* gdbtypes.h (builtin_type_f_character, builtin_type_f_logical,
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49 #include "main.h"
50
51 #include "gdb_assert.h"
52 #include "mi/mi-common.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 struct execution_control_state;
78
79 static int currently_stepping (struct execution_control_state *ecs);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (void);
84
85 void _initialize_infrun (void);
86
87 int inferior_ignoring_startup_exec_events = 0;
88 int inferior_ignoring_leading_exec_events = 0;
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100
101 /* In asynchronous mode, but simulating synchronous execution. */
102
103 int sync_execution = 0;
104
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109 static ptid_t previous_inferior_ptid;
110
111 /* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114 #ifndef MAY_FOLLOW_EXEC
115 #define MAY_FOLLOW_EXEC (0)
116 #endif
117
118 static int may_follow_exec = MAY_FOLLOW_EXEC;
119
120 static int debug_infrun = 0;
121 static void
122 show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124 {
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126 }
127
128 /* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179
180 /* Convert the #defines into values. This is temporary until wfi control
181 flow is completely sorted out. */
182
183 #ifndef CANNOT_STEP_HW_WATCHPOINTS
184 #define CANNOT_STEP_HW_WATCHPOINTS 0
185 #else
186 #undef CANNOT_STEP_HW_WATCHPOINTS
187 #define CANNOT_STEP_HW_WATCHPOINTS 1
188 #endif
189
190 /* Tables of how to react to signals; the user sets them. */
191
192 static unsigned char *signal_stop;
193 static unsigned char *signal_print;
194 static unsigned char *signal_program;
195
196 #define SET_SIGS(nsigs,sigs,flags) \
197 do { \
198 int signum = (nsigs); \
199 while (signum-- > 0) \
200 if ((sigs)[signum]) \
201 (flags)[signum] = 1; \
202 } while (0)
203
204 #define UNSET_SIGS(nsigs,sigs,flags) \
205 do { \
206 int signum = (nsigs); \
207 while (signum-- > 0) \
208 if ((sigs)[signum]) \
209 (flags)[signum] = 0; \
210 } while (0)
211
212 /* Value to pass to target_resume() to cause all threads to resume */
213
214 #define RESUME_ALL (pid_to_ptid (-1))
215
216 /* Command list pointer for the "stop" placeholder. */
217
218 static struct cmd_list_element *stop_command;
219
220 /* Nonzero if breakpoints are now inserted in the inferior. */
221
222 static int breakpoints_inserted;
223
224 /* Function inferior was in as of last step command. */
225
226 static struct symbol *step_start_function;
227
228 /* Nonzero if we are expecting a trace trap and should proceed from it. */
229
230 static int trap_expected;
231
232 /* Nonzero if we want to give control to the user when we're notified
233 of shared library events by the dynamic linker. */
234 static int stop_on_solib_events;
235 static void
236 show_stop_on_solib_events (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
240 value);
241 }
242
243 /* Nonzero means expecting a trace trap
244 and should stop the inferior and return silently when it happens. */
245
246 int stop_after_trap;
247
248 /* Nonzero means expecting a trap and caller will handle it themselves.
249 It is used after attach, due to attaching to a process;
250 when running in the shell before the child program has been exec'd;
251 and when running some kinds of remote stuff (FIXME?). */
252
253 enum stop_kind stop_soon;
254
255 /* Nonzero if proceed is being used for a "finish" command or a similar
256 situation when stop_registers should be saved. */
257
258 int proceed_to_finish;
259
260 /* Save register contents here when about to pop a stack dummy frame,
261 if-and-only-if proceed_to_finish is set.
262 Thus this contains the return value from the called function (assuming
263 values are returned in a register). */
264
265 struct regcache *stop_registers;
266
267 /* Nonzero after stop if current stack frame should be printed. */
268
269 static int stop_print_frame;
270
271 static struct breakpoint *step_resume_breakpoint = NULL;
272
273 /* This is a cached copy of the pid/waitstatus of the last event
274 returned by target_wait()/deprecated_target_wait_hook(). This
275 information is returned by get_last_target_status(). */
276 static ptid_t target_last_wait_ptid;
277 static struct target_waitstatus target_last_waitstatus;
278
279 /* This is used to remember when a fork, vfork or exec event
280 was caught by a catchpoint, and thus the event is to be
281 followed at the next resume of the inferior, and not
282 immediately. */
283 static struct
284 {
285 enum target_waitkind kind;
286 struct
287 {
288 int parent_pid;
289 int child_pid;
290 }
291 fork_event;
292 char *execd_pathname;
293 }
294 pending_follow;
295
296 static const char follow_fork_mode_child[] = "child";
297 static const char follow_fork_mode_parent[] = "parent";
298
299 static const char *follow_fork_mode_kind_names[] = {
300 follow_fork_mode_child,
301 follow_fork_mode_parent,
302 NULL
303 };
304
305 static const char *follow_fork_mode_string = follow_fork_mode_parent;
306 static void
307 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
308 struct cmd_list_element *c, const char *value)
309 {
310 fprintf_filtered (file, _("\
311 Debugger response to a program call of fork or vfork is \"%s\".\n"),
312 value);
313 }
314 \f
315
316 static int
317 follow_fork (void)
318 {
319 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
320
321 return target_follow_fork (follow_child);
322 }
323
324 void
325 follow_inferior_reset_breakpoints (void)
326 {
327 /* Was there a step_resume breakpoint? (There was if the user
328 did a "next" at the fork() call.) If so, explicitly reset its
329 thread number.
330
331 step_resumes are a form of bp that are made to be per-thread.
332 Since we created the step_resume bp when the parent process
333 was being debugged, and now are switching to the child process,
334 from the breakpoint package's viewpoint, that's a switch of
335 "threads". We must update the bp's notion of which thread
336 it is for, or it'll be ignored when it triggers. */
337
338 if (step_resume_breakpoint)
339 breakpoint_re_set_thread (step_resume_breakpoint);
340
341 /* Reinsert all breakpoints in the child. The user may have set
342 breakpoints after catching the fork, in which case those
343 were never set in the child, but only in the parent. This makes
344 sure the inserted breakpoints match the breakpoint list. */
345
346 breakpoint_re_set ();
347 insert_breakpoints ();
348 }
349
350 /* EXECD_PATHNAME is assumed to be non-NULL. */
351
352 static void
353 follow_exec (int pid, char *execd_pathname)
354 {
355 int saved_pid = pid;
356 struct target_ops *tgt;
357
358 if (!may_follow_exec)
359 return;
360
361 /* This is an exec event that we actually wish to pay attention to.
362 Refresh our symbol table to the newly exec'd program, remove any
363 momentary bp's, etc.
364
365 If there are breakpoints, they aren't really inserted now,
366 since the exec() transformed our inferior into a fresh set
367 of instructions.
368
369 We want to preserve symbolic breakpoints on the list, since
370 we have hopes that they can be reset after the new a.out's
371 symbol table is read.
372
373 However, any "raw" breakpoints must be removed from the list
374 (e.g., the solib bp's), since their address is probably invalid
375 now.
376
377 And, we DON'T want to call delete_breakpoints() here, since
378 that may write the bp's "shadow contents" (the instruction
379 value that was overwritten witha TRAP instruction). Since
380 we now have a new a.out, those shadow contents aren't valid. */
381 update_breakpoints_after_exec ();
382
383 /* If there was one, it's gone now. We cannot truly step-to-next
384 statement through an exec(). */
385 step_resume_breakpoint = NULL;
386 step_range_start = 0;
387 step_range_end = 0;
388
389 /* What is this a.out's name? */
390 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
391
392 /* We've followed the inferior through an exec. Therefore, the
393 inferior has essentially been killed & reborn. */
394
395 /* First collect the run target in effect. */
396 tgt = find_run_target ();
397 /* If we can't find one, things are in a very strange state... */
398 if (tgt == NULL)
399 error (_("Could find run target to save before following exec"));
400
401 gdb_flush (gdb_stdout);
402 target_mourn_inferior ();
403 inferior_ptid = pid_to_ptid (saved_pid);
404 /* Because mourn_inferior resets inferior_ptid. */
405 push_target (tgt);
406
407 /* That a.out is now the one to use. */
408 exec_file_attach (execd_pathname, 0);
409
410 /* And also is where symbols can be found. */
411 symbol_file_add_main (execd_pathname, 0);
412
413 /* Reset the shared library package. This ensures that we get
414 a shlib event when the child reaches "_start", at which point
415 the dld will have had a chance to initialize the child. */
416 #if defined(SOLIB_RESTART)
417 SOLIB_RESTART ();
418 #endif
419 #ifdef SOLIB_CREATE_INFERIOR_HOOK
420 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
421 #else
422 solib_create_inferior_hook ();
423 #endif
424
425 /* Reinsert all breakpoints. (Those which were symbolic have
426 been reset to the proper address in the new a.out, thanks
427 to symbol_file_command...) */
428 insert_breakpoints ();
429
430 /* The next resume of this inferior should bring it to the shlib
431 startup breakpoints. (If the user had also set bp's on
432 "main" from the old (parent) process, then they'll auto-
433 matically get reset there in the new process.) */
434 }
435
436 /* Non-zero if we just simulating a single-step. This is needed
437 because we cannot remove the breakpoints in the inferior process
438 until after the `wait' in `wait_for_inferior'. */
439 static int singlestep_breakpoints_inserted_p = 0;
440
441 /* The thread we inserted single-step breakpoints for. */
442 static ptid_t singlestep_ptid;
443
444 /* PC when we started this single-step. */
445 static CORE_ADDR singlestep_pc;
446
447 /* If another thread hit the singlestep breakpoint, we save the original
448 thread here so that we can resume single-stepping it later. */
449 static ptid_t saved_singlestep_ptid;
450 static int stepping_past_singlestep_breakpoint;
451 \f
452
453 /* Things to clean up if we QUIT out of resume (). */
454 static void
455 resume_cleanups (void *ignore)
456 {
457 normal_stop ();
458 }
459
460 static const char schedlock_off[] = "off";
461 static const char schedlock_on[] = "on";
462 static const char schedlock_step[] = "step";
463 static const char *scheduler_enums[] = {
464 schedlock_off,
465 schedlock_on,
466 schedlock_step,
467 NULL
468 };
469 static const char *scheduler_mode = schedlock_off;
470 static void
471 show_scheduler_mode (struct ui_file *file, int from_tty,
472 struct cmd_list_element *c, const char *value)
473 {
474 fprintf_filtered (file, _("\
475 Mode for locking scheduler during execution is \"%s\".\n"),
476 value);
477 }
478
479 static void
480 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
481 {
482 if (!target_can_lock_scheduler)
483 {
484 scheduler_mode = schedlock_off;
485 error (_("Target '%s' cannot support this command."), target_shortname);
486 }
487 }
488
489
490 /* Resume the inferior, but allow a QUIT. This is useful if the user
491 wants to interrupt some lengthy single-stepping operation
492 (for child processes, the SIGINT goes to the inferior, and so
493 we get a SIGINT random_signal, but for remote debugging and perhaps
494 other targets, that's not true).
495
496 STEP nonzero if we should step (zero to continue instead).
497 SIG is the signal to give the inferior (zero for none). */
498 void
499 resume (int step, enum target_signal sig)
500 {
501 int should_resume = 1;
502 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
503 QUIT;
504
505 if (debug_infrun)
506 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
507 step, sig);
508
509 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
510
511
512 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
513 over an instruction that causes a page fault without triggering
514 a hardware watchpoint. The kernel properly notices that it shouldn't
515 stop, because the hardware watchpoint is not triggered, but it forgets
516 the step request and continues the program normally.
517 Work around the problem by removing hardware watchpoints if a step is
518 requested, GDB will check for a hardware watchpoint trigger after the
519 step anyway. */
520 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
521 remove_hw_watchpoints ();
522
523
524 /* Normally, by the time we reach `resume', the breakpoints are either
525 removed or inserted, as appropriate. The exception is if we're sitting
526 at a permanent breakpoint; we need to step over it, but permanent
527 breakpoints can't be removed. So we have to test for it here. */
528 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
529 {
530 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
531 gdbarch_skip_permanent_breakpoint (current_gdbarch,
532 get_current_regcache ());
533 else
534 error (_("\
535 The program is stopped at a permanent breakpoint, but GDB does not know\n\
536 how to step past a permanent breakpoint on this architecture. Try using\n\
537 a command like `return' or `jump' to continue execution."));
538 }
539
540 if (SOFTWARE_SINGLE_STEP_P () && step)
541 {
542 /* Do it the hard way, w/temp breakpoints */
543 if (SOFTWARE_SINGLE_STEP (get_current_frame ()))
544 {
545 /* ...and don't ask hardware to do it. */
546 step = 0;
547 /* and do not pull these breakpoints until after a `wait' in
548 `wait_for_inferior' */
549 singlestep_breakpoints_inserted_p = 1;
550 singlestep_ptid = inferior_ptid;
551 singlestep_pc = read_pc ();
552 }
553 }
554
555 /* If there were any forks/vforks/execs that were caught and are
556 now to be followed, then do so. */
557 switch (pending_follow.kind)
558 {
559 case TARGET_WAITKIND_FORKED:
560 case TARGET_WAITKIND_VFORKED:
561 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
562 if (follow_fork ())
563 should_resume = 0;
564 break;
565
566 case TARGET_WAITKIND_EXECD:
567 /* follow_exec is called as soon as the exec event is seen. */
568 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
569 break;
570
571 default:
572 break;
573 }
574
575 /* Install inferior's terminal modes. */
576 target_terminal_inferior ();
577
578 if (should_resume)
579 {
580 ptid_t resume_ptid;
581
582 resume_ptid = RESUME_ALL; /* Default */
583
584 if ((step || singlestep_breakpoints_inserted_p)
585 && (stepping_past_singlestep_breakpoint
586 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
587 {
588 /* Stepping past a breakpoint without inserting breakpoints.
589 Make sure only the current thread gets to step, so that
590 other threads don't sneak past breakpoints while they are
591 not inserted. */
592
593 resume_ptid = inferior_ptid;
594 }
595
596 if ((scheduler_mode == schedlock_on)
597 || (scheduler_mode == schedlock_step
598 && (step || singlestep_breakpoints_inserted_p)))
599 {
600 /* User-settable 'scheduler' mode requires solo thread resume. */
601 resume_ptid = inferior_ptid;
602 }
603
604 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
605 {
606 /* Most targets can step a breakpoint instruction, thus
607 executing it normally. But if this one cannot, just
608 continue and we will hit it anyway. */
609 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
610 step = 0;
611 }
612 target_resume (resume_ptid, step, sig);
613 }
614
615 discard_cleanups (old_cleanups);
616 }
617 \f
618
619 /* Clear out all variables saying what to do when inferior is continued.
620 First do this, then set the ones you want, then call `proceed'. */
621
622 void
623 clear_proceed_status (void)
624 {
625 trap_expected = 0;
626 step_range_start = 0;
627 step_range_end = 0;
628 step_frame_id = null_frame_id;
629 step_over_calls = STEP_OVER_UNDEBUGGABLE;
630 stop_after_trap = 0;
631 stop_soon = NO_STOP_QUIETLY;
632 proceed_to_finish = 0;
633 breakpoint_proceeded = 1; /* We're about to proceed... */
634
635 /* Discard any remaining commands or status from previous stop. */
636 bpstat_clear (&stop_bpstat);
637 }
638
639 /* This should be suitable for any targets that support threads. */
640
641 static int
642 prepare_to_proceed (void)
643 {
644 ptid_t wait_ptid;
645 struct target_waitstatus wait_status;
646
647 /* Get the last target status returned by target_wait(). */
648 get_last_target_status (&wait_ptid, &wait_status);
649
650 /* Make sure we were stopped either at a breakpoint, or because
651 of a Ctrl-C. */
652 if (wait_status.kind != TARGET_WAITKIND_STOPPED
653 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
654 && wait_status.value.sig != TARGET_SIGNAL_INT))
655 {
656 return 0;
657 }
658
659 if (!ptid_equal (wait_ptid, minus_one_ptid)
660 && !ptid_equal (inferior_ptid, wait_ptid))
661 {
662 /* Switched over from WAIT_PID. */
663 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
664
665 if (wait_pc != read_pc ())
666 {
667 /* Switch back to WAIT_PID thread. */
668 inferior_ptid = wait_ptid;
669
670 /* FIXME: This stuff came from switch_to_thread() in
671 thread.c (which should probably be a public function). */
672 reinit_frame_cache ();
673 registers_changed ();
674 stop_pc = wait_pc;
675 }
676
677 /* We return 1 to indicate that there is a breakpoint here,
678 so we need to step over it before continuing to avoid
679 hitting it straight away. */
680 if (breakpoint_here_p (wait_pc))
681 return 1;
682 }
683
684 return 0;
685
686 }
687
688 /* Record the pc of the program the last time it stopped. This is
689 just used internally by wait_for_inferior, but need to be preserved
690 over calls to it and cleared when the inferior is started. */
691 static CORE_ADDR prev_pc;
692
693 /* Basic routine for continuing the program in various fashions.
