[ARM] PR ld/21402, only override the symbol dynamic decision on undefined weak symbol.
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67 #include "progspace-and-thread.h"
68 #include "common/gdb_optional.h"
69 #include "arch-utils.h"
70
71 /* Prototypes for local functions */
72
73 static void info_signals_command (char *, int);
74
75 static void handle_command (char *, int);
76
77 static void sig_print_info (enum gdb_signal);
78
79 static void sig_print_header (void);
80
81 static void resume_cleanups (void *);
82
83 static int hook_stop_stub (void *);
84
85 static int restore_selected_frame (void *);
86
87 static int follow_fork (void);
88
89 static int follow_fork_inferior (int follow_child, int detach_fork);
90
91 static void follow_inferior_reset_breakpoints (void);
92
93 static void set_schedlock_func (char *args, int from_tty,
94 struct cmd_list_element *c);
95
96 static int currently_stepping (struct thread_info *tp);
97
98 void nullify_last_target_wait_ptid (void);
99
100 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
101
102 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
103
104 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
105
106 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
107
108 /* Asynchronous signal handler registered as event loop source for
109 when we have pending events ready to be passed to the core. */
110 static struct async_event_handler *infrun_async_inferior_event_token;
111
112 /* Stores whether infrun_async was previously enabled or disabled.
113 Starts off as -1, indicating "never enabled/disabled". */
114 static int infrun_is_async = -1;
115
116 /* See infrun.h. */
117
118 void
119 infrun_async (int enable)
120 {
121 if (infrun_is_async != enable)
122 {
123 infrun_is_async = enable;
124
125 if (debug_infrun)
126 fprintf_unfiltered (gdb_stdlog,
127 "infrun: infrun_async(%d)\n",
128 enable);
129
130 if (enable)
131 mark_async_event_handler (infrun_async_inferior_event_token);
132 else
133 clear_async_event_handler (infrun_async_inferior_event_token);
134 }
135 }
136
137 /* See infrun.h. */
138
139 void
140 mark_infrun_async_event_handler (void)
141 {
142 mark_async_event_handler (infrun_async_inferior_event_token);
143 }
144
145 /* When set, stop the 'step' command if we enter a function which has
146 no line number information. The normal behavior is that we step
147 over such function. */
148 int step_stop_if_no_debug = 0;
149 static void
150 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152 {
153 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
154 }
155
156 /* proceed and normal_stop use this to notify the user when the
157 inferior stopped in a different thread than it had been running
158 in. */
159
160 static ptid_t previous_inferior_ptid;
161
162 /* If set (default for legacy reasons), when following a fork, GDB
163 will detach from one of the fork branches, child or parent.
164 Exactly which branch is detached depends on 'set follow-fork-mode'
165 setting. */
166
167 static int detach_fork = 1;
168
169 int debug_displaced = 0;
170 static void
171 show_debug_displaced (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173 {
174 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
175 }
176
177 unsigned int debug_infrun = 0;
178 static void
179 show_debug_infrun (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
183 }
184
185
186 /* Support for disabling address space randomization. */
187
188 int disable_randomization = 1;
189
190 static void
191 show_disable_randomization (struct ui_file *file, int from_tty,
192 struct cmd_list_element *c, const char *value)
193 {
194 if (target_supports_disable_randomization ())
195 fprintf_filtered (file,
196 _("Disabling randomization of debuggee's "
197 "virtual address space is %s.\n"),
198 value);
199 else
200 fputs_filtered (_("Disabling randomization of debuggee's "
201 "virtual address space is unsupported on\n"
202 "this platform.\n"), file);
203 }
204
205 static void
206 set_disable_randomization (char *args, int from_tty,
207 struct cmd_list_element *c)
208 {
209 if (!target_supports_disable_randomization ())
210 error (_("Disabling randomization of debuggee's "
211 "virtual address space is unsupported on\n"
212 "this platform."));
213 }
214
215 /* User interface for non-stop mode. */
216
217 int non_stop = 0;
218 static int non_stop_1 = 0;
219
220 static void
221 set_non_stop (char *args, int from_tty,
222 struct cmd_list_element *c)
223 {
224 if (target_has_execution)
225 {
226 non_stop_1 = non_stop;
227 error (_("Cannot change this setting while the inferior is running."));
228 }
229
230 non_stop = non_stop_1;
231 }
232
233 static void
234 show_non_stop (struct ui_file *file, int from_tty,
235 struct cmd_list_element *c, const char *value)
236 {
237 fprintf_filtered (file,
238 _("Controlling the inferior in non-stop mode is %s.\n"),
239 value);
240 }
241
242 /* "Observer mode" is somewhat like a more extreme version of
243 non-stop, in which all GDB operations that might affect the
244 target's execution have been disabled. */
245
246 int observer_mode = 0;
247 static int observer_mode_1 = 0;
248
249 static void
250 set_observer_mode (char *args, int from_tty,
251 struct cmd_list_element *c)
252 {
253 if (target_has_execution)
254 {
255 observer_mode_1 = observer_mode;
256 error (_("Cannot change this setting while the inferior is running."));
257 }
258
259 observer_mode = observer_mode_1;
260
261 may_write_registers = !observer_mode;
262 may_write_memory = !observer_mode;
263 may_insert_breakpoints = !observer_mode;
264 may_insert_tracepoints = !observer_mode;
265 /* We can insert fast tracepoints in or out of observer mode,
266 but enable them if we're going into this mode. */
267 if (observer_mode)
268 may_insert_fast_tracepoints = 1;
269 may_stop = !observer_mode;
270 update_target_permissions ();
271
272 /* Going *into* observer mode we must force non-stop, then
273 going out we leave it that way. */
274 if (observer_mode)
275 {
276 pagination_enabled = 0;
277 non_stop = non_stop_1 = 1;
278 }
279
280 if (from_tty)
281 printf_filtered (_("Observer mode is now %s.\n"),
282 (observer_mode ? "on" : "off"));
283 }
284
285 static void
286 show_observer_mode (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
288 {
289 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
290 }
291
292 /* This updates the value of observer mode based on changes in
293 permissions. Note that we are deliberately ignoring the values of
294 may-write-registers and may-write-memory, since the user may have
295 reason to enable these during a session, for instance to turn on a
296 debugging-related global. */
297
298 void
299 update_observer_mode (void)
300 {
301 int newval;
302
303 newval = (!may_insert_breakpoints
304 && !may_insert_tracepoints
305 && may_insert_fast_tracepoints
306 && !may_stop
307 && non_stop);
308
309 /* Let the user know if things change. */
310 if (newval != observer_mode)
311 printf_filtered (_("Observer mode is now %s.\n"),
312 (newval ? "on" : "off"));
313
314 observer_mode = observer_mode_1 = newval;
315 }
316
317 /* Tables of how to react to signals; the user sets them. */
318
319 static unsigned char *signal_stop;
320 static unsigned char *signal_print;
321 static unsigned char *signal_program;
322
323 /* Table of signals that are registered with "catch signal". A
324 non-zero entry indicates that the signal is caught by some "catch
325 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
326 signals. */
327 static unsigned char *signal_catch;
328
329 /* Table of signals that the target may silently handle.
330 This is automatically determined from the flags above,
331 and simply cached here. */
332 static unsigned char *signal_pass;
333
334 #define SET_SIGS(nsigs,sigs,flags) \
335 do { \
336 int signum = (nsigs); \
337 while (signum-- > 0) \
338 if ((sigs)[signum]) \
339 (flags)[signum] = 1; \
340 } while (0)
341
342 #define UNSET_SIGS(nsigs,sigs,flags) \
343 do { \
344 int signum = (nsigs); \
345 while (signum-- > 0) \
346 if ((sigs)[signum]) \
347 (flags)[signum] = 0; \
348 } while (0)
349
350 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
351 this function is to avoid exporting `signal_program'. */
352
353 void
354 update_signals_program_target (void)
355 {
356 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
357 }
358
359 /* Value to pass to target_resume() to cause all threads to resume. */
360
361 #define RESUME_ALL minus_one_ptid
362
363 /* Command list pointer for the "stop" placeholder. */
364
365 static struct cmd_list_element *stop_command;
366
367 /* Nonzero if we want to give control to the user when we're notified
368 of shared library events by the dynamic linker. */
369 int stop_on_solib_events;
370
371 /* Enable or disable optional shared library event breakpoints
372 as appropriate when the above flag is changed. */
373
374 static void
375 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
376 {
377 update_solib_breakpoints ();
378 }
379
380 static void
381 show_stop_on_solib_events (struct ui_file *file, int from_tty,
382 struct cmd_list_element *c, const char *value)
383 {
384 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
385 value);
386 }
387
388 /* Nonzero after stop if current stack frame should be printed. */
389
390 static int stop_print_frame;
391
392 /* This is a cached copy of the pid/waitstatus of the last event
393 returned by target_wait()/deprecated_target_wait_hook(). This
394 information is returned by get_last_target_status(). */
395 static ptid_t target_last_wait_ptid;
396 static struct target_waitstatus target_last_waitstatus;
397
398 static void context_switch (ptid_t ptid);
399
400 void init_thread_stepping_state (struct thread_info *tss);
401
402 static const char follow_fork_mode_child[] = "child";
403 static const char follow_fork_mode_parent[] = "parent";
404
405 static const char *const follow_fork_mode_kind_names[] = {
406 follow_fork_mode_child,
407 follow_fork_mode_parent,
408 NULL
409 };
410
411 static const char *follow_fork_mode_string = follow_fork_mode_parent;
412 static void
413 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
414 struct cmd_list_element *c, const char *value)
415 {
416 fprintf_filtered (file,
417 _("Debugger response to a program "
418 "call of fork or vfork is \"%s\".\n"),
419 value);
420 }
421 \f
422
423 /* Handle changes to the inferior list based on the type of fork,
424 which process is being followed, and whether the other process
425 should be detached. On entry inferior_ptid must be the ptid of
426 the fork parent. At return inferior_ptid is the ptid of the
427 followed inferior. */
428
429 static int
430 follow_fork_inferior (int follow_child, int detach_fork)
431 {
432 int has_vforked;
433 ptid_t parent_ptid, child_ptid;
434
435 has_vforked = (inferior_thread ()->pending_follow.kind
436 == TARGET_WAITKIND_VFORKED);
437 parent_ptid = inferior_ptid;
438 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
439
440 if (has_vforked
441 && !non_stop /* Non-stop always resumes both branches. */
442 && current_ui->prompt_state == PROMPT_BLOCKED
443 && !(follow_child || detach_fork || sched_multi))
444 {
445 /* The parent stays blocked inside the vfork syscall until the
446 child execs or exits. If we don't let the child run, then
447 the parent stays blocked. If we're telling the parent to run
448 in the foreground, the user will not be able to ctrl-c to get
449 back the terminal, effectively hanging the debug session. */
450 fprintf_filtered (gdb_stderr, _("\
451 Can not resume the parent process over vfork in the foreground while\n\
452 holding the child stopped. Try \"set detach-on-fork\" or \
453 \"set schedule-multiple\".\n"));
454 /* FIXME output string > 80 columns. */
455 return 1;
456 }
457
458 if (!follow_child)
459 {
460 /* Detach new forked process? */
461 if (detach_fork)
462 {
463 /* Before detaching from the child, remove all breakpoints
464 from it. If we forked, then this has already been taken
465 care of by infrun.c. If we vforked however, any
466 breakpoint inserted in the parent is visible in the
467 child, even those added while stopped in a vfork
468 catchpoint. This will remove the breakpoints from the
469 parent also, but they'll be reinserted below. */
470 if (has_vforked)
471 {
472 /* Keep breakpoints list in sync. */
473 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
474 }
475
476 if (info_verbose || debug_infrun)
477 {
478 /* Ensure that we have a process ptid. */
479 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
480
481 target_terminal::ours_for_output ();
482 fprintf_filtered (gdb_stdlog,
483 _("Detaching after %s from child %s.\n"),
484 has_vforked ? "vfork" : "fork",
485 target_pid_to_str (process_ptid));
486 }
487 }
488 else
489 {
490 struct inferior *parent_inf, *child_inf;
491
492 /* Add process to GDB's tables. */
493 child_inf = add_inferior (ptid_get_pid (child_ptid));
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 scoped_restore_current_pspace_and_thread restore_pspace_thread;
502
503 inferior_ptid = child_ptid;
504 add_thread (inferior_ptid);
505 set_current_inferior (child_inf);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539 }
540
541 if (has_vforked)
542 {
543 struct inferior *parent_inf;
544
545 parent_inf = current_inferior ();
546
547 /* If we detached from the child, then we have to be careful
548 to not insert breakpoints in the parent until the child
549 is done with the shared memory region. However, if we're
550 staying attached to the child, then we can and should
551 insert breakpoints, so that we can debug it. A
552 subsequent child exec or exit is enough to know when does
553 the child stops using the parent's address space. */
554 parent_inf->waiting_for_vfork_done = detach_fork;
555 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
556 }
557 }
558 else
559 {
560 /* Follow the child. */
561 struct inferior *parent_inf, *child_inf;
562 struct program_space *parent_pspace;
563
564 if (info_verbose || debug_infrun)
565 {
566 target_terminal::ours_for_output ();
567 fprintf_filtered (gdb_stdlog,
568 _("Attaching after %s %s to child %s.\n"),
569 target_pid_to_str (parent_ptid),
570 has_vforked ? "vfork" : "fork",
571 target_pid_to_str (child_ptid));
572 }
573
574 /* Add the new inferior first, so that the target_detach below
575 doesn't unpush the target. */
576
577 child_inf = add_inferior (ptid_get_pid (child_ptid));
578
579 parent_inf = current_inferior ();
580 child_inf->attach_flag = parent_inf->attach_flag;
581 copy_terminal_info (child_inf, parent_inf);
582 child_inf->gdbarch = parent_inf->gdbarch;
583 copy_inferior_target_desc_info (child_inf, parent_inf);
584
585 parent_pspace = parent_inf->pspace;
586
587 /* If we're vforking, we want to hold on to the parent until the
588 child exits or execs. At child exec or exit time we can
589 remove the old breakpoints from the parent and detach or
590 resume debugging it. Otherwise, detach the parent now; we'll
591 want to reuse it's program/address spaces, but we can't set
592 them to the child before removing breakpoints from the
593 parent, otherwise, the breakpoints module could decide to
594 remove breakpoints from the wrong process (since they'd be
595 assigned to the same address space). */
596
597 if (has_vforked)
598 {
599 gdb_assert (child_inf->vfork_parent == NULL);
600 gdb_assert (parent_inf->vfork_child == NULL);
601 child_inf->vfork_parent = parent_inf;
602 child_inf->pending_detach = 0;
603 parent_inf->vfork_child = child_inf;
604 parent_inf->pending_detach = detach_fork;
605 parent_inf->waiting_for_vfork_done = 0;
606 }
607 else if (detach_fork)
608 {
609 if (info_verbose || debug_infrun)
610 {
611 /* Ensure that we have a process ptid. */
612 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
613
614 target_terminal::ours_for_output ();
615 fprintf_filtered (gdb_stdlog,
616 _("Detaching after fork from "
617 "child %s.\n"),
618 target_pid_to_str (process_ptid));
619 }
620
621 target_detach (NULL, 0);
622 }
623
624 /* Note that the detach above makes PARENT_INF dangling. */
625
626 /* Add the child thread to the appropriate lists, and switch to
627 this new thread, before cloning the program space, and
628 informing the solib layer about this new process. */
629
630 inferior_ptid = child_ptid;
631 add_thread (inferior_ptid);
632 set_current_inferior (child_inf);
633
634 /* If this is a vfork child, then the address-space is shared
635 with the parent. If we detached from the parent, then we can
636 reuse the parent's program/address spaces. */
637 if (has_vforked || detach_fork)
638 {
639 child_inf->pspace = parent_pspace;
640 child_inf->aspace = child_inf->pspace->aspace;
641 }
642 else
643 {
644 child_inf->aspace = new_address_space ();
645 child_inf->pspace = add_program_space (child_inf->aspace);
646 child_inf->removable = 1;
647 child_inf->symfile_flags = SYMFILE_NO_READ;
648 set_current_program_space (child_inf->pspace);
649 clone_program_space (child_inf->pspace, parent_pspace);
650
651 /* Let the shared library layer (e.g., solib-svr4) learn
652 about this new process, relocate the cloned exec, pull in
653 shared libraries, and install the solib event breakpoint.
654 If a "cloned-VM" event was propagated better throughout
655 the core, this wouldn't be required. */
656 solib_create_inferior_hook (0);
657 }
658 }
659
660 return target_follow_fork (follow_child, detach_fork);
661 }
662
663 /* Tell the target to follow the fork we're stopped at. Returns true
664 if the inferior should be resumed; false, if the target for some
665 reason decided it's best not to resume. */
666
667 static int
668 follow_fork (void)
669 {
670 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
671 int should_resume = 1;
672 struct thread_info *tp;
673
674 /* Copy user stepping state to the new inferior thread. FIXME: the
675 followed fork child thread should have a copy of most of the
676 parent thread structure's run control related fields, not just these.
677 Initialized to avoid "may be used uninitialized" warnings from gcc. */
678 struct breakpoint *step_resume_breakpoint = NULL;
679 struct breakpoint *exception_resume_breakpoint = NULL;
680 CORE_ADDR step_range_start = 0;
681 CORE_ADDR step_range_end = 0;
682 struct frame_id step_frame_id = { 0 };
683 struct thread_fsm *thread_fsm = NULL;
684
685 if (!non_stop)
686 {
687 ptid_t wait_ptid;
688 struct target_waitstatus wait_status;
689
690 /* Get the last target status returned by target_wait(). */
691 get_last_target_status (&wait_ptid, &wait_status);
692
693 /* If not stopped at a fork event, then there's nothing else to
694 do. */
695 if (wait_status.kind != TARGET_WAITKIND_FORKED
696 && wait_status.kind != TARGET_WAITKIND_VFORKED)
697 return 1;
698
699 /* Check if we switched over from WAIT_PTID, since the event was
700 reported. */
701 if (!ptid_equal (wait_ptid, minus_one_ptid)
702 && !ptid_equal (inferior_ptid, wait_ptid))
703 {
704 /* We did. Switch back to WAIT_PTID thread, to tell the
705 target to follow it (in either direction). We'll
706 afterwards refuse to resume, and inform the user what
707 happened. */
708 switch_to_thread (wait_ptid);
709 should_resume = 0;
710 }
711 }
712
713 tp = inferior_thread ();
714
715 /* If there were any forks/vforks that were caught and are now to be
716 followed, then do so now. */
717 switch (tp->pending_follow.kind)
718 {
719 case TARGET_WAITKIND_FORKED:
720 case TARGET_WAITKIND_VFORKED:
721 {
722 ptid_t parent, child;
723
724 /* If the user did a next/step, etc, over a fork call,
725 preserve the stepping state in the fork child. */
726 if (follow_child && should_resume)
727 {
728 step_resume_breakpoint = clone_momentary_breakpoint
729 (tp->control.step_resume_breakpoint);
730 step_range_start = tp->control.step_range_start;
731 step_range_end = tp->control.step_range_end;
732 step_frame_id = tp->control.step_frame_id;
733 exception_resume_breakpoint
734 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
735 thread_fsm = tp->thread_fsm;
736
737 /* For now, delete the parent's sr breakpoint, otherwise,
738 parent/child sr breakpoints are considered duplicates,
739 and the child version will not be installed. Remove
740 this when the breakpoints module becomes aware of
741 inferiors and address spaces. */
742 delete_step_resume_breakpoint (tp);
743 tp->control.step_range_start = 0;
744 tp->control.step_range_end = 0;
745 tp->control.step_frame_id = null_frame_id;
746 delete_exception_resume_breakpoint (tp);
747 tp->thread_fsm = NULL;
748 }
749
750 parent = inferior_ptid;
751 child = tp->pending_follow.value.related_pid;
752
753 /* Set up inferior(s) as specified by the caller, and tell the
754 target to do whatever is necessary to follow either parent
755 or child. */
756 if (follow_fork_inferior (follow_child, detach_fork))
757 {
758 /* Target refused to follow, or there's some other reason
759 we shouldn't resume. */
760 should_resume = 0;
761 }
762 else
763 {
764 /* This pending follow fork event is now handled, one way
765 or another. The previous selected thread may be gone
766 from the lists by now, but if it is still around, need
767 to clear the pending follow request. */
768 tp = find_thread_ptid (parent);
769 if (tp)
770 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
771
772 /* This makes sure we don't try to apply the "Switched
773 over from WAIT_PID" logic above. */
774 nullify_last_target_wait_ptid ();
775
776 /* If we followed the child, switch to it... */
777 if (follow_child)
778 {
779 switch_to_thread (child);
780
781 /* ... and preserve the stepping state, in case the
782 user was stepping over the fork call. */
783 if (should_resume)
784 {
785 tp = inferior_thread ();
786 tp->control.step_resume_breakpoint
787 = step_resume_breakpoint;
788 tp->control.step_range_start = step_range_start;
789 tp->control.step_range_end = step_range_end;
790 tp->control.step_frame_id = step_frame_id;
791 tp->control.exception_resume_breakpoint
792 = exception_resume_breakpoint;
793 tp->thread_fsm = thread_fsm;
794 }
795 else
796 {
797 /* If we get here, it was because we're trying to
798 resume from a fork catchpoint, but, the user
799 has switched threads away from the thread that
800 forked. In that case, the resume command
801 issued is most likely not applicable to the
802 child, so just warn, and refuse to resume. */
803 warning (_("Not resuming: switched threads "
804 "before following fork child."));
805 }
806
807 /* Reset breakpoints in the child as appropriate. */
808 follow_inferior_reset_breakpoints ();
809 }
810 else
811 switch_to_thread (parent);
812 }
813 }
814 break;
815 case TARGET_WAITKIND_SPURIOUS:
816 /* Nothing to follow. */
817 break;
818 default:
819 internal_error (__FILE__, __LINE__,
820 "Unexpected pending_follow.kind %d\n",
821 tp->pending_follow.kind);
822 break;
823 }
824
825 return should_resume;
826 }
827
828 static void
829 follow_inferior_reset_breakpoints (void)
830 {
831 struct thread_info *tp = inferior_thread ();
832
833 /* Was there a step_resume breakpoint? (There was if the user
834 did a "next" at the fork() call.) If so, explicitly reset its
835 thread number. Cloned step_resume breakpoints are disabled on
836 creation, so enable it here now that it is associated with the
837 correct thread.
838
839 step_resumes are a form of bp that are made to be per-thread.
840 Since we created the step_resume bp when the parent process
841 was being debugged, and now are switching to the child process,
842 from the breakpoint package's viewpoint, that's a switch of
843 "threads". We must update the bp's notion of which thread
844 it is for, or it'll be ignored when it triggers. */
845
846 if (tp->control.step_resume_breakpoint)
847 {
848 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
849 tp->control.step_resume_breakpoint->loc->enabled = 1;
850 }
851
852 /* Treat exception_resume breakpoints like step_resume breakpoints. */
853 if (tp->control.exception_resume_breakpoint)
854 {
855 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
856 tp->control.exception_resume_breakpoint->loc->enabled = 1;
857 }
858
859 /* Reinsert all breakpoints in the child. The user may have set
860 breakpoints after catching the fork, in which case those
861 were never set in the child, but only in the parent. This makes
862 sure the inserted breakpoints match the breakpoint list. */
863
864 breakpoint_re_set ();
865 insert_breakpoints ();
866 }
867
868 /* The child has exited or execed: resume threads of the parent the
869 user wanted to be executing. */
870
871 static int
872 proceed_after_vfork_done (struct thread_info *thread,
873 void *arg)
874 {
875 int pid = * (int *) arg;
876
877 if (ptid_get_pid (thread->ptid) == pid
878 && is_running (thread->ptid)
879 && !is_executing (thread->ptid)
880 && !thread->stop_requested
881 && thread->suspend.stop_signal == GDB_SIGNAL_0)
882 {
883 if (debug_infrun)
884 fprintf_unfiltered (gdb_stdlog,
885 "infrun: resuming vfork parent thread %s\n",
886 target_pid_to_str (thread->ptid));
887
888 switch_to_thread (thread->ptid);
889 clear_proceed_status (0);
890 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
891 }
892
893 return 0;
894 }
895
896 /* Save/restore inferior_ptid, current program space and current
897 inferior. Only use this if the current context points at an exited
898 inferior (and therefore there's no current thread to save). */
899 class scoped_restore_exited_inferior
900 {
901 public:
902 scoped_restore_exited_inferior ()
903 : m_saved_ptid (&inferior_ptid)
904 {}
905
906 private:
907 scoped_restore_tmpl<ptid_t> m_saved_ptid;
908 scoped_restore_current_program_space m_pspace;
909 scoped_restore_current_inferior m_inferior;
910 };
911
912 /* Called whenever we notice an exec or exit event, to handle
913 detaching or resuming a vfork parent. */
914
915 static void
916 handle_vfork_child_exec_or_exit (int exec)
917 {
918 struct inferior *inf = current_inferior ();
919
920 if (inf->vfork_parent)
921 {
922 int resume_parent = -1;
923
924 /* This exec or exit marks the end of the shared memory region
925 between the parent and the child. If the user wanted to
926 detach from the parent, now is the time. */
927
928 if (inf->vfork_parent->pending_detach)
929 {
930 struct thread_info *tp;
931 struct program_space *pspace;
932 struct address_space *aspace;
933
934 /* follow-fork child, detach-on-fork on. */
935
936 inf->vfork_parent->pending_detach = 0;
937
938 gdb::optional<scoped_restore_exited_inferior>
939 maybe_restore_inferior;
940 gdb::optional<scoped_restore_current_pspace_and_thread>
941 maybe_restore_thread;
942
943 /* If we're handling a child exit, then inferior_ptid points
944 at the inferior's pid, not to a thread. */
945 if (!exec)
946 maybe_restore_inferior.emplace ();
947 else
948 maybe_restore_thread.emplace ();
949
950 /* We're letting loose of the parent. */
951 tp = any_live_thread_of_process (inf->vfork_parent->pid);
952 switch_to_thread (tp->ptid);
953
954 /* We're about to detach from the parent, which implicitly
955 removes breakpoints from its address space. There's a
956 catch here: we want to reuse the spaces for the child,
957 but, parent/child are still sharing the pspace at this
958 point, although the exec in reality makes the kernel give
959 the child a fresh set of new pages. The problem here is
960 that the breakpoints module being unaware of this, would
961 likely chose the child process to write to the parent
962 address space. Swapping the child temporarily away from
963 the spaces has the desired effect. Yes, this is "sort
964 of" a hack. */
965
966 pspace = inf->pspace;
967 aspace = inf->aspace;
968 inf->aspace = NULL;
969 inf->pspace = NULL;
970
971 if (debug_infrun || info_verbose)
972 {
973 target_terminal::ours_for_output ();
974
975 if (exec)
976 {
977 fprintf_filtered (gdb_stdlog,
978 _("Detaching vfork parent process "
979 "%d after child exec.\n"),
980 inf->vfork_parent->pid);
981 }
982 else
983 {
984 fprintf_filtered (gdb_stdlog,
985 _("Detaching vfork parent process "
986 "%d after child exit.\n"),
987 inf->vfork_parent->pid);
988 }
989 }
990
991 target_detach (NULL, 0);
992
993 /* Put it back. */
994 inf->pspace = pspace;
995 inf->aspace = aspace;
996 }
997 else if (exec)
998 {
999 /* We're staying attached to the parent, so, really give the
1000 child a new address space. */
1001 inf->pspace = add_program_space (maybe_new_address_space ());
1002 inf->aspace = inf->pspace->aspace;
1003 inf->removable = 1;
1004 set_current_program_space (inf->pspace);
1005
1006 resume_parent = inf->vfork_parent->pid;
1007
1008 /* Break the bonds. */
1009 inf->vfork_parent->vfork_child = NULL;
1010 }
1011 else
1012 {
1013 struct program_space *pspace;
1014
1015 /* If this is a vfork child exiting, then the pspace and
1016 aspaces were shared with the parent. Since we're
1017 reporting the process exit, we'll be mourning all that is
1018 found in the address space, and switching to null_ptid,
1019 preparing to start a new inferior. But, since we don't
1020 want to clobber the parent's address/program spaces, we
1021 go ahead and create a new one for this exiting
1022 inferior. */
1023
1024 /* Switch to null_ptid while running clone_program_space, so
1025 that clone_program_space doesn't want to read the
1026 selected frame of a dead process. */
1027 scoped_restore restore_ptid
1028 = make_scoped_restore (&inferior_ptid, null_ptid);
1029
1030 /* This inferior is dead, so avoid giving the breakpoints
1031 module the option to write through to it (cloning a
1032 program space resets breakpoints). */
1033 inf->aspace = NULL;
1034 inf->pspace = NULL;
1035 pspace = add_program_space (maybe_new_address_space ());
1036 set_current_program_space (pspace);
1037 inf->removable = 1;
1038 inf->symfile_flags = SYMFILE_NO_READ;
1039 clone_program_space (pspace, inf->vfork_parent->pspace);
1040 inf->pspace = pspace;
1041 inf->aspace = pspace->aspace;
1042
1043 resume_parent = inf->vfork_parent->pid;
1044 /* Break the bonds. */
1045 inf->vfork_parent->vfork_child = NULL;
1046 }
1047
1048 inf->vfork_parent = NULL;
1049
1050 gdb_assert (current_program_space == inf->pspace);
1051
1052 if (non_stop && resume_parent != -1)
1053 {
1054 /* If the user wanted the parent to be running, let it go
1055 free now. */
1056 scoped_restore_current_thread restore_thread;
1057
1058 if (debug_infrun)
1059 fprintf_unfiltered (gdb_stdlog,
1060 "infrun: resuming vfork parent process %d\n",
1061 resume_parent);
1062
1063 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1064 }
1065 }
1066 }
1067
1068 /* Enum strings for "set|show follow-exec-mode". */
1069
1070 static const char follow_exec_mode_new[] = "new";
1071 static const char follow_exec_mode_same[] = "same";
1072 static const char *const follow_exec_mode_names[] =
1073 {
1074 follow_exec_mode_new,
1075 follow_exec_mode_same,
1076 NULL,
1077 };
1078
1079 static const char *follow_exec_mode_string = follow_exec_mode_same;
1080 static void
1081 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1082 struct cmd_list_element *c, const char *value)
1083 {
1084 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1085 }
1086
1087 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1088
1089 static void
1090 follow_exec (ptid_t ptid, char *exec_file_target)
1091 {
1092 struct thread_info *th, *tmp;
1093 struct inferior *inf = current_inferior ();
1094 int pid = ptid_get_pid (ptid);
1095 ptid_t process_ptid;
1096 char *exec_file_host;
1097 struct cleanup *old_chain;
1098
1099 /* This is an exec event that we actually wish to pay attention to.
1100 Refresh our symbol table to the newly exec'd program, remove any
1101 momentary bp's, etc.
1102
1103 If there are breakpoints, they aren't really inserted now,
1104 since the exec() transformed our inferior into a fresh set
1105 of instructions.
1106
1107 We want to preserve symbolic breakpoints on the list, since
1108 we have hopes that they can be reset after the new a.out's
1109 symbol table is read.
1110
1111 However, any "raw" breakpoints must be removed from the list
1112 (e.g., the solib bp's), since their address is probably invalid
1113 now.
1114
1115 And, we DON'T want to call delete_breakpoints() here, since
1116 that may write the bp's "shadow contents" (the instruction
1117 value that was overwritten witha TRAP instruction). Since
1118 we now have a new a.out, those shadow contents aren't valid. */
1119
1120 mark_breakpoints_out ();
1121
1122 /* The target reports the exec event to the main thread, even if
1123 some other thread does the exec, and even if the main thread was
1124 stopped or already gone. We may still have non-leader threads of
1125 the process on our list. E.g., on targets that don't have thread
1126 exit events (like remote); or on native Linux in non-stop mode if
1127 there were only two threads in the inferior and the non-leader
1128 one is the one that execs (and nothing forces an update of the
1129 thread list up to here). When debugging remotely, it's best to
1130 avoid extra traffic, when possible, so avoid syncing the thread
1131 list with the target, and instead go ahead and delete all threads
1132 of the process but one that reported the event. Note this must
1133 be done before calling update_breakpoints_after_exec, as
1134 otherwise clearing the threads' resources would reference stale
1135 thread breakpoints -- it may have been one of these threads that
1136 stepped across the exec. We could just clear their stepping
1137 states, but as long as we're iterating, might as well delete
1138 them. Deleting them now rather than at the next user-visible
1139 stop provides a nicer sequence of events for user and MI
1140 notifications. */
1141 ALL_THREADS_SAFE (th, tmp)
1142 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1143 delete_thread (th->ptid);
1144
1145 /* We also need to clear any left over stale state for the
1146 leader/event thread. E.g., if there was any step-resume
1147 breakpoint or similar, it's gone now. We cannot truly
1148 step-to-next statement through an exec(). */
1149 th = inferior_thread ();
1150 th->control.step_resume_breakpoint = NULL;
1151 th->control.exception_resume_breakpoint = NULL;
1152 th->control.single_step_breakpoints = NULL;
1153 th->control.step_range_start = 0;
1154 th->control.step_range_end = 0;
1155
1156 /* The user may have had the main thread held stopped in the
1157 previous image (e.g., schedlock on, or non-stop). Release
1158 it now. */
1159 th->stop_requested = 0;
1160
1161 update_breakpoints_after_exec ();
1162
1163 /* What is this a.out's name? */
1164 process_ptid = pid_to_ptid (pid);
1165 printf_unfiltered (_("%s is executing new program: %s\n"),
1166 target_pid_to_str (process_ptid),
1167 exec_file_target);
1168
1169 /* We've followed the inferior through an exec. Therefore, the
1170 inferior has essentially been killed & reborn. */
1171
1172 gdb_flush (gdb_stdout);
1173
1174 breakpoint_init_inferior (inf_execd);
1175
1176 exec_file_host = exec_file_find (exec_file_target, NULL);
1177 old_chain = make_cleanup (xfree, exec_file_host);
1178
1179 /* If we were unable to map the executable target pathname onto a host
1180 pathname, tell the user that. Otherwise GDB's subsequent behavior
1181 is confusing. Maybe it would even be better to stop at this point
1182 so that the user can specify a file manually before continuing. */
1183 if (exec_file_host == NULL)
1184 warning (_("Could not load symbols for executable %s.\n"
1185 "Do you need \"set sysroot\"?"),
1186 exec_file_target);
1187
1188 /* Reset the shared library package. This ensures that we get a
1189 shlib event when the child reaches "_start", at which point the
1190 dld will have had a chance to initialize the child. */
1191 /* Also, loading a symbol file below may trigger symbol lookups, and
1192 we don't want those to be satisfied by the libraries of the
1193 previous incarnation of this process. */
1194 no_shared_libraries (NULL, 0);
1195
1196 if (follow_exec_mode_string == follow_exec_mode_new)
1197 {
1198 /* The user wants to keep the old inferior and program spaces
1199 around. Create a new fresh one, and switch to it. */
1200
1201 /* Do exit processing for the original inferior before adding
1202 the new inferior so we don't have two active inferiors with
1203 the same ptid, which can confuse find_inferior_ptid. */
1204 exit_inferior_num_silent (current_inferior ()->num);
1205
1206 inf = add_inferior_with_spaces ();
1207 inf->pid = pid;
1208 target_follow_exec (inf, exec_file_target);
1209
1210 set_current_inferior (inf);
1211 set_current_program_space (inf->pspace);
1212 }
1213 else
1214 {
1215 /* The old description may no longer be fit for the new image.
1216 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1217 old description; we'll read a new one below. No need to do
1218 this on "follow-exec-mode new", as the old inferior stays
1219 around (its description is later cleared/refetched on
1220 restart). */
1221 target_clear_description ();
1222 }
1223
1224 gdb_assert (current_program_space == inf->pspace);
1225
1226 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1227 because the proper displacement for a PIE (Position Independent
1228 Executable) main symbol file will only be computed by
1229 solib_create_inferior_hook below. breakpoint_re_set would fail
1230 to insert the breakpoints with the zero displacement. */
1231 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
1232
1233 do_cleanups (old_chain);
1234
1235 /* If the target can specify a description, read it. Must do this
1236 after flipping to the new executable (because the target supplied
1237 description must be compatible with the executable's
1238 architecture, and the old executable may e.g., be 32-bit, while
1239 the new one 64-bit), and before anything involving memory or
1240 registers. */
1241 target_find_description ();
1242
1243 /* The add_thread call ends up reading registers, so do it after updating the
1244 target description. */
1245 if (follow_exec_mode_string == follow_exec_mode_new)
1246 add_thread (ptid);
1247
1248 solib_create_inferior_hook (0);
1249
1250 jit_inferior_created_hook ();
1251
1252 breakpoint_re_set ();
1253
1254 /* Reinsert all breakpoints. (Those which were symbolic have
1255 been reset to the proper address in the new a.out, thanks
1256 to symbol_file_command...). */
1257 insert_breakpoints ();
1258
1259 /* The next resume of this inferior should bring it to the shlib
1260 startup breakpoints. (If the user had also set bp's on
1261 "main" from the old (parent) process, then they'll auto-
1262 matically get reset there in the new process.). */
1263 }
1264
1265 /* The queue of threads that need to do a step-over operation to get
1266 past e.g., a breakpoint. What technique is used to step over the
1267 breakpoint/watchpoint does not matter -- all threads end up in the
1268 same queue, to maintain rough temporal order of execution, in order
1269 to avoid starvation, otherwise, we could e.g., find ourselves
1270 constantly stepping the same couple threads past their breakpoints
1271 over and over, if the single-step finish fast enough. */
1272 struct thread_info *step_over_queue_head;
1273
1274 /* Bit flags indicating what the thread needs to step over. */
1275
1276 enum step_over_what_flag
1277 {
1278 /* Step over a breakpoint. */
1279 STEP_OVER_BREAKPOINT = 1,
1280
1281 /* Step past a non-continuable watchpoint, in order to let the
1282 instruction execute so we can evaluate the watchpoint
1283 expression. */
1284 STEP_OVER_WATCHPOINT = 2
1285 };
1286 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1287
1288 /* Info about an instruction that is being stepped over. */
1289
1290 struct step_over_info
1291 {
1292 /* If we're stepping past a breakpoint, this is the address space
1293 and address of the instruction the breakpoint is set at. We'll
1294 skip inserting all breakpoints here. Valid iff ASPACE is
1295 non-NULL. */
1296 struct address_space *aspace;
1297 CORE_ADDR address;
1298
1299 /* The instruction being stepped over triggers a nonsteppable
1300 watchpoint. If true, we'll skip inserting watchpoints. */
1301 int nonsteppable_watchpoint_p;
1302
1303 /* The thread's global number. */
1304 int thread;
1305 };
1306
1307 /* The step-over info of the location that is being stepped over.
