Class-ify ui_out
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2016 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67
68 /* Prototypes for local functions */
69
70 static void signals_info (char *, int);
71
72 static void handle_command (char *, int);
73
74 static void sig_print_info (enum gdb_signal);
75
76 static void sig_print_header (void);
77
78 static void resume_cleanups (void *);
79
80 static int hook_stop_stub (void *);
81
82 static int restore_selected_frame (void *);
83
84 static int follow_fork (void);
85
86 static int follow_fork_inferior (int follow_child, int detach_fork);
87
88 static void follow_inferior_reset_breakpoints (void);
89
90 static void set_schedlock_func (char *args, int from_tty,
91 struct cmd_list_element *c);
92
93 static int currently_stepping (struct thread_info *tp);
94
95 void _initialize_infrun (void);
96
97 void nullify_last_target_wait_ptid (void);
98
99 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
100
101 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
103 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
105 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
107 /* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109 static struct async_event_handler *infrun_async_inferior_event_token;
110
111 /* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113 static int infrun_is_async = -1;
114
115 /* See infrun.h. */
116
117 void
118 infrun_async (int enable)
119 {
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134 }
135
136 /* See infrun.h. */
137
138 void
139 mark_infrun_async_event_handler (void)
140 {
141 mark_async_event_handler (infrun_async_inferior_event_token);
142 }
143
144 /* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147 int step_stop_if_no_debug = 0;
148 static void
149 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153 }
154
155 /* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
158
159 static ptid_t previous_inferior_ptid;
160
161 /* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166 static int detach_fork = 1;
167
168 int debug_displaced = 0;
169 static void
170 show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174 }
175
176 unsigned int debug_infrun = 0;
177 static void
178 show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182 }
183
184
185 /* Support for disabling address space randomization. */
186
187 int disable_randomization = 1;
188
189 static void
190 show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202 }
203
204 static void
205 set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207 {
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212 }
213
214 /* User interface for non-stop mode. */
215
216 int non_stop = 0;
217 static int non_stop_1 = 0;
218
219 static void
220 set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222 {
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230 }
231
232 static void
233 show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239 }
240
241 /* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
245 int observer_mode = 0;
246 static int observer_mode_1 = 0;
247
248 static void
249 set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251 {
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282 }
283
284 static void
285 show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287 {
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289 }
290
291 /* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297 void
298 update_observer_mode (void)
299 {
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314 }
315
316 /* Tables of how to react to signals; the user sets them. */
317
318 static unsigned char *signal_stop;
319 static unsigned char *signal_print;
320 static unsigned char *signal_program;
321
322 /* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326 static unsigned char *signal_catch;
327
328 /* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331 static unsigned char *signal_pass;
332
333 #define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341 #define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
349 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352 void
353 update_signals_program_target (void)
354 {
355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
356 }
357
358 /* Value to pass to target_resume() to cause all threads to resume. */
359
360 #define RESUME_ALL minus_one_ptid
361
362 /* Command list pointer for the "stop" placeholder. */
363
364 static struct cmd_list_element *stop_command;
365
366 /* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
368 int stop_on_solib_events;
369
370 /* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373 static void
374 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375 {
376 update_solib_breakpoints ();
377 }
378
379 static void
380 show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382 {
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385 }
386
387 /* Nonzero after stop if current stack frame should be printed. */
388
389 static int stop_print_frame;
390
391 /* This is a cached copy of the pid/waitstatus of the last event
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
394 static ptid_t target_last_wait_ptid;
395 static struct target_waitstatus target_last_waitstatus;
396
397 static void context_switch (ptid_t ptid);
398
399 void init_thread_stepping_state (struct thread_info *tss);
400
401 static const char follow_fork_mode_child[] = "child";
402 static const char follow_fork_mode_parent[] = "parent";
403
404 static const char *const follow_fork_mode_kind_names[] = {
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
408 };
409
410 static const char *follow_fork_mode_string = follow_fork_mode_parent;
411 static void
412 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414 {
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
418 value);
419 }
420 \f
421
422 /* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428 static int
429 follow_fork_inferior (int follow_child, int detach_fork)
430 {
431 int has_vforked;
432 ptid_t parent_ptid, child_ptid;
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
441 && current_ui->prompt_state == PROMPT_BLOCKED
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450 Can not resume the parent process over vfork in the foreground while\n\
451 holding the child stopped. Try \"set detach-on-fork\" or \
452 \"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
480 target_terminal_ours_for_output ();
481 fprintf_filtered (gdb_stdlog,
482 _("Detaching after %s from child %s.\n"),
483 has_vforked ? "vfork" : "fork",
484 target_pid_to_str (process_ptid));
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
493 child_inf = add_inferior (ptid_get_pid (child_ptid));
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
504 inferior_ptid = child_ptid;
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
572 has_vforked ? "vfork" : "fork",
573 target_pid_to_str (child_ptid));
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
579 child_inf = add_inferior (ptid_get_pid (child_ptid));
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
610 {
611 if (info_verbose || debug_infrun)
612 {
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
619 "child %s.\n"),
620 target_pid_to_str (process_ptid));
621 }
622
623 target_detach (NULL, 0);
624 }
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
632 inferior_ptid = child_ptid;
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662 }
663
664 /* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
668 static int
669 follow_fork (void)
670 {
671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
680 struct breakpoint *exception_resume_breakpoint = NULL;
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
684 struct thread_fsm *thread_fsm = NULL;
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
736 thread_fsm = tp->thread_fsm;
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
747 delete_exception_resume_breakpoint (tp);
748 tp->thread_fsm = NULL;
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
769 tp = find_thread_ptid (parent);
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
777 /* If we followed the child, switch to it... */
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
794 tp->thread_fsm = thread_fsm;
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
804 warning (_("Not resuming: switched threads "
805 "before following fork child."));
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
825
826 return should_resume;
827 }
828
829 static void
830 follow_inferior_reset_breakpoints (void)
831 {
832 struct thread_info *tp = inferior_thread ();
833
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
847 if (tp->control.step_resume_breakpoint)
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
852
853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
854 if (tp->control.exception_resume_breakpoint)
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
859
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
867 }
868
869 /* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872 static int
873 proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875 {
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
890 clear_proceed_status (0);
891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
892 }
893
894 return 0;
895 }
896
897 /* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900 static void
901 handle_vfork_child_exec_or_exit (int exec)
902 {
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
920 /* follow-fork child, detach-on-fork on. */
921
922 inf->vfork_parent->pending_detach = 0;
923
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
958 target_terminal_ours_for_output ();
959
960 if (exec)
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
967 else
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
1025 inf->symfile_flags = SYMFILE_NO_READ;
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1031 inferior. */
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059 }
1060
1061 /* Enum strings for "set|show follow-exec-mode". */
1062
1063 static const char follow_exec_mode_new[] = "new";
1064 static const char follow_exec_mode_same[] = "same";
1065 static const char *const follow_exec_mode_names[] =
1066 {
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070 };
1071
1072 static const char *follow_exec_mode_string = follow_exec_mode_same;
1073 static void
1074 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076 {
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078 }
1079
1080 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1081
1082 static void
1083 follow_exec (ptid_t ptid, char *exec_file_target)
1084 {
1085 struct thread_info *th, *tmp;
1086 struct inferior *inf = current_inferior ();
1087 int pid = ptid_get_pid (ptid);
1088 ptid_t process_ptid;
1089 char *exec_file_host;
1090 struct cleanup *old_chain;
1091
1092 /* This is an exec event that we actually wish to pay attention to.
1093 Refresh our symbol table to the newly exec'd program, remove any
1094 momentary bp's, etc.
1095
1096 If there are breakpoints, they aren't really inserted now,
1097 since the exec() transformed our inferior into a fresh set
1098 of instructions.
1099
1100 We want to preserve symbolic breakpoints on the list, since
1101 we have hopes that they can be reset after the new a.out's
1102 symbol table is read.
1103
1104 However, any "raw" breakpoints must be removed from the list
1105 (e.g., the solib bp's), since their address is probably invalid
1106 now.
1107
1108 And, we DON'T want to call delete_breakpoints() here, since
1109 that may write the bp's "shadow contents" (the instruction
1110 value that was overwritten witha TRAP instruction). Since
1111 we now have a new a.out, those shadow contents aren't valid. */
1112
1113 mark_breakpoints_out ();
1114
1115 /* The target reports the exec event to the main thread, even if
1116 some other thread does the exec, and even if the main thread was
1117 stopped or already gone. We may still have non-leader threads of
1118 the process on our list. E.g., on targets that don't have thread
1119 exit events (like remote); or on native Linux in non-stop mode if
1120 there were only two threads in the inferior and the non-leader
1121 one is the one that execs (and nothing forces an update of the
1122 thread list up to here). When debugging remotely, it's best to
1123 avoid extra traffic, when possible, so avoid syncing the thread
1124 list with the target, and instead go ahead and delete all threads
1125 of the process but one that reported the event. Note this must
1126 be done before calling update_breakpoints_after_exec, as
1127 otherwise clearing the threads' resources would reference stale
1128 thread breakpoints -- it may have been one of these threads that
1129 stepped across the exec. We could just clear their stepping
1130 states, but as long as we're iterating, might as well delete
1131 them. Deleting them now rather than at the next user-visible
1132 stop provides a nicer sequence of events for user and MI
1133 notifications. */
1134 ALL_THREADS_SAFE (th, tmp)
1135 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1136 delete_thread (th->ptid);
1137
1138 /* We also need to clear any left over stale state for the
1139 leader/event thread. E.g., if there was any step-resume
1140 breakpoint or similar, it's gone now. We cannot truly
1141 step-to-next statement through an exec(). */
1142 th = inferior_thread ();
1143 th->control.step_resume_breakpoint = NULL;
1144 th->control.exception_resume_breakpoint = NULL;
1145 th->control.single_step_breakpoints = NULL;
1146 th->control.step_range_start = 0;
1147 th->control.step_range_end = 0;
1148
1149 /* The user may have had the main thread held stopped in the
1150 previous image (e.g., schedlock on, or non-stop). Release
1151 it now. */
1152 th->stop_requested = 0;
1153
1154 update_breakpoints_after_exec ();
1155
1156 /* What is this a.out's name? */
1157 process_ptid = pid_to_ptid (pid);
1158 printf_unfiltered (_("%s is executing new program: %s\n"),
1159 target_pid_to_str (process_ptid),
1160 exec_file_target);
1161
1162 /* We've followed the inferior through an exec. Therefore, the
1163 inferior has essentially been killed & reborn. */
1164
1165 gdb_flush (gdb_stdout);
1166
1167 breakpoint_init_inferior (inf_execd);
1168
1169 exec_file_host = exec_file_find (exec_file_target, NULL);
1170 old_chain = make_cleanup (xfree, exec_file_host);
1171
1172 /* If we were unable to map the executable target pathname onto a host
1173 pathname, tell the user that. Otherwise GDB's subsequent behavior
1174 is confusing. Maybe it would even be better to stop at this point
1175 so that the user can specify a file manually before continuing. */
1176 if (exec_file_host == NULL)
1177 warning (_("Could not load symbols for executable %s.\n"
1178 "Do you need \"set sysroot\"?"),
1179 exec_file_target);
1180
1181 /* Reset the shared library package. This ensures that we get a
1182 shlib event when the child reaches "_start", at which point the
1183 dld will have had a chance to initialize the child. */
1184 /* Also, loading a symbol file below may trigger symbol lookups, and
1185 we don't want those to be satisfied by the libraries of the
1186 previous incarnation of this process. */
1187 no_shared_libraries (NULL, 0);
1188
1189 if (follow_exec_mode_string == follow_exec_mode_new)
1190 {
1191 /* The user wants to keep the old inferior and program spaces
1192 around. Create a new fresh one, and switch to it. */
1193
1194 /* Do exit processing for the original inferior before adding
1195 the new inferior so we don't have two active inferiors with
1196 the same ptid, which can confuse find_inferior_ptid. */
1197 exit_inferior_num_silent (current_inferior ()->num);
1198
1199 inf = add_inferior_with_spaces ();
1200 inf->pid = pid;
1201 target_follow_exec (inf, exec_file_target);
1202
1203 set_current_inferior (inf);
1204 set_current_program_space (inf->pspace);
1205 add_thread (ptid);
1206 }
1207 else
1208 {
1209 /* The old description may no longer be fit for the new image.
1210 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1211 old description; we'll read a new one below. No need to do
1212 this on "follow-exec-mode new", as the old inferior stays
1213 around (its description is later cleared/refetched on
1214 restart). */
1215 target_clear_description ();
1216 }
1217
1218 gdb_assert (current_program_space == inf->pspace);
1219
1220 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1221 because the proper displacement for a PIE (Position Independent
1222 Executable) main symbol file will only be computed by
1223 solib_create_inferior_hook below. breakpoint_re_set would fail
1224 to insert the breakpoints with the zero displacement. */
1225 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
1226
1227 do_cleanups (old_chain);
1228
1229 /* If the target can specify a description, read it. Must do this
1230 after flipping to the new executable (because the target supplied
1231 description must be compatible with the executable's
1232 architecture, and the old executable may e.g., be 32-bit, while
1233 the new one 64-bit), and before anything involving memory or
1234 registers. */
1235 target_find_description ();
1236
1237 solib_create_inferior_hook (0);
1238
1239 jit_inferior_created_hook ();
1240
1241 breakpoint_re_set ();
1242
1243 /* Reinsert all breakpoints. (Those which were symbolic have
1244 been reset to the proper address in the new a.out, thanks
1245 to symbol_file_command...). */
1246 insert_breakpoints ();
1247
1248 /* The next resume of this inferior should bring it to the shlib
1249 startup breakpoints. (If the user had also set bp's on
1250 "main" from the old (parent) process, then they'll auto-
1251 matically get reset there in the new process.). */
1252 }
1253
1254 /* The queue of threads that need to do a step-over operation to get
1255 past e.g., a breakpoint. What technique is used to step over the
1256 breakpoint/watchpoint does not matter -- all threads end up in the
1257 same queue, to maintain rough temporal order of execution, in order
1258 to avoid starvation, otherwise, we could e.g., find ourselves
1259 constantly stepping the same couple threads past their breakpoints
1260 over and over, if the single-step finish fast enough. */
1261 struct thread_info *step_over_queue_head;
1262
1263 /* Bit flags indicating what the thread needs to step over. */
1264
1265 enum step_over_what_flag
1266 {
1267 /* Step over a breakpoint. */
1268 STEP_OVER_BREAKPOINT = 1,
1269
1270 /* Step past a non-continuable watchpoint, in order to let the
1271 instruction execute so we can evaluate the watchpoint
1272 expression. */
1273 STEP_OVER_WATCHPOINT = 2
1274 };
1275 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1276
1277 /* Info about an instruction that is being stepped over. */
1278
1279 struct step_over_info
1280 {
1281 /* If we're stepping past a breakpoint, this is the address space
1282 and address of the instruction the breakpoint is set at. We'll
1283 skip inserting all breakpoints here. Valid iff ASPACE is
1284 non-NULL. */
1285 struct address_space *aspace;
1286 CORE_ADDR address;
1287
1288 /* The instruction being stepped over triggers a nonsteppable
1289 watchpoint. If true, we'll skip inserting watchpoints. */
1290 int nonsteppable_watchpoint_p;
1291
1292 /* The thread's global number. */
1293 int thread;
1294 };
1295
1296 /* The step-over info of the location that is being stepped over.
1297
1298 Note that with async/breakpoint always-inserted mode, a user might
1299 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1300 being stepped over. As setting a new breakpoint inserts all
1301 breakpoints, we need to make sure the breakpoint being stepped over
1302 isn't inserted then. We do that by only clearing the step-over
1303 info when the step-over is actually finished (or aborted).
1304
1305 Presently GDB can only step over one breakpoint at any given time.
1306 Given threads that can't run code in the same address space as the
1307 breakpoint's can't really miss the breakpoint, GDB could be taught
1308 to step-over at most one breakpoint per address space (so this info
1309 could move to the address space object if/when GDB is extended).