694
695 ADDR is the address to resume at, or -1 for resume where stopped.
696 SIGGNAL is the signal to give it, or 0 for none,
697 or -1 for act according to how it stopped.
698 STEP is nonzero if should trap after one instruction.
699 -1 means return after that and print nothing.
700 You should probably set various step_... variables
701 before calling here, if you are stepping.
702
703 You should call clear_proceed_status before calling proceed. */
704
705 void
706 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
707 {
708 int oneproc = 0;
709
710 if (step > 0)
711 step_start_function = find_pc_function (read_pc ());
712 if (step < 0)
713 stop_after_trap = 1;
714
715 if (addr == (CORE_ADDR) -1)
716 {
717 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
718 /* There is a breakpoint at the address we will resume at,
719 step one instruction before inserting breakpoints so that
720 we do not stop right away (and report a second hit at this
721 breakpoint). */
722 oneproc = 1;
723 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
724 && gdbarch_single_step_through_delay (current_gdbarch,
725 get_current_frame ()))
726 /* We stepped onto an instruction that needs to be stepped
727 again before re-inserting the breakpoint, do so. */
728 oneproc = 1;
729 }
730 else
731 {
732 write_pc (addr);
733 }
734
735 if (debug_infrun)
736 fprintf_unfiltered (gdb_stdlog,
737 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
738 paddr_nz (addr), siggnal, step);
739
740 /* In a multi-threaded task we may select another thread
741 and then continue or step.
742
743 But if the old thread was stopped at a breakpoint, it
744 will immediately cause another breakpoint stop without
745 any execution (i.e. it will report a breakpoint hit
746 incorrectly). So we must step over it first.
747
748 prepare_to_proceed checks the current thread against the thread
749 that reported the most recent event. If a step-over is required
750 it returns TRUE and sets the current thread to the old thread. */
751 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
752 oneproc = 1;
753
754 if (oneproc)
755 /* We will get a trace trap after one instruction.
756 Continue it automatically and insert breakpoints then. */
757 trap_expected = 1;
758 else
759 {
760 insert_breakpoints ();
761 /* If we get here there was no call to error() in
762 insert breakpoints -- so they were inserted. */
763 breakpoints_inserted = 1;
764 }
765
766 if (siggnal != TARGET_SIGNAL_DEFAULT)
767 stop_signal = siggnal;
768 /* If this signal should not be seen by program,
769 give it zero. Used for debugging signals. */
770 else if (!signal_program[stop_signal])
771 stop_signal = TARGET_SIGNAL_0;
772
773 annotate_starting ();
774
775 /* Make sure that output from GDB appears before output from the
776 inferior. */
777 gdb_flush (gdb_stdout);
778
779 /* Refresh prev_pc value just prior to resuming. This used to be
780 done in stop_stepping, however, setting prev_pc there did not handle
781 scenarios such as inferior function calls or returning from
782 a function via the return command. In those cases, the prev_pc
783 value was not set properly for subsequent commands. The prev_pc value
784 is used to initialize the starting line number in the ecs. With an
785 invalid value, the gdb next command ends up stopping at the position
786 represented by the next line table entry past our start position.
787 On platforms that generate one line table entry per line, this
788 is not a problem. However, on the ia64, the compiler generates
789 extraneous line table entries that do not increase the line number.
790 When we issue the gdb next command on the ia64 after an inferior call
791 or a return command, we often end up a few instructions forward, still
792 within the original line we started.
793
794 An attempt was made to have init_execution_control_state () refresh
795 the prev_pc value before calculating the line number. This approach
796 did not work because on platforms that use ptrace, the pc register
797 cannot be read unless the inferior is stopped. At that point, we
798 are not guaranteed the inferior is stopped and so the read_pc ()
799 call can fail. Setting the prev_pc value here ensures the value is
800 updated correctly when the inferior is stopped. */
801 prev_pc = read_pc ();
802
803 /* Resume inferior. */
804 resume (oneproc || step || bpstat_should_step (), stop_signal);
805
806 /* Wait for it to stop (if not standalone)
807 and in any case decode why it stopped, and act accordingly. */
808 /* Do this only if we are not using the event loop, or if the target
809 does not support asynchronous execution. */
810 if (!target_can_async_p ())
811 {
812 wait_for_inferior ();
813 normal_stop ();
814 }
815 }
816 \f
817
818 /* Start remote-debugging of a machine over a serial link. */
819
820 void
821 start_remote (int from_tty)
822 {
823 init_thread_list ();
824 init_wait_for_inferior ();
825 stop_soon = STOP_QUIETLY;
826 trap_expected = 0;
827
828 /* Always go on waiting for the target, regardless of the mode. */
829 /* FIXME: cagney/1999-09-23: At present it isn't possible to
830 indicate to wait_for_inferior that a target should timeout if
831 nothing is returned (instead of just blocking). Because of this,
832 targets expecting an immediate response need to, internally, set
833 things up so that the target_wait() is forced to eventually
834 timeout. */
835 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
836 differentiate to its caller what the state of the target is after
837 the initial open has been performed. Here we're assuming that
838 the target has stopped. It should be possible to eventually have
839 target_open() return to the caller an indication that the target
840 is currently running and GDB state should be set to the same as
841 for an async run. */
842 wait_for_inferior ();
843
844 /* Now that the inferior has stopped, do any bookkeeping like
845 loading shared libraries. We want to do this before normal_stop,
846 so that the displayed frame is up to date. */
847 post_create_inferior (&current_target, from_tty);
848
849 normal_stop ();
850 }
851
852 /* Initialize static vars when a new inferior begins. */
853
854 void
855 init_wait_for_inferior (void)
856 {
857 /* These are meaningless until the first time through wait_for_inferior. */
858 prev_pc = 0;
859
860 breakpoints_inserted = 0;
861 breakpoint_init_inferior (inf_starting);
862
863 /* Don't confuse first call to proceed(). */
864 stop_signal = TARGET_SIGNAL_0;
865
866 /* The first resume is not following a fork/vfork/exec. */
867 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
868
869 clear_proceed_status ();
870
871 stepping_past_singlestep_breakpoint = 0;
872 }
873 \f
874 /* This enum encodes possible reasons for doing a target_wait, so that
875 wfi can call target_wait in one place. (Ultimately the call will be
876 moved out of the infinite loop entirely.) */
877
878 enum infwait_states
879 {
880 infwait_normal_state,
881 infwait_thread_hop_state,
882 infwait_nonstep_watch_state
883 };
884
885 /* Why did the inferior stop? Used to print the appropriate messages
886 to the interface from within handle_inferior_event(). */
887 enum inferior_stop_reason
888 {
889 /* Step, next, nexti, stepi finished. */
890 END_STEPPING_RANGE,
891 /* Inferior terminated by signal. */
892 SIGNAL_EXITED,
893 /* Inferior exited. */
894 EXITED,
895 /* Inferior received signal, and user asked to be notified. */
896 SIGNAL_RECEIVED
897 };
898
899 /* This structure contains what used to be local variables in
900 wait_for_inferior. Probably many of them can return to being
901 locals in handle_inferior_event. */
902
903 struct execution_control_state
904 {
905 struct target_waitstatus ws;
906 struct target_waitstatus *wp;
907 int another_trap;
908 int random_signal;
909 CORE_ADDR stop_func_start;
910 CORE_ADDR stop_func_end;
911 char *stop_func_name;
912 struct symtab_and_line sal;
913 int current_line;
914 struct symtab *current_symtab;
915 int handling_longjmp; /* FIXME */
916 ptid_t ptid;
917 ptid_t saved_inferior_ptid;
918 int step_after_step_resume_breakpoint;
919 int stepping_through_solib_after_catch;
920 bpstat stepping_through_solib_catchpoints;
921 int new_thread_event;
922 struct target_waitstatus tmpstatus;
923 enum infwait_states infwait_state;
924 ptid_t waiton_ptid;
925 int wait_some_more;
926 };
927
928 void init_execution_control_state (struct execution_control_state *ecs);
929
930 void handle_inferior_event (struct execution_control_state *ecs);
931
932 static void step_into_function (struct execution_control_state *ecs);
933 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
934 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
935 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
936 struct frame_id sr_id);
937 static void stop_stepping (struct execution_control_state *ecs);
938 static void prepare_to_wait (struct execution_control_state *ecs);
939 static void keep_going (struct execution_control_state *ecs);
940 static void print_stop_reason (enum inferior_stop_reason stop_reason,
941 int stop_info);
942
943 /* Wait for control to return from inferior to debugger.
944 If inferior gets a signal, we may decide to start it up again
945 instead of returning. That is why there is a loop in this function.
946 When this function actually returns it means the inferior
947 should be left stopped and GDB should read more commands. */
948
949 void
950 wait_for_inferior (void)
951 {
952 struct cleanup *old_cleanups;
953 struct execution_control_state ecss;
954 struct execution_control_state *ecs;
955
956 if (debug_infrun)
957 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
958
959 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
960 &step_resume_breakpoint);
961
962 /* wfi still stays in a loop, so it's OK just to take the address of
963 a local to get the ecs pointer. */
964 ecs = &ecss;
965
966 /* Fill in with reasonable starting values. */
967 init_execution_control_state (ecs);
968
969 /* We'll update this if & when we switch to a new thread. */
970 previous_inferior_ptid = inferior_ptid;
971
972 overlay_cache_invalid = 1;
973
974 /* We have to invalidate the registers BEFORE calling target_wait
975 because they can be loaded from the target while in target_wait.
976 This makes remote debugging a bit more efficient for those
977 targets that provide critical registers as part of their normal
978 status mechanism. */
979
980 registers_changed ();
981
982 while (1)
983 {
984 if (deprecated_target_wait_hook)
985 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
986 else
987 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
988
989 /* Now figure out what to do with the result of the result. */
990 handle_inferior_event (ecs);
991
992 if (!ecs->wait_some_more)
993 break;
994 }
995 do_cleanups (old_cleanups);
996 }
997
998 /* Asynchronous version of wait_for_inferior. It is called by the
999 event loop whenever a change of state is detected on the file
1000 descriptor corresponding to the target. It can be called more than
1001 once to complete a single execution command. In such cases we need
1002 to keep the state in a global variable ASYNC_ECSS. If it is the
1003 last time that this function is called for a single execution
1004 command, then report to the user that the inferior has stopped, and
1005 do the necessary cleanups. */
1006
1007 struct execution_control_state async_ecss;
1008 struct execution_control_state *async_ecs;
1009
1010 void
1011 fetch_inferior_event (void *client_data)
1012 {
1013 static struct cleanup *old_cleanups;
1014
1015 async_ecs = &async_ecss;
1016
1017 if (!async_ecs->wait_some_more)
1018 {
1019 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1020 &step_resume_breakpoint);
1021
1022 /* Fill in with reasonable starting values. */
1023 init_execution_control_state (async_ecs);
1024
1025 /* We'll update this if & when we switch to a new thread. */
1026 previous_inferior_ptid = inferior_ptid;
1027
1028 overlay_cache_invalid = 1;
1029
1030 /* We have to invalidate the registers BEFORE calling target_wait
1031 because they can be loaded from the target while in target_wait.
1032 This makes remote debugging a bit more efficient for those
1033 targets that provide critical registers as part of their normal
1034 status mechanism. */
1035
1036 registers_changed ();
1037 }
1038
1039 if (deprecated_target_wait_hook)
1040 async_ecs->ptid =
1041 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1042 else
1043 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1044
1045 /* Now figure out what to do with the result of the result. */
1046 handle_inferior_event (async_ecs);
1047
1048 if (!async_ecs->wait_some_more)
1049 {
1050 /* Do only the cleanups that have been added by this
1051 function. Let the continuations for the commands do the rest,
1052 if there are any. */
1053 do_exec_cleanups (old_cleanups);
1054 normal_stop ();
1055 if (step_multi && stop_step)
1056 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1057 else
1058 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1059 }
1060 }
1061
1062 /* Prepare an execution control state for looping through a
1063 wait_for_inferior-type loop. */
1064
1065 void
1066 init_execution_control_state (struct execution_control_state *ecs)
1067 {
1068 ecs->another_trap = 0;
1069 ecs->random_signal = 0;
1070 ecs->step_after_step_resume_breakpoint = 0;
1071 ecs->handling_longjmp = 0; /* FIXME */
1072 ecs->stepping_through_solib_after_catch = 0;
1073 ecs->stepping_through_solib_catchpoints = NULL;
1074 ecs->sal = find_pc_line (prev_pc, 0);
1075 ecs->current_line = ecs->sal.line;
1076 ecs->current_symtab = ecs->sal.symtab;
1077 ecs->infwait_state = infwait_normal_state;
1078 ecs->waiton_ptid = pid_to_ptid (-1);
1079 ecs->wp = &(ecs->ws);
1080 }
1081
1082 /* Return the cached copy of the last pid/waitstatus returned by
1083 target_wait()/deprecated_target_wait_hook(). The data is actually
1084 cached by handle_inferior_event(), which gets called immediately
1085 after target_wait()/deprecated_target_wait_hook(). */
1086
1087 void
1088 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1089 {
1090 *ptidp = target_last_wait_ptid;
1091 *status = target_last_waitstatus;
1092 }
1093
1094 void
1095 nullify_last_target_wait_ptid (void)
1096 {
1097 target_last_wait_ptid = minus_one_ptid;
1098 }
1099
1100 /* Switch thread contexts, maintaining "infrun state". */
1101
1102 static void
1103 context_switch (struct execution_control_state *ecs)
1104 {
1105 /* Caution: it may happen that the new thread (or the old one!)
1106 is not in the thread list. In this case we must not attempt
1107 to "switch context", or we run the risk that our context may
1108 be lost. This may happen as a result of the target module
1109 mishandling thread creation. */
1110
1111 if (debug_infrun)
1112 {
1113 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1114 target_pid_to_str (inferior_ptid));
1115 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1116 target_pid_to_str (ecs->ptid));
1117 }
1118
1119 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1120 { /* Perform infrun state context switch: */
1121 /* Save infrun state for the old thread. */
1122 save_infrun_state (inferior_ptid, prev_pc,
1123 trap_expected, step_resume_breakpoint,
1124 step_range_start,
1125 step_range_end, &step_frame_id,
1126 ecs->handling_longjmp, ecs->another_trap,
1127 ecs->stepping_through_solib_after_catch,
1128 ecs->stepping_through_solib_catchpoints,
1129 ecs->current_line, ecs->current_symtab);
1130
1131 /* Load infrun state for the new thread. */
1132 load_infrun_state (ecs->ptid, &prev_pc,
1133 &trap_expected, &step_resume_breakpoint,
1134 &step_range_start,
1135 &step_range_end, &step_frame_id,
1136 &ecs->handling_longjmp, &ecs->another_trap,
1137 &ecs->stepping_through_solib_after_catch,
1138 &ecs->stepping_through_solib_catchpoints,
1139 &ecs->current_line, &ecs->current_symtab);
1140 }
1141 inferior_ptid = ecs->ptid;
1142 reinit_frame_cache ();
1143 }
1144
1145 static void
1146 adjust_pc_after_break (struct execution_control_state *ecs)
1147 {
1148 CORE_ADDR breakpoint_pc;
1149
1150 /* If this target does not decrement the PC after breakpoints, then
1151 we have nothing to do. */
1152 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1153 return;
1154
1155 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1156 we aren't, just return.