1308
1309 Note that with async/breakpoint always-inserted mode, a user might
1310 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1311 being stepped over. As setting a new breakpoint inserts all
1312 breakpoints, we need to make sure the breakpoint being stepped over
1313 isn't inserted then. We do that by only clearing the step-over
1314 info when the step-over is actually finished (or aborted).
1315
1316 Presently GDB can only step over one breakpoint at any given time.
1317 Given threads that can't run code in the same address space as the
1318 breakpoint's can't really miss the breakpoint, GDB could be taught
1319 to step-over at most one breakpoint per address space (so this info
1320 could move to the address space object if/when GDB is extended).
1321 The set of breakpoints being stepped over will normally be much
1322 smaller than the set of all breakpoints, so a flag in the
1323 breakpoint location structure would be wasteful. A separate list
1324 also saves complexity and run-time, as otherwise we'd have to go
1325 through all breakpoint locations clearing their flag whenever we
1326 start a new sequence. Similar considerations weigh against storing
1327 this info in the thread object. Plus, not all step overs actually
1328 have breakpoint locations -- e.g., stepping past a single-step
1329 breakpoint, or stepping to complete a non-continuable
1330 watchpoint. */
1331 static struct step_over_info step_over_info;
1332
1333 /* Record the address of the breakpoint/instruction we're currently
1334 stepping over.
1335 N.B. We record the aspace and address now, instead of say just the thread,
1336 because when we need the info later the thread may be running. */
1337
1338 static void
1339 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1340 int nonsteppable_watchpoint_p,
1341 int thread)
1342 {
1343 step_over_info.aspace = aspace;
1344 step_over_info.address = address;
1345 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1346 step_over_info.thread = thread;
1347 }
1348
1349 /* Called when we're not longer stepping over a breakpoint / an
1350 instruction, so all breakpoints are free to be (re)inserted. */
1351
1352 static void
1353 clear_step_over_info (void)
1354 {
1355 if (debug_infrun)
1356 fprintf_unfiltered (gdb_stdlog,
1357 "infrun: clear_step_over_info\n");
1358 step_over_info.aspace = NULL;
1359 step_over_info.address = 0;
1360 step_over_info.nonsteppable_watchpoint_p = 0;
1361 step_over_info.thread = -1;
1362 }
1363
1364 /* See infrun.h. */
1365
1366 int
1367 stepping_past_instruction_at (struct address_space *aspace,
1368 CORE_ADDR address)
1369 {
1370 return (step_over_info.aspace != NULL
1371 && breakpoint_address_match (aspace, address,
1372 step_over_info.aspace,
1373 step_over_info.address));
1374 }
1375
1376 /* See infrun.h. */
1377
1378 int
1379 thread_is_stepping_over_breakpoint (int thread)
1380 {
1381 return (step_over_info.thread != -1
1382 && thread == step_over_info.thread);
1383 }
1384
1385 /* See infrun.h. */
1386
1387 int
1388 stepping_past_nonsteppable_watchpoint (void)
1389 {
1390 return step_over_info.nonsteppable_watchpoint_p;
1391 }
1392
1393 /* Returns true if step-over info is valid. */
1394
1395 static int
1396 step_over_info_valid_p (void)
1397 {
1398 return (step_over_info.aspace != NULL
1399 || stepping_past_nonsteppable_watchpoint ());
1400 }
1401
1402 \f
1403 /* Displaced stepping. */
1404
1405 /* In non-stop debugging mode, we must take special care to manage
1406 breakpoints properly; in particular, the traditional strategy for
1407 stepping a thread past a breakpoint it has hit is unsuitable.
1408 'Displaced stepping' is a tactic for stepping one thread past a
1409 breakpoint it has hit while ensuring that other threads running
1410 concurrently will hit the breakpoint as they should.
1411
1412 The traditional way to step a thread T off a breakpoint in a
1413 multi-threaded program in all-stop mode is as follows:
1414
1415 a0) Initially, all threads are stopped, and breakpoints are not
1416 inserted.
1417 a1) We single-step T, leaving breakpoints uninserted.
1418 a2) We insert breakpoints, and resume all threads.
1419
1420 In non-stop debugging, however, this strategy is unsuitable: we
1421 don't want to have to stop all threads in the system in order to
1422 continue or step T past a breakpoint. Instead, we use displaced
1423 stepping:
1424
1425 n0) Initially, T is stopped, other threads are running, and
1426 breakpoints are inserted.
1427 n1) We copy the instruction "under" the breakpoint to a separate
1428 location, outside the main code stream, making any adjustments
1429 to the instruction, register, and memory state as directed by
1430 T's architecture.
1431 n2) We single-step T over the instruction at its new location.
1432 n3) We adjust the resulting register and memory state as directed
1433 by T's architecture. This includes resetting T's PC to point
1434 back into the main instruction stream.
1435 n4) We resume T.
1436
1437 This approach depends on the following gdbarch methods:
1438
1439 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1440 indicate where to copy the instruction, and how much space must
1441 be reserved there. We use these in step n1.
1442
1443 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1444 address, and makes any necessary adjustments to the instruction,
1445 register contents, and memory. We use this in step n1.
1446
1447 - gdbarch_displaced_step_fixup adjusts registers and memory after
1448 we have successfuly single-stepped the instruction, to yield the
1449 same effect the instruction would have had if we had executed it
1450 at its original address. We use this in step n3.
1451
1452 - gdbarch_displaced_step_free_closure provides cleanup.
1453
1454 The gdbarch_displaced_step_copy_insn and
1455 gdbarch_displaced_step_fixup functions must be written so that
1456 copying an instruction with gdbarch_displaced_step_copy_insn,
1457 single-stepping across the copied instruction, and then applying
1458 gdbarch_displaced_insn_fixup should have the same effects on the
1459 thread's memory and registers as stepping the instruction in place
1460 would have. Exactly which responsibilities fall to the copy and
1461 which fall to the fixup is up to the author of those functions.
1462
1463 See the comments in gdbarch.sh for details.
1464
1465 Note that displaced stepping and software single-step cannot
1466 currently be used in combination, although with some care I think
1467 they could be made to. Software single-step works by placing
1468 breakpoints on all possible subsequent instructions; if the
1469 displaced instruction is a PC-relative jump, those breakpoints
1470 could fall in very strange places --- on pages that aren't
1471 executable, or at addresses that are not proper instruction
1472 boundaries. (We do generally let other threads run while we wait
1473 to hit the software single-step breakpoint, and they might
1474 encounter such a corrupted instruction.) One way to work around
1475 this would be to have gdbarch_displaced_step_copy_insn fully
1476 simulate the effect of PC-relative instructions (and return NULL)
1477 on architectures that use software single-stepping.
1478
1479 In non-stop mode, we can have independent and simultaneous step
1480 requests, so more than one thread may need to simultaneously step
1481 over a breakpoint. The current implementation assumes there is
1482 only one scratch space per process. In this case, we have to
1483 serialize access to the scratch space. If thread A wants to step
1484 over a breakpoint, but we are currently waiting for some other
1485 thread to complete a displaced step, we leave thread A stopped and
1486 place it in the displaced_step_request_queue. Whenever a displaced
1487 step finishes, we pick the next thread in the queue and start a new
1488 displaced step operation on it. See displaced_step_prepare and
1489 displaced_step_fixup for details. */
1490
1491 /* Per-inferior displaced stepping state. */
1492 struct displaced_step_inferior_state
1493 {
1494 /* Pointer to next in linked list. */
1495 struct displaced_step_inferior_state *next;
1496
1497 /* The process this displaced step state refers to. */
1498 int pid;
1499
1500 /* True if preparing a displaced step ever failed. If so, we won't
1501 try displaced stepping for this inferior again. */
1502 int failed_before;
1503
1504 /* If this is not null_ptid, this is the thread carrying out a
1505 displaced single-step in process PID. This thread's state will
1506 require fixing up once it has completed its step. */
1507 ptid_t step_ptid;
1508
1509 /* The architecture the thread had when we stepped it. */
1510 struct gdbarch *step_gdbarch;
1511
1512 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1513 for post-step cleanup. */
1514 struct displaced_step_closure *step_closure;
1515
1516 /* The address of the original instruction, and the copy we
1517 made. */
1518 CORE_ADDR step_original, step_copy;
1519
1520 /* Saved contents of copy area. */
1521 gdb_byte *step_saved_copy;
1522 };
1523
1524 /* The list of states of processes involved in displaced stepping
1525 presently. */
1526 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1527
1528 /* Get the displaced stepping state of process PID. */
1529
1530 static struct displaced_step_inferior_state *
1531 get_displaced_stepping_state (int pid)
1532 {
1533 struct displaced_step_inferior_state *state;
1534
1535 for (state = displaced_step_inferior_states;
1536 state != NULL;
1537 state = state->next)
1538 if (state->pid == pid)
1539 return state;
1540
1541 return NULL;
1542 }
1543
1544 /* Returns true if any inferior has a thread doing a displaced
1545 step. */
1546
1547 static int
1548 displaced_step_in_progress_any_inferior (void)
1549 {
1550 struct displaced_step_inferior_state *state;
1551
1552 for (state = displaced_step_inferior_states;
1553 state != NULL;
1554 state = state->next)
1555 if (!ptid_equal (state->step_ptid, null_ptid))
1556 return 1;
1557
1558 return 0;
1559 }
1560
1561 /* Return true if thread represented by PTID is doing a displaced
1562 step. */
1563
1564 static int
1565 displaced_step_in_progress_thread (ptid_t ptid)
1566 {
1567 struct displaced_step_inferior_state *displaced;
1568
1569 gdb_assert (!ptid_equal (ptid, null_ptid));
1570
1571 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1572
1573 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1574 }
1575
1576 /* Return true if process PID has a thread doing a displaced step. */
1577
1578 static int
1579 displaced_step_in_progress (int pid)
1580 {
1581 struct displaced_step_inferior_state *displaced;
1582
1583 displaced = get_displaced_stepping_state (pid);
1584 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1585 return 1;
1586
1587 return 0;
1588 }
1589
1590 /* Add a new displaced stepping state for process PID to the displaced
1591 stepping state list, or return a pointer to an already existing
1592 entry, if it already exists. Never returns NULL. */
1593
1594 static struct displaced_step_inferior_state *
1595 add_displaced_stepping_state (int pid)
1596 {
1597 struct displaced_step_inferior_state *state;
1598
1599 for (state = displaced_step_inferior_states;
1600 state != NULL;
1601 state = state->next)
1602 if (state->pid == pid)
1603 return state;
1604
1605 state = XCNEW (struct displaced_step_inferior_state);
1606 state->pid = pid;
1607 state->next = displaced_step_inferior_states;
1608 displaced_step_inferior_states = state;
1609
1610 return state;
1611 }
1612
1613 /* If inferior is in displaced stepping, and ADDR equals to starting address
1614 of copy area, return corresponding displaced_step_closure. Otherwise,
1615 return NULL. */
1616
1617 struct displaced_step_closure*
1618 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1619 {
1620 struct displaced_step_inferior_state *displaced
1621 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1622
1623 /* If checking the mode of displaced instruction in copy area. */
1624 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1625 && (displaced->step_copy == addr))
1626 return displaced->step_closure;
1627
1628 return NULL;
1629 }
1630
1631 /* Remove the displaced stepping state of process PID. */
1632
1633 static void
1634 remove_displaced_stepping_state (int pid)
1635 {
1636 struct displaced_step_inferior_state *it, **prev_next_p;
1637
1638 gdb_assert (pid != 0);
1639
1640 it = displaced_step_inferior_states;
1641 prev_next_p = &displaced_step_inferior_states;
1642 while (it)
1643 {
1644 if (it->pid == pid)
1645 {
1646 *prev_next_p = it->next;
1647 xfree (it);
1648 return;
1649 }
1650
1651 prev_next_p = &it->next;
1652 it = *prev_next_p;
1653 }
1654 }
1655
1656 static void
1657 infrun_inferior_exit (struct inferior *inf)
1658 {
1659 remove_displaced_stepping_state (inf->pid);
1660 }
1661
1662 /* If ON, and the architecture supports it, GDB will use displaced
1663 stepping to step over breakpoints. If OFF, or if the architecture
1664 doesn't support it, GDB will instead use the traditional
1665 hold-and-step approach. If AUTO (which is the default), GDB will
1666 decide which technique to use to step over breakpoints depending on
1667 which of all-stop or non-stop mode is active --- displaced stepping
1668 in non-stop mode; hold-and-step in all-stop mode. */
1669
1670 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1671
1672 static void
1673 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1674 struct cmd_list_element *c,
1675 const char *value)
1676 {
1677 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1678 fprintf_filtered (file,
1679 _("Debugger's willingness to use displaced stepping "
1680 "to step over breakpoints is %s (currently %s).\n"),
1681 value, target_is_non_stop_p () ? "on" : "off");
1682 else
1683 fprintf_filtered (file,
1684 _("Debugger's willingness to use displaced stepping "
1685 "to step over breakpoints is %s.\n"), value);
1686 }
1687
1688 /* Return non-zero if displaced stepping can/should be used to step
1689 over breakpoints of thread TP. */
1690
1691 static int
1692 use_displaced_stepping (struct thread_info *tp)
1693 {
1694 struct regcache *regcache = get_thread_regcache (tp->ptid);
1695 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1696 struct displaced_step_inferior_state *displaced_state;
1697
1698 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1699
1700 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1701 && target_is_non_stop_p ())
1702 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1703 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1704 && find_record_target () == NULL
1705 && (displaced_state == NULL
1706 || !displaced_state->failed_before));
1707 }
1708
1709 /* Clean out any stray displaced stepping state. */
1710 static void
1711 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1712 {
1713 /* Indicate that there is no cleanup pending. */
1714 displaced->step_ptid = null_ptid;
1715
1716 xfree (displaced->step_closure);
1717 displaced->step_closure = NULL;
1718 }
1719
1720 static void
1721 displaced_step_clear_cleanup (void *arg)
1722 {
1723 struct displaced_step_inferior_state *state
1724 = (struct displaced_step_inferior_state *) arg;
1725
1726 displaced_step_clear (state);
1727 }
1728
1729 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1730 void
1731 displaced_step_dump_bytes (struct ui_file *file,
1732 const gdb_byte *buf,
1733 size_t len)
1734 {
1735 int i;
1736
1737 for (i = 0; i < len; i++)
1738 fprintf_unfiltered (file, "%02x ", buf[i]);
1739 fputs_unfiltered ("\n", file);
1740 }
1741
1742 /* Prepare to single-step, using displaced stepping.
1743
1744 Note that we cannot use displaced stepping when we have a signal to
1745 deliver. If we have a signal to deliver and an instruction to step
1746 over, then after the step, there will be no indication from the
1747 target whether the thread entered a signal handler or ignored the
1748 signal and stepped over the instruction successfully --- both cases
1749 result in a simple SIGTRAP. In the first case we mustn't do a
1750 fixup, and in the second case we must --- but we can't tell which.
1751 Comments in the code for 'random signals' in handle_inferior_event
1752 explain how we handle this case instead.
1753
1754 Returns 1 if preparing was successful -- this thread is going to be
1755 stepped now; 0 if displaced stepping this thread got queued; or -1
1756 if this instruction can't be displaced stepped. */
1757
1758 static int
1759 displaced_step_prepare_throw (ptid_t ptid)
1760 {
1761 struct cleanup *ignore_cleanups;
1762 struct thread_info *tp = find_thread_ptid (ptid);
1763 struct regcache *regcache = get_thread_regcache (ptid);
1764 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1765 struct address_space *aspace = get_regcache_aspace (regcache);
1766 CORE_ADDR original, copy;
1767 ULONGEST len;
1768 struct displaced_step_closure *closure;
1769 struct displaced_step_inferior_state *displaced;
1770 int status;
1771
1772 /* We should never reach this function if the architecture does not
1773 support displaced stepping. */
1774 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1775
1776 /* Nor if the thread isn't meant to step over a breakpoint. */
1777 gdb_assert (tp->control.trap_expected);
1778
1779 /* Disable range stepping while executing in the scratch pad. We
1780 want a single-step even if executing the displaced instruction in
1781 the scratch buffer lands within the stepping range (e.g., a
1782 jump/branch). */
1783 tp->control.may_range_step = 0;
1784
1785 /* We have to displaced step one thread at a time, as we only have
1786 access to a single scratch space per inferior. */
1787
1788 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1789
1790 if (!ptid_equal (displaced->step_ptid, null_ptid))
1791 {
1792 /* Already waiting for a displaced step to finish. Defer this
1793 request and place in queue. */
1794
1795 if (debug_displaced)
1796 fprintf_unfiltered (gdb_stdlog,
1797 "displaced: deferring step of %s\n",
1798 target_pid_to_str (ptid));
1799
1800 thread_step_over_chain_enqueue (tp);
1801 return 0;
1802 }
1803 else
1804 {
1805 if (debug_displaced)
1806 fprintf_unfiltered (gdb_stdlog,
1807 "displaced: stepping %s now\n",
1808 target_pid_to_str (ptid));
1809 }
1810
1811 displaced_step_clear (displaced);
1812
1813 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1814 inferior_ptid = ptid;
1815
1816 original = regcache_read_pc (regcache);
1817
1818 copy = gdbarch_displaced_step_location (gdbarch);
1819 len = gdbarch_max_insn_length (gdbarch);
1820
1821 if (breakpoint_in_range_p (aspace, copy, len))
1822 {
1823 /* There's a breakpoint set in the scratch pad location range
1824 (which is usually around the entry point). We'd either
1825 install it before resuming, which would overwrite/corrupt the
1826 scratch pad, or if it was already inserted, this displaced
1827 step would overwrite it. The latter is OK in the sense that
1828 we already assume that no thread is going to execute the code
1829 in the scratch pad range (after initial startup) anyway, but
1830 the former is unacceptable. Simply punt and fallback to
1831 stepping over this breakpoint in-line. */
1832 if (debug_displaced)
1833 {
1834 fprintf_unfiltered (gdb_stdlog,
1835 "displaced: breakpoint set in scratch pad. "
1836 "Stepping over breakpoint in-line instead.\n");
1837 }
1838
1839 return -1;
1840 }
1841
1842 /* Save the original contents of the copy area. */
1843 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1844 ignore_cleanups = make_cleanup (free_current_contents,
1845 &displaced->step_saved_copy);
1846 status = target_read_memory (copy, displaced->step_saved_copy, len);
1847 if (status != 0)
1848 throw_error (MEMORY_ERROR,
1849 _("Error accessing memory address %s (%s) for "
1850 "displaced-stepping scratch space."),
1851 paddress (gdbarch, copy), safe_strerror (status));
1852 if (debug_displaced)
1853 {
1854 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1855 paddress (gdbarch, copy));
1856 displaced_step_dump_bytes (gdb_stdlog,
1857 displaced->step_saved_copy,
1858 len);
1859 };
1860
1861 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1862 original, copy, regcache);
1863 if (closure == NULL)
1864 {
1865 /* The architecture doesn't know how or want to displaced step
1866 this instruction or instruction sequence. Fallback to
1867 stepping over the breakpoint in-line. */
1868 do_cleanups (ignore_cleanups);
1869 return -1;
1870 }
1871
1872 /* Save the information we need to fix things up if the step
1873 succeeds. */
1874 displaced->step_ptid = ptid;
1875 displaced->step_gdbarch = gdbarch;
1876 displaced->step_closure = closure;
1877 displaced->step_original = original;
1878 displaced->step_copy = copy;
1879
1880 make_cleanup (displaced_step_clear_cleanup, displaced);
1881
1882 /* Resume execution at the copy. */
1883 regcache_write_pc (regcache, copy);
1884
1885 discard_cleanups (ignore_cleanups);
1886
1887 if (debug_displaced)
1888 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1889 paddress (gdbarch, copy));
1890
1891 return 1;
1892 }
1893
1894 /* Wrapper for displaced_step_prepare_throw that disabled further
1895 attempts at displaced stepping if we get a memory error. */
1896
1897 static int
1898 displaced_step_prepare (ptid_t ptid)
1899 {
1900 int prepared = -1;
1901
1902 TRY
1903 {
1904 prepared = displaced_step_prepare_throw (ptid);
1905 }
1906 CATCH (ex, RETURN_MASK_ERROR)
1907 {
1908 struct displaced_step_inferior_state *displaced_state;
1909
1910 if (ex.error != MEMORY_ERROR
1911 && ex.error != NOT_SUPPORTED_ERROR)
1912 throw_exception (ex);
1913
1914 if (debug_infrun)
1915 {
1916 fprintf_unfiltered (gdb_stdlog,
1917 "infrun: disabling displaced stepping: %s\n",
1918 ex.message);
1919 }
1920
1921 /* Be verbose if "set displaced-stepping" is "on", silent if
1922 "auto". */
1923 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1924 {
1925 warning (_("disabling displaced stepping: %s"),
1926 ex.message);
1927 }
1928
1929 /* Disable further displaced stepping attempts. */
1930 displaced_state
1931 = get_displaced_stepping_state (ptid_get_pid (ptid));
1932 displaced_state->failed_before = 1;
1933 }
1934 END_CATCH
1935
1936 return prepared;
1937 }
1938
1939 static void
1940 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1941 const gdb_byte *myaddr, int len)
1942 {
1943 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1944
1945 inferior_ptid = ptid;
1946 write_memory (memaddr, myaddr, len);
1947 }
1948
1949 /* Restore the contents of the copy area for thread PTID. */
1950
1951 static void
1952 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1953 ptid_t ptid)
1954 {
1955 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1956
1957 write_memory_ptid (ptid, displaced->step_copy,
1958 displaced->step_saved_copy, len);
1959 if (debug_displaced)
1960 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1961 target_pid_to_str (ptid),
1962 paddress (displaced->step_gdbarch,
1963 displaced->step_copy));
1964 }
1965
1966 /* If we displaced stepped an instruction successfully, adjust
1967 registers and memory to yield the same effect the instruction would
1968 have had if we had executed it at its original address, and return
1969 1. If the instruction didn't complete, relocate the PC and return
1970 -1. If the thread wasn't displaced stepping, return 0. */
1971
1972 static int
1973 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1974 {
1975 struct cleanup *old_cleanups;
1976 struct displaced_step_inferior_state *displaced
1977 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1978 int ret;
1979
1980 /* Was any thread of this process doing a displaced step? */
1981 if (displaced == NULL)
1982 return 0;
1983
1984 /* Was this event for the pid we displaced? */
1985 if (ptid_equal (displaced->step_ptid, null_ptid)
1986 || ! ptid_equal (displaced->step_ptid, event_ptid))
1987 return 0;
1988
1989 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1990
1991 displaced_step_restore (displaced, displaced->step_ptid);
1992
1993 /* Fixup may need to read memory/registers. Switch to the thread
1994 that we're fixing up. Also, target_stopped_by_watchpoint checks
1995 the current thread. */
1996 switch_to_thread (event_ptid);
1997
1998 /* Did the instruction complete successfully? */
1999 if (signal == GDB_SIGNAL_TRAP
2000 && !(target_stopped_by_watchpoint ()
2001 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
2002 || target_have_steppable_watchpoint)))
2003 {
2004 /* Fix up the resulting state. */
2005 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2006 displaced->step_closure,
2007 displaced->step_original,
2008 displaced->step_copy,
2009 get_thread_regcache (displaced->step_ptid));
2010 ret = 1;
2011 }
2012 else
2013 {
2014 /* Since the instruction didn't complete, all we can do is
2015 relocate the PC. */
2016 struct regcache *regcache = get_thread_regcache (event_ptid);
2017 CORE_ADDR pc = regcache_read_pc (regcache);
2018
2019 pc = displaced->step_original + (pc - displaced->step_copy);
2020 regcache_write_pc (regcache, pc);
2021 ret = -1;
2022 }
2023
2024 do_cleanups (old_cleanups);
2025
2026 displaced->step_ptid = null_ptid;
2027
2028 return ret;
2029 }
2030
2031 /* Data to be passed around while handling an event. This data is
2032 discarded between events. */
2033 struct execution_control_state
2034 {
2035 ptid_t ptid;
2036 /* The thread that got the event, if this was a thread event; NULL
2037 otherwise. */
2038 struct thread_info *event_thread;
2039
2040 struct target_waitstatus ws;
2041 int stop_func_filled_in;
2042 CORE_ADDR stop_func_start;
2043 CORE_ADDR stop_func_end;
2044 const char *stop_func_name;
2045 int wait_some_more;
2046
2047 /* True if the event thread hit the single-step breakpoint of
2048 another thread. Thus the event doesn't cause a stop, the thread
2049 needs to be single-stepped past the single-step breakpoint before
2050 we can switch back to the original stepping thread. */
2051 int hit_singlestep_breakpoint;
2052 };
2053
2054 /* Clear ECS and set it to point at TP. */
2055
2056 static void
2057 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2058 {
2059 memset (ecs, 0, sizeof (*ecs));
2060 ecs->event_thread = tp;
2061 ecs->ptid = tp->ptid;
2062 }
2063
2064 static void keep_going_pass_signal (struct execution_control_state *ecs);
2065 static void prepare_to_wait (struct execution_control_state *ecs);
2066 static int keep_going_stepped_thread (struct thread_info *tp);
2067 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2068
2069 /* Are there any pending step-over requests? If so, run all we can
2070 now and return true. Otherwise, return false. */
2071
2072 static int
2073 start_step_over (void)
2074 {
2075 struct thread_info *tp, *next;
2076
2077 /* Don't start a new step-over if we already have an in-line
2078 step-over operation ongoing. */
2079 if (step_over_info_valid_p ())
2080 return 0;
2081
2082 for (tp = step_over_queue_head; tp != NULL; tp = next)
2083 {
2084 struct execution_control_state ecss;
2085 struct execution_control_state *ecs = &ecss;
2086 step_over_what step_what;
2087 int must_be_in_line;
2088
2089 gdb_assert (!tp->stop_requested);
2090
2091 next = thread_step_over_chain_next (tp);
2092
2093 /* If this inferior already has a displaced step in process,
2094 don't start a new one. */
2095 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2096 continue;
2097
2098 step_what = thread_still_needs_step_over (tp);
2099 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2100 || ((step_what & STEP_OVER_BREAKPOINT)
2101 && !use_displaced_stepping (tp)));
2102
2103 /* We currently stop all threads of all processes to step-over
2104 in-line. If we need to start a new in-line step-over, let
2105 any pending displaced steps finish first. */
2106 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2107 return 0;
2108
2109 thread_step_over_chain_remove (tp);
2110
2111 if (step_over_queue_head == NULL)
2112 {
2113 if (debug_infrun)
2114 fprintf_unfiltered (gdb_stdlog,
2115 "infrun: step-over queue now empty\n");
2116 }
2117
2118 if (tp->control.trap_expected
2119 || tp->resumed
2120 || tp->executing)
2121 {
2122 internal_error (__FILE__, __LINE__,
2123 "[%s] has inconsistent state: "
2124 "trap_expected=%d, resumed=%d, executing=%d\n",
2125 target_pid_to_str (tp->ptid),
2126 tp->control.trap_expected,
2127 tp->resumed,
2128 tp->executing);
2129 }
2130
2131 if (debug_infrun)
2132 fprintf_unfiltered (gdb_stdlog,
2133 "infrun: resuming [%s] for step-over\n",
2134 target_pid_to_str (tp->ptid));
2135
2136 /* keep_going_pass_signal skips the step-over if the breakpoint
2137 is no longer inserted. In all-stop, we want to keep looking
2138 for a thread that needs a step-over instead of resuming TP,
2139 because we wouldn't be able to resume anything else until the
2140 target stops again. In non-stop, the resume always resumes
2141 only TP, so it's OK to let the thread resume freely. */
2142 if (!target_is_non_stop_p () && !step_what)
2143 continue;
2144
2145 switch_to_thread (tp->ptid);
2146 reset_ecs (ecs, tp);
2147 keep_going_pass_signal (ecs);
2148
2149 if (!ecs->wait_some_more)
2150 error (_("Command aborted."));
2151
2152 gdb_assert (tp->resumed);
2153
2154 /* If we started a new in-line step-over, we're done. */
2155 if (step_over_info_valid_p ())
2156 {
2157 gdb_assert (tp->control.trap_expected);
2158 return 1;
2159 }
2160
2161 if (!target_is_non_stop_p ())
2162 {
2163 /* On all-stop, shouldn't have resumed unless we needed a
2164 step over. */
2165 gdb_assert (tp->control.trap_expected
2166 || tp->step_after_step_resume_breakpoint);
2167
2168 /* With remote targets (at least), in all-stop, we can't
2169 issue any further remote commands until the program stops
2170 again. */
2171 return 1;
2172 }
2173
2174 /* Either the thread no longer needed a step-over, or a new
2175 displaced stepping sequence started. Even in the latter
2176 case, continue looking. Maybe we can also start another
2177 displaced step on a thread of other process. */
2178 }
2179
2180 return 0;
2181 }
2182
2183 /* Update global variables holding ptids to hold NEW_PTID if they were
2184 holding OLD_PTID. */
2185 static void
2186 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2187 {
2188 struct displaced_step_inferior_state *displaced;
2189
2190 if (ptid_equal (inferior_ptid, old_ptid))
2191 inferior_ptid = new_ptid;
2192
2193 for (displaced = displaced_step_inferior_states;
2194 displaced;
2195 displaced = displaced->next)
2196 {
2197 if (ptid_equal (displaced->step_ptid, old_ptid))
2198 displaced->step_ptid = new_ptid;
2199 }
2200 }
2201
2202 \f
2203 /* Resuming. */
2204
2205 /* Things to clean up if we QUIT out of resume (). */
2206 static void
2207 resume_cleanups (void *ignore)
2208 {
2209 if (!ptid_equal (inferior_ptid, null_ptid))
2210 delete_single_step_breakpoints (inferior_thread ());
2211
2212 normal_stop ();
2213 }
2214
2215 static const char schedlock_off[] = "off";
2216 static const char schedlock_on[] = "on";
2217 static const char schedlock_step[] = "step";
2218 static const char schedlock_replay[] = "replay";
2219 static const char *const scheduler_enums[] = {
2220 schedlock_off,
2221 schedlock_on,
2222 schedlock_step,
2223 schedlock_replay,
2224 NULL
2225 };
2226 static const char *scheduler_mode = schedlock_replay;
2227 static void
2228 show_scheduler_mode (struct ui_file *file, int from_tty,
2229 struct cmd_list_element *c, const char *value)
2230 {
2231 fprintf_filtered (file,
2232 _("Mode for locking scheduler "
2233 "during execution is \"%s\".\n"),
2234 value);
2235 }
2236
2237 static void
2238 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2239 {
2240 if (!target_can_lock_scheduler)
2241 {
2242 scheduler_mode = schedlock_off;
2243 error (_("Target '%s' cannot support this command."), target_shortname);
2244 }
2245 }
2246
2247 /* True if execution commands resume all threads of all processes by
2248 default; otherwise, resume only threads of the current inferior
2249 process. */
2250 int sched_multi = 0;
2251
2252 /* Try to setup for software single stepping over the specified location.
2253 Return 1 if target_resume() should use hardware single step.
2254
2255 GDBARCH the current gdbarch.
2256 PC the location to step over. */
2257
2258 static int
2259 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2260 {
2261 int hw_step = 1;
2262
2263 if (execution_direction == EXEC_FORWARD
2264 && gdbarch_software_single_step_p (gdbarch))
2265 hw_step = !insert_single_step_breakpoints (gdbarch);
2266
2267 return hw_step;
2268 }
2269
2270 /* See infrun.h. */
2271
2272 ptid_t
2273 user_visible_resume_ptid (int step)
2274 {
2275 ptid_t resume_ptid;
2276
2277 if (non_stop)
2278 {
2279 /* With non-stop mode on, threads are always handled
2280 individually. */
2281 resume_ptid = inferior_ptid;
2282 }
2283 else if ((scheduler_mode == schedlock_on)
2284 || (scheduler_mode == schedlock_step && step))
2285 {
2286 /* User-settable 'scheduler' mode requires solo thread
2287 resume. */
2288 resume_ptid = inferior_ptid;
2289 }
2290 else if ((scheduler_mode == schedlock_replay)
2291 && target_record_will_replay (minus_one_ptid, execution_direction))
2292 {
2293 /* User-settable 'scheduler' mode requires solo thread resume in replay
2294 mode. */
2295 resume_ptid = inferior_ptid;
2296 }
2297 else if (!sched_multi && target_supports_multi_process ())
2298 {
2299 /* Resume all threads of the current process (and none of other
2300 processes). */
2301 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2302 }
2303 else
2304 {
2305 /* Resume all threads of all processes. */
2306 resume_ptid = RESUME_ALL;
2307 }
2308
2309 return resume_ptid;
2310 }
2311
2312 /* Return a ptid representing the set of threads that we will resume,
2313 in the perspective of the target, assuming run control handling
2314 does not require leaving some threads stopped (e.g., stepping past
2315 breakpoint). USER_STEP indicates whether we're about to start the
2316 target for a stepping command. */
2317
2318 static ptid_t
2319 internal_resume_ptid (int user_step)
2320 {
2321 /* In non-stop, we always control threads individually. Note that
2322 the target may always work in non-stop mode even with "set
2323 non-stop off", in which case user_visible_resume_ptid could
2324 return a wildcard ptid. */
2325 if (target_is_non_stop_p ())
2326 return inferior_ptid;
2327 else
2328 return user_visible_resume_ptid (user_step);
2329 }
2330
2331 /* Wrapper for target_resume, that handles infrun-specific
2332 bookkeeping. */
2333
2334 static void
2335 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2336 {
2337 struct thread_info *tp = inferior_thread ();
2338
2339 gdb_assert (!tp->stop_requested);
2340
2341 /* Install inferior's terminal modes. */
2342 target_terminal::inferior ();
2343
2344 /* Avoid confusing the next resume, if the next stop/resume
2345 happens to apply to another thread. */
2346 tp->suspend.stop_signal = GDB_SIGNAL_0;
2347
2348 /* Advise target which signals may be handled silently.
2349
2350 If we have removed breakpoints because we are stepping over one
2351 in-line (in any thread), we need to receive all signals to avoid
2352 accidentally skipping a breakpoint during execution of a signal
2353 handler.
2354
2355 Likewise if we're displaced stepping, otherwise a trap for a
2356 breakpoint in a signal handler might be confused with the
2357 displaced step finishing. We don't make the displaced_step_fixup
2358 step distinguish the cases instead, because:
2359
2360 - a backtrace while stopped in the signal handler would show the
2361 scratch pad as frame older than the signal handler, instead of
2362 the real mainline code.
2363
2364 - when the thread is later resumed, the signal handler would
2365 return to the scratch pad area, which would no longer be
2366 valid. */
2367 if (step_over_info_valid_p ()
2368 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2369 target_pass_signals (0, NULL);
2370 else
2371 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2372
2373 target_resume (resume_ptid, step, sig);
2374
2375 target_commit_resume ();
2376 }
2377
2378 /* Resume the inferior, but allow a QUIT. This is useful if the user
2379 wants to interrupt some lengthy single-stepping operation
2380 (for child processes, the SIGINT goes to the inferior, and so
2381 we get a SIGINT random_signal, but for remote debugging and perhaps
2382 other targets, that's not true).
2383
2384 SIG is the signal to give the inferior (zero for none). */
2385 void
2386 resume (enum gdb_signal sig)
2387 {
2388 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2389 struct regcache *regcache = get_current_regcache ();
2390 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2391 struct thread_info *tp = inferior_thread ();
2392 CORE_ADDR pc = regcache_read_pc (regcache);
2393 struct address_space *aspace = get_regcache_aspace (regcache);
2394 ptid_t resume_ptid;
2395 /* This represents the user's step vs continue request. When
2396 deciding whether "set scheduler-locking step" applies, it's the
2397 user's intention that counts. */
2398 const int user_step = tp->control.stepping_command;
2399 /* This represents what we'll actually request the target to do.
2400 This can decay from a step to a continue, if e.g., we need to
2401 implement single-stepping with breakpoints (software
2402 single-step). */
2403 int step;
2404
2405 gdb_assert (!tp->stop_requested);
2406 gdb_assert (!thread_is_in_step_over_chain (tp));
2407
2408 QUIT;
2409
2410 if (tp->suspend.waitstatus_pending_p)
2411 {
2412 if (debug_infrun)
2413 {
2414 std::string statstr
2415 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2416
2417 fprintf_unfiltered (gdb_stdlog,
2418 "infrun: resume: thread %s has pending wait "
2419 "status %s (currently_stepping=%d).\n",
2420 target_pid_to_str (tp->ptid), statstr.c_str (),
2421 currently_stepping (tp));
2422 }
2423
2424 tp->resumed = 1;
2425
2426 /* FIXME: What should we do if we are supposed to resume this
2427 thread with a signal? Maybe we should maintain a queue of
2428 pending signals to deliver. */
2429 if (sig != GDB_SIGNAL_0)
2430 {
2431 warning (_("Couldn't deliver signal %s to %s."),
2432 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2433 }
2434
2435 tp->suspend.stop_signal = GDB_SIGNAL_0;
2436 discard_cleanups (old_cleanups);
2437
2438 if (target_can_async_p ())
2439 target_async (1);
2440 return;
2441 }
2442
2443 tp->stepped_breakpoint = 0;
2444
2445 /* Depends on stepped_breakpoint. */
2446 step = currently_stepping (tp);
2447
2448 if (current_inferior ()->waiting_for_vfork_done)
2449 {
2450 /* Don't try to single-step a vfork parent that is waiting for
2451 the child to get out of the shared memory region (by exec'ing
2452 or exiting). This is particularly important on software
2453 single-step archs, as the child process would trip on the
2454 software single step breakpoint inserted for the parent
2455 process. Since the parent will not actually execute any
2456 instruction until the child is out of the shared region (such
2457 are vfork's semantics), it is safe to simply continue it.