1310 The set of breakpoints being stepped over will normally be much
1311 smaller than the set of all breakpoints, so a flag in the
1312 breakpoint location structure would be wasteful. A separate list
1313 also saves complexity and run-time, as otherwise we'd have to go
1314 through all breakpoint locations clearing their flag whenever we
1315 start a new sequence. Similar considerations weigh against storing
1316 this info in the thread object. Plus, not all step overs actually
1317 have breakpoint locations -- e.g., stepping past a single-step
1318 breakpoint, or stepping to complete a non-continuable
1319 watchpoint. */
1320 static struct step_over_info step_over_info;
1321
1322 /* Record the address of the breakpoint/instruction we're currently
1323 stepping over. */
1324
1325 static void
1326 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1327 int nonsteppable_watchpoint_p,
1328 int thread)
1329 {
1330 step_over_info.aspace = aspace;
1331 step_over_info.address = address;
1332 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1333 step_over_info.thread = thread;
1334 }
1335
1336 /* Called when we're not longer stepping over a breakpoint / an
1337 instruction, so all breakpoints are free to be (re)inserted. */
1338
1339 static void
1340 clear_step_over_info (void)
1341 {
1342 if (debug_infrun)
1343 fprintf_unfiltered (gdb_stdlog,
1344 "infrun: clear_step_over_info\n");
1345 step_over_info.aspace = NULL;
1346 step_over_info.address = 0;
1347 step_over_info.nonsteppable_watchpoint_p = 0;
1348 step_over_info.thread = -1;
1349 }
1350
1351 /* See infrun.h. */
1352
1353 int
1354 stepping_past_instruction_at (struct address_space *aspace,
1355 CORE_ADDR address)
1356 {
1357 return (step_over_info.aspace != NULL
1358 && breakpoint_address_match (aspace, address,
1359 step_over_info.aspace,
1360 step_over_info.address));
1361 }
1362
1363 /* See infrun.h. */
1364
1365 int
1366 thread_is_stepping_over_breakpoint (int thread)
1367 {
1368 return (step_over_info.thread != -1
1369 && thread == step_over_info.thread);
1370 }
1371
1372 /* See infrun.h. */
1373
1374 int
1375 stepping_past_nonsteppable_watchpoint (void)
1376 {
1377 return step_over_info.nonsteppable_watchpoint_p;
1378 }
1379
1380 /* Returns true if step-over info is valid. */
1381
1382 static int
1383 step_over_info_valid_p (void)
1384 {
1385 return (step_over_info.aspace != NULL
1386 || stepping_past_nonsteppable_watchpoint ());
1387 }
1388
1389 \f
1390 /* Displaced stepping. */
1391
1392 /* In non-stop debugging mode, we must take special care to manage
1393 breakpoints properly; in particular, the traditional strategy for
1394 stepping a thread past a breakpoint it has hit is unsuitable.
1395 'Displaced stepping' is a tactic for stepping one thread past a
1396 breakpoint it has hit while ensuring that other threads running
1397 concurrently will hit the breakpoint as they should.
1398
1399 The traditional way to step a thread T off a breakpoint in a
1400 multi-threaded program in all-stop mode is as follows:
1401
1402 a0) Initially, all threads are stopped, and breakpoints are not
1403 inserted.
1404 a1) We single-step T, leaving breakpoints uninserted.
1405 a2) We insert breakpoints, and resume all threads.
1406
1407 In non-stop debugging, however, this strategy is unsuitable: we
1408 don't want to have to stop all threads in the system in order to
1409 continue or step T past a breakpoint. Instead, we use displaced
1410 stepping:
1411
1412 n0) Initially, T is stopped, other threads are running, and
1413 breakpoints are inserted.
1414 n1) We copy the instruction "under" the breakpoint to a separate
1415 location, outside the main code stream, making any adjustments
1416 to the instruction, register, and memory state as directed by
1417 T's architecture.
1418 n2) We single-step T over the instruction at its new location.
1419 n3) We adjust the resulting register and memory state as directed
1420 by T's architecture. This includes resetting T's PC to point
1421 back into the main instruction stream.
1422 n4) We resume T.
1423
1424 This approach depends on the following gdbarch methods:
1425
1426 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1427 indicate where to copy the instruction, and how much space must
1428 be reserved there. We use these in step n1.
1429
1430 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1431 address, and makes any necessary adjustments to the instruction,
1432 register contents, and memory. We use this in step n1.
1433
1434 - gdbarch_displaced_step_fixup adjusts registers and memory after
1435 we have successfuly single-stepped the instruction, to yield the
1436 same effect the instruction would have had if we had executed it
1437 at its original address. We use this in step n3.
1438
1439 - gdbarch_displaced_step_free_closure provides cleanup.
1440
1441 The gdbarch_displaced_step_copy_insn and
1442 gdbarch_displaced_step_fixup functions must be written so that
1443 copying an instruction with gdbarch_displaced_step_copy_insn,
1444 single-stepping across the copied instruction, and then applying
1445 gdbarch_displaced_insn_fixup should have the same effects on the
1446 thread's memory and registers as stepping the instruction in place
1447 would have. Exactly which responsibilities fall to the copy and
1448 which fall to the fixup is up to the author of those functions.
1449
1450 See the comments in gdbarch.sh for details.
1451
1452 Note that displaced stepping and software single-step cannot
1453 currently be used in combination, although with some care I think
1454 they could be made to. Software single-step works by placing
1455 breakpoints on all possible subsequent instructions; if the
1456 displaced instruction is a PC-relative jump, those breakpoints
1457 could fall in very strange places --- on pages that aren't
1458 executable, or at addresses that are not proper instruction
1459 boundaries. (We do generally let other threads run while we wait
1460 to hit the software single-step breakpoint, and they might
1461 encounter such a corrupted instruction.) One way to work around
1462 this would be to have gdbarch_displaced_step_copy_insn fully
1463 simulate the effect of PC-relative instructions (and return NULL)
1464 on architectures that use software single-stepping.
1465
1466 In non-stop mode, we can have independent and simultaneous step
1467 requests, so more than one thread may need to simultaneously step
1468 over a breakpoint. The current implementation assumes there is
1469 only one scratch space per process. In this case, we have to
1470 serialize access to the scratch space. If thread A wants to step
1471 over a breakpoint, but we are currently waiting for some other
1472 thread to complete a displaced step, we leave thread A stopped and
1473 place it in the displaced_step_request_queue. Whenever a displaced
1474 step finishes, we pick the next thread in the queue and start a new
1475 displaced step operation on it. See displaced_step_prepare and
1476 displaced_step_fixup for details. */
1477
1478 /* Per-inferior displaced stepping state. */
1479 struct displaced_step_inferior_state
1480 {
1481 /* Pointer to next in linked list. */
1482 struct displaced_step_inferior_state *next;
1483
1484 /* The process this displaced step state refers to. */
1485 int pid;
1486
1487 /* True if preparing a displaced step ever failed. If so, we won't
1488 try displaced stepping for this inferior again. */
1489 int failed_before;
1490
1491 /* If this is not null_ptid, this is the thread carrying out a
1492 displaced single-step in process PID. This thread's state will
1493 require fixing up once it has completed its step. */
1494 ptid_t step_ptid;
1495
1496 /* The architecture the thread had when we stepped it. */
1497 struct gdbarch *step_gdbarch;
1498
1499 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1500 for post-step cleanup. */
1501 struct displaced_step_closure *step_closure;
1502
1503 /* The address of the original instruction, and the copy we
1504 made. */
1505 CORE_ADDR step_original, step_copy;
1506
1507 /* Saved contents of copy area. */
1508 gdb_byte *step_saved_copy;
1509 };
1510
1511 /* The list of states of processes involved in displaced stepping
1512 presently. */
1513 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1514
1515 /* Get the displaced stepping state of process PID. */
1516
1517 static struct displaced_step_inferior_state *
1518 get_displaced_stepping_state (int pid)
1519 {
1520 struct displaced_step_inferior_state *state;
1521
1522 for (state = displaced_step_inferior_states;
1523 state != NULL;
1524 state = state->next)
1525 if (state->pid == pid)
1526 return state;
1527
1528 return NULL;
1529 }
1530
1531 /* Returns true if any inferior has a thread doing a displaced
1532 step. */
1533
1534 static int
1535 displaced_step_in_progress_any_inferior (void)
1536 {
1537 struct displaced_step_inferior_state *state;
1538
1539 for (state = displaced_step_inferior_states;
1540 state != NULL;
1541 state = state->next)
1542 if (!ptid_equal (state->step_ptid, null_ptid))
1543 return 1;
1544
1545 return 0;
1546 }
1547
1548 /* Return true if thread represented by PTID is doing a displaced
1549 step. */
1550
1551 static int
1552 displaced_step_in_progress_thread (ptid_t ptid)
1553 {
1554 struct displaced_step_inferior_state *displaced;
1555
1556 gdb_assert (!ptid_equal (ptid, null_ptid));
1557
1558 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1559
1560 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1561 }
1562
1563 /* Return true if process PID has a thread doing a displaced step. */
1564
1565 static int
1566 displaced_step_in_progress (int pid)
1567 {
1568 struct displaced_step_inferior_state *displaced;
1569
1570 displaced = get_displaced_stepping_state (pid);
1571 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1572 return 1;
1573
1574 return 0;
1575 }
1576
1577 /* Add a new displaced stepping state for process PID to the displaced
1578 stepping state list, or return a pointer to an already existing
1579 entry, if it already exists. Never returns NULL. */
1580
1581 static struct displaced_step_inferior_state *
1582 add_displaced_stepping_state (int pid)
1583 {
1584 struct displaced_step_inferior_state *state;
1585
1586 for (state = displaced_step_inferior_states;
1587 state != NULL;
1588 state = state->next)
1589 if (state->pid == pid)
1590 return state;
1591
1592 state = XCNEW (struct displaced_step_inferior_state);
1593 state->pid = pid;
1594 state->next = displaced_step_inferior_states;
1595 displaced_step_inferior_states = state;
1596
1597 return state;
1598 }
1599
1600 /* If inferior is in displaced stepping, and ADDR equals to starting address
1601 of copy area, return corresponding displaced_step_closure. Otherwise,
1602 return NULL. */
1603
1604 struct displaced_step_closure*
1605 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1606 {
1607 struct displaced_step_inferior_state *displaced
1608 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1609
1610 /* If checking the mode of displaced instruction in copy area. */
1611 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1612 && (displaced->step_copy == addr))
1613 return displaced->step_closure;
1614
1615 return NULL;
1616 }
1617
1618 /* Remove the displaced stepping state of process PID. */
1619
1620 static void
1621 remove_displaced_stepping_state (int pid)
1622 {
1623 struct displaced_step_inferior_state *it, **prev_next_p;
1624
1625 gdb_assert (pid != 0);
1626
1627 it = displaced_step_inferior_states;
1628 prev_next_p = &displaced_step_inferior_states;
1629 while (it)
1630 {
1631 if (it->pid == pid)
1632 {
1633 *prev_next_p = it->next;
1634 xfree (it);
1635 return;
1636 }
1637
1638 prev_next_p = &it->next;
1639 it = *prev_next_p;
1640 }
1641 }
1642
1643 static void
1644 infrun_inferior_exit (struct inferior *inf)
1645 {
1646 remove_displaced_stepping_state (inf->pid);
1647 }
1648
1649 /* If ON, and the architecture supports it, GDB will use displaced
1650 stepping to step over breakpoints. If OFF, or if the architecture
1651 doesn't support it, GDB will instead use the traditional
1652 hold-and-step approach. If AUTO (which is the default), GDB will
1653 decide which technique to use to step over breakpoints depending on
1654 which of all-stop or non-stop mode is active --- displaced stepping
1655 in non-stop mode; hold-and-step in all-stop mode. */
1656
1657 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1658
1659 static void
1660 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1661 struct cmd_list_element *c,
1662 const char *value)
1663 {
1664 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1665 fprintf_filtered (file,
1666 _("Debugger's willingness to use displaced stepping "
1667 "to step over breakpoints is %s (currently %s).\n"),
1668 value, target_is_non_stop_p () ? "on" : "off");
1669 else
1670 fprintf_filtered (file,
1671 _("Debugger's willingness to use displaced stepping "
1672 "to step over breakpoints is %s.\n"), value);
1673 }
1674
1675 /* Return non-zero if displaced stepping can/should be used to step
1676 over breakpoints of thread TP. */
1677
1678 static int
1679 use_displaced_stepping (struct thread_info *tp)
1680 {
1681 struct regcache *regcache = get_thread_regcache (tp->ptid);
1682 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1683 struct displaced_step_inferior_state *displaced_state;
1684
1685 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1686
1687 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1688 && target_is_non_stop_p ())
1689 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1690 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1691 && find_record_target () == NULL
1692 && (displaced_state == NULL
1693 || !displaced_state->failed_before));
1694 }
1695
1696 /* Clean out any stray displaced stepping state. */
1697 static void
1698 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1699 {
1700 /* Indicate that there is no cleanup pending. */
1701 displaced->step_ptid = null_ptid;
1702
1703 if (displaced->step_closure)
1704 {
1705 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1706 displaced->step_closure);
1707 displaced->step_closure = NULL;
1708 }
1709 }
1710
1711 static void
1712 displaced_step_clear_cleanup (void *arg)
1713 {
1714 struct displaced_step_inferior_state *state
1715 = (struct displaced_step_inferior_state *) arg;
1716
1717 displaced_step_clear (state);
1718 }
1719
1720 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1721 void
1722 displaced_step_dump_bytes (struct ui_file *file,
1723 const gdb_byte *buf,
1724 size_t len)
1725 {
1726 int i;
1727
1728 for (i = 0; i < len; i++)
1729 fprintf_unfiltered (file, "%02x ", buf[i]);
1730 fputs_unfiltered ("\n", file);
1731 }
1732
1733 /* Prepare to single-step, using displaced stepping.
1734
1735 Note that we cannot use displaced stepping when we have a signal to
1736 deliver. If we have a signal to deliver and an instruction to step
1737 over, then after the step, there will be no indication from the
1738 target whether the thread entered a signal handler or ignored the
1739 signal and stepped over the instruction successfully --- both cases
1740 result in a simple SIGTRAP. In the first case we mustn't do a
1741 fixup, and in the second case we must --- but we can't tell which.
1742 Comments in the code for 'random signals' in handle_inferior_event
1743 explain how we handle this case instead.