1157
1158 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1159 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1160 implemented by software breakpoints should be handled through the normal
1161 breakpoint layer.
1162
1163 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1164 different signals (SIGILL or SIGEMT for instance), but it is less
1165 clear where the PC is pointing afterwards. It may not match
1166 gdbarch_decr_pc_after_break. I don't know any specific target that
1167 generates these signals at breakpoints (the code has been in GDB since at
1168 least 1992) so I can not guess how to handle them here.
1169
1170 In earlier versions of GDB, a target with
1171 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1172 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1173 target with both of these set in GDB history, and it seems unlikely to be
1174 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1175
1176 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1177 return;
1178
1179 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1180 return;
1181
1182 /* Find the location where (if we've hit a breakpoint) the
1183 breakpoint would be. */
1184 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1185 (current_gdbarch);
1186
1187 if (SOFTWARE_SINGLE_STEP_P ())
1188 {
1189 /* When using software single-step, a SIGTRAP can only indicate
1190 an inserted breakpoint. This actually makes things
1191 easier. */
1192 if (singlestep_breakpoints_inserted_p)
1193 /* When software single stepping, the instruction at [prev_pc]
1194 is never a breakpoint, but the instruction following
1195 [prev_pc] (in program execution order) always is. Assume
1196 that following instruction was reached and hence a software
1197 breakpoint was hit. */
1198 write_pc_pid (breakpoint_pc, ecs->ptid);
1199 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1200 /* The inferior was free running (i.e., no single-step
1201 breakpoints inserted) and it hit a software breakpoint. */
1202 write_pc_pid (breakpoint_pc, ecs->ptid);
1203 }
1204 else
1205 {
1206 /* When using hardware single-step, a SIGTRAP is reported for
1207 both a completed single-step and a software breakpoint. Need
1208 to differentiate between the two as the latter needs
1209 adjusting but the former does not.
1210
1211 When the thread to be examined does not match the current thread
1212 context we can't use currently_stepping, so assume no
1213 single-stepping in this case. */
1214 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1215 {
1216 if (prev_pc == breakpoint_pc
1217 && software_breakpoint_inserted_here_p (breakpoint_pc))
1218 /* Hardware single-stepped a software breakpoint (as
1219 occures when the inferior is resumed with PC pointing
1220 at not-yet-hit software breakpoint). Since the
1221 breakpoint really is executed, the inferior needs to be
1222 backed up to the breakpoint address. */
1223 write_pc_pid (breakpoint_pc, ecs->ptid);
1224 }
1225 else
1226 {
1227 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1228 /* The inferior was free running (i.e., no hardware
1229 single-step and no possibility of a false SIGTRAP) and
1230 hit a software breakpoint. */
1231 write_pc_pid (breakpoint_pc, ecs->ptid);
1232 }
1233 }
1234 }
1235
1236 /* Given an execution control state that has been freshly filled in
1237 by an event from the inferior, figure out what it means and take
1238 appropriate action. */
1239
1240 int stepped_after_stopped_by_watchpoint;
1241
1242 void
1243 handle_inferior_event (struct execution_control_state *ecs)
1244 {
1245 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1246 that the variable stepped_after_stopped_by_watchpoint isn't used,
1247 then you're wrong! See remote.c:remote_stopped_data_address. */
1248
1249 int sw_single_step_trap_p = 0;
1250 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1251
1252 /* Cache the last pid/waitstatus. */
1253 target_last_wait_ptid = ecs->ptid;
1254 target_last_waitstatus = *ecs->wp;
1255
1256 adjust_pc_after_break (ecs);
1257
1258 switch (ecs->infwait_state)
1259 {
1260 case infwait_thread_hop_state:
1261 if (debug_infrun)
1262 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1263 /* Cancel the waiton_ptid. */
1264 ecs->waiton_ptid = pid_to_ptid (-1);
1265 break;
1266
1267 case infwait_normal_state:
1268 if (debug_infrun)
1269 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1270 stepped_after_stopped_by_watchpoint = 0;
1271 break;
1272
1273 case infwait_nonstep_watch_state:
1274 if (debug_infrun)
1275 fprintf_unfiltered (gdb_stdlog,
1276 "infrun: infwait_nonstep_watch_state\n");
1277 insert_breakpoints ();
1278
1279 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1280 handle things like signals arriving and other things happening
1281 in combination correctly? */
1282 stepped_after_stopped_by_watchpoint = 1;
1283 break;
1284
1285 default:
1286 internal_error (__FILE__, __LINE__, _("bad switch"));
1287 }
1288 ecs->infwait_state = infwait_normal_state;
1289
1290 reinit_frame_cache ();
1291
1292 /* If it's a new process, add it to the thread database */
1293
1294 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1295 && !ptid_equal (ecs->ptid, minus_one_ptid)
1296 && !in_thread_list (ecs->ptid));
1297
1298 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1299 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1300 {
1301 add_thread (ecs->ptid);
1302
1303 ui_out_text (uiout, "[New ");
1304 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1305 ui_out_text (uiout, "]\n");
1306 }
1307
1308 switch (ecs->ws.kind)
1309 {
1310 case TARGET_WAITKIND_LOADED:
1311 if (debug_infrun)
1312 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1313 /* Ignore gracefully during startup of the inferior, as it
1314 might be the shell which has just loaded some objects,
1315 otherwise add the symbols for the newly loaded objects. */
1316 #ifdef SOLIB_ADD
1317 if (stop_soon == NO_STOP_QUIETLY)
1318 {
1319 /* Remove breakpoints, SOLIB_ADD might adjust
1320 breakpoint addresses via breakpoint_re_set. */
1321 if (breakpoints_inserted)
1322 remove_breakpoints ();
1323
1324 /* Check for any newly added shared libraries if we're
1325 supposed to be adding them automatically. Switch
1326 terminal for any messages produced by
1327 breakpoint_re_set. */
1328 target_terminal_ours_for_output ();
1329 /* NOTE: cagney/2003-11-25: Make certain that the target
1330 stack's section table is kept up-to-date. Architectures,
1331 (e.g., PPC64), use the section table to perform
1332 operations such as address => section name and hence
1333 require the table to contain all sections (including
1334 those found in shared libraries). */
1335 /* NOTE: cagney/2003-11-25: Pass current_target and not
1336 exec_ops to SOLIB_ADD. This is because current GDB is
1337 only tooled to propagate section_table changes out from
1338 the "current_target" (see target_resize_to_sections), and
1339 not up from the exec stratum. This, of course, isn't
1340 right. "infrun.c" should only interact with the
1341 exec/process stratum, instead relying on the target stack
1342 to propagate relevant changes (stop, section table
1343 changed, ...) up to other layers. */
1344 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1345 target_terminal_inferior ();
1346
1347 /* Reinsert breakpoints and continue. */
1348 if (breakpoints_inserted)
1349 insert_breakpoints ();
1350 }
1351 #endif
1352 resume (0, TARGET_SIGNAL_0);
1353 prepare_to_wait (ecs);
1354 return;
1355
1356 case TARGET_WAITKIND_SPURIOUS:
1357 if (debug_infrun)
1358 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1359 resume (0, TARGET_SIGNAL_0);
1360 prepare_to_wait (ecs);
1361 return;
1362
1363 case TARGET_WAITKIND_EXITED:
1364 if (debug_infrun)
1365 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1366 target_terminal_ours (); /* Must do this before mourn anyway */
1367 print_stop_reason (EXITED, ecs->ws.value.integer);
1368
1369 /* Record the exit code in the convenience variable $_exitcode, so
1370 that the user can inspect this again later. */
1371 set_internalvar (lookup_internalvar ("_exitcode"),
1372 value_from_longest (builtin_type_int,
1373 (LONGEST) ecs->ws.value.integer));
1374 gdb_flush (gdb_stdout);
1375 target_mourn_inferior ();
1376 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
1377 stop_print_frame = 0;
1378 stop_stepping (ecs);
1379 return;
1380
1381 case TARGET_WAITKIND_SIGNALLED:
1382 if (debug_infrun)
1383 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1384 stop_print_frame = 0;
1385 stop_signal = ecs->ws.value.sig;
1386 target_terminal_ours (); /* Must do this before mourn anyway */
1387
1388 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1389 reach here unless the inferior is dead. However, for years
1390 target_kill() was called here, which hints that fatal signals aren't
1391 really fatal on some systems. If that's true, then some changes
1392 may be needed. */
1393 target_mourn_inferior ();
1394
1395 print_stop_reason (SIGNAL_EXITED, stop_signal);
1396 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
1397 stop_stepping (ecs);
1398 return;
1399
1400 /* The following are the only cases in which we keep going;
1401 the above cases end in a continue or goto. */
1402 case TARGET_WAITKIND_FORKED:
1403 case TARGET_WAITKIND_VFORKED:
1404 if (debug_infrun)
1405 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1406 stop_signal = TARGET_SIGNAL_TRAP;
1407 pending_follow.kind = ecs->ws.kind;
1408
1409 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1410 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1411
1412 if (!ptid_equal (ecs->ptid, inferior_ptid))
1413 {
1414 context_switch (ecs);
1415 reinit_frame_cache ();
1416 }
1417
1418 stop_pc = read_pc ();
1419
1420 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1421
1422 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1423
1424 /* If no catchpoint triggered for this, then keep going. */
1425 if (ecs->random_signal)
1426 {
1427 stop_signal = TARGET_SIGNAL_0;
1428 keep_going (ecs);
1429 return;
1430 }
1431 goto process_event_stop_test;
1432
1433 case TARGET_WAITKIND_EXECD:
1434 if (debug_infrun)
1435 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1436 stop_signal = TARGET_SIGNAL_TRAP;
1437
1438 /* NOTE drow/2002-12-05: This code should be pushed down into the
1439 target_wait function. Until then following vfork on HP/UX 10.20
1440 is probably broken by this. Of course, it's broken anyway. */
1441 /* Is this a target which reports multiple exec events per actual
1442 call to exec()? (HP-UX using ptrace does, for example.) If so,
1443 ignore all but the last one. Just resume the exec'r, and wait
1444 for the next exec event. */
1445 if (inferior_ignoring_leading_exec_events)
1446 {
1447 inferior_ignoring_leading_exec_events--;
1448 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1449 prepare_to_wait (ecs);
1450 return;
1451 }
1452 inferior_ignoring_leading_exec_events =
1453 target_reported_exec_events_per_exec_call () - 1;
1454
1455 pending_follow.execd_pathname =
1456 savestring (ecs->ws.value.execd_pathname,
1457 strlen (ecs->ws.value.execd_pathname));
1458
1459 /* This causes the eventpoints and symbol table to be reset. Must
1460 do this now, before trying to determine whether to stop. */
1461 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1462 xfree (pending_follow.execd_pathname);
1463
1464 stop_pc = read_pc_pid (ecs->ptid);
1465 ecs->saved_inferior_ptid = inferior_ptid;
1466 inferior_ptid = ecs->ptid;
1467
1468 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1469
1470 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1471 inferior_ptid = ecs->saved_inferior_ptid;
1472
1473 if (!ptid_equal (ecs->ptid, inferior_ptid))
1474 {
1475 context_switch (ecs);
1476 reinit_frame_cache ();
1477 }
1478
1479 /* If no catchpoint triggered for this, then keep going. */
1480 if (ecs->random_signal)
1481 {
1482 stop_signal = TARGET_SIGNAL_0;
1483 keep_going (ecs);
1484 return;
1485 }
1486 goto process_event_stop_test;
1487
1488 /* Be careful not to try to gather much state about a thread
1489 that's in a syscall. It's frequently a losing proposition. */
1490 case TARGET_WAITKIND_SYSCALL_ENTRY:
1491 if (debug_infrun)
1492 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1493 resume (0, TARGET_SIGNAL_0);
1494 prepare_to_wait (ecs);
1495 return;
1496
1497 /* Before examining the threads further, step this thread to
1498 get it entirely out of the syscall. (We get notice of the
1499 event when the thread is just on the verge of exiting a
1500 syscall. Stepping one instruction seems to get it back
1501 into user code.) */
1502 case TARGET_WAITKIND_SYSCALL_RETURN:
1503 if (debug_infrun)
1504 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1505 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1506 prepare_to_wait (ecs);
1507 return;
1508
1509 case TARGET_WAITKIND_STOPPED:
1510 if (debug_infrun)
1511 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1512 stop_signal = ecs->ws.value.sig;
1513 break;
1514
1515 /* We had an event in the inferior, but we are not interested
1516 in handling it at this level. The lower layers have already
1517 done what needs to be done, if anything.
1518
1519 One of the possible circumstances for this is when the
1520 inferior produces output for the console. The inferior has
1521 not stopped, and we are ignoring the event. Another possible
1522 circumstance is any event which the lower level knows will be
1523 reported multiple times without an intervening resume. */
1524 case TARGET_WAITKIND_IGNORE:
1525 if (debug_infrun)
1526 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1527 prepare_to_wait (ecs);
1528 return;
1529 }
1530
1531 /* We may want to consider not doing a resume here in order to give
1532 the user a chance to play with the new thread. It might be good
1533 to make that a user-settable option. */
1534
1535 /* At this point, all threads are stopped (happens automatically in
1536 either the OS or the native code). Therefore we need to continue
1537 all threads in order to make progress. */
1538 if (ecs->new_thread_event)
1539 {
1540 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1541 prepare_to_wait (ecs);
1542 return;
1543 }
1544
1545 stop_pc = read_pc_pid (ecs->ptid);
1546
1547 if (debug_infrun)
1548 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1549
1550 if (stepping_past_singlestep_breakpoint)
1551 {
1552 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1553 && singlestep_breakpoints_inserted_p);
1554 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1555 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1556
1557 stepping_past_singlestep_breakpoint = 0;
1558
1559 /* We've either finished single-stepping past the single-step
1560 breakpoint, or stopped for some other reason. It would be nice if
1561 we could tell, but we can't reliably. */
1562 if (stop_signal == TARGET_SIGNAL_TRAP)
1563 {
1564 if (debug_infrun)
1565 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1566 /* Pull the single step breakpoints out of the target. */
1567 remove_single_step_breakpoints ();
1568 singlestep_breakpoints_inserted_p = 0;
1569
1570 ecs->random_signal = 0;
1571
1572 ecs->ptid = saved_singlestep_ptid;
1573 context_switch (ecs);
1574 if (deprecated_context_hook)
1575 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1576
1577 resume (1, TARGET_SIGNAL_0);
1578 prepare_to_wait (ecs);
1579 return;
1580 }
1581 }
1582
1583 stepping_past_singlestep_breakpoint = 0;
1584
1585 /* See if a thread hit a thread-specific breakpoint that was meant for
1586 another thread. If so, then step that thread past the breakpoint,
1587 and continue it. */
1588
1589 if (stop_signal == TARGET_SIGNAL_TRAP)
1590 {
1591 int thread_hop_needed = 0;
1592
1593 /* Check if a regular breakpoint has been hit before checking
1594 for a potential single step breakpoint. Otherwise, GDB will
1595 not see this breakpoint hit when stepping onto breakpoints. */
1596 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1597 {
1598 ecs->random_signal = 0;
1599 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1600 thread_hop_needed = 1;
1601 }
1602 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1603 {
1604 /* We have not context switched yet, so this should be true
1605 no matter which thread hit the singlestep breakpoint. */
1606 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1607 if (debug_infrun)
1608 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1609 "trap for %s\n",
1610 target_pid_to_str (ecs->ptid));
1611
1612 ecs->random_signal = 0;
1613 /* The call to in_thread_list is necessary because PTIDs sometimes
1614 change when we go from single-threaded to multi-threaded. If
1615 the singlestep_ptid is still in the list, assume that it is
1616 really different from ecs->ptid. */
1617 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1618 && in_thread_list (singlestep_ptid))
1619 {
1620 /* If the PC of the thread we were trying to single-step
1621 has changed, discard this event (which we were going
1622 to ignore anyway), and pretend we saw that thread
1623 trap. This prevents us continuously moving the
1624 single-step breakpoint forward, one instruction at a
1625 time. If the PC has changed, then the thread we were
1626 trying to single-step has trapped or been signalled,
1627 but the event has not been reported to GDB yet.