2458 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2459 the parent, and tell it to `keep_going', which automatically
2460 re-sets it stepping. */
2461 if (debug_infrun)
2462 fprintf_unfiltered (gdb_stdlog,
2463 "infrun: resume : clear step\n");
2464 step = 0;
2465 }
2466
2467 if (debug_infrun)
2468 fprintf_unfiltered (gdb_stdlog,
2469 "infrun: resume (step=%d, signal=%s), "
2470 "trap_expected=%d, current thread [%s] at %s\n",
2471 step, gdb_signal_to_symbol_string (sig),
2472 tp->control.trap_expected,
2473 target_pid_to_str (inferior_ptid),
2474 paddress (gdbarch, pc));
2475
2476 /* Normally, by the time we reach `resume', the breakpoints are either
2477 removed or inserted, as appropriate. The exception is if we're sitting
2478 at a permanent breakpoint; we need to step over it, but permanent
2479 breakpoints can't be removed. So we have to test for it here. */
2480 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2481 {
2482 if (sig != GDB_SIGNAL_0)
2483 {
2484 /* We have a signal to pass to the inferior. The resume
2485 may, or may not take us to the signal handler. If this
2486 is a step, we'll need to stop in the signal handler, if
2487 there's one, (if the target supports stepping into
2488 handlers), or in the next mainline instruction, if
2489 there's no handler. If this is a continue, we need to be
2490 sure to run the handler with all breakpoints inserted.
2491 In all cases, set a breakpoint at the current address
2492 (where the handler returns to), and once that breakpoint
2493 is hit, resume skipping the permanent breakpoint. If
2494 that breakpoint isn't hit, then we've stepped into the
2495 signal handler (or hit some other event). We'll delete
2496 the step-resume breakpoint then. */
2497
2498 if (debug_infrun)
2499 fprintf_unfiltered (gdb_stdlog,
2500 "infrun: resume: skipping permanent breakpoint, "
2501 "deliver signal first\n");
2502
2503 clear_step_over_info ();
2504 tp->control.trap_expected = 0;
2505
2506 if (tp->control.step_resume_breakpoint == NULL)
2507 {
2508 /* Set a "high-priority" step-resume, as we don't want
2509 user breakpoints at PC to trigger (again) when this
2510 hits. */
2511 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2512 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2513
2514 tp->step_after_step_resume_breakpoint = step;
2515 }
2516
2517 insert_breakpoints ();
2518 }
2519 else
2520 {
2521 /* There's no signal to pass, we can go ahead and skip the
2522 permanent breakpoint manually. */
2523 if (debug_infrun)
2524 fprintf_unfiltered (gdb_stdlog,
2525 "infrun: resume: skipping permanent breakpoint\n");
2526 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2527 /* Update pc to reflect the new address from which we will
2528 execute instructions. */
2529 pc = regcache_read_pc (regcache);
2530
2531 if (step)
2532 {
2533 /* We've already advanced the PC, so the stepping part
2534 is done. Now we need to arrange for a trap to be
2535 reported to handle_inferior_event. Set a breakpoint
2536 at the current PC, and run to it. Don't update
2537 prev_pc, because if we end in
2538 switch_back_to_stepped_thread, we want the "expected
2539 thread advanced also" branch to be taken. IOW, we
2540 don't want this thread to step further from PC
2541 (overstep). */
2542 gdb_assert (!step_over_info_valid_p ());
2543 insert_single_step_breakpoint (gdbarch, aspace, pc);
2544 insert_breakpoints ();
2545
2546 resume_ptid = internal_resume_ptid (user_step);
2547 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2548 discard_cleanups (old_cleanups);
2549 tp->resumed = 1;
2550 return;
2551 }
2552 }
2553 }
2554
2555 /* If we have a breakpoint to step over, make sure to do a single
2556 step only. Same if we have software watchpoints. */
2557 if (tp->control.trap_expected || bpstat_should_step ())
2558 tp->control.may_range_step = 0;
2559
2560 /* If enabled, step over breakpoints by executing a copy of the
2561 instruction at a different address.
2562
2563 We can't use displaced stepping when we have a signal to deliver;
2564 the comments for displaced_step_prepare explain why. The
2565 comments in the handle_inferior event for dealing with 'random
2566 signals' explain what we do instead.
2567
2568 We can't use displaced stepping when we are waiting for vfork_done
2569 event, displaced stepping breaks the vfork child similarly as single
2570 step software breakpoint. */
2571 if (tp->control.trap_expected
2572 && use_displaced_stepping (tp)
2573 && !step_over_info_valid_p ()
2574 && sig == GDB_SIGNAL_0
2575 && !current_inferior ()->waiting_for_vfork_done)
2576 {
2577 int prepared = displaced_step_prepare (inferior_ptid);
2578
2579 if (prepared == 0)
2580 {
2581 if (debug_infrun)
2582 fprintf_unfiltered (gdb_stdlog,
2583 "Got placed in step-over queue\n");
2584
2585 tp->control.trap_expected = 0;
2586 discard_cleanups (old_cleanups);
2587 return;
2588 }
2589 else if (prepared < 0)
2590 {
2591 /* Fallback to stepping over the breakpoint in-line. */
2592
2593 if (target_is_non_stop_p ())
2594 stop_all_threads ();
2595
2596 set_step_over_info (get_regcache_aspace (regcache),
2597 regcache_read_pc (regcache), 0, tp->global_num);
2598
2599 step = maybe_software_singlestep (gdbarch, pc);
2600
2601 insert_breakpoints ();
2602 }
2603 else if (prepared > 0)
2604 {
2605 struct displaced_step_inferior_state *displaced;
2606
2607 /* Update pc to reflect the new address from which we will
2608 execute instructions due to displaced stepping. */
2609 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2610
2611 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2612 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2613 displaced->step_closure);
2614 }
2615 }
2616
2617 /* Do we need to do it the hard way, w/temp breakpoints? */
2618 else if (step)
2619 step = maybe_software_singlestep (gdbarch, pc);
2620
2621 /* Currently, our software single-step implementation leads to different
2622 results than hardware single-stepping in one situation: when stepping
2623 into delivering a signal which has an associated signal handler,
2624 hardware single-step will stop at the first instruction of the handler,
2625 while software single-step will simply skip execution of the handler.
2626
2627 For now, this difference in behavior is accepted since there is no
2628 easy way to actually implement single-stepping into a signal handler
2629 without kernel support.
2630
2631 However, there is one scenario where this difference leads to follow-on
2632 problems: if we're stepping off a breakpoint by removing all breakpoints
2633 and then single-stepping. In this case, the software single-step
2634 behavior means that even if there is a *breakpoint* in the signal
2635 handler, GDB still would not stop.
2636
2637 Fortunately, we can at least fix this particular issue. We detect
2638 here the case where we are about to deliver a signal while software
2639 single-stepping with breakpoints removed. In this situation, we
2640 revert the decisions to remove all breakpoints and insert single-
2641 step breakpoints, and instead we install a step-resume breakpoint
2642 at the current address, deliver the signal without stepping, and
2643 once we arrive back at the step-resume breakpoint, actually step
2644 over the breakpoint we originally wanted to step over. */
2645 if (thread_has_single_step_breakpoints_set (tp)
2646 && sig != GDB_SIGNAL_0
2647 && step_over_info_valid_p ())
2648 {
2649 /* If we have nested signals or a pending signal is delivered
2650 immediately after a handler returns, might might already have
2651 a step-resume breakpoint set on the earlier handler. We cannot
2652 set another step-resume breakpoint; just continue on until the
2653 original breakpoint is hit. */
2654 if (tp->control.step_resume_breakpoint == NULL)
2655 {
2656 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2657 tp->step_after_step_resume_breakpoint = 1;
2658 }
2659
2660 delete_single_step_breakpoints (tp);
2661
2662 clear_step_over_info ();
2663 tp->control.trap_expected = 0;
2664
2665 insert_breakpoints ();
2666 }
2667
2668 /* If STEP is set, it's a request to use hardware stepping
2669 facilities. But in that case, we should never
2670 use singlestep breakpoint. */
2671 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2672
2673 /* Decide the set of threads to ask the target to resume. */
2674 if (tp->control.trap_expected)
2675 {
2676 /* We're allowing a thread to run past a breakpoint it has
2677 hit, either by single-stepping the thread with the breakpoint
2678 removed, or by displaced stepping, with the breakpoint inserted.
2679 In the former case, we need to single-step only this thread,
2680 and keep others stopped, as they can miss this breakpoint if
2681 allowed to run. That's not really a problem for displaced
2682 stepping, but, we still keep other threads stopped, in case
2683 another thread is also stopped for a breakpoint waiting for
2684 its turn in the displaced stepping queue. */
2685 resume_ptid = inferior_ptid;
2686 }
2687 else
2688 resume_ptid = internal_resume_ptid (user_step);
2689
2690 if (execution_direction != EXEC_REVERSE
2691 && step && breakpoint_inserted_here_p (aspace, pc))
2692 {
2693 /* There are two cases where we currently need to step a
2694 breakpoint instruction when we have a signal to deliver:
2695
2696 - See handle_signal_stop where we handle random signals that
2697 could take out us out of the stepping range. Normally, in
2698 that case we end up continuing (instead of stepping) over the
2699 signal handler with a breakpoint at PC, but there are cases
2700 where we should _always_ single-step, even if we have a
2701 step-resume breakpoint, like when a software watchpoint is
2702 set. Assuming single-stepping and delivering a signal at the
2703 same time would takes us to the signal handler, then we could
2704 have removed the breakpoint at PC to step over it. However,
2705 some hardware step targets (like e.g., Mac OS) can't step
2706 into signal handlers, and for those, we need to leave the
2707 breakpoint at PC inserted, as otherwise if the handler
2708 recurses and executes PC again, it'll miss the breakpoint.
2709 So we leave the breakpoint inserted anyway, but we need to
2710 record that we tried to step a breakpoint instruction, so
2711 that adjust_pc_after_break doesn't end up confused.
2712
2713 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2714 in one thread after another thread that was stepping had been
2715 momentarily paused for a step-over. When we re-resume the
2716 stepping thread, it may be resumed from that address with a
2717 breakpoint that hasn't trapped yet. Seen with
2718 gdb.threads/non-stop-fair-events.exp, on targets that don't
2719 do displaced stepping. */
2720
2721 if (debug_infrun)
2722 fprintf_unfiltered (gdb_stdlog,
2723 "infrun: resume: [%s] stepped breakpoint\n",
2724 target_pid_to_str (tp->ptid));
2725
2726 tp->stepped_breakpoint = 1;
2727
2728 /* Most targets can step a breakpoint instruction, thus
2729 executing it normally. But if this one cannot, just
2730 continue and we will hit it anyway. */
2731 if (gdbarch_cannot_step_breakpoint (gdbarch))
2732 step = 0;
2733 }
2734
2735 if (debug_displaced
2736 && tp->control.trap_expected
2737 && use_displaced_stepping (tp)
2738 && !step_over_info_valid_p ())
2739 {
2740 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2741 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2742 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2743 gdb_byte buf[4];
2744
2745 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2746 paddress (resume_gdbarch, actual_pc));
2747 read_memory (actual_pc, buf, sizeof (buf));
2748 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2749 }
2750
2751 if (tp->control.may_range_step)
2752 {
2753 /* If we're resuming a thread with the PC out of the step
2754 range, then we're doing some nested/finer run control
2755 operation, like stepping the thread out of the dynamic
2756 linker or the displaced stepping scratch pad. We
2757 shouldn't have allowed a range step then. */
2758 gdb_assert (pc_in_thread_step_range (pc, tp));
2759 }
2760
2761 do_target_resume (resume_ptid, step, sig);
2762 tp->resumed = 1;
2763 discard_cleanups (old_cleanups);
2764 }
2765 \f
2766 /* Proceeding. */
2767
2768 /* See infrun.h. */
2769
2770 /* Counter that tracks number of user visible stops. This can be used
2771 to tell whether a command has proceeded the inferior past the
2772 current location. This allows e.g., inferior function calls in
2773 breakpoint commands to not interrupt the command list. When the
2774 call finishes successfully, the inferior is standing at the same
2775 breakpoint as if nothing happened (and so we don't call
2776 normal_stop). */
2777 static ULONGEST current_stop_id;
2778
2779 /* See infrun.h. */
2780
2781 ULONGEST
2782 get_stop_id (void)
2783 {
2784 return current_stop_id;
2785 }
2786
2787 /* Called when we report a user visible stop. */
2788
2789 static void
2790 new_stop_id (void)
2791 {
2792 current_stop_id++;
2793 }
2794
2795 /* Clear out all variables saying what to do when inferior is continued.
2796 First do this, then set the ones you want, then call `proceed'. */
2797
2798 static void
2799 clear_proceed_status_thread (struct thread_info *tp)
2800 {
2801 if (debug_infrun)
2802 fprintf_unfiltered (gdb_stdlog,
2803 "infrun: clear_proceed_status_thread (%s)\n",
2804 target_pid_to_str (tp->ptid));
2805
2806 /* If we're starting a new sequence, then the previous finished
2807 single-step is no longer relevant. */
2808 if (tp->suspend.waitstatus_pending_p)
2809 {
2810 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2811 {
2812 if (debug_infrun)
2813 fprintf_unfiltered (gdb_stdlog,
2814 "infrun: clear_proceed_status: pending "
2815 "event of %s was a finished step. "
2816 "Discarding.\n",
2817 target_pid_to_str (tp->ptid));
2818
2819 tp->suspend.waitstatus_pending_p = 0;
2820 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2821 }
2822 else if (debug_infrun)
2823 {
2824 std::string statstr
2825 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2826
2827 fprintf_unfiltered (gdb_stdlog,
2828 "infrun: clear_proceed_status_thread: thread %s "
2829 "has pending wait status %s "
2830 "(currently_stepping=%d).\n",
2831 target_pid_to_str (tp->ptid), statstr.c_str (),
2832 currently_stepping (tp));
2833 }
2834 }
2835
2836 /* If this signal should not be seen by program, give it zero.
2837 Used for debugging signals. */
2838 if (!signal_pass_state (tp->suspend.stop_signal))
2839 tp->suspend.stop_signal = GDB_SIGNAL_0;
2840
2841 thread_fsm_delete (tp->thread_fsm);
2842 tp->thread_fsm = NULL;
2843
2844 tp->control.trap_expected = 0;
2845 tp->control.step_range_start = 0;
2846 tp->control.step_range_end = 0;
2847 tp->control.may_range_step = 0;
2848 tp->control.step_frame_id = null_frame_id;
2849 tp->control.step_stack_frame_id = null_frame_id;
2850 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2851 tp->control.step_start_function = NULL;
2852 tp->stop_requested = 0;
2853
2854 tp->control.stop_step = 0;
2855
2856 tp->control.proceed_to_finish = 0;
2857
2858 tp->control.stepping_command = 0;
2859
2860 /* Discard any remaining commands or status from previous stop. */
2861 bpstat_clear (&tp->control.stop_bpstat);
2862 }
2863
2864 void
2865 clear_proceed_status (int step)
2866 {
2867 /* With scheduler-locking replay, stop replaying other threads if we're
2868 not replaying the user-visible resume ptid.
2869
2870 This is a convenience feature to not require the user to explicitly
2871 stop replaying the other threads. We're assuming that the user's
2872 intent is to resume tracing the recorded process. */
2873 if (!non_stop && scheduler_mode == schedlock_replay
2874 && target_record_is_replaying (minus_one_ptid)
2875 && !target_record_will_replay (user_visible_resume_ptid (step),
2876 execution_direction))
2877 target_record_stop_replaying ();
2878
2879 if (!non_stop)
2880 {
2881 struct thread_info *tp;
2882 ptid_t resume_ptid;
2883
2884 resume_ptid = user_visible_resume_ptid (step);
2885
2886 /* In all-stop mode, delete the per-thread status of all threads
2887 we're about to resume, implicitly and explicitly. */
2888 ALL_NON_EXITED_THREADS (tp)
2889 {
2890 if (!ptid_match (tp->ptid, resume_ptid))
2891 continue;
2892 clear_proceed_status_thread (tp);
2893 }
2894 }
2895
2896 if (!ptid_equal (inferior_ptid, null_ptid))
2897 {
2898 struct inferior *inferior;
2899
2900 if (non_stop)
2901 {
2902 /* If in non-stop mode, only delete the per-thread status of
2903 the current thread. */
2904 clear_proceed_status_thread (inferior_thread ());
2905 }
2906
2907 inferior = current_inferior ();
2908 inferior->control.stop_soon = NO_STOP_QUIETLY;
2909 }
2910
2911 observer_notify_about_to_proceed ();
2912 }
2913
2914 /* Returns true if TP is still stopped at a breakpoint that needs
2915 stepping-over in order to make progress. If the breakpoint is gone
2916 meanwhile, we can skip the whole step-over dance. */
2917
2918 static int
2919 thread_still_needs_step_over_bp (struct thread_info *tp)
2920 {
2921 if (tp->stepping_over_breakpoint)
2922 {
2923 struct regcache *regcache = get_thread_regcache (tp->ptid);
2924
2925 if (breakpoint_here_p (get_regcache_aspace (regcache),
2926 regcache_read_pc (regcache))
2927 == ordinary_breakpoint_here)
2928 return 1;
2929
2930 tp->stepping_over_breakpoint = 0;
2931 }
2932
2933 return 0;
2934 }
2935
2936 /* Check whether thread TP still needs to start a step-over in order
2937 to make progress when resumed. Returns an bitwise or of enum
2938 step_over_what bits, indicating what needs to be stepped over. */
2939
2940 static step_over_what
2941 thread_still_needs_step_over (struct thread_info *tp)
2942 {
2943 step_over_what what = 0;
2944
2945 if (thread_still_needs_step_over_bp (tp))
2946 what |= STEP_OVER_BREAKPOINT;
2947
2948 if (tp->stepping_over_watchpoint
2949 && !target_have_steppable_watchpoint)
2950 what |= STEP_OVER_WATCHPOINT;
2951
2952 return what;
2953 }
2954
2955 /* Returns true if scheduler locking applies. STEP indicates whether
2956 we're about to do a step/next-like command to a thread. */
2957
2958 static int
2959 schedlock_applies (struct thread_info *tp)
2960 {
2961 return (scheduler_mode == schedlock_on
2962 || (scheduler_mode == schedlock_step
2963 && tp->control.stepping_command)
2964 || (scheduler_mode == schedlock_replay
2965 && target_record_will_replay (minus_one_ptid,
2966 execution_direction)));
2967 }
2968
2969 /* Basic routine for continuing the program in various fashions.
2970
2971 ADDR is the address to resume at, or -1 for resume where stopped.
2972 SIGGNAL is the signal to give it, or 0 for none,
2973 or -1 for act according to how it stopped.
2974 STEP is nonzero if should trap after one instruction.
2975 -1 means return after that and print nothing.
2976 You should probably set various step_... variables
2977 before calling here, if you are stepping.
2978
2979 You should call clear_proceed_status before calling proceed. */
2980
2981 void
2982 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2983 {
2984 struct regcache *regcache;
2985 struct gdbarch *gdbarch;
2986 struct thread_info *tp;
2987 CORE_ADDR pc;
2988 struct address_space *aspace;
2989 ptid_t resume_ptid;
2990 struct execution_control_state ecss;
2991 struct execution_control_state *ecs = &ecss;
2992 struct cleanup *old_chain;
2993 int started;
2994
2995 /* If we're stopped at a fork/vfork, follow the branch set by the
2996 "set follow-fork-mode" command; otherwise, we'll just proceed
2997 resuming the current thread. */
2998 if (!follow_fork ())
2999 {
3000 /* The target for some reason decided not to resume. */
3001 normal_stop ();
3002 if (target_can_async_p ())
3003 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3004 return;
3005 }
3006
3007 /* We'll update this if & when we switch to a new thread. */
3008 previous_inferior_ptid = inferior_ptid;
3009
3010 regcache = get_current_regcache ();
3011 gdbarch = get_regcache_arch (regcache);
3012 aspace = get_regcache_aspace (regcache);
3013 pc = regcache_read_pc (regcache);
3014 tp = inferior_thread ();
3015
3016 /* Fill in with reasonable starting values. */
3017 init_thread_stepping_state (tp);
3018
3019 gdb_assert (!thread_is_in_step_over_chain (tp));
3020
3021 if (addr == (CORE_ADDR) -1)
3022 {
3023 if (pc == stop_pc
3024 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3025 && execution_direction != EXEC_REVERSE)
3026 /* There is a breakpoint at the address we will resume at,
3027 step one instruction before inserting breakpoints so that
3028 we do not stop right away (and report a second hit at this
3029 breakpoint).
3030
3031 Note, we don't do this in reverse, because we won't
3032 actually be executing the breakpoint insn anyway.
3033 We'll be (un-)executing the previous instruction. */
3034 tp->stepping_over_breakpoint = 1;
3035 else if (gdbarch_single_step_through_delay_p (gdbarch)
3036 && gdbarch_single_step_through_delay (gdbarch,
3037 get_current_frame ()))
3038 /* We stepped onto an instruction that needs to be stepped
3039 again before re-inserting the breakpoint, do so. */
3040 tp->stepping_over_breakpoint = 1;
3041 }
3042 else
3043 {
3044 regcache_write_pc (regcache, addr);
3045 }
3046
3047 if (siggnal != GDB_SIGNAL_DEFAULT)
3048 tp->suspend.stop_signal = siggnal;
3049
3050 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3051
3052 /* If an exception is thrown from this point on, make sure to
3053 propagate GDB's knowledge of the executing state to the
3054 frontend/user running state. */
3055 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3056
3057 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3058 threads (e.g., we might need to set threads stepping over
3059 breakpoints first), from the user/frontend's point of view, all
3060 threads in RESUME_PTID are now running. Unless we're calling an
3061 inferior function, as in that case we pretend the inferior
3062 doesn't run at all. */
3063 if (!tp->control.in_infcall)
3064 set_running (resume_ptid, 1);
3065
3066 if (debug_infrun)
3067 fprintf_unfiltered (gdb_stdlog,
3068 "infrun: proceed (addr=%s, signal=%s)\n",
3069 paddress (gdbarch, addr),
3070 gdb_signal_to_symbol_string (siggnal));
3071
3072 annotate_starting ();
3073
3074 /* Make sure that output from GDB appears before output from the
3075 inferior. */
3076 gdb_flush (gdb_stdout);
3077
3078 /* In a multi-threaded task we may select another thread and
3079 then continue or step.
3080
3081 But if a thread that we're resuming had stopped at a breakpoint,
3082 it will immediately cause another breakpoint stop without any
3083 execution (i.e. it will report a breakpoint hit incorrectly). So
3084 we must step over it first.
3085
3086 Look for threads other than the current (TP) that reported a
3087 breakpoint hit and haven't been resumed yet since. */
3088
3089 /* If scheduler locking applies, we can avoid iterating over all
3090 threads. */
3091 if (!non_stop && !schedlock_applies (tp))
3092 {
3093 struct thread_info *current = tp;
3094
3095 ALL_NON_EXITED_THREADS (tp)
3096 {
3097 /* Ignore the current thread here. It's handled
3098 afterwards. */
3099 if (tp == current)
3100 continue;
3101
3102 /* Ignore threads of processes we're not resuming. */
3103 if (!ptid_match (tp->ptid, resume_ptid))
3104 continue;
3105
3106 if (!thread_still_needs_step_over (tp))
3107 continue;
3108
3109 gdb_assert (!thread_is_in_step_over_chain (tp));
3110
3111 if (debug_infrun)
3112 fprintf_unfiltered (gdb_stdlog,
3113 "infrun: need to step-over [%s] first\n",
3114 target_pid_to_str (tp->ptid));
3115
3116 thread_step_over_chain_enqueue (tp);
3117 }
3118
3119 tp = current;
3120 }
3121
3122 /* Enqueue the current thread last, so that we move all other
3123 threads over their breakpoints first. */
3124 if (tp->stepping_over_breakpoint)
3125 thread_step_over_chain_enqueue (tp);
3126
3127 /* If the thread isn't started, we'll still need to set its prev_pc,
3128 so that switch_back_to_stepped_thread knows the thread hasn't
3129 advanced. Must do this before resuming any thread, as in
3130 all-stop/remote, once we resume we can't send any other packet
3131 until the target stops again. */
3132 tp->prev_pc = regcache_read_pc (regcache);
3133
3134 {
3135 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3136
3137 started = start_step_over ();
3138
3139 if (step_over_info_valid_p ())
3140 {
3141 /* Either this thread started a new in-line step over, or some
3142 other thread was already doing one. In either case, don't
3143 resume anything else until the step-over is finished. */
3144 }
3145 else if (started && !target_is_non_stop_p ())
3146 {
3147 /* A new displaced stepping sequence was started. In all-stop,
3148 we can't talk to the target anymore until it next stops. */
3149 }
3150 else if (!non_stop && target_is_non_stop_p ())
3151 {
3152 /* In all-stop, but the target is always in non-stop mode.
3153 Start all other threads that are implicitly resumed too. */
3154 ALL_NON_EXITED_THREADS (tp)
3155 {
3156 /* Ignore threads of processes we're not resuming. */
3157 if (!ptid_match (tp->ptid, resume_ptid))
3158 continue;
3159
3160 if (tp->resumed)
3161 {
3162 if (debug_infrun)
3163 fprintf_unfiltered (gdb_stdlog,
3164 "infrun: proceed: [%s] resumed\n",
3165 target_pid_to_str (tp->ptid));
3166 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3167 continue;
3168 }
3169
3170 if (thread_is_in_step_over_chain (tp))
3171 {
3172 if (debug_infrun)
3173 fprintf_unfiltered (gdb_stdlog,
3174 "infrun: proceed: [%s] needs step-over\n",
3175 target_pid_to_str (tp->ptid));
3176 continue;
3177 }
3178
3179 if (debug_infrun)
3180 fprintf_unfiltered (gdb_stdlog,
3181 "infrun: proceed: resuming %s\n",
3182 target_pid_to_str (tp->ptid));
3183
3184 reset_ecs (ecs, tp);
3185 switch_to_thread (tp->ptid);
3186 keep_going_pass_signal (ecs);
3187 if (!ecs->wait_some_more)
3188 error (_("Command aborted."));
3189 }
3190 }
3191 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3192 {
3193 /* The thread wasn't started, and isn't queued, run it now. */
3194 reset_ecs (ecs, tp);
3195 switch_to_thread (tp->ptid);
3196 keep_going_pass_signal (ecs);
3197 if (!ecs->wait_some_more)
3198 error (_("Command aborted."));
3199 }
3200 }
3201
3202 target_commit_resume ();
3203
3204 discard_cleanups (old_chain);
3205
3206 /* Tell the event loop to wait for it to stop. If the target
3207 supports asynchronous execution, it'll do this from within
3208 target_resume. */
3209 if (!target_can_async_p ())
3210 mark_async_event_handler (infrun_async_inferior_event_token);
3211 }
3212 \f
3213
3214 /* Start remote-debugging of a machine over a serial link. */
3215
3216 void
3217 start_remote (int from_tty)
3218 {
3219 struct inferior *inferior;
3220
3221 inferior = current_inferior ();
3222 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3223
3224 /* Always go on waiting for the target, regardless of the mode. */
3225 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3226 indicate to wait_for_inferior that a target should timeout if
3227 nothing is returned (instead of just blocking). Because of this,
3228 targets expecting an immediate response need to, internally, set
3229 things up so that the target_wait() is forced to eventually
3230 timeout. */
3231 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3232 differentiate to its caller what the state of the target is after
3233 the initial open has been performed. Here we're assuming that
3234 the target has stopped. It should be possible to eventually have
3235 target_open() return to the caller an indication that the target
3236 is currently running and GDB state should be set to the same as
3237 for an async run. */
3238 wait_for_inferior ();
3239
3240 /* Now that the inferior has stopped, do any bookkeeping like
3241 loading shared libraries. We want to do this before normal_stop,
3242 so that the displayed frame is up to date. */
3243 post_create_inferior (&current_target, from_tty);
3244
3245 normal_stop ();
3246 }
3247
3248 /* Initialize static vars when a new inferior begins. */
3249
3250 void
3251 init_wait_for_inferior (void)
3252 {
3253 /* These are meaningless until the first time through wait_for_inferior. */
3254
3255 breakpoint_init_inferior (inf_starting);
3256
3257 clear_proceed_status (0);
3258
3259 target_last_wait_ptid = minus_one_ptid;
3260
3261 previous_inferior_ptid = inferior_ptid;
3262
3263 /* Discard any skipped inlined frames. */
3264 clear_inline_frame_state (minus_one_ptid);
3265 }
3266
3267 \f
3268
3269 static void handle_inferior_event (struct execution_control_state *ecs);
3270
3271 static void handle_step_into_function (struct gdbarch *gdbarch,
3272 struct execution_control_state *ecs);
3273 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3274 struct execution_control_state *ecs);
3275 static void handle_signal_stop (struct execution_control_state *ecs);
3276 static void check_exception_resume (struct execution_control_state *,
3277 struct frame_info *);
3278
3279 static void end_stepping_range (struct execution_control_state *ecs);
3280 static void stop_waiting (struct execution_control_state *ecs);
3281 static void keep_going (struct execution_control_state *ecs);
3282 static void process_event_stop_test (struct execution_control_state *ecs);
3283 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3284
3285 /* This function is attached as a "thread_stop_requested" observer.
3286 Cleanup local state that assumed the PTID was to be resumed, and
3287 report the stop to the frontend. */
3288
3289 static void
3290 infrun_thread_stop_requested (ptid_t ptid)
3291 {
3292 struct thread_info *tp;
3293
3294 /* PTID was requested to stop. If the thread was already stopped,
3295 but the user/frontend doesn't know about that yet (e.g., the
3296 thread had been temporarily paused for some step-over), set up
3297 for reporting the stop now. */
3298 ALL_NON_EXITED_THREADS (tp)
3299 if (ptid_match (tp->ptid, ptid))
3300 {
3301 if (tp->state != THREAD_RUNNING)
3302 continue;
3303 if (tp->executing)
3304 continue;
3305
3306 /* Remove matching threads from the step-over queue, so
3307 start_step_over doesn't try to resume them
3308 automatically. */
3309 if (thread_is_in_step_over_chain (tp))
3310 thread_step_over_chain_remove (tp);
3311
3312 /* If the thread is stopped, but the user/frontend doesn't
3313 know about that yet, queue a pending event, as if the
3314 thread had just stopped now. Unless the thread already had
3315 a pending event. */
3316 if (!tp->suspend.waitstatus_pending_p)
3317 {
3318 tp->suspend.waitstatus_pending_p = 1;
3319 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3320 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3321 }
3322
3323 /* Clear the inline-frame state, since we're re-processing the
3324 stop. */
3325 clear_inline_frame_state (tp->ptid);
3326
3327 /* If this thread was paused because some other thread was
3328 doing an inline-step over, let that finish first. Once
3329 that happens, we'll restart all threads and consume pending
3330 stop events then. */
3331 if (step_over_info_valid_p ())
3332 continue;
3333
3334 /* Otherwise we can process the (new) pending event now. Set
3335 it so this pending event is considered by
3336 do_target_wait. */
3337 tp->resumed = 1;
3338 }
3339 }
3340
3341 static void
3342 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3343 {
3344 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3345 nullify_last_target_wait_ptid ();
3346 }
3347
3348 /* Delete the step resume, single-step and longjmp/exception resume
3349 breakpoints of TP. */
3350
3351 static void
3352 delete_thread_infrun_breakpoints (struct thread_info *tp)
3353 {
3354 delete_step_resume_breakpoint (tp);
3355 delete_exception_resume_breakpoint (tp);
3356 delete_single_step_breakpoints (tp);
3357 }
3358
3359 /* If the target still has execution, call FUNC for each thread that
3360 just stopped. In all-stop, that's all the non-exited threads; in
3361 non-stop, that's the current thread, only. */
3362
3363 typedef void (*for_each_just_stopped_thread_callback_func)
3364 (struct thread_info *tp);
3365
3366 static void
3367 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3368 {
3369 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3370 return;
3371
3372 if (target_is_non_stop_p ())
3373 {
3374 /* If in non-stop mode, only the current thread stopped. */
3375 func (inferior_thread ());
3376 }
3377 else
3378 {
3379 struct thread_info *tp;
3380
3381 /* In all-stop mode, all threads have stopped. */
3382 ALL_NON_EXITED_THREADS (tp)
3383 {
3384 func (tp);
3385 }
3386 }
3387 }
3388
3389 /* Delete the step resume and longjmp/exception resume breakpoints of
3390 the threads that just stopped. */
3391
3392 static void
3393 delete_just_stopped_threads_infrun_breakpoints (void)
3394 {
3395 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3396 }
3397
3398 /* Delete the single-step breakpoints of the threads that just
3399 stopped. */
3400
3401 static void
3402 delete_just_stopped_threads_single_step_breakpoints (void)
3403 {
3404 for_each_just_stopped_thread (delete_single_step_breakpoints);
3405 }
3406
3407 /* A cleanup wrapper. */
3408
3409 static void
3410 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3411 {
3412 delete_just_stopped_threads_infrun_breakpoints ();
3413 }
3414
3415 /* See infrun.h. */
3416
3417 void
3418 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3419 const struct target_waitstatus *ws)
3420 {
3421 std::string status_string = target_waitstatus_to_string (ws);
3422 string_file stb;
3423
3424 /* The text is split over several lines because it was getting too long.
3425 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3426 output as a unit; we want only one timestamp printed if debug_timestamp
3427 is set. */
3428
3429 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3430 ptid_get_pid (waiton_ptid),
3431 ptid_get_lwp (waiton_ptid),
3432 ptid_get_tid (waiton_ptid));
3433 if (ptid_get_pid (waiton_ptid) != -1)
3434 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3435 stb.printf (", status) =\n");
3436 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3437 ptid_get_pid (result_ptid),
3438 ptid_get_lwp (result_ptid),
3439 ptid_get_tid (result_ptid),
3440 target_pid_to_str (result_ptid));
3441 stb.printf ("infrun: %s\n", status_string.c_str ());
3442
3443 /* This uses %s in part to handle %'s in the text, but also to avoid
3444 a gcc error: the format attribute requires a string literal. */
3445 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3446 }
3447
3448 /* Select a thread at random, out of those which are resumed and have
3449 had events. */
3450
3451 static struct thread_info *
3452 random_pending_event_thread (ptid_t waiton_ptid)
3453 {
3454 struct thread_info *event_tp;
3455 int num_events = 0;
3456 int random_selector;
3457
3458 /* First see how many events we have. Count only resumed threads
3459 that have an event pending. */
3460 ALL_NON_EXITED_THREADS (event_tp)
3461 if (ptid_match (event_tp->ptid, waiton_ptid)
3462 && event_tp->resumed
3463 && event_tp->suspend.waitstatus_pending_p)
3464 num_events++;
3465
3466 if (num_events == 0)
3467 return NULL;
3468
3469 /* Now randomly pick a thread out of those that have had events. */
3470 random_selector = (int)
3471 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3472
3473 if (debug_infrun && num_events > 1)
3474 fprintf_unfiltered (gdb_stdlog,
3475 "infrun: Found %d events, selecting #%d\n",
3476 num_events, random_selector);
3477
3478 /* Select the Nth thread that has had an event. */
3479 ALL_NON_EXITED_THREADS (event_tp)
3480 if (ptid_match (event_tp->ptid, waiton_ptid)
3481 && event_tp->resumed
3482 && event_tp->suspend.waitstatus_pending_p)
3483 if (random_selector-- == 0)
3484 break;
3485
3486 return event_tp;
3487 }
3488
3489 /* Wrapper for target_wait that first checks whether threads have
3490 pending statuses to report before actually asking the target for
3491 more events. */
3492
3493 static ptid_t
3494 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3495 {
3496 ptid_t event_ptid;
3497 struct thread_info *tp;
3498
3499 /* First check if there is a resumed thread with a wait status
3500 pending. */
3501 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3502 {
3503 tp = random_pending_event_thread (ptid);
3504 }
3505 else
3506 {
3507 if (debug_infrun)
3508 fprintf_unfiltered (gdb_stdlog,
3509 "infrun: Waiting for specific thread %s.\n",
3510 target_pid_to_str (ptid));
3511
3512 /* We have a specific thread to check. */
3513 tp = find_thread_ptid (ptid);
3514 gdb_assert (tp != NULL);
3515 if (!tp->suspend.waitstatus_pending_p)
3516 tp = NULL;
3517 }
3518
3519 if (tp != NULL
3520 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3521 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3522 {
3523 struct regcache *regcache = get_thread_regcache (tp->ptid);
3524 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3525 CORE_ADDR pc;
3526 int discard = 0;
3527
3528 pc = regcache_read_pc (regcache);
3529
3530 if (pc != tp->suspend.stop_pc)
3531 {
3532 if (debug_infrun)
3533 fprintf_unfiltered (gdb_stdlog,
3534 "infrun: PC of %s changed. was=%s, now=%s\n",
3535 target_pid_to_str (tp->ptid),
3536 paddress (gdbarch, tp->prev_pc),
3537 paddress (gdbarch, pc));
3538 discard = 1;
3539 }
3540 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3541 {
3542 if (debug_infrun)
3543 fprintf_unfiltered (gdb_stdlog,
3544 "infrun: previous breakpoint of %s, at %s gone\n",
3545 target_pid_to_str (tp->ptid),
3546 paddress (gdbarch, pc));
3547
3548 discard = 1;
3549 }
3550
3551 if (discard)
3552 {
3553 if (debug_infrun)
3554 fprintf_unfiltered (gdb_stdlog,
3555 "infrun: pending event of %s cancelled.\n",
3556 target_pid_to_str (tp->ptid));
3557
3558 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3559 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3560 }
3561 }
3562
3563 if (tp != NULL)
3564 {
3565 if (debug_infrun)
3566 {
3567 std::string statstr
3568 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3569
3570 fprintf_unfiltered (gdb_stdlog,
3571 "infrun: Using pending wait status %s for %s.\n",
3572 statstr.c_str (),
3573 target_pid_to_str (tp->ptid));
3574 }
3575
3576 /* Now that we've selected our final event LWP, un-adjust its PC
3577 if it was a software breakpoint (and the target doesn't
3578 always adjust the PC itself). */
3579 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3580 && !target_supports_stopped_by_sw_breakpoint ())
3581 {
3582 struct regcache *regcache;
3583 struct gdbarch *gdbarch;
3584 int decr_pc;
3585
3586 regcache = get_thread_regcache (tp->ptid);
3587 gdbarch = get_regcache_arch (regcache);
3588
3589 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3590 if (decr_pc != 0)
3591 {
3592 CORE_ADDR pc;
3593
3594 pc = regcache_read_pc (regcache);
3595 regcache_write_pc (regcache, pc + decr_pc);
3596 }
3597 }
3598
3599 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3600 *status = tp->suspend.waitstatus;
3601 tp->suspend.waitstatus_pending_p = 0;
3602
3603 /* Wake up the event loop again, until all pending events are
3604 processed. */
3605 if (target_is_async_p ())
3606 mark_async_event_handler (infrun_async_inferior_event_token);
3607 return tp->ptid;
3608 }
3609
3610 /* But if we don't find one, we'll have to wait. */
3611
3612 if (deprecated_target_wait_hook)
3613 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3614 else
3615 event_ptid = target_wait (ptid, status, options);
3616
3617 return event_ptid;
3618 }
3619
3620 /* Prepare and stabilize the inferior for detaching it. E.g.,
3621 detaching while a thread is displaced stepping is a recipe for
3622 crashing it, as nothing would readjust the PC out of the scratch
3623 pad. */
3624
3625 void
3626 prepare_for_detach (void)
3627 {
3628 struct inferior *inf = current_inferior ();
3629 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3630 struct displaced_step_inferior_state *displaced;
3631
3632 displaced = get_displaced_stepping_state (inf->pid);
3633
3634 /* Is any thread of this process displaced stepping? If not,
3635 there's nothing else to do. */
3636 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3637 return;
3638
3639 if (debug_infrun)
3640 fprintf_unfiltered (gdb_stdlog,
3641 "displaced-stepping in-process while detaching");
3642
3643 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3644
3645 while (!ptid_equal (displaced->step_ptid, null_ptid))
3646 {
3647 struct cleanup *old_chain_2;
3648 struct execution_control_state ecss;
3649 struct execution_control_state *ecs;
3650
3651 ecs = &ecss;
3652 memset (ecs, 0, sizeof (*ecs));
3653
3654 overlay_cache_invalid = 1;
3655 /* Flush target cache before starting to handle each event.