1744
1745 Returns 1 if preparing was successful -- this thread is going to be
1746 stepped now; 0 if displaced stepping this thread got queued; or -1
1747 if this instruction can't be displaced stepped. */
1748
1749 static int
1750 displaced_step_prepare_throw (ptid_t ptid)
1751 {
1752 struct cleanup *old_cleanups, *ignore_cleanups;
1753 struct thread_info *tp = find_thread_ptid (ptid);
1754 struct regcache *regcache = get_thread_regcache (ptid);
1755 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1756 struct address_space *aspace = get_regcache_aspace (regcache);
1757 CORE_ADDR original, copy;
1758 ULONGEST len;
1759 struct displaced_step_closure *closure;
1760 struct displaced_step_inferior_state *displaced;
1761 int status;
1762
1763 /* We should never reach this function if the architecture does not
1764 support displaced stepping. */
1765 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1766
1767 /* Nor if the thread isn't meant to step over a breakpoint. */
1768 gdb_assert (tp->control.trap_expected);
1769
1770 /* Disable range stepping while executing in the scratch pad. We
1771 want a single-step even if executing the displaced instruction in
1772 the scratch buffer lands within the stepping range (e.g., a
1773 jump/branch). */
1774 tp->control.may_range_step = 0;
1775
1776 /* We have to displaced step one thread at a time, as we only have
1777 access to a single scratch space per inferior. */
1778
1779 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1780
1781 if (!ptid_equal (displaced->step_ptid, null_ptid))
1782 {
1783 /* Already waiting for a displaced step to finish. Defer this
1784 request and place in queue. */
1785
1786 if (debug_displaced)
1787 fprintf_unfiltered (gdb_stdlog,
1788 "displaced: deferring step of %s\n",
1789 target_pid_to_str (ptid));
1790
1791 thread_step_over_chain_enqueue (tp);
1792 return 0;
1793 }
1794 else
1795 {
1796 if (debug_displaced)
1797 fprintf_unfiltered (gdb_stdlog,
1798 "displaced: stepping %s now\n",
1799 target_pid_to_str (ptid));
1800 }
1801
1802 displaced_step_clear (displaced);
1803
1804 old_cleanups = save_inferior_ptid ();
1805 inferior_ptid = ptid;
1806
1807 original = regcache_read_pc (regcache);
1808
1809 copy = gdbarch_displaced_step_location (gdbarch);
1810 len = gdbarch_max_insn_length (gdbarch);
1811
1812 if (breakpoint_in_range_p (aspace, copy, len))
1813 {
1814 /* There's a breakpoint set in the scratch pad location range
1815 (which is usually around the entry point). We'd either
1816 install it before resuming, which would overwrite/corrupt the
1817 scratch pad, or if it was already inserted, this displaced
1818 step would overwrite it. The latter is OK in the sense that
1819 we already assume that no thread is going to execute the code
1820 in the scratch pad range (after initial startup) anyway, but
1821 the former is unacceptable. Simply punt and fallback to
1822 stepping over this breakpoint in-line. */
1823 if (debug_displaced)
1824 {
1825 fprintf_unfiltered (gdb_stdlog,
1826 "displaced: breakpoint set in scratch pad. "
1827 "Stepping over breakpoint in-line instead.\n");
1828 }
1829
1830 do_cleanups (old_cleanups);
1831 return -1;
1832 }
1833
1834 /* Save the original contents of the copy area. */
1835 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1836 ignore_cleanups = make_cleanup (free_current_contents,
1837 &displaced->step_saved_copy);
1838 status = target_read_memory (copy, displaced->step_saved_copy, len);
1839 if (status != 0)
1840 throw_error (MEMORY_ERROR,
1841 _("Error accessing memory address %s (%s) for "
1842 "displaced-stepping scratch space."),
1843 paddress (gdbarch, copy), safe_strerror (status));
1844 if (debug_displaced)
1845 {
1846 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1847 paddress (gdbarch, copy));
1848 displaced_step_dump_bytes (gdb_stdlog,
1849 displaced->step_saved_copy,
1850 len);
1851 };
1852
1853 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1854 original, copy, regcache);
1855 if (closure == NULL)
1856 {
1857 /* The architecture doesn't know how or want to displaced step
1858 this instruction or instruction sequence. Fallback to
1859 stepping over the breakpoint in-line. */
1860 do_cleanups (old_cleanups);
1861 return -1;
1862 }
1863
1864 /* Save the information we need to fix things up if the step
1865 succeeds. */
1866 displaced->step_ptid = ptid;
1867 displaced->step_gdbarch = gdbarch;
1868 displaced->step_closure = closure;
1869 displaced->step_original = original;
1870 displaced->step_copy = copy;
1871
1872 make_cleanup (displaced_step_clear_cleanup, displaced);
1873
1874 /* Resume execution at the copy. */
1875 regcache_write_pc (regcache, copy);
1876
1877 discard_cleanups (ignore_cleanups);
1878
1879 do_cleanups (old_cleanups);
1880
1881 if (debug_displaced)
1882 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1883 paddress (gdbarch, copy));
1884
1885 return 1;
1886 }
1887
1888 /* Wrapper for displaced_step_prepare_throw that disabled further
1889 attempts at displaced stepping if we get a memory error. */
1890
1891 static int
1892 displaced_step_prepare (ptid_t ptid)
1893 {
1894 int prepared = -1;
1895
1896 TRY
1897 {
1898 prepared = displaced_step_prepare_throw (ptid);
1899 }
1900 CATCH (ex, RETURN_MASK_ERROR)
1901 {
1902 struct displaced_step_inferior_state *displaced_state;
1903
1904 if (ex.error != MEMORY_ERROR
1905 && ex.error != NOT_SUPPORTED_ERROR)
1906 throw_exception (ex);
1907
1908 if (debug_infrun)
1909 {
1910 fprintf_unfiltered (gdb_stdlog,
1911 "infrun: disabling displaced stepping: %s\n",
1912 ex.message);
1913 }
1914
1915 /* Be verbose if "set displaced-stepping" is "on", silent if
1916 "auto". */
1917 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1918 {
1919 warning (_("disabling displaced stepping: %s"),
1920 ex.message);
1921 }
1922
1923 /* Disable further displaced stepping attempts. */
1924 displaced_state
1925 = get_displaced_stepping_state (ptid_get_pid (ptid));
1926 displaced_state->failed_before = 1;
1927 }
1928 END_CATCH
1929
1930 return prepared;
1931 }
1932
1933 static void
1934 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1935 const gdb_byte *myaddr, int len)
1936 {
1937 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1938
1939 inferior_ptid = ptid;
1940 write_memory (memaddr, myaddr, len);
1941 do_cleanups (ptid_cleanup);
1942 }
1943
1944 /* Restore the contents of the copy area for thread PTID. */
1945
1946 static void
1947 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1948 ptid_t ptid)
1949 {
1950 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1951
1952 write_memory_ptid (ptid, displaced->step_copy,
1953 displaced->step_saved_copy, len);
1954 if (debug_displaced)
1955 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1956 target_pid_to_str (ptid),
1957 paddress (displaced->step_gdbarch,
1958 displaced->step_copy));
1959 }
1960
1961 /* If we displaced stepped an instruction successfully, adjust
1962 registers and memory to yield the same effect the instruction would
1963 have had if we had executed it at its original address, and return
1964 1. If the instruction didn't complete, relocate the PC and return
1965 -1. If the thread wasn't displaced stepping, return 0. */
1966
1967 static int
1968 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1969 {
1970 struct cleanup *old_cleanups;
1971 struct displaced_step_inferior_state *displaced
1972 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1973 int ret;
1974
1975 /* Was any thread of this process doing a displaced step? */
1976 if (displaced == NULL)
1977 return 0;
1978
1979 /* Was this event for the pid we displaced? */
1980 if (ptid_equal (displaced->step_ptid, null_ptid)
1981 || ! ptid_equal (displaced->step_ptid, event_ptid))
1982 return 0;
1983
1984 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1985
1986 displaced_step_restore (displaced, displaced->step_ptid);
1987
1988 /* Fixup may need to read memory/registers. Switch to the thread
1989 that we're fixing up. Also, target_stopped_by_watchpoint checks
1990 the current thread. */
1991 switch_to_thread (event_ptid);
1992
1993 /* Did the instruction complete successfully? */
1994 if (signal == GDB_SIGNAL_TRAP
1995 && !(target_stopped_by_watchpoint ()
1996 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1997 || target_have_steppable_watchpoint)))
1998 {
1999 /* Fix up the resulting state. */
2000 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2001 displaced->step_closure,
2002 displaced->step_original,
2003 displaced->step_copy,
2004 get_thread_regcache (displaced->step_ptid));
2005 ret = 1;
2006 }
2007 else
2008 {
2009 /* Since the instruction didn't complete, all we can do is
2010 relocate the PC. */
2011 struct regcache *regcache = get_thread_regcache (event_ptid);
2012 CORE_ADDR pc = regcache_read_pc (regcache);
2013
2014 pc = displaced->step_original + (pc - displaced->step_copy);
2015 regcache_write_pc (regcache, pc);
2016 ret = -1;
2017 }
2018
2019 do_cleanups (old_cleanups);
2020
2021 displaced->step_ptid = null_ptid;
2022
2023 return ret;
2024 }
2025
2026 /* Data to be passed around while handling an event. This data is
2027 discarded between events. */
2028 struct execution_control_state
2029 {
2030 ptid_t ptid;
2031 /* The thread that got the event, if this was a thread event; NULL
2032 otherwise. */
2033 struct thread_info *event_thread;
2034
2035 struct target_waitstatus ws;
2036 int stop_func_filled_in;
2037 CORE_ADDR stop_func_start;
2038 CORE_ADDR stop_func_end;
2039 const char *stop_func_name;
2040 int wait_some_more;
2041
2042 /* True if the event thread hit the single-step breakpoint of
2043 another thread. Thus the event doesn't cause a stop, the thread
2044 needs to be single-stepped past the single-step breakpoint before
2045 we can switch back to the original stepping thread. */
2046 int hit_singlestep_breakpoint;
2047 };
2048
2049 /* Clear ECS and set it to point at TP. */
2050
2051 static void
2052 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2053 {
2054 memset (ecs, 0, sizeof (*ecs));
2055 ecs->event_thread = tp;
2056 ecs->ptid = tp->ptid;
2057 }
2058
2059 static void keep_going_pass_signal (struct execution_control_state *ecs);
2060 static void prepare_to_wait (struct execution_control_state *ecs);
2061 static int keep_going_stepped_thread (struct thread_info *tp);
2062 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2063
2064 /* Are there any pending step-over requests? If so, run all we can
2065 now and return true. Otherwise, return false. */
2066
2067 static int
2068 start_step_over (void)
2069 {
2070 struct thread_info *tp, *next;
2071
2072 /* Don't start a new step-over if we already have an in-line
2073 step-over operation ongoing. */
2074 if (step_over_info_valid_p ())
2075 return 0;
2076
2077 for (tp = step_over_queue_head; tp != NULL; tp = next)
2078 {
2079 struct execution_control_state ecss;
2080 struct execution_control_state *ecs = &ecss;
2081 step_over_what step_what;
2082 int must_be_in_line;
2083
2084 next = thread_step_over_chain_next (tp);
2085
2086 /* If this inferior already has a displaced step in process,
2087 don't start a new one. */
2088 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2089 continue;
2090
2091 step_what = thread_still_needs_step_over (tp);
2092 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2093 || ((step_what & STEP_OVER_BREAKPOINT)
2094 && !use_displaced_stepping (tp)));
2095
2096 /* We currently stop all threads of all processes to step-over
2097 in-line. If we need to start a new in-line step-over, let
2098 any pending displaced steps finish first. */
2099 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2100 return 0;
2101
2102 thread_step_over_chain_remove (tp);
2103
2104 if (step_over_queue_head == NULL)
2105 {
2106 if (debug_infrun)
2107 fprintf_unfiltered (gdb_stdlog,
2108 "infrun: step-over queue now empty\n");
2109 }
2110
2111 if (tp->control.trap_expected
2112 || tp->resumed
2113 || tp->executing)
2114 {
2115 internal_error (__FILE__, __LINE__,
2116 "[%s] has inconsistent state: "
2117 "trap_expected=%d, resumed=%d, executing=%d\n",
2118 target_pid_to_str (tp->ptid),
2119 tp->control.trap_expected,
2120 tp->resumed,
2121 tp->executing);
2122 }
2123
2124 if (debug_infrun)
2125 fprintf_unfiltered (gdb_stdlog,
2126 "infrun: resuming [%s] for step-over\n",
2127 target_pid_to_str (tp->ptid));
2128
2129 /* keep_going_pass_signal skips the step-over if the breakpoint
2130 is no longer inserted. In all-stop, we want to keep looking
2131 for a thread that needs a step-over instead of resuming TP,
2132 because we wouldn't be able to resume anything else until the
2133 target stops again. In non-stop, the resume always resumes
2134 only TP, so it's OK to let the thread resume freely. */
2135 if (!target_is_non_stop_p () && !step_what)
2136 continue;
2137
2138 switch_to_thread (tp->ptid);
2139 reset_ecs (ecs, tp);
2140 keep_going_pass_signal (ecs);
2141
2142 if (!ecs->wait_some_more)
2143 error (_("Command aborted."));
2144
2145 gdb_assert (tp->resumed);
2146
2147 /* If we started a new in-line step-over, we're done. */
2148 if (step_over_info_valid_p ())
2149 {
2150 gdb_assert (tp->control.trap_expected);
2151 return 1;
2152 }
2153
2154 if (!target_is_non_stop_p ())
2155 {
2156 /* On all-stop, shouldn't have resumed unless we needed a
2157 step over. */
2158 gdb_assert (tp->control.trap_expected
2159 || tp->step_after_step_resume_breakpoint);
2160
2161 /* With remote targets (at least), in all-stop, we can't
2162 issue any further remote commands until the program stops
2163 again. */
2164 return 1;
2165 }
2166
2167 /* Either the thread no longer needed a step-over, or a new
2168 displaced stepping sequence started. Even in the latter
2169 case, continue looking. Maybe we can also start another
2170 displaced step on a thread of other process. */
2171 }
2172
2173 return 0;
2174 }
2175
2176 /* Update global variables holding ptids to hold NEW_PTID if they were
2177 holding OLD_PTID. */
2178 static void
2179 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2180 {
2181 struct displaced_step_inferior_state *displaced;
2182
2183 if (ptid_equal (inferior_ptid, old_ptid))
2184 inferior_ptid = new_ptid;
2185
2186 for (displaced = displaced_step_inferior_states;
2187 displaced;
2188 displaced = displaced->next)
2189 {
2190 if (ptid_equal (displaced->step_ptid, old_ptid))
2191 displaced->step_ptid = new_ptid;
2192 }
2193 }
2194
2195 \f
2196 /* Resuming. */
2197
2198 /* Things to clean up if we QUIT out of resume (). */
2199 static void
2200 resume_cleanups (void *ignore)
2201 {
2202 if (!ptid_equal (inferior_ptid, null_ptid))
2203 delete_single_step_breakpoints (inferior_thread ());
2204
2205 normal_stop ();
2206 }
2207
2208 static const char schedlock_off[] = "off";
2209 static const char schedlock_on[] = "on";
2210 static const char schedlock_step[] = "step";
2211 static const char schedlock_replay[] = "replay";
2212 static const char *const scheduler_enums[] = {
2213 schedlock_off,
2214 schedlock_on,
2215 schedlock_step,
2216 schedlock_replay,
2217 NULL
2218 };
2219 static const char *scheduler_mode = schedlock_replay;
2220 static void
2221 show_scheduler_mode (struct ui_file *file, int from_tty,
2222 struct cmd_list_element *c, const char *value)
2223 {
2224 fprintf_filtered (file,
2225 _("Mode for locking scheduler "
2226 "during execution is \"%s\".\n"),
2227 value);
2228 }
2229
2230 static void
2231 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2232 {
2233 if (!target_can_lock_scheduler)
2234 {
2235 scheduler_mode = schedlock_off;
2236 error (_("Target '%s' cannot support this command."), target_shortname);
2237 }
2238 }
2239
2240 /* True if execution commands resume all threads of all processes by
2241 default; otherwise, resume only threads of the current inferior
2242 process. */
2243 int sched_multi = 0;
2244
2245 /* Try to setup for software single stepping over the specified location.
