepping thread, then we
7144 know all other threads have been moved past their breakpoints
7145 already. Let the caller check whether the step is finished,
7146 etc., before deciding to move it past a breakpoint. */
7147 if (ecs->event_thread->control.step_range_end != 0)
7148 return 0;
7149
7150 /* Check if the current thread is blocked on an incomplete
7151 step-over, interrupted by a random signal. */
7152 if (ecs->event_thread->control.trap_expected
7153 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7154 {
7155 infrun_debug_printf
7156 ("need to finish step-over of [%s]",
7157 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7158 keep_going (ecs);
7159 return 1;
7160 }
7161
7162 /* Check if the current thread is blocked by a single-step
7163 breakpoint of another thread. */
7164 if (ecs->hit_singlestep_breakpoint)
7165 {
7166 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7167 target_pid_to_str (ecs->ptid).c_str ());
7168 keep_going (ecs);
7169 return 1;
7170 }
7171
7172 /* If this thread needs yet another step-over (e.g., stepping
7173 through a delay slot), do it first before moving on to
7174 another thread. */
7175 if (thread_still_needs_step_over (ecs->event_thread))
7176 {
7177 infrun_debug_printf
7178 ("thread [%s] still needs step-over",
7179 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7180 keep_going (ecs);
7181 return 1;
7182 }
7183
7184 /* If scheduler locking applies even if not stepping, there's no
7185 need to walk over threads. Above we've checked whether the
7186 current thread is stepping. If some other thread not the
7187 event thread is stepping, then it must be that scheduler
7188 locking is not in effect. */
7189 if (schedlock_applies (ecs->event_thread))
7190 return 0;
7191
7192 /* Otherwise, we no longer expect a trap in the current thread.
7193 Clear the trap_expected flag before switching back -- this is
7194 what keep_going does as well, if we call it. */
7195 ecs->event_thread->control.trap_expected = 0;
7196
7197 /* Likewise, clear the signal if it should not be passed. */
7198 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7199 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7200
7201 /* Do all pending step-overs before actually proceeding with
7202 step/next/etc. */
7203 if (start_step_over ())
7204 {
7205 prepare_to_wait (ecs);
7206 return 1;
7207 }
7208
7209 /* Look for the stepping/nexting thread. */
7210 stepping_thread = NULL;
7211
7212 for (thread_info *tp : all_non_exited_threads ())
7213 {
7214 switch_to_thread_no_regs (tp);
7215
7216 /* Ignore threads of processes the caller is not
7217 resuming. */
7218 if (!sched_multi
7219 && (tp->inf->process_target () != ecs->target
7220 || tp->inf->pid != ecs->ptid.pid ()))
7221 continue;
7222
7223 /* When stepping over a breakpoint, we lock all threads
7224 except the one that needs to move past the breakpoint.
7225 If a non-event thread has this set, the "incomplete
7226 step-over" check above should have caught it earlier. */
7227 if (tp->control.trap_expected)
7228 {
7229 internal_error (__FILE__, __LINE__,
7230 "[%s] has inconsistent state: "
7231 "trap_expected=%d\n",
7232 target_pid_to_str (tp->ptid).c_str (),
7233 tp->control.trap_expected);
7234 }
7235
7236 /* Did we find the stepping thread? */
7237 if (tp->control.step_range_end)
7238 {
7239 /* Yep. There should only one though. */
7240 gdb_assert (stepping_thread == NULL);
7241
7242 /* The event thread is handled at the top, before we
7243 enter this loop. */
7244 gdb_assert (tp != ecs->event_thread);
7245
7246 /* If some thread other than the event thread is
7247 stepping, then scheduler locking can't be in effect,
7248 otherwise we wouldn't have resumed the current event
7249 thread in the first place. */
7250 gdb_assert (!schedlock_applies (tp));
7251
7252 stepping_thread = tp;
7253 }
7254 }
7255
7256 if (stepping_thread != NULL)
7257 {
7258 infrun_debug_printf ("switching back to stepped thread");
7259
7260 if (keep_going_stepped_thread (stepping_thread))
7261 {
7262 prepare_to_wait (ecs);
7263 return 1;
7264 }
7265 }
7266
7267 switch_to_thread (ecs->event_thread);
7268 }
7269
7270 return 0;
7271 }
7272
7273 /* Set a previously stepped thread back to stepping. Returns true on
7274 success, false if the resume is not possible (e.g., the thread
7275 vanished). */
7276
7277 static int
7278 keep_going_stepped_thread (struct thread_info *tp)
7279 {
7280 struct frame_info *frame;
7281 struct execution_control_state ecss;
7282 struct execution_control_state *ecs = &ecss;
7283
7284 /* If the stepping thread exited, then don't try to switch back and
7285 resume it, which could fail in several different ways depending
7286 on the target. Instead, just keep going.
7287
7288 We can find a stepping dead thread in the thread list in two
7289 cases:
7290
7291 - The target supports thread exit events, and when the target
7292 tries to delete the thread from the thread list, inferior_ptid
7293 pointed at the exiting thread. In such case, calling
7294 delete_thread does not really remove the thread from the list;
7295 instead, the thread is left listed, with 'exited' state.
7296
7297 - The target's debug interface does not support thread exit
7298 events, and so we have no idea whatsoever if the previously
7299 stepping thread is still alive. For that reason, we need to
7300 synchronously query the target now. */
7301
7302 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7303 {
7304 infrun_debug_printf ("not resuming previously stepped thread, it has "
7305 "vanished");
7306
7307 delete_thread (tp);
7308 return 0;
7309 }
7310
7311 infrun_debug_printf ("resuming previously stepped thread");
7312
7313 reset_ecs (ecs, tp);
7314 switch_to_thread (tp);
7315
7316 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7317 frame = get_current_frame ();
7318
7319 /* If the PC of the thread we were trying to single-step has
7320 changed, then that thread has trapped or been signaled, but the
7321 event has not been reported to GDB yet. Re-poll the target
7322 looking for this particular thread's event (i.e. temporarily
7323 enable schedlock) by:
7324
7325 - setting a break at the current PC
7326 - resuming that particular thread, only (by setting trap
7327 expected)
7328
7329 This prevents us continuously moving the single-step breakpoint
7330 forward, one instruction at a time, overstepping. */
7331
7332 if (tp->suspend.stop_pc != tp->prev_pc)
7333 {
7334 ptid_t resume_ptid;
7335
7336 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7337 paddress (target_gdbarch (), tp->prev_pc),
7338 paddress (target_gdbarch (), tp->suspend.stop_pc));
7339
7340 /* Clear the info of the previous step-over, as it's no longer
7341 valid (if the thread was trying to step over a breakpoint, it
7342 has already succeeded). It's what keep_going would do too,
7343 if we called it. Do this before trying to insert the sss
7344 breakpoint, otherwise if we were previously trying to step
7345 over this exact address in another thread, the breakpoint is
7346 skipped. */
7347 clear_step_over_info ();
7348 tp->control.trap_expected = 0;
7349
7350 insert_single_step_breakpoint (get_frame_arch (frame),
7351 get_frame_address_space (frame),
7352 tp->suspend.stop_pc);
7353
7354 tp->resumed = true;
7355 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7356 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7357 }
7358 else
7359 {
7360 infrun_debug_printf ("expected thread still hasn't advanced");
7361
7362 keep_going_pass_signal (ecs);
7363 }
7364 return 1;
7365 }
7366
7367 /* Is thread TP in the middle of (software or hardware)
7368 single-stepping? (Note the result of this function must never be
7369 passed directly as target_resume's STEP parameter.) */
7370
7371 static int
7372 currently_stepping (struct thread_info *tp)
7373 {
7374 return ((tp->control.step_range_end
7375 && tp->control.step_resume_breakpoint == NULL)
7376 || tp->control.trap_expected
7377 || tp->stepped_breakpoint
7378 || bpstat_should_step ());
7379 }
7380
7381 /* Inferior has stepped into a subroutine call with source code that
7382 we should not step over. Do step to the first line of code in
7383 it. */
7384
7385 static void
7386 handle_step_into_function (struct gdbarch *gdbarch,
7387 struct execution_control_state *ecs)
7388 {
7389 fill_in_stop_func (gdbarch, ecs);
7390
7391 compunit_symtab *cust
7392 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7393 if (cust != NULL && compunit_language (cust) != language_asm)
7394 ecs->stop_func_start
7395 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7396
7397 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7398 /* Use the step_resume_break to step until the end of the prologue,
7399 even if that involves jumps (as it seems to on the vax under
7400 4.2). */
7401 /* If the prologue ends in the middle of a source line, continue to
7402 the end of that source line (if it is still within the function).
7403 Otherwise, just go to end of prologue. */
7404 if (stop_func_sal.end
7405 && stop_func_sal.pc != ecs->stop_func_start
7406 && stop_func_sal.end < ecs->stop_func_end)
7407 ecs->stop_func_start = stop_func_sal.end;
7408
7409 /* Architectures which require breakpoint adjustment might not be able
7410 to place a breakpoint at the computed address. If so, the test
7411 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7412 ecs->stop_func_start to an address at which a breakpoint may be
7413 legitimately placed.