1628
1629 There might be some cases where this loses signal
1630 information, if a signal has arrived at exactly the
1631 same time that the PC changed, but this is the best
1632 we can do with the information available. Perhaps we
1633 should arrange to report all events for all threads
1634 when they stop, or to re-poll the remote looking for
1635 this particular thread (i.e. temporarily enable
1636 schedlock). */
1637 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1638 {
1639 if (debug_infrun)
1640 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1641 " but expected thread advanced also\n");
1642
1643 /* The current context still belongs to
1644 singlestep_ptid. Don't swap here, since that's
1645 the context we want to use. Just fudge our
1646 state and continue. */
1647 ecs->ptid = singlestep_ptid;
1648 stop_pc = read_pc_pid (ecs->ptid);
1649 }
1650 else
1651 {
1652 if (debug_infrun)
1653 fprintf_unfiltered (gdb_stdlog,
1654 "infrun: unexpected thread\n");
1655
1656 thread_hop_needed = 1;
1657 stepping_past_singlestep_breakpoint = 1;
1658 saved_singlestep_ptid = singlestep_ptid;
1659 }
1660 }
1661 }
1662
1663 if (thread_hop_needed)
1664 {
1665 int remove_status;
1666
1667 if (debug_infrun)
1668 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1669
1670 /* Saw a breakpoint, but it was hit by the wrong thread.
1671 Just continue. */
1672
1673 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1674 {
1675 /* Pull the single step breakpoints out of the target. */
1676 remove_single_step_breakpoints ();
1677 singlestep_breakpoints_inserted_p = 0;
1678 }
1679
1680 remove_status = remove_breakpoints ();
1681 /* Did we fail to remove breakpoints? If so, try
1682 to set the PC past the bp. (There's at least
1683 one situation in which we can fail to remove
1684 the bp's: On HP-UX's that use ttrace, we can't
1685 change the address space of a vforking child
1686 process until the child exits (well, okay, not
1687 then either :-) or execs. */
1688 if (remove_status != 0)
1689 {
1690 /* FIXME! This is obviously non-portable! */
1691 write_pc_pid (stop_pc + 4, ecs->ptid);
1692 /* We need to restart all the threads now,
1693 * unles we're running in scheduler-locked mode.
1694 * Use currently_stepping to determine whether to
1695 * step or continue.
1696 */
1697 /* FIXME MVS: is there any reason not to call resume()? */
1698 if (scheduler_mode == schedlock_on)
1699 target_resume (ecs->ptid,
1700 currently_stepping (ecs), TARGET_SIGNAL_0);
1701 else
1702 target_resume (RESUME_ALL,
1703 currently_stepping (ecs), TARGET_SIGNAL_0);
1704 prepare_to_wait (ecs);
1705 return;
1706 }
1707 else
1708 { /* Single step */
1709 breakpoints_inserted = 0;
1710 if (!ptid_equal (inferior_ptid, ecs->ptid))
1711 context_switch (ecs);
1712 ecs->waiton_ptid = ecs->ptid;
1713 ecs->wp = &(ecs->ws);
1714 ecs->another_trap = 1;
1715
1716 ecs->infwait_state = infwait_thread_hop_state;
1717 keep_going (ecs);
1718 registers_changed ();
1719 return;
1720 }
1721 }
1722 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1723 {
1724 sw_single_step_trap_p = 1;
1725 ecs->random_signal = 0;
1726 }
1727 }
1728 else
1729 ecs->random_signal = 1;
1730
1731 /* See if something interesting happened to the non-current thread. If
1732 so, then switch to that thread. */
1733 if (!ptid_equal (ecs->ptid, inferior_ptid))
1734 {
1735 if (debug_infrun)
1736 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1737
1738 context_switch (ecs);
1739
1740 if (deprecated_context_hook)
1741 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1742 }
1743
1744 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1745 {
1746 /* Pull the single step breakpoints out of the target. */
1747 remove_single_step_breakpoints ();
1748 singlestep_breakpoints_inserted_p = 0;
1749 }
1750
1751 /* It may not be necessary to disable the watchpoint to stop over
1752 it. For example, the PA can (with some kernel cooperation)
1753 single step over a watchpoint without disabling the watchpoint. */
1754 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1755 {
1756 if (debug_infrun)
1757 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1758 resume (1, 0);
1759 prepare_to_wait (ecs);
1760 return;
1761 }
1762
1763 /* It is far more common to need to disable a watchpoint to step
1764 the inferior over it. FIXME. What else might a debug
1765 register or page protection watchpoint scheme need here? */
1766 if (gdbarch_have_nonsteppable_watchpoint (current_gdbarch)
1767 && STOPPED_BY_WATCHPOINT (ecs->ws))
1768 {
1769 /* At this point, we are stopped at an instruction which has
1770 attempted to write to a piece of memory under control of
1771 a watchpoint. The instruction hasn't actually executed
1772 yet. If we were to evaluate the watchpoint expression
1773 now, we would get the old value, and therefore no change
1774 would seem to have occurred.
1775
1776 In order to make watchpoints work `right', we really need
1777 to complete the memory write, and then evaluate the
1778 watchpoint expression. The following code does that by
1779 removing the watchpoint (actually, all watchpoints and
1780 breakpoints), single-stepping the target, re-inserting
1781 watchpoints, and then falling through to let normal
1782 single-step processing handle proceed. Since this
1783 includes evaluating watchpoints, things will come to a
1784 stop in the correct manner. */
1785
1786 if (debug_infrun)
1787 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1788 remove_breakpoints ();
1789 registers_changed ();
1790 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1791
1792 ecs->waiton_ptid = ecs->ptid;
1793 ecs->wp = &(ecs->ws);
1794 ecs->infwait_state = infwait_nonstep_watch_state;
1795 prepare_to_wait (ecs);
1796 return;
1797 }
1798
1799 /* It may be possible to simply continue after a watchpoint. */
1800 if (HAVE_CONTINUABLE_WATCHPOINT)
1801 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1802
1803 ecs->stop_func_start = 0;
1804 ecs->stop_func_end = 0;
1805 ecs->stop_func_name = 0;
1806 /* Don't care about return value; stop_func_start and stop_func_name
1807 will both be 0 if it doesn't work. */
1808 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1809 &ecs->stop_func_start, &ecs->stop_func_end);
1810 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1811 ecs->another_trap = 0;
1812 bpstat_clear (&stop_bpstat);
1813 stop_step = 0;
1814 stop_stack_dummy = 0;
1815 stop_print_frame = 1;
1816 ecs->random_signal = 0;
1817 stopped_by_random_signal = 0;
1818
1819 if (stop_signal == TARGET_SIGNAL_TRAP
1820 && trap_expected
1821 && gdbarch_single_step_through_delay_p (current_gdbarch)
1822 && currently_stepping (ecs))
1823 {
1824 /* We're trying to step of a breakpoint. Turns out that we're
1825 also on an instruction that needs to be stepped multiple
1826 times before it's been fully executing. E.g., architectures
1827 with a delay slot. It needs to be stepped twice, once for
1828 the instruction and once for the delay slot. */
1829 int step_through_delay
1830 = gdbarch_single_step_through_delay (current_gdbarch,
1831 get_current_frame ());
1832 if (debug_infrun && step_through_delay)
1833 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1834 if (step_range_end == 0 && step_through_delay)
1835 {
1836 /* The user issued a continue when stopped at a breakpoint.
1837 Set up for another trap and get out of here. */
1838 ecs->another_trap = 1;
1839 keep_going (ecs);
1840 return;
1841 }
1842 else if (step_through_delay)
1843 {
1844 /* The user issued a step when stopped at a breakpoint.
1845 Maybe we should stop, maybe we should not - the delay
1846 slot *might* correspond to a line of source. In any
1847 case, don't decide that here, just set ecs->another_trap,
1848 making sure we single-step again before breakpoints are
1849 re-inserted. */
1850 ecs->another_trap = 1;
1851 }
1852 }
1853
1854 /* Look at the cause of the stop, and decide what to do.
1855 The alternatives are:
1856 1) break; to really stop and return to the debugger,
1857 2) drop through to start up again
1858 (set ecs->another_trap to 1 to single step once)
1859 3) set ecs->random_signal to 1, and the decision between 1 and 2
1860 will be made according to the signal handling tables. */
1861
1862 /* First, distinguish signals caused by the debugger from signals
1863 that have to do with the program's own actions. Note that
1864 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1865 on the operating system version. Here we detect when a SIGILL or
1866 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1867 something similar for SIGSEGV, since a SIGSEGV will be generated
1868 when we're trying to execute a breakpoint instruction on a
1869 non-executable stack. This happens for call dummy breakpoints
1870 for architectures like SPARC that place call dummies on the
1871 stack. */
1872
1873 if (stop_signal == TARGET_SIGNAL_TRAP
1874 || (breakpoints_inserted
1875 && (stop_signal == TARGET_SIGNAL_ILL
1876 || stop_signal == TARGET_SIGNAL_SEGV
1877 || stop_signal == TARGET_SIGNAL_EMT))
1878 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1879 {
1880 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1881 {
1882 if (debug_infrun)
1883 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1884 stop_print_frame = 0;
1885 stop_stepping (ecs);
1886 return;
1887 }
1888
1889 /* This is originated from start_remote(), start_inferior() and
1890 shared libraries hook functions. */
1891 if (stop_soon == STOP_QUIETLY)
1892 {
1893 if (debug_infrun)
1894 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1895 stop_stepping (ecs);
1896 return;
1897 }
1898
1899 /* This originates from attach_command(). We need to overwrite
1900 the stop_signal here, because some kernels don't ignore a
1901 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1902 See more comments in inferior.h. */
1903 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1904 {
1905 stop_stepping (ecs);
1906 if (stop_signal == TARGET_SIGNAL_STOP)
1907 stop_signal = TARGET_SIGNAL_0;
1908 return;
1909 }
1910
1911 /* Don't even think about breakpoints if just proceeded over a
1912 breakpoint. */
1913 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1914 {
1915 if (debug_infrun)
1916 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1917 bpstat_clear (&stop_bpstat);
1918 }
1919 else
1920 {
1921 /* See if there is a breakpoint at the current PC. */
1922 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1923 stopped_by_watchpoint);
1924
1925 /* Following in case break condition called a
1926 function. */
1927 stop_print_frame = 1;
1928 }
1929
1930 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1931 at one stage in the past included checks for an inferior
1932 function call's call dummy's return breakpoint. The original
1933 comment, that went with the test, read:
1934
1935 ``End of a stack dummy. Some systems (e.g. Sony news) give
1936 another signal besides SIGTRAP, so check here as well as
1937 above.''
1938
1939 If someone ever tries to get get call dummys on a
1940 non-executable stack to work (where the target would stop
1941 with something like a SIGSEGV), then those tests might need
1942 to be re-instated. Given, however, that the tests were only
1943 enabled when momentary breakpoints were not being used, I
1944 suspect that it won't be the case.
1945
1946 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1947 be necessary for call dummies on a non-executable stack on
1948 SPARC. */
1949
1950 if (stop_signal == TARGET_SIGNAL_TRAP)
1951 ecs->random_signal
1952 = !(bpstat_explains_signal (stop_bpstat)
1953 || trap_expected
1954 || (step_range_end && step_resume_breakpoint == NULL));
1955 else
1956 {
1957 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1958 if (!ecs->random_signal)
1959 stop_signal = TARGET_SIGNAL_TRAP;
1960 }
1961 }
1962
1963 /* When we reach this point, we've pretty much decided
1964 that the reason for stopping must've been a random
1965 (unexpected) signal. */
1966
1967 else
1968 ecs->random_signal = 1;
1969
1970 process_event_stop_test:
1971 /* For the program's own signals, act according to
1972 the signal handling tables. */
1973
1974 if (ecs->random_signal)
1975 {
1976 /* Signal not for debugging purposes. */
1977 int printed = 0;
1978
1979 if (debug_infrun)
1980 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1981
1982 stopped_by_random_signal = 1;
1983
1984 if (signal_print[stop_signal])
1985 {
1986 printed = 1;
1987 target_terminal_ours_for_output ();
1988 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1989 }
1990 if (signal_stop[stop_signal])
1991 {
1992 stop_stepping (ecs);
1993 return;
1994 }
1995 /* If not going to stop, give terminal back
1996 if we took it away. */
1997 else if (printed)
1998 target_terminal_inferior ();
1999
2000 /* Clear the signal if it should not be passed. */
2001 if (signal_program[stop_signal] == 0)
2002 stop_signal = TARGET_SIGNAL_0;
2003
2004 if (prev_pc == read_pc ()
2005 && !breakpoints_inserted
2006 && breakpoint_here_p (read_pc ())
2007 && step_resume_breakpoint == NULL)
2008 {
2009 /* We were just starting a new sequence, attempting to
2010 single-step off of a breakpoint and expecting a SIGTRAP.
2011 Intead this signal arrives. This signal will take us out
2012 of the stepping range so GDB needs to remember to, when
2013 the signal handler returns, resume stepping off that
2014 breakpoint. */
2015 /* To simplify things, "continue" is forced to use the same
2016 code paths as single-step - set a breakpoint at the
2017 signal return address and then, once hit, step off that
2018 breakpoint. */
2019
2020 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2021 ecs->step_after_step_resume_breakpoint = 1;
2022 keep_going (ecs);
2023 return;
2024 }
2025
2026 if (step_range_end != 0
2027 && stop_signal != TARGET_SIGNAL_0
2028 && stop_pc >= step_range_start && stop_pc < step_range_end
2029 && frame_id_eq (get_frame_id (get_current_frame ()),
2030 step_frame_id)
2031 && step_resume_breakpoint == NULL)
2032 {
2033 /* The inferior is about to take a signal that will take it
2034 out of the single step range. Set a breakpoint at the
2035 current PC (which is presumably where the signal handler
2036 will eventually return) and then allow the inferior to
2037 run free.
2038
2039 Note that this is only needed for a signal delivered
2040 while in the single-step range. Nested signals aren't a
2041 problem as they eventually all return. */
2042 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2043 keep_going (ecs);
2044 return;
2045 }
2046
2047 /* Note: step_resume_breakpoint may be non-NULL. This occures
2048 when either there's a nested signal, or when there's a
2049 pending signal enabled just as the signal handler returns
2050 (leaving the inferior at the step-resume-breakpoint without
2051 actually executing it). Either way continue until the
2052 breakpoint is really hit. */
2053 keep_going (ecs);
2054 return;
2055 }
2056
2057 /* Handle cases caused by hitting a breakpoint. */
2058 {
2059 CORE_ADDR jmp_buf_pc;
2060 struct bpstat_what what;
2061
2062 what = bpstat_what (stop_bpstat);
2063
2064 if (what.call_dummy)
2065 {
2066 stop_stack_dummy = 1;
2067 }
2068
2069 switch (what.main_action)
2070 {
2071 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2072 /* If we hit the breakpoint at longjmp, disable it for the
2073 duration of this command. Then, install a temporary
2074 breakpoint at the target of the jmp_buf. */
2075 if (debug_infrun)
2076 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2077 disable_longjmp_breakpoint ();
2078 remove_breakpoints ();
2079 breakpoints_inserted = 0;
2080 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2081 || !gdbarch_get_longjmp_target (current_gdbarch,
2082 get_current_frame (), &jmp_buf_pc))
2083 {
2084 keep_going (ecs);
2085 return;
2086 }
2087
2088 /* Need to blow away step-resume breakpoint, as it
2089 interferes with us */
2090 if (step_resume_breakpoint != NULL)
2091 {
2092 delete_step_resume_breakpoint (&step_resume_breakpoint);
2093 }
2094
2095 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2096 ecs->handling_longjmp = 1; /* FIXME */
2097 keep_going (ecs);
2098 return;
2099
2100 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2101 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2102 if (debug_infrun)
2103 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2104 remove_breakpoints ();
2105 breakpoints_inserted = 0;
2106 disable_longjmp_breakpoint ();
2107 ecs->handling_longjmp = 0; /* FIXME */
2108 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2109 break;
2110 /* else fallthrough */
2111
2112 case BPSTAT_WHAT_SINGLE:
2113 if (debug_infrun)
2114 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2115 if (breakpoints_inserted)
2116 remove_breakpoints ();
2117 breakpoints_inserted = 0;
2118 ecs->another_trap = 1;
2119 /* Still need to check other stuff, at least the case
2120 where we are stepping and step out of the right range. */
2121 break;
2122
2123 case BPSTAT_WHAT_STOP_NOISY:
2124 if (debug_infrun)
2125 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2126 stop_print_frame = 1;
2127
2128 /* We are about to nuke the step_resume_breakpointt via the
2129 cleanup chain, so no need to worry about it here. */
2130
2131 stop_stepping (ecs);
2132 return;
2133
2134 case BPSTAT_WHAT_STOP_SILENT:
2135 if (debug_infrun)
2136 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2137 stop_print_frame = 0;
2138
2139 /* We are about to nuke the step_resume_breakpoin via the
2140 cleanup chain, so no need to worry about it here. */
2141
2142 stop_stepping (ecs);
2143 return;
2144
2145 case BPSTAT_WHAT_STEP_RESUME:
2146 /* This proably demands a more elegant solution, but, yeah
2147 right...