2246 Return 1 if target_resume() should use hardware single step.
2247
2248 GDBARCH the current gdbarch.
2249 PC the location to step over. */
2250
2251 static int
2252 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2253 {
2254 int hw_step = 1;
2255
2256 if (execution_direction == EXEC_FORWARD
2257 && gdbarch_software_single_step_p (gdbarch))
2258 hw_step = !insert_single_step_breakpoints (gdbarch);
2259
2260 return hw_step;
2261 }
2262
2263 /* See infrun.h. */
2264
2265 ptid_t
2266 user_visible_resume_ptid (int step)
2267 {
2268 ptid_t resume_ptid;
2269
2270 if (non_stop)
2271 {
2272 /* With non-stop mode on, threads are always handled
2273 individually. */
2274 resume_ptid = inferior_ptid;
2275 }
2276 else if ((scheduler_mode == schedlock_on)
2277 || (scheduler_mode == schedlock_step && step))
2278 {
2279 /* User-settable 'scheduler' mode requires solo thread
2280 resume. */
2281 resume_ptid = inferior_ptid;
2282 }
2283 else if ((scheduler_mode == schedlock_replay)
2284 && target_record_will_replay (minus_one_ptid, execution_direction))
2285 {
2286 /* User-settable 'scheduler' mode requires solo thread resume in replay
2287 mode. */
2288 resume_ptid = inferior_ptid;
2289 }
2290 else if (!sched_multi && target_supports_multi_process ())
2291 {
2292 /* Resume all threads of the current process (and none of other
2293 processes). */
2294 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2295 }
2296 else
2297 {
2298 /* Resume all threads of all processes. */
2299 resume_ptid = RESUME_ALL;
2300 }
2301
2302 return resume_ptid;
2303 }
2304
2305 /* Return a ptid representing the set of threads that we will resume,
2306 in the perspective of the target, assuming run control handling
2307 does not require leaving some threads stopped (e.g., stepping past
2308 breakpoint). USER_STEP indicates whether we're about to start the
2309 target for a stepping command. */
2310
2311 static ptid_t
2312 internal_resume_ptid (int user_step)
2313 {
2314 /* In non-stop, we always control threads individually. Note that
2315 the target may always work in non-stop mode even with "set
2316 non-stop off", in which case user_visible_resume_ptid could
2317 return a wildcard ptid. */
2318 if (target_is_non_stop_p ())
2319 return inferior_ptid;
2320 else
2321 return user_visible_resume_ptid (user_step);
2322 }
2323
2324 /* Wrapper for target_resume, that handles infrun-specific
2325 bookkeeping. */
2326
2327 static void
2328 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2329 {
2330 struct thread_info *tp = inferior_thread ();
2331
2332 /* Install inferior's terminal modes. */
2333 target_terminal_inferior ();
2334
2335 /* Avoid confusing the next resume, if the next stop/resume
2336 happens to apply to another thread. */
2337 tp->suspend.stop_signal = GDB_SIGNAL_0;
2338
2339 /* Advise target which signals may be handled silently.
2340
2341 If we have removed breakpoints because we are stepping over one
2342 in-line (in any thread), we need to receive all signals to avoid
2343 accidentally skipping a breakpoint during execution of a signal
2344 handler.
2345
2346 Likewise if we're displaced stepping, otherwise a trap for a
2347 breakpoint in a signal handler might be confused with the
2348 displaced step finishing. We don't make the displaced_step_fixup
2349 step distinguish the cases instead, because:
2350
2351 - a backtrace while stopped in the signal handler would show the
2352 scratch pad as frame older than the signal handler, instead of
2353 the real mainline code.
2354
2355 - when the thread is later resumed, the signal handler would
2356 return to the scratch pad area, which would no longer be
2357 valid. */
2358 if (step_over_info_valid_p ()
2359 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2360 target_pass_signals (0, NULL);
2361 else
2362 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2363
2364 target_resume (resume_ptid, step, sig);
2365
2366 target_commit_resume ();
2367 }
2368
2369 /* Resume the inferior, but allow a QUIT. This is useful if the user
2370 wants to interrupt some lengthy single-stepping operation
2371 (for child processes, the SIGINT goes to the inferior, and so
2372 we get a SIGINT random_signal, but for remote debugging and perhaps
2373 other targets, that's not true).
2374
2375 SIG is the signal to give the inferior (zero for none). */
2376 void
2377 resume (enum gdb_signal sig)
2378 {
2379 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2380 struct regcache *regcache = get_current_regcache ();
2381 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2382 struct thread_info *tp = inferior_thread ();
2383 CORE_ADDR pc = regcache_read_pc (regcache);
2384 struct address_space *aspace = get_regcache_aspace (regcache);
2385 ptid_t resume_ptid;
2386 /* This represents the user's step vs continue request. When
2387 deciding whether "set scheduler-locking step" applies, it's the
2388 user's intention that counts. */
2389 const int user_step = tp->control.stepping_command;
2390 /* This represents what we'll actually request the target to do.
2391 This can decay from a step to a continue, if e.g., we need to
2392 implement single-stepping with breakpoints (software
2393 single-step). */
2394 int step;
2395
2396 gdb_assert (!thread_is_in_step_over_chain (tp));
2397
2398 QUIT;
2399
2400 if (tp->suspend.waitstatus_pending_p)
2401 {
2402 if (debug_infrun)
2403 {
2404 char *statstr;
2405
2406 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2407 fprintf_unfiltered (gdb_stdlog,
2408 "infrun: resume: thread %s has pending wait status %s "
2409 "(currently_stepping=%d).\n",
2410 target_pid_to_str (tp->ptid), statstr,
2411 currently_stepping (tp));
2412 xfree (statstr);
2413 }
2414
2415 tp->resumed = 1;
2416
2417 /* FIXME: What should we do if we are supposed to resume this
2418 thread with a signal? Maybe we should maintain a queue of
2419 pending signals to deliver. */
2420 if (sig != GDB_SIGNAL_0)
2421 {
2422 warning (_("Couldn't deliver signal %s to %s."),
2423 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2424 }
2425
2426 tp->suspend.stop_signal = GDB_SIGNAL_0;
2427 discard_cleanups (old_cleanups);
2428
2429 if (target_can_async_p ())
2430 target_async (1);
2431 return;
2432 }
2433
2434 tp->stepped_breakpoint = 0;
2435
2436 /* Depends on stepped_breakpoint. */
2437 step = currently_stepping (tp);
2438
2439 if (current_inferior ()->waiting_for_vfork_done)
2440 {
2441 /* Don't try to single-step a vfork parent that is waiting for
2442 the child to get out of the shared memory region (by exec'ing
2443 or exiting). This is particularly important on software
2444 single-step archs, as the child process would trip on the
2445 software single step breakpoint inserted for the parent
2446 process. Since the parent will not actually execute any
2447 instruction until the child is out of the shared region (such
2448 are vfork's semantics), it is safe to simply continue it.
2449 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2450 the parent, and tell it to `keep_going', which automatically
2451 re-sets it stepping. */
2452 if (debug_infrun)
2453 fprintf_unfiltered (gdb_stdlog,
2454 "infrun: resume : clear step\n");
2455 step = 0;
2456 }
2457
2458 if (debug_infrun)
2459 fprintf_unfiltered (gdb_stdlog,
2460 "infrun: resume (step=%d, signal=%s), "
2461 "trap_expected=%d, current thread [%s] at %s\n",
2462 step, gdb_signal_to_symbol_string (sig),
2463 tp->control.trap_expected,
2464 target_pid_to_str (inferior_ptid),
2465 paddress (gdbarch, pc));
2466
2467 /* Normally, by the time we reach `resume', the breakpoints are either
2468 removed or inserted, as appropriate. The exception is if we're sitting
2469 at a permanent breakpoint; we need to step over it, but permanent
2470 breakpoints can't be removed. So we have to test for it here. */
2471 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2472 {
2473 if (sig != GDB_SIGNAL_0)
2474 {
2475 /* We have a signal to pass to the inferior. The resume
2476 may, or may not take us to the signal handler. If this
2477 is a step, we'll need to stop in the signal handler, if
2478 there's one, (if the target supports stepping into
2479 handlers), or in the next mainline instruction, if
2480 there's no handler. If this is a continue, we need to be
2481 sure to run the handler with all breakpoints inserted.
2482 In all cases, set a breakpoint at the current address
2483 (where the handler returns to), and once that breakpoint
2484 is hit, resume skipping the permanent breakpoint. If
2485 that breakpoint isn't hit, then we've stepped into the
2486 signal handler (or hit some other event). We'll delete
2487 the step-resume breakpoint then. */
2488
2489 if (debug_infrun)
2490 fprintf_unfiltered (gdb_stdlog,
2491 "infrun: resume: skipping permanent breakpoint, "
2492 "deliver signal first\n");
2493
2494 clear_step_over_info ();
2495 tp->control.trap_expected = 0;
2496
2497 if (tp->control.step_resume_breakpoint == NULL)
2498 {
2499 /* Set a "high-priority" step-resume, as we don't want
2500 user breakpoints at PC to trigger (again) when this
2501 hits. */
2502 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2503 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2504
2505 tp->step_after_step_resume_breakpoint = step;
2506 }
2507
2508 insert_breakpoints ();
2509 }
2510 else
2511 {
2512 /* There's no signal to pass, we can go ahead and skip the
2513 permanent breakpoint manually. */
2514 if (debug_infrun)
2515 fprintf_unfiltered (gdb_stdlog,
2516 "infrun: resume: skipping permanent breakpoint\n");
2517 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2518 /* Update pc to reflect the new address from which we will
2519 execute instructions. */
2520 pc = regcache_read_pc (regcache);
2521
2522 if (step)
2523 {
2524 /* We've already advanced the PC, so the stepping part
2525 is done. Now we need to arrange for a trap to be
2526 reported to handle_inferior_event. Set a breakpoint
2527 at the current PC, and run to it. Don't update
2528 prev_pc, because if we end in
2529 switch_back_to_stepped_thread, we want the "expected
2530 thread advanced also" branch to be taken. IOW, we
2531 don't want this thread to step further from PC
2532 (overstep). */
2533 gdb_assert (!step_over_info_valid_p ());
2534 insert_single_step_breakpoint (gdbarch, aspace, pc);
2535 insert_breakpoints ();
2536
2537 resume_ptid = internal_resume_ptid (user_step);
2538 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2539 discard_cleanups (old_cleanups);
2540 tp->resumed = 1;
2541 return;
2542 }
2543 }
2544 }
2545
2546 /* If we have a breakpoint to step over, make sure to do a single
2547 step only. Same if we have software watchpoints. */
2548 if (tp->control.trap_expected || bpstat_should_step ())
2549 tp->control.may_range_step = 0;
2550
2551 /* If enabled, step over breakpoints by executing a copy of the
2552 instruction at a different address.
2553
2554 We can't use displaced stepping when we have a signal to deliver;
2555 the comments for displaced_step_prepare explain why. The
2556 comments in the handle_inferior event for dealing with 'random
2557 signals' explain what we do instead.
2558
2559 We can't use displaced stepping when we are waiting for vfork_done
2560 event, displaced stepping breaks the vfork child similarly as single
2561 step software breakpoint. */
2562 if (tp->control.trap_expected
2563 && use_displaced_stepping (tp)
2564 && !step_over_info_valid_p ()
2565 && sig == GDB_SIGNAL_0
2566 && !current_inferior ()->waiting_for_vfork_done)
2567 {
2568 int prepared = displaced_step_prepare (inferior_ptid);
2569
2570 if (prepared == 0)
2571 {
2572 if (debug_infrun)
2573 fprintf_unfiltered (gdb_stdlog,
2574 "Got placed in step-over queue\n");
2575
2576 tp->control.trap_expected = 0;
2577 discard_cleanups (old_cleanups);
2578 return;
2579 }
2580 else if (prepared < 0)
2581 {
2582 /* Fallback to stepping over the breakpoint in-line. */
2583
2584 if (target_is_non_stop_p ())
2585 stop_all_threads ();
2586
2587 set_step_over_info (get_regcache_aspace (regcache),
2588 regcache_read_pc (regcache), 0, tp->global_num);
2589
2590 step = maybe_software_singlestep (gdbarch, pc);
2591
2592 insert_breakpoints ();
2593 }
2594 else if (prepared > 0)
2595 {
2596 struct displaced_step_inferior_state *displaced;
2597
2598 /* Update pc to reflect the new address from which we will
2599 execute instructions due to displaced stepping. */
2600 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2601
2602 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2603 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2604 displaced->step_closure);
2605 }
2606 }
2607
2608 /* Do we need to do it the hard way, w/temp breakpoints? */
2609 else if (step)
2610 step = maybe_software_singlestep (gdbarch, pc);
2611
2612 /* Currently, our software single-step implementation leads to different
2613 results than hardware single-stepping in one situation: when stepping
2614 into delivering a signal which has an associated signal handler,
2615 hardware single-step will stop at the first instruction of the handler,
2616 while software single-step will simply skip execution of the handler.
2617
2618 For now, this difference in behavior is accepted since there is no
2619 easy way to actually implement single-stepping into a signal handler
2620 without kernel support.
2621
2622 However, there is one scenario where this difference leads to follow-on
2623 problems: if we're stepping off a breakpoint by removing all breakpoints
2624 and then single-stepping. In this case, the software single-step
2625 behavior means that even if there is a *breakpoint* in the signal
2626 handler, GDB still would not stop.
2627
2628 Fortunately, we can at least fix this particular issue. We detect
2629 here the case where we are about to deliver a signal while software
2630 single-stepping with breakpoints removed. In this situation, we
2631 revert the decisions to remove all breakpoints and insert single-
2632 step breakpoints, and instead we install a step-resume breakpoint
2633 at the current address, deliver the signal without stepping, and
2634 once we arrive back at the step-resume breakpoint, actually step
2635 over the breakpoint we originally wanted to step over. */
2636 if (thread_has_single_step_breakpoints_set (tp)
2637 && sig != GDB_SIGNAL_0
2638 && step_over_info_valid_p ())
2639 {
2640 /* If we have nested signals or a pending signal is delivered
2641 immediately after a handler returns, might might already have
2642 a step-resume breakpoint set on the earlier handler. We cannot
2643 set another step-resume breakpoint; just continue on until the
2644 original breakpoint is hit. */
2645 if (tp->control.step_resume_breakpoint == NULL)
2646 {
2647 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2648 tp->step_after_step_resume_breakpoint = 1;
2649 }
2650
2651 delete_single_step_breakpoints (tp);
2652
2653 clear_step_over_info ();
2654 tp->control.trap_expected = 0;
2655
2656 insert_breakpoints ();
2657 }
2658
2659 /* If STEP is set, it's a request to use hardware stepping
2660 facilities. But in that case, we should never
2661 use singlestep breakpoint. */
2662 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2663
2664 /* Decide the set of threads to ask the target to resume. */
2665 if (tp->control.trap_expected)
2666 {
2667 /* We're allowing a thread to run past a breakpoint it has
2668 hit, either by single-stepping the thread with the breakpoint
2669 removed, or by displaced stepping, with the breakpoint inserted.
2670 In the former case, we need to single-step only this thread,
2671 and keep others stopped, as they can miss this breakpoint if
2672 allowed to run. That's not really a problem for displaced
2673 stepping, but, we still keep other threads stopped, in case
2674 another thread is also stopped for a breakpoint waiting for
2675 its turn in the displaced stepping queue. */
2676 resume_ptid = inferior_ptid;
2677 }
2678 else
2679 resume_ptid = internal_resume_ptid (user_step);
2680
2681 if (execution_direction != EXEC_REVERSE
2682 && step && breakpoint_inserted_here_p (aspace, pc))
2683 {
2684 /* There are two cases where we currently need to step a
2685 breakpoint instruction when we have a signal to deliver:
2686
2687 - See handle_signal_stop where we handle random signals that
2688 could take out us out of the stepping range. Normally, in
2689 that case we end up continuing (instead of stepping) over the
2690 signal handler with a breakpoint at PC, but there are cases
2691 where we should _always_ single-step, even if we have a
2692 step-resume breakpoint, like when a software watchpoint is
2693 set. Assuming single-stepping and delivering a signal at the
2694 same time would takes us to the signal handler, then we could
2695 have removed the breakpoint at PC to step over it. However,
2696 some hardware step targets (like e.g., Mac OS) can't step
2697 into signal handlers, and for those, we need to leave the
2698 breakpoint at PC inserted, as otherwise if the handler
2699 recurses and executes PC again, it'll miss the breakpoint.
2700 So we leave the breakpoint inserted anyway, but we need to
2701 record that we tried to step a breakpoint instruction, so
2702 that adjust_pc_after_break doesn't end up confused.