7414
7415 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7416 made, GDB will enter an infinite loop when stepping through
7417 optimized code consisting of VLIW instructions which contain
7418 subinstructions corresponding to different source lines. On
7419 FR-V, it's not permitted to place a breakpoint on any but the
7420 first subinstruction of a VLIW instruction. When a breakpoint is
7421 set, GDB will adjust the breakpoint address to the beginning of
7422 the VLIW instruction. Thus, we need to make the corresponding
7423 adjustment here when computing the stop address. */
7424
7425 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7426 {
7427 ecs->stop_func_start
7428 = gdbarch_adjust_breakpoint_address (gdbarch,
7429 ecs->stop_func_start);
7430 }
7431
7432 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7433 {
7434 /* We are already there: stop now. */
7435 end_stepping_range (ecs);
7436 return;
7437 }
7438 else
7439 {
7440 /* Put the step-breakpoint there and go until there. */
7441 symtab_and_line sr_sal;
7442 sr_sal.pc = ecs->stop_func_start;
7443 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7444 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7445
7446 /* Do not specify what the fp should be when we stop since on
7447 some machines the prologue is where the new fp value is
7448 established. */
7449 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7450
7451 /* And make sure stepping stops right away then. */
7452 ecs->event_thread->control.step_range_end
7453 = ecs->event_thread->control.step_range_start;
7454 }
7455 keep_going (ecs);
7456 }
7457
7458 /* Inferior has stepped backward into a subroutine call with source
7459 code that we should not step over. Do step to the beginning of the
7460 last line of code in it. */
7461
7462 static void
7463 handle_step_into_function_backward (struct gdbarch *gdbarch,
7464 struct execution_control_state *ecs)
7465 {
7466 struct compunit_symtab *cust;
7467 struct symtab_and_line stop_func_sal;
7468
7469 fill_in_stop_func (gdbarch, ecs);
7470
7471 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7472 if (cust != NULL && compunit_language (cust) != language_asm)
7473 ecs->stop_func_start
7474 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7475
7476 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7477
7478 /* OK, we're just going to keep stepping here. */
7479 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7480 {
7481 /* We're there already. Just stop stepping now. */
7482 end_stepping_range (ecs);
7483 }
7484 else
7485 {
7486 /* Else just reset the step range and keep going.
7487 No step-resume breakpoint, they don't work for
7488 epilogues, which can have multiple entry paths. */
7489 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7490 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7491 keep_going (ecs);
7492 }
7493 return;
7494 }
7495
7496 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7497 This is used to both functions and to skip over code. */
7498
7499 static void
7500 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7501 struct symtab_and_line sr_sal,
7502 struct frame_id sr_id,
7503 enum bptype sr_type)
7504 {
7505 /* There should never be more than one step-resume or longjmp-resume
7506 breakpoint per thread, so we should never be setting a new
7507 step_resume_breakpoint when one is already active. */
7508 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7509 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7510
7511 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7512 paddress (gdbarch, sr_sal.pc));
7513
7514 inferior_thread ()->control.step_resume_breakpoint
7515 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7516 }
7517
7518 void
7519 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7520 struct symtab_and_line sr_sal,
7521 struct frame_id sr_id)
7522 {
7523 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7524 sr_sal, sr_id,
7525 bp_step_resume);
7526 }
7527
7528 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7529 This is used to skip a potential signal handler.
7530
7531 This is called with the interrupted function's frame. The signal
7532 handler, when it returns, will resume the interrupted function at
7533 RETURN_FRAME.pc. */
7534
7535 static void
7536 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7537 {
7538 gdb_assert (return_frame != NULL);
7539
7540 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7541
7542 symtab_and_line sr_sal;
7543 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7544 sr_sal.section = find_pc_overlay (sr_sal.pc);
7545 sr_sal.pspace = get_frame_program_space (return_frame);
7546
7547 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7548 get_stack_frame_id (return_frame),
7549 bp_hp_step_resume);
7550 }
7551
7552 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7553 is used to skip a function after stepping into it (for "next" or if
7554 the called function has no debugging information).
7555
7556 The current function has almost always been reached by single
7557 stepping a call or return instruction. NEXT_FRAME belongs to the
7558 current function, and the breakpoint will be set at the caller's
7559 resume address.
7560
7561 This is a separate function rather than reusing
7562 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7563 get_prev_frame, which may stop prematurely (see the implementation
7564 of frame_unwind_caller_id for an example). */
7565
7566 static void
7567 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7568 {
7569 /* We shouldn't have gotten here if we don't know where the call site
7570 is. */
7571 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7572
7573 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7574
7575 symtab_and_line sr_sal;
7576 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7577 frame_unwind_caller_pc (next_frame));
7578 sr_sal.section = find_pc_overlay (sr_sal.pc);
7579 sr_sal.pspace = frame_unwind_program_space (next_frame);
7580
7581 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7582 frame_unwind_caller_id (next_frame));
7583 }
7584
7585 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7586 new breakpoint at the target of a jmp_buf. The handling of
7587 longjmp-resume uses the same mechanisms used for handling
7588 "step-resume" breakpoints. */
7589
7590 static void
7591 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7592 {
7593 /* There should never be more than one longjmp-resume breakpoint per
7594 thread, so we should never be setting a new
7595 longjmp_resume_breakpoint when one is already active. */
7596 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7597
7598 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7599 paddress (gdbarch, pc));
7600
7601 inferior_thread ()->control.exception_resume_breakpoint =
7602 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7603 }
7604
7605 /* Insert an exception resume breakpoint. TP is the thread throwing
7606 the exception. The block B is the block of the unwinder debug hook
7607 function. FRAME is the frame corresponding to the call to this
7608 function. SYM is the symbol of the function argument holding the
7609 target PC of the exception. */
7610
7611 static void
7612 insert_exception_resume_breakpoint (struct thread_info *tp,
7613 const struct block *b,
7614 struct frame_info *frame,
7615 struct symbol *sym)
7616 {
7617 try
7618 {
7619 struct block_symbol vsym;
7620 struct value *value;
7621 CORE_ADDR handler;
7622 struct breakpoint *bp;
7623
7624 vsym = lookup_symbol_search_name (sym->search_name (),
7625 b, VAR_DOMAIN);
7626 value = read_var_value (vsym.symbol, vsym.block, frame);
7627 /* If the value was optimized out, revert to the old behavior. */
7628 if (! value_optimized_out (value))
7629 {
7630 handler = value_as_address (value);
7631
7632 infrun_debug_printf ("exception resume at %lx",
7633 (unsigned long) handler);
7634
7635 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7636 handler,
7637 bp_exception_resume).release ();
7638
7639 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7640 frame = NULL;
7641
7642 bp->thread = tp->global_num;
7643 inferior_thread ()->control.exception_resume_breakpoint = bp;
7644 }
7645 }
7646 catch (const gdb_exception_error &e)
7647 {
7648 /* We want to ignore errors here. */
7649 }
7650 }
7651
7652 /* A helper for check_exception_resume that sets an
7653 exception-breakpoint based on a SystemTap probe. */
7654
7655 static void
7656 insert_exception_resume_from_probe (struct thread_info *tp,
7657 const struct bound_probe *probe,
7658 struct frame_info *frame)
7659 {
7660 struct value *arg_value;
7661 CORE_ADDR handler;
7662 struct breakpoint *bp;
7663
7664 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7665 if (!arg_value)
7666 return;
7667
7668 handler = value_as_address (arg_value);
7669
7670 infrun_debug_printf ("exception resume at %s",
7671 paddress (probe->objfile->arch (), handler));
7672
7673 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7674 handler, bp_exception_resume).release ();
7675 bp->thread = tp->global_num;
7676 inferior_thread ()->control.exception_resume_breakpoint = bp;
7677 }
7678
7679 /* This is called when an exception has been intercepted. Check to
7680 see whether the exception's destination is of interest, and if so,
7681 set an exception resume breakpoint there. */
7682
7683 static void
7684 check_exception_resume (struct execution_control_state *ecs,
7685 struct frame_info *frame)
7686 {
7687 struct bound_probe probe;
7688 struct symbol *func;
7689
7690 /* First see if this exception unwinding breakpoint was set via a
7691 SystemTap probe point. If so, the probe has two arguments: the
7692 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7693 set a breakpoint there. */
7694 probe = find_probe_by_pc (get_frame_pc (frame));
7695 if (probe.prob)
7696 {
7697 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7698 return;
7699 }
7700
7701 func = get_frame_function (frame);
7702 if (!func)
7703 return;
7704
7705 try
7706 {
7707 const struct block *b;
7708 struct block_iterator iter;
7709 struct symbol *sym;
7710 int argno = 0;
7711
7712 /* The exception breakpoint is a thread-specific breakpoint on
7713 the unwinder's debug hook, declared as:
7714
7715 void _Unwind_DebugHook (void *cfa, void *handler);
7716
7717 The CFA argument indicates the frame to which control is
7718 about to be transferred. HANDLER is the destination PC.