3656 Target was running and cache could be stale. This is just a
3657 heuristic. Running threads may modify target memory, but we
3658 don't get any event. */
3659 target_dcache_invalidate ();
3660
3661 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3662
3663 if (debug_infrun)
3664 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3665
3666 /* If an error happens while handling the event, propagate GDB's
3667 knowledge of the executing state to the frontend/user running
3668 state. */
3669 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3670 &minus_one_ptid);
3671
3672 /* Now figure out what to do with the result of the result. */
3673 handle_inferior_event (ecs);
3674
3675 /* No error, don't finish the state yet. */
3676 discard_cleanups (old_chain_2);
3677
3678 /* Breakpoints and watchpoints are not installed on the target
3679 at this point, and signals are passed directly to the
3680 inferior, so this must mean the process is gone. */
3681 if (!ecs->wait_some_more)
3682 {
3683 restore_detaching.release ();
3684 error (_("Program exited while detaching"));
3685 }
3686 }
3687
3688 restore_detaching.release ();
3689 }
3690
3691 /* Wait for control to return from inferior to debugger.
3692
3693 If inferior gets a signal, we may decide to start it up again
3694 instead of returning. That is why there is a loop in this function.
3695 When this function actually returns it means the inferior
3696 should be left stopped and GDB should read more commands. */
3697
3698 void
3699 wait_for_inferior (void)
3700 {
3701 struct cleanup *old_cleanups;
3702 struct cleanup *thread_state_chain;
3703
3704 if (debug_infrun)
3705 fprintf_unfiltered
3706 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3707
3708 old_cleanups
3709 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3710 NULL);
3711
3712 /* If an error happens while handling the event, propagate GDB's
3713 knowledge of the executing state to the frontend/user running
3714 state. */
3715 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3716
3717 while (1)
3718 {
3719 struct execution_control_state ecss;
3720 struct execution_control_state *ecs = &ecss;
3721 ptid_t waiton_ptid = minus_one_ptid;
3722
3723 memset (ecs, 0, sizeof (*ecs));
3724
3725 overlay_cache_invalid = 1;
3726
3727 /* Flush target cache before starting to handle each event.
3728 Target was running and cache could be stale. This is just a
3729 heuristic. Running threads may modify target memory, but we
3730 don't get any event. */
3731 target_dcache_invalidate ();
3732
3733 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3734
3735 if (debug_infrun)
3736 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3737
3738 /* Now figure out what to do with the result of the result. */
3739 handle_inferior_event (ecs);
3740
3741 if (!ecs->wait_some_more)
3742 break;
3743 }
3744
3745 /* No error, don't finish the state yet. */
3746 discard_cleanups (thread_state_chain);
3747
3748 do_cleanups (old_cleanups);
3749 }
3750
3751 /* Cleanup that reinstalls the readline callback handler, if the
3752 target is running in the background. If while handling the target
3753 event something triggered a secondary prompt, like e.g., a
3754 pagination prompt, we'll have removed the callback handler (see
3755 gdb_readline_wrapper_line). Need to do this as we go back to the
3756 event loop, ready to process further input. Note this has no
3757 effect if the handler hasn't actually been removed, because calling
3758 rl_callback_handler_install resets the line buffer, thus losing
3759 input. */
3760
3761 static void
3762 reinstall_readline_callback_handler_cleanup (void *arg)
3763 {
3764 struct ui *ui = current_ui;
3765
3766 if (!ui->async)
3767 {
3768 /* We're not going back to the top level event loop yet. Don't
3769 install the readline callback, as it'd prep the terminal,
3770 readline-style (raw, noecho) (e.g., --batch). We'll install
3771 it the next time the prompt is displayed, when we're ready
3772 for input. */
3773 return;
3774 }
3775
3776 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3777 gdb_rl_callback_handler_reinstall ();
3778 }
3779
3780 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3781 that's just the event thread. In all-stop, that's all threads. */
3782
3783 static void
3784 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3785 {
3786 struct thread_info *thr = ecs->event_thread;
3787
3788 if (thr != NULL && thr->thread_fsm != NULL)
3789 thread_fsm_clean_up (thr->thread_fsm, thr);
3790
3791 if (!non_stop)
3792 {
3793 ALL_NON_EXITED_THREADS (thr)
3794 {
3795 if (thr->thread_fsm == NULL)
3796 continue;
3797 if (thr == ecs->event_thread)
3798 continue;
3799
3800 switch_to_thread (thr->ptid);
3801 thread_fsm_clean_up (thr->thread_fsm, thr);
3802 }
3803
3804 if (ecs->event_thread != NULL)
3805 switch_to_thread (ecs->event_thread->ptid);
3806 }
3807 }
3808
3809 /* Helper for all_uis_check_sync_execution_done that works on the
3810 current UI. */
3811
3812 static void
3813 check_curr_ui_sync_execution_done (void)
3814 {
3815 struct ui *ui = current_ui;
3816
3817 if (ui->prompt_state == PROMPT_NEEDED
3818 && ui->async
3819 && !gdb_in_secondary_prompt_p (ui))
3820 {
3821 target_terminal::ours ();
3822 observer_notify_sync_execution_done ();
3823 ui_register_input_event_handler (ui);
3824 }
3825 }
3826
3827 /* See infrun.h. */
3828
3829 void
3830 all_uis_check_sync_execution_done (void)
3831 {
3832 SWITCH_THRU_ALL_UIS ()
3833 {
3834 check_curr_ui_sync_execution_done ();
3835 }
3836 }
3837
3838 /* See infrun.h. */
3839
3840 void
3841 all_uis_on_sync_execution_starting (void)
3842 {
3843 SWITCH_THRU_ALL_UIS ()
3844 {
3845 if (current_ui->prompt_state == PROMPT_NEEDED)
3846 async_disable_stdin ();
3847 }
3848 }
3849
3850 /* Asynchronous version of wait_for_inferior. It is called by the
3851 event loop whenever a change of state is detected on the file
3852 descriptor corresponding to the target. It can be called more than
3853 once to complete a single execution command. In such cases we need
3854 to keep the state in a global variable ECSS. If it is the last time
3855 that this function is called for a single execution command, then
3856 report to the user that the inferior has stopped, and do the
3857 necessary cleanups. */
3858
3859 void
3860 fetch_inferior_event (void *client_data)
3861 {
3862 struct execution_control_state ecss;
3863 struct execution_control_state *ecs = &ecss;
3864 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3865 struct cleanup *ts_old_chain;
3866 int cmd_done = 0;
3867 ptid_t waiton_ptid = minus_one_ptid;
3868
3869 memset (ecs, 0, sizeof (*ecs));
3870
3871 /* Events are always processed with the main UI as current UI. This
3872 way, warnings, debug output, etc. are always consistently sent to
3873 the main console. */
3874 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3875
3876 /* End up with readline processing input, if necessary. */
3877 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3878
3879 /* We're handling a live event, so make sure we're doing live
3880 debugging. If we're looking at traceframes while the target is
3881 running, we're going to need to get back to that mode after
3882 handling the event. */
3883 if (non_stop)
3884 {
3885 make_cleanup_restore_current_traceframe ();
3886 set_current_traceframe (-1);
3887 }
3888
3889 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3890
3891 if (non_stop)
3892 /* In non-stop mode, the user/frontend should not notice a thread
3893 switch due to internal events. Make sure we reverse to the
3894 user selected thread and frame after handling the event and
3895 running any breakpoint commands. */
3896 maybe_restore_thread.emplace ();
3897
3898 overlay_cache_invalid = 1;
3899 /* Flush target cache before starting to handle each event. Target
3900 was running and cache could be stale. This is just a heuristic.
3901 Running threads may modify target memory, but we don't get any
3902 event. */
3903 target_dcache_invalidate ();
3904
3905 scoped_restore save_exec_dir
3906 = make_scoped_restore (&execution_direction, target_execution_direction ());
3907
3908 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3909 target_can_async_p () ? TARGET_WNOHANG : 0);
3910
3911 if (debug_infrun)
3912 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3913
3914 /* If an error happens while handling the event, propagate GDB's
3915 knowledge of the executing state to the frontend/user running
3916 state. */
3917 if (!target_is_non_stop_p ())
3918 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3919 else
3920 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3921
3922 /* Get executed before make_cleanup_restore_current_thread above to apply
3923 still for the thread which has thrown the exception. */
3924 make_bpstat_clear_actions_cleanup ();
3925
3926 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3927
3928 /* Now figure out what to do with the result of the result. */
3929 handle_inferior_event (ecs);
3930
3931 if (!ecs->wait_some_more)
3932 {
3933 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3934 int should_stop = 1;
3935 struct thread_info *thr = ecs->event_thread;
3936 int should_notify_stop = 1;
3937
3938 delete_just_stopped_threads_infrun_breakpoints ();
3939
3940 if (thr != NULL)
3941 {
3942 struct thread_fsm *thread_fsm = thr->thread_fsm;
3943
3944 if (thread_fsm != NULL)
3945 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3946 }
3947
3948 if (!should_stop)
3949 {
3950 keep_going (ecs);
3951 }
3952 else
3953 {
3954 clean_up_just_stopped_threads_fsms (ecs);
3955
3956 if (thr != NULL && thr->thread_fsm != NULL)
3957 {
3958 should_notify_stop
3959 = thread_fsm_should_notify_stop (thr->thread_fsm);
3960 }
3961
3962 if (should_notify_stop)
3963 {
3964 int proceeded = 0;
3965
3966 /* We may not find an inferior if this was a process exit. */
3967 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3968 proceeded = normal_stop ();
3969
3970 if (!proceeded)
3971 {
3972 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3973 cmd_done = 1;
3974 }
3975 }
3976 }
3977 }
3978
3979 /* No error, don't finish the thread states yet. */
3980 discard_cleanups (ts_old_chain);
3981
3982 /* Revert thread and frame. */
3983 do_cleanups (old_chain);
3984
3985 /* If a UI was in sync execution mode, and now isn't, restore its
3986 prompt (a synchronous execution command has finished, and we're
3987 ready for input). */
3988 all_uis_check_sync_execution_done ();
3989
3990 if (cmd_done
3991 && exec_done_display_p
3992 && (ptid_equal (inferior_ptid, null_ptid)
3993 || !is_running (inferior_ptid)))
3994 printf_unfiltered (_("completed.\n"));
3995 }
3996
3997 /* Record the frame and location we're currently stepping through. */
3998 void
3999 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4000 {
4001 struct thread_info *tp = inferior_thread ();
4002
4003 tp->control.step_frame_id = get_frame_id (frame);
4004 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4005
4006 tp->current_symtab = sal.symtab;
4007 tp->current_line = sal.line;
4008 }
4009
4010 /* Clear context switchable stepping state. */
4011
4012 void
4013 init_thread_stepping_state (struct thread_info *tss)
4014 {
4015 tss->stepped_breakpoint = 0;
4016 tss->stepping_over_breakpoint = 0;
4017 tss->stepping_over_watchpoint = 0;
4018 tss->step_after_step_resume_breakpoint = 0;
4019 }
4020
4021 /* Set the cached copy of the last ptid/waitstatus. */
4022
4023 void
4024 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4025 {
4026 target_last_wait_ptid = ptid;
4027 target_last_waitstatus = status;
4028 }
4029
4030 /* Return the cached copy of the last pid/waitstatus returned by
4031 target_wait()/deprecated_target_wait_hook(). The data is actually
4032 cached by handle_inferior_event(), which gets called immediately
4033 after target_wait()/deprecated_target_wait_hook(). */
4034
4035 void
4036 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4037 {
4038 *ptidp = target_last_wait_ptid;
4039 *status = target_last_waitstatus;
4040 }
4041
4042 void
4043 nullify_last_target_wait_ptid (void)
4044 {
4045 target_last_wait_ptid = minus_one_ptid;
4046 }
4047
4048 /* Switch thread contexts. */
4049
4050 static void
4051 context_switch (ptid_t ptid)
4052 {
4053 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4054 {
4055 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4056 target_pid_to_str (inferior_ptid));
4057 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4058 target_pid_to_str (ptid));
4059 }
4060
4061 switch_to_thread (ptid);
4062 }
4063
4064 /* If the target can't tell whether we've hit breakpoints
4065 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4066 check whether that could have been caused by a breakpoint. If so,
4067 adjust the PC, per gdbarch_decr_pc_after_break. */
4068
4069 static void
4070 adjust_pc_after_break (struct thread_info *thread,
4071 struct target_waitstatus *ws)
4072 {
4073 struct regcache *regcache;
4074 struct gdbarch *gdbarch;
4075 struct address_space *aspace;
4076 CORE_ADDR breakpoint_pc, decr_pc;
4077
4078 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4079 we aren't, just return.
4080
4081 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4082 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4083 implemented by software breakpoints should be handled through the normal
4084 breakpoint layer.
4085
4086 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4087 different signals (SIGILL or SIGEMT for instance), but it is less
4088 clear where the PC is pointing afterwards. It may not match
4089 gdbarch_decr_pc_after_break. I don't know any specific target that
4090 generates these signals at breakpoints (the code has been in GDB since at
4091 least 1992) so I can not guess how to handle them here.
4092
4093 In earlier versions of GDB, a target with
4094 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4095 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4096 target with both of these set in GDB history, and it seems unlikely to be
4097 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4098
4099 if (ws->kind != TARGET_WAITKIND_STOPPED)
4100 return;
4101
4102 if (ws->value.sig != GDB_SIGNAL_TRAP)
4103 return;
4104
4105 /* In reverse execution, when a breakpoint is hit, the instruction
4106 under it has already been de-executed. The reported PC always
4107 points at the breakpoint address, so adjusting it further would
4108 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4109 architecture:
4110
4111 B1 0x08000000 : INSN1
4112 B2 0x08000001 : INSN2
4113 0x08000002 : INSN3
4114 PC -> 0x08000003 : INSN4
4115
4116 Say you're stopped at 0x08000003 as above. Reverse continuing
4117 from that point should hit B2 as below. Reading the PC when the
4118 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4119 been de-executed already.
4120
4121 B1 0x08000000 : INSN1
4122 B2 PC -> 0x08000001 : INSN2
4123 0x08000002 : INSN3
4124 0x08000003 : INSN4
4125
4126 We can't apply the same logic as for forward execution, because
4127 we would wrongly adjust the PC to 0x08000000, since there's a
4128 breakpoint at PC - 1. We'd then report a hit on B1, although
4129 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4130 behaviour. */
4131 if (execution_direction == EXEC_REVERSE)
4132 return;
4133
4134 /* If the target can tell whether the thread hit a SW breakpoint,
4135 trust it. Targets that can tell also adjust the PC
4136 themselves. */
4137 if (target_supports_stopped_by_sw_breakpoint ())
4138 return;
4139
4140 /* Note that relying on whether a breakpoint is planted in memory to
4141 determine this can fail. E.g,. the breakpoint could have been
4142 removed since. Or the thread could have been told to step an
4143 instruction the size of a breakpoint instruction, and only
4144 _after_ was a breakpoint inserted at its address. */
4145
4146 /* If this target does not decrement the PC after breakpoints, then
4147 we have nothing to do. */
4148 regcache = get_thread_regcache (thread->ptid);
4149 gdbarch = get_regcache_arch (regcache);
4150
4151 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4152 if (decr_pc == 0)
4153 return;
4154
4155 aspace = get_regcache_aspace (regcache);
4156
4157 /* Find the location where (if we've hit a breakpoint) the
4158 breakpoint would be. */
4159 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4160
4161 /* If the target can't tell whether a software breakpoint triggered,
4162 fallback to figuring it out based on breakpoints we think were
4163 inserted in the target, and on whether the thread was stepped or
4164 continued. */
4165
4166 /* Check whether there actually is a software breakpoint inserted at
4167 that location.
4168
4169 If in non-stop mode, a race condition is possible where we've
4170 removed a breakpoint, but stop events for that breakpoint were
4171 already queued and arrive later. To suppress those spurious
4172 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4173 and retire them after a number of stop events are reported. Note
4174 this is an heuristic and can thus get confused. The real fix is
4175 to get the "stopped by SW BP and needs adjustment" info out of
4176 the target/kernel (and thus never reach here; see above). */
4177 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4178 || (target_is_non_stop_p ()
4179 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4180 {
4181 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4182
4183 if (record_full_is_used ())
4184 restore_operation_disable.emplace
4185 (record_full_gdb_operation_disable_set ());
4186
4187 /* When using hardware single-step, a SIGTRAP is reported for both
4188 a completed single-step and a software breakpoint. Need to
4189 differentiate between the two, as the latter needs adjusting
4190 but the former does not.
4191
4192 The SIGTRAP can be due to a completed hardware single-step only if
4193 - we didn't insert software single-step breakpoints
4194 - this thread is currently being stepped
4195
4196 If any of these events did not occur, we must have stopped due
4197 to hitting a software breakpoint, and have to back up to the
4198 breakpoint address.
4199
4200 As a special case, we could have hardware single-stepped a
4201 software breakpoint. In this case (prev_pc == breakpoint_pc),
4202 we also need to back up to the breakpoint address. */
4203
4204 if (thread_has_single_step_breakpoints_set (thread)
4205 || !currently_stepping (thread)
4206 || (thread->stepped_breakpoint
4207 && thread->prev_pc == breakpoint_pc))
4208 regcache_write_pc (regcache, breakpoint_pc);
4209 }
4210 }
4211
4212 static int
4213 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4214 {
4215 for (frame = get_prev_frame (frame);
4216 frame != NULL;
4217 frame = get_prev_frame (frame))
4218 {
4219 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4220 return 1;
4221 if (get_frame_type (frame) != INLINE_FRAME)
4222 break;
4223 }
4224
4225 return 0;
4226 }
4227
4228 /* If the event thread has the stop requested flag set, pretend it
4229 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4230 target_stop). */
4231
4232 static bool
4233 handle_stop_requested (struct execution_control_state *ecs)
4234 {
4235 if (ecs->event_thread->stop_requested)
4236 {
4237 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4238 ecs->ws.value.sig = GDB_SIGNAL_0;
4239 handle_signal_stop (ecs);
4240 return true;
4241 }
4242 return false;
4243 }
4244
4245 /* Auxiliary function that handles syscall entry/return events.
4246 It returns 1 if the inferior should keep going (and GDB
4247 should ignore the event), or 0 if the event deserves to be
4248 processed. */
4249
4250 static int
4251 handle_syscall_event (struct execution_control_state *ecs)
4252 {
4253 struct regcache *regcache;
4254 int syscall_number;
4255
4256 if (!ptid_equal (ecs->ptid, inferior_ptid))
4257 context_switch (ecs->ptid);
4258
4259 regcache = get_thread_regcache (ecs->ptid);
4260 syscall_number = ecs->ws.value.syscall_number;
4261 stop_pc = regcache_read_pc (regcache);
4262
4263 if (catch_syscall_enabled () > 0
4264 && catching_syscall_number (syscall_number) > 0)
4265 {
4266 if (debug_infrun)
4267 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4268 syscall_number);
4269
4270 ecs->event_thread->control.stop_bpstat
4271 = bpstat_stop_status (get_regcache_aspace (regcache),
4272 stop_pc, ecs->ptid, &ecs->ws);
4273
4274 if (handle_stop_requested (ecs))
4275 return 0;
4276
4277 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4278 {
4279 /* Catchpoint hit. */
4280 return 0;
4281 }
4282 }
4283
4284 if (handle_stop_requested (ecs))
4285 return 0;
4286
4287 /* If no catchpoint triggered for this, then keep going. */
4288 keep_going (ecs);
4289 return 1;
4290 }
4291
4292 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4293
4294 static void
4295 fill_in_stop_func (struct gdbarch *gdbarch,
4296 struct execution_control_state *ecs)
4297 {
4298 if (!ecs->stop_func_filled_in)
4299 {
4300 /* Don't care about return value; stop_func_start and stop_func_name
4301 will both be 0 if it doesn't work. */
4302 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4303 &ecs->stop_func_start, &ecs->stop_func_end);
4304 ecs->stop_func_start
4305 += gdbarch_deprecated_function_start_offset (gdbarch);
4306
4307 if (gdbarch_skip_entrypoint_p (gdbarch))
4308 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4309 ecs->stop_func_start);
4310
4311 ecs->stop_func_filled_in = 1;
4312 }
4313 }
4314
4315
4316 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4317
4318 static enum stop_kind
4319 get_inferior_stop_soon (ptid_t ptid)
4320 {
4321 struct inferior *inf = find_inferior_ptid (ptid);
4322
4323 gdb_assert (inf != NULL);
4324 return inf->control.stop_soon;
4325 }
4326
4327 /* Wait for one event. Store the resulting waitstatus in WS, and
4328 return the event ptid. */
4329
4330 static ptid_t
4331 wait_one (struct target_waitstatus *ws)
4332 {
4333 ptid_t event_ptid;
4334 ptid_t wait_ptid = minus_one_ptid;
4335
4336 overlay_cache_invalid = 1;
4337
4338 /* Flush target cache before starting to handle each event.
4339 Target was running and cache could be stale. This is just a
4340 heuristic. Running threads may modify target memory, but we
4341 don't get any event. */
4342 target_dcache_invalidate ();
4343
4344 if (deprecated_target_wait_hook)
4345 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4346 else
4347 event_ptid = target_wait (wait_ptid, ws, 0);
4348
4349 if (debug_infrun)
4350 print_target_wait_results (wait_ptid, event_ptid, ws);
4351
4352 return event_ptid;
4353 }
4354
4355 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4356 instead of the current thread. */
4357 #define THREAD_STOPPED_BY(REASON) \
4358 static int \
4359 thread_stopped_by_ ## REASON (ptid_t ptid) \
4360 { \
4361 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4362 inferior_ptid = ptid; \
4363 \
4364 return target_stopped_by_ ## REASON (); \
4365 }
4366
4367 /* Generate thread_stopped_by_watchpoint. */
4368 THREAD_STOPPED_BY (watchpoint)
4369 /* Generate thread_stopped_by_sw_breakpoint. */
4370 THREAD_STOPPED_BY (sw_breakpoint)
4371 /* Generate thread_stopped_by_hw_breakpoint. */
4372 THREAD_STOPPED_BY (hw_breakpoint)
4373
4374 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4375
4376 static void
4377 switch_to_thread_cleanup (void *ptid_p)
4378 {
4379 ptid_t ptid = *(ptid_t *) ptid_p;
4380
4381 switch_to_thread (ptid);
4382 }
4383
4384 /* Save the thread's event and stop reason to process it later. */
4385
4386 static void
4387 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4388 {
4389 struct regcache *regcache;
4390 struct address_space *aspace;
4391
4392 if (debug_infrun)
4393 {
4394 std::string statstr = target_waitstatus_to_string (ws);
4395
4396 fprintf_unfiltered (gdb_stdlog,
4397 "infrun: saving status %s for %d.%ld.%ld\n",
4398 statstr.c_str (),
4399 ptid_get_pid (tp->ptid),
4400 ptid_get_lwp (tp->ptid),
4401 ptid_get_tid (tp->ptid));
4402 }
4403
4404 /* Record for later. */
4405 tp->suspend.waitstatus = *ws;
4406 tp->suspend.waitstatus_pending_p = 1;
4407
4408 regcache = get_thread_regcache (tp->ptid);
4409 aspace = get_regcache_aspace (regcache);
4410
4411 if (ws->kind == TARGET_WAITKIND_STOPPED
4412 && ws->value.sig == GDB_SIGNAL_TRAP)
4413 {
4414 CORE_ADDR pc = regcache_read_pc (regcache);
4415
4416 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4417
4418 if (thread_stopped_by_watchpoint (tp->ptid))
4419 {
4420 tp->suspend.stop_reason
4421 = TARGET_STOPPED_BY_WATCHPOINT;
4422 }
4423 else if (target_supports_stopped_by_sw_breakpoint ()
4424 && thread_stopped_by_sw_breakpoint (tp->ptid))
4425 {
4426 tp->suspend.stop_reason
4427 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4428 }
4429 else if (target_supports_stopped_by_hw_breakpoint ()
4430 && thread_stopped_by_hw_breakpoint (tp->ptid))
4431 {
4432 tp->suspend.stop_reason
4433 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4434 }
4435 else if (!target_supports_stopped_by_hw_breakpoint ()
4436 && hardware_breakpoint_inserted_here_p (aspace,
4437 pc))
4438 {
4439 tp->suspend.stop_reason
4440 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4441 }
4442 else if (!target_supports_stopped_by_sw_breakpoint ()
4443 && software_breakpoint_inserted_here_p (aspace,
4444 pc))
4445 {
4446 tp->suspend.stop_reason
4447 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4448 }
4449 else if (!thread_has_single_step_breakpoints_set (tp)
4450 && currently_stepping (tp))
4451 {
4452 tp->suspend.stop_reason
4453 = TARGET_STOPPED_BY_SINGLE_STEP;
4454 }
4455 }
4456 }
4457
4458 /* A cleanup that disables thread create/exit events. */
4459
4460 static void
4461 disable_thread_events (void *arg)
4462 {
4463 target_thread_events (0);
4464 }
4465
4466 /* See infrun.h. */
4467
4468 void
4469 stop_all_threads (void)
4470 {
4471 /* We may need multiple passes to discover all threads. */
4472 int pass;
4473 int iterations = 0;
4474 ptid_t entry_ptid;
4475 struct cleanup *old_chain;
4476
4477 gdb_assert (target_is_non_stop_p ());
4478
4479 if (debug_infrun)
4480 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4481
4482 entry_ptid = inferior_ptid;
4483 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4484
4485 target_thread_events (1);
4486 make_cleanup (disable_thread_events, NULL);
4487
4488 /* Request threads to stop, and then wait for the stops. Because
4489 threads we already know about can spawn more threads while we're
4490 trying to stop them, and we only learn about new threads when we
4491 update the thread list, do this in a loop, and keep iterating
4492 until two passes find no threads that need to be stopped. */
4493 for (pass = 0; pass < 2; pass++, iterations++)
4494 {
4495 if (debug_infrun)
4496 fprintf_unfiltered (gdb_stdlog,
4497 "infrun: stop_all_threads, pass=%d, "
4498 "iterations=%d\n", pass, iterations);
4499 while (1)
4500 {
4501 ptid_t event_ptid;
4502 struct target_waitstatus ws;
4503 int need_wait = 0;
4504 struct thread_info *t;
4505
4506 update_thread_list ();
4507
4508 /* Go through all threads looking for threads that we need
4509 to tell the target to stop. */
4510 ALL_NON_EXITED_THREADS (t)
4511 {
4512 if (t->executing)
4513 {
4514 /* If already stopping, don't request a stop again.
4515 We just haven't seen the notification yet. */
4516 if (!t->stop_requested)
4517 {
4518 if (debug_infrun)
4519 fprintf_unfiltered (gdb_stdlog,
4520 "infrun: %s executing, "
4521 "need stop\n",
4522 target_pid_to_str (t->ptid));
4523 target_stop (t->ptid);
4524 t->stop_requested = 1;
4525 }
4526 else
4527 {
4528 if (debug_infrun)
4529 fprintf_unfiltered (gdb_stdlog,
4530 "infrun: %s executing, "
4531 "already stopping\n",
4532 target_pid_to_str (t->ptid));
4533 }
4534
4535 if (t->stop_requested)
4536 need_wait = 1;
4537 }
4538 else
4539 {
4540 if (debug_infrun)
4541 fprintf_unfiltered (gdb_stdlog,
4542 "infrun: %s not executing\n",
4543 target_pid_to_str (t->ptid));
4544
4545 /* The thread may be not executing, but still be
4546 resumed with a pending status to process. */
4547 t->resumed = 0;
4548 }
4549 }
4550
4551 if (!need_wait)
4552 break;
4553
4554 /* If we find new threads on the second iteration, restart
4555 over. We want to see two iterations in a row with all
4556 threads stopped. */
4557 if (pass > 0)
4558 pass = -1;
4559
4560 event_ptid = wait_one (&ws);
4561 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4562 {
4563 /* All resumed threads exited. */
4564 }
4565 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4566 || ws.kind == TARGET_WAITKIND_EXITED
4567 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4568 {
4569 if (debug_infrun)
4570 {
4571 ptid_t ptid = pid_to_ptid (ws.value.integer);
4572
4573 fprintf_unfiltered (gdb_stdlog,
4574 "infrun: %s exited while "
4575 "stopping threads\n",
4576 target_pid_to_str (ptid));
4577 }
4578 }
4579 else
4580 {
4581 struct inferior *inf;
4582
4583 t = find_thread_ptid (event_ptid);
4584 if (t == NULL)
4585 t = add_thread (event_ptid);
4586
4587 t->stop_requested = 0;
4588 t->executing = 0;
4589 t->resumed = 0;
4590 t->control.may_range_step = 0;
4591
4592 /* This may be the first time we see the inferior report
4593 a stop. */
4594 inf = find_inferior_ptid (event_ptid);
4595 if (inf->needs_setup)
4596 {
4597 switch_to_thread_no_regs (t);
4598 setup_inferior (0);
4599 }
4600
4601 if (ws.kind == TARGET_WAITKIND_STOPPED
4602 && ws.value.sig == GDB_SIGNAL_0)
4603 {
4604 /* We caught the event that we intended to catch, so
4605 there's no event pending. */
4606 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4607 t->suspend.waitstatus_pending_p = 0;
4608
4609 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4610 {
4611 /* Add it back to the step-over queue. */
4612 if (debug_infrun)
4613 {
4614 fprintf_unfiltered (gdb_stdlog,
4615 "infrun: displaced-step of %s "
4616 "canceled: adding back to the "
4617 "step-over queue\n",
4618 target_pid_to_str (t->ptid));
4619 }
4620 t->control.trap_expected = 0;
4621 thread_step_over_chain_enqueue (t);
4622 }
4623 }
4624 else
4625 {
4626 enum gdb_signal sig;
4627 struct regcache *regcache;
4628
4629 if (debug_infrun)
4630 {
4631 std::string statstr = target_waitstatus_to_string (&ws);
4632
4633 fprintf_unfiltered (gdb_stdlog,
4634 "infrun: target_wait %s, saving "
4635 "status for %d.%ld.%ld\n",
4636 statstr.c_str (),
4637 ptid_get_pid (t->ptid),
4638 ptid_get_lwp (t->ptid),
4639 ptid_get_tid (t->ptid));
4640 }
4641
4642 /* Record for later. */
4643 save_waitstatus (t, &ws);
4644
4645 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4646 ? ws.value.sig : GDB_SIGNAL_0);
4647
4648 if (displaced_step_fixup (t->ptid, sig) < 0)
4649 {
4650 /* Add it back to the step-over queue. */
4651 t->control.trap_expected = 0;
4652 thread_step_over_chain_enqueue (t);
4653 }
4654
4655 regcache = get_thread_regcache (t->ptid);
4656 t->suspend.stop_pc = regcache_read_pc (regcache);
4657
4658 if (debug_infrun)
4659 {
4660 fprintf_unfiltered (gdb_stdlog,
4661 "infrun: saved stop_pc=%s for %s "
4662 "(currently_stepping=%d)\n",
4663 paddress (target_gdbarch (),
4664 t->suspend.stop_pc),
4665 target_pid_to_str (t->ptid),
4666 currently_stepping (t));
4667 }
4668 }
4669 }
4670 }
4671 }
4672
4673 do_cleanups (old_chain);
4674
4675 if (debug_infrun)
4676 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4677 }
4678
4679 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4680
4681 static int
4682 handle_no_resumed (struct execution_control_state *ecs)
4683 {
4684 struct inferior *inf;
4685 struct thread_info *thread;
4686
4687 if (target_can_async_p ())
4688 {
4689 struct ui *ui;
4690 int any_sync = 0;
4691
4692 ALL_UIS (ui)
4693 {
4694 if (ui->prompt_state == PROMPT_BLOCKED)
4695 {
4696 any_sync = 1;
4697 break;
4698 }
4699 }
4700 if (!any_sync)
4701 {
4702 /* There were no unwaited-for children left in the target, but,
4703 we're not synchronously waiting for events either. Just
4704 ignore. */
4705
4706 if (debug_infrun)
4707 fprintf_unfiltered (gdb_stdlog,
4708 "infrun: TARGET_WAITKIND_NO_RESUMED "
4709 "(ignoring: bg)\n");
4710 prepare_to_wait (ecs);
4711 return 1;
4712 }
4713 }
4714
4715 /* Otherwise, if we were running a synchronous execution command, we
4716 may need to cancel it and give the user back the terminal.
4717
4718 In non-stop mode, the target can't tell whether we've already
4719 consumed previous stop events, so it can end up sending us a
4720 no-resumed event like so:
4721
4722 #0 - thread 1 is left stopped
4723
4724 #1 - thread 2 is resumed and hits breakpoint
4725 -> TARGET_WAITKIND_STOPPED
4726
4727 #2 - thread 3 is resumed and exits
4728 this is the last resumed thread, so
4729 -> TARGET_WAITKIND_NO_RESUMED
4730
4731 #3 - gdb processes stop for thread 2 and decides to re-resume
4732 it.
4733
4734 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4735 thread 2 is now resumed, so the event should be ignored.
4736
4737 IOW, if the stop for thread 2 doesn't end a foreground command,
4738 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4739 event. But it could be that the event meant that thread 2 itself
4740 (or whatever other thread was the last resumed thread) exited.
4741
4742 To address this we refresh the thread list and check whether we
4743 have resumed threads _now_. In the example above, this removes
4744 thread 3 from the thread list. If thread 2 was re-resumed, we
4745 ignore this event. If we find no thread resumed, then we cancel
4746 the synchronous command show "no unwaited-for " to the user. */
4747 update_thread_list ();
4748
4749 ALL_NON_EXITED_THREADS (thread)
4750 {
4751 if (thread->executing
4752 || thread->suspend.waitstatus_pending_p)
4753 {
4754 /* There were no unwaited-for children left in the target at
4755 some point, but there are now. Just ignore. */
4756 if (debug_infrun)
4757 fprintf_unfiltered (gdb_stdlog,
4758 "infrun: TARGET_WAITKIND_NO_RESUMED "
4759 "(ignoring: found resumed)\n");
4760 prepare_to_wait (ecs);
4761 return 1;
4762 }
4763 }
4764
4765 /* Note however that we may find no resumed thread because the whole
4766 process exited meanwhile (thus updating the thread list results
4767 in an empty thread list). In this case we know we'll be getting
4768 a process exit event shortly. */
4769 ALL_INFERIORS (inf)
4770 {
4771 if (inf->pid == 0)
4772 continue;
4773
4774 thread = any_live_thread_of_process (inf->pid);
4775 if (thread == NULL)
4776 {
4777 if (debug_infrun)
4778 fprintf_unfiltered (gdb_stdlog,
4779 "infrun: TARGET_WAITKIND_NO_RESUMED "
4780 "(expect process exit)\n");
4781 prepare_to_wait (ecs);
4782 return 1;
4783 }
4784 }
4785
4786 /* Go ahead and report the event. */
4787 return 0;
4788 }
4789
4790 /* Given an execution control state that has been freshly filled in by
4791 an event from the inferior, figure out what it means and take
4792 appropriate action.