2148
2149 This function's use of the simple variable
2150 step_resume_breakpoint doesn't seem to accomodate
2151 simultaneously active step-resume bp's, although the
2152 breakpoint list certainly can.
2153
2154 If we reach here and step_resume_breakpoint is already
2155 NULL, then apparently we have multiple active
2156 step-resume bp's. We'll just delete the breakpoint we
2157 stopped at, and carry on.
2158
2159 Correction: what the code currently does is delete a
2160 step-resume bp, but it makes no effort to ensure that
2161 the one deleted is the one currently stopped at. MVS */
2162
2163 if (debug_infrun)
2164 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2165
2166 if (step_resume_breakpoint == NULL)
2167 {
2168 step_resume_breakpoint =
2169 bpstat_find_step_resume_breakpoint (stop_bpstat);
2170 }
2171 delete_step_resume_breakpoint (&step_resume_breakpoint);
2172 if (ecs->step_after_step_resume_breakpoint)
2173 {
2174 /* Back when the step-resume breakpoint was inserted, we
2175 were trying to single-step off a breakpoint. Go back
2176 to doing that. */
2177 ecs->step_after_step_resume_breakpoint = 0;
2178 remove_breakpoints ();
2179 breakpoints_inserted = 0;
2180 ecs->another_trap = 1;
2181 keep_going (ecs);
2182 return;
2183 }
2184 break;
2185
2186 case BPSTAT_WHAT_CHECK_SHLIBS:
2187 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2188 {
2189 if (debug_infrun)
2190 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2191 /* Remove breakpoints, we eventually want to step over the
2192 shlib event breakpoint, and SOLIB_ADD might adjust
2193 breakpoint addresses via breakpoint_re_set. */
2194 if (breakpoints_inserted)
2195 remove_breakpoints ();
2196 breakpoints_inserted = 0;
2197
2198 /* Check for any newly added shared libraries if we're
2199 supposed to be adding them automatically. Switch
2200 terminal for any messages produced by
2201 breakpoint_re_set. */
2202 target_terminal_ours_for_output ();
2203 /* NOTE: cagney/2003-11-25: Make certain that the target
2204 stack's section table is kept up-to-date. Architectures,
2205 (e.g., PPC64), use the section table to perform
2206 operations such as address => section name and hence
2207 require the table to contain all sections (including
2208 those found in shared libraries). */
2209 /* NOTE: cagney/2003-11-25: Pass current_target and not
2210 exec_ops to SOLIB_ADD. This is because current GDB is
2211 only tooled to propagate section_table changes out from
2212 the "current_target" (see target_resize_to_sections), and
2213 not up from the exec stratum. This, of course, isn't
2214 right. "infrun.c" should only interact with the
2215 exec/process stratum, instead relying on the target stack
2216 to propagate relevant changes (stop, section table
2217 changed, ...) up to other layers. */
2218 #ifdef SOLIB_ADD
2219 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2220 #else
2221 solib_add (NULL, 0, &current_target, auto_solib_add);
2222 #endif
2223 target_terminal_inferior ();
2224
2225 /* Try to reenable shared library breakpoints, additional
2226 code segments in shared libraries might be mapped in now. */
2227 re_enable_breakpoints_in_shlibs ();
2228
2229 /* If requested, stop when the dynamic linker notifies
2230 gdb of events. This allows the user to get control
2231 and place breakpoints in initializer routines for
2232 dynamically loaded objects (among other things). */
2233 if (stop_on_solib_events || stop_stack_dummy)
2234 {
2235 stop_stepping (ecs);
2236 return;
2237 }
2238
2239 /* If we stopped due to an explicit catchpoint, then the
2240 (see above) call to SOLIB_ADD pulled in any symbols
2241 from a newly-loaded library, if appropriate.
2242
2243 We do want the inferior to stop, but not where it is
2244 now, which is in the dynamic linker callback. Rather,
2245 we would like it stop in the user's program, just after
2246 the call that caused this catchpoint to trigger. That
2247 gives the user a more useful vantage from which to
2248 examine their program's state. */
2249 else if (what.main_action
2250 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2251 {
2252 /* ??rehrauer: If I could figure out how to get the
2253 right return PC from here, we could just set a temp
2254 breakpoint and resume. I'm not sure we can without
2255 cracking open the dld's shared libraries and sniffing
2256 their unwind tables and text/data ranges, and that's
2257 not a terribly portable notion.
2258
2259 Until that time, we must step the inferior out of the
2260 dld callback, and also out of the dld itself (and any
2261 code or stubs in libdld.sl, such as "shl_load" and
2262 friends) until we reach non-dld code. At that point,
2263 we can stop stepping. */
2264 bpstat_get_triggered_catchpoints (stop_bpstat,
2265 &ecs->
2266 stepping_through_solib_catchpoints);
2267 ecs->stepping_through_solib_after_catch = 1;
2268
2269 /* Be sure to lift all breakpoints, so the inferior does
2270 actually step past this point... */
2271 ecs->another_trap = 1;
2272 break;
2273 }
2274 else
2275 {
2276 /* We want to step over this breakpoint, then keep going. */
2277 ecs->another_trap = 1;
2278 break;
2279 }
2280 }
2281 break;
2282
2283 case BPSTAT_WHAT_LAST:
2284 /* Not a real code, but listed here to shut up gcc -Wall. */
2285
2286 case BPSTAT_WHAT_KEEP_CHECKING:
2287 break;
2288 }
2289 }
2290
2291 /* We come here if we hit a breakpoint but should not
2292 stop for it. Possibly we also were stepping
2293 and should stop for that. So fall through and
2294 test for stepping. But, if not stepping,
2295 do not stop. */
2296
2297 /* Are we stepping to get the inferior out of the dynamic linker's
2298 hook (and possibly the dld itself) after catching a shlib
2299 event? */
2300 if (ecs->stepping_through_solib_after_catch)
2301 {
2302 #if defined(SOLIB_ADD)
2303 /* Have we reached our destination? If not, keep going. */
2304 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2305 {
2306 if (debug_infrun)
2307 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2308 ecs->another_trap = 1;
2309 keep_going (ecs);
2310 return;
2311 }
2312 #endif
2313 if (debug_infrun)
2314 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2315 /* Else, stop and report the catchpoint(s) whose triggering
2316 caused us to begin stepping. */
2317 ecs->stepping_through_solib_after_catch = 0;
2318 bpstat_clear (&stop_bpstat);
2319 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2320 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2321 stop_print_frame = 1;
2322 stop_stepping (ecs);
2323 return;
2324 }
2325
2326 if (step_resume_breakpoint)
2327 {
2328 if (debug_infrun)
2329 fprintf_unfiltered (gdb_stdlog,
2330 "infrun: step-resume breakpoint is inserted\n");
2331
2332 /* Having a step-resume breakpoint overrides anything
2333 else having to do with stepping commands until
2334 that breakpoint is reached. */
2335 keep_going (ecs);
2336 return;
2337 }
2338
2339 if (step_range_end == 0)
2340 {
2341 if (debug_infrun)
2342 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2343 /* Likewise if we aren't even stepping. */
2344 keep_going (ecs);
2345 return;
2346 }
2347
2348 /* If stepping through a line, keep going if still within it.
2349
2350 Note that step_range_end is the address of the first instruction
2351 beyond the step range, and NOT the address of the last instruction
2352 within it! */
2353 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2354 {
2355 if (debug_infrun)
2356 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2357 paddr_nz (step_range_start),
2358 paddr_nz (step_range_end));
2359 keep_going (ecs);
2360 return;
2361 }
2362
2363 /* We stepped out of the stepping range. */
2364
2365 /* If we are stepping at the source level and entered the runtime
2366 loader dynamic symbol resolution code, we keep on single stepping
2367 until we exit the run time loader code and reach the callee's
2368 address. */
2369 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2370 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2371 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2372 #else
2373 && in_solib_dynsym_resolve_code (stop_pc)
2374 #endif
2375 )
2376 {
2377 CORE_ADDR pc_after_resolver =
2378 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2379
2380 if (debug_infrun)
2381 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2382
2383 if (pc_after_resolver)
2384 {
2385 /* Set up a step-resume breakpoint at the address
2386 indicated by SKIP_SOLIB_RESOLVER. */
2387 struct symtab_and_line sr_sal;
2388 init_sal (&sr_sal);
2389 sr_sal.pc = pc_after_resolver;
2390
2391 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2392 }
2393
2394 keep_going (ecs);
2395 return;
2396 }
2397
2398 if (step_range_end != 1
2399 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2400 || step_over_calls == STEP_OVER_ALL)
2401 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2402 {
2403 if (debug_infrun)
2404 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2405 /* The inferior, while doing a "step" or "next", has ended up in
2406 a signal trampoline (either by a signal being delivered or by
2407 the signal handler returning). Just single-step until the
2408 inferior leaves the trampoline (either by calling the handler
2409 or returning). */
2410 keep_going (ecs);
2411 return;
2412 }
2413
2414 /* Check for subroutine calls. The check for the current frame
2415 equalling the step ID is not necessary - the check of the
2416 previous frame's ID is sufficient - but it is a common case and
2417 cheaper than checking the previous frame's ID.
2418
2419 NOTE: frame_id_eq will never report two invalid frame IDs as
2420 being equal, so to get into this block, both the current and
2421 previous frame must have valid frame IDs. */
2422 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2423 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2424 {
2425 CORE_ADDR real_stop_pc;
2426
2427 if (debug_infrun)
2428 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2429
2430 if ((step_over_calls == STEP_OVER_NONE)
2431 || ((step_range_end == 1)
2432 && in_prologue (prev_pc, ecs->stop_func_start)))
2433 {
2434 /* I presume that step_over_calls is only 0 when we're
2435 supposed to be stepping at the assembly language level
2436 ("stepi"). Just stop. */
2437 /* Also, maybe we just did a "nexti" inside a prolog, so we
2438 thought it was a subroutine call but it was not. Stop as
2439 well. FENN */
2440 stop_step = 1;
2441 print_stop_reason (END_STEPPING_RANGE, 0);
2442 stop_stepping (ecs);
2443 return;
2444 }
2445
2446 if (step_over_calls == STEP_OVER_ALL)
2447 {
2448 /* We're doing a "next", set a breakpoint at callee's return
2449 address (the address at which the caller will
2450 resume). */
2451 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2452 keep_going (ecs);
2453 return;
2454 }
2455
2456 /* If we are in a function call trampoline (a stub between the
2457 calling routine and the real function), locate the real
2458 function. That's what tells us (a) whether we want to step
2459 into it at all, and (b) what prologue we want to run to the
2460 end of, if we do step into it. */
2461 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2462 if (real_stop_pc == 0)
2463 real_stop_pc = gdbarch_skip_trampoline_code
2464 (current_gdbarch, get_current_frame (), stop_pc);
2465 if (real_stop_pc != 0)
2466 ecs->stop_func_start = real_stop_pc;
2467
2468 if (
2469 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2470 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2471 #else
2472 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2473 #endif
2474 )
2475 {
2476 struct symtab_and_line sr_sal;
2477 init_sal (&sr_sal);
2478 sr_sal.pc = ecs->stop_func_start;
2479
2480 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2481 keep_going (ecs);
2482 return;
2483 }
2484
2485 /* If we have line number information for the function we are
2486 thinking of stepping into, step into it.
2487
2488 If there are several symtabs at that PC (e.g. with include
2489 files), just want to know whether *any* of them have line
2490 numbers. find_pc_line handles this. */
2491 {
2492 struct symtab_and_line tmp_sal;
2493
2494 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2495 if (tmp_sal.line != 0)
2496 {
2497 step_into_function (ecs);
2498 return;
2499 }
2500 }
2501
2502 /* If we have no line number and the step-stop-if-no-debug is
2503 set, we stop the step so that the user has a chance to switch
2504 in assembly mode. */
2505 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2506 {
2507 stop_step = 1;
2508 print_stop_reason (END_STEPPING_RANGE, 0);
2509 stop_stepping (ecs);
2510 return;
2511 }
2512
2513 /* Set a breakpoint at callee's return address (the address at
2514 which the caller will resume). */
2515 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2516 keep_going (ecs);
2517 return;
2518 }
2519
2520 /* If we're in the return path from a shared library trampoline,
2521 we want to proceed through the trampoline when stepping. */
2522 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2523 stop_pc, ecs->stop_func_name))
2524 {
2525 /* Determine where this trampoline returns. */
2526 CORE_ADDR real_stop_pc;
2527 real_stop_pc = gdbarch_skip_trampoline_code
2528 (current_gdbarch, get_current_frame (), stop_pc);
2529
2530 if (debug_infrun)
2531 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2532
2533 /* Only proceed through if we know where it's going. */
2534 if (real_stop_pc)
2535 {
2536 /* And put the step-breakpoint there and go until there. */
2537 struct symtab_and_line sr_sal;
2538
2539 init_sal (&sr_sal); /* initialize to zeroes */
2540 sr_sal.pc = real_stop_pc;
2541 sr_sal.section = find_pc_overlay (sr_sal.pc);
2542
2543 /* Do not specify what the fp should be when we stop since
2544 on some machines the prologue is where the new fp value
2545 is established. */
2546 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2547
2548 /* Restart without fiddling with the step ranges or
2549 other state. */
2550 keep_going (ecs);
2551 return;
2552 }
2553 }
2554
2555 ecs->sal = find_pc_line (stop_pc, 0);
2556
2557 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2558 the trampoline processing logic, however, there are some trampolines
2559 that have no names, so we should do trampoline handling first. */
2560 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2561 && ecs->stop_func_name == NULL
2562 && ecs->sal.line == 0)
2563 {
2564 if (debug_infrun)
2565 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2566
2567 /* The inferior just stepped into, or returned to, an
2568 undebuggable function (where there is no debugging information
2569 and no line number corresponding to the address where the
2570 inferior stopped). Since we want to skip this kind of code,
2571 we keep going until the inferior returns from this
2572 function - unless the user has asked us not to (via
2573 set step-mode) or we no longer know how to get back
2574 to the call site. */
2575 if (step_stop_if_no_debug
2576 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2577 {
2578 /* If we have no line number and the step-stop-if-no-debug
2579 is set, we stop the step so that the user has a chance to
2580 switch in assembly mode. */
2581 stop_step = 1;
2582 print_stop_reason (END_STEPPING_RANGE, 0);
2583 stop_stepping (ecs);
2584 return;
2585 }
2586 else
2587 {
2588 /* Set a breakpoint at callee's return address (the address
2589 at which the caller will resume). */
2590 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2591 keep_going (ecs);
2592 return;
2593 }
2594 }
2595
2596 if (step_range_end == 1)
2597 {
2598 /* It is stepi or nexti. We always want to stop stepping after
2599 one instruction. */
2600 if (debug_infrun)
2601 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2602 stop_step = 1;
2603 print_stop_reason (END_STEPPING_RANGE, 0);
2604 stop_stepping (ecs);
2605 return;
2606 }
2607
2608 if (ecs->sal.line == 0)
2609 {
2610 /* We have no line number information. That means to stop
2611 stepping (does this always happen right after one instruction,
2612 when we do "s" in a function with no line numbers,
2613 or can this happen as a result of a return or longjmp?). */
2614 if (debug_infrun)
2615 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2616 stop_step = 1;
2617 print_stop_reason (END_STEPPING_RANGE, 0);
2618 stop_stepping (ecs);
2619 return;
2620 }
2621
2622 if ((stop_pc == ecs->sal.pc)
2623 && (ecs->current_line != ecs->sal.line
2624 || ecs->current_symtab != ecs->sal.symtab))
2625 {
2626 /* We are at the start of a different line. So stop. Note that
2627 we don't stop if we step into the middle of a different line.