7719
7720 We ignore the CFA and set a temporary breakpoint at HANDLER.
7721 This is not extremely efficient but it avoids issues in gdb
7722 with computing the DWARF CFA, and it also works even in weird
7723 cases such as throwing an exception from inside a signal
7724 handler. */
7725
7726 b = SYMBOL_BLOCK_VALUE (func);
7727 ALL_BLOCK_SYMBOLS (b, iter, sym)
7728 {
7729 if (!SYMBOL_IS_ARGUMENT (sym))
7730 continue;
7731
7732 if (argno == 0)
7733 ++argno;
7734 else
7735 {
7736 insert_exception_resume_breakpoint (ecs->event_thread,
7737 b, frame, sym);
7738 break;
7739 }
7740 }
7741 }
7742 catch (const gdb_exception_error &e)
7743 {
7744 }
7745 }
7746
7747 static void
7748 stop_waiting (struct execution_control_state *ecs)
7749 {
7750 infrun_debug_printf ("stop_waiting");
7751
7752 /* Let callers know we don't want to wait for the inferior anymore. */
7753 ecs->wait_some_more = 0;
7754
7755 /* If all-stop, but there exists a non-stop target, stop all
7756 threads now that we're presenting the stop to the user. */
7757 if (!non_stop && exists_non_stop_target ())
7758 stop_all_threads ();
7759 }
7760
7761 /* Like keep_going, but passes the signal to the inferior, even if the
7762 signal is set to nopass. */
7763
7764 static void
7765 keep_going_pass_signal (struct execution_control_state *ecs)
7766 {
7767 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7768 gdb_assert (!ecs->event_thread->resumed);
7769
7770 /* Save the pc before execution, to compare with pc after stop. */
7771 ecs->event_thread->prev_pc
7772 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7773
7774 if (ecs->event_thread->control.trap_expected)
7775 {
7776 struct thread_info *tp = ecs->event_thread;
7777
7778 infrun_debug_printf ("%s has trap_expected set, "
7779 "resuming to collect trap",
7780 target_pid_to_str (tp->ptid).c_str ());
7781
7782 /* We haven't yet gotten our trap, and either: intercepted a
7783 non-signal event (e.g., a fork); or took a signal which we
7784 are supposed to pass through to the inferior. Simply
7785 continue. */
7786 resume (ecs->event_thread->suspend.stop_signal);
7787 }
7788 else if (step_over_info_valid_p ())
7789 {
7790 /* Another thread is stepping over a breakpoint in-line. If
7791 this thread needs a step-over too, queue the request. In
7792 either case, this resume must be deferred for later. */
7793 struct thread_info *tp = ecs->event_thread;
7794
7795 if (ecs->hit_singlestep_breakpoint
7796 || thread_still_needs_step_over (tp))
7797 {
7798 infrun_debug_printf ("step-over already in progress: "
7799 "step-over for %s deferred",
7800 target_pid_to_str (tp->ptid).c_str ());
7801 thread_step_over_chain_enqueue (tp);
7802 }
7803 else
7804 {
7805 infrun_debug_printf ("step-over in progress: resume of %s deferred",
7806 target_pid_to_str (tp->ptid).c_str ());
7807 }
7808 }
7809 else
7810 {
7811 struct regcache *regcache = get_current_regcache ();
7812 int remove_bp;
7813 int remove_wps;
7814 step_over_what step_what;
7815
7816 /* Either the trap was not expected, but we are continuing
7817 anyway (if we got a signal, the user asked it be passed to
7818 the child)
7819 -- or --
7820 We got our expected trap, but decided we should resume from
7821 it.
7822
7823 We're going to run this baby now!
7824
7825 Note that insert_breakpoints won't try to re-insert
7826 already inserted breakpoints. Therefore, we don't
7827 care if breakpoints were already inserted, or not. */
7828
7829 /* If we need to step over a breakpoint, and we're not using
7830 displaced stepping to do so, insert all breakpoints
7831 (watchpoints, etc.) but the one we're stepping over, step one
7832 instruction, and then re-insert the breakpoint when that step
7833 is finished. */
7834
7835 step_what = thread_still_needs_step_over (ecs->event_thread);
7836
7837 remove_bp = (ecs->hit_singlestep_breakpoint
7838 || (step_what & STEP_OVER_BREAKPOINT));
7839 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7840
7841 /* We can't use displaced stepping if we need to step past a
7842 watchpoint. The instruction copied to the scratch pad would
7843 still trigger the watchpoint. */
7844 if (remove_bp
7845 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7846 {
7847 set_step_over_info (regcache->aspace (),
7848 regcache_read_pc (regcache), remove_wps,
7849 ecs->event_thread->global_num);
7850 }
7851 else if (remove_wps)
7852 set_step_over_info (NULL, 0, remove_wps, -1);
7853
7854 /* If we now need to do an in-line step-over, we need to stop
7855 all other threads. Note this must be done before
7856 insert_breakpoints below, because that removes the breakpoint
7857 we're about to step over, otherwise other threads could miss
7858 it. */
7859 if (step_over_info_valid_p () && target_is_non_stop_p ())
7860 stop_all_threads ();
7861
7862 /* Stop stepping if inserting breakpoints fails. */
7863 try
7864 {
7865 insert_breakpoints ();
7866 }
7867 catch (const gdb_exception_error &e)
7868 {
7869 exception_print (gdb_stderr, e);
7870 stop_waiting (ecs);
7871 clear_step_over_info ();
7872 return;
7873 }
7874
7875 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7876
7877 resume (ecs->event_thread->suspend.stop_signal);
7878 }
7879
7880 prepare_to_wait (ecs);
7881 }
7882
7883 /* Called when we should continue running the inferior, because the
7884 current event doesn't cause a user visible stop. This does the
7885 resuming part; waiting for the next event is done elsewhere. */
7886
7887 static void
7888 keep_going (struct execution_control_state *ecs)
7889 {
7890 if (ecs->event_thread->control.trap_expected
7891 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7892 ecs->event_thread->control.trap_expected = 0;
7893
7894 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7895 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7896 keep_going_pass_signal (ecs);
7897 }
7898
7899 /* This function normally comes after a resume, before
7900 handle_inferior_event exits. It takes care of any last bits of
7901 housekeeping, and sets the all-important wait_some_more flag. */
7902
7903 static void
7904 prepare_to_wait (struct execution_control_state *ecs)
7905 {
7906 infrun_debug_printf ("prepare_to_wait");
7907
7908 ecs->wait_some_more = 1;
7909
7910 /* If the target can't async, emulate it by marking the infrun event
7911 handler such that as soon as we get back to the event-loop, we
7912 immediately end up in fetch_inferior_event again calling
7913 target_wait. */
7914 if (!target_can_async_p ())
7915 mark_infrun_async_event_handler ();
7916 }
7917
7918 /* We are done with the step range of a step/next/si/ni command.
7919 Called once for each n of a "step n" operation. */
7920
7921 static void
7922 end_stepping_range (struct execution_control_state *ecs)
7923 {
7924 ecs->event_thread->control.stop_step = 1;
7925 stop_waiting (ecs);
7926 }
7927
7928 /* Several print_*_reason functions to print why the inferior has stopped.
7929 We always print something when the inferior exits, or receives a signal.
7930 The rest of the cases are dealt with later on in normal_stop and
7931 print_it_typical. Ideally there should be a call to one of these
7932 print_*_reason functions functions from handle_inferior_event each time
7933 stop_waiting is called.
7934
7935 Note that we don't call these directly, instead we delegate that to
7936 the interpreters, through observers. Interpreters then call these
7937 with whatever uiout is right. */
7938
7939 void
7940 print_end_stepping_range_reason (struct ui_out *uiout)
7941 {
7942 /* For CLI-like interpreters, print nothing. */
7943
7944 if (uiout->is_mi_like_p ())
7945 {
7946 uiout->field_string ("reason",
7947 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7948 }
7949 }
7950
7951 void
7952 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7953 {
7954 annotate_signalled ();
7955 if (uiout->is_mi_like_p ())
7956 uiout->field_string
7957 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7958 uiout->text ("\nProgram terminated with signal ");
7959 annotate_signal_name ();
7960 uiout->field_string ("signal-name",
7961 gdb_signal_to_name (siggnal));
7962 annotate_signal_name_end ();
7963 uiout->text (", ");
7964 annotate_signal_string ();
7965 uiout->field_string ("signal-meaning",
7966 gdb_signal_to_string (siggnal));
7967 annotate_signal_string_end ();
7968 uiout->text (".\n");
7969 uiout->text ("The program no longer exists.\n");
7970 }
7971
7972 void
7973 print_exited_reason (struct ui_out *uiout, int exitstatus)
7974 {
7975 struct inferior *inf = current_inferior ();
7976 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7977
7978 annotate_exited (exitstatus);
7979 if (exitstatus)
7980 {
7981 if (uiout->is_mi_like_p ())
7982 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7983 std::string exit_code_str
7984 = string_printf ("0%o", (unsigned int) exitstatus);
7985 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7986 plongest (inf->num), pidstr.c_str (),
7987 string_field ("exit-code", exit_code_str.c_str ()));
7988 }
7989 else
7990 {
7991 if (uiout->is_mi_like_p ())
7992 uiout->field_string
7993 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7994 uiout->message ("[Inferior %s (%s) exited normally]\n",
7995 plongest (inf->num), pidstr.c_str ());
7996 }
7997 }
7998
7999 void
8000 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8001 {
8002 struct thread_info *thr = inferior_thread ();
8003
8004 annotate_signal ();
8005
8006 if (uiout->is_mi_like_p ())
8007 ;
8008 else if (show_thread_that_caused_stop ())
8009 {
8010 const char *name;
8011
8012 uiout->text ("\nThread ");
8013 uiout->field_string ("thread-id", print_thread_id (thr));
8014
8015 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8016 if (name != NULL)
8017 {
8018 uiout->text (" \"");
8019 uiout->field_string ("name", name);
8020 uiout->text ("\"");
8021 }
8022 }
8023 else
8024 uiout->text ("\nProgram");
8025
8026 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8027 uiout->text (" stopped");
8028 else
8029 {
8030 uiout->text (" received signal ");
8031 annotate_signal_name ();
8032 if (uiout->is_mi_like_p ())
8033 uiout->field_string
8034 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8035 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8036 annotate_signal_name_end ();
8037 uiout->text (", ");
8038 annotate_signal_string ();
8039 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8040
8041 struct regcache *regcache = get_current_regcache ();
8042 struct gdbarch *gdbarch = regcache->arch ();
8043 if (gdbarch_report_signal_info_p (gdbarch))
8044 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8045
8046 annotate_signal_string_end ();
8047 }
8048 uiout->text (".\n");
8049 }
8050
8051 void
8052 print_no_history_reason (struct ui_out *uiout)
8053 {
8054 uiout->text ("\nNo more reverse-execution history.\n");
8055 }
8056
8057 /* Print current location without a level number, if we have changed
8058 functions or hit a breakpoint. Print source line if we have one.