4793
4794 The alternatives are:
4795
4796 1) stop_waiting and return; to really stop and return to the
4797 debugger.
4798
4799 2) keep_going and return; to wait for the next event (set
4800 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4801 once). */
4802
4803 static void
4804 handle_inferior_event_1 (struct execution_control_state *ecs)
4805 {
4806 enum stop_kind stop_soon;
4807
4808 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4809 {
4810 /* We had an event in the inferior, but we are not interested in
4811 handling it at this level. The lower layers have already
4812 done what needs to be done, if anything.
4813
4814 One of the possible circumstances for this is when the
4815 inferior produces output for the console. The inferior has
4816 not stopped, and we are ignoring the event. Another possible
4817 circumstance is any event which the lower level knows will be
4818 reported multiple times without an intervening resume. */
4819 if (debug_infrun)
4820 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4821 prepare_to_wait (ecs);
4822 return;
4823 }
4824
4825 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4826 {
4827 if (debug_infrun)
4828 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4829 prepare_to_wait (ecs);
4830 return;
4831 }
4832
4833 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4834 && handle_no_resumed (ecs))
4835 return;
4836
4837 /* Cache the last pid/waitstatus. */
4838 set_last_target_status (ecs->ptid, ecs->ws);
4839
4840 /* Always clear state belonging to the previous time we stopped. */
4841 stop_stack_dummy = STOP_NONE;
4842
4843 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4844 {
4845 /* No unwaited-for children left. IOW, all resumed children
4846 have exited. */
4847 if (debug_infrun)
4848 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4849
4850 stop_print_frame = 0;
4851 stop_waiting (ecs);
4852 return;
4853 }
4854
4855 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4856 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4857 {
4858 ecs->event_thread = find_thread_ptid (ecs->ptid);
4859 /* If it's a new thread, add it to the thread database. */
4860 if (ecs->event_thread == NULL)
4861 ecs->event_thread = add_thread (ecs->ptid);
4862
4863 /* Disable range stepping. If the next step request could use a
4864 range, this will be end up re-enabled then. */
4865 ecs->event_thread->control.may_range_step = 0;
4866 }
4867
4868 /* Dependent on valid ECS->EVENT_THREAD. */
4869 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4870
4871 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4872 reinit_frame_cache ();
4873
4874 breakpoint_retire_moribund ();
4875
4876 /* First, distinguish signals caused by the debugger from signals
4877 that have to do with the program's own actions. Note that
4878 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4879 on the operating system version. Here we detect when a SIGILL or
4880 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4881 something similar for SIGSEGV, since a SIGSEGV will be generated
4882 when we're trying to execute a breakpoint instruction on a
4883 non-executable stack. This happens for call dummy breakpoints
4884 for architectures like SPARC that place call dummies on the
4885 stack. */
4886 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4887 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4888 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4889 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4890 {
4891 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4892
4893 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4894 regcache_read_pc (regcache)))
4895 {
4896 if (debug_infrun)
4897 fprintf_unfiltered (gdb_stdlog,
4898 "infrun: Treating signal as SIGTRAP\n");
4899 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4900 }
4901 }
4902
4903 /* Mark the non-executing threads accordingly. In all-stop, all
4904 threads of all processes are stopped when we get any event
4905 reported. In non-stop mode, only the event thread stops. */
4906 {
4907 ptid_t mark_ptid;
4908
4909 if (!target_is_non_stop_p ())
4910 mark_ptid = minus_one_ptid;
4911 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4912 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4913 {
4914 /* If we're handling a process exit in non-stop mode, even
4915 though threads haven't been deleted yet, one would think
4916 that there is nothing to do, as threads of the dead process
4917 will be soon deleted, and threads of any other process were
4918 left running. However, on some targets, threads survive a
4919 process exit event. E.g., for the "checkpoint" command,
4920 when the current checkpoint/fork exits, linux-fork.c
4921 automatically switches to another fork from within
4922 target_mourn_inferior, by associating the same
4923 inferior/thread to another fork. We haven't mourned yet at
4924 this point, but we must mark any threads left in the
4925 process as not-executing so that finish_thread_state marks
4926 them stopped (in the user's perspective) if/when we present
4927 the stop to the user. */
4928 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4929 }
4930 else
4931 mark_ptid = ecs->ptid;
4932
4933 set_executing (mark_ptid, 0);
4934
4935 /* Likewise the resumed flag. */
4936 set_resumed (mark_ptid, 0);
4937 }
4938
4939 switch (ecs->ws.kind)
4940 {
4941 case TARGET_WAITKIND_LOADED:
4942 if (debug_infrun)
4943 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4944 if (!ptid_equal (ecs->ptid, inferior_ptid))
4945 context_switch (ecs->ptid);
4946 /* Ignore gracefully during startup of the inferior, as it might
4947 be the shell which has just loaded some objects, otherwise
4948 add the symbols for the newly loaded objects. Also ignore at
4949 the beginning of an attach or remote session; we will query
4950 the full list of libraries once the connection is
4951 established. */
4952
4953 stop_soon = get_inferior_stop_soon (ecs->ptid);
4954 if (stop_soon == NO_STOP_QUIETLY)
4955 {
4956 struct regcache *regcache;
4957
4958 regcache = get_thread_regcache (ecs->ptid);
4959
4960 handle_solib_event ();
4961
4962 ecs->event_thread->control.stop_bpstat
4963 = bpstat_stop_status (get_regcache_aspace (regcache),
4964 stop_pc, ecs->ptid, &ecs->ws);
4965
4966 if (handle_stop_requested (ecs))
4967 return;
4968
4969 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4970 {
4971 /* A catchpoint triggered. */
4972 process_event_stop_test (ecs);
4973 return;
4974 }
4975
4976 /* If requested, stop when the dynamic linker notifies
4977 gdb of events. This allows the user to get control
4978 and place breakpoints in initializer routines for
4979 dynamically loaded objects (among other things). */
4980 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4981 if (stop_on_solib_events)
4982 {
4983 /* Make sure we print "Stopped due to solib-event" in
4984 normal_stop. */
4985 stop_print_frame = 1;
4986
4987 stop_waiting (ecs);
4988 return;
4989 }
4990 }
4991
4992 /* If we are skipping through a shell, or through shared library
4993 loading that we aren't interested in, resume the program. If
4994 we're running the program normally, also resume. */
4995 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4996 {
4997 /* Loading of shared libraries might have changed breakpoint
4998 addresses. Make sure new breakpoints are inserted. */
4999 if (stop_soon == NO_STOP_QUIETLY)
5000 insert_breakpoints ();
5001 resume (GDB_SIGNAL_0);
5002 prepare_to_wait (ecs);
5003 return;
5004 }
5005
5006 /* But stop if we're attaching or setting up a remote
5007 connection. */
5008 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5009 || stop_soon == STOP_QUIETLY_REMOTE)
5010 {
5011 if (debug_infrun)
5012 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5013 stop_waiting (ecs);
5014 return;
5015 }
5016
5017 internal_error (__FILE__, __LINE__,
5018 _("unhandled stop_soon: %d"), (int) stop_soon);
5019
5020 case TARGET_WAITKIND_SPURIOUS:
5021 if (debug_infrun)
5022 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5023 if (handle_stop_requested (ecs))
5024 return;
5025 if (!ptid_equal (ecs->ptid, inferior_ptid))
5026 context_switch (ecs->ptid);
5027 resume (GDB_SIGNAL_0);
5028 prepare_to_wait (ecs);
5029 return;
5030
5031 case TARGET_WAITKIND_THREAD_CREATED:
5032 if (debug_infrun)
5033 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5034 if (handle_stop_requested (ecs))
5035 return;
5036 if (!ptid_equal (ecs->ptid, inferior_ptid))
5037 context_switch (ecs->ptid);
5038 if (!switch_back_to_stepped_thread (ecs))
5039 keep_going (ecs);
5040 return;
5041
5042 case TARGET_WAITKIND_EXITED:
5043 case TARGET_WAITKIND_SIGNALLED:
5044 if (debug_infrun)
5045 {
5046 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5047 fprintf_unfiltered (gdb_stdlog,
5048 "infrun: TARGET_WAITKIND_EXITED\n");
5049 else
5050 fprintf_unfiltered (gdb_stdlog,
5051 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5052 }
5053
5054 inferior_ptid = ecs->ptid;
5055 set_current_inferior (find_inferior_ptid (ecs->ptid));
5056 set_current_program_space (current_inferior ()->pspace);
5057 handle_vfork_child_exec_or_exit (0);
5058 target_terminal::ours (); /* Must do this before mourn anyway. */
5059
5060 /* Clearing any previous state of convenience variables. */
5061 clear_exit_convenience_vars ();
5062
5063 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5064 {
5065 /* Record the exit code in the convenience variable $_exitcode, so
5066 that the user can inspect this again later. */
5067 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5068 (LONGEST) ecs->ws.value.integer);
5069
5070 /* Also record this in the inferior itself. */
5071 current_inferior ()->has_exit_code = 1;
5072 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5073
5074 /* Support the --return-child-result option. */
5075 return_child_result_value = ecs->ws.value.integer;
5076
5077 observer_notify_exited (ecs->ws.value.integer);
5078 }
5079 else
5080 {
5081 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5082 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5083
5084 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5085 {
5086 /* Set the value of the internal variable $_exitsignal,
5087 which holds the signal uncaught by the inferior. */
5088 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5089 gdbarch_gdb_signal_to_target (gdbarch,
5090 ecs->ws.value.sig));
5091 }
5092 else
5093 {
5094 /* We don't have access to the target's method used for
5095 converting between signal numbers (GDB's internal
5096 representation <-> target's representation).
5097 Therefore, we cannot do a good job at displaying this
5098 information to the user. It's better to just warn
5099 her about it (if infrun debugging is enabled), and
5100 give up. */
5101 if (debug_infrun)
5102 fprintf_filtered (gdb_stdlog, _("\
5103 Cannot fill $_exitsignal with the correct signal number.\n"));
5104 }
5105
5106 observer_notify_signal_exited (ecs->ws.value.sig);
5107 }
5108
5109 gdb_flush (gdb_stdout);
5110 target_mourn_inferior (inferior_ptid);
5111 stop_print_frame = 0;
5112 stop_waiting (ecs);
5113 return;
5114
5115 /* The following are the only cases in which we keep going;
5116 the above cases end in a continue or goto. */
5117 case TARGET_WAITKIND_FORKED:
5118 case TARGET_WAITKIND_VFORKED:
5119 if (debug_infrun)
5120 {
5121 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5122 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5123 else
5124 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5125 }
5126
5127 /* Check whether the inferior is displaced stepping. */
5128 {
5129 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5130 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5131
5132 /* If checking displaced stepping is supported, and thread
5133 ecs->ptid is displaced stepping. */
5134 if (displaced_step_in_progress_thread (ecs->ptid))
5135 {
5136 struct inferior *parent_inf
5137 = find_inferior_ptid (ecs->ptid);
5138 struct regcache *child_regcache;
5139 CORE_ADDR parent_pc;
5140
5141 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5142 indicating that the displaced stepping of syscall instruction
5143 has been done. Perform cleanup for parent process here. Note
5144 that this operation also cleans up the child process for vfork,
5145 because their pages are shared. */
5146 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5147 /* Start a new step-over in another thread if there's one
5148 that needs it. */
5149 start_step_over ();
5150
5151 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5152 {
5153 struct displaced_step_inferior_state *displaced
5154 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5155
5156 /* Restore scratch pad for child process. */
5157 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5158 }
5159
5160 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5161 the child's PC is also within the scratchpad. Set the child's PC
5162 to the parent's PC value, which has already been fixed up.
5163 FIXME: we use the parent's aspace here, although we're touching
5164 the child, because the child hasn't been added to the inferior
5165 list yet at this point. */
5166
5167 child_regcache
5168 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5169 gdbarch,
5170 parent_inf->aspace);
5171 /* Read PC value of parent process. */
5172 parent_pc = regcache_read_pc (regcache);
5173
5174 if (debug_displaced)
5175 fprintf_unfiltered (gdb_stdlog,
5176 "displaced: write child pc from %s to %s\n",
5177 paddress (gdbarch,
5178 regcache_read_pc (child_regcache)),
5179 paddress (gdbarch, parent_pc));
5180
5181 regcache_write_pc (child_regcache, parent_pc);
5182 }
5183 }
5184
5185 if (!ptid_equal (ecs->ptid, inferior_ptid))
5186 context_switch (ecs->ptid);
5187
5188 /* Immediately detach breakpoints from the child before there's
5189 any chance of letting the user delete breakpoints from the
5190 breakpoint lists. If we don't do this early, it's easy to
5191 leave left over traps in the child, vis: "break foo; catch
5192 fork; c; <fork>; del; c; <child calls foo>". We only follow
5193 the fork on the last `continue', and by that time the
5194 breakpoint at "foo" is long gone from the breakpoint table.
5195 If we vforked, then we don't need to unpatch here, since both
5196 parent and child are sharing the same memory pages; we'll
5197 need to unpatch at follow/detach time instead to be certain
5198 that new breakpoints added between catchpoint hit time and
5199 vfork follow are detached. */
5200 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5201 {
5202 /* This won't actually modify the breakpoint list, but will
5203 physically remove the breakpoints from the child. */
5204 detach_breakpoints (ecs->ws.value.related_pid);
5205 }
5206
5207 delete_just_stopped_threads_single_step_breakpoints ();
5208
5209 /* In case the event is caught by a catchpoint, remember that
5210 the event is to be followed at the next resume of the thread,
5211 and not immediately. */
5212 ecs->event_thread->pending_follow = ecs->ws;
5213
5214 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5215
5216 ecs->event_thread->control.stop_bpstat
5217 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5218 stop_pc, ecs->ptid, &ecs->ws);
5219
5220 if (handle_stop_requested (ecs))
5221 return;
5222
5223 /* If no catchpoint triggered for this, then keep going. Note
5224 that we're interested in knowing the bpstat actually causes a
5225 stop, not just if it may explain the signal. Software
5226 watchpoints, for example, always appear in the bpstat. */
5227 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5228 {
5229 ptid_t parent;
5230 ptid_t child;
5231 int should_resume;
5232 int follow_child
5233 = (follow_fork_mode_string == follow_fork_mode_child);
5234
5235 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5236
5237 should_resume = follow_fork ();
5238
5239 parent = ecs->ptid;
5240 child = ecs->ws.value.related_pid;
5241
5242 /* At this point, the parent is marked running, and the
5243 child is marked stopped. */
5244
5245 /* If not resuming the parent, mark it stopped. */
5246 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5247 set_running (parent, 0);
5248
5249 /* If resuming the child, mark it running. */
5250 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5251 set_running (child, 1);
5252
5253 /* In non-stop mode, also resume the other branch. */
5254 if (!detach_fork && (non_stop
5255 || (sched_multi && target_is_non_stop_p ())))
5256 {
5257 if (follow_child)
5258 switch_to_thread (parent);
5259 else
5260 switch_to_thread (child);
5261
5262 ecs->event_thread = inferior_thread ();
5263 ecs->ptid = inferior_ptid;
5264 keep_going (ecs);
5265 }
5266
5267 if (follow_child)
5268 switch_to_thread (child);
5269 else
5270 switch_to_thread (parent);
5271
5272 ecs->event_thread = inferior_thread ();
5273 ecs->ptid = inferior_ptid;
5274
5275 if (should_resume)
5276 keep_going (ecs);
5277 else
5278 stop_waiting (ecs);
5279 return;
5280 }
5281 process_event_stop_test (ecs);
5282 return;
5283
5284 case TARGET_WAITKIND_VFORK_DONE:
5285 /* Done with the shared memory region. Re-insert breakpoints in
5286 the parent, and keep going. */
5287
5288 if (debug_infrun)
5289 fprintf_unfiltered (gdb_stdlog,
5290 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5291
5292 if (!ptid_equal (ecs->ptid, inferior_ptid))
5293 context_switch (ecs->ptid);
5294
5295 current_inferior ()->waiting_for_vfork_done = 0;
5296 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5297
5298 if (handle_stop_requested (ecs))
5299 return;
5300
5301 /* This also takes care of reinserting breakpoints in the
5302 previously locked inferior. */
5303 keep_going (ecs);
5304 return;
5305
5306 case TARGET_WAITKIND_EXECD:
5307 if (debug_infrun)
5308 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5309
5310 /* Note we can't read registers yet (the stop_pc), because we
5311 don't yet know the inferior's post-exec architecture.
5312 'stop_pc' is explicitly read below instead. */
5313 if (!ptid_equal (ecs->ptid, inferior_ptid))
5314 switch_to_thread_no_regs (ecs->event_thread);
5315
5316 /* Do whatever is necessary to the parent branch of the vfork. */
5317 handle_vfork_child_exec_or_exit (1);
5318
5319 /* This causes the eventpoints and symbol table to be reset.
5320 Must do this now, before trying to determine whether to
5321 stop. */
5322 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5323
5324 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5325
5326 /* In follow_exec we may have deleted the original thread and
5327 created a new one. Make sure that the event thread is the
5328 execd thread for that case (this is a nop otherwise). */
5329 ecs->event_thread = inferior_thread ();
5330
5331 ecs->event_thread->control.stop_bpstat
5332 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5333 stop_pc, ecs->ptid, &ecs->ws);
5334
5335 /* Note that this may be referenced from inside
5336 bpstat_stop_status above, through inferior_has_execd. */
5337 xfree (ecs->ws.value.execd_pathname);
5338 ecs->ws.value.execd_pathname = NULL;
5339
5340 if (handle_stop_requested (ecs))
5341 return;
5342
5343 /* If no catchpoint triggered for this, then keep going. */
5344 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5345 {
5346 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5347 keep_going (ecs);
5348 return;
5349 }
5350 process_event_stop_test (ecs);
5351 return;
5352
5353 /* Be careful not to try to gather much state about a thread
5354 that's in a syscall. It's frequently a losing proposition. */
5355 case TARGET_WAITKIND_SYSCALL_ENTRY:
5356 if (debug_infrun)
5357 fprintf_unfiltered (gdb_stdlog,
5358 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5359 /* Getting the current syscall number. */
5360 if (handle_syscall_event (ecs) == 0)
5361 process_event_stop_test (ecs);
5362 return;
5363
5364 /* Before examining the threads further, step this thread to
5365 get it entirely out of the syscall. (We get notice of the
5366 event when the thread is just on the verge of exiting a
5367 syscall. Stepping one instruction seems to get it back
5368 into user code.) */
5369 case TARGET_WAITKIND_SYSCALL_RETURN:
5370 if (debug_infrun)
5371 fprintf_unfiltered (gdb_stdlog,
5372 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5373 if (handle_syscall_event (ecs) == 0)
5374 process_event_stop_test (ecs);
5375 return;
5376
5377 case TARGET_WAITKIND_STOPPED:
5378 if (debug_infrun)
5379 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5380 handle_signal_stop (ecs);
5381 return;
5382
5383 case TARGET_WAITKIND_NO_HISTORY:
5384 if (debug_infrun)
5385 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5386 /* Reverse execution: target ran out of history info. */
5387
5388 /* Switch to the stopped thread. */
5389 if (!ptid_equal (ecs->ptid, inferior_ptid))
5390 context_switch (ecs->ptid);
5391 if (debug_infrun)
5392 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5393
5394 delete_just_stopped_threads_single_step_breakpoints ();
5395 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5396
5397 if (handle_stop_requested (ecs))
5398 return;
5399
5400 observer_notify_no_history ();
5401 stop_waiting (ecs);
5402 return;
5403 }
5404 }
5405
5406 /* A wrapper around handle_inferior_event_1, which also makes sure
5407 that all temporary struct value objects that were created during
5408 the handling of the event get deleted at the end. */
5409
5410 static void
5411 handle_inferior_event (struct execution_control_state *ecs)
5412 {
5413 struct value *mark = value_mark ();
5414
5415 handle_inferior_event_1 (ecs);
5416 /* Purge all temporary values created during the event handling,
5417 as it could be a long time before we return to the command level
5418 where such values would otherwise be purged. */
5419 value_free_to_mark (mark);
5420 }
5421
5422 /* Restart threads back to what they were trying to do back when we
5423 paused them for an in-line step-over. The EVENT_THREAD thread is
5424 ignored. */
5425
5426 static void
5427 restart_threads (struct thread_info *event_thread)
5428 {
5429 struct thread_info *tp;
5430
5431 /* In case the instruction just stepped spawned a new thread. */
5432 update_thread_list ();
5433
5434 ALL_NON_EXITED_THREADS (tp)
5435 {
5436 if (tp == event_thread)
5437 {
5438 if (debug_infrun)
5439 fprintf_unfiltered (gdb_stdlog,
5440 "infrun: restart threads: "
5441 "[%s] is event thread\n",
5442 target_pid_to_str (tp->ptid));
5443 continue;
5444 }
5445
5446 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5447 {
5448 if (debug_infrun)
5449 fprintf_unfiltered (gdb_stdlog,
5450 "infrun: restart threads: "
5451 "[%s] not meant to be running\n",
5452 target_pid_to_str (tp->ptid));
5453 continue;
5454 }
5455
5456 if (tp->resumed)
5457 {
5458 if (debug_infrun)
5459 fprintf_unfiltered (gdb_stdlog,
5460 "infrun: restart threads: [%s] resumed\n",
5461 target_pid_to_str (tp->ptid));
5462 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5463 continue;
5464 }
5465
5466 if (thread_is_in_step_over_chain (tp))
5467 {
5468 if (debug_infrun)
5469 fprintf_unfiltered (gdb_stdlog,
5470 "infrun: restart threads: "
5471 "[%s] needs step-over\n",
5472 target_pid_to_str (tp->ptid));
5473 gdb_assert (!tp->resumed);
5474 continue;
5475 }
5476
5477
5478 if (tp->suspend.waitstatus_pending_p)
5479 {
5480 if (debug_infrun)
5481 fprintf_unfiltered (gdb_stdlog,
5482 "infrun: restart threads: "
5483 "[%s] has pending status\n",
5484 target_pid_to_str (tp->ptid));
5485 tp->resumed = 1;
5486 continue;
5487 }
5488
5489 gdb_assert (!tp->stop_requested);
5490
5491 /* If some thread needs to start a step-over at this point, it
5492 should still be in the step-over queue, and thus skipped
5493 above. */
5494 if (thread_still_needs_step_over (tp))
5495 {
5496 internal_error (__FILE__, __LINE__,
5497 "thread [%s] needs a step-over, but not in "
5498 "step-over queue\n",
5499 target_pid_to_str (tp->ptid));
5500 }
5501
5502 if (currently_stepping (tp))
5503 {
5504 if (debug_infrun)
5505 fprintf_unfiltered (gdb_stdlog,
5506 "infrun: restart threads: [%s] was stepping\n",
5507 target_pid_to_str (tp->ptid));
5508 keep_going_stepped_thread (tp);
5509 }
5510 else
5511 {
5512 struct execution_control_state ecss;
5513 struct execution_control_state *ecs = &ecss;
5514
5515 if (debug_infrun)
5516 fprintf_unfiltered (gdb_stdlog,
5517 "infrun: restart threads: [%s] continuing\n",
5518 target_pid_to_str (tp->ptid));
5519 reset_ecs (ecs, tp);
5520 switch_to_thread (tp->ptid);
5521 keep_going_pass_signal (ecs);
5522 }
5523 }
5524 }
5525
5526 /* Callback for iterate_over_threads. Find a resumed thread that has
5527 a pending waitstatus. */
5528
5529 static int
5530 resumed_thread_with_pending_status (struct thread_info *tp,
5531 void *arg)
5532 {
5533 return (tp->resumed
5534 && tp->suspend.waitstatus_pending_p);
5535 }
5536
5537 /* Called when we get an event that may finish an in-line or
5538 out-of-line (displaced stepping) step-over started previously.
5539 Return true if the event is processed and we should go back to the
5540 event loop; false if the caller should continue processing the
5541 event. */
5542
5543 static int
5544 finish_step_over (struct execution_control_state *ecs)
5545 {
5546 int had_step_over_info;
5547
5548 displaced_step_fixup (ecs->ptid,
5549 ecs->event_thread->suspend.stop_signal);
5550
5551 had_step_over_info = step_over_info_valid_p ();
5552
5553 if (had_step_over_info)
5554 {
5555 /* If we're stepping over a breakpoint with all threads locked,
5556 then only the thread that was stepped should be reporting
5557 back an event. */
5558 gdb_assert (ecs->event_thread->control.trap_expected);
5559
5560 clear_step_over_info ();
5561 }
5562
5563 if (!target_is_non_stop_p ())
5564 return 0;
5565
5566 /* Start a new step-over in another thread if there's one that
5567 needs it. */
5568 start_step_over ();
5569
5570 /* If we were stepping over a breakpoint before, and haven't started
5571 a new in-line step-over sequence, then restart all other threads
5572 (except the event thread). We can't do this in all-stop, as then
5573 e.g., we wouldn't be able to issue any other remote packet until
5574 these other threads stop. */
5575 if (had_step_over_info && !step_over_info_valid_p ())
5576 {
5577 struct thread_info *pending;
5578
5579 /* If we only have threads with pending statuses, the restart
5580 below won't restart any thread and so nothing re-inserts the
5581 breakpoint we just stepped over. But we need it inserted
5582 when we later process the pending events, otherwise if
5583 another thread has a pending event for this breakpoint too,
5584 we'd discard its event (because the breakpoint that
5585 originally caused the event was no longer inserted). */
5586 context_switch (ecs->ptid);
5587 insert_breakpoints ();
5588
5589 restart_threads (ecs->event_thread);
5590
5591 /* If we have events pending, go through handle_inferior_event
5592 again, picking up a pending event at random. This avoids
5593 thread starvation. */
5594
5595 /* But not if we just stepped over a watchpoint in order to let
5596 the instruction execute so we can evaluate its expression.
5597 The set of watchpoints that triggered is recorded in the
5598 breakpoint objects themselves (see bp->watchpoint_triggered).
5599 If we processed another event first, that other event could
5600 clobber this info. */
5601 if (ecs->event_thread->stepping_over_watchpoint)
5602 return 0;
5603
5604 pending = iterate_over_threads (resumed_thread_with_pending_status,
5605 NULL);
5606 if (pending != NULL)
5607 {
5608 struct thread_info *tp = ecs->event_thread;
5609 struct regcache *regcache;
5610
5611 if (debug_infrun)
5612 {
5613 fprintf_unfiltered (gdb_stdlog,
5614 "infrun: found resumed threads with "
5615 "pending events, saving status\n");
5616 }
5617
5618 gdb_assert (pending != tp);
5619
5620 /* Record the event thread's event for later. */
5621 save_waitstatus (tp, &ecs->ws);
5622 /* This was cleared early, by handle_inferior_event. Set it
5623 so this pending event is considered by
5624 do_target_wait. */
5625 tp->resumed = 1;
5626
5627 gdb_assert (!tp->executing);
5628
5629 regcache = get_thread_regcache (tp->ptid);
5630 tp->suspend.stop_pc = regcache_read_pc (regcache);
5631
5632 if (debug_infrun)
5633 {
5634 fprintf_unfiltered (gdb_stdlog,
5635 "infrun: saved stop_pc=%s for %s "
5636 "(currently_stepping=%d)\n",
5637 paddress (target_gdbarch (),
5638 tp->suspend.stop_pc),
5639 target_pid_to_str (tp->ptid),
5640 currently_stepping (tp));
5641 }
5642
5643 /* This in-line step-over finished; clear this so we won't
5644 start a new one. This is what handle_signal_stop would
5645 do, if we returned false. */
5646 tp->stepping_over_breakpoint = 0;
5647
5648 /* Wake up the event loop again. */
5649 mark_async_event_handler (infrun_async_inferior_event_token);
5650
5651 prepare_to_wait (ecs);
5652 return 1;
5653 }
5654 }
5655
5656 return 0;
5657 }
5658
5659 /* Come here when the program has stopped with a signal. */
5660
5661 static void
5662 handle_signal_stop (struct execution_control_state *ecs)
5663 {
5664 struct frame_info *frame;
5665 struct gdbarch *gdbarch;
5666 int stopped_by_watchpoint;
5667 enum stop_kind stop_soon;
5668 int random_signal;
5669
5670 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5671
5672 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5673
5674 /* Do we need to clean up the state of a thread that has
5675 completed a displaced single-step? (Doing so usually affects
5676 the PC, so do it here, before we set stop_pc.) */
5677 if (finish_step_over (ecs))
5678 return;
5679
5680 /* If we either finished a single-step or hit a breakpoint, but
5681 the user wanted this thread to be stopped, pretend we got a
5682 SIG0 (generic unsignaled stop). */
5683 if (ecs->event_thread->stop_requested
5684 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5685 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5686
5687 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5688
5689 if (debug_infrun)
5690 {
5691 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5692 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5693 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5694
5695 inferior_ptid = ecs->ptid;
5696
5697 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5698 paddress (gdbarch, stop_pc));
5699 if (target_stopped_by_watchpoint ())
5700 {
5701 CORE_ADDR addr;
5702
5703 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5704
5705 if (target_stopped_data_address (&current_target, &addr))
5706 fprintf_unfiltered (gdb_stdlog,
5707 "infrun: stopped data address = %s\n",
5708 paddress (gdbarch, addr));
5709 else
5710 fprintf_unfiltered (gdb_stdlog,
5711 "infrun: (no data address available)\n");
5712 }
5713 }
5714
5715 /* This is originated from start_remote(), start_inferior() and
5716 shared libraries hook functions. */
5717 stop_soon = get_inferior_stop_soon (ecs->ptid);
5718 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5719 {
5720 if (!ptid_equal (ecs->ptid, inferior_ptid))
5721 context_switch (ecs->ptid);
5722 if (debug_infrun)
5723 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5724 stop_print_frame = 1;
5725 stop_waiting (ecs);
5726 return;
5727 }
5728
5729 /* This originates from attach_command(). We need to overwrite
5730 the stop_signal here, because some kernels don't ignore a
5731 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5732 See more comments in inferior.h. On the other hand, if we
5733 get a non-SIGSTOP, report it to the user - assume the backend
5734 will handle the SIGSTOP if it should show up later.
5735
5736 Also consider that the attach is complete when we see a
5737 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5738 target extended-remote report it instead of a SIGSTOP
5739 (e.g. gdbserver). We already rely on SIGTRAP being our
5740 signal, so this is no exception.
5741
5742 Also consider that the attach is complete when we see a
5743 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5744 the target to stop all threads of the inferior, in case the
5745 low level attach operation doesn't stop them implicitly. If
5746 they weren't stopped implicitly, then the stub will report a
5747 GDB_SIGNAL_0, meaning: stopped for no particular reason
5748 other than GDB's request. */
5749 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5750 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5751 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5752 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5753 {
5754 stop_print_frame = 1;
5755 stop_waiting (ecs);
5756 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5757 return;
5758 }
5759
5760 /* See if something interesting happened to the non-current thread. If
5761 so, then switch to that thread. */
5762 if (!ptid_equal (ecs->ptid, inferior_ptid))
5763 {
5764 if (debug_infrun)
5765 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5766
5767 context_switch (ecs->ptid);
5768
5769 if (deprecated_context_hook)
5770 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5771 }
5772
5773 /* At this point, get hold of the now-current thread's frame. */
5774 frame = get_current_frame ();
5775 gdbarch = get_frame_arch (frame);
5776
5777 /* Pull the single step breakpoints out of the target. */
5778 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5779 {
5780 struct regcache *regcache;
5781 struct address_space *aspace;
5782 CORE_ADDR pc;
5783
5784 regcache = get_thread_regcache (ecs->ptid);
5785 aspace = get_regcache_aspace (regcache);
5786 pc = regcache_read_pc (regcache);
5787
5788 /* However, before doing so, if this single-step breakpoint was
5789 actually for another thread, set this thread up for moving
5790 past it. */
5791 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5792 aspace, pc))
5793 {
5794 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5795 {
5796 if (debug_infrun)
5797 {
5798 fprintf_unfiltered (gdb_stdlog,
5799 "infrun: [%s] hit another thread's "
5800 "single-step breakpoint\n",
5801 target_pid_to_str (ecs->ptid));
5802 }
5803 ecs->hit_singlestep_breakpoint = 1;
5804 }
5805 }
5806 else
5807 {
5808 if (debug_infrun)
5809 {
5810 fprintf_unfiltered (gdb_stdlog,
5811 "infrun: [%s] hit its "
5812 "single-step breakpoint\n",
5813 target_pid_to_str (ecs->ptid));
5814 }
5815 }
5816 }
5817 delete_just_stopped_threads_single_step_breakpoints ();
5818
5819 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5820 && ecs->event_thread->control.trap_expected
5821 && ecs->event_thread->stepping_over_watchpoint)
5822 stopped_by_watchpoint = 0;
5823 else
5824 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5825
5826 /* If necessary, step over this watchpoint. We'll be back to display
5827 it in a moment. */
5828 if (stopped_by_watchpoint
5829 && (target_have_steppable_watchpoint
5830 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5831 {
5832 /* At this point, we are stopped at an instruction which has
5833 attempted to write to a piece of memory under control of
5834 a watchpoint. The instruction hasn't actually executed
5835 yet. If we were to evaluate the watchpoint expression
5836 now, we would get the old value, and therefore no change
5837 would seem to have occurred.
5838
5839 In order to make watchpoints work `right', we really need
5840 to complete the memory write, and then evaluate the
5841 watchpoint expression. We do this by single-stepping the
5842 target.
5843
5844 It may not be necessary to disable the watchpoint to step over
5845 it. For example, the PA can (with some kernel cooperation)
5846 single step over a watchpoint without disabling the watchpoint.
5847
5848 It is far more common to need to disable a watchpoint to step
5849 the inferior over it. If we have non-steppable watchpoints,
5850 we must disable the current watchpoint; it's simplest to
5851 disable all watchpoints.
5852
5853 Any breakpoint at PC must also be stepped over -- if there's
5854 one, it will have already triggered before the watchpoint
5855 triggered, and we either already reported it to the user, or
5856 it didn't cause a stop and we called keep_going. In either
5857 case, if there was a breakpoint at PC, we must be trying to
5858 step past it. */
5859 ecs->event_thread->stepping_over_watchpoint = 1;
5860 keep_going (ecs);
5861 return;
5862 }
5863
5864 ecs->event_thread->stepping_over_breakpoint = 0;
5865 ecs->event_thread->stepping_over_watchpoint = 0;
5866 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5867 ecs->event_thread->control.stop_step = 0;
5868 stop_print_frame = 1;
5869 stopped_by_random_signal = 0;
5870
5871 /* Hide inlined functions starting here, unless we just performed stepi or
5872 nexti. After stepi and nexti, always show the innermost frame (not any
5873 inline function call sites). */
5874 if (ecs->event_thread->control.step_range_end != 1)
5875 {
5876 struct address_space *aspace =
5877 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5878
5879 /* skip_inline_frames is expensive, so we avoid it if we can
5880 determine that the address is one where functions cannot have
5881 been inlined. This improves performance with inferiors that
5882 load a lot of shared libraries, because the solib event
5883 breakpoint is defined as the address of a function (i.e. not
5884 inline). Note that we have to check the previous PC as well
5885 as the current one to catch cases when we have just
5886 single-stepped off a breakpoint prior to reinstating it.
5887 Note that we're assuming that the code we single-step to is
5888 not inline, but that's not definitive: there's nothing
5889 preventing the event breakpoint function from containing
5890 inlined code, and the single-step ending up there. If the
5891 user had set a breakpoint on that inlined code, the missing
5892 skip_inline_frames call would break things. Fortunately
5893 that's an extremely unlikely scenario. */
5894 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5895 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5896 && ecs->event_thread->control.trap_expected
5897 && pc_at_non_inline_function (aspace,
5898 ecs->event_thread->prev_pc,
5899 &ecs->ws)))
5900 {
5901 skip_inline_frames (ecs->ptid);
5902
5903 /* Re-fetch current thread's frame in case that invalidated
5904 the frame cache. */
5905 frame = get_current_frame ();
5906 gdbarch = get_frame_arch (frame);
5907 }
5908 }
5909
5910 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5911 && ecs->event_thread->control.trap_expected
5912 && gdbarch_single_step_through_delay_p (gdbarch)
5913 && currently_stepping (ecs->event_thread))
5914 {
5915 /* We're trying to step off a breakpoint. Turns out that we're
5916 also on an instruction that needs to be stepped multiple
5917 times before it's been fully executing. E.g., architectures
5918 with a delay slot. It needs to be stepped twice, once for
5919 the instruction and once for the delay slot. */
5920 int step_through_delay
5921 = gdbarch_single_step_through_delay (gdbarch, frame);
5922
5923 if (debug_infrun && step_through_delay)
5924 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5925 if (ecs->event_thread->control.step_range_end == 0
5926 && step_through_delay)
5927 {
5928 /* The user issued a continue when stopped at a breakpoint.
5929 Set up for another trap and get out of here. */
5930 ecs->event_thread->stepping_over_breakpoint = 1;
5931 keep_going (ecs);
5932 return;
5933 }
5934 else if (step_through_delay)
5935 {
5936 /* The user issued a step when stopped at a breakpoint.