2703
2704 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2705 in one thread after another thread that was stepping had been
2706 momentarily paused for a step-over. When we re-resume the
2707 stepping thread, it may be resumed from that address with a
2708 breakpoint that hasn't trapped yet. Seen with
2709 gdb.threads/non-stop-fair-events.exp, on targets that don't
2710 do displaced stepping. */
2711
2712 if (debug_infrun)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "infrun: resume: [%s] stepped breakpoint\n",
2715 target_pid_to_str (tp->ptid));
2716
2717 tp->stepped_breakpoint = 1;
2718
2719 /* Most targets can step a breakpoint instruction, thus
2720 executing it normally. But if this one cannot, just
2721 continue and we will hit it anyway. */
2722 if (gdbarch_cannot_step_breakpoint (gdbarch))
2723 step = 0;
2724 }
2725
2726 if (debug_displaced
2727 && tp->control.trap_expected
2728 && use_displaced_stepping (tp)
2729 && !step_over_info_valid_p ())
2730 {
2731 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2732 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2733 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2734 gdb_byte buf[4];
2735
2736 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2737 paddress (resume_gdbarch, actual_pc));
2738 read_memory (actual_pc, buf, sizeof (buf));
2739 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2740 }
2741
2742 if (tp->control.may_range_step)
2743 {
2744 /* If we're resuming a thread with the PC out of the step
2745 range, then we're doing some nested/finer run control
2746 operation, like stepping the thread out of the dynamic
2747 linker or the displaced stepping scratch pad. We
2748 shouldn't have allowed a range step then. */
2749 gdb_assert (pc_in_thread_step_range (pc, tp));
2750 }
2751
2752 do_target_resume (resume_ptid, step, sig);
2753 tp->resumed = 1;
2754 discard_cleanups (old_cleanups);
2755 }
2756 \f
2757 /* Proceeding. */
2758
2759 /* See infrun.h. */
2760
2761 /* Counter that tracks number of user visible stops. This can be used
2762 to tell whether a command has proceeded the inferior past the
2763 current location. This allows e.g., inferior function calls in
2764 breakpoint commands to not interrupt the command list. When the
2765 call finishes successfully, the inferior is standing at the same
2766 breakpoint as if nothing happened (and so we don't call
2767 normal_stop). */
2768 static ULONGEST current_stop_id;
2769
2770 /* See infrun.h. */
2771
2772 ULONGEST
2773 get_stop_id (void)
2774 {
2775 return current_stop_id;
2776 }
2777
2778 /* Called when we report a user visible stop. */
2779
2780 static void
2781 new_stop_id (void)
2782 {
2783 current_stop_id++;
2784 }
2785
2786 /* Clear out all variables saying what to do when inferior is continued.
2787 First do this, then set the ones you want, then call `proceed'. */
2788
2789 static void
2790 clear_proceed_status_thread (struct thread_info *tp)
2791 {
2792 if (debug_infrun)
2793 fprintf_unfiltered (gdb_stdlog,
2794 "infrun: clear_proceed_status_thread (%s)\n",
2795 target_pid_to_str (tp->ptid));
2796
2797 /* If we're starting a new sequence, then the previous finished
2798 single-step is no longer relevant. */
2799 if (tp->suspend.waitstatus_pending_p)
2800 {
2801 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2802 {
2803 if (debug_infrun)
2804 fprintf_unfiltered (gdb_stdlog,
2805 "infrun: clear_proceed_status: pending "
2806 "event of %s was a finished step. "
2807 "Discarding.\n",
2808 target_pid_to_str (tp->ptid));
2809
2810 tp->suspend.waitstatus_pending_p = 0;
2811 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2812 }
2813 else if (debug_infrun)
2814 {
2815 char *statstr;
2816
2817 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2818 fprintf_unfiltered (gdb_stdlog,
2819 "infrun: clear_proceed_status_thread: thread %s "
2820 "has pending wait status %s "
2821 "(currently_stepping=%d).\n",
2822 target_pid_to_str (tp->ptid), statstr,
2823 currently_stepping (tp));
2824 xfree (statstr);
2825 }
2826 }
2827
2828 /* If this signal should not be seen by program, give it zero.
2829 Used for debugging signals. */
2830 if (!signal_pass_state (tp->suspend.stop_signal))
2831 tp->suspend.stop_signal = GDB_SIGNAL_0;
2832
2833 thread_fsm_delete (tp->thread_fsm);
2834 tp->thread_fsm = NULL;
2835
2836 tp->control.trap_expected = 0;
2837 tp->control.step_range_start = 0;
2838 tp->control.step_range_end = 0;
2839 tp->control.may_range_step = 0;
2840 tp->control.step_frame_id = null_frame_id;
2841 tp->control.step_stack_frame_id = null_frame_id;
2842 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2843 tp->control.step_start_function = NULL;
2844 tp->stop_requested = 0;
2845
2846 tp->control.stop_step = 0;
2847
2848 tp->control.proceed_to_finish = 0;
2849
2850 tp->control.stepping_command = 0;
2851
2852 /* Discard any remaining commands or status from previous stop. */
2853 bpstat_clear (&tp->control.stop_bpstat);
2854 }
2855
2856 void
2857 clear_proceed_status (int step)
2858 {
2859 /* With scheduler-locking replay, stop replaying other threads if we're
2860 not replaying the user-visible resume ptid.
2861
2862 This is a convenience feature to not require the user to explicitly
2863 stop replaying the other threads. We're assuming that the user's
2864 intent is to resume tracing the recorded process. */
2865 if (!non_stop && scheduler_mode == schedlock_replay
2866 && target_record_is_replaying (minus_one_ptid)
2867 && !target_record_will_replay (user_visible_resume_ptid (step),
2868 execution_direction))
2869 target_record_stop_replaying ();
2870
2871 if (!non_stop)
2872 {
2873 struct thread_info *tp;
2874 ptid_t resume_ptid;
2875
2876 resume_ptid = user_visible_resume_ptid (step);
2877
2878 /* In all-stop mode, delete the per-thread status of all threads
2879 we're about to resume, implicitly and explicitly. */
2880 ALL_NON_EXITED_THREADS (tp)
2881 {
2882 if (!ptid_match (tp->ptid, resume_ptid))
2883 continue;
2884 clear_proceed_status_thread (tp);
2885 }
2886 }
2887
2888 if (!ptid_equal (inferior_ptid, null_ptid))
2889 {
2890 struct inferior *inferior;
2891
2892 if (non_stop)
2893 {
2894 /* If in non-stop mode, only delete the per-thread status of
2895 the current thread. */
2896 clear_proceed_status_thread (inferior_thread ());
2897 }
2898
2899 inferior = current_inferior ();
2900 inferior->control.stop_soon = NO_STOP_QUIETLY;
2901 }
2902
2903 observer_notify_about_to_proceed ();
2904 }
2905
2906 /* Returns true if TP is still stopped at a breakpoint that needs
2907 stepping-over in order to make progress. If the breakpoint is gone
2908 meanwhile, we can skip the whole step-over dance. */
2909
2910 static int
2911 thread_still_needs_step_over_bp (struct thread_info *tp)
2912 {
2913 if (tp->stepping_over_breakpoint)
2914 {
2915 struct regcache *regcache = get_thread_regcache (tp->ptid);
2916
2917 if (breakpoint_here_p (get_regcache_aspace (regcache),
2918 regcache_read_pc (regcache))
2919 == ordinary_breakpoint_here)
2920 return 1;
2921
2922 tp->stepping_over_breakpoint = 0;
2923 }
2924
2925 return 0;
2926 }
2927
2928 /* Check whether thread TP still needs to start a step-over in order
2929 to make progress when resumed. Returns an bitwise or of enum
2930 step_over_what bits, indicating what needs to be stepped over. */
2931
2932 static step_over_what
2933 thread_still_needs_step_over (struct thread_info *tp)
2934 {
2935 step_over_what what = 0;
2936
2937 if (thread_still_needs_step_over_bp (tp))
2938 what |= STEP_OVER_BREAKPOINT;
2939
2940 if (tp->stepping_over_watchpoint
2941 && !target_have_steppable_watchpoint)
2942 what |= STEP_OVER_WATCHPOINT;
2943
2944 return what;
2945 }
2946
2947 /* Returns true if scheduler locking applies. STEP indicates whether
2948 we're about to do a step/next-like command to a thread. */
2949
2950 static int
2951 schedlock_applies (struct thread_info *tp)
2952 {
2953 return (scheduler_mode == schedlock_on
2954 || (scheduler_mode == schedlock_step
2955 && tp->control.stepping_command)
2956 || (scheduler_mode == schedlock_replay
2957 && target_record_will_replay (minus_one_ptid,
2958 execution_direction)));
2959 }
2960
2961 /* Basic routine for continuing the program in various fashions.
2962
2963 ADDR is the address to resume at, or -1 for resume where stopped.
2964 SIGGNAL is the signal to give it, or 0 for none,
2965 or -1 for act according to how it stopped.
2966 STEP is nonzero if should trap after one instruction.
2967 -1 means return after that and print nothing.
2968 You should probably set various step_... variables
2969 before calling here, if you are stepping.
2970
2971 You should call clear_proceed_status before calling proceed. */
2972
2973 void
2974 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2975 {
2976 struct regcache *regcache;
2977 struct gdbarch *gdbarch;
2978 struct thread_info *tp;
2979 CORE_ADDR pc;
2980 struct address_space *aspace;
2981 ptid_t resume_ptid;
2982 struct execution_control_state ecss;
2983 struct execution_control_state *ecs = &ecss;
2984 struct cleanup *old_chain;
2985 struct cleanup *defer_resume_cleanup;
2986 int started;
2987
2988 /* If we're stopped at a fork/vfork, follow the branch set by the
2989 "set follow-fork-mode" command; otherwise, we'll just proceed
2990 resuming the current thread. */
2991 if (!follow_fork ())
2992 {
2993 /* The target for some reason decided not to resume. */
2994 normal_stop ();
2995 if (target_can_async_p ())
2996 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2997 return;
2998 }
2999
3000 /* We'll update this if & when we switch to a new thread. */
3001 previous_inferior_ptid = inferior_ptid;
3002
3003 regcache = get_current_regcache ();
3004 gdbarch = get_regcache_arch (regcache);
3005 aspace = get_regcache_aspace (regcache);
3006 pc = regcache_read_pc (regcache);
3007 tp = inferior_thread ();
3008
3009 /* Fill in with reasonable starting values. */
3010 init_thread_stepping_state (tp);
3011
3012 gdb_assert (!thread_is_in_step_over_chain (tp));
3013
3014 if (addr == (CORE_ADDR) -1)
3015 {
3016 if (pc == stop_pc
3017 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3018 && execution_direction != EXEC_REVERSE)
3019 /* There is a breakpoint at the address we will resume at,
3020 step one instruction before inserting breakpoints so that
3021 we do not stop right away (and report a second hit at this
3022 breakpoint).
3023
3024 Note, we don't do this in reverse, because we won't
3025 actually be executing the breakpoint insn anyway.
3026 We'll be (un-)executing the previous instruction. */
3027 tp->stepping_over_breakpoint = 1;
3028 else if (gdbarch_single_step_through_delay_p (gdbarch)
3029 && gdbarch_single_step_through_delay (gdbarch,
3030 get_current_frame ()))
3031 /* We stepped onto an instruction that needs to be stepped
3032 again before re-inserting the breakpoint, do so. */
3033 tp->stepping_over_breakpoint = 1;
3034 }
3035 else
3036 {
3037 regcache_write_pc (regcache, addr);
3038 }
3039
3040 if (siggnal != GDB_SIGNAL_DEFAULT)
3041 tp->suspend.stop_signal = siggnal;
3042
3043 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3044
3045 /* If an exception is thrown from this point on, make sure to
3046 propagate GDB's knowledge of the executing state to the
3047 frontend/user running state. */
3048 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3049
3050 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3051 threads (e.g., we might need to set threads stepping over
3052 breakpoints first), from the user/frontend's point of view, all
3053 threads in RESUME_PTID are now running. Unless we're calling an
3054 inferior function, as in that case we pretend the inferior
3055 doesn't run at all. */
3056 if (!tp->control.in_infcall)
3057 set_running (resume_ptid, 1);
3058
3059 if (debug_infrun)
3060 fprintf_unfiltered (gdb_stdlog,
3061 "infrun: proceed (addr=%s, signal=%s)\n",
3062 paddress (gdbarch, addr),
3063 gdb_signal_to_symbol_string (siggnal));
3064
3065 annotate_starting ();
3066
3067 /* Make sure that output from GDB appears before output from the
3068 inferior. */
3069 gdb_flush (gdb_stdout);
3070
3071 /* In a multi-threaded task we may select another thread and
3072 then continue or step.
3073
3074 But if a thread that we're resuming had stopped at a breakpoint,
3075 it will immediately cause another breakpoint stop without any
3076 execution (i.e. it will report a breakpoint hit incorrectly). So
3077 we must step over it first.
3078
3079 Look for threads other than the current (TP) that reported a
3080 breakpoint hit and haven't been resumed yet since. */
3081
3082 /* If scheduler locking applies, we can avoid iterating over all
3083 threads. */
3084 if (!non_stop && !schedlock_applies (tp))
3085 {
3086 struct thread_info *current = tp;
3087
3088 ALL_NON_EXITED_THREADS (tp)
3089 {
3090 /* Ignore the current thread here. It's handled
3091 afterwards. */
3092 if (tp == current)
3093 continue;
3094
3095 /* Ignore threads of processes we're not resuming. */
3096 if (!ptid_match (tp->ptid, resume_ptid))
3097 continue;
3098
3099 if (!thread_still_needs_step_over (tp))
3100 continue;
3101
3102 gdb_assert (!thread_is_in_step_over_chain (tp));
3103
3104 if (debug_infrun)
3105 fprintf_unfiltered (gdb_stdlog,
3106 "infrun: need to step-over [%s] first\n",
3107 target_pid_to_str (tp->ptid));
3108
3109 thread_step_over_chain_enqueue (tp);
3110 }
3111
3112 tp = current;
3113 }
3114
3115 /* Enqueue the current thread last, so that we move all other
3116 threads over their breakpoints first. */
3117 if (tp->stepping_over_breakpoint)
3118 thread_step_over_chain_enqueue (tp);
3119
3120 /* If the thread isn't started, we'll still need to set its prev_pc,
3121 so that switch_back_to_stepped_thread knows the thread hasn't
3122 advanced. Must do this before resuming any thread, as in
3123 all-stop/remote, once we resume we can't send any other packet
3124 until the target stops again. */
3125 tp->prev_pc = regcache_read_pc (regcache);
3126
3127 defer_resume_cleanup = make_cleanup_defer_target_commit_resume ();
3128
3129 started = start_step_over ();
3130
3131 if (step_over_info_valid_p ())
3132 {
3133 /* Either this thread started a new in-line step over, or some
3134 other thread was already doing one. In either case, don't
3135 resume anything else until the step-over is finished. */
3136 }
3137 else if (started && !target_is_non_stop_p ())
3138 {
3139 /* A new displaced stepping sequence was started. In all-stop,
3140 we can't talk to the target anymore until it next stops. */
3141 }
3142 else if (!non_stop && target_is_non_stop_p ())
3143 {
3144 /* In all-stop, but the target is always in non-stop mode.