8059 bpstat_print contains the logic deciding in detail what to print,
8060 based on the event(s) that just occurred. */
8061
8062 static void
8063 print_stop_location (struct target_waitstatus *ws)
8064 {
8065 int bpstat_ret;
8066 enum print_what source_flag;
8067 int do_frame_printing = 1;
8068 struct thread_info *tp = inferior_thread ();
8069
8070 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8071 switch (bpstat_ret)
8072 {
8073 case PRINT_UNKNOWN:
8074 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8075 should) carry around the function and does (or should) use
8076 that when doing a frame comparison. */
8077 if (tp->control.stop_step
8078 && frame_id_eq (tp->control.step_frame_id,
8079 get_frame_id (get_current_frame ()))
8080 && (tp->control.step_start_function
8081 == find_pc_function (tp->suspend.stop_pc)))
8082 {
8083 /* Finished step, just print source line. */
8084 source_flag = SRC_LINE;
8085 }
8086 else
8087 {
8088 /* Print location and source line. */
8089 source_flag = SRC_AND_LOC;
8090 }
8091 break;
8092 case PRINT_SRC_AND_LOC:
8093 /* Print location and source line. */
8094 source_flag = SRC_AND_LOC;
8095 break;
8096 case PRINT_SRC_ONLY:
8097 source_flag = SRC_LINE;
8098 break;
8099 case PRINT_NOTHING:
8100 /* Something bogus. */
8101 source_flag = SRC_LINE;
8102 do_frame_printing = 0;
8103 break;
8104 default:
8105 internal_error (__FILE__, __LINE__, _("Unknown value."));
8106 }
8107
8108 /* The behavior of this routine with respect to the source
8109 flag is:
8110 SRC_LINE: Print only source line
8111 LOCATION: Print only location
8112 SRC_AND_LOC: Print location and source line. */
8113 if (do_frame_printing)
8114 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8115 }
8116
8117 /* See infrun.h. */
8118
8119 void
8120 print_stop_event (struct ui_out *uiout, bool displays)
8121 {
8122 struct target_waitstatus last;
8123 struct thread_info *tp;
8124
8125 get_last_target_status (nullptr, nullptr, &last);
8126
8127 {
8128 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8129
8130 print_stop_location (&last);
8131
8132 /* Display the auto-display expressions. */
8133 if (displays)
8134 do_displays ();
8135 }
8136
8137 tp = inferior_thread ();
8138 if (tp->thread_fsm != NULL
8139 && tp->thread_fsm->finished_p ())
8140 {
8141 struct return_value_info *rv;
8142
8143 rv = tp->thread_fsm->return_value ();
8144 if (rv != NULL)
8145 print_return_value (uiout, rv);
8146 }
8147 }
8148
8149 /* See infrun.h. */
8150
8151 void
8152 maybe_remove_breakpoints (void)
8153 {
8154 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8155 {
8156 if (remove_breakpoints ())
8157 {
8158 target_terminal::ours_for_output ();
8159 printf_filtered (_("Cannot remove breakpoints because "
8160 "program is no longer writable.\nFurther "
8161 "execution is probably impossible.\n"));
8162 }
8163 }
8164 }
8165
8166 /* The execution context that just caused a normal stop. */
8167
8168 struct stop_context
8169 {
8170 stop_context ();
8171 ~stop_context ();
8172
8173 DISABLE_COPY_AND_ASSIGN (stop_context);
8174
8175 bool changed () const;
8176
8177 /* The stop ID. */
8178 ULONGEST stop_id;
8179
8180 /* The event PTID. */
8181
8182 ptid_t ptid;
8183
8184 /* If stopp for a thread event, this is the thread that caused the
8185 stop. */
8186 struct thread_info *thread;
8187
8188 /* The inferior that caused the stop. */
8189 int inf_num;
8190 };
8191
8192 /* Initializes a new stop context. If stopped for a thread event, this
8193 takes a strong reference to the thread. */
8194
8195 stop_context::stop_context ()
8196 {
8197 stop_id = get_stop_id ();
8198 ptid = inferior_ptid;
8199 inf_num = current_inferior ()->num;
8200
8201 if (inferior_ptid != null_ptid)
8202 {
8203 /* Take a strong reference so that the thread can't be deleted
8204 yet. */
8205 thread = inferior_thread ();
8206 thread->incref ();
8207 }
8208 else
8209 thread = NULL;
8210 }
8211
8212 /* Release a stop context previously created with save_stop_context.
8213 Releases the strong reference to the thread as well. */
8214
8215 stop_context::~stop_context ()
8216 {
8217 if (thread != NULL)
8218 thread->decref ();
8219 }
8220
8221 /* Return true if the current context no longer matches the saved stop
8222 context. */
8223
8224 bool
8225 stop_context::changed () const
8226 {
8227 if (ptid != inferior_ptid)
8228 return true;
8229 if (inf_num != current_inferior ()->num)
8230 return true;
8231 if (thread != NULL && thread->state != THREAD_STOPPED)
8232 return true;
8233 if (get_stop_id () != stop_id)
8234 return true;
8235 return false;
8236 }
8237
8238 /* See infrun.h. */
8239
8240 int
8241 normal_stop (void)
8242 {
8243 struct target_waitstatus last;
8244
8245 get_last_target_status (nullptr, nullptr, &last);
8246
8247 new_stop_id ();
8248
8249 /* If an exception is thrown from this point on, make sure to
8250 propagate GDB's knowledge of the executing state to the
8251 frontend/user running state. A QUIT is an easy exception to see
8252 here, so do this before any filtered output. */
8253
8254 ptid_t finish_ptid = null_ptid;
8255
8256 if (!non_stop)
8257 finish_ptid = minus_one_ptid;
8258 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8259 || last.kind == TARGET_WAITKIND_EXITED)
8260 {
8261 /* On some targets, we may still have live threads in the
8262 inferior when we get a process exit event. E.g., for
8263 "checkpoint", when the current checkpoint/fork exits,
8264 linux-fork.c automatically switches to another fork from
8265 within target_mourn_inferior. */
8266 if (inferior_ptid != null_ptid)
8267 finish_ptid = ptid_t (inferior_ptid.pid ());
8268 }
8269 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8270 finish_ptid = inferior_ptid;
8271
8272 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8273 if (finish_ptid != null_ptid)
8274 {
8275 maybe_finish_thread_state.emplace
8276 (user_visible_resume_target (finish_ptid), finish_ptid);
8277 }
8278
8279 /* As we're presenting a stop, and potentially removing breakpoints,
8280 update the thread list so we can tell whether there are threads
8281 running on the target. With target remote, for example, we can
8282 only learn about new threads when we explicitly update the thread
8283 list. Do this before notifying the interpreters about signal
8284 stops, end of stepping ranges, etc., so that the "new thread"
8285 output is emitted before e.g., "Program received signal FOO",
8286 instead of after. */
8287 update_thread_list ();
8288
8289 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8290 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8291
8292 /* As with the notification of thread events, we want to delay
8293 notifying the user that we've switched thread context until
8294 the inferior actually stops.
8295
8296 There's no point in saying anything if the inferior has exited.
8297 Note that SIGNALLED here means "exited with a signal", not
8298 "received a signal".
8299
8300 Also skip saying anything in non-stop mode. In that mode, as we
8301 don't want GDB to switch threads behind the user's back, to avoid
8302 races where the user is typing a command to apply to thread x,
8303 but GDB switches to thread y before the user finishes entering
8304 the command, fetch_inferior_event installs a cleanup to restore
8305 the current thread back to the thread the user had selected right
8306 after this event is handled, so we're not really switching, only
8307 informing of a stop. */
8308 if (!non_stop
8309 && previous_inferior_ptid != inferior_ptid
8310 && target_has_execution
8311 && last.kind != TARGET_WAITKIND_SIGNALLED
8312 && last.kind != TARGET_WAITKIND_EXITED
8313 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8314 {
8315 SWITCH_THRU_ALL_UIS ()
8316 {
8317 target_terminal::ours_for_output ();
8318 printf_filtered (_("[Switching to %s]\n"),
8319 target_pid_to_str (inferior_ptid).c_str ());
8320 annotate_thread_changed ();
8321 }
8322 previous_inferior_ptid = inferior_ptid;
8323 }
8324
8325 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8326 {
8327 SWITCH_THRU_ALL_UIS ()
8328 if (current_ui->prompt_state == PROMPT_BLOCKED)
8329 {
8330 target_terminal::ours_for_output ();
8331 printf_filtered (_("No unwaited-for children left.\n"));
8332 }
8333 }
8334
8335 /* Note: this depends on the update_thread_list call above. */
8336 maybe_remove_breakpoints ();
8337
8338 /* If an auto-display called a function and that got a signal,
8339 delete that auto-display to avoid an infinite recursion. */
8340
8341 if (stopped_by_random_signal)
8342 disable_current_display ();
8343
8344 SWITCH_THRU_ALL_UIS ()
8345 {
8346 async_enable_stdin ();
8347 }
8348
8349 /* Let the user/frontend see the threads as stopped. */
8350 maybe_finish_thread_state.reset ();
8351
8352 /* Select innermost stack frame - i.e., current frame is frame 0,
8353 and current location is based on that. Handle the case where the
8354 dummy call is returning after being stopped. E.g. the dummy call
8355 previously hit a breakpoint. (If the dummy call returns
8356 normally, we won't reach here.) Do this before the stop hook is
8357 run, so that it doesn't get to see the temporary dummy frame,
8358 which is not where we'll present the stop. */
8359 if (has_stack_frames ())
8360 {
8361 if (stop_stack_dummy == STOP_STACK_DUMMY)
8362 {
8363 /* Pop the empty frame that contains the stack dummy. This
8364 also restores inferior state prior to the call (struct
8365 infcall_suspend_state). */
8366 struct frame_info *frame = get_current_frame ();
8367
8368 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8369 frame_pop (frame);
8370 /* frame_pop calls reinit_frame_cache as the last thing it
8371 does which means there's now no selected frame. */
8372 }
8373
8374 select_frame (get_current_frame ());
8375
8376 /* Set the current source location. */
8377 set_current_sal_from_frame (get_current_frame ());
8378 }
8379
8380 /* Look up the hook_stop and run it (CLI internally handles problem
8381 of stop_command's pre-hook not existing). */
8382 if (stop_command != NULL)
8383 {
8384 stop_context saved_context;
8385
8386 try
8387 {
8388 execute_cmd_pre_hook (stop_command);
8389 }
8390 catch (const gdb_exception &ex)
8391 {
8392 exception_fprintf (gdb_stderr, ex,
8393 "Error while running hook_stop:\n");
8394 }
8395
8396 /* If the stop hook resumes the target, then there's no point in
8397 trying to notify about the previous stop; its context is
8398 gone. Likewise if the command switches thread or inferior --
8399 the observers would print a stop for the wrong
8400 thread/inferior. */
8401 if (saved_context.changed ())
8402 return 1;
8403 }
8404
8405 /* Notify observers about the stop. This is where the interpreters
8406 print the stop event. */
8407 if (inferior_ptid != null_ptid)
8408 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8409 stop_print_frame);
8410 else
8411 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8412
8413 annotate_stopped ();
8414
8415 if (target_has_execution)
8416 {
8417 if (last.kind != TARGET_WAITKIND_SIGNALLED
8418 && last.kind != TARGET_WAITKIND_EXITED
8419 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8420 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8421 Delete any breakpoint that is to be deleted at the next stop. */
8422 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8423 }
8424
8425 /* Try to get rid of automatically added inferiors that are no
8426 longer needed. Keeping those around slows down things linearly.