5937 Maybe we should stop, maybe we should not - the delay
5938 slot *might* correspond to a line of source. In any
5939 case, don't decide that here, just set
5940 ecs->stepping_over_breakpoint, making sure we
5941 single-step again before breakpoints are re-inserted. */
5942 ecs->event_thread->stepping_over_breakpoint = 1;
5943 }
5944 }
5945
5946 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5947 handles this event. */
5948 ecs->event_thread->control.stop_bpstat
5949 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5950 stop_pc, ecs->ptid, &ecs->ws);
5951
5952 /* Following in case break condition called a
5953 function. */
5954 stop_print_frame = 1;
5955
5956 /* This is where we handle "moribund" watchpoints. Unlike
5957 software breakpoints traps, hardware watchpoint traps are
5958 always distinguishable from random traps. If no high-level
5959 watchpoint is associated with the reported stop data address
5960 anymore, then the bpstat does not explain the signal ---
5961 simply make sure to ignore it if `stopped_by_watchpoint' is
5962 set. */
5963
5964 if (debug_infrun
5965 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5966 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5967 GDB_SIGNAL_TRAP)
5968 && stopped_by_watchpoint)
5969 fprintf_unfiltered (gdb_stdlog,
5970 "infrun: no user watchpoint explains "
5971 "watchpoint SIGTRAP, ignoring\n");
5972
5973 /* NOTE: cagney/2003-03-29: These checks for a random signal
5974 at one stage in the past included checks for an inferior
5975 function call's call dummy's return breakpoint. The original
5976 comment, that went with the test, read:
5977
5978 ``End of a stack dummy. Some systems (e.g. Sony news) give
5979 another signal besides SIGTRAP, so check here as well as
5980 above.''
5981
5982 If someone ever tries to get call dummys on a
5983 non-executable stack to work (where the target would stop
5984 with something like a SIGSEGV), then those tests might need
5985 to be re-instated. Given, however, that the tests were only
5986 enabled when momentary breakpoints were not being used, I
5987 suspect that it won't be the case.
5988
5989 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5990 be necessary for call dummies on a non-executable stack on
5991 SPARC. */
5992
5993 /* See if the breakpoints module can explain the signal. */
5994 random_signal
5995 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5996 ecs->event_thread->suspend.stop_signal);
5997
5998 /* Maybe this was a trap for a software breakpoint that has since
5999 been removed. */
6000 if (random_signal && target_stopped_by_sw_breakpoint ())
6001 {
6002 if (program_breakpoint_here_p (gdbarch, stop_pc))
6003 {
6004 struct regcache *regcache;
6005 int decr_pc;
6006
6007 /* Re-adjust PC to what the program would see if GDB was not
6008 debugging it. */
6009 regcache = get_thread_regcache (ecs->event_thread->ptid);
6010 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6011 if (decr_pc != 0)
6012 {
6013 gdb::optional<scoped_restore_tmpl<int>>
6014 restore_operation_disable;
6015
6016 if (record_full_is_used ())
6017 restore_operation_disable.emplace
6018 (record_full_gdb_operation_disable_set ());
6019
6020 regcache_write_pc (regcache, stop_pc + decr_pc);
6021 }
6022 }
6023 else
6024 {
6025 /* A delayed software breakpoint event. Ignore the trap. */
6026 if (debug_infrun)
6027 fprintf_unfiltered (gdb_stdlog,
6028 "infrun: delayed software breakpoint "
6029 "trap, ignoring\n");
6030 random_signal = 0;
6031 }
6032 }
6033
6034 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6035 has since been removed. */
6036 if (random_signal && target_stopped_by_hw_breakpoint ())
6037 {
6038 /* A delayed hardware breakpoint event. Ignore the trap. */
6039 if (debug_infrun)
6040 fprintf_unfiltered (gdb_stdlog,
6041 "infrun: delayed hardware breakpoint/watchpoint "
6042 "trap, ignoring\n");
6043 random_signal = 0;
6044 }
6045
6046 /* If not, perhaps stepping/nexting can. */
6047 if (random_signal)
6048 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6049 && currently_stepping (ecs->event_thread));
6050
6051 /* Perhaps the thread hit a single-step breakpoint of _another_
6052 thread. Single-step breakpoints are transparent to the
6053 breakpoints module. */
6054 if (random_signal)
6055 random_signal = !ecs->hit_singlestep_breakpoint;
6056
6057 /* No? Perhaps we got a moribund watchpoint. */
6058 if (random_signal)
6059 random_signal = !stopped_by_watchpoint;
6060
6061 /* Always stop if the user explicitly requested this thread to
6062 remain stopped. */
6063 if (ecs->event_thread->stop_requested)
6064 {
6065 random_signal = 1;
6066 if (debug_infrun)
6067 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6068 }
6069
6070 /* For the program's own signals, act according to
6071 the signal handling tables. */
6072
6073 if (random_signal)
6074 {
6075 /* Signal not for debugging purposes. */
6076 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6077 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6078
6079 if (debug_infrun)
6080 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6081 gdb_signal_to_symbol_string (stop_signal));
6082
6083 stopped_by_random_signal = 1;
6084
6085 /* Always stop on signals if we're either just gaining control
6086 of the program, or the user explicitly requested this thread
6087 to remain stopped. */
6088 if (stop_soon != NO_STOP_QUIETLY
6089 || ecs->event_thread->stop_requested
6090 || (!inf->detaching
6091 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6092 {
6093 stop_waiting (ecs);
6094 return;
6095 }
6096
6097 /* Notify observers the signal has "handle print" set. Note we
6098 returned early above if stopping; normal_stop handles the
6099 printing in that case. */
6100 if (signal_print[ecs->event_thread->suspend.stop_signal])
6101 {
6102 /* The signal table tells us to print about this signal. */
6103 target_terminal::ours_for_output ();
6104 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6105 target_terminal::inferior ();
6106 }
6107
6108 /* Clear the signal if it should not be passed. */
6109 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6110 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6111
6112 if (ecs->event_thread->prev_pc == stop_pc
6113 && ecs->event_thread->control.trap_expected
6114 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6115 {
6116 /* We were just starting a new sequence, attempting to
6117 single-step off of a breakpoint and expecting a SIGTRAP.
6118 Instead this signal arrives. This signal will take us out
6119 of the stepping range so GDB needs to remember to, when
6120 the signal handler returns, resume stepping off that
6121 breakpoint. */
6122 /* To simplify things, "continue" is forced to use the same
6123 code paths as single-step - set a breakpoint at the
6124 signal return address and then, once hit, step off that
6125 breakpoint. */
6126 if (debug_infrun)
6127 fprintf_unfiltered (gdb_stdlog,
6128 "infrun: signal arrived while stepping over "
6129 "breakpoint\n");
6130
6131 insert_hp_step_resume_breakpoint_at_frame (frame);
6132 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6133 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6134 ecs->event_thread->control.trap_expected = 0;
6135
6136 /* If we were nexting/stepping some other thread, switch to
6137 it, so that we don't continue it, losing control. */
6138 if (!switch_back_to_stepped_thread (ecs))
6139 keep_going (ecs);
6140 return;
6141 }
6142
6143 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6144 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6145 || ecs->event_thread->control.step_range_end == 1)
6146 && frame_id_eq (get_stack_frame_id (frame),
6147 ecs->event_thread->control.step_stack_frame_id)
6148 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6149 {
6150 /* The inferior is about to take a signal that will take it
6151 out of the single step range. Set a breakpoint at the
6152 current PC (which is presumably where the signal handler
6153 will eventually return) and then allow the inferior to
6154 run free.
6155
6156 Note that this is only needed for a signal delivered
6157 while in the single-step range. Nested signals aren't a
6158 problem as they eventually all return. */
6159 if (debug_infrun)
6160 fprintf_unfiltered (gdb_stdlog,
6161 "infrun: signal may take us out of "
6162 "single-step range\n");
6163
6164 clear_step_over_info ();
6165 insert_hp_step_resume_breakpoint_at_frame (frame);
6166 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6167 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6168 ecs->event_thread->control.trap_expected = 0;
6169 keep_going (ecs);
6170 return;
6171 }
6172
6173 /* Note: step_resume_breakpoint may be non-NULL. This occures
6174 when either there's a nested signal, or when there's a
6175 pending signal enabled just as the signal handler returns
6176 (leaving the inferior at the step-resume-breakpoint without
6177 actually executing it). Either way continue until the
6178 breakpoint is really hit. */
6179
6180 if (!switch_back_to_stepped_thread (ecs))
6181 {
6182 if (debug_infrun)
6183 fprintf_unfiltered (gdb_stdlog,
6184 "infrun: random signal, keep going\n");
6185
6186 keep_going (ecs);
6187 }
6188 return;
6189 }
6190
6191 process_event_stop_test (ecs);
6192 }
6193
6194 /* Come here when we've got some debug event / signal we can explain
6195 (IOW, not a random signal), and test whether it should cause a
6196 stop, or whether we should resume the inferior (transparently).
6197 E.g., could be a breakpoint whose condition evaluates false; we
6198 could be still stepping within the line; etc. */
6199
6200 static void
6201 process_event_stop_test (struct execution_control_state *ecs)
6202 {
6203 struct symtab_and_line stop_pc_sal;
6204 struct frame_info *frame;
6205 struct gdbarch *gdbarch;
6206 CORE_ADDR jmp_buf_pc;
6207 struct bpstat_what what;
6208
6209 /* Handle cases caused by hitting a breakpoint. */
6210
6211 frame = get_current_frame ();
6212 gdbarch = get_frame_arch (frame);
6213
6214 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6215
6216 if (what.call_dummy)
6217 {
6218 stop_stack_dummy = what.call_dummy;
6219 }
6220
6221 /* A few breakpoint types have callbacks associated (e.g.,
6222 bp_jit_event). Run them now. */
6223 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6224
6225 /* If we hit an internal event that triggers symbol changes, the
6226 current frame will be invalidated within bpstat_what (e.g., if we
6227 hit an internal solib event). Re-fetch it. */
6228 frame = get_current_frame ();
6229 gdbarch = get_frame_arch (frame);
6230
6231 switch (what.main_action)
6232 {
6233 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6234 /* If we hit the breakpoint at longjmp while stepping, we
6235 install a momentary breakpoint at the target of the
6236 jmp_buf. */
6237
6238 if (debug_infrun)
6239 fprintf_unfiltered (gdb_stdlog,
6240 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6241
6242 ecs->event_thread->stepping_over_breakpoint = 1;
6243
6244 if (what.is_longjmp)
6245 {
6246 struct value *arg_value;
6247
6248 /* If we set the longjmp breakpoint via a SystemTap probe,
6249 then use it to extract the arguments. The destination PC
6250 is the third argument to the probe. */
6251 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6252 if (arg_value)
6253 {
6254 jmp_buf_pc = value_as_address (arg_value);
6255 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6256 }
6257 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6258 || !gdbarch_get_longjmp_target (gdbarch,
6259 frame, &jmp_buf_pc))
6260 {
6261 if (debug_infrun)
6262 fprintf_unfiltered (gdb_stdlog,
6263 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6264 "(!gdbarch_get_longjmp_target)\n");
6265 keep_going (ecs);
6266 return;
6267 }
6268
6269 /* Insert a breakpoint at resume address. */
6270 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6271 }
6272 else
6273 check_exception_resume (ecs, frame);
6274 keep_going (ecs);
6275 return;
6276
6277 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6278 {
6279 struct frame_info *init_frame;
6280
6281 /* There are several cases to consider.
6282
6283 1. The initiating frame no longer exists. In this case we
6284 must stop, because the exception or longjmp has gone too
6285 far.
6286
6287 2. The initiating frame exists, and is the same as the
6288 current frame. We stop, because the exception or longjmp
6289 has been caught.
6290
6291 3. The initiating frame exists and is different from the
6292 current frame. This means the exception or longjmp has
6293 been caught beneath the initiating frame, so keep going.
6294
6295 4. longjmp breakpoint has been placed just to protect
6296 against stale dummy frames and user is not interested in
6297 stopping around longjmps. */
6298
6299 if (debug_infrun)
6300 fprintf_unfiltered (gdb_stdlog,
6301 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6302
6303 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6304 != NULL);
6305 delete_exception_resume_breakpoint (ecs->event_thread);
6306
6307 if (what.is_longjmp)
6308 {
6309 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6310
6311 if (!frame_id_p (ecs->event_thread->initiating_frame))
6312 {
6313 /* Case 4. */
6314 keep_going (ecs);
6315 return;
6316 }
6317 }
6318
6319 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6320
6321 if (init_frame)
6322 {
6323 struct frame_id current_id
6324 = get_frame_id (get_current_frame ());
6325 if (frame_id_eq (current_id,
6326 ecs->event_thread->initiating_frame))
6327 {
6328 /* Case 2. Fall through. */
6329 }
6330 else
6331 {
6332 /* Case 3. */
6333 keep_going (ecs);
6334 return;
6335 }
6336 }
6337
6338 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6339 exists. */
6340 delete_step_resume_breakpoint (ecs->event_thread);
6341
6342 end_stepping_range (ecs);
6343 }
6344 return;
6345
6346 case BPSTAT_WHAT_SINGLE:
6347 if (debug_infrun)
6348 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6349 ecs->event_thread->stepping_over_breakpoint = 1;
6350 /* Still need to check other stuff, at least the case where we
6351 are stepping and step out of the right range. */
6352 break;
6353
6354 case BPSTAT_WHAT_STEP_RESUME:
6355 if (debug_infrun)
6356 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6357
6358 delete_step_resume_breakpoint (ecs->event_thread);
6359 if (ecs->event_thread->control.proceed_to_finish
6360 && execution_direction == EXEC_REVERSE)
6361 {
6362 struct thread_info *tp = ecs->event_thread;
6363
6364 /* We are finishing a function in reverse, and just hit the
6365 step-resume breakpoint at the start address of the
6366 function, and we're almost there -- just need to back up
6367 by one more single-step, which should take us back to the
6368 function call. */
6369 tp->control.step_range_start = tp->control.step_range_end = 1;
6370 keep_going (ecs);
6371 return;
6372 }
6373 fill_in_stop_func (gdbarch, ecs);
6374 if (stop_pc == ecs->stop_func_start
6375 && execution_direction == EXEC_REVERSE)
6376 {
6377 /* We are stepping over a function call in reverse, and just
6378 hit the step-resume breakpoint at the start address of
6379 the function. Go back to single-stepping, which should
6380 take us back to the function call. */
6381 ecs->event_thread->stepping_over_breakpoint = 1;
6382 keep_going (ecs);
6383 return;
6384 }
6385 break;
6386
6387 case BPSTAT_WHAT_STOP_NOISY:
6388 if (debug_infrun)
6389 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6390 stop_print_frame = 1;
6391
6392 /* Assume the thread stopped for a breapoint. We'll still check
6393 whether a/the breakpoint is there when the thread is next
6394 resumed. */
6395 ecs->event_thread->stepping_over_breakpoint = 1;
6396
6397 stop_waiting (ecs);
6398 return;
6399
6400 case BPSTAT_WHAT_STOP_SILENT:
6401 if (debug_infrun)
6402 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6403 stop_print_frame = 0;
6404
6405 /* Assume the thread stopped for a breapoint. We'll still check
6406 whether a/the breakpoint is there when the thread is next
6407 resumed. */
6408 ecs->event_thread->stepping_over_breakpoint = 1;
6409 stop_waiting (ecs);
6410 return;
6411
6412 case BPSTAT_WHAT_HP_STEP_RESUME:
6413 if (debug_infrun)
6414 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6415
6416 delete_step_resume_breakpoint (ecs->event_thread);
6417 if (ecs->event_thread->step_after_step_resume_breakpoint)
6418 {
6419 /* Back when the step-resume breakpoint was inserted, we
6420 were trying to single-step off a breakpoint. Go back to
6421 doing that. */
6422 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6423 ecs->event_thread->stepping_over_breakpoint = 1;
6424 keep_going (ecs);
6425 return;
6426 }
6427 break;
6428
6429 case BPSTAT_WHAT_KEEP_CHECKING:
6430 break;
6431 }
6432
6433 /* If we stepped a permanent breakpoint and we had a high priority
6434 step-resume breakpoint for the address we stepped, but we didn't
6435 hit it, then we must have stepped into the signal handler. The
6436 step-resume was only necessary to catch the case of _not_
6437 stepping into the handler, so delete it, and fall through to
6438 checking whether the step finished. */
6439 if (ecs->event_thread->stepped_breakpoint)
6440 {
6441 struct breakpoint *sr_bp
6442 = ecs->event_thread->control.step_resume_breakpoint;
6443
6444 if (sr_bp != NULL
6445 && sr_bp->loc->permanent
6446 && sr_bp->type == bp_hp_step_resume
6447 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6448 {
6449 if (debug_infrun)
6450 fprintf_unfiltered (gdb_stdlog,
6451 "infrun: stepped permanent breakpoint, stopped in "
6452 "handler\n");
6453 delete_step_resume_breakpoint (ecs->event_thread);
6454 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6455 }
6456 }
6457
6458 /* We come here if we hit a breakpoint but should not stop for it.
6459 Possibly we also were stepping and should stop for that. So fall
6460 through and test for stepping. But, if not stepping, do not
6461 stop. */
6462
6463 /* In all-stop mode, if we're currently stepping but have stopped in
6464 some other thread, we need to switch back to the stepped thread. */
6465 if (switch_back_to_stepped_thread (ecs))
6466 return;
6467
6468 if (ecs->event_thread->control.step_resume_breakpoint)
6469 {
6470 if (debug_infrun)
6471 fprintf_unfiltered (gdb_stdlog,
6472 "infrun: step-resume breakpoint is inserted\n");
6473
6474 /* Having a step-resume breakpoint overrides anything
6475 else having to do with stepping commands until
6476 that breakpoint is reached. */
6477 keep_going (ecs);
6478 return;
6479 }
6480
6481 if (ecs->event_thread->control.step_range_end == 0)
6482 {
6483 if (debug_infrun)
6484 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6485 /* Likewise if we aren't even stepping. */
6486 keep_going (ecs);
6487 return;
6488 }
6489
6490 /* Re-fetch current thread's frame in case the code above caused
6491 the frame cache to be re-initialized, making our FRAME variable
6492 a dangling pointer. */
6493 frame = get_current_frame ();
6494 gdbarch = get_frame_arch (frame);
6495 fill_in_stop_func (gdbarch, ecs);
6496
6497 /* If stepping through a line, keep going if still within it.
6498
6499 Note that step_range_end is the address of the first instruction
6500 beyond the step range, and NOT the address of the last instruction
6501 within it!
6502
6503 Note also that during reverse execution, we may be stepping
6504 through a function epilogue and therefore must detect when
6505 the current-frame changes in the middle of a line. */
6506
6507 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6508 && (execution_direction != EXEC_REVERSE
6509 || frame_id_eq (get_frame_id (frame),
6510 ecs->event_thread->control.step_frame_id)))
6511 {
6512 if (debug_infrun)
6513 fprintf_unfiltered
6514 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6515 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6516 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6517
6518 /* Tentatively re-enable range stepping; `resume' disables it if
6519 necessary (e.g., if we're stepping over a breakpoint or we
6520 have software watchpoints). */
6521 ecs->event_thread->control.may_range_step = 1;
6522
6523 /* When stepping backward, stop at beginning of line range
6524 (unless it's the function entry point, in which case
6525 keep going back to the call point). */
6526 if (stop_pc == ecs->event_thread->control.step_range_start
6527 && stop_pc != ecs->stop_func_start
6528 && execution_direction == EXEC_REVERSE)
6529 end_stepping_range (ecs);
6530 else
6531 keep_going (ecs);
6532
6533 return;
6534 }
6535
6536 /* We stepped out of the stepping range. */
6537
6538 /* If we are stepping at the source level and entered the runtime
6539 loader dynamic symbol resolution code...
6540
6541 EXEC_FORWARD: we keep on single stepping until we exit the run
6542 time loader code and reach the callee's address.
6543
6544 EXEC_REVERSE: we've already executed the callee (backward), and
6545 the runtime loader code is handled just like any other
6546 undebuggable function call. Now we need only keep stepping
6547 backward through the trampoline code, and that's handled further
6548 down, so there is nothing for us to do here. */
6549
6550 if (execution_direction != EXEC_REVERSE
6551 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6552 && in_solib_dynsym_resolve_code (stop_pc))
6553 {
6554 CORE_ADDR pc_after_resolver =
6555 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6556
6557 if (debug_infrun)
6558 fprintf_unfiltered (gdb_stdlog,
6559 "infrun: stepped into dynsym resolve code\n");
6560
6561 if (pc_after_resolver)
6562 {
6563 /* Set up a step-resume breakpoint at the address
6564 indicated by SKIP_SOLIB_RESOLVER. */
6565 symtab_and_line sr_sal;
6566 sr_sal.pc = pc_after_resolver;
6567 sr_sal.pspace = get_frame_program_space (frame);
6568
6569 insert_step_resume_breakpoint_at_sal (gdbarch,
6570 sr_sal, null_frame_id);
6571 }
6572
6573 keep_going (ecs);
6574 return;
6575 }
6576
6577 if (ecs->event_thread->control.step_range_end != 1
6578 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6579 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6580 && get_frame_type (frame) == SIGTRAMP_FRAME)
6581 {
6582 if (debug_infrun)
6583 fprintf_unfiltered (gdb_stdlog,
6584 "infrun: stepped into signal trampoline\n");
6585 /* The inferior, while doing a "step" or "next", has ended up in
6586 a signal trampoline (either by a signal being delivered or by
6587 the signal handler returning). Just single-step until the
6588 inferior leaves the trampoline (either by calling the handler
6589 or returning). */
6590 keep_going (ecs);
6591 return;
6592 }
6593
6594 /* If we're in the return path from a shared library trampoline,
6595 we want to proceed through the trampoline when stepping. */
6596 /* macro/2012-04-25: This needs to come before the subroutine
6597 call check below as on some targets return trampolines look
6598 like subroutine calls (MIPS16 return thunks). */
6599 if (gdbarch_in_solib_return_trampoline (gdbarch,
6600 stop_pc, ecs->stop_func_name)
6601 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6602 {
6603 /* Determine where this trampoline returns. */
6604 CORE_ADDR real_stop_pc;
6605
6606 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6607
6608 if (debug_infrun)
6609 fprintf_unfiltered (gdb_stdlog,
6610 "infrun: stepped into solib return tramp\n");
6611
6612 /* Only proceed through if we know where it's going. */
6613 if (real_stop_pc)
6614 {
6615 /* And put the step-breakpoint there and go until there. */
6616 symtab_and_line sr_sal;
6617 sr_sal.pc = real_stop_pc;
6618 sr_sal.section = find_pc_overlay (sr_sal.pc);
6619 sr_sal.pspace = get_frame_program_space (frame);
6620
6621 /* Do not specify what the fp should be when we stop since
6622 on some machines the prologue is where the new fp value
6623 is established. */
6624 insert_step_resume_breakpoint_at_sal (gdbarch,
6625 sr_sal, null_frame_id);
6626
6627 /* Restart without fiddling with the step ranges or
6628 other state. */
6629 keep_going (ecs);
6630 return;
6631 }
6632 }
6633
6634 /* Check for subroutine calls. The check for the current frame
6635 equalling the step ID is not necessary - the check of the
6636 previous frame's ID is sufficient - but it is a common case and
6637 cheaper than checking the previous frame's ID.
6638
6639 NOTE: frame_id_eq will never report two invalid frame IDs as
6640 being equal, so to get into this block, both the current and
6641 previous frame must have valid frame IDs. */
6642 /* The outer_frame_id check is a heuristic to detect stepping
6643 through startup code. If we step over an instruction which
6644 sets the stack pointer from an invalid value to a valid value,
6645 we may detect that as a subroutine call from the mythical
6646 "outermost" function. This could be fixed by marking
6647 outermost frames as !stack_p,code_p,special_p. Then the
6648 initial outermost frame, before sp was valid, would
6649 have code_addr == &_start. See the comment in frame_id_eq
6650 for more. */
6651 if (!frame_id_eq (get_stack_frame_id (frame),
6652 ecs->event_thread->control.step_stack_frame_id)
6653 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6654 ecs->event_thread->control.step_stack_frame_id)
6655 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6656 outer_frame_id)
6657 || (ecs->event_thread->control.step_start_function
6658 != find_pc_function (stop_pc)))))
6659 {
6660 CORE_ADDR real_stop_pc;
6661
6662 if (debug_infrun)
6663 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6664
6665 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6666 {
6667 /* I presume that step_over_calls is only 0 when we're
6668 supposed to be stepping at the assembly language level
6669 ("stepi"). Just stop. */
6670 /* And this works the same backward as frontward. MVS */
6671 end_stepping_range (ecs);
6672 return;
6673 }
6674
6675 /* Reverse stepping through solib trampolines. */
6676
6677 if (execution_direction == EXEC_REVERSE
6678 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6679 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6680 || (ecs->stop_func_start == 0
6681 && in_solib_dynsym_resolve_code (stop_pc))))
6682 {
6683 /* Any solib trampoline code can be handled in reverse
6684 by simply continuing to single-step. We have already
6685 executed the solib function (backwards), and a few
6686 steps will take us back through the trampoline to the
6687 caller. */
6688 keep_going (ecs);
6689 return;
6690 }
6691
6692 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6693 {
6694 /* We're doing a "next".
6695
6696 Normal (forward) execution: set a breakpoint at the
6697 callee's return address (the address at which the caller
6698 will resume).
6699
6700 Reverse (backward) execution. set the step-resume
6701 breakpoint at the start of the function that we just
6702 stepped into (backwards), and continue to there. When we
6703 get there, we'll need to single-step back to the caller. */
6704
6705 if (execution_direction == EXEC_REVERSE)
6706 {
6707 /* If we're already at the start of the function, we've either
6708 just stepped backward into a single instruction function,
6709 or stepped back out of a signal handler to the first instruction
6710 of the function. Just keep going, which will single-step back
6711 to the caller. */
6712 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6713 {
6714 /* Normal function call return (static or dynamic). */
6715 symtab_and_line sr_sal;
6716 sr_sal.pc = ecs->stop_func_start;
6717 sr_sal.pspace = get_frame_program_space (frame);
6718 insert_step_resume_breakpoint_at_sal (gdbarch,
6719 sr_sal, null_frame_id);
6720 }
6721 }
6722 else
6723 insert_step_resume_breakpoint_at_caller (frame);
6724
6725 keep_going (ecs);
6726 return;
6727 }
6728
6729 /* If we are in a function call trampoline (a stub between the
6730 calling routine and the real function), locate the real
6731 function. That's what tells us (a) whether we want to step
6732 into it at all, and (b) what prologue we want to run to the
6733 end of, if we do step into it. */
6734 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6735 if (real_stop_pc == 0)
6736 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6737 if (real_stop_pc != 0)
6738 ecs->stop_func_start = real_stop_pc;
6739
6740 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6741 {
6742 symtab_and_line sr_sal;
6743 sr_sal.pc = ecs->stop_func_start;
6744 sr_sal.pspace = get_frame_program_space (frame);
6745
6746 insert_step_resume_breakpoint_at_sal (gdbarch,
6747 sr_sal, null_frame_id);
6748 keep_going (ecs);
6749 return;
6750 }
6751
6752 /* If we have line number information for the function we are
6753 thinking of stepping into and the function isn't on the skip
6754 list, step into it.
6755
6756 If there are several symtabs at that PC (e.g. with include
6757 files), just want to know whether *any* of them have line
6758 numbers. find_pc_line handles this. */
6759 {
6760 struct symtab_and_line tmp_sal;
6761
6762 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6763 if (tmp_sal.line != 0
6764 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6765 tmp_sal))
6766 {
6767 if (execution_direction == EXEC_REVERSE)
6768 handle_step_into_function_backward (gdbarch, ecs);
6769 else
6770 handle_step_into_function (gdbarch, ecs);
6771 return;
6772 }
6773 }
6774
6775 /* If we have no line number and the step-stop-if-no-debug is
6776 set, we stop the step so that the user has a chance to switch
6777 in assembly mode. */
6778 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6779 && step_stop_if_no_debug)
6780 {
6781 end_stepping_range (ecs);
6782 return;
6783 }
6784
6785 if (execution_direction == EXEC_REVERSE)
6786 {
6787 /* If we're already at the start of the function, we've either just
6788 stepped backward into a single instruction function without line
6789 number info, or stepped back out of a signal handler to the first
6790 instruction of the function without line number info. Just keep
6791 going, which will single-step back to the caller. */
6792 if (ecs->stop_func_start != stop_pc)
6793 {
6794 /* Set a breakpoint at callee's start address.
6795 From there we can step once and be back in the caller. */
6796 symtab_and_line sr_sal;
6797 sr_sal.pc = ecs->stop_func_start;
6798 sr_sal.pspace = get_frame_program_space (frame);
6799 insert_step_resume_breakpoint_at_sal (gdbarch,
6800 sr_sal, null_frame_id);
6801 }
6802 }
6803 else
6804 /* Set a breakpoint at callee's return address (the address
6805 at which the caller will resume). */
6806 insert_step_resume_breakpoint_at_caller (frame);
6807
6808 keep_going (ecs);
6809 return;
6810 }
6811
6812 /* Reverse stepping through solib trampolines. */
6813
6814 if (execution_direction == EXEC_REVERSE
6815 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6816 {
6817 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6818 || (ecs->stop_func_start == 0
6819 && in_solib_dynsym_resolve_code (stop_pc)))
6820 {
6821 /* Any solib trampoline code can be handled in reverse
6822 by simply continuing to single-step. We have already
6823 executed the solib function (backwards), and a few
6824 steps will take us back through the trampoline to the
6825 caller. */
6826 keep_going (ecs);
6827 return;
6828 }
6829 else if (in_solib_dynsym_resolve_code (stop_pc))
6830 {
6831 /* Stepped backward into the solib dynsym resolver.
6832 Set a breakpoint at its start and continue, then
6833 one more step will take us out. */
6834 symtab_and_line sr_sal;
6835 sr_sal.pc = ecs->stop_func_start;
6836 sr_sal.pspace = get_frame_program_space (frame);
6837 insert_step_resume_breakpoint_at_sal (gdbarch,
6838 sr_sal, null_frame_id);
6839 keep_going (ecs);
6840 return;
6841 }
6842 }
6843
6844 stop_pc_sal = find_pc_line (stop_pc, 0);
6845
6846 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6847 the trampoline processing logic, however, there are some trampolines
6848 that have no names, so we should do trampoline handling first. */
6849 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6850 && ecs->stop_func_name == NULL
6851 && stop_pc_sal.line == 0)
6852 {
6853 if (debug_infrun)
6854 fprintf_unfiltered (gdb_stdlog,
6855 "infrun: stepped into undebuggable function\n");
6856
6857 /* The inferior just stepped into, or returned to, an
6858 undebuggable function (where there is no debugging information
6859 and no line number corresponding to the address where the
6860 inferior stopped). Since we want to skip this kind of code,
6861 we keep going until the inferior returns from this
6862 function - unless the user has asked us not to (via
6863 set step-mode) or we no longer know how to get back
6864 to the call site. */
6865 if (step_stop_if_no_debug
6866 || !frame_id_p (frame_unwind_caller_id (frame)))
6867 {
6868 /* If we have no line number and the step-stop-if-no-debug
6869 is set, we stop the step so that the user has a chance to
6870 switch in assembly mode. */
6871 end_stepping_range (ecs);
6872 return;
6873 }
6874 else
6875 {
6876 /* Set a breakpoint at callee's return address (the address
6877 at which the caller will resume). */
6878 insert_step_resume_breakpoint_at_caller (frame);
6879 keep_going (ecs);
6880 return;
6881 }
6882 }
6883
6884 if (ecs->event_thread->control.step_range_end == 1)
6885 {
6886 /* It is stepi or nexti. We always want to stop stepping after
6887 one instruction. */
6888 if (debug_infrun)
6889 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6890 end_stepping_range (ecs);
6891 return;
6892 }
6893
6894 if (stop_pc_sal.line == 0)
6895 {
6896 /* We have no line number information. That means to stop
6897 stepping (does this always happen right after one instruction,
6898 when we do "s" in a function with no line numbers,
6899 or can this happen as a result of a return or longjmp?). */
6900 if (debug_infrun)
6901 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6902 end_stepping_range (ecs);
6903 return;
6904 }
6905
6906 /* Look for "calls" to inlined functions, part one. If the inline
6907 frame machinery detected some skipped call sites, we have entered
6908 a new inline function. */
6909
6910 if (frame_id_eq (get_frame_id (get_current_frame ()),
6911 ecs->event_thread->control.step_frame_id)
6912 && inline_skipped_frames (ecs->ptid))
6913 {
6914 if (debug_infrun)
6915 fprintf_unfiltered (gdb_stdlog,
6916 "infrun: stepped into inlined function\n");
6917
6918 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6919
6920 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6921 {
6922 /* For "step", we're going to stop. But if the call site
6923 for this inlined function is on the same source line as
6924 we were previously stepping, go down into the function
6925 first. Otherwise stop at the call site. */
6926
6927 if (call_sal.line == ecs->event_thread->current_line
6928 && call_sal.symtab == ecs->event_thread->current_symtab)
6929 step_into_inline_frame (ecs->ptid);
6930
6931 end_stepping_range (ecs);
6932 return;
6933 }
6934 else
6935 {
6936 /* For "next", we should stop at the call site if it is on a
6937 different source line. Otherwise continue through the
6938 inlined function. */
6939 if (call_sal.line == ecs->event_thread->current_line
6940 && call_sal.symtab == ecs->event_thread->current_symtab)
6941 keep_going (ecs);
6942 else
6943 end_stepping_range (ecs);
6944 return;
6945 }
6946 }
6947
6948 /* Look for "calls" to inlined functions, part two. If we are still
6949 in the same real function we were stepping through, but we have
6950 to go further up to find the exact frame ID, we are stepping
6951 through a more inlined call beyond its call site. */
6952
6953 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6954 && !frame_id_eq (get_frame_id (get_current_frame ()),
6955 ecs->event_thread->control.step_frame_id)
6956 && stepped_in_from (get_current_frame (),
6957 ecs->event_thread->control.step_frame_id))
6958 {
6959 if (debug_infrun)
6960 fprintf_unfiltered (gdb_stdlog,
6961 "infrun: stepping through inlined function\n");
6962
6963 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6964 keep_going (ecs);
6965 else
6966 end_stepping_range (ecs);
6967 return;
6968 }
6969
6970 if ((stop_pc == stop_pc_sal.pc)
6971 && (ecs->event_thread->current_line != stop_pc_sal.line
6972 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6973 {
6974 /* We are at the start of a different line. So stop. Note that
6975 we don't stop if we step into the middle of a different line.
6976 That is said to make things like for (;;) statements work
6977 better. */
6978 if (debug_infrun)
6979 fprintf_unfiltered (gdb_stdlog,
6980 "infrun: stepped to a different line\n");
6981 end_stepping_range (ecs);
6982 return;
6983 }
6984
6985 /* We aren't done stepping.
6986
6987 Optimize by setting the stepping range to the line.
6988 (We might not be in the original line, but if we entered a
6989 new line in mid-statement, we continue stepping. This makes
6990 things like for(;;) statements work better.) */
6991
6992 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6993 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6994 ecs->event_thread->control.may_range_step = 1;
6995 set_step_info (frame, stop_pc_sal);
6996
6997 if (debug_infrun)
6998 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6999 keep_going (ecs);
7000 }
7001
7002 /* In all-stop mode, if we're currently stepping but have stopped in
7003 some other thread, we may need to switch back to the stepped
7004 thread. Returns true we set the inferior running, false if we left
7005 it stopped (and the event needs further processing). */
7006
7007 static int
7008 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7009 {
7010 if (!target_is_non_stop_p ())
7011 {
7012 struct thread_info *tp;
7013 struct thread_info *stepping_thread;
7014
7015 /* If any thread is blocked on some internal breakpoint, and we
7016 simply need to step over that breakpoint to get it going
7017 again, do that first. */
7018
7019 /* However, if we see an event for the stepping thread, then we
7020 know all other threads have been moved past their breakpoints
7021 already. Let the caller check whether the step is finished,
7022 etc., before deciding to move it past a breakpoint. */
7023 if (ecs->event_thread->control.step_range_end != 0)
7024 return 0;
7025
7026 /* Check if the current thread is blocked on an incomplete
7027 step-over, interrupted by a random signal. */
7028 if (ecs->event_thread->control.trap_expected
7029 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7030 {
7031 if (debug_infrun)
7032 {
7033 fprintf_unfiltered (gdb_stdlog,
7034 "infrun: need to finish step-over of [%s]\n",
7035 target_pid_to_str (ecs->event_thread->ptid));
7036 }
7037 keep_going (ecs);
7038 return 1;
7039 }
7040
7041 /* Check if the current thread is blocked by a single-step
7042 breakpoint of another thread. */
7043 if (ecs->hit_singlestep_breakpoint)
7044 {
7045 if (debug_infrun)
7046 {
7047 fprintf_unfiltered (gdb_stdlog,
7048 "infrun: need to step [%s] over single-step "
7049 "breakpoint\n",
7050 target_pid_to_str (ecs->ptid));
7051 }
7052 keep_going (ecs);
7053 return 1;
7054 }
7055
7056 /* If this thread needs yet another step-over (e.g., stepping
7057 through a delay slot), do it first before moving on to
7058 another thread. */
7059 if (thread_still_needs_step_over (ecs->event_thread))
7060 {
7061 if (debug_infrun)
7062 {
7063 fprintf_unfiltered (gdb_stdlog,
7064 "infrun: thread [%s] still needs step-over\n",
7065 target_pid_to_str (ecs->event_thread->ptid));
7066 }
7067 keep_going (ecs);
7068 return 1;
7069 }
7070
7071 /* If scheduler locking applies even if not stepping, there's no
7072 need to walk over threads. Above we've checked whether the
7073 current thread is stepping. If some other thread not the
7074 event thread is stepping, then it must be that scheduler
7075 locking is not in effect. */
7076 if (schedlock_applies (ecs->event_thread))
7077 return 0;
7078
7079 /* Otherwise, we no longer expect a trap in the current thread.