2628 That is said to make things like for (;;) statements work
2629 better. */
2630 if (debug_infrun)
2631 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2632 stop_step = 1;
2633 print_stop_reason (END_STEPPING_RANGE, 0);
2634 stop_stepping (ecs);
2635 return;
2636 }
2637
2638 /* We aren't done stepping.
2639
2640 Optimize by setting the stepping range to the line.
2641 (We might not be in the original line, but if we entered a
2642 new line in mid-statement, we continue stepping. This makes
2643 things like for(;;) statements work better.) */
2644
2645 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2646 {
2647 /* If this is the last line of the function, don't keep stepping
2648 (it would probably step us out of the function).
2649 This is particularly necessary for a one-line function,
2650 in which after skipping the prologue we better stop even though
2651 we will be in mid-line. */
2652 if (debug_infrun)
2653 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2654 stop_step = 1;
2655 print_stop_reason (END_STEPPING_RANGE, 0);
2656 stop_stepping (ecs);
2657 return;
2658 }
2659 step_range_start = ecs->sal.pc;
2660 step_range_end = ecs->sal.end;
2661 step_frame_id = get_frame_id (get_current_frame ());
2662 ecs->current_line = ecs->sal.line;
2663 ecs->current_symtab = ecs->sal.symtab;
2664
2665 /* In the case where we just stepped out of a function into the
2666 middle of a line of the caller, continue stepping, but
2667 step_frame_id must be modified to current frame */
2668 #if 0
2669 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2670 generous. It will trigger on things like a step into a frameless
2671 stackless leaf function. I think the logic should instead look
2672 at the unwound frame ID has that should give a more robust
2673 indication of what happened. */
2674 if (step - ID == current - ID)
2675 still stepping in same function;
2676 else if (step - ID == unwind (current - ID))
2677 stepped into a function;
2678 else
2679 stepped out of a function;
2680 /* Of course this assumes that the frame ID unwind code is robust
2681 and we're willing to introduce frame unwind logic into this
2682 function. Fortunately, those days are nearly upon us. */
2683 #endif
2684 {
2685 struct frame_id current_frame = get_frame_id (get_current_frame ());
2686 if (!(frame_id_inner (current_frame, step_frame_id)))
2687 step_frame_id = current_frame;
2688 }
2689
2690 if (debug_infrun)
2691 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2692 keep_going (ecs);
2693 }
2694
2695 /* Are we in the middle of stepping? */
2696
2697 static int
2698 currently_stepping (struct execution_control_state *ecs)
2699 {
2700 return ((!ecs->handling_longjmp
2701 && ((step_range_end && step_resume_breakpoint == NULL)
2702 || trap_expected))
2703 || ecs->stepping_through_solib_after_catch
2704 || bpstat_should_step ());
2705 }
2706
2707 /* Subroutine call with source code we should not step over. Do step
2708 to the first line of code in it. */
2709
2710 static void
2711 step_into_function (struct execution_control_state *ecs)
2712 {
2713 struct symtab *s;
2714 struct symtab_and_line sr_sal;
2715
2716 s = find_pc_symtab (stop_pc);
2717 if (s && s->language != language_asm)
2718 ecs->stop_func_start = gdbarch_skip_prologue
2719 (current_gdbarch, ecs->stop_func_start);
2720
2721 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2722 /* Use the step_resume_break to step until the end of the prologue,
2723 even if that involves jumps (as it seems to on the vax under
2724 4.2). */
2725 /* If the prologue ends in the middle of a source line, continue to
2726 the end of that source line (if it is still within the function).
2727 Otherwise, just go to end of prologue. */
2728 if (ecs->sal.end
2729 && ecs->sal.pc != ecs->stop_func_start
2730 && ecs->sal.end < ecs->stop_func_end)
2731 ecs->stop_func_start = ecs->sal.end;
2732
2733 /* Architectures which require breakpoint adjustment might not be able
2734 to place a breakpoint at the computed address. If so, the test
2735 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2736 ecs->stop_func_start to an address at which a breakpoint may be
2737 legitimately placed.
2738
2739 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2740 made, GDB will enter an infinite loop when stepping through
2741 optimized code consisting of VLIW instructions which contain
2742 subinstructions corresponding to different source lines. On
2743 FR-V, it's not permitted to place a breakpoint on any but the
2744 first subinstruction of a VLIW instruction. When a breakpoint is
2745 set, GDB will adjust the breakpoint address to the beginning of
2746 the VLIW instruction. Thus, we need to make the corresponding
2747 adjustment here when computing the stop address. */
2748
2749 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2750 {
2751 ecs->stop_func_start
2752 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2753 ecs->stop_func_start);
2754 }
2755
2756 if (ecs->stop_func_start == stop_pc)
2757 {
2758 /* We are already there: stop now. */
2759 stop_step = 1;
2760 print_stop_reason (END_STEPPING_RANGE, 0);
2761 stop_stepping (ecs);
2762 return;
2763 }
2764 else
2765 {
2766 /* Put the step-breakpoint there and go until there. */
2767 init_sal (&sr_sal); /* initialize to zeroes */
2768 sr_sal.pc = ecs->stop_func_start;
2769 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2770
2771 /* Do not specify what the fp should be when we stop since on
2772 some machines the prologue is where the new fp value is
2773 established. */
2774 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2775
2776 /* And make sure stepping stops right away then. */
2777 step_range_end = step_range_start;
2778 }
2779 keep_going (ecs);
2780 }
2781
2782 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2783 This is used to both functions and to skip over code. */
2784
2785 static void
2786 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2787 struct frame_id sr_id)
2788 {
2789 /* There should never be more than one step-resume breakpoint per
2790 thread, so we should never be setting a new
2791 step_resume_breakpoint when one is already active. */
2792 gdb_assert (step_resume_breakpoint == NULL);
2793
2794 if (debug_infrun)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "infrun: inserting step-resume breakpoint at 0x%s\n",
2797 paddr_nz (sr_sal.pc));
2798
2799 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2800 bp_step_resume);
2801 if (breakpoints_inserted)
2802 insert_breakpoints ();
2803 }
2804
2805 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2806 to skip a potential signal handler.
2807
2808 This is called with the interrupted function's frame. The signal
2809 handler, when it returns, will resume the interrupted function at
2810 RETURN_FRAME.pc. */
2811
2812 static void
2813 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2814 {
2815 struct symtab_and_line sr_sal;
2816
2817 init_sal (&sr_sal); /* initialize to zeros */
2818
2819 sr_sal.pc = gdbarch_addr_bits_remove
2820 (current_gdbarch, get_frame_pc (return_frame));
2821 sr_sal.section = find_pc_overlay (sr_sal.pc);
2822
2823 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2824 }
2825
2826 /* Similar to insert_step_resume_breakpoint_at_frame, except
2827 but a breakpoint at the previous frame's PC. This is used to
2828 skip a function after stepping into it (for "next" or if the called
2829 function has no debugging information).
2830
2831 The current function has almost always been reached by single
2832 stepping a call or return instruction. NEXT_FRAME belongs to the
2833 current function, and the breakpoint will be set at the caller's
2834 resume address.
2835
2836 This is a separate function rather than reusing
2837 insert_step_resume_breakpoint_at_frame in order to avoid
2838 get_prev_frame, which may stop prematurely (see the implementation
2839 of frame_unwind_id for an example). */
2840
2841 static void
2842 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2843 {
2844 struct symtab_and_line sr_sal;
2845
2846 /* We shouldn't have gotten here if we don't know where the call site
2847 is. */
2848 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2849
2850 init_sal (&sr_sal); /* initialize to zeros */
2851
2852 sr_sal.pc = gdbarch_addr_bits_remove
2853 (current_gdbarch, frame_pc_unwind (next_frame));
2854 sr_sal.section = find_pc_overlay (sr_sal.pc);
2855
2856 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2857 }
2858
2859 static void
2860 stop_stepping (struct execution_control_state *ecs)
2861 {
2862 if (debug_infrun)
2863 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2864
2865 /* Let callers know we don't want to wait for the inferior anymore. */
2866 ecs->wait_some_more = 0;
2867 }
2868
2869 /* This function handles various cases where we need to continue
2870 waiting for the inferior. */
2871 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2872
2873 static void
2874 keep_going (struct execution_control_state *ecs)
2875 {
2876 /* Save the pc before execution, to compare with pc after stop. */
2877 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2878
2879 /* If we did not do break;, it means we should keep running the
2880 inferior and not return to debugger. */
2881
2882 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2883 {
2884 /* We took a signal (which we are supposed to pass through to
2885 the inferior, else we'd have done a break above) and we
2886 haven't yet gotten our trap. Simply continue. */
2887 resume (currently_stepping (ecs), stop_signal);
2888 }
2889 else
2890 {
2891 /* Either the trap was not expected, but we are continuing
2892 anyway (the user asked that this signal be passed to the
2893 child)
2894 -- or --
2895 The signal was SIGTRAP, e.g. it was our signal, but we
2896 decided we should resume from it.
2897
2898 We're going to run this baby now! */
2899
2900 if (!breakpoints_inserted && !ecs->another_trap)
2901 {
2902 /* Stop stepping when inserting breakpoints
2903 has failed. */
2904 if (insert_breakpoints () != 0)
2905 {
2906 stop_stepping (ecs);
2907 return;
2908 }
2909 breakpoints_inserted = 1;
2910 }
2911
2912 trap_expected = ecs->another_trap;
2913
2914 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2915 specifies that such a signal should be delivered to the
2916 target program).
2917
2918 Typically, this would occure when a user is debugging a
2919 target monitor on a simulator: the target monitor sets a
2920 breakpoint; the simulator encounters this break-point and
2921 halts the simulation handing control to GDB; GDB, noteing
2922 that the break-point isn't valid, returns control back to the
2923 simulator; the simulator then delivers the hardware
2924 equivalent of a SIGNAL_TRAP to the program being debugged. */
2925
2926 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2927 stop_signal = TARGET_SIGNAL_0;
2928
2929
2930 resume (currently_stepping (ecs), stop_signal);
2931 }
2932
2933 prepare_to_wait (ecs);
2934 }
2935
2936 /* This function normally comes after a resume, before
2937 handle_inferior_event exits. It takes care of any last bits of
2938 housekeeping, and sets the all-important wait_some_more flag. */
2939
2940 static void
2941 prepare_to_wait (struct execution_control_state *ecs)
2942 {
2943 if (debug_infrun)
2944 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2945 if (ecs->infwait_state == infwait_normal_state)
2946 {
2947 overlay_cache_invalid = 1;
2948
2949 /* We have to invalidate the registers BEFORE calling
2950 target_wait because they can be loaded from the target while
2951 in target_wait. This makes remote debugging a bit more
2952 efficient for those targets that provide critical registers
2953 as part of their normal status mechanism. */
2954
2955 registers_changed ();
2956 ecs->waiton_ptid = pid_to_ptid (-1);
2957 ecs->wp = &(ecs->ws);
2958 }
2959 /* This is the old end of the while loop. Let everybody know we
2960 want to wait for the inferior some more and get called again
2961 soon. */
2962 ecs->wait_some_more = 1;
2963 }
2964
2965 /* Print why the inferior has stopped. We always print something when
2966 the inferior exits, or receives a signal. The rest of the cases are
2967 dealt with later on in normal_stop() and print_it_typical(). Ideally
2968 there should be a call to this function from handle_inferior_event()
2969 each time stop_stepping() is called.*/
2970 static void
2971 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2972 {
2973 switch (stop_reason)
2974 {
2975 case END_STEPPING_RANGE:
2976 /* We are done with a step/next/si/ni command. */
2977 /* For now print nothing. */
2978 /* Print a message only if not in the middle of doing a "step n"
2979 operation for n > 1 */
2980 if (!step_multi || !stop_step)
2981 if (ui_out_is_mi_like_p (uiout))
2982 ui_out_field_string
2983 (uiout, "reason",
2984 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2985 break;
2986 case SIGNAL_EXITED:
2987 /* The inferior was terminated by a signal. */
2988 annotate_signalled ();
2989 if (ui_out_is_mi_like_p (uiout))
2990 ui_out_field_string
2991 (uiout, "reason",
2992 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2993 ui_out_text (uiout, "\nProgram terminated with signal ");
2994 annotate_signal_name ();
2995 ui_out_field_string (uiout, "signal-name",
2996 target_signal_to_name (stop_info));
2997 annotate_signal_name_end ();
2998 ui_out_text (uiout, ", ");
2999 annotate_signal_string ();
3000 ui_out_field_string (uiout, "signal-meaning",
3001 target_signal_to_string (stop_info));
3002 annotate_signal_string_end ();
3003 ui_out_text (uiout, ".\n");
3004 ui_out_text (uiout, "The program no longer exists.\n");
3005 break;
3006 case EXITED:
3007 /* The inferior program is finished. */
3008 annotate_exited (stop_info);
3009 if (stop_info)
3010 {
3011 if (ui_out_is_mi_like_p (uiout))
3012 ui_out_field_string (uiout, "reason",
3013 async_reason_lookup (EXEC_ASYNC_EXITED));
3014 ui_out_text (uiout, "\nProgram exited with code ");
3015 ui_out_field_fmt (uiout, "exit-code", "0%o",
3016 (unsigned int) stop_info);
3017 ui_out_text (uiout, ".\n");
3018 }
3019 else
3020 {
3021 if (ui_out_is_mi_like_p (uiout))
3022 ui_out_field_string
3023 (uiout, "reason",
3024 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3025 ui_out_text (uiout, "\nProgram exited normally.\n");
3026 }
3027 /* Support the --return-child-result option. */
3028 return_child_result_value = stop_info;
3029 break;
3030 case SIGNAL_RECEIVED:
3031 /* Signal received. The signal table tells us to print about
3032 it. */
3033 annotate_signal ();
3034 ui_out_text (uiout, "\nProgram received signal ");
3035 annotate_signal_name ();
3036 if (ui_out_is_mi_like_p (uiout))
3037 ui_out_field_string
3038 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3039 ui_out_field_string (uiout, "signal-name",
3040 target_signal_to_name (stop_info));
3041 annotate_signal_name_end ();
3042 ui_out_text (uiout, ", ");
3043 annotate_signal_string ();
3044 ui_out_field_string (uiout, "signal-meaning",
3045 target_signal_to_string (stop_info));
3046 annotate_signal_string_end ();
3047 ui_out_text (uiout, ".\n");
3048 break;
3049 default:
3050 internal_error (__FILE__, __LINE__,
3051 _("print_stop_reason: unrecognized enum value"));
3052 break;
3053 }
3054 }
3055 \f
3056
3057 /* Here to return control to GDB when the inferior stops for real.
3058 Print appropriate messages, remove breakpoints, give terminal our modes.
3059
3060 STOP_PRINT_FRAME nonzero means print the executing frame
3061 (pc, function, args, file, line number and line text).
3062 BREAKPOINTS_FAILED nonzero means stop was due to error
3063 attempting to insert breakpoints. */
3064
3065 void
3066 normal_stop (void)
3067 {
3068 struct target_waitstatus last;
3069 ptid_t last_ptid;
3070
3071 get_last_target_status (&last_ptid, &last);
3072
3073 /* As with the notification of thread events, we want to delay
3074 notifying the user that we've switched thread context until
3075 the inferior actually stops.
3076
3077 There's no point in saying anything if the inferior has exited.
3078 Note that SIGNALLED here means "exited with a signal", not
3079 "received a signal". */
3080 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3081 && target_has_execution
3082 && last.kind != TARGET_WAITKIND_SIGNALLED
3083 && last.kind != TARGET_WAITKIND_EXITED)
3084 {
3085 target_terminal_ours_for_output ();
3086 printf_filtered (_("[Switching to %s]\n"),
3087 target_pid_or_tid_to_str (inferior_ptid));
3088 previous_inferior_ptid = inferior_ptid;
3089 }
3090
3091 /* NOTE drow/2004-01-17: Is this still necessary? */
3092 /* Make sure that the current_frame's pc is correct. This
3093 is a correction for setting up the frame info before doing
3094 gdbarch_decr_pc_after_break */
3095 if (target_has_execution)
3096 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3097 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3098 frame code to check for this and sort out any resultant mess.