8427 Note that this never removes the current inferior. */
8428 prune_inferiors ();
8429
8430 return 0;
8431 }
8432 \f
8433 int
8434 signal_stop_state (int signo)
8435 {
8436 return signal_stop[signo];
8437 }
8438
8439 int
8440 signal_print_state (int signo)
8441 {
8442 return signal_print[signo];
8443 }
8444
8445 int
8446 signal_pass_state (int signo)
8447 {
8448 return signal_program[signo];
8449 }
8450
8451 static void
8452 signal_cache_update (int signo)
8453 {
8454 if (signo == -1)
8455 {
8456 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8457 signal_cache_update (signo);
8458
8459 return;
8460 }
8461
8462 signal_pass[signo] = (signal_stop[signo] == 0
8463 && signal_print[signo] == 0
8464 && signal_program[signo] == 1
8465 && signal_catch[signo] == 0);
8466 }
8467
8468 int
8469 signal_stop_update (int signo, int state)
8470 {
8471 int ret = signal_stop[signo];
8472
8473 signal_stop[signo] = state;
8474 signal_cache_update (signo);
8475 return ret;
8476 }
8477
8478 int
8479 signal_print_update (int signo, int state)
8480 {
8481 int ret = signal_print[signo];
8482
8483 signal_print[signo] = state;
8484 signal_cache_update (signo);
8485 return ret;
8486 }
8487
8488 int
8489 signal_pass_update (int signo, int state)
8490 {
8491 int ret = signal_program[signo];
8492
8493 signal_program[signo] = state;
8494 signal_cache_update (signo);
8495 return ret;
8496 }
8497
8498 /* Update the global 'signal_catch' from INFO and notify the
8499 target. */
8500
8501 void
8502 signal_catch_update (const unsigned int *info)
8503 {
8504 int i;
8505
8506 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8507 signal_catch[i] = info[i] > 0;
8508 signal_cache_update (-1);
8509 target_pass_signals (signal_pass);
8510 }
8511
8512 static void
8513 sig_print_header (void)
8514 {
8515 printf_filtered (_("Signal Stop\tPrint\tPass "
8516 "to program\tDescription\n"));
8517 }
8518
8519 static void
8520 sig_print_info (enum gdb_signal oursig)
8521 {
8522 const char *name = gdb_signal_to_name (oursig);
8523 int name_padding = 13 - strlen (name);
8524
8525 if (name_padding <= 0)
8526 name_padding = 0;
8527
8528 printf_filtered ("%s", name);
8529 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8530 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8531 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8532 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8533 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8534 }
8535
8536 /* Specify how various signals in the inferior should be handled. */
8537
8538 static void
8539 handle_command (const char *args, int from_tty)
8540 {
8541 int digits, wordlen;
8542 int sigfirst, siglast;
8543 enum gdb_signal oursig;
8544 int allsigs;
8545
8546 if (args == NULL)
8547 {
8548 error_no_arg (_("signal to handle"));
8549 }
8550
8551 /* Allocate and zero an array of flags for which signals to handle. */
8552
8553 const size_t nsigs = GDB_SIGNAL_LAST;
8554 unsigned char sigs[nsigs] {};
8555
8556 /* Break the command line up into args. */
8557
8558 gdb_argv built_argv (args);
8559
8560 /* Walk through the args, looking for signal oursigs, signal names, and
8561 actions. Signal numbers and signal names may be interspersed with
8562 actions, with the actions being performed for all signals cumulatively
8563 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8564
8565 for (char *arg : built_argv)
8566 {
8567 wordlen = strlen (arg);
8568 for (digits = 0; isdigit (arg[digits]); digits++)
8569 {;
8570 }
8571 allsigs = 0;
8572 sigfirst = siglast = -1;
8573
8574 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8575 {
8576 /* Apply action to all signals except those used by the
8577 debugger. Silently skip those. */
8578 allsigs = 1;
8579 sigfirst = 0;
8580 siglast = nsigs - 1;
8581 }
8582 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8583 {
8584 SET_SIGS (nsigs, sigs, signal_stop);
8585 SET_SIGS (nsigs, sigs, signal_print);
8586 }
8587 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8588 {
8589 UNSET_SIGS (nsigs, sigs, signal_program);
8590 }
8591 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8592 {
8593 SET_SIGS (nsigs, sigs, signal_print);
8594 }
8595 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8596 {
8597 SET_SIGS (nsigs, sigs, signal_program);
8598 }
8599 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8600 {
8601 UNSET_SIGS (nsigs, sigs, signal_stop);
8602 }
8603 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8604 {
8605 SET_SIGS (nsigs, sigs, signal_program);
8606 }
8607 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8608 {
8609 UNSET_SIGS (nsigs, sigs, signal_print);
8610 UNSET_SIGS (nsigs, sigs, signal_stop);
8611 }
8612 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8613 {
8614 UNSET_SIGS (nsigs, sigs, signal_program);
8615 }
8616 else if (digits > 0)
8617 {
8618 /* It is numeric. The numeric signal refers to our own
8619 internal signal numbering from target.h, not to host/target
8620 signal number. This is a feature; users really should be
8621 using symbolic names anyway, and the common ones like
8622 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8623
8624 sigfirst = siglast = (int)
8625 gdb_signal_from_command (atoi (arg));
8626 if (arg[digits] == '-')
8627 {
8628 siglast = (int)
8629 gdb_signal_from_command (atoi (arg + digits + 1));
8630 }
8631 if (sigfirst > siglast)
8632 {
8633 /* Bet he didn't figure we'd think of this case... */
8634 std::swap (sigfirst, siglast);
8635 }
8636 }
8637 else
8638 {
8639 oursig = gdb_signal_from_name (arg);
8640 if (oursig != GDB_SIGNAL_UNKNOWN)
8641 {
8642 sigfirst = siglast = (int) oursig;
8643 }
8644 else
8645 {
8646 /* Not a number and not a recognized flag word => complain. */
8647 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8648 }
8649 }
8650
8651 /* If any signal numbers or symbol names were found, set flags for
8652 which signals to apply actions to. */
8653
8654 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8655 {
8656 switch ((enum gdb_signal) signum)
8657 {
8658 case GDB_SIGNAL_TRAP:
8659 case GDB_SIGNAL_INT:
8660 if (!allsigs && !sigs[signum])
8661 {
8662 if (query (_("%s is used by the debugger.\n\
8663 Are you sure you want to change it? "),
8664 gdb_signal_to_name ((enum gdb_signal) signum)))
8665 {
8666 sigs[signum] = 1;
8667 }
8668 else
8669 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8670 }
8671 break;
8672 case GDB_SIGNAL_0:
8673 case GDB_SIGNAL_DEFAULT:
8674 case GDB_SIGNAL_UNKNOWN:
8675 /* Make sure that "all" doesn't print these. */
8676 break;
8677 default:
8678 sigs[signum] = 1;
8679 break;
8680 }
8681 }
8682 }
8683
8684 for (int signum = 0; signum < nsigs; signum++)
8685 if (sigs[signum])
8686 {
8687 signal_cache_update (-1);
8688 target_pass_signals (signal_pass);
8689 target_program_signals (signal_program);
8690
8691 if (from_tty)
8692 {
8693 /* Show the results. */
8694 sig_print_header ();
8695 for (; signum < nsigs; signum++)
8696 if (sigs[signum])
8697 sig_print_info ((enum gdb_signal) signum);
8698 }
8699
8700 break;
8701 }
8702 }
8703
8704 /* Complete the "handle" command. */
8705
8706 static void
8707 handle_completer (struct cmd_list_element *ignore,
8708 completion_tracker &tracker,
8709 const char *text, const char *word)
8710 {
8711 static const char * const keywords[] =
8712 {
8713 "all",
8714 "stop",
8715 "ignore",
8716 "print",
8717 "pass",
8718 "nostop",
8719 "noignore",
8720 "noprint",
8721 "nopass",
8722 NULL,
8723 };
8724
8725 signal_completer (ignore, tracker, text, word);
8726 complete_on_enum (tracker, keywords, word, word);
8727 }
8728
8729 enum gdb_signal
8730 gdb_signal_from_command (int num)
8731 {
8732 if (num >= 1 && num <= 15)
8733 return (enum gdb_signal) num;
8734 error (_("Only signals 1-15 are valid as numeric signals.\n\
8735 Use \"info signals\" for a list of symbolic signals."));
8736 }
8737
8738 /* Print current contents of the tables set by the handle command.