3145 Start all other threads that are implicitly resumed too. */
3146 ALL_NON_EXITED_THREADS (tp)
3147 {
3148 /* Ignore threads of processes we're not resuming. */
3149 if (!ptid_match (tp->ptid, resume_ptid))
3150 continue;
3151
3152 if (tp->resumed)
3153 {
3154 if (debug_infrun)
3155 fprintf_unfiltered (gdb_stdlog,
3156 "infrun: proceed: [%s] resumed\n",
3157 target_pid_to_str (tp->ptid));
3158 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3159 continue;
3160 }
3161
3162 if (thread_is_in_step_over_chain (tp))
3163 {
3164 if (debug_infrun)
3165 fprintf_unfiltered (gdb_stdlog,
3166 "infrun: proceed: [%s] needs step-over\n",
3167 target_pid_to_str (tp->ptid));
3168 continue;
3169 }
3170
3171 if (debug_infrun)
3172 fprintf_unfiltered (gdb_stdlog,
3173 "infrun: proceed: resuming %s\n",
3174 target_pid_to_str (tp->ptid));
3175
3176 reset_ecs (ecs, tp);
3177 switch_to_thread (tp->ptid);
3178 keep_going_pass_signal (ecs);
3179 if (!ecs->wait_some_more)
3180 error (_("Command aborted."));
3181 }
3182 }
3183 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3184 {
3185 /* The thread wasn't started, and isn't queued, run it now. */
3186 reset_ecs (ecs, tp);
3187 switch_to_thread (tp->ptid);
3188 keep_going_pass_signal (ecs);
3189 if (!ecs->wait_some_more)
3190 error (_("Command aborted."));
3191 }
3192
3193 do_cleanups (defer_resume_cleanup);
3194 target_commit_resume ();
3195
3196 discard_cleanups (old_chain);
3197
3198 /* Tell the event loop to wait for it to stop. If the target
3199 supports asynchronous execution, it'll do this from within
3200 target_resume. */
3201 if (!target_can_async_p ())
3202 mark_async_event_handler (infrun_async_inferior_event_token);
3203 }
3204 \f
3205
3206 /* Start remote-debugging of a machine over a serial link. */
3207
3208 void
3209 start_remote (int from_tty)
3210 {
3211 struct inferior *inferior;
3212
3213 inferior = current_inferior ();
3214 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3215
3216 /* Always go on waiting for the target, regardless of the mode. */
3217 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3218 indicate to wait_for_inferior that a target should timeout if
3219 nothing is returned (instead of just blocking). Because of this,
3220 targets expecting an immediate response need to, internally, set
3221 things up so that the target_wait() is forced to eventually
3222 timeout. */
3223 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3224 differentiate to its caller what the state of the target is after
3225 the initial open has been performed. Here we're assuming that
3226 the target has stopped. It should be possible to eventually have
3227 target_open() return to the caller an indication that the target
3228 is currently running and GDB state should be set to the same as
3229 for an async run. */
3230 wait_for_inferior ();
3231
3232 /* Now that the inferior has stopped, do any bookkeeping like
3233 loading shared libraries. We want to do this before normal_stop,
3234 so that the displayed frame is up to date. */
3235 post_create_inferior (&current_target, from_tty);
3236
3237 normal_stop ();
3238 }
3239
3240 /* Initialize static vars when a new inferior begins. */
3241
3242 void
3243 init_wait_for_inferior (void)
3244 {
3245 /* These are meaningless until the first time through wait_for_inferior. */
3246
3247 breakpoint_init_inferior (inf_starting);
3248
3249 clear_proceed_status (0);
3250
3251 target_last_wait_ptid = minus_one_ptid;
3252
3253 previous_inferior_ptid = inferior_ptid;
3254
3255 /* Discard any skipped inlined frames. */
3256 clear_inline_frame_state (minus_one_ptid);
3257 }
3258
3259 \f
3260
3261 static void handle_inferior_event (struct execution_control_state *ecs);
3262
3263 static void handle_step_into_function (struct gdbarch *gdbarch,
3264 struct execution_control_state *ecs);
3265 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3266 struct execution_control_state *ecs);
3267 static void handle_signal_stop (struct execution_control_state *ecs);
3268 static void check_exception_resume (struct execution_control_state *,
3269 struct frame_info *);
3270
3271 static void end_stepping_range (struct execution_control_state *ecs);
3272 static void stop_waiting (struct execution_control_state *ecs);
3273 static void keep_going (struct execution_control_state *ecs);
3274 static void process_event_stop_test (struct execution_control_state *ecs);
3275 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3276
3277 /* Callback for iterate over threads. If the thread is stopped, but
3278 the user/frontend doesn't know about that yet, go through
3279 normal_stop, as if the thread had just stopped now. ARG points at
3280 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3281 ptid_is_pid(PTID) is true, applies to all threads of the process
3282 pointed at by PTID. Otherwise, apply only to the thread pointed by
3283 PTID. */
3284
3285 static int
3286 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3287 {
3288 ptid_t ptid = * (ptid_t *) arg;
3289
3290 if ((ptid_equal (info->ptid, ptid)
3291 || ptid_equal (minus_one_ptid, ptid)
3292 || (ptid_is_pid (ptid)
3293 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3294 && is_running (info->ptid)
3295 && !is_executing (info->ptid))
3296 {
3297 struct cleanup *old_chain;
3298 struct execution_control_state ecss;
3299 struct execution_control_state *ecs = &ecss;
3300
3301 memset (ecs, 0, sizeof (*ecs));
3302
3303 old_chain = make_cleanup_restore_current_thread ();
3304
3305 overlay_cache_invalid = 1;
3306 /* Flush target cache before starting to handle each event.
3307 Target was running and cache could be stale. This is just a
3308 heuristic. Running threads may modify target memory, but we
3309 don't get any event. */
3310 target_dcache_invalidate ();
3311
3312 /* Go through handle_inferior_event/normal_stop, so we always
3313 have consistent output as if the stop event had been
3314 reported. */
3315 ecs->ptid = info->ptid;
3316 ecs->event_thread = info;
3317 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3318 ecs->ws.value.sig = GDB_SIGNAL_0;
3319
3320 handle_inferior_event (ecs);
3321
3322 if (!ecs->wait_some_more)
3323 {
3324 /* Cancel any running execution command. */
3325 thread_cancel_execution_command (info);
3326
3327 normal_stop ();
3328 }
3329
3330 do_cleanups (old_chain);
3331 }
3332
3333 return 0;
3334 }
3335
3336 /* This function is attached as a "thread_stop_requested" observer.
3337 Cleanup local state that assumed the PTID was to be resumed, and
3338 report the stop to the frontend. */
3339
3340 static void
3341 infrun_thread_stop_requested (ptid_t ptid)
3342 {
3343 struct thread_info *tp;
3344
3345 /* PTID was requested to stop. Remove matching threads from the
3346 step-over queue, so we don't try to resume them
3347 automatically. */
3348 ALL_NON_EXITED_THREADS (tp)
3349 if (ptid_match (tp->ptid, ptid))
3350 {
3351 if (thread_is_in_step_over_chain (tp))
3352 thread_step_over_chain_remove (tp);
3353 }
3354
3355 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3356 }
3357
3358 static void
3359 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3360 {
3361 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3362 nullify_last_target_wait_ptid ();
3363 }
3364
3365 /* Delete the step resume, single-step and longjmp/exception resume
3366 breakpoints of TP. */
3367
3368 static void
3369 delete_thread_infrun_breakpoints (struct thread_info *tp)
3370 {
3371 delete_step_resume_breakpoint (tp);
3372 delete_exception_resume_breakpoint (tp);
3373 delete_single_step_breakpoints (tp);
3374 }
3375
3376 /* If the target still has execution, call FUNC for each thread that
3377 just stopped. In all-stop, that's all the non-exited threads; in
3378 non-stop, that's the current thread, only. */
3379
3380 typedef void (*for_each_just_stopped_thread_callback_func)
3381 (struct thread_info *tp);
3382
3383 static void
3384 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3385 {
3386 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3387 return;
3388
3389 if (target_is_non_stop_p ())
3390 {
3391 /* If in non-stop mode, only the current thread stopped. */
3392 func (inferior_thread ());
3393 }
3394 else
3395 {
3396 struct thread_info *tp;
3397
3398 /* In all-stop mode, all threads have stopped. */
3399 ALL_NON_EXITED_THREADS (tp)
3400 {
3401 func (tp);
3402 }
3403 }
3404 }
3405
3406 /* Delete the step resume and longjmp/exception resume breakpoints of
3407 the threads that just stopped. */
3408
3409 static void
3410 delete_just_stopped_threads_infrun_breakpoints (void)
3411 {
3412 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3413 }
3414
3415 /* Delete the single-step breakpoints of the threads that just
3416 stopped. */
3417
3418 static void
3419 delete_just_stopped_threads_single_step_breakpoints (void)
3420 {
3421 for_each_just_stopped_thread (delete_single_step_breakpoints);
3422 }
3423
3424 /* A cleanup wrapper. */
3425
3426 static void
3427 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3428 {
3429 delete_just_stopped_threads_infrun_breakpoints ();
3430 }
3431
3432 /* See infrun.h. */
3433
3434 void
3435 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3436 const struct target_waitstatus *ws)
3437 {
3438 char *status_string = target_waitstatus_to_string (ws);
3439 struct ui_file *tmp_stream = mem_fileopen ();
3440
3441 /* The text is split over several lines because it was getting too long.
3442 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3443 output as a unit; we want only one timestamp printed if debug_timestamp
3444 is set. */
3445
3446 fprintf_unfiltered (tmp_stream,
3447 "infrun: target_wait (%d.%ld.%ld",
3448 ptid_get_pid (waiton_ptid),
3449 ptid_get_lwp (waiton_ptid),
3450 ptid_get_tid (waiton_ptid));
3451 if (ptid_get_pid (waiton_ptid) != -1)
3452 fprintf_unfiltered (tmp_stream,
3453 " [%s]", target_pid_to_str (waiton_ptid));
3454 fprintf_unfiltered (tmp_stream, ", status) =\n");
3455 fprintf_unfiltered (tmp_stream,
3456 "infrun: %d.%ld.%ld [%s],\n",
3457 ptid_get_pid (result_ptid),
3458 ptid_get_lwp (result_ptid),
3459 ptid_get_tid (result_ptid),
3460 target_pid_to_str (result_ptid));
3461 fprintf_unfiltered (tmp_stream,
3462 "infrun: %s\n",
3463 status_string);
3464
3465 std::string text = ui_file_as_string (tmp_stream);
3466
3467 /* This uses %s in part to handle %'s in the text, but also to avoid
3468 a gcc error: the format attribute requires a string literal. */
3469 fprintf_unfiltered (gdb_stdlog, "%s", text.c_str ());
3470
3471 xfree (status_string);
3472 ui_file_delete (tmp_stream);
3473 }
3474
3475 /* Select a thread at random, out of those which are resumed and have
3476 had events. */
3477
3478 static struct thread_info *
3479 random_pending_event_thread (ptid_t waiton_ptid)
3480 {
3481 struct thread_info *event_tp;
3482 int num_events = 0;
3483 int random_selector;
3484
3485 /* First see how many events we have. Count only resumed threads
3486 that have an event pending. */
3487 ALL_NON_EXITED_THREADS (event_tp)
3488 if (ptid_match (event_tp->ptid, waiton_ptid)
3489 && event_tp->resumed
3490 && event_tp->suspend.waitstatus_pending_p)
3491 num_events++;
3492
3493 if (num_events == 0)
3494 return NULL;
3495
3496 /* Now randomly pick a thread out of those that have had events. */
3497 random_selector = (int)
3498 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3499
3500 if (debug_infrun && num_events > 1)
3501 fprintf_unfiltered (gdb_stdlog,
3502 "infrun: Found %d events, selecting #%d\n",
3503 num_events, random_selector);
3504
3505 /* Select the Nth thread that has had an event. */
3506 ALL_NON_EXITED_THREADS (event_tp)
3507 if (ptid_match (event_tp->ptid, waiton_ptid)
3508 && event_tp->resumed
3509 && event_tp->suspend.waitstatus_pending_p)
3510 if (random_selector-- == 0)
3511 break;
3512
3513 return event_tp;
3514 }
3515
3516 /* Wrapper for target_wait that first checks whether threads have
3517 pending statuses to report before actually asking the target for
3518 more events. */
3519
3520 static ptid_t
3521 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3522 {
3523 ptid_t event_ptid;
3524 struct thread_info *tp;
3525
3526 /* First check if there is a resumed thread with a wait status
3527 pending. */
3528 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3529 {
3530 tp = random_pending_event_thread (ptid);
3531 }
3532 else
3533 {
3534 if (debug_infrun)
3535 fprintf_unfiltered (gdb_stdlog,
3536 "infrun: Waiting for specific thread %s.\n",
3537 target_pid_to_str (ptid));
3538
3539 /* We have a specific thread to check. */
3540 tp = find_thread_ptid (ptid);
3541 gdb_assert (tp != NULL);
3542 if (!tp->suspend.waitstatus_pending_p)
3543 tp = NULL;
3544 }
3545
3546 if (tp != NULL
3547 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3548 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3549 {
3550 struct regcache *regcache = get_thread_regcache (tp->ptid);
3551 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3552 CORE_ADDR pc;
3553 int discard = 0;
3554
3555 pc = regcache_read_pc (regcache);
3556
3557 if (pc != tp->suspend.stop_pc)
3558 {
3559 if (debug_infrun)
3560 fprintf_unfiltered (gdb_stdlog,
3561 "infrun: PC of %s changed. was=%s, now=%s\n",
3562 target_pid_to_str (tp->ptid),
3563 paddress (gdbarch, tp->prev_pc),
3564 paddress (gdbarch, pc));
3565 discard = 1;
3566 }
3567 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3568 {
3569 if (debug_infrun)
3570 fprintf_unfiltered (gdb_stdlog,
3571 "infrun: previous breakpoint of %s, at %s gone\n",
3572 target_pid_to_str (tp->ptid),
3573 paddress (gdbarch, pc));
3574
3575 discard = 1;
3576 }
3577
3578 if (discard)
3579 {
3580 if (debug_infrun)
3581 fprintf_unfiltered (gdb_stdlog,
3582 "infrun: pending event of %s cancelled.\n",
3583 target_pid_to_str (tp->ptid));
3584
3585 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3586 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3587 }
3588 }
3589
3590 if (tp != NULL)
3591 {
3592 if (debug_infrun)
3593 {
3594 char *statstr;
3595
3596 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3597 fprintf_unfiltered (gdb_stdlog,
3598 "infrun: Using pending wait status %s for %s.\n",
3599 statstr,
3600 target_pid_to_str (tp->ptid));
3601 xfree (statstr);
3602 }
3603
3604 /* Now that we've selected our final event LWP, un-adjust its PC
3605 if it was a software breakpoint (and the target doesn't
3606 always adjust the PC itself). */
3607 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3608 && !target_supports_stopped_by_sw_breakpoint ())
3609 {
3610 struct regcache *regcache;
3611 struct gdbarch *gdbarch;
3612 int decr_pc;
3613
3614 regcache = get_thread_regcache (tp->ptid);
3615 gdbarch = get_regcache_arch (regcache);
3616
3617 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3618 if (decr_pc != 0)
3619 {
3620 CORE_ADDR pc;
3621
3622 pc = regcache_read_pc (regcache);
3623 regcache_write_pc (regcache, pc + decr_pc);
3624 }
3625 }
3626
3627 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3628 *status = tp->suspend.waitstatus;
3629 tp->suspend.waitstatus_pending_p = 0;
3630
3631 /* Wake up the event loop again, until all pending events are
3632 processed. */
3633 if (target_is_async_p ())
3634 mark_async_event_handler (infrun_async_inferior_event_token);
3635 return tp->ptid;
3636 }
3637
3638 /* But if we don't find one, we'll have to wait. */
3639
3640 if (deprecated_target_wait_hook)
3641 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3642 else
3643 event_ptid = target_wait (ptid, status, options);
3644
3645 return event_ptid;
3646 }
3647
3648 /* Prepare and stabilize the inferior for detaching it. E.g.,
3649 detaching while a thread is displaced stepping is a recipe for
3650 crashing it, as nothing would readjust the PC out of the scratch
3651 pad. */
3652
3653 void
3654 prepare_for_detach (void)
3655 {
3656 struct inferior *inf = current_inferior ();
3657 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3658 struct cleanup *old_chain_1;
3659 struct displaced_step_inferior_state *displaced;
3660
3661 displaced = get_displaced_stepping_state (inf->pid);
3662
3663 /* Is any thread of this process displaced stepping? If not,
3664 there's nothing else to do. */
3665 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3666 return;
3667
3668 if (debug_infrun)
3669 fprintf_unfiltered (gdb_stdlog,
3670 "displaced-stepping in-process while detaching");
3671
3672 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3673 inf->detaching = 1;
3674
3675 while (!ptid_equal (displaced->step_ptid, null_ptid))
3676 {
3677 struct cleanup *old_chain_2;
3678 struct execution_control_state ecss;
3679 struct execution_control_state *ecs;
3680
3681 ecs = &ecss;
3682 memset (ecs, 0, sizeof (*ecs));
3683
3684 overlay_cache_invalid = 1;
3685 /* Flush target cache before starting to handle each event.