3099 gdbarch_decr_pc_after_break needs to just go away. */
3100 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3101
3102 if (target_has_execution && breakpoints_inserted)
3103 {
3104 if (remove_breakpoints ())
3105 {
3106 target_terminal_ours_for_output ();
3107 printf_filtered (_("\
3108 Cannot remove breakpoints because program is no longer writable.\n\
3109 It might be running in another process.\n\
3110 Further execution is probably impossible.\n"));
3111 }
3112 }
3113 breakpoints_inserted = 0;
3114
3115 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3116 Delete any breakpoint that is to be deleted at the next stop. */
3117
3118 breakpoint_auto_delete (stop_bpstat);
3119
3120 /* If an auto-display called a function and that got a signal,
3121 delete that auto-display to avoid an infinite recursion. */
3122
3123 if (stopped_by_random_signal)
3124 disable_current_display ();
3125
3126 /* Don't print a message if in the middle of doing a "step n"
3127 operation for n > 1 */
3128 if (step_multi && stop_step)
3129 goto done;
3130
3131 target_terminal_ours ();
3132
3133 /* Set the current source location. This will also happen if we
3134 display the frame below, but the current SAL will be incorrect
3135 during a user hook-stop function. */
3136 if (target_has_stack && !stop_stack_dummy)
3137 set_current_sal_from_frame (get_current_frame (), 1);
3138
3139 /* Look up the hook_stop and run it (CLI internally handles problem
3140 of stop_command's pre-hook not existing). */
3141 if (stop_command)
3142 catch_errors (hook_stop_stub, stop_command,
3143 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3144
3145 if (!target_has_stack)
3146 {
3147
3148 goto done;
3149 }
3150
3151 /* Select innermost stack frame - i.e., current frame is frame 0,
3152 and current location is based on that.
3153 Don't do this on return from a stack dummy routine,
3154 or if the program has exited. */
3155
3156 if (!stop_stack_dummy)
3157 {
3158 select_frame (get_current_frame ());
3159
3160 /* Print current location without a level number, if
3161 we have changed functions or hit a breakpoint.
3162 Print source line if we have one.
3163 bpstat_print() contains the logic deciding in detail
3164 what to print, based on the event(s) that just occurred. */
3165
3166 if (stop_print_frame)
3167 {
3168 int bpstat_ret;
3169 int source_flag;
3170 int do_frame_printing = 1;
3171
3172 bpstat_ret = bpstat_print (stop_bpstat);
3173 switch (bpstat_ret)
3174 {
3175 case PRINT_UNKNOWN:
3176 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3177 (or should) carry around the function and does (or
3178 should) use that when doing a frame comparison. */
3179 if (stop_step
3180 && frame_id_eq (step_frame_id,
3181 get_frame_id (get_current_frame ()))
3182 && step_start_function == find_pc_function (stop_pc))
3183 source_flag = SRC_LINE; /* finished step, just print source line */
3184 else
3185 source_flag = SRC_AND_LOC; /* print location and source line */
3186 break;
3187 case PRINT_SRC_AND_LOC:
3188 source_flag = SRC_AND_LOC; /* print location and source line */
3189 break;
3190 case PRINT_SRC_ONLY:
3191 source_flag = SRC_LINE;
3192 break;
3193 case PRINT_NOTHING:
3194 source_flag = SRC_LINE; /* something bogus */
3195 do_frame_printing = 0;
3196 break;
3197 default:
3198 internal_error (__FILE__, __LINE__, _("Unknown value."));
3199 }
3200
3201 if (ui_out_is_mi_like_p (uiout))
3202 ui_out_field_int (uiout, "thread-id",
3203 pid_to_thread_id (inferior_ptid));
3204 /* The behavior of this routine with respect to the source
3205 flag is:
3206 SRC_LINE: Print only source line
3207 LOCATION: Print only location
3208 SRC_AND_LOC: Print location and source line */
3209 if (do_frame_printing)
3210 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3211
3212 /* Display the auto-display expressions. */
3213 do_displays ();
3214 }
3215 }
3216
3217 /* Save the function value return registers, if we care.
3218 We might be about to restore their previous contents. */
3219 if (proceed_to_finish)
3220 /* NB: The copy goes through to the target picking up the value of
3221 all the registers. */
3222 regcache_cpy (stop_registers, get_current_regcache ());
3223
3224 if (stop_stack_dummy)
3225 {
3226 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3227 ends with a setting of the current frame, so we can use that
3228 next. */
3229 frame_pop (get_current_frame ());
3230 /* Set stop_pc to what it was before we called the function.
3231 Can't rely on restore_inferior_status because that only gets
3232 called if we don't stop in the called function. */
3233 stop_pc = read_pc ();
3234 select_frame (get_current_frame ());
3235 }
3236
3237 done:
3238 annotate_stopped ();
3239 observer_notify_normal_stop (stop_bpstat);
3240 }
3241
3242 static int
3243 hook_stop_stub (void *cmd)
3244 {
3245 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3246 return (0);
3247 }
3248 \f
3249 int
3250 signal_stop_state (int signo)
3251 {
3252 return signal_stop[signo];
3253 }
3254
3255 int
3256 signal_print_state (int signo)
3257 {
3258 return signal_print[signo];
3259 }
3260
3261 int
3262 signal_pass_state (int signo)
3263 {
3264 return signal_program[signo];
3265 }
3266
3267 int
3268 signal_stop_update (int signo, int state)
3269 {
3270 int ret = signal_stop[signo];
3271 signal_stop[signo] = state;
3272 return ret;
3273 }
3274
3275 int
3276 signal_print_update (int signo, int state)
3277 {
3278 int ret = signal_print[signo];
3279 signal_print[signo] = state;
3280 return ret;
3281 }
3282
3283 int
3284 signal_pass_update (int signo, int state)
3285 {
3286 int ret = signal_program[signo];
3287 signal_program[signo] = state;
3288 return ret;
3289 }
3290
3291 static void
3292 sig_print_header (void)
3293 {
3294 printf_filtered (_("\
3295 Signal Stop\tPrint\tPass to program\tDescription\n"));
3296 }
3297
3298 static void
3299 sig_print_info (enum target_signal oursig)
3300 {
3301 char *name = target_signal_to_name (oursig);
3302 int name_padding = 13 - strlen (name);
3303
3304 if (name_padding <= 0)
3305 name_padding = 0;
3306
3307 printf_filtered ("%s", name);
3308 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3309 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3310 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3311 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3312 printf_filtered ("%s\n", target_signal_to_string (oursig));
3313 }
3314
3315 /* Specify how various signals in the inferior should be handled. */
3316
3317 static void
3318 handle_command (char *args, int from_tty)
3319 {
3320 char **argv;
3321 int digits, wordlen;
3322 int sigfirst, signum, siglast;
3323 enum target_signal oursig;
3324 int allsigs;
3325 int nsigs;
3326 unsigned char *sigs;
3327 struct cleanup *old_chain;
3328
3329 if (args == NULL)
3330 {
3331 error_no_arg (_("signal to handle"));
3332 }
3333
3334 /* Allocate and zero an array of flags for which signals to handle. */
3335
3336 nsigs = (int) TARGET_SIGNAL_LAST;
3337 sigs = (unsigned char *) alloca (nsigs);
3338 memset (sigs, 0, nsigs);
3339
3340 /* Break the command line up into args. */
3341
3342 argv = buildargv (args);
3343 if (argv == NULL)
3344 {
3345 nomem (0);
3346 }
3347 old_chain = make_cleanup_freeargv (argv);
3348
3349 /* Walk through the args, looking for signal oursigs, signal names, and
3350 actions. Signal numbers and signal names may be interspersed with
3351 actions, with the actions being performed for all signals cumulatively
3352 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3353
3354 while (*argv != NULL)
3355 {
3356 wordlen = strlen (*argv);
3357 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3358 {;
3359 }
3360 allsigs = 0;
3361 sigfirst = siglast = -1;
3362
3363 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3364 {
3365 /* Apply action to all signals except those used by the
3366 debugger. Silently skip those. */
3367 allsigs = 1;
3368 sigfirst = 0;
3369 siglast = nsigs - 1;
3370 }
3371 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3372 {
3373 SET_SIGS (nsigs, sigs, signal_stop);
3374 SET_SIGS (nsigs, sigs, signal_print);
3375 }
3376 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3377 {
3378 UNSET_SIGS (nsigs, sigs, signal_program);
3379 }
3380 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3381 {
3382 SET_SIGS (nsigs, sigs, signal_print);
3383 }
3384 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3385 {
3386 SET_SIGS (nsigs, sigs, signal_program);
3387 }
3388 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3389 {
3390 UNSET_SIGS (nsigs, sigs, signal_stop);
3391 }
3392 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3393 {
3394 SET_SIGS (nsigs, sigs, signal_program);
3395 }
3396 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3397 {
3398 UNSET_SIGS (nsigs, sigs, signal_print);
3399 UNSET_SIGS (nsigs, sigs, signal_stop);
3400 }
3401 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3402 {
3403 UNSET_SIGS (nsigs, sigs, signal_program);
3404 }
3405 else if (digits > 0)
3406 {
3407 /* It is numeric. The numeric signal refers to our own
3408 internal signal numbering from target.h, not to host/target
3409 signal number. This is a feature; users really should be
3410 using symbolic names anyway, and the common ones like
3411 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3412
3413 sigfirst = siglast = (int)
3414 target_signal_from_command (atoi (*argv));
3415 if ((*argv)[digits] == '-')
3416 {
3417 siglast = (int)
3418 target_signal_from_command (atoi ((*argv) + digits + 1));
3419 }
3420 if (sigfirst > siglast)
3421 {
3422 /* Bet he didn't figure we'd think of this case... */
3423 signum = sigfirst;
3424 sigfirst = siglast;
3425 siglast = signum;
3426 }
3427 }
3428 else
3429 {
3430 oursig = target_signal_from_name (*argv);
3431 if (oursig != TARGET_SIGNAL_UNKNOWN)
3432 {
3433 sigfirst = siglast = (int) oursig;
3434 }
3435 else
3436 {
3437 /* Not a number and not a recognized flag word => complain. */
3438 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3439 }
3440 }
3441
3442 /* If any signal numbers or symbol names were found, set flags for
3443 which signals to apply actions to. */
3444
3445 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3446 {
3447 switch ((enum target_signal) signum)
3448 {
3449 case TARGET_SIGNAL_TRAP:
3450 case TARGET_SIGNAL_INT:
3451 if (!allsigs && !sigs[signum])
3452 {
3453 if (query ("%s is used by the debugger.\n\
3454 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3455 {
3456 sigs[signum] = 1;
3457 }
3458 else
3459 {
3460 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3461 gdb_flush (gdb_stdout);
3462 }
3463 }
3464 break;
3465 case TARGET_SIGNAL_0:
3466 case TARGET_SIGNAL_DEFAULT:
3467 case TARGET_SIGNAL_UNKNOWN:
3468 /* Make sure that "all" doesn't print these. */
3469 break;
3470 default:
3471 sigs[signum] = 1;
3472 break;
3473 }
3474 }
3475
3476 argv++;
3477 }
3478
3479 target_notice_signals (inferior_ptid);
3480
3481 if (from_tty)
3482 {
3483 /* Show the results. */
3484 sig_print_header ();
3485 for (signum = 0; signum < nsigs; signum++)
3486 {
3487 if (sigs[signum])
3488 {
3489 sig_print_info (signum);
3490 }
3491 }
3492 }
3493
3494 do_cleanups (old_chain);
3495 }
3496
3497 static void
3498 xdb_handle_command (char *args, int from_tty)
3499 {
3500 char **argv;
3501 struct cleanup *old_chain;
3502
3503 /* Break the command line up into args. */
3504
3505 argv = buildargv (args);
3506 if (argv == NULL)
3507 {
3508 nomem (0);
3509 }
3510 old_chain = make_cleanup_freeargv (argv);
3511 if (argv[1] != (char *) NULL)
3512 {
3513 char *argBuf;
3514 int bufLen;
3515
3516 bufLen = strlen (argv[0]) + 20;
3517 argBuf = (char *) xmalloc (bufLen);
3518 if (argBuf)
3519 {
3520 int validFlag = 1;
3521 enum target_signal oursig;
3522
3523 oursig = target_signal_from_name (argv[0]);
3524 memset (argBuf, 0, bufLen);
3525 if (strcmp (argv[1], "Q") == 0)
3526 sprintf (argBuf, "%s %s", argv[0], "noprint");
3527 else
3528 {
3529 if (strcmp (argv[1], "s") == 0)
3530 {
3531 if (!signal_stop[oursig])
3532 sprintf (argBuf, "%s %s", argv[0], "stop");
3533 else
3534 sprintf (argBuf, "%s %s", argv[0], "nostop");
3535 }
3536 else if (strcmp (argv[1], "i") == 0)
3537 {
3538 if (!signal_program[oursig])
3539 sprintf (argBuf, "%s %s", argv[0], "pass");
3540 else
3541 sprintf (argBuf, "%s %s", argv[0], "nopass");
3542 }
3543 else if (strcmp (argv[1], "r") == 0)
3544 {
3545 if (!signal_print[oursig])
3546 sprintf (argBuf, "%s %s", argv[0], "print");
3547 else
3548 sprintf (argBuf, "%s %s", argv[0], "noprint");
3549 }
3550 else
3551 validFlag = 0;
3552 }
3553 if (validFlag)
3554 handle_command (argBuf, from_tty);
3555 else
3556 printf_filtered (_("Invalid signal handling flag.\n"));
3557 if (argBuf)
3558 xfree (argBuf);
3559 }
3560 }
3561 do_cleanups (old_chain);
3562 }
3563
3564 /* Print current contents of the tables set by the handle command.
3565 It is possible we should just be printing signals actually used
3566 by the current target (but for things to work right when switching
3567 targets, all signals should be in the signal tables). */
3568
3569 static void
3570 signals_info (char *signum_exp, int from_tty)
3571 {
3572 enum target_signal oursig;
3573 sig_print_header ();
3574
3575 if (signum_exp)
3576 {
3577 /* First see if this is a symbol name. */
3578 oursig = target_signal_from_name (signum_exp);
3579 if (oursig == TARGET_SIGNAL_UNKNOWN)
3580 {
3581 /* No, try numeric. */
3582 oursig =
3583 target_signal_from_command (parse_and_eval_long (signum_exp));
3584 }
3585 sig_print_info (oursig);
3586 return;
3587 }
3588
3589 printf_filtered ("\n");
3590 /* These ugly casts brought to you by the native VAX compiler. */
3591 for (oursig = TARGET_SIGNAL_FIRST;
3592 (int) oursig < (int) TARGET_SIGNAL_LAST;
3593 oursig = (enum target_signal) ((int) oursig + 1))
3594 {
3595 QUIT;
3596
3597 if (oursig != TARGET_SIGNAL_UNKNOWN
3598 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3599 sig_print_info (oursig);
3600 }
3601
3602 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3603 }
3604 \f
3605 struct inferior_status
3606 {
3607 enum target_signal stop_signal;
3608 CORE_ADDR stop_pc;
3609 bpstat stop_bpstat;
3610 int stop_step;
3611 int stop_stack_dummy;
3612 int stopped_by_random_signal;
3613 int trap_expected;
3614 CORE_ADDR step_range_start;
3615 CORE_ADDR step_range_end;
3616 struct frame_id step_frame_id;
3617 enum step_over_calls_kind step_over_calls;
3618 CORE_ADDR step_resume_break_address;
3619 int stop_after_trap;
3620 int stop_soon;
3621 struct regcache *stop_registers;
3622
3623 /* These are here because if call_function_by_hand has written some
3624 registers and then decides to call error(), we better not have changed
3625 any registers. */
3626 struct regcache *registers;
3627
3628 /* A frame unique identifier. */
3629 struct frame_id selected_frame_id;
3630
3631 int breakpoint_proceeded;
3632 int restore_stack_info;
3633 int proceed_to_finish;
3634 };
3635
3636 void
3637 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3638 LONGEST val)
3639 {
3640 int size = register_size (current_gdbarch, regno);
3641 void *buf = alloca (size);
3642 store_signed_integer (buf, size, val);
3643 regcache_raw_write (inf_status->registers, regno, buf);
3644 }
3645
3646 /* Save all of the information associated with the inferior<==>gdb
3647 connection. INF_STATUS is a pointer to a "struct inferior_status"
3648 (defined in inferior.h). */
3649
3650 struct inferior_status *
3651 save_inferior_status (int restore_stack_info)
3652 {
3653 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3654
3655 inf_status->stop_signal = stop_signal;
3656 inf_status->stop_pc = stop_pc;
3657 inf_status->stop_step = stop_step;
3658 inf_status->stop_stack_dummy = stop_stack_dummy;
3659 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3660 inf_status->trap_expected = trap_expected;
3661 inf_status->step_range_start = step_range_start;
3662 inf_status->step_range_end = step_range_end;
3663 inf_status->step_frame_id = step_frame_id;
3664 inf_status->step_over_calls = step_over_calls;
3665 inf_status->stop_after_trap = stop_after_trap;
3666 inf_status->stop_soon = stop_soon;
3667 /* Save original bpstat chain here; replace it with copy of chain.