8739 It is possible we should just be printing signals actually used
8740 by the current target (but for things to work right when switching
8741 targets, all signals should be in the signal tables). */
8742
8743 static void
8744 info_signals_command (const char *signum_exp, int from_tty)
8745 {
8746 enum gdb_signal oursig;
8747
8748 sig_print_header ();
8749
8750 if (signum_exp)
8751 {
8752 /* First see if this is a symbol name. */
8753 oursig = gdb_signal_from_name (signum_exp);
8754 if (oursig == GDB_SIGNAL_UNKNOWN)
8755 {
8756 /* No, try numeric. */
8757 oursig =
8758 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8759 }
8760 sig_print_info (oursig);
8761 return;
8762 }
8763
8764 printf_filtered ("\n");
8765 /* These ugly casts brought to you by the native VAX compiler. */
8766 for (oursig = GDB_SIGNAL_FIRST;
8767 (int) oursig < (int) GDB_SIGNAL_LAST;
8768 oursig = (enum gdb_signal) ((int) oursig + 1))
8769 {
8770 QUIT;
8771
8772 if (oursig != GDB_SIGNAL_UNKNOWN
8773 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8774 sig_print_info (oursig);
8775 }
8776
8777 printf_filtered (_("\nUse the \"handle\" command "
8778 "to change these tables.\n"));
8779 }
8780
8781 /* The $_siginfo convenience variable is a bit special. We don't know
8782 for sure the type of the value until we actually have a chance to
8783 fetch the data. The type can change depending on gdbarch, so it is
8784 also dependent on which thread you have selected.
8785
8786 1. making $_siginfo be an internalvar that creates a new value on
8787 access.
8788
8789 2. making the value of $_siginfo be an lval_computed value. */
8790
8791 /* This function implements the lval_computed support for reading a
8792 $_siginfo value. */
8793
8794 static void
8795 siginfo_value_read (struct value *v)
8796 {
8797 LONGEST transferred;
8798
8799 /* If we can access registers, so can we access $_siginfo. Likewise
8800 vice versa. */
8801 validate_registers_access ();
8802
8803 transferred =
8804 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8805 NULL,
8806 value_contents_all_raw (v),
8807 value_offset (v),
8808 TYPE_LENGTH (value_type (v)));
8809
8810 if (transferred != TYPE_LENGTH (value_type (v)))
8811 error (_("Unable to read siginfo"));
8812 }
8813
8814 /* This function implements the lval_computed support for writing a
8815 $_siginfo value. */
8816
8817 static void
8818 siginfo_value_write (struct value *v, struct value *fromval)
8819 {
8820 LONGEST transferred;
8821
8822 /* If we can access registers, so can we access $_siginfo. Likewise
8823 vice versa. */
8824 validate_registers_access ();
8825
8826 transferred = target_write (current_top_target (),
8827 TARGET_OBJECT_SIGNAL_INFO,
8828 NULL,
8829 value_contents_all_raw (fromval),
8830 value_offset (v),
8831 TYPE_LENGTH (value_type (fromval)));
8832
8833 if (transferred != TYPE_LENGTH (value_type (fromval)))
8834 error (_("Unable to write siginfo"));
8835 }
8836
8837 static const struct lval_funcs siginfo_value_funcs =
8838 {
8839 siginfo_value_read,
8840 siginfo_value_write
8841 };
8842
8843 /* Return a new value with the correct type for the siginfo object of
8844 the current thread using architecture GDBARCH. Return a void value
8845 if there's no object available. */
8846
8847 static struct value *
8848 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8849 void *ignore)
8850 {
8851 if (target_has_stack
8852 && inferior_ptid != null_ptid
8853 && gdbarch_get_siginfo_type_p (gdbarch))
8854 {
8855 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8856
8857 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8858 }
8859
8860 return allocate_value (builtin_type (gdbarch)->builtin_void);
8861 }
8862
8863 \f
8864 /* infcall_suspend_state contains state about the program itself like its
8865 registers and any signal it received when it last stopped.
8866 This state must be restored regardless of how the inferior function call
8867 ends (either successfully, or after it hits a breakpoint or signal)
8868 if the program is to properly continue where it left off. */
8869
8870 class infcall_suspend_state
8871 {
8872 public:
8873 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8874 once the inferior function call has finished. */
8875 infcall_suspend_state (struct gdbarch *gdbarch,
8876 const struct thread_info *tp,
8877 struct regcache *regcache)
8878 : m_thread_suspend (tp->suspend),
8879 m_registers (new readonly_detached_regcache (*regcache))
8880 {
8881 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8882
8883 if (gdbarch_get_siginfo_type_p (gdbarch))
8884 {
8885 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8886 size_t len = TYPE_LENGTH (type);
8887
8888 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8889
8890 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8891 siginfo_data.get (), 0, len) != len)
8892 {
8893 /* Errors ignored. */
8894 siginfo_data.reset (nullptr);
8895 }
8896 }
8897
8898 if (siginfo_data)
8899 {
8900 m_siginfo_gdbarch = gdbarch;
8901 m_siginfo_data = std::move (siginfo_data);
8902 }
8903 }
8904
8905 /* Return a pointer to the stored register state. */
8906
8907 readonly_detached_regcache *registers () const
8908 {
8909 return m_registers.get ();
8910 }
8911
8912 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8913
8914 void restore (struct gdbarch *gdbarch,
8915 struct thread_info *tp,
8916 struct regcache *regcache) const
8917 {
8918 tp->suspend = m_thread_suspend;
8919
8920 if (m_siginfo_gdbarch == gdbarch)
8921 {
8922 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8923
8924 /* Errors ignored. */
8925 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8926 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8927 }
8928
8929 /* The inferior can be gone if the user types "print exit(0)"
8930 (and perhaps other times). */
8931 if (target_has_execution)
8932 /* NB: The register write goes through to the target. */
8933 regcache->restore (registers ());
8934 }
8935
8936 private:
8937 /* How the current thread stopped before the inferior function call was
8938 executed. */
8939 struct thread_suspend_state m_thread_suspend;
8940
8941 /* The registers before the inferior function call was executed. */
8942 std::unique_ptr<readonly_detached_regcache> m_registers;
8943
8944 /* Format of SIGINFO_DATA or NULL if it is not present. */
8945 struct gdbarch *m_siginfo_gdbarch = nullptr;
8946
8947 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8948 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8949 content would be invalid. */
8950 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8951 };
8952
8953 infcall_suspend_state_up
8954 save_infcall_suspend_state ()
8955 {
8956 struct thread_info *tp = inferior_thread ();
8957 struct regcache *regcache = get_current_regcache ();
8958 struct gdbarch *gdbarch = regcache->arch ();
8959
8960 infcall_suspend_state_up inf_state
8961 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8962
8963 /* Having saved the current state, adjust the thread state, discarding
8964 any stop signal information. The stop signal is not useful when
8965 starting an inferior function call, and run_inferior_call will not use
8966 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8967 tp->suspend.stop_signal = GDB_SIGNAL_0;
8968
8969 return inf_state;
8970 }
8971
8972 /* Restore inferior session state to INF_STATE. */
8973
8974 void
8975 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8976 {
8977 struct thread_info *tp = inferior_thread ();
8978 struct regcache *regcache = get_current_regcache ();
8979 struct gdbarch *gdbarch = regcache->arch ();
8980
8981 inf_state->restore (gdbarch, tp, regcache);
8982 discard_infcall_suspend_state (inf_state);
8983 }
8984
8985 void
8986 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8987 {
8988 delete inf_state;
8989 }
8990
8991 readonly_detached_regcache *
8992 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8993 {
8994 return inf_state->registers ();
8995 }
8996
8997 /* infcall_control_state contains state regarding gdb's control of the
8998 inferior itself like stepping control. It also contains session state like
8999 the user's currently selected frame. */
9000
9001 struct infcall_control_state
9002 {
9003 struct thread_control_state thread_control;
9004 struct inferior_control_state inferior_control;
9005
9006 /* Other fields: */
9007 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9008 int stopped_by_random_signal = 0;
9009
9010 /* ID if the selected frame when the inferior function call was made. */
9011 struct frame_id selected_frame_id {};
9012 };
9013
9014 /* Save all of the information associated with the inferior<==>gdb
9015 connection. */
9016
9017 infcall_control_state_up
9018 save_infcall_control_state ()
9019 {
9020 infcall_control_state_up inf_status (new struct infcall_control_state);
9021 struct thread_info *tp = inferior_thread ();
9022 struct inferior *inf = current_inferior ();
9023
9024 inf_status->thread_control = tp->control;
9025 inf_status->inferior_control = inf->control;
9026
9027 tp->control.step_resume_breakpoint = NULL;
9028 tp->control.exception_resume_breakpoint = NULL;
9029
9030 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9031 chain. If caller's caller is walking the chain, they'll be happier if we
9032 hand them back the original chain when restore_infcall_control_state is
9033 called. */
9034 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9035
9036 /* Other fields: */
9037 inf_status->stop_stack_dummy = stop_stack_dummy;
9038 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9039
9040 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9041
9042 return inf_status;
9043 }
9044
9045 static void
9046 restore_selected_frame (const frame_id &fid)
9047 {
9048 frame_info *frame = frame_find_by_id (fid);
9049
9050 /* If inf_status->selected_frame_id is NULL, there was no previously
9051 selected frame. */
9052 if (frame == NULL)
9053 {
9054 warning (_("Unable to restore previously selected frame."));
9055 return;
9056 }
9057
9058 select_frame (frame);
9059 }
9060
9061 /* Restore inferior session state to INF_STATUS. */
9062
9063 void
9064 restore_infcall_control_state (struct infcall_control_state *inf_status)
9065 {
9066 struct thread_info *tp = inferior_thread ();
9067 struct inferior *inf = current_inferior ();
9068