3686 Target was running and cache could be stale. This is just a
3687 heuristic. Running threads may modify target memory, but we
3688 don't get any event. */
3689 target_dcache_invalidate ();
3690
3691 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3692
3693 if (debug_infrun)
3694 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3695
3696 /* If an error happens while handling the event, propagate GDB's
3697 knowledge of the executing state to the frontend/user running
3698 state. */
3699 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3700 &minus_one_ptid);
3701
3702 /* Now figure out what to do with the result of the result. */
3703 handle_inferior_event (ecs);
3704
3705 /* No error, don't finish the state yet. */
3706 discard_cleanups (old_chain_2);
3707
3708 /* Breakpoints and watchpoints are not installed on the target
3709 at this point, and signals are passed directly to the
3710 inferior, so this must mean the process is gone. */
3711 if (!ecs->wait_some_more)
3712 {
3713 discard_cleanups (old_chain_1);
3714 error (_("Program exited while detaching"));
3715 }
3716 }
3717
3718 discard_cleanups (old_chain_1);
3719 }
3720
3721 /* Wait for control to return from inferior to debugger.
3722
3723 If inferior gets a signal, we may decide to start it up again
3724 instead of returning. That is why there is a loop in this function.
3725 When this function actually returns it means the inferior
3726 should be left stopped and GDB should read more commands. */
3727
3728 void
3729 wait_for_inferior (void)
3730 {
3731 struct cleanup *old_cleanups;
3732 struct cleanup *thread_state_chain;
3733
3734 if (debug_infrun)
3735 fprintf_unfiltered
3736 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3737
3738 old_cleanups
3739 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3740 NULL);
3741
3742 /* If an error happens while handling the event, propagate GDB's
3743 knowledge of the executing state to the frontend/user running
3744 state. */
3745 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3746
3747 while (1)
3748 {
3749 struct execution_control_state ecss;
3750 struct execution_control_state *ecs = &ecss;
3751 ptid_t waiton_ptid = minus_one_ptid;
3752
3753 memset (ecs, 0, sizeof (*ecs));
3754
3755 overlay_cache_invalid = 1;
3756
3757 /* Flush target cache before starting to handle each event.
3758 Target was running and cache could be stale. This is just a
3759 heuristic. Running threads may modify target memory, but we
3760 don't get any event. */
3761 target_dcache_invalidate ();
3762
3763 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3764
3765 if (debug_infrun)
3766 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3767
3768 /* Now figure out what to do with the result of the result. */
3769 handle_inferior_event (ecs);
3770
3771 if (!ecs->wait_some_more)
3772 break;
3773 }
3774
3775 /* No error, don't finish the state yet. */
3776 discard_cleanups (thread_state_chain);
3777
3778 do_cleanups (old_cleanups);
3779 }
3780
3781 /* Cleanup that reinstalls the readline callback handler, if the
3782 target is running in the background. If while handling the target
3783 event something triggered a secondary prompt, like e.g., a
3784 pagination prompt, we'll have removed the callback handler (see
3785 gdb_readline_wrapper_line). Need to do this as we go back to the
3786 event loop, ready to process further input. Note this has no
3787 effect if the handler hasn't actually been removed, because calling
3788 rl_callback_handler_install resets the line buffer, thus losing
3789 input. */
3790
3791 static void
3792 reinstall_readline_callback_handler_cleanup (void *arg)
3793 {
3794 struct ui *ui = current_ui;
3795
3796 if (!ui->async)
3797 {
3798 /* We're not going back to the top level event loop yet. Don't
3799 install the readline callback, as it'd prep the terminal,
3800 readline-style (raw, noecho) (e.g., --batch). We'll install
3801 it the next time the prompt is displayed, when we're ready
3802 for input. */
3803 return;
3804 }
3805
3806 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3807 gdb_rl_callback_handler_reinstall ();
3808 }
3809
3810 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3811 that's just the event thread. In all-stop, that's all threads. */
3812
3813 static void
3814 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3815 {
3816 struct thread_info *thr = ecs->event_thread;
3817
3818 if (thr != NULL && thr->thread_fsm != NULL)
3819 thread_fsm_clean_up (thr->thread_fsm, thr);
3820
3821 if (!non_stop)
3822 {
3823 ALL_NON_EXITED_THREADS (thr)
3824 {
3825 if (thr->thread_fsm == NULL)
3826 continue;
3827 if (thr == ecs->event_thread)
3828 continue;
3829
3830 switch_to_thread (thr->ptid);
3831 thread_fsm_clean_up (thr->thread_fsm, thr);
3832 }
3833
3834 if (ecs->event_thread != NULL)
3835 switch_to_thread (ecs->event_thread->ptid);
3836 }
3837 }
3838
3839 /* Helper for all_uis_check_sync_execution_done that works on the
3840 current UI. */
3841
3842 static void
3843 check_curr_ui_sync_execution_done (void)
3844 {
3845 struct ui *ui = current_ui;
3846
3847 if (ui->prompt_state == PROMPT_NEEDED
3848 && ui->async
3849 && !gdb_in_secondary_prompt_p (ui))
3850 {
3851 target_terminal_ours ();
3852 observer_notify_sync_execution_done ();
3853 ui_register_input_event_handler (ui);
3854 }
3855 }
3856
3857 /* See infrun.h. */
3858
3859 void
3860 all_uis_check_sync_execution_done (void)
3861 {
3862 SWITCH_THRU_ALL_UIS ()
3863 {
3864 check_curr_ui_sync_execution_done ();
3865 }
3866 }
3867
3868 /* See infrun.h. */
3869
3870 void
3871 all_uis_on_sync_execution_starting (void)
3872 {
3873 SWITCH_THRU_ALL_UIS ()
3874 {
3875 if (current_ui->prompt_state == PROMPT_NEEDED)
3876 async_disable_stdin ();
3877 }
3878 }
3879
3880 /* Asynchronous version of wait_for_inferior. It is called by the
3881 event loop whenever a change of state is detected on the file
3882 descriptor corresponding to the target. It can be called more than
3883 once to complete a single execution command. In such cases we need
3884 to keep the state in a global variable ECSS. If it is the last time
3885 that this function is called for a single execution command, then
3886 report to the user that the inferior has stopped, and do the
3887 necessary cleanups. */
3888
3889 void
3890 fetch_inferior_event (void *client_data)
3891 {
3892 struct execution_control_state ecss;
3893 struct execution_control_state *ecs = &ecss;
3894 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3895 struct cleanup *ts_old_chain;
3896 int cmd_done = 0;
3897 ptid_t waiton_ptid = minus_one_ptid;
3898
3899 memset (ecs, 0, sizeof (*ecs));
3900
3901 /* Events are always processed with the main UI as current UI. This
3902 way, warnings, debug output, etc. are always consistently sent to
3903 the main console. */
3904 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3905
3906 /* End up with readline processing input, if necessary. */
3907 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3908
3909 /* We're handling a live event, so make sure we're doing live
3910 debugging. If we're looking at traceframes while the target is
3911 running, we're going to need to get back to that mode after
3912 handling the event. */
3913 if (non_stop)
3914 {
3915 make_cleanup_restore_current_traceframe ();
3916 set_current_traceframe (-1);
3917 }
3918
3919 if (non_stop)
3920 /* In non-stop mode, the user/frontend should not notice a thread
3921 switch due to internal events. Make sure we reverse to the
3922 user selected thread and frame after handling the event and
3923 running any breakpoint commands. */
3924 make_cleanup_restore_current_thread ();
3925
3926 overlay_cache_invalid = 1;
3927 /* Flush target cache before starting to handle each event. Target
3928 was running and cache could be stale. This is just a heuristic.
3929 Running threads may modify target memory, but we don't get any
3930 event. */
3931 target_dcache_invalidate ();
3932
3933 scoped_restore save_exec_dir
3934 = make_scoped_restore (&execution_direction, target_execution_direction ());
3935
3936 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3937 target_can_async_p () ? TARGET_WNOHANG : 0);
3938
3939 if (debug_infrun)
3940 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3941
3942 /* If an error happens while handling the event, propagate GDB's
3943 knowledge of the executing state to the frontend/user running
3944 state. */
3945 if (!target_is_non_stop_p ())
3946 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3947 else
3948 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3949
3950 /* Get executed before make_cleanup_restore_current_thread above to apply
3951 still for the thread which has thrown the exception. */
3952 make_bpstat_clear_actions_cleanup ();
3953
3954 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3955
3956 /* Now figure out what to do with the result of the result. */
3957 handle_inferior_event (ecs);
3958
3959 if (!ecs->wait_some_more)
3960 {
3961 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3962 int should_stop = 1;
3963 struct thread_info *thr = ecs->event_thread;
3964 int should_notify_stop = 1;
3965
3966 delete_just_stopped_threads_infrun_breakpoints ();
3967
3968 if (thr != NULL)
3969 {
3970 struct thread_fsm *thread_fsm = thr->thread_fsm;
3971
3972 if (thread_fsm != NULL)
3973 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3974 }
3975
3976 if (!should_stop)
3977 {
3978 keep_going (ecs);
3979 }
3980 else
3981 {
3982 clean_up_just_stopped_threads_fsms (ecs);
3983
3984 if (thr != NULL && thr->thread_fsm != NULL)
3985 {
3986 should_notify_stop
3987 = thread_fsm_should_notify_stop (thr->thread_fsm);
3988 }
3989
3990 if (should_notify_stop)
3991 {
3992 int proceeded = 0;
3993
3994 /* We may not find an inferior if this was a process exit. */
3995 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3996 proceeded = normal_stop ();
3997
3998 if (!proceeded)
3999 {
4000 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4001 cmd_done = 1;
4002 }
4003 }
4004 }
4005 }
4006
4007 /* No error, don't finish the thread states yet. */
4008 discard_cleanups (ts_old_chain);
4009
4010 /* Revert thread and frame. */
4011 do_cleanups (old_chain);
4012
4013 /* If a UI was in sync execution mode, and now isn't, restore its
4014 prompt (a synchronous execution command has finished, and we're
4015 ready for input). */
4016 all_uis_check_sync_execution_done ();
4017
4018 if (cmd_done
4019 && exec_done_display_p
4020 && (ptid_equal (inferior_ptid, null_ptid)
4021 || !is_running (inferior_ptid)))
4022 printf_unfiltered (_("completed.\n"));
4023 }
4024
4025 /* Record the frame and location we're currently stepping through. */
4026 void
4027 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4028 {
4029 struct thread_info *tp = inferior_thread ();
4030
4031 tp->control.step_frame_id = get_frame_id (frame);
4032 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4033
4034 tp->current_symtab = sal.symtab;
4035 tp->current_line = sal.line;
4036 }
4037
4038 /* Clear context switchable stepping state. */
4039
4040 void
4041 init_thread_stepping_state (struct thread_info *tss)
4042 {
4043 tss->stepped_breakpoint = 0;
4044 tss->stepping_over_breakpoint = 0;
4045 tss->stepping_over_watchpoint = 0;
4046 tss->step_after_step_resume_breakpoint = 0;
4047 }
4048
4049 /* Set the cached copy of the last ptid/waitstatus. */
4050
4051 void
4052 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4053 {
4054 target_last_wait_ptid = ptid;
4055 target_last_waitstatus = status;
4056 }
4057
4058 /* Return the cached copy of the last pid/waitstatus returned by
4059 target_wait()/deprecated_target_wait_hook(). The data is actually
4060 cached by handle_inferior_event(), which gets called immediately
4061 after target_wait()/deprecated_target_wait_hook(). */
4062
4063 void
4064 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4065 {
4066 *ptidp = target_last_wait_ptid;
4067 *status = target_last_waitstatus;
4068 }
4069
4070 void
4071 nullify_last_target_wait_ptid (void)
4072 {
4073 target_last_wait_ptid = minus_one_ptid;
4074 }
4075
4076 /* Switch thread contexts. */
4077
4078 static void
4079 context_switch (ptid_t ptid)
4080 {
4081 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4082 {
4083 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4084 target_pid_to_str (inferior_ptid));
4085 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4086 target_pid_to_str (ptid));
4087 }
4088
4089 switch_to_thread (ptid);
4090 }
4091
4092 /* If the target can't tell whether we've hit breakpoints
4093 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4094 check whether that could have been caused by a breakpoint. If so,
4095 adjust the PC, per gdbarch_decr_pc_after_break. */
4096
4097 static void
4098 adjust_pc_after_break (struct thread_info *thread,
4099 struct target_waitstatus *ws)
4100 {
4101 struct regcache *regcache;
4102 struct gdbarch *gdbarch;
4103 struct address_space *aspace;
4104 CORE_ADDR breakpoint_pc, decr_pc;
4105
4106 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4107 we aren't, just return.
4108
4109 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4110 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4111 implemented by software breakpoints should be handled through the normal
4112 breakpoint layer.
4113
4114 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4115 different signals (SIGILL or SIGEMT for instance), but it is less
4116 clear where the PC is pointing afterwards. It may not match
4117 gdbarch_decr_pc_after_break. I don't know any specific target that
4118 generates these signals at breakpoints (the code has been in GDB since at
4119 least 1992) so I can not guess how to handle them here.
4120
4121 In earlier versions of GDB, a target with
4122 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4123 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4124 target with both of these set in GDB history, and it seems unlikely to be
4125 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4126
4127 if (ws->kind != TARGET_WAITKIND_STOPPED)
4128 return;
4129
4130 if (ws->value.sig != GDB_SIGNAL_TRAP)
4131 return;
4132
4133 /* In reverse execution, when a breakpoint is hit, the instruction
4134 under it has already been de-executed. The reported PC always
4135 points at the breakpoint address, so adjusting it further would
4136 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4137 architecture:
4138
4139 B1 0x08000000 : INSN1
4140 B2 0x08000001 : INSN2
4141 0x08000002 : INSN3
4142 PC -> 0x08000003 : INSN4
4143
4144 Say you're stopped at 0x08000003 as above. Reverse continuing
4145 from that point should hit B2 as below. Reading the PC when the
4146 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4147 been de-executed already.
4148
4149 B1 0x08000000 : INSN1
4150 B2 PC -> 0x08000001 : INSN2
4151 0x08000002 : INSN3
4152 0x08000003 : INSN4
4153
4154 We can't apply the same logic as for forward execution, because
4155 we would wrongly adjust the PC to 0x08000000, since there's a
4156 breakpoint at PC - 1. We'd then report a hit on B1, although
4157 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4158 behaviour. */
4159 if (execution_direction == EXEC_REVERSE)
4160 return;
4161
4162 /* If the target can tell whether the thread hit a SW breakpoint,
4163 trust it. Targets that can tell also adjust the PC
4164 themselves. */
4165 if (target_supports_stopped_by_sw_breakpoint ())
4166 return;
4167
4168 /* Note that relying on whether a breakpoint is planted in memory to
4169 determine this can fail. E.g,. the breakpoint could have been
4170 removed since. Or the thread could have been told to step an
4171 instruction the size of a breakpoint instruction, and only
4172 _after_ was a breakpoint inserted at its address. */
4173
4174 /* If this target does not decrement the PC after breakpoints, then
4175 we have nothing to do. */
4176 regcache = get_thread_regcache (thread->ptid);
4177 gdbarch = get_regcache_arch (regcache);
4178
4179 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4180 if (decr_pc == 0)
4181 return;
4182
4183 aspace = get_regcache_aspace (regcache);
4184
4185 /* Find the location where (if we've hit a breakpoint) the
4186 breakpoint would be. */
4187 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4188
4189 /* If the target can't tell whether a software breakpoint triggered,
4190 fallback to figuring it out based on breakpoints we think were
4191 inserted in the target, and on whether the thread was stepped or
4192 continued. */
4193
4194 /* Check whether there actually is a software breakpoint inserted at
4195 that location.