7080 Clear the trap_expected flag before switching back -- this is
7081 what keep_going does as well, if we call it. */
7082 ecs->event_thread->control.trap_expected = 0;
7083
7084 /* Likewise, clear the signal if it should not be passed. */
7085 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7086 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7087
7088 /* Do all pending step-overs before actually proceeding with
7089 step/next/etc. */
7090 if (start_step_over ())
7091 {
7092 prepare_to_wait (ecs);
7093 return 1;
7094 }
7095
7096 /* Look for the stepping/nexting thread. */
7097 stepping_thread = NULL;
7098
7099 ALL_NON_EXITED_THREADS (tp)
7100 {
7101 /* Ignore threads of processes the caller is not
7102 resuming. */
7103 if (!sched_multi
7104 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7105 continue;
7106
7107 /* When stepping over a breakpoint, we lock all threads
7108 except the one that needs to move past the breakpoint.
7109 If a non-event thread has this set, the "incomplete
7110 step-over" check above should have caught it earlier. */
7111 if (tp->control.trap_expected)
7112 {
7113 internal_error (__FILE__, __LINE__,
7114 "[%s] has inconsistent state: "
7115 "trap_expected=%d\n",
7116 target_pid_to_str (tp->ptid),
7117 tp->control.trap_expected);
7118 }
7119
7120 /* Did we find the stepping thread? */
7121 if (tp->control.step_range_end)
7122 {
7123 /* Yep. There should only one though. */
7124 gdb_assert (stepping_thread == NULL);
7125
7126 /* The event thread is handled at the top, before we
7127 enter this loop. */
7128 gdb_assert (tp != ecs->event_thread);
7129
7130 /* If some thread other than the event thread is
7131 stepping, then scheduler locking can't be in effect,
7132 otherwise we wouldn't have resumed the current event
7133 thread in the first place. */
7134 gdb_assert (!schedlock_applies (tp));
7135
7136 stepping_thread = tp;
7137 }
7138 }
7139
7140 if (stepping_thread != NULL)
7141 {
7142 if (debug_infrun)
7143 fprintf_unfiltered (gdb_stdlog,
7144 "infrun: switching back to stepped thread\n");
7145
7146 if (keep_going_stepped_thread (stepping_thread))
7147 {
7148 prepare_to_wait (ecs);
7149 return 1;
7150 }
7151 }
7152 }
7153
7154 return 0;
7155 }
7156
7157 /* Set a previously stepped thread back to stepping. Returns true on
7158 success, false if the resume is not possible (e.g., the thread
7159 vanished). */
7160
7161 static int
7162 keep_going_stepped_thread (struct thread_info *tp)
7163 {
7164 struct frame_info *frame;
7165 struct execution_control_state ecss;
7166 struct execution_control_state *ecs = &ecss;
7167
7168 /* If the stepping thread exited, then don't try to switch back and
7169 resume it, which could fail in several different ways depending
7170 on the target. Instead, just keep going.
7171
7172 We can find a stepping dead thread in the thread list in two
7173 cases:
7174
7175 - The target supports thread exit events, and when the target
7176 tries to delete the thread from the thread list, inferior_ptid
7177 pointed at the exiting thread. In such case, calling
7178 delete_thread does not really remove the thread from the list;
7179 instead, the thread is left listed, with 'exited' state.
7180
7181 - The target's debug interface does not support thread exit
7182 events, and so we have no idea whatsoever if the previously
7183 stepping thread is still alive. For that reason, we need to
7184 synchronously query the target now. */
7185
7186 if (is_exited (tp->ptid)
7187 || !target_thread_alive (tp->ptid))
7188 {
7189 if (debug_infrun)
7190 fprintf_unfiltered (gdb_stdlog,
7191 "infrun: not resuming previously "
7192 "stepped thread, it has vanished\n");
7193
7194 delete_thread (tp->ptid);
7195 return 0;
7196 }
7197
7198 if (debug_infrun)
7199 fprintf_unfiltered (gdb_stdlog,
7200 "infrun: resuming previously stepped thread\n");
7201
7202 reset_ecs (ecs, tp);
7203 switch_to_thread (tp->ptid);
7204
7205 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7206 frame = get_current_frame ();
7207
7208 /* If the PC of the thread we were trying to single-step has
7209 changed, then that thread has trapped or been signaled, but the
7210 event has not been reported to GDB yet. Re-poll the target
7211 looking for this particular thread's event (i.e. temporarily
7212 enable schedlock) by:
7213
7214 - setting a break at the current PC
7215 - resuming that particular thread, only (by setting trap
7216 expected)
7217
7218 This prevents us continuously moving the single-step breakpoint
7219 forward, one instruction at a time, overstepping. */
7220
7221 if (stop_pc != tp->prev_pc)
7222 {
7223 ptid_t resume_ptid;
7224
7225 if (debug_infrun)
7226 fprintf_unfiltered (gdb_stdlog,
7227 "infrun: expected thread advanced also (%s -> %s)\n",
7228 paddress (target_gdbarch (), tp->prev_pc),
7229 paddress (target_gdbarch (), stop_pc));
7230
7231 /* Clear the info of the previous step-over, as it's no longer
7232 valid (if the thread was trying to step over a breakpoint, it
7233 has already succeeded). It's what keep_going would do too,
7234 if we called it. Do this before trying to insert the sss
7235 breakpoint, otherwise if we were previously trying to step
7236 over this exact address in another thread, the breakpoint is
7237 skipped. */
7238 clear_step_over_info ();
7239 tp->control.trap_expected = 0;
7240
7241 insert_single_step_breakpoint (get_frame_arch (frame),
7242 get_frame_address_space (frame),
7243 stop_pc);
7244
7245 tp->resumed = 1;
7246 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7247 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7248 }
7249 else
7250 {
7251 if (debug_infrun)
7252 fprintf_unfiltered (gdb_stdlog,
7253 "infrun: expected thread still hasn't advanced\n");
7254
7255 keep_going_pass_signal (ecs);
7256 }
7257 return 1;
7258 }
7259
7260 /* Is thread TP in the middle of (software or hardware)
7261 single-stepping? (Note the result of this function must never be
7262 passed directly as target_resume's STEP parameter.) */
7263
7264 static int
7265 currently_stepping (struct thread_info *tp)
7266 {
7267 return ((tp->control.step_range_end
7268 && tp->control.step_resume_breakpoint == NULL)
7269 || tp->control.trap_expected
7270 || tp->stepped_breakpoint
7271 || bpstat_should_step ());
7272 }
7273
7274 /* Inferior has stepped into a subroutine call with source code that
7275 we should not step over. Do step to the first line of code in
7276 it. */
7277
7278 static void
7279 handle_step_into_function (struct gdbarch *gdbarch,
7280 struct execution_control_state *ecs)
7281 {
7282 fill_in_stop_func (gdbarch, ecs);
7283
7284 compunit_symtab *cust = find_pc_compunit_symtab (stop_pc);
7285 if (cust != NULL && compunit_language (cust) != language_asm)
7286 ecs->stop_func_start
7287 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7288
7289 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7290 /* Use the step_resume_break to step until the end of the prologue,
7291 even if that involves jumps (as it seems to on the vax under
7292 4.2). */
7293 /* If the prologue ends in the middle of a source line, continue to
7294 the end of that source line (if it is still within the function).
7295 Otherwise, just go to end of prologue. */
7296 if (stop_func_sal.end
7297 && stop_func_sal.pc != ecs->stop_func_start
7298 && stop_func_sal.end < ecs->stop_func_end)
7299 ecs->stop_func_start = stop_func_sal.end;
7300
7301 /* Architectures which require breakpoint adjustment might not be able
7302 to place a breakpoint at the computed address. If so, the test
7303 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7304 ecs->stop_func_start to an address at which a breakpoint may be
7305 legitimately placed.
7306
7307 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7308 made, GDB will enter an infinite loop when stepping through
7309 optimized code consisting of VLIW instructions which contain
7310 subinstructions corresponding to different source lines. On
7311 FR-V, it's not permitted to place a breakpoint on any but the
7312 first subinstruction of a VLIW instruction. When a breakpoint is
7313 set, GDB will adjust the breakpoint address to the beginning of
7314 the VLIW instruction. Thus, we need to make the corresponding
7315 adjustment here when computing the stop address. */
7316
7317 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7318 {
7319 ecs->stop_func_start
7320 = gdbarch_adjust_breakpoint_address (gdbarch,
7321 ecs->stop_func_start);
7322 }
7323
7324 if (ecs->stop_func_start == stop_pc)
7325 {
7326 /* We are already there: stop now. */
7327 end_stepping_range (ecs);
7328 return;
7329 }
7330 else
7331 {
7332 /* Put the step-breakpoint there and go until there. */
7333 symtab_and_line sr_sal;
7334 sr_sal.pc = ecs->stop_func_start;
7335 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7336 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7337
7338 /* Do not specify what the fp should be when we stop since on
7339 some machines the prologue is where the new fp value is
7340 established. */
7341 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7342
7343 /* And make sure stepping stops right away then. */
7344 ecs->event_thread->control.step_range_end
7345 = ecs->event_thread->control.step_range_start;
7346 }
7347 keep_going (ecs);
7348 }
7349
7350 /* Inferior has stepped backward into a subroutine call with source
7351 code that we should not step over. Do step to the beginning of the
7352 last line of code in it. */
7353
7354 static void
7355 handle_step_into_function_backward (struct gdbarch *gdbarch,
7356 struct execution_control_state *ecs)
7357 {
7358 struct compunit_symtab *cust;
7359 struct symtab_and_line stop_func_sal;
7360
7361 fill_in_stop_func (gdbarch, ecs);
7362
7363 cust = find_pc_compunit_symtab (stop_pc);
7364 if (cust != NULL && compunit_language (cust) != language_asm)
7365 ecs->stop_func_start
7366 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7367
7368 stop_func_sal = find_pc_line (stop_pc, 0);
7369
7370 /* OK, we're just going to keep stepping here. */
7371 if (stop_func_sal.pc == stop_pc)
7372 {
7373 /* We're there already. Just stop stepping now. */
7374 end_stepping_range (ecs);
7375 }
7376 else
7377 {
7378 /* Else just reset the step range and keep going.
7379 No step-resume breakpoint, they don't work for
7380 epilogues, which can have multiple entry paths. */
7381 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7382 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7383 keep_going (ecs);
7384 }
7385 return;
7386 }
7387
7388 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7389 This is used to both functions and to skip over code. */
7390
7391 static void
7392 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7393 struct symtab_and_line sr_sal,
7394 struct frame_id sr_id,
7395 enum bptype sr_type)
7396 {
7397 /* There should never be more than one step-resume or longjmp-resume
7398 breakpoint per thread, so we should never be setting a new
7399 step_resume_breakpoint when one is already active. */
7400 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7401 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7402
7403 if (debug_infrun)
7404 fprintf_unfiltered (gdb_stdlog,
7405 "infrun: inserting step-resume breakpoint at %s\n",
7406 paddress (gdbarch, sr_sal.pc));
7407
7408 inferior_thread ()->control.step_resume_breakpoint
7409 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7410 }
7411
7412 void
7413 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7414 struct symtab_and_line sr_sal,
7415 struct frame_id sr_id)
7416 {
7417 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7418 sr_sal, sr_id,
7419 bp_step_resume);
7420 }
7421
7422 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7423 This is used to skip a potential signal handler.
7424
7425 This is called with the interrupted function's frame. The signal
7426 handler, when it returns, will resume the interrupted function at
7427 RETURN_FRAME.pc. */
7428
7429 static void
7430 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7431 {
7432 gdb_assert (return_frame != NULL);
7433
7434 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7435
7436 symtab_and_line sr_sal;
7437 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7438 sr_sal.section = find_pc_overlay (sr_sal.pc);
7439 sr_sal.pspace = get_frame_program_space (return_frame);
7440
7441 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7442 get_stack_frame_id (return_frame),
7443 bp_hp_step_resume);
7444 }
7445
7446 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7447 is used to skip a function after stepping into it (for "next" or if
7448 the called function has no debugging information).
7449
7450 The current function has almost always been reached by single
7451 stepping a call or return instruction. NEXT_FRAME belongs to the
7452 current function, and the breakpoint will be set at the caller's
7453 resume address.
7454
7455 This is a separate function rather than reusing
7456 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7457 get_prev_frame, which may stop prematurely (see the implementation
7458 of frame_unwind_caller_id for an example). */
7459
7460 static void
7461 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7462 {
7463 /* We shouldn't have gotten here if we don't know where the call site
7464 is. */
7465 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7466
7467 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7468
7469 symtab_and_line sr_sal;
7470 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7471 frame_unwind_caller_pc (next_frame));
7472 sr_sal.section = find_pc_overlay (sr_sal.pc);
7473 sr_sal.pspace = frame_unwind_program_space (next_frame);
7474
7475 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7476 frame_unwind_caller_id (next_frame));
7477 }
7478
7479 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7480 new breakpoint at the target of a jmp_buf. The handling of
7481 longjmp-resume uses the same mechanisms used for handling
7482 "step-resume" breakpoints. */
7483
7484 static void
7485 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7486 {
7487 /* There should never be more than one longjmp-resume breakpoint per
7488 thread, so we should never be setting a new
7489 longjmp_resume_breakpoint when one is already active. */
7490 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7491
7492 if (debug_infrun)
7493 fprintf_unfiltered (gdb_stdlog,
7494 "infrun: inserting longjmp-resume breakpoint at %s\n",
7495 paddress (gdbarch, pc));
7496
7497 inferior_thread ()->control.exception_resume_breakpoint =
7498 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7499 }
7500
7501 /* Insert an exception resume breakpoint. TP is the thread throwing
7502 the exception. The block B is the block of the unwinder debug hook
7503 function. FRAME is the frame corresponding to the call to this
7504 function. SYM is the symbol of the function argument holding the
7505 target PC of the exception. */
7506
7507 static void
7508 insert_exception_resume_breakpoint (struct thread_info *tp,
7509 const struct block *b,
7510 struct frame_info *frame,
7511 struct symbol *sym)
7512 {
7513 TRY
7514 {
7515 struct block_symbol vsym;
7516 struct value *value;
7517 CORE_ADDR handler;
7518 struct breakpoint *bp;
7519
7520 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7521 value = read_var_value (vsym.symbol, vsym.block, frame);
7522 /* If the value was optimized out, revert to the old behavior. */
7523 if (! value_optimized_out (value))
7524 {
7525 handler = value_as_address (value);
7526
7527 if (debug_infrun)
7528 fprintf_unfiltered (gdb_stdlog,
7529 "infrun: exception resume at %lx\n",
7530 (unsigned long) handler);
7531
7532 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7533 handler, bp_exception_resume);
7534
7535 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7536 frame = NULL;
7537
7538 bp->thread = tp->global_num;
7539 inferior_thread ()->control.exception_resume_breakpoint = bp;
7540 }
7541 }
7542 CATCH (e, RETURN_MASK_ERROR)
7543 {
7544 /* We want to ignore errors here. */
7545 }
7546 END_CATCH
7547 }
7548
7549 /* A helper for check_exception_resume that sets an
7550 exception-breakpoint based on a SystemTap probe. */
7551
7552 static void
7553 insert_exception_resume_from_probe (struct thread_info *tp,
7554 const struct bound_probe *probe,
7555 struct frame_info *frame)
7556 {
7557 struct value *arg_value;
7558 CORE_ADDR handler;
7559 struct breakpoint *bp;
7560
7561 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7562 if (!arg_value)
7563 return;
7564
7565 handler = value_as_address (arg_value);
7566
7567 if (debug_infrun)
7568 fprintf_unfiltered (gdb_stdlog,
7569 "infrun: exception resume at %s\n",
7570 paddress (get_objfile_arch (probe->objfile),
7571 handler));
7572
7573 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7574 handler, bp_exception_resume);
7575 bp->thread = tp->global_num;
7576 inferior_thread ()->control.exception_resume_breakpoint = bp;
7577 }
7578
7579 /* This is called when an exception has been intercepted. Check to
7580 see whether the exception's destination is of interest, and if so,
7581 set an exception resume breakpoint there. */
7582
7583 static void
7584 check_exception_resume (struct execution_control_state *ecs,
7585 struct frame_info *frame)
7586 {
7587 struct bound_probe probe;
7588 struct symbol *func;
7589
7590 /* First see if this exception unwinding breakpoint was set via a
7591 SystemTap probe point. If so, the probe has two arguments: the
7592 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7593 set a breakpoint there. */
7594 probe = find_probe_by_pc (get_frame_pc (frame));
7595 if (probe.probe)
7596 {
7597 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7598 return;
7599 }
7600
7601 func = get_frame_function (frame);
7602 if (!func)
7603 return;
7604
7605 TRY
7606 {
7607 const struct block *b;
7608 struct block_iterator iter;
7609 struct symbol *sym;
7610 int argno = 0;
7611
7612 /* The exception breakpoint is a thread-specific breakpoint on
7613 the unwinder's debug hook, declared as:
7614
7615 void _Unwind_DebugHook (void *cfa, void *handler);
7616
7617 The CFA argument indicates the frame to which control is
7618 about to be transferred. HANDLER is the destination PC.
7619
7620 We ignore the CFA and set a temporary breakpoint at HANDLER.
7621 This is not extremely efficient but it avoids issues in gdb
7622 with computing the DWARF CFA, and it also works even in weird
7623 cases such as throwing an exception from inside a signal
7624 handler. */
7625
7626 b = SYMBOL_BLOCK_VALUE (func);
7627 ALL_BLOCK_SYMBOLS (b, iter, sym)
7628 {
7629 if (!SYMBOL_IS_ARGUMENT (sym))
7630 continue;
7631
7632 if (argno == 0)
7633 ++argno;
7634 else
7635 {
7636 insert_exception_resume_breakpoint (ecs->event_thread,
7637 b, frame, sym);
7638 break;
7639 }
7640 }
7641 }
7642 CATCH (e, RETURN_MASK_ERROR)
7643 {
7644 }
7645 END_CATCH
7646 }
7647
7648 static void
7649 stop_waiting (struct execution_control_state *ecs)
7650 {
7651 if (debug_infrun)
7652 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7653
7654 /* Let callers know we don't want to wait for the inferior anymore. */
7655 ecs->wait_some_more = 0;
7656
7657 /* If all-stop, but the target is always in non-stop mode, stop all
7658 threads now that we're presenting the stop to the user. */
7659 if (!non_stop && target_is_non_stop_p ())
7660 stop_all_threads ();
7661 }
7662
7663 /* Like keep_going, but passes the signal to the inferior, even if the
7664 signal is set to nopass. */
7665
7666 static void
7667 keep_going_pass_signal (struct execution_control_state *ecs)
7668 {
7669 /* Make sure normal_stop is called if we get a QUIT handled before
7670 reaching resume. */
7671 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7672
7673 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7674 gdb_assert (!ecs->event_thread->resumed);
7675
7676 /* Save the pc before execution, to compare with pc after stop. */
7677 ecs->event_thread->prev_pc
7678 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7679
7680 if (ecs->event_thread->control.trap_expected)
7681 {
7682 struct thread_info *tp = ecs->event_thread;
7683
7684 if (debug_infrun)
7685 fprintf_unfiltered (gdb_stdlog,
7686 "infrun: %s has trap_expected set, "
7687 "resuming to collect trap\n",
7688 target_pid_to_str (tp->ptid));
7689
7690 /* We haven't yet gotten our trap, and either: intercepted a
7691 non-signal event (e.g., a fork); or took a signal which we
7692 are supposed to pass through to the inferior. Simply
7693 continue. */
7694 discard_cleanups (old_cleanups);
7695 resume (ecs->event_thread->suspend.stop_signal);
7696 }
7697 else if (step_over_info_valid_p ())
7698 {
7699 /* Another thread is stepping over a breakpoint in-line. If
7700 this thread needs a step-over too, queue the request. In
7701 either case, this resume must be deferred for later. */
7702 struct thread_info *tp = ecs->event_thread;
7703
7704 if (ecs->hit_singlestep_breakpoint
7705 || thread_still_needs_step_over (tp))
7706 {
7707 if (debug_infrun)
7708 fprintf_unfiltered (gdb_stdlog,
7709 "infrun: step-over already in progress: "
7710 "step-over for %s deferred\n",
7711 target_pid_to_str (tp->ptid));
7712 thread_step_over_chain_enqueue (tp);
7713 }
7714 else
7715 {
7716 if (debug_infrun)
7717 fprintf_unfiltered (gdb_stdlog,
7718 "infrun: step-over in progress: "
7719 "resume of %s deferred\n",
7720 target_pid_to_str (tp->ptid));
7721 }
7722
7723 discard_cleanups (old_cleanups);
7724 }
7725 else
7726 {
7727 struct regcache *regcache = get_current_regcache ();
7728 int remove_bp;
7729 int remove_wps;
7730 step_over_what step_what;
7731
7732 /* Either the trap was not expected, but we are continuing
7733 anyway (if we got a signal, the user asked it be passed to
7734 the child)
7735 -- or --
7736 We got our expected trap, but decided we should resume from
7737 it.
7738
7739 We're going to run this baby now!
7740
7741 Note that insert_breakpoints won't try to re-insert
7742 already inserted breakpoints. Therefore, we don't
7743 care if breakpoints were already inserted, or not. */
7744
7745 /* If we need to step over a breakpoint, and we're not using
7746 displaced stepping to do so, insert all breakpoints
7747 (watchpoints, etc.) but the one we're stepping over, step one
7748 instruction, and then re-insert the breakpoint when that step
7749 is finished. */
7750
7751 step_what = thread_still_needs_step_over (ecs->event_thread);
7752
7753 remove_bp = (ecs->hit_singlestep_breakpoint
7754 || (step_what & STEP_OVER_BREAKPOINT));
7755 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7756
7757 /* We can't use displaced stepping if we need to step past a
7758 watchpoint. The instruction copied to the scratch pad would
7759 still trigger the watchpoint. */
7760 if (remove_bp
7761 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7762 {
7763 set_step_over_info (get_regcache_aspace (regcache),
7764 regcache_read_pc (regcache), remove_wps,
7765 ecs->event_thread->global_num);
7766 }
7767 else if (remove_wps)
7768 set_step_over_info (NULL, 0, remove_wps, -1);
7769
7770 /* If we now need to do an in-line step-over, we need to stop
7771 all other threads. Note this must be done before
7772 insert_breakpoints below, because that removes the breakpoint
7773 we're about to step over, otherwise other threads could miss
7774 it. */
7775 if (step_over_info_valid_p () && target_is_non_stop_p ())
7776 stop_all_threads ();
7777
7778 /* Stop stepping if inserting breakpoints fails. */
7779 TRY
7780 {
7781 insert_breakpoints ();
7782 }
7783 CATCH (e, RETURN_MASK_ERROR)
7784 {
7785 exception_print (gdb_stderr, e);
7786 stop_waiting (ecs);
7787 discard_cleanups (old_cleanups);
7788 return;
7789 }
7790 END_CATCH
7791
7792 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7793
7794 discard_cleanups (old_cleanups);
7795 resume (ecs->event_thread->suspend.stop_signal);
7796 }
7797
7798 prepare_to_wait (ecs);
7799 }
7800
7801 /* Called when we should continue running the inferior, because the
7802 current event doesn't cause a user visible stop. This does the
7803 resuming part; waiting for the next event is done elsewhere. */
7804
7805 static void
7806 keep_going (struct execution_control_state *ecs)
7807 {
7808 if (ecs->event_thread->control.trap_expected
7809 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7810 ecs->event_thread->control.trap_expected = 0;
7811
7812 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7813 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7814 keep_going_pass_signal (ecs);
7815 }
7816
7817 /* This function normally comes after a resume, before
7818 handle_inferior_event exits. It takes care of any last bits of
7819 housekeeping, and sets the all-important wait_some_more flag. */
7820
7821 static void
7822 prepare_to_wait (struct execution_control_state *ecs)
7823 {
7824 if (debug_infrun)
7825 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7826
7827 ecs->wait_some_more = 1;
7828
7829 if (!target_is_async_p ())
7830 mark_infrun_async_event_handler ();
7831 }
7832
7833 /* We are done with the step range of a step/next/si/ni command.
7834 Called once for each n of a "step n" operation. */
7835
7836 static void
7837 end_stepping_range (struct execution_control_state *ecs)
7838 {
7839 ecs->event_thread->control.stop_step = 1;
7840 stop_waiting (ecs);
7841 }
7842
7843 /* Several print_*_reason functions to print why the inferior has stopped.
7844 We always print something when the inferior exits, or receives a signal.
7845 The rest of the cases are dealt with later on in normal_stop and
7846 print_it_typical. Ideally there should be a call to one of these
7847 print_*_reason functions functions from handle_inferior_event each time
7848 stop_waiting is called.
7849
7850 Note that we don't call these directly, instead we delegate that to
7851 the interpreters, through observers. Interpreters then call these
7852 with whatever uiout is right. */
7853
7854 void
7855 print_end_stepping_range_reason (struct ui_out *uiout)
7856 {
7857 /* For CLI-like interpreters, print nothing. */
7858
7859 if (uiout->is_mi_like_p ())
7860 {
7861 uiout->field_string ("reason",
7862 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7863 }
7864 }
7865
7866 void
7867 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7868 {
7869 annotate_signalled ();
7870 if (uiout->is_mi_like_p ())
7871 uiout->field_string
7872 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7873 uiout->text ("\nProgram terminated with signal ");
7874 annotate_signal_name ();
7875 uiout->field_string ("signal-name",
7876 gdb_signal_to_name (siggnal));
7877 annotate_signal_name_end ();
7878 uiout->text (", ");
7879 annotate_signal_string ();
7880 uiout->field_string ("signal-meaning",
7881 gdb_signal_to_string (siggnal));
7882 annotate_signal_string_end ();
7883 uiout->text (".\n");
7884 uiout->text ("The program no longer exists.\n");
7885 }
7886
7887 void
7888 print_exited_reason (struct ui_out *uiout, int exitstatus)
7889 {
7890 struct inferior *inf = current_inferior ();
7891 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7892
7893 annotate_exited (exitstatus);
7894 if (exitstatus)
7895 {
7896 if (uiout->is_mi_like_p ())
7897 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7898 uiout->text ("[Inferior ");
7899 uiout->text (plongest (inf->num));
7900 uiout->text (" (");
7901 uiout->text (pidstr);
7902 uiout->text (") exited with code ");
7903 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7904 uiout->text ("]\n");
7905 }
7906 else
7907 {
7908 if (uiout->is_mi_like_p ())
7909 uiout->field_string
7910 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7911 uiout->text ("[Inferior ");
7912 uiout->text (plongest (inf->num));
7913 uiout->text (" (");
7914 uiout->text (pidstr);
7915 uiout->text (") exited normally]\n");
7916 }
7917 }
7918
7919 /* Some targets/architectures can do extra processing/display of
7920 segmentation faults. E.g., Intel MPX boundary faults.
7921 Call the architecture dependent function to handle the fault. */
7922
7923 static void
7924 handle_segmentation_fault (struct ui_out *uiout)
7925 {
7926 struct regcache *regcache = get_current_regcache ();
7927 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7928
7929 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7930 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7931 }
7932
7933 void
7934 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7935 {
7936 struct thread_info *thr = inferior_thread ();
7937
7938 annotate_signal ();
7939
7940 if (uiout->is_mi_like_p ())
7941 ;
7942 else if (show_thread_that_caused_stop ())
7943 {
7944 const char *name;
7945
7946 uiout->text ("\nThread ");
7947 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7948
7949 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7950 if (name != NULL)
7951 {
7952 uiout->text (" \"");
7953 uiout->field_fmt ("name", "%s", name);
7954 uiout->text ("\"");
7955 }
7956 }
7957 else
7958 uiout->text ("\nProgram");
7959
7960 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7961 uiout->text (" stopped");
7962 else
7963 {
7964 uiout->text (" received signal ");
7965 annotate_signal_name ();
7966 if (uiout->is_mi_like_p ())
7967 uiout->field_string
7968 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7969 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7970 annotate_signal_name_end ();
7971 uiout->text (", ");
7972 annotate_signal_string ();
7973 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7974
7975 if (siggnal == GDB_SIGNAL_SEGV)
7976 handle_segmentation_fault (uiout);
7977
7978 annotate_signal_string_end ();
7979 }
7980 uiout->text (".\n");
7981 }
7982
7983 void
7984 print_no_history_reason (struct ui_out *uiout)
7985 {
7986 uiout->text ("\nNo more reverse-execution history.\n");
7987 }
7988
7989 /* Print current location without a level number, if we have changed
7990 functions or hit a breakpoint. Print source line if we have one.
7991 bpstat_print contains the logic deciding in detail what to print,
7992 based on the event(s) that just occurred. */
7993
7994 static void
7995 print_stop_location (struct target_waitstatus *ws)
7996 {
7997 int bpstat_ret;
7998 enum print_what source_flag;
7999 int do_frame_printing = 1;
8000 struct thread_info *tp = inferior_thread ();
8001
8002 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8003 switch (bpstat_ret)
8004 {
8005 case PRINT_UNKNOWN:
8006 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8007 should) carry around the function and does (or should) use
8008 that when doing a frame comparison. */
8009 if (tp->control.stop_step
8010 && frame_id_eq (tp->control.step_frame_id,
8011 get_frame_id (get_current_frame ()))
8012 && tp->control.step_start_function == find_pc_function (stop_pc))
8013 {
8014 /* Finished step, just print source line. */
8015 source_flag = SRC_LINE;
8016 }
8017 else
8018 {
8019 /* Print location and source line. */
8020 source_flag = SRC_AND_LOC;
8021 }
8022 break;
8023 case PRINT_SRC_AND_LOC:
8024 /* Print location and source line. */
8025 source_flag = SRC_AND_LOC;
8026 break;
8027 case PRINT_SRC_ONLY:
8028 source_flag = SRC_LINE;
8029 break;
8030 case PRINT_NOTHING:
8031 /* Something bogus. */
8032 source_flag = SRC_LINE;
8033 do_frame_printing = 0;
8034 break;
8035 default:
8036 internal_error (__FILE__, __LINE__, _("Unknown value."));
8037 }
8038
8039 /* The behavior of this routine with respect to the source
8040 flag is:
8041 SRC_LINE: Print only source line
8042 LOCATION: Print only location
8043 SRC_AND_LOC: Print location and source line. */
8044 if (do_frame_printing)
8045 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8046 }
8047
8048 /* See infrun.h. */
8049
8050 void
8051 print_stop_event (struct ui_out *uiout)
8052 {
8053 struct target_waitstatus last;
8054 ptid_t last_ptid;
8055 struct thread_info *tp;
8056
8057 get_last_target_status (&last_ptid, &last);
8058
8059 {
8060 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8061
8062 print_stop_location (&last);
8063
8064 /* Display the auto-display expressions. */
8065 do_displays ();
8066 }
8067
8068 tp = inferior_thread ();
8069 if (tp->thread_fsm != NULL
8070 && thread_fsm_finished_p (tp->thread_fsm))
8071 {
8072 struct return_value_info *rv;
8073
8074 rv = thread_fsm_return_value (tp->thread_fsm);
8075 if (rv != NULL)
8076 print_return_value (uiout, rv);
8077 }
8078 }
8079
8080 /* See infrun.h. */
8081
8082 void
8083 maybe_remove_breakpoints (void)
8084 {
8085 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8086 {
8087 if (remove_breakpoints ())
8088 {
8089 target_terminal::ours_for_output ();
8090 printf_filtered (_("Cannot remove breakpoints because "
8091 "program is no longer writable.\nFurther "
8092 "execution is probably impossible.\n"));
8093 }
8094 }
8095 }
8096
8097 /* The execution context that just caused a normal stop. */
8098
8099 struct stop_context
8100 {
8101 /* The stop ID. */
8102 ULONGEST stop_id;
8103
8104 /* The event PTID. */
8105
8106 ptid_t ptid;
8107
8108 /* If stopp for a thread event, this is the thread that caused the
8109 stop. */
8110 struct thread_info *thread;
8111
8112 /* The inferior that caused the stop. */
8113 int inf_num;
8114 };
8115
8116 /* Returns a new stop context. If stopped for a thread event, this
8117 takes a strong reference to the thread. */
8118
8119 static struct stop_context *
8120 save_stop_context (void)
8121 {
8122 struct stop_context *sc = XNEW (struct stop_context);
8123
8124 sc->stop_id = get_stop_id ();
8125 sc->ptid = inferior_ptid;
8126 sc->inf_num = current_inferior ()->num;
8127
8128 if (!ptid_equal (inferior_ptid, null_ptid))
8129 {
8130 /* Take a strong reference so that the thread can't be deleted
8131 yet. */
8132 sc->thread = inferior_thread ();
8133 sc->thread->incref ();
8134 }
8135 else
8136 sc->thread = NULL;
8137
8138 return sc;
8139 }
8140
8141 /* Release a stop context previously created with save_stop_context.
8142 Releases the strong reference to the thread as well. */
8143
8144 static void
8145 release_stop_context_cleanup (void *arg)
8146 {
8147 struct stop_context *sc = (struct stop_context *) arg;
8148
8149 if (sc->thread != NULL)
8150 sc->thread->decref ();
8151 xfree (sc);
8152 }
8153
8154 /* Return true if the current context no longer matches the saved stop
8155 context. */
8156
8157 static int
8158 stop_context_changed (struct stop_context *prev)
8159 {
8160 if (!ptid_equal (prev->ptid, inferior_ptid))
8161 return 1;
8162 if (prev->inf_num != current_inferior ()->num)
8163 return 1;
8164 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8165 return 1;
8166 if (get_stop_id () != prev->stop_id)
8167 return 1;
8168 return 0;
8169 }
8170
8171 /* See infrun.h. */
8172
8173 int
8174 normal_stop (void)
8175 {
8176 struct target_waitstatus last;
8177 ptid_t last_ptid;
8178 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8179 ptid_t pid_ptid;
8180
8181 get_last_target_status (&last_ptid, &last);
8182
8183 new_stop_id ();
8184
8185 /* If an exception is thrown from this point on, make sure to
8186 propagate GDB's knowledge of the executing state to the
8187 frontend/user running state. A QUIT is an easy exception to see
8188 here, so do this before any filtered output. */
8189 if (!non_stop)
8190 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8191 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8192 || last.kind == TARGET_WAITKIND_EXITED)
8193 {
8194 /* On some targets, we may still have live threads in the
8195 inferior when we get a process exit event. E.g., for
8196 "checkpoint", when the current checkpoint/fork exits,
8197 linux-fork.c automatically switches to another fork from
8198 within target_mourn_inferior. */
8199 if (!ptid_equal (inferior_ptid, null_ptid))
8200 {
8201 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8202 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8203 }
8204 }
8205 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8206 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8207
8208 /* As we're presenting a stop, and potentially removing breakpoints,
8209 update the thread list so we can tell whether there are threads
8210 running on the target. With target remote, for example, we can
8211 only learn about new threads when we explicitly update the thread
8212 list. Do this before notifying the interpreters about signal
8213 stops, end of stepping ranges, etc., so that the "new thread"
8214 output is emitted before e.g., "Program received signal FOO",
8215 instead of after. */
8216 update_thread_list ();
8217
8218 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8219 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8220
8221 /* As with the notification of thread events, we want to delay
8222 notifying the user that we've switched thread context until
8223 the inferior actually stops.
8224
8225 There's no point in saying anything if the inferior has exited.
8226 Note that SIGNALLED here means "exited with a signal", not
8227 "received a signal".
8228
8229 Also skip saying anything in non-stop mode. In that mode, as we
8230 don't want GDB to switch threads behind the user's back, to avoid
8231 races where the user is typing a command to apply to thread x,
8232 but GDB switches to thread y before the user finishes entering
8233 the command, fetch_inferior_event installs a cleanup to restore
8234 the current thread back to the thread the user had selected right
8235 after this event is handled, so we're not really switching, only
8236 informing of a stop. */
8237 if (!non_stop
8238 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8239 && target_has_execution
8240 && last.kind != TARGET_WAITKIND_SIGNALLED
8241 && last.kind != TARGET_WAITKIND_EXITED
8242 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8243 {
8244 SWITCH_THRU_ALL_UIS ()
8245 {
8246 target_terminal::ours_for_output ();
8247 printf_filtered (_("[Switching to %s]\n"),
8248 target_pid_to_str (inferior_ptid));
8249 annotate_thread_changed ();
8250 }
8251 previous_inferior_ptid = inferior_ptid;
8252 }
8253
8254 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8255 {
8256 SWITCH_THRU_ALL_UIS ()
8257 if (current_ui->prompt_state == PROMPT_BLOCKED)
8258 {
8259 target_terminal::ours_for_output ();
8260 printf_filtered (_("No unwaited-for children left.\n"));
8261 }
8262 }
8263
8264 /* Note: this depends on the update_thread_list call above. */
8265 maybe_remove_breakpoints ();
8266
8267 /* If an auto-display called a function and that got a signal,
8268 delete that auto-display to avoid an infinite recursion. */
8269
8270 if (stopped_by_random_signal)
8271 disable_current_display ();
8272
8273 SWITCH_THRU_ALL_UIS ()
8274 {
8275 async_enable_stdin ();
8276 }
8277
8278 /* Let the user/frontend see the threads as stopped. */
8279 do_cleanups (old_chain);
8280
8281 /* Select innermost stack frame - i.e., current frame is frame 0,
8282 and current location is based on that. Handle the case where the
8283 dummy call is returning after being stopped. E.g. the dummy call
8284 previously hit a breakpoint. (If the dummy call returns
8285 normally, we won't reach here.) Do this before the stop hook is
8286 run, so that it doesn't get to see the temporary dummy frame,
8287 which is not where we'll present the stop. */
8288 if (has_stack_frames ())
8289 {
8290 if (stop_stack_dummy == STOP_STACK_DUMMY)
8291 {
8292 /* Pop the empty frame that contains the stack dummy. This
8293 also restores inferior state prior to the call (struct
8294 infcall_suspend_state). */
8295 struct frame_info *frame = get_current_frame ();
8296
8297 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8298 frame_pop (frame);
8299 /* frame_pop calls reinit_frame_cache as the last thing it
8300 does which means there's now no selected frame. */
8301 }
8302
8303 select_frame (get_current_frame ());
8304
8305 /* Set the current source location. */
8306 set_current_sal_from_frame (get_current_frame ());
8307 }
8308
8309 /* Look up the hook_stop and run it (CLI internally handles problem
8310 of stop_command's pre-hook not existing). */
8311 if (stop_command != NULL)
8312 {
8313 struct stop_context *saved_context = save_stop_context ();
8314 struct cleanup *old_chain
8315 = make_cleanup (release_stop_context_cleanup, saved_context);
8316
8317 catch_errors (hook_stop_stub, stop_command,
8318 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8319
8320 /* If the stop hook resumes the target, then there's no point in
8321 trying to notify about the previous stop; its context is
8322 gone. Likewise if the command switches thread or inferior --
8323 the observers would print a stop for the wrong
8324 thread/inferior. */
8325 if (stop_context_changed (saved_context))
8326 {
8327 do_cleanups (old_chain);
8328 return 1;
8329 }
8330 do_cleanups (old_chain);
8331 }
8332
8333 /* Notify observers about the stop. This is where the interpreters
8334 print the stop event. */
8335 if (!ptid_equal (inferior_ptid, null_ptid))
8336 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8337 stop_print_frame);
8338 else
8339 observer_notify_normal_stop (NULL, stop_print_frame);
8340
8341 annotate_stopped ();
8342
8343 if (target_has_execution)
8344 {
8345 if (last.kind != TARGET_WAITKIND_SIGNALLED
8346 && last.kind != TARGET_WAITKIND_EXITED)
8347 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8348 Delete any breakpoint that is to be deleted at the next stop. */
8349 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8350 }
8351
8352 /* Try to get rid of automatically added inferiors that are no
8353 longer needed. Keeping those around slows down things linearly.