9069 if (tp->control.step_resume_breakpoint)
9070 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9071
9072 if (tp->control.exception_resume_breakpoint)
9073 tp->control.exception_resume_breakpoint->disposition
9074 = disp_del_at_next_stop;
9075
9076 /* Handle the bpstat_copy of the chain. */
9077 bpstat_clear (&tp->control.stop_bpstat);
9078
9079 tp->control = inf_status->thread_control;
9080 inf->control = inf_status->inferior_control;
9081
9082 /* Other fields: */
9083 stop_stack_dummy = inf_status->stop_stack_dummy;
9084 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9085
9086 if (target_has_stack)
9087 {
9088 /* The point of the try/catch is that if the stack is clobbered,
9089 walking the stack might encounter a garbage pointer and
9090 error() trying to dereference it. */
9091 try
9092 {
9093 restore_selected_frame (inf_status->selected_frame_id);
9094 }
9095 catch (const gdb_exception_error &ex)
9096 {
9097 exception_fprintf (gdb_stderr, ex,
9098 "Unable to restore previously selected frame:\n");
9099 /* Error in restoring the selected frame. Select the
9100 innermost frame. */
9101 select_frame (get_current_frame ());
9102 }
9103 }
9104
9105 delete inf_status;
9106 }
9107
9108 void
9109 discard_infcall_control_state (struct infcall_control_state *inf_status)
9110 {
9111 if (inf_status->thread_control.step_resume_breakpoint)
9112 inf_status->thread_control.step_resume_breakpoint->disposition
9113 = disp_del_at_next_stop;
9114
9115 if (inf_status->thread_control.exception_resume_breakpoint)
9116 inf_status->thread_control.exception_resume_breakpoint->disposition
9117 = disp_del_at_next_stop;
9118
9119 /* See save_infcall_control_state for info on stop_bpstat. */
9120 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9121
9122 delete inf_status;
9123 }
9124 \f
9125 /* See infrun.h. */
9126
9127 void
9128 clear_exit_convenience_vars (void)
9129 {
9130 clear_internalvar (lookup_internalvar ("_exitsignal"));
9131 clear_internalvar (lookup_internalvar ("_exitcode"));
9132 }
9133 \f
9134
9135 /* User interface for reverse debugging:
9136 Set exec-direction / show exec-direction commands
9137 (returns error unless target implements to_set_exec_direction method). */
9138
9139 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9140 static const char exec_forward[] = "forward";
9141 static const char exec_reverse[] = "reverse";
9142 static const char *exec_direction = exec_forward;
9143 static const char *const exec_direction_names[] = {
9144 exec_forward,
9145 exec_reverse,
9146 NULL
9147 };
9148
9149 static void
9150 set_exec_direction_func (const char *args, int from_tty,
9151 struct cmd_list_element *cmd)
9152 {
9153 if (target_can_execute_reverse)
9154 {
9155 if (!strcmp (exec_direction, exec_forward))
9156 execution_direction = EXEC_FORWARD;
9157 else if (!strcmp (exec_direction, exec_reverse))
9158 execution_direction = EXEC_REVERSE;
9159 }
9160 else
9161 {
9162 exec_direction = exec_forward;
9163 error (_("Target does not support this operation."));
9164 }
9165 }
9166
9167 static void
9168 show_exec_direction_func (struct ui_file *out, int from_tty,
9169 struct cmd_list_element *cmd, const char *value)
9170 {
9171 switch (execution_direction) {
9172 case EXEC_FORWARD:
9173 fprintf_filtered (out, _("Forward.\n"));
9174 break;
9175 case EXEC_REVERSE:
9176 fprintf_filtered (out, _("Reverse.\n"));
9177 break;
9178 default:
9179 internal_error (__FILE__, __LINE__,
9180 _("bogus execution_direction value: %d"),
9181 (int) execution_direction);
9182 }
9183 }
9184
9185 static void
9186 show_schedule_multiple (struct ui_file *file, int from_tty,
9187 struct cmd_list_element *c, const char *value)
9188 {
9189 fprintf_filtered (file, _("Resuming the execution of threads "
9190 "of all processes is %s.\n"), value);
9191 }
9192
9193 /* Implementation of `siginfo' variable. */
9194
9195 static const struct internalvar_funcs siginfo_funcs =
9196 {
9197 siginfo_make_value,
9198 NULL,
9199 NULL
9200 };
9201
9202 /* Callback for infrun's target events source. This is marked when a
9203 thread has a pending status to process. */
9204
9205 static void
9206 infrun_async_inferior_event_handler (gdb_client_data data)
9207 {
9208 inferior_event_handler (INF_REG_EVENT);
9209 }
9210
9211 namespace selftests
9212 {
9213
9214 /* Verify that when two threads with the same ptid exist (from two different
9215 targets) and one of them changes ptid, we only update inferior_ptid if
9216 it is appropriate. */
9217
9218 static void
9219 infrun_thread_ptid_changed ()
9220 {
9221 gdbarch *arch = current_inferior ()->gdbarch;
9222
9223 /* The thread which inferior_ptid represents changes ptid. */
9224 {
9225 scoped_restore_current_pspace_and_thread restore;
9226
9227 scoped_mock_context<test_target_ops> target1 (arch);
9228 scoped_mock_context<test_target_ops> target2 (arch);
9229 target2.mock_inferior.next = &target1.mock_inferior;
9230
9231 ptid_t old_ptid (111, 222);
9232 ptid_t new_ptid (111, 333);
9233
9234 target1.mock_inferior.pid = old_ptid.pid ();
9235 target1.mock_thread.ptid = old_ptid;
9236 target2.mock_inferior.pid = old_ptid.pid ();
9237 target2.mock_thread.ptid = old_ptid;
9238
9239 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9240 set_current_inferior (&target1.mock_inferior);
9241
9242 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9243
9244 gdb_assert (inferior_ptid == new_ptid);
9245 }
9246
9247 /* A thread with the same ptid as inferior_ptid, but from another target,
9248 changes ptid. */
9249 {
9250 scoped_restore_current_pspace_and_thread restore;
9251
9252 scoped_mock_context<test_target_ops> target1 (arch);
9253 scoped_mock_context<test_target_ops> target2 (arch);
9254 target2.mock_inferior.next = &target1.mock_inferior;
9255
9256 ptid_t old_ptid (111, 222);
9257 ptid_t new_ptid (111, 333);
9258
9259 target1.mock_inferior.pid = old_ptid.pid ();
9260 target1.mock_thread.ptid = old_ptid;
9261 target2.mock_inferior.pid = old_ptid.pid ();
9262 target2.mock_thread.ptid = old_ptid;
9263
9264 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9265 set_current_inferior (&target2.mock_inferior);
9266
9267 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9268
9269 gdb_assert (inferior_ptid == old_ptid);
9270 }
9271 }
9272
9273 } /* namespace selftests */
9274
9275 void _initialize_infrun ();
9276 void
9277 _initialize_infrun ()
9278 {
9279 struct cmd_list_element *c;
9280
9281 /* Register extra event sources in the event loop. */
9282 infrun_async_inferior_event_token
9283 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9284
9285 add_info ("signals", info_signals_command, _("\
9286 What debugger does when program gets various signals.\n\
9287 Specify a signal as argument to print info on that signal only."));
9288 add_info_alias ("handle", "signals", 0);
9289
9290 c = add_com ("handle", class_run, handle_command, _("\
9291 Specify how to handle signals.\n\
9292 Usage: handle SIGNAL [ACTIONS]\n\
9293 Args are signals and actions to apply to those signals.\n\
9294 If no actions are specified, the current settings for the specified signals\n\
9295 will be displayed instead.\n\
9296 \n\
9297 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9298 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9299 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9300 The special arg \"all\" is recognized to mean all signals except those\n\
9301 used by the debugger, typically SIGTRAP and SIGINT.\n\
9302 \n\
9303 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9304 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9305 Stop means reenter debugger if this signal happens (implies print).\n\
9306 Print means print a message if this signal happens.\n\
9307 Pass means let program see this signal; otherwise program doesn't know.\n\
9308 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9309 Pass and Stop may be combined.\n\
9310 \n\
9311 Multiple signals may be specified. Signal numbers and signal names\n\
9312 may be interspersed with actions, with the actions being performed for\n\
9313 all signals cumulatively specified."));
9314 set_cmd_completer (c, handle_completer);
9315
9316 if (!dbx_commands)
9317 stop_command = add_cmd ("stop", class_obscure,
9318 not_just_help_class_command, _("\
9319 There is no `stop' command, but you can set a hook on `stop'.\n\
9320 This allows you to set a list of commands to be run each time execution\n\
9321 of the program stops."), &cmdlist);
9322
9323 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9324 Set inferior debugging."), _("\
9325 Show inferior debugging."), _("\
9326 When non-zero, inferior specific debugging is enabled."),
9327 NULL,
9328 show_debug_infrun,
9329 &setdebuglist, &showdebuglist);
9330
9331 add_setshow_boolean_cmd ("displaced", class_maintenance,
9332 &debug_displaced, _("\
9333 Set displaced stepping debugging."), _("\
9334 Show displaced stepping debugging."), _("\
9335 When non-zero, displaced stepping specific debugging is enabled."),
9336 NULL,
9337 show_debug_displaced,
9338 &setdebuglist, &showdebuglist);
9339
9340 add_setshow_boolean_cmd ("non-stop", no_class,
9341 &non_stop_1, _("\
9342 Set whether gdb controls the inferior in non-stop mode."), _("\
9343 Show whether gdb controls the inferior in non-stop mode."), _("\
9344 When debugging a multi-threaded program and this setting is\n\
9345 off (the default, also called all-stop mode), when one thread stops\n\
9346 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9347 all other threads in the program while you interact with the thread of\n\
9348 interest. When you continue or step a thread, you can allow the other\n\
9349 threads to run, or have them remain stopped, but while you inspect any\n\
9350 thread's state, all threads stop.\n\
9351 \n\
9352 In non-stop mode, when one thread stops, other threads can continue\n\
9353 to run freely. You'll be able to step each thread independently,\n\
9354 leave it stopped or free to run as needed."),
9355 set_non_stop,
9356 show_non_stop,
9357 &setlist,
9358 &showlist);
9359
9360 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9361 {
9362 signal_stop[i] = 1;
9363 signal_print[i] = 1;
9364 signal_program[i] = 1;
9365 signal_catch[i] = 0;
9366 }
9367
9368 /* Signals caused by debugger's own actions should not be given to
9369 the program afterwards.