3668 If caller's caller is walking the chain, they'll be happier if we
3669 hand them back the original chain when restore_inferior_status is
3670 called. */
3671 inf_status->stop_bpstat = stop_bpstat;
3672 stop_bpstat = bpstat_copy (stop_bpstat);
3673 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3674 inf_status->restore_stack_info = restore_stack_info;
3675 inf_status->proceed_to_finish = proceed_to_finish;
3676
3677 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3678
3679 inf_status->registers = regcache_dup (get_current_regcache ());
3680
3681 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3682 return inf_status;
3683 }
3684
3685 static int
3686 restore_selected_frame (void *args)
3687 {
3688 struct frame_id *fid = (struct frame_id *) args;
3689 struct frame_info *frame;
3690
3691 frame = frame_find_by_id (*fid);
3692
3693 /* If inf_status->selected_frame_id is NULL, there was no previously
3694 selected frame. */
3695 if (frame == NULL)
3696 {
3697 warning (_("Unable to restore previously selected frame."));
3698 return 0;
3699 }
3700
3701 select_frame (frame);
3702
3703 return (1);
3704 }
3705
3706 void
3707 restore_inferior_status (struct inferior_status *inf_status)
3708 {
3709 stop_signal = inf_status->stop_signal;
3710 stop_pc = inf_status->stop_pc;
3711 stop_step = inf_status->stop_step;
3712 stop_stack_dummy = inf_status->stop_stack_dummy;
3713 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3714 trap_expected = inf_status->trap_expected;
3715 step_range_start = inf_status->step_range_start;
3716 step_range_end = inf_status->step_range_end;
3717 step_frame_id = inf_status->step_frame_id;
3718 step_over_calls = inf_status->step_over_calls;
3719 stop_after_trap = inf_status->stop_after_trap;
3720 stop_soon = inf_status->stop_soon;
3721 bpstat_clear (&stop_bpstat);
3722 stop_bpstat = inf_status->stop_bpstat;
3723 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3724 proceed_to_finish = inf_status->proceed_to_finish;
3725
3726 /* FIXME: Is the restore of stop_registers always needed. */
3727 regcache_xfree (stop_registers);
3728 stop_registers = inf_status->stop_registers;
3729
3730 /* The inferior can be gone if the user types "print exit(0)"
3731 (and perhaps other times). */
3732 if (target_has_execution)
3733 /* NB: The register write goes through to the target. */
3734 regcache_cpy (get_current_regcache (), inf_status->registers);
3735 regcache_xfree (inf_status->registers);
3736
3737 /* FIXME: If we are being called after stopping in a function which
3738 is called from gdb, we should not be trying to restore the
3739 selected frame; it just prints a spurious error message (The
3740 message is useful, however, in detecting bugs in gdb (like if gdb
3741 clobbers the stack)). In fact, should we be restoring the
3742 inferior status at all in that case? . */
3743
3744 if (target_has_stack && inf_status->restore_stack_info)
3745 {
3746 /* The point of catch_errors is that if the stack is clobbered,
3747 walking the stack might encounter a garbage pointer and
3748 error() trying to dereference it. */
3749 if (catch_errors
3750 (restore_selected_frame, &inf_status->selected_frame_id,
3751 "Unable to restore previously selected frame:\n",
3752 RETURN_MASK_ERROR) == 0)
3753 /* Error in restoring the selected frame. Select the innermost
3754 frame. */
3755 select_frame (get_current_frame ());
3756
3757 }
3758
3759 xfree (inf_status);
3760 }
3761
3762 static void
3763 do_restore_inferior_status_cleanup (void *sts)
3764 {
3765 restore_inferior_status (sts);
3766 }
3767
3768 struct cleanup *
3769 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3770 {
3771 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3772 }
3773
3774 void
3775 discard_inferior_status (struct inferior_status *inf_status)
3776 {
3777 /* See save_inferior_status for info on stop_bpstat. */
3778 bpstat_clear (&inf_status->stop_bpstat);
3779 regcache_xfree (inf_status->registers);
3780 regcache_xfree (inf_status->stop_registers);
3781 xfree (inf_status);
3782 }
3783
3784 int
3785 inferior_has_forked (int pid, int *child_pid)
3786 {
3787 struct target_waitstatus last;
3788 ptid_t last_ptid;
3789
3790 get_last_target_status (&last_ptid, &last);
3791
3792 if (last.kind != TARGET_WAITKIND_FORKED)
3793 return 0;
3794
3795 if (ptid_get_pid (last_ptid) != pid)
3796 return 0;
3797
3798 *child_pid = last.value.related_pid;
3799 return 1;
3800 }
3801
3802 int
3803 inferior_has_vforked (int pid, int *child_pid)
3804 {
3805 struct target_waitstatus last;
3806 ptid_t last_ptid;
3807
3808 get_last_target_status (&last_ptid, &last);
3809
3810 if (last.kind != TARGET_WAITKIND_VFORKED)
3811 return 0;
3812
3813 if (ptid_get_pid (last_ptid) != pid)
3814 return 0;
3815
3816 *child_pid = last.value.related_pid;
3817 return 1;
3818 }
3819
3820 int
3821 inferior_has_execd (int pid, char **execd_pathname)
3822 {
3823 struct target_waitstatus last;
3824 ptid_t last_ptid;
3825
3826 get_last_target_status (&last_ptid, &last);
3827
3828 if (last.kind != TARGET_WAITKIND_EXECD)
3829 return 0;
3830
3831 if (ptid_get_pid (last_ptid) != pid)
3832 return 0;
3833
3834 *execd_pathname = xstrdup (last.value.execd_pathname);
3835 return 1;
3836 }
3837
3838 /* Oft used ptids */
3839 ptid_t null_ptid;
3840 ptid_t minus_one_ptid;
3841
3842 /* Create a ptid given the necessary PID, LWP, and TID components. */
3843
3844 ptid_t
3845 ptid_build (int pid, long lwp, long tid)
3846 {
3847 ptid_t ptid;
3848
3849 ptid.pid = pid;
3850 ptid.lwp = lwp;
3851 ptid.tid = tid;
3852 return ptid;
3853 }
3854
3855 /* Create a ptid from just a pid. */
3856
3857 ptid_t
3858 pid_to_ptid (int pid)
3859 {
3860 return ptid_build (pid, 0, 0);
3861 }
3862
3863 /* Fetch the pid (process id) component from a ptid. */
3864
3865 int
3866 ptid_get_pid (ptid_t ptid)
3867 {
3868 return ptid.pid;
3869 }
3870
3871 /* Fetch the lwp (lightweight process) component from a ptid. */
3872
3873 long
3874 ptid_get_lwp (ptid_t ptid)
3875 {
3876 return ptid.lwp;
3877 }
3878
3879 /* Fetch the tid (thread id) component from a ptid. */
3880
3881 long
3882 ptid_get_tid (ptid_t ptid)
3883 {
3884 return ptid.tid;
3885 }
3886
3887 /* ptid_equal() is used to test equality of two ptids. */
3888
3889 int
3890 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3891 {
3892 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3893 && ptid1.tid == ptid2.tid);
3894 }
3895
3896 /* restore_inferior_ptid() will be used by the cleanup machinery
3897 to restore the inferior_ptid value saved in a call to
3898 save_inferior_ptid(). */
3899
3900 static void
3901 restore_inferior_ptid (void *arg)
3902 {
3903 ptid_t *saved_ptid_ptr = arg;
3904 inferior_ptid = *saved_ptid_ptr;
3905 xfree (arg);
3906 }
3907
3908 /* Save the value of inferior_ptid so that it may be restored by a
3909 later call to do_cleanups(). Returns the struct cleanup pointer
3910 needed for later doing the cleanup. */
3911
3912 struct cleanup *
3913 save_inferior_ptid (void)
3914 {
3915 ptid_t *saved_ptid_ptr;
3916
3917 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3918 *saved_ptid_ptr = inferior_ptid;
3919 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3920 }
3921 \f
3922
3923 static void
3924 build_infrun (void)
3925 {
3926 stop_registers = regcache_xmalloc (current_gdbarch);
3927 }
3928
3929 void
3930 _initialize_infrun (void)
3931 {
3932 int i;
3933 int numsigs;
3934 struct cmd_list_element *c;
3935
3936 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3937 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3938
3939 add_info ("signals", signals_info, _("\
3940 What debugger does when program gets various signals.\n\
3941 Specify a signal as argument to print info on that signal only."));
3942 add_info_alias ("handle", "signals", 0);
3943
3944 add_com ("handle", class_run, handle_command, _("\
3945 Specify how to handle a signal.\n\
3946 Args are signals and actions to apply to those signals.\n\
3947 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3948 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3949 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3950 The special arg \"all\" is recognized to mean all signals except those\n\
3951 used by the debugger, typically SIGTRAP and SIGINT.\n\
3952 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3953 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3954 Stop means reenter debugger if this signal happens (implies print).\n\
3955 Print means print a message if this signal happens.\n\
3956 Pass means let program see this signal; otherwise program doesn't know.\n\
3957 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3958 Pass and Stop may be combined."));
3959 if (xdb_commands)
3960 {
3961 add_com ("lz", class_info, signals_info, _("\
3962 What debugger does when program gets various signals.\n\
3963 Specify a signal as argument to print info on that signal only."));
3964 add_com ("z", class_run, xdb_handle_command, _("\
3965 Specify how to handle a signal.\n\
3966 Args are signals and actions to apply to those signals.\n\
3967 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3968 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3969 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3970 The special arg \"all\" is recognized to mean all signals except those\n\
3971 used by the debugger, typically SIGTRAP and SIGINT.\n\
3972 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3973 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3974 nopass), \"Q\" (noprint)\n\
3975 Stop means reenter debugger if this signal happens (implies print).\n\
3976 Print means print a message if this signal happens.\n\
3977 Pass means let program see this signal; otherwise program doesn't know.\n\
3978 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3979 Pass and Stop may be combined."));
3980 }
3981
3982 if (!dbx_commands)
3983 stop_command = add_cmd ("stop", class_obscure,
3984 not_just_help_class_command, _("\
3985 There is no `stop' command, but you can set a hook on `stop'.\n\
3986 This allows you to set a list of commands to be run each time execution\n\
3987 of the program stops."), &cmdlist);
3988
3989 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3990 Set inferior debugging."), _("\
3991 Show inferior debugging."), _("\
3992 When non-zero, inferior specific debugging is enabled."),
3993 NULL,
3994 show_debug_infrun,
3995 &setdebuglist, &showdebuglist);
3996
3997 numsigs = (int) TARGET_SIGNAL_LAST;
3998 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3999 signal_print = (unsigned char *)
4000 xmalloc (sizeof (signal_print[0]) * numsigs);
4001 signal_program = (unsigned char *)
4002 xmalloc (sizeof (signal_program[0]) * numsigs);
4003 for (i = 0; i < numsigs; i++)
4004 {
4005 signal_stop[i] = 1;
4006 signal_print[i] = 1;
4007 signal_program[i] = 1;
4008 }
4009
4010 /* Signals caused by debugger's own actions
4011 should not be given to the program afterwards. */
4012 signal_program[TARGET_SIGNAL_TRAP] = 0;
4013 signal_program[TARGET_SIGNAL_INT] = 0;
4014
4015 /* Signals that are not errors should not normally enter the debugger. */
4016 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4017 signal_print[TARGET_SIGNAL_ALRM] = 0;
4018 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4019 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4020 signal_stop[TARGET_SIGNAL_PROF] = 0;
4021 signal_print[TARGET_SIGNAL_PROF] = 0;
4022 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4023 signal_print[TARGET_SIGNAL_CHLD] = 0;
4024 signal_stop[TARGET_SIGNAL_IO] = 0;
4025 signal_print[TARGET_SIGNAL_IO] = 0;
4026 signal_stop[TARGET_SIGNAL_POLL] = 0;
4027 signal_print[TARGET_SIGNAL_POLL] = 0;
4028 signal_stop[TARGET_SIGNAL_URG] = 0;
4029 signal_print[TARGET_SIGNAL_URG] = 0;
4030 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4031 signal_print[TARGET_SIGNAL_WINCH] = 0;
4032
4033 /* These signals are used internally by user-level thread
4034 implementations. (See signal(5) on Solaris.) Like the above
4035 signals, a healthy program receives and handles them as part of
4036 its normal operation. */
4037 signal_stop[TARGET_SIGNAL_LWP] = 0;
4038 signal_print[TARGET_SIGNAL_LWP] = 0;
4039 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4040 signal_print[TARGET_SIGNAL_WAITING] = 0;
4041 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4042 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4043
4044 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4045 &stop_on_solib_events, _("\
4046 Set stopping for shared library events."), _("\
4047 Show stopping for shared library events."), _("\
4048 If nonzero, gdb will give control to the user when the dynamic linker\n\
4049 notifies gdb of shared library events. The most common event of interest\n\
4050 to the user would be loading/unloading of a new library."),
4051 NULL,
4052 show_stop_on_solib_events,
4053 &setlist, &showlist);
4054
4055 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4056 follow_fork_mode_kind_names,
4057 &follow_fork_mode_string, _("\
4058 Set debugger response to a program call of fork or vfork."), _("\
4059 Show debugger response to a program call of fork or vfork."), _("\
4060 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4061 parent - the original process is debugged after a fork\n\
4062 child - the new process is debugged after a fork\n\
4063 The unfollowed process will continue to run.\n\
4064 By default, the debugger will follow the parent process."),
4065 NULL,
4066 show_follow_fork_mode_string,
4067 &setlist, &showlist);
4068
4069 add_setshow_enum_cmd ("scheduler-locking", class_run,
4070 scheduler_enums, &scheduler_mode, _("\
4071 Set mode for locking scheduler during execution."), _("\
4072 Show mode for locking scheduler during execution."), _("\
4073 off == no locking (threads may preempt at any time)\n\
4074 on == full locking (no thread except the current thread may run)\n\
4075 step == scheduler locked during every single-step operation.\n\
4076 In this mode, no other thread may run during a step command.\n\
4077 Other threads may run while stepping over a function call ('next')."),
4078 set_schedlock_func, /* traps on target vector */
4079 show_scheduler_mode,
4080 &setlist, &showlist);
4081
4082 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4083 Set mode of the step operation."), _("\
4084 Show mode of the step operation."), _("\
4085 When set, doing a step over a function without debug line information\n\
4086 will stop at the first instruction of that function. Otherwise, the\n\
4087 function is skipped and the step command stops at a different source line."),
4088 NULL,
4089 show_step_stop_if_no_debug,
4090 &setlist, &showlist);
4091
4092 /* ptid initializations */
4093 null_ptid = ptid_build (0, 0, 0);
4094 minus_one_ptid = ptid_build (-1, 0, 0);
4095 inferior_ptid = null_ptid;
4096 target_last_wait_ptid = minus_one_ptid;
4097 }
This page took 0.173965 seconds and 4 git commands to generate.