8354 Note that this never removes the current inferior. */
8355 prune_inferiors ();
8356
8357 return 0;
8358 }
8359
8360 static int
8361 hook_stop_stub (void *cmd)
8362 {
8363 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8364 return (0);
8365 }
8366 \f
8367 int
8368 signal_stop_state (int signo)
8369 {
8370 return signal_stop[signo];
8371 }
8372
8373 int
8374 signal_print_state (int signo)
8375 {
8376 return signal_print[signo];
8377 }
8378
8379 int
8380 signal_pass_state (int signo)
8381 {
8382 return signal_program[signo];
8383 }
8384
8385 static void
8386 signal_cache_update (int signo)
8387 {
8388 if (signo == -1)
8389 {
8390 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8391 signal_cache_update (signo);
8392
8393 return;
8394 }
8395
8396 signal_pass[signo] = (signal_stop[signo] == 0
8397 && signal_print[signo] == 0
8398 && signal_program[signo] == 1
8399 && signal_catch[signo] == 0);
8400 }
8401
8402 int
8403 signal_stop_update (int signo, int state)
8404 {
8405 int ret = signal_stop[signo];
8406
8407 signal_stop[signo] = state;
8408 signal_cache_update (signo);
8409 return ret;
8410 }
8411
8412 int
8413 signal_print_update (int signo, int state)
8414 {
8415 int ret = signal_print[signo];
8416
8417 signal_print[signo] = state;
8418 signal_cache_update (signo);
8419 return ret;
8420 }
8421
8422 int
8423 signal_pass_update (int signo, int state)
8424 {
8425 int ret = signal_program[signo];
8426
8427 signal_program[signo] = state;
8428 signal_cache_update (signo);
8429 return ret;
8430 }
8431
8432 /* Update the global 'signal_catch' from INFO and notify the
8433 target. */
8434
8435 void
8436 signal_catch_update (const unsigned int *info)
8437 {
8438 int i;
8439
8440 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8441 signal_catch[i] = info[i] > 0;
8442 signal_cache_update (-1);
8443 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8444 }
8445
8446 static void
8447 sig_print_header (void)
8448 {
8449 printf_filtered (_("Signal Stop\tPrint\tPass "
8450 "to program\tDescription\n"));
8451 }
8452
8453 static void
8454 sig_print_info (enum gdb_signal oursig)
8455 {
8456 const char *name = gdb_signal_to_name (oursig);
8457 int name_padding = 13 - strlen (name);
8458
8459 if (name_padding <= 0)
8460 name_padding = 0;
8461
8462 printf_filtered ("%s", name);
8463 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8464 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8465 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8466 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8467 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8468 }
8469
8470 /* Specify how various signals in the inferior should be handled. */
8471
8472 static void
8473 handle_command (char *args, int from_tty)
8474 {
8475 int digits, wordlen;
8476 int sigfirst, signum, siglast;
8477 enum gdb_signal oursig;
8478 int allsigs;
8479 int nsigs;
8480 unsigned char *sigs;
8481
8482 if (args == NULL)
8483 {
8484 error_no_arg (_("signal to handle"));
8485 }
8486
8487 /* Allocate and zero an array of flags for which signals to handle. */
8488
8489 nsigs = (int) GDB_SIGNAL_LAST;
8490 sigs = (unsigned char *) alloca (nsigs);
8491 memset (sigs, 0, nsigs);
8492
8493 /* Break the command line up into args. */
8494
8495 gdb_argv built_argv (args);
8496
8497 /* Walk through the args, looking for signal oursigs, signal names, and
8498 actions. Signal numbers and signal names may be interspersed with
8499 actions, with the actions being performed for all signals cumulatively
8500 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8501
8502 for (char *arg : built_argv)
8503 {
8504 wordlen = strlen (arg);
8505 for (digits = 0; isdigit (arg[digits]); digits++)
8506 {;
8507 }
8508 allsigs = 0;
8509 sigfirst = siglast = -1;
8510
8511 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8512 {
8513 /* Apply action to all signals except those used by the
8514 debugger. Silently skip those. */
8515 allsigs = 1;
8516 sigfirst = 0;
8517 siglast = nsigs - 1;
8518 }
8519 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8520 {
8521 SET_SIGS (nsigs, sigs, signal_stop);
8522 SET_SIGS (nsigs, sigs, signal_print);
8523 }
8524 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8525 {
8526 UNSET_SIGS (nsigs, sigs, signal_program);
8527 }
8528 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8529 {
8530 SET_SIGS (nsigs, sigs, signal_print);
8531 }
8532 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8533 {
8534 SET_SIGS (nsigs, sigs, signal_program);
8535 }
8536 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8537 {
8538 UNSET_SIGS (nsigs, sigs, signal_stop);
8539 }
8540 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8541 {
8542 SET_SIGS (nsigs, sigs, signal_program);
8543 }
8544 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8545 {
8546 UNSET_SIGS (nsigs, sigs, signal_print);
8547 UNSET_SIGS (nsigs, sigs, signal_stop);
8548 }
8549 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8550 {
8551 UNSET_SIGS (nsigs, sigs, signal_program);
8552 }
8553 else if (digits > 0)
8554 {
8555 /* It is numeric. The numeric signal refers to our own
8556 internal signal numbering from target.h, not to host/target
8557 signal number. This is a feature; users really should be
8558 using symbolic names anyway, and the common ones like
8559 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8560
8561 sigfirst = siglast = (int)
8562 gdb_signal_from_command (atoi (arg));
8563 if (arg[digits] == '-')
8564 {
8565 siglast = (int)
8566 gdb_signal_from_command (atoi (arg + digits + 1));
8567 }
8568 if (sigfirst > siglast)
8569 {
8570 /* Bet he didn't figure we'd think of this case... */
8571 signum = sigfirst;
8572 sigfirst = siglast;
8573 siglast = signum;
8574 }
8575 }
8576 else
8577 {
8578 oursig = gdb_signal_from_name (arg);
8579 if (oursig != GDB_SIGNAL_UNKNOWN)
8580 {
8581 sigfirst = siglast = (int) oursig;
8582 }
8583 else
8584 {
8585 /* Not a number and not a recognized flag word => complain. */
8586 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8587 }
8588 }
8589
8590 /* If any signal numbers or symbol names were found, set flags for
8591 which signals to apply actions to. */
8592
8593 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8594 {
8595 switch ((enum gdb_signal) signum)
8596 {
8597 case GDB_SIGNAL_TRAP:
8598 case GDB_SIGNAL_INT:
8599 if (!allsigs && !sigs[signum])
8600 {
8601 if (query (_("%s is used by the debugger.\n\
8602 Are you sure you want to change it? "),
8603 gdb_signal_to_name ((enum gdb_signal) signum)))
8604 {
8605 sigs[signum] = 1;
8606 }
8607 else
8608 {
8609 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8610 gdb_flush (gdb_stdout);
8611 }
8612 }
8613 break;
8614 case GDB_SIGNAL_0:
8615 case GDB_SIGNAL_DEFAULT:
8616 case GDB_SIGNAL_UNKNOWN:
8617 /* Make sure that "all" doesn't print these. */
8618 break;
8619 default:
8620 sigs[signum] = 1;
8621 break;
8622 }
8623 }
8624 }
8625
8626 for (signum = 0; signum < nsigs; signum++)
8627 if (sigs[signum])
8628 {
8629 signal_cache_update (-1);
8630 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8631 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8632
8633 if (from_tty)
8634 {
8635 /* Show the results. */
8636 sig_print_header ();
8637 for (; signum < nsigs; signum++)
8638 if (sigs[signum])
8639 sig_print_info ((enum gdb_signal) signum);
8640 }
8641
8642 break;
8643 }
8644 }
8645
8646 /* Complete the "handle" command. */
8647
8648 static void
8649 handle_completer (struct cmd_list_element *ignore,
8650 completion_tracker &tracker,
8651 const char *text, const char *word)
8652 {
8653 static const char * const keywords[] =
8654 {
8655 "all",
8656 "stop",
8657 "ignore",
8658 "print",
8659 "pass",
8660 "nostop",
8661 "noignore",
8662 "noprint",
8663 "nopass",
8664 NULL,
8665 };
8666
8667 signal_completer (ignore, tracker, text, word);
8668 complete_on_enum (tracker, keywords, word, word);
8669 }
8670
8671 enum gdb_signal
8672 gdb_signal_from_command (int num)
8673 {
8674 if (num >= 1 && num <= 15)
8675 return (enum gdb_signal) num;
8676 error (_("Only signals 1-15 are valid as numeric signals.\n\
8677 Use \"info signals\" for a list of symbolic signals."));
8678 }
8679
8680 /* Print current contents of the tables set by the handle command.
8681 It is possible we should just be printing signals actually used
8682 by the current target (but for things to work right when switching
8683 targets, all signals should be in the signal tables). */
8684
8685 static void
8686 info_signals_command (char *signum_exp, int from_tty)
8687 {
8688 enum gdb_signal oursig;
8689
8690 sig_print_header ();
8691
8692 if (signum_exp)
8693 {
8694 /* First see if this is a symbol name. */
8695 oursig = gdb_signal_from_name (signum_exp);
8696 if (oursig == GDB_SIGNAL_UNKNOWN)
8697 {
8698 /* No, try numeric. */
8699 oursig =
8700 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8701 }
8702 sig_print_info (oursig);
8703 return;
8704 }
8705
8706 printf_filtered ("\n");
8707 /* These ugly casts brought to you by the native VAX compiler. */
8708 for (oursig = GDB_SIGNAL_FIRST;
8709 (int) oursig < (int) GDB_SIGNAL_LAST;
8710 oursig = (enum gdb_signal) ((int) oursig + 1))
8711 {
8712 QUIT;
8713
8714 if (oursig != GDB_SIGNAL_UNKNOWN
8715 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8716 sig_print_info (oursig);
8717 }
8718
8719 printf_filtered (_("\nUse the \"handle\" command "
8720 "to change these tables.\n"));
8721 }
8722
8723 /* The $_siginfo convenience variable is a bit special. We don't know
8724 for sure the type of the value until we actually have a chance to
8725 fetch the data. The type can change depending on gdbarch, so it is
8726 also dependent on which thread you have selected.
8727
8728 1. making $_siginfo be an internalvar that creates a new value on
8729 access.
8730
8731 2. making the value of $_siginfo be an lval_computed value. */
8732
8733 /* This function implements the lval_computed support for reading a
8734 $_siginfo value. */
8735
8736 static void
8737 siginfo_value_read (struct value *v)
8738 {
8739 LONGEST transferred;
8740
8741 /* If we can access registers, so can we access $_siginfo. Likewise
8742 vice versa. */
8743 validate_registers_access ();
8744
8745 transferred =
8746 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8747 NULL,
8748 value_contents_all_raw (v),
8749 value_offset (v),
8750 TYPE_LENGTH (value_type (v)));
8751
8752 if (transferred != TYPE_LENGTH (value_type (v)))
8753 error (_("Unable to read siginfo"));
8754 }
8755
8756 /* This function implements the lval_computed support for writing a
8757 $_siginfo value. */
8758
8759 static void
8760 siginfo_value_write (struct value *v, struct value *fromval)
8761 {
8762 LONGEST transferred;
8763
8764 /* If we can access registers, so can we access $_siginfo. Likewise
8765 vice versa. */
8766 validate_registers_access ();
8767
8768 transferred = target_write (&current_target,
8769 TARGET_OBJECT_SIGNAL_INFO,
8770 NULL,
8771 value_contents_all_raw (fromval),
8772 value_offset (v),
8773 TYPE_LENGTH (value_type (fromval)));
8774
8775 if (transferred != TYPE_LENGTH (value_type (fromval)))
8776 error (_("Unable to write siginfo"));
8777 }
8778
8779 static const struct lval_funcs siginfo_value_funcs =
8780 {
8781 siginfo_value_read,
8782 siginfo_value_write
8783 };
8784
8785 /* Return a new value with the correct type for the siginfo object of
8786 the current thread using architecture GDBARCH. Return a void value
8787 if there's no object available. */
8788
8789 static struct value *
8790 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8791 void *ignore)
8792 {
8793 if (target_has_stack
8794 && !ptid_equal (inferior_ptid, null_ptid)
8795 && gdbarch_get_siginfo_type_p (gdbarch))
8796 {
8797 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8798
8799 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8800 }
8801
8802 return allocate_value (builtin_type (gdbarch)->builtin_void);
8803 }
8804
8805 \f
8806 /* infcall_suspend_state contains state about the program itself like its
8807 registers and any signal it received when it last stopped.
8808 This state must be restored regardless of how the inferior function call
8809 ends (either successfully, or after it hits a breakpoint or signal)
8810 if the program is to properly continue where it left off. */
8811
8812 struct infcall_suspend_state
8813 {
8814 struct thread_suspend_state thread_suspend;
8815
8816 /* Other fields: */
8817 CORE_ADDR stop_pc;
8818 struct regcache *registers;
8819
8820 /* Format of SIGINFO_DATA or NULL if it is not present. */
8821 struct gdbarch *siginfo_gdbarch;
8822
8823 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8824 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8825 content would be invalid. */
8826 gdb_byte *siginfo_data;
8827 };
8828
8829 struct infcall_suspend_state *
8830 save_infcall_suspend_state (void)
8831 {
8832 struct infcall_suspend_state *inf_state;
8833 struct thread_info *tp = inferior_thread ();
8834 struct regcache *regcache = get_current_regcache ();
8835 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8836 gdb_byte *siginfo_data = NULL;
8837
8838 if (gdbarch_get_siginfo_type_p (gdbarch))
8839 {
8840 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8841 size_t len = TYPE_LENGTH (type);
8842 struct cleanup *back_to;
8843
8844 siginfo_data = (gdb_byte *) xmalloc (len);
8845 back_to = make_cleanup (xfree, siginfo_data);
8846
8847 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8848 siginfo_data, 0, len) == len)
8849 discard_cleanups (back_to);
8850 else
8851 {
8852 /* Errors ignored. */
8853 do_cleanups (back_to);
8854 siginfo_data = NULL;
8855 }
8856 }
8857
8858 inf_state = XCNEW (struct infcall_suspend_state);
8859
8860 if (siginfo_data)
8861 {
8862 inf_state->siginfo_gdbarch = gdbarch;
8863 inf_state->siginfo_data = siginfo_data;
8864 }
8865
8866 inf_state->thread_suspend = tp->suspend;
8867
8868 /* run_inferior_call will not use the signal due to its `proceed' call with
8869 GDB_SIGNAL_0 anyway. */
8870 tp->suspend.stop_signal = GDB_SIGNAL_0;
8871
8872 inf_state->stop_pc = stop_pc;
8873
8874 inf_state->registers = regcache_dup (regcache);
8875
8876 return inf_state;
8877 }
8878
8879 /* Restore inferior session state to INF_STATE. */
8880
8881 void
8882 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8883 {
8884 struct thread_info *tp = inferior_thread ();
8885 struct regcache *regcache = get_current_regcache ();
8886 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8887
8888 tp->suspend = inf_state->thread_suspend;
8889
8890 stop_pc = inf_state->stop_pc;
8891
8892 if (inf_state->siginfo_gdbarch == gdbarch)
8893 {
8894 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8895
8896 /* Errors ignored. */
8897 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8898 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8899 }
8900
8901 /* The inferior can be gone if the user types "print exit(0)"
8902 (and perhaps other times). */
8903 if (target_has_execution)
8904 /* NB: The register write goes through to the target. */
8905 regcache_cpy (regcache, inf_state->registers);
8906
8907 discard_infcall_suspend_state (inf_state);
8908 }
8909
8910 static void
8911 do_restore_infcall_suspend_state_cleanup (void *state)
8912 {
8913 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8914 }
8915
8916 struct cleanup *
8917 make_cleanup_restore_infcall_suspend_state
8918 (struct infcall_suspend_state *inf_state)
8919 {
8920 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8921 }
8922
8923 void
8924 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8925 {
8926 delete inf_state->registers;
8927 xfree (inf_state->siginfo_data);
8928 xfree (inf_state);
8929 }
8930
8931 struct regcache *
8932 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8933 {
8934 return inf_state->registers;
8935 }
8936
8937 /* infcall_control_state contains state regarding gdb's control of the
8938 inferior itself like stepping control. It also contains session state like
8939 the user's currently selected frame. */
8940
8941 struct infcall_control_state
8942 {
8943 struct thread_control_state thread_control;
8944 struct inferior_control_state inferior_control;
8945
8946 /* Other fields: */
8947 enum stop_stack_kind stop_stack_dummy;
8948 int stopped_by_random_signal;
8949
8950 /* ID if the selected frame when the inferior function call was made. */
8951 struct frame_id selected_frame_id;
8952 };
8953
8954 /* Save all of the information associated with the inferior<==>gdb
8955 connection. */
8956
8957 struct infcall_control_state *
8958 save_infcall_control_state (void)
8959 {
8960 struct infcall_control_state *inf_status =
8961 XNEW (struct infcall_control_state);
8962 struct thread_info *tp = inferior_thread ();
8963 struct inferior *inf = current_inferior ();
8964
8965 inf_status->thread_control = tp->control;
8966 inf_status->inferior_control = inf->control;
8967
8968 tp->control.step_resume_breakpoint = NULL;
8969 tp->control.exception_resume_breakpoint = NULL;
8970
8971 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8972 chain. If caller's caller is walking the chain, they'll be happier if we
8973 hand them back the original chain when restore_infcall_control_state is
8974 called. */
8975 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8976
8977 /* Other fields: */
8978 inf_status->stop_stack_dummy = stop_stack_dummy;
8979 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8980
8981 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8982
8983 return inf_status;
8984 }
8985
8986 static int
8987 restore_selected_frame (void *args)
8988 {
8989 struct frame_id *fid = (struct frame_id *) args;
8990 struct frame_info *frame;
8991
8992 frame = frame_find_by_id (*fid);
8993
8994 /* If inf_status->selected_frame_id is NULL, there was no previously
8995 selected frame. */
8996 if (frame == NULL)
8997 {
8998 warning (_("Unable to restore previously selected frame."));
8999 return 0;
9000 }
9001
9002 select_frame (frame);
9003
9004 return (1);
9005 }
9006
9007 /* Restore inferior session state to INF_STATUS. */
9008
9009 void
9010 restore_infcall_control_state (struct infcall_control_state *inf_status)
9011 {
9012 struct thread_info *tp = inferior_thread ();
9013 struct inferior *inf = current_inferior ();
9014
9015 if (tp->control.step_resume_breakpoint)
9016 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9017
9018 if (tp->control.exception_resume_breakpoint)
9019 tp->control.exception_resume_breakpoint->disposition
9020 = disp_del_at_next_stop;
9021
9022 /* Handle the bpstat_copy of the chain. */
9023 bpstat_clear (&tp->control.stop_bpstat);
9024
9025 tp->control = inf_status->thread_control;
9026 inf->control = inf_status->inferior_control;
9027
9028 /* Other fields: */
9029 stop_stack_dummy = inf_status->stop_stack_dummy;
9030 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9031
9032 if (target_has_stack)
9033 {
9034 /* The point of catch_errors is that if the stack is clobbered,
9035 walking the stack might encounter a garbage pointer and
9036 error() trying to dereference it. */
9037 if (catch_errors
9038 (restore_selected_frame, &inf_status->selected_frame_id,
9039 "Unable to restore previously selected frame:\n",
9040 RETURN_MASK_ERROR) == 0)
9041 /* Error in restoring the selected frame. Select the innermost
9042 frame. */
9043 select_frame (get_current_frame ());
9044 }
9045
9046 xfree (inf_status);
9047 }
9048
9049 static void
9050 do_restore_infcall_control_state_cleanup (void *sts)
9051 {
9052 restore_infcall_control_state ((struct infcall_control_state *) sts);
9053 }
9054
9055 struct cleanup *
9056 make_cleanup_restore_infcall_control_state
9057 (struct infcall_control_state *inf_status)
9058 {
9059 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9060 }
9061
9062 void
9063 discard_infcall_control_state (struct infcall_control_state *inf_status)
9064 {
9065 if (inf_status->thread_control.step_resume_breakpoint)
9066 inf_status->thread_control.step_resume_breakpoint->disposition
9067 = disp_del_at_next_stop;
9068
9069 if (inf_status->thread_control.exception_resume_breakpoint)
9070 inf_status->thread_control.exception_resume_breakpoint->disposition
9071 = disp_del_at_next_stop;
9072
9073 /* See save_infcall_control_state for info on stop_bpstat. */
9074 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9075
9076 xfree (inf_status);
9077 }
9078 \f
9079 /* See infrun.h. */
9080
9081 void
9082 clear_exit_convenience_vars (void)
9083 {
9084 clear_internalvar (lookup_internalvar ("_exitsignal"));
9085 clear_internalvar (lookup_internalvar ("_exitcode"));
9086 }
9087 \f
9088
9089 /* User interface for reverse debugging:
9090 Set exec-direction / show exec-direction commands
9091 (returns error unless target implements to_set_exec_direction method). */
9092
9093 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9094 static const char exec_forward[] = "forward";
9095 static const char exec_reverse[] = "reverse";
9096 static const char *exec_direction = exec_forward;
9097 static const char *const exec_direction_names[] = {
9098 exec_forward,
9099 exec_reverse,
9100 NULL
9101 };
9102
9103 static void
9104 set_exec_direction_func (char *args, int from_tty,
9105 struct cmd_list_element *cmd)
9106 {
9107 if (target_can_execute_reverse)
9108 {
9109 if (!strcmp (exec_direction, exec_forward))
9110 execution_direction = EXEC_FORWARD;
9111 else if (!strcmp (exec_direction, exec_reverse))
9112 execution_direction = EXEC_REVERSE;
9113 }
9114 else
9115 {
9116 exec_direction = exec_forward;
9117 error (_("Target does not support this operation."));
9118 }
9119 }
9120
9121 static void
9122 show_exec_direction_func (struct ui_file *out, int from_tty,
9123 struct cmd_list_element *cmd, const char *value)
9124 {
9125 switch (execution_direction) {
9126 case EXEC_FORWARD:
9127 fprintf_filtered (out, _("Forward.\n"));
9128 break;
9129 case EXEC_REVERSE:
9130 fprintf_filtered (out, _("Reverse.\n"));
9131 break;
9132 default:
9133 internal_error (__FILE__, __LINE__,
9134 _("bogus execution_direction value: %d"),
9135 (int) execution_direction);
9136 }
9137 }
9138
9139 static void
9140 show_schedule_multiple (struct ui_file *file, int from_tty,
9141 struct cmd_list_element *c, const char *value)
9142 {
9143 fprintf_filtered (file, _("Resuming the execution of threads "
9144 "of all processes is %s.\n"), value);
9145 }
9146
9147 /* Implementation of `siginfo' variable. */
9148
9149 static const struct internalvar_funcs siginfo_funcs =
9150 {
9151 siginfo_make_value,
9152 NULL,
9153 NULL
9154 };
9155
9156 /* Callback for infrun's target events source. This is marked when a
9157 thread has a pending status to process. */
9158
9159 static void
9160 infrun_async_inferior_event_handler (gdb_client_data data)
9161 {
9162 inferior_event_handler (INF_REG_EVENT, NULL);
9163 }
9164
9165 void
9166 _initialize_infrun (void)
9167 {
9168 int i;
9169 int numsigs;
9170 struct cmd_list_element *c;
9171
9172 /* Register extra event sources in the event loop. */
9173 infrun_async_inferior_event_token
9174 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9175
9176 add_info ("signals", info_signals_command, _("\
9177 What debugger does when program gets various signals.\n\
9178 Specify a signal as argument to print info on that signal only."));
9179 add_info_alias ("handle", "signals", 0);
9180
9181 c = add_com ("handle", class_run, handle_command, _("\
9182 Specify how to handle signals.\n\
9183 Usage: handle SIGNAL [ACTIONS]\n\
9184 Args are signals and actions to apply to those signals.\n\
9185 If no actions are specified, the current settings for the specified signals\n\
9186 will be displayed instead.\n\
9187 \n\
9188 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9189 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9190 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9191 The special arg \"all\" is recognized to mean all signals except those\n\
9192 used by the debugger, typically SIGTRAP and SIGINT.\n\
9193 \n\
9194 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9195 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9196 Stop means reenter debugger if this signal happens (implies print).\n\
9197 Print means print a message if this signal happens.\n\
9198 Pass means let program see this signal; otherwise program doesn't know.\n\
9199 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9200 Pass and Stop may be combined.\n\
9201 \n\
9202 Multiple signals may be specified. Signal numbers and signal names\n\
9203 may be interspersed with actions, with the actions being performed for\n\
9204 all signals cumulatively specified."));
9205 set_cmd_completer (c, handle_completer);
9206
9207 if (!dbx_commands)
9208 stop_command = add_cmd ("stop", class_obscure,
9209 not_just_help_class_command, _("\
9210 There is no `stop' command, but you can set a hook on `stop'.\n\
9211 This allows you to set a list of commands to be run each time execution\n\
9212 of the program stops."), &cmdlist);
9213
9214 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9215 Set inferior debugging."), _("\
9216 Show inferior debugging."), _("\
9217 When non-zero, inferior specific debugging is enabled."),
9218 NULL,
9219 show_debug_infrun,
9220 &setdebuglist, &showdebuglist);
9221
9222 add_setshow_boolean_cmd ("displaced", class_maintenance,
9223 &debug_displaced, _("\
9224 Set displaced stepping debugging."), _("\
9225 Show displaced stepping debugging."), _("\
9226 When non-zero, displaced stepping specific debugging is enabled."),
9227 NULL,
9228 show_debug_displaced,
9229 &setdebuglist, &showdebuglist);
9230
9231 add_setshow_boolean_cmd ("non-stop", no_class,
9232 &non_stop_1, _("\
9233 Set whether gdb controls the inferior in non-stop mode."), _("\
9234 Show whether gdb controls the inferior in non-stop mode."), _("\
9235 When debugging a multi-threaded program and this setting is\n\
9236 off (the default, also called all-stop mode), when one thread stops\n\
9237 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9238 all other threads in the program while you interact with the thread of\n\
9239 interest. When you continue or step a thread, you can allow the other\n\
9240 threads to run, or have them remain stopped, but while you inspect any\n\
9241 thread's state, all threads stop.\n\
9242 \n\
9243 In non-stop mode, when one thread stops, other threads can continue\n\
9244 to run freely. You'll be able to step each thread independently,\n\
9245 leave it stopped or free to run as needed."),
9246 set_non_stop,
9247 show_non_stop,
9248 &setlist,
9249 &showlist);
9250
9251 numsigs = (int) GDB_SIGNAL_LAST;
9252 signal_stop = XNEWVEC (unsigned char, numsigs);
9253 signal_print = XNEWVEC (unsigned char, numsigs);
9254 signal_program = XNEWVEC (unsigned char, numsigs);
9255 signal_catch = XNEWVEC (unsigned char, numsigs);
9256 signal_pass = XNEWVEC (unsigned char, numsigs);
9257 for (i = 0; i < numsigs; i++)
9258 {
9259 signal_stop[i] = 1;
9260 signal_print[i] = 1;
9261 signal_program[i] = 1;
9262 signal_catch[i] = 0;
9263 }
9264
9265 /* Signals caused by debugger's own actions should not be given to
9266 the program afterwards.
9267
9268 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9269 explicitly specifies that it should be delivered to the target
9270 program. Typically, that would occur when a user is debugging a
9271 target monitor on a simulator: the target monitor sets a
9272 breakpoint; the simulator encounters this breakpoint and halts
9273 the simulation handing control to GDB; GDB, noting that the stop
9274 address doesn't map to any known breakpoint, returns control back
9275 to the simulator; the simulator then delivers the hardware
9276 equivalent of a GDB_SIGNAL_TRAP to the program being
9277 debugged. */
9278 signal_program[GDB_SIGNAL_TRAP] = 0;
9279 signal_program[GDB_SIGNAL_INT] = 0;
9280
9281 /* Signals that are not errors should not normally enter the debugger. */
9282 signal_stop[GDB_SIGNAL_ALRM] = 0;
9283 signal_print[GDB_SIGNAL_ALRM] = 0;
9284 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9285 signal_print[GDB_SIGNAL_VTALRM] = 0;
9286 signal_stop[GDB_SIGNAL_PROF] = 0;
9287 signal_print[GDB_SIGNAL_PROF] = 0;
9288 signal_stop[GDB_SIGNAL_CHLD] = 0;
9289 signal_print[GDB_SIGNAL_CHLD] = 0;
9290 signal_stop[GDB_SIGNAL_IO] = 0;
9291 signal_print[GDB_SIGNAL_IO] = 0;
9292 signal_stop[GDB_SIGNAL_POLL] = 0;
9293 signal_print[GDB_SIGNAL_POLL] = 0;
9294 signal_stop[GDB_SIGNAL_URG] = 0;
9295 signal_print[GDB_SIGNAL_URG] = 0;
9296 signal_stop[GDB_SIGNAL_WINCH] = 0;
9297 signal_print[GDB_SIGNAL_WINCH] = 0;
9298 signal_stop[GDB_SIGNAL_PRIO] = 0;
9299 signal_print[GDB_SIGNAL_PRIO] = 0;
9300
9301 /* These signals are used internally by user-level thread
9302 implementations. (See signal(5) on Solaris.) Like the above
9303 signals, a healthy program receives and handles them as part of
9304 its normal operation. */
9305 signal_stop[GDB_SIGNAL_LWP] = 0;
9306 signal_print[GDB_SIGNAL_LWP] = 0;
9307 signal_stop[GDB_SIGNAL_WAITING] = 0;
9308 signal_print[GDB_SIGNAL_WAITING] = 0;
9309 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9310 signal_print[GDB_SIGNAL_CANCEL] = 0;
9311 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9312 signal_print[GDB_SIGNAL_LIBRT] = 0;
9313
9314 /* Update cached state. */
9315 signal_cache_update (-1);
9316
9317 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9318 &stop_on_solib_events, _("\
9319 Set stopping for shared library events."), _("\
9320 Show stopping for shared library events."), _("\
9321 If nonzero, gdb will give control to the user when the dynamic linker\n\
9322 notifies gdb of shared library events. The most common event of interest\n\
9323 to the user would be loading/unloading of a new library."),
9324 set_stop_on_solib_events,
9325 show_stop_on_solib_events,
9326 &setlist, &showlist);
9327
9328 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9329 follow_fork_mode_kind_names,
9330 &follow_fork_mode_string, _("\
9331 Set debugger response to a program call of fork or vfork."), _("\
9332 Show debugger response to a program call of fork or vfork."), _("\
9333 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9334 parent - the original process is debugged after a fork\n\
9335 child - the new process is debugged after a fork\n\
9336 The unfollowed process will continue to run.\n\
9337 By default, the debugger will follow the parent process."),
9338 NULL,
9339 show_follow_fork_mode_string,
9340 &setlist, &showlist);
9341
9342 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9343 follow_exec_mode_names,
9344 &follow_exec_mode_string, _("\
9345 Set debugger response to a program call of exec."), _("\
9346 Show debugger response to a program call of exec."), _("\
9347 An exec call replaces the program image of a process.\n\
9348 \n\
9349 follow-exec-mode can be:\n\
9350 \n\
9351 new - the debugger creates a new inferior and rebinds the process\n\
9352 to this new inferior. The program the process was running before\n\
9353 the exec call can be restarted afterwards by restarting the original\n\
9354 inferior.\n\
9355 \n\
9356 same - the debugger keeps the process bound to the same inferior.\n\
9357 The new executable image replaces the previous executable loaded in\n\
9358 the inferior. Restarting the inferior after the exec call restarts\n\
9359 the executable the process was running after the exec call.\n\
9360 \n\
9361 By default, the debugger will use the same inferior."),
9362 NULL,
9363 show_follow_exec_mode_string,
9364 &setlist, &showlist);
9365
9366 add_setshow_enum_cmd ("scheduler-locking", class_run,
9367 scheduler_enums, &scheduler_mode, _("\
9368 Set mode for locking scheduler during execution."), _("\
9369 Show mode for locking scheduler during execution."), _("\
9370 off == no locking (threads may preempt at any time)\n\
9371 on == full locking (no thread except the current thread may run)\n\
9372 This applies to both normal execution and replay mode.\n\
9373 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9374 In this mode, other threads may run during other commands.\n\
9375 This applies to both normal execution and replay mode.\n\
9376 replay == scheduler locked in replay mode and unlocked during normal execution."),
9377 set_schedlock_func, /* traps on target vector */
9378 show_scheduler_mode,
9379 &setlist, &showlist);
9380
9381 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9382 Set mode for resuming threads of all processes."), _("\
9383 Show mode for resuming threads of all processes."), _("\
9384 When on, execution commands (such as 'continue' or 'next') resume all\n\
9385 threads of all processes. When off (which is the default), execution\n\
9386 commands only resume the threads of the current process. The set of\n\
9387 threads that are resumed is further refined by the scheduler-locking\n\
9388 mode (see help set scheduler-locking)."),
9389 NULL,
9390 show_schedule_multiple,
9391 &setlist, &showlist);
9392
9393 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9394 Set mode of the step operation."), _("\
9395 Show mode of the step operation."), _("\
9396 When set, doing a step over a function without debug line information\n\
9397 will stop at the first instruction of that function. Otherwise, the\n\
9398 function is skipped and the step command stops at a different source line."),
9399 NULL,
9400 show_step_stop_if_no_debug,
9401 &setlist, &showlist);
9402
9403 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9404 &can_use_displaced_stepping, _("\
9405 Set debugger's willingness to use displaced stepping."), _("\
9406 Show debugger's willingness to use displaced stepping."), _("\
9407 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9408 supported by the target architecture. If off, gdb will not use displaced\n\
9409 stepping to step over breakpoints, even if such is supported by the target\n\
9410 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9411 if the target architecture supports it and non-stop mode is active, but will not\n\
9412 use it in all-stop mode (see help set non-stop)."),
9413 NULL,
9414 show_can_use_displaced_stepping,
9415 &setlist, &showlist);
9416
9417 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9418 &exec_direction, _("Set direction of execution.\n\
9419 Options are 'forward' or 'reverse'."),
9420 _("Show direction of execution (forward/reverse)."),
9421 _("Tells gdb whether to execute forward or backward."),
9422 set_exec_direction_func, show_exec_direction_func,
9423 &setlist, &showlist);
9424
9425 /* Set/show detach-on-fork: user-settable mode. */
9426
9427 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9428 Set whether gdb will detach the child of a fork."), _("\
9429 Show whether gdb will detach the child of a fork."), _("\
9430 Tells gdb whether to detach the child of a fork."),
9431 NULL, NULL, &setlist, &showlist);
9432
9433 /* Set/show disable address space randomization mode. */
9434
9435 add_setshow_boolean_cmd ("disable-randomization", class_support,
9436 &disable_randomization, _("\
9437 Set disabling of debuggee's virtual address space randomization."), _("\
9438 Show disabling of debuggee's virtual address space randomization."), _("\
9439 When this mode is on (which is the default), randomization of the virtual\n\
9440 address space is disabled. Standalone programs run with the randomization\n\
9441 enabled by default on some platforms."),
9442 &set_disable_randomization,
9443 &show_disable_randomization,
9444 &setlist, &showlist);
9445
9446 /* ptid initializations */
9447 inferior_ptid = null_ptid;
9448 target_last_wait_ptid = minus_one_ptid;
9449
9450 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9451 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9452 observer_attach_thread_exit (infrun_thread_thread_exit);
9453 observer_attach_inferior_exit (infrun_inferior_exit);
9454
9455 /* Explicitly create without lookup, since that tries to create a
9456 value with a void typed value, and when we get here, gdbarch
9457 isn't initialized yet. At this point, we're quite sure there
9458 isn't another convenience variable of the same name. */
9459 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9460
9461 add_setshow_boolean_cmd ("observer", no_class,
9462 &observer_mode_1, _("\
9463 Set whether gdb controls the inferior in observer mode."), _("\
9464 Show whether gdb controls the inferior in observer mode."), _("\
9465 In observer mode, GDB can get data from the inferior, but not\n\
9466 affect its execution. Registers and memory may not be changed,\n\
9467 breakpoints may not be set, and the program cannot be interrupted\n\
9468 or signalled."),
9469 set_observer_mode,
9470 show_observer_mode,
9471 &setlist,
9472 &showlist);
9473 }
This page took 0.241986 seconds and 4 git commands to generate.