9370
9371 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9372 explicitly specifies that it should be delivered to the target
9373 program. Typically, that would occur when a user is debugging a
9374 target monitor on a simulator: the target monitor sets a
9375 breakpoint; the simulator encounters this breakpoint and halts
9376 the simulation handing control to GDB; GDB, noting that the stop
9377 address doesn't map to any known breakpoint, returns control back
9378 to the simulator; the simulator then delivers the hardware
9379 equivalent of a GDB_SIGNAL_TRAP to the program being
9380 debugged. */
9381 signal_program[GDB_SIGNAL_TRAP] = 0;
9382 signal_program[GDB_SIGNAL_INT] = 0;
9383
9384 /* Signals that are not errors should not normally enter the debugger. */
9385 signal_stop[GDB_SIGNAL_ALRM] = 0;
9386 signal_print[GDB_SIGNAL_ALRM] = 0;
9387 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9388 signal_print[GDB_SIGNAL_VTALRM] = 0;
9389 signal_stop[GDB_SIGNAL_PROF] = 0;
9390 signal_print[GDB_SIGNAL_PROF] = 0;
9391 signal_stop[GDB_SIGNAL_CHLD] = 0;
9392 signal_print[GDB_SIGNAL_CHLD] = 0;
9393 signal_stop[GDB_SIGNAL_IO] = 0;
9394 signal_print[GDB_SIGNAL_IO] = 0;
9395 signal_stop[GDB_SIGNAL_POLL] = 0;
9396 signal_print[GDB_SIGNAL_POLL] = 0;
9397 signal_stop[GDB_SIGNAL_URG] = 0;
9398 signal_print[GDB_SIGNAL_URG] = 0;
9399 signal_stop[GDB_SIGNAL_WINCH] = 0;
9400 signal_print[GDB_SIGNAL_WINCH] = 0;
9401 signal_stop[GDB_SIGNAL_PRIO] = 0;
9402 signal_print[GDB_SIGNAL_PRIO] = 0;
9403
9404 /* These signals are used internally by user-level thread
9405 implementations. (See signal(5) on Solaris.) Like the above
9406 signals, a healthy program receives and handles them as part of
9407 its normal operation. */
9408 signal_stop[GDB_SIGNAL_LWP] = 0;
9409 signal_print[GDB_SIGNAL_LWP] = 0;
9410 signal_stop[GDB_SIGNAL_WAITING] = 0;
9411 signal_print[GDB_SIGNAL_WAITING] = 0;
9412 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9413 signal_print[GDB_SIGNAL_CANCEL] = 0;
9414 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9415 signal_print[GDB_SIGNAL_LIBRT] = 0;
9416
9417 /* Update cached state. */
9418 signal_cache_update (-1);
9419
9420 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9421 &stop_on_solib_events, _("\
9422 Set stopping for shared library events."), _("\
9423 Show stopping for shared library events."), _("\
9424 If nonzero, gdb will give control to the user when the dynamic linker\n\
9425 notifies gdb of shared library events. The most common event of interest\n\
9426 to the user would be loading/unloading of a new library."),
9427 set_stop_on_solib_events,
9428 show_stop_on_solib_events,
9429 &setlist, &showlist);
9430
9431 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9432 follow_fork_mode_kind_names,
9433 &follow_fork_mode_string, _("\
9434 Set debugger response to a program call of fork or vfork."), _("\
9435 Show debugger response to a program call of fork or vfork."), _("\
9436 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9437 parent - the original process is debugged after a fork\n\
9438 child - the new process is debugged after a fork\n\
9439 The unfollowed process will continue to run.\n\
9440 By default, the debugger will follow the parent process."),
9441 NULL,
9442 show_follow_fork_mode_string,
9443 &setlist, &showlist);
9444
9445 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9446 follow_exec_mode_names,
9447 &follow_exec_mode_string, _("\
9448 Set debugger response to a program call of exec."), _("\
9449 Show debugger response to a program call of exec."), _("\
9450 An exec call replaces the program image of a process.\n\
9451 \n\
9452 follow-exec-mode can be:\n\
9453 \n\
9454 new - the debugger creates a new inferior and rebinds the process\n\
9455 to this new inferior. The program the process was running before\n\
9456 the exec call can be restarted afterwards by restarting the original\n\
9457 inferior.\n\
9458 \n\
9459 same - the debugger keeps the process bound to the same inferior.\n\
9460 The new executable image replaces the previous executable loaded in\n\
9461 the inferior. Restarting the inferior after the exec call restarts\n\
9462 the executable the process was running after the exec call.\n\
9463 \n\
9464 By default, the debugger will use the same inferior."),
9465 NULL,
9466 show_follow_exec_mode_string,
9467 &setlist, &showlist);
9468
9469 add_setshow_enum_cmd ("scheduler-locking", class_run,
9470 scheduler_enums, &scheduler_mode, _("\
9471 Set mode for locking scheduler during execution."), _("\
9472 Show mode for locking scheduler during execution."), _("\
9473 off == no locking (threads may preempt at any time)\n\
9474 on == full locking (no thread except the current thread may run)\n\
9475 This applies to both normal execution and replay mode.\n\
9476 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9477 In this mode, other threads may run during other commands.\n\
9478 This applies to both normal execution and replay mode.\n\
9479 replay == scheduler locked in replay mode and unlocked during normal execution."),
9480 set_schedlock_func, /* traps on target vector */
9481 show_scheduler_mode,
9482 &setlist, &showlist);
9483
9484 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9485 Set mode for resuming threads of all processes."), _("\
9486 Show mode for resuming threads of all processes."), _("\
9487 When on, execution commands (such as 'continue' or 'next') resume all\n\
9488 threads of all processes. When off (which is the default), execution\n\
9489 commands only resume the threads of the current process. The set of\n\
9490 threads that are resumed is further refined by the scheduler-locking\n\
9491 mode (see help set scheduler-locking)."),
9492 NULL,
9493 show_schedule_multiple,
9494 &setlist, &showlist);
9495
9496 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9497 Set mode of the step operation."), _("\
9498 Show mode of the step operation."), _("\
9499 When set, doing a step over a function without debug line information\n\
9500 will stop at the first instruction of that function. Otherwise, the\n\
9501 function is skipped and the step command stops at a different source line."),
9502 NULL,
9503 show_step_stop_if_no_debug,
9504 &setlist, &showlist);
9505
9506 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9507 &can_use_displaced_stepping, _("\
9508 Set debugger's willingness to use displaced stepping."), _("\
9509 Show debugger's willingness to use displaced stepping."), _("\
9510 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9511 supported by the target architecture. If off, gdb will not use displaced\n\
9512 stepping to step over breakpoints, even if such is supported by the target\n\
9513 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9514 if the target architecture supports it and non-stop mode is active, but will not\n\
9515 use it in all-stop mode (see help set non-stop)."),
9516 NULL,
9517 show_can_use_displaced_stepping,
9518 &setlist, &showlist);
9519
9520 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9521 &exec_direction, _("Set direction of execution.\n\
9522 Options are 'forward' or 'reverse'."),
9523 _("Show direction of execution (forward/reverse)."),
9524 _("Tells gdb whether to execute forward or backward."),
9525 set_exec_direction_func, show_exec_direction_func,
9526 &setlist, &showlist);
9527
9528 /* Set/show detach-on-fork: user-settable mode. */
9529
9530 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9531 Set whether gdb will detach the child of a fork."), _("\
9532 Show whether gdb will detach the child of a fork."), _("\
9533 Tells gdb whether to detach the child of a fork."),
9534 NULL, NULL, &setlist, &showlist);
9535
9536 /* Set/show disable address space randomization mode. */
9537
9538 add_setshow_boolean_cmd ("disable-randomization", class_support,
9539 &disable_randomization, _("\
9540 Set disabling of debuggee's virtual address space randomization."), _("\
9541 Show disabling of debuggee's virtual address space randomization."), _("\
9542 When this mode is on (which is the default), randomization of the virtual\n\
9543 address space is disabled. Standalone programs run with the randomization\n\
9544 enabled by default on some platforms."),
9545 &set_disable_randomization,
9546 &show_disable_randomization,
9547 &setlist, &showlist);
9548
9549 /* ptid initializations */
9550 inferior_ptid = null_ptid;
9551 target_last_wait_ptid = minus_one_ptid;
9552
9553 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9554 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9555 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9556 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9557
9558 /* Explicitly create without lookup, since that tries to create a
9559 value with a void typed value, and when we get here, gdbarch
9560 isn't initialized yet. At this point, we're quite sure there
9561 isn't another convenience variable of the same name. */
9562 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9563
9564 add_setshow_boolean_cmd ("observer", no_class,
9565 &observer_mode_1, _("\
9566 Set whether gdb controls the inferior in observer mode."), _("\
9567 Show whether gdb controls the inferior in observer mode."), _("\
9568 In observer mode, GDB can get data from the inferior, but not\n\
9569 affect its execution. Registers and memory may not be changed,\n\
9570 breakpoints may not be set, and the program cannot be interrupted\n\
9571 or signalled."),
9572 set_observer_mode,
9573 show_observer_mode,
9574 &setlist,
9575 &showlist);
9576
9577 #if GDB_SELF_TEST
9578 selftests::register_test ("infrun_thread_ptid_changed",
9579 selftests::infrun_thread_ptid_changed);
9580 #endif
9581 }
This page took 0.434437 seconds and 4 git commands to generate.