4196
4197 If in non-stop mode, a race condition is possible where we've
4198 removed a breakpoint, but stop events for that breakpoint were
4199 already queued and arrive later. To suppress those spurious
4200 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4201 and retire them after a number of stop events are reported. Note
4202 this is an heuristic and can thus get confused. The real fix is
4203 to get the "stopped by SW BP and needs adjustment" info out of
4204 the target/kernel (and thus never reach here; see above). */
4205 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4206 || (target_is_non_stop_p ()
4207 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4208 {
4209 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4210
4211 if (record_full_is_used ())
4212 record_full_gdb_operation_disable_set ();
4213
4214 /* When using hardware single-step, a SIGTRAP is reported for both
4215 a completed single-step and a software breakpoint. Need to
4216 differentiate between the two, as the latter needs adjusting
4217 but the former does not.
4218
4219 The SIGTRAP can be due to a completed hardware single-step only if
4220 - we didn't insert software single-step breakpoints
4221 - this thread is currently being stepped
4222
4223 If any of these events did not occur, we must have stopped due
4224 to hitting a software breakpoint, and have to back up to the
4225 breakpoint address.
4226
4227 As a special case, we could have hardware single-stepped a
4228 software breakpoint. In this case (prev_pc == breakpoint_pc),
4229 we also need to back up to the breakpoint address. */
4230
4231 if (thread_has_single_step_breakpoints_set (thread)
4232 || !currently_stepping (thread)
4233 || (thread->stepped_breakpoint
4234 && thread->prev_pc == breakpoint_pc))
4235 regcache_write_pc (regcache, breakpoint_pc);
4236
4237 do_cleanups (old_cleanups);
4238 }
4239 }
4240
4241 static int
4242 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4243 {
4244 for (frame = get_prev_frame (frame);
4245 frame != NULL;
4246 frame = get_prev_frame (frame))
4247 {
4248 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4249 return 1;
4250 if (get_frame_type (frame) != INLINE_FRAME)
4251 break;
4252 }
4253
4254 return 0;
4255 }
4256
4257 /* Auxiliary function that handles syscall entry/return events.
4258 It returns 1 if the inferior should keep going (and GDB
4259 should ignore the event), or 0 if the event deserves to be
4260 processed. */
4261
4262 static int
4263 handle_syscall_event (struct execution_control_state *ecs)
4264 {
4265 struct regcache *regcache;
4266 int syscall_number;
4267
4268 if (!ptid_equal (ecs->ptid, inferior_ptid))
4269 context_switch (ecs->ptid);
4270
4271 regcache = get_thread_regcache (ecs->ptid);
4272 syscall_number = ecs->ws.value.syscall_number;
4273 stop_pc = regcache_read_pc (regcache);
4274
4275 if (catch_syscall_enabled () > 0
4276 && catching_syscall_number (syscall_number) > 0)
4277 {
4278 if (debug_infrun)
4279 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4280 syscall_number);
4281
4282 ecs->event_thread->control.stop_bpstat
4283 = bpstat_stop_status (get_regcache_aspace (regcache),
4284 stop_pc, ecs->ptid, &ecs->ws);
4285
4286 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4287 {
4288 /* Catchpoint hit. */
4289 return 0;
4290 }
4291 }
4292
4293 /* If no catchpoint triggered for this, then keep going. */
4294 keep_going (ecs);
4295 return 1;
4296 }
4297
4298 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4299
4300 static void
4301 fill_in_stop_func (struct gdbarch *gdbarch,
4302 struct execution_control_state *ecs)
4303 {
4304 if (!ecs->stop_func_filled_in)
4305 {
4306 /* Don't care about return value; stop_func_start and stop_func_name
4307 will both be 0 if it doesn't work. */
4308 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4309 &ecs->stop_func_start, &ecs->stop_func_end);
4310 ecs->stop_func_start
4311 += gdbarch_deprecated_function_start_offset (gdbarch);
4312
4313 if (gdbarch_skip_entrypoint_p (gdbarch))
4314 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4315 ecs->stop_func_start);
4316
4317 ecs->stop_func_filled_in = 1;
4318 }
4319 }
4320
4321
4322 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4323
4324 static enum stop_kind
4325 get_inferior_stop_soon (ptid_t ptid)
4326 {
4327 struct inferior *inf = find_inferior_ptid (ptid);
4328
4329 gdb_assert (inf != NULL);
4330 return inf->control.stop_soon;
4331 }
4332
4333 /* Wait for one event. Store the resulting waitstatus in WS, and
4334 return the event ptid. */
4335
4336 static ptid_t
4337 wait_one (struct target_waitstatus *ws)
4338 {
4339 ptid_t event_ptid;
4340 ptid_t wait_ptid = minus_one_ptid;
4341
4342 overlay_cache_invalid = 1;
4343
4344 /* Flush target cache before starting to handle each event.
4345 Target was running and cache could be stale. This is just a
4346 heuristic. Running threads may modify target memory, but we
4347 don't get any event. */
4348 target_dcache_invalidate ();
4349
4350 if (deprecated_target_wait_hook)
4351 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4352 else
4353 event_ptid = target_wait (wait_ptid, ws, 0);
4354
4355 if (debug_infrun)
4356 print_target_wait_results (wait_ptid, event_ptid, ws);
4357
4358 return event_ptid;
4359 }
4360
4361 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4362 instead of the current thread. */
4363 #define THREAD_STOPPED_BY(REASON) \
4364 static int \
4365 thread_stopped_by_ ## REASON (ptid_t ptid) \
4366 { \
4367 struct cleanup *old_chain; \
4368 int res; \
4369 \
4370 old_chain = save_inferior_ptid (); \
4371 inferior_ptid = ptid; \
4372 \
4373 res = target_stopped_by_ ## REASON (); \
4374 \
4375 do_cleanups (old_chain); \
4376 \
4377 return res; \
4378 }
4379
4380 /* Generate thread_stopped_by_watchpoint. */
4381 THREAD_STOPPED_BY (watchpoint)
4382 /* Generate thread_stopped_by_sw_breakpoint. */
4383 THREAD_STOPPED_BY (sw_breakpoint)
4384 /* Generate thread_stopped_by_hw_breakpoint. */
4385 THREAD_STOPPED_BY (hw_breakpoint)
4386
4387 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4388
4389 static void
4390 switch_to_thread_cleanup (void *ptid_p)
4391 {
4392 ptid_t ptid = *(ptid_t *) ptid_p;
4393
4394 switch_to_thread (ptid);
4395 }
4396
4397 /* Save the thread's event and stop reason to process it later. */
4398
4399 static void
4400 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4401 {
4402 struct regcache *regcache;
4403 struct address_space *aspace;
4404
4405 if (debug_infrun)
4406 {
4407 char *statstr;
4408
4409 statstr = target_waitstatus_to_string (ws);
4410 fprintf_unfiltered (gdb_stdlog,
4411 "infrun: saving status %s for %d.%ld.%ld\n",
4412 statstr,
4413 ptid_get_pid (tp->ptid),
4414 ptid_get_lwp (tp->ptid),
4415 ptid_get_tid (tp->ptid));
4416 xfree (statstr);
4417 }
4418
4419 /* Record for later. */
4420 tp->suspend.waitstatus = *ws;
4421 tp->suspend.waitstatus_pending_p = 1;
4422
4423 regcache = get_thread_regcache (tp->ptid);
4424 aspace = get_regcache_aspace (regcache);
4425
4426 if (ws->kind == TARGET_WAITKIND_STOPPED
4427 && ws->value.sig == GDB_SIGNAL_TRAP)
4428 {
4429 CORE_ADDR pc = regcache_read_pc (regcache);
4430
4431 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4432
4433 if (thread_stopped_by_watchpoint (tp->ptid))
4434 {
4435 tp->suspend.stop_reason
4436 = TARGET_STOPPED_BY_WATCHPOINT;
4437 }
4438 else if (target_supports_stopped_by_sw_breakpoint ()
4439 && thread_stopped_by_sw_breakpoint (tp->ptid))
4440 {
4441 tp->suspend.stop_reason
4442 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4443 }
4444 else if (target_supports_stopped_by_hw_breakpoint ()
4445 && thread_stopped_by_hw_breakpoint (tp->ptid))
4446 {
4447 tp->suspend.stop_reason
4448 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4449 }
4450 else if (!target_supports_stopped_by_hw_breakpoint ()
4451 && hardware_breakpoint_inserted_here_p (aspace,
4452 pc))
4453 {
4454 tp->suspend.stop_reason
4455 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4456 }
4457 else if (!target_supports_stopped_by_sw_breakpoint ()
4458 && software_breakpoint_inserted_here_p (aspace,
4459 pc))
4460 {
4461 tp->suspend.stop_reason
4462 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4463 }
4464 else if (!thread_has_single_step_breakpoints_set (tp)
4465 && currently_stepping (tp))
4466 {
4467 tp->suspend.stop_reason
4468 = TARGET_STOPPED_BY_SINGLE_STEP;
4469 }
4470 }
4471 }
4472
4473 /* A cleanup that disables thread create/exit events. */
4474
4475 static void
4476 disable_thread_events (void *arg)
4477 {
4478 target_thread_events (0);
4479 }
4480
4481 /* See infrun.h. */
4482
4483 void
4484 stop_all_threads (void)
4485 {
4486 /* We may need multiple passes to discover all threads. */
4487 int pass;
4488 int iterations = 0;
4489 ptid_t entry_ptid;
4490 struct cleanup *old_chain;
4491
4492 gdb_assert (target_is_non_stop_p ());
4493
4494 if (debug_infrun)
4495 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4496
4497 entry_ptid = inferior_ptid;
4498 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4499
4500 target_thread_events (1);
4501 make_cleanup (disable_thread_events, NULL);
4502
4503 /* Request threads to stop, and then wait for the stops. Because
4504 threads we already know about can spawn more threads while we're
4505 trying to stop them, and we only learn about new threads when we
4506 update the thread list, do this in a loop, and keep iterating
4507 until two passes find no threads that need to be stopped. */
4508 for (pass = 0; pass < 2; pass++, iterations++)
4509 {
4510 if (debug_infrun)
4511 fprintf_unfiltered (gdb_stdlog,
4512 "infrun: stop_all_threads, pass=%d, "
4513 "iterations=%d\n", pass, iterations);
4514 while (1)
4515 {
4516 ptid_t event_ptid;
4517 struct target_waitstatus ws;
4518 int need_wait = 0;
4519 struct thread_info *t;
4520
4521 update_thread_list ();
4522
4523 /* Go through all threads looking for threads that we need
4524 to tell the target to stop. */
4525 ALL_NON_EXITED_THREADS (t)
4526 {
4527 if (t->executing)
4528 {
4529 /* If already stopping, don't request a stop again.
4530 We just haven't seen the notification yet. */
4531 if (!t->stop_requested)
4532 {
4533 if (debug_infrun)
4534 fprintf_unfiltered (gdb_stdlog,
4535 "infrun: %s executing, "
4536 "need stop\n",
4537 target_pid_to_str (t->ptid));
4538 target_stop (t->ptid);
4539 t->stop_requested = 1;
4540 }
4541 else
4542 {
4543 if (debug_infrun)
4544 fprintf_unfiltered (gdb_stdlog,
4545 "infrun: %s executing, "
4546 "already stopping\n",
4547 target_pid_to_str (t->ptid));
4548 }
4549
4550 if (t->stop_requested)
4551 need_wait = 1;
4552 }
4553 else
4554 {
4555 if (debug_infrun)
4556 fprintf_unfiltered (gdb_stdlog,
4557 "infrun: %s not executing\n",
4558 target_pid_to_str (t->ptid));
4559
4560 /* The thread may be not executing, but still be
4561 resumed with a pending status to process. */
4562 t->resumed = 0;
4563 }
4564 }
4565
4566 if (!need_wait)
4567 break;
4568
4569 /* If we find new threads on the second iteration, restart
4570 over. We want to see two iterations in a row with all
4571 threads stopped. */
4572 if (pass > 0)
4573 pass = -1;
4574
4575 event_ptid = wait_one (&ws);
4576 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4577 {
4578 /* All resumed threads exited. */
4579 }
4580 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4581 || ws.kind == TARGET_WAITKIND_EXITED
4582 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4583 {
4584 if (debug_infrun)
4585 {
4586 ptid_t ptid = pid_to_ptid (ws.value.integer);
4587
4588 fprintf_unfiltered (gdb_stdlog,
4589 "infrun: %s exited while "
4590 "stopping threads\n",
4591 target_pid_to_str (ptid));
4592 }
4593 }
4594 else
4595 {
4596 struct inferior *inf;
4597
4598 t = find_thread_ptid (event_ptid);
4599 if (t == NULL)
4600 t = add_thread (event_ptid);
4601
4602 t->stop_requested = 0;
4603 t->executing = 0;
4604 t->resumed = 0;
4605 t->control.may_range_step = 0;
4606
4607 /* This may be the first time we see the inferior report
4608 a stop. */
4609 inf = find_inferior_ptid (event_ptid);
4610 if (inf->needs_setup)
4611 {
4612 switch_to_thread_no_regs (t);
4613 setup_inferior (0);
4614 }
4615
4616 if (ws.kind == TARGET_WAITKIND_STOPPED
4617 && ws.value.sig == GDB_SIGNAL_0)
4618 {
4619 /* We caught the event that we intended to catch, so
4620 there's no event pending. */
4621 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4622 t->suspend.waitstatus_pending_p = 0;
4623
4624 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4625 {
4626 /* Add it back to the step-over queue. */
4627 if (debug_infrun)
4628 {
4629 fprintf_unfiltered (gdb_stdlog,
4630 "infrun: displaced-step of %s "
4631 "canceled: adding back to the "
4632 "step-over queue\n",
4633 target_pid_to_str (t->ptid));
4634 }
4635 t->control.trap_expected = 0;
4636 thread_step_over_chain_enqueue (t);
4637 }
4638 }
4639 else
4640 {
4641 enum gdb_signal sig;
4642 struct regcache *regcache;
4643
4644 if (debug_infrun)
4645 {
4646 char *statstr;
4647
4648 statstr = target_waitstatus_to_string (&ws);
4649 fprintf_unfiltered (gdb_stdlog,
4650 "infrun: target_wait %s, saving "
4651 "status for %d.%ld.%ld\n",
4652 statstr,
4653 ptid_get_pid (t->ptid),
4654 ptid_get_lwp (t->ptid),
4655 ptid_get_tid (t->ptid));
4656 xfree (statstr);
4657 }
4658
4659 /* Record for later. */
4660 save_waitstatus (t, &ws);
4661
4662 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4663 ? ws.value.sig : GDB_SIGNAL_0);
4664
4665 if (displaced_step_fixup (t->ptid, sig) < 0)
4666 {
4667 /* Add it back to the step-over queue. */
4668 t->control.trap_expected = 0;
4669 thread_step_over_chain_enqueue (t);
4670 }
4671
4672 regcache = get_thread_regcache (t->ptid);
4673 t->suspend.stop_pc = regcache_read_pc (regcache);
4674
4675 if (debug_infrun)
4676 {
4677 fprintf_unfiltered (gdb_stdlog,
4678 "infrun: saved stop_pc=%s for %s "
4679 "(currently_stepping=%d)\n",
4680 paddress (target_gdbarch (),
4681 t->suspend.stop_pc),
4682 target_pid_to_str (t->ptid),
4683 currently_stepping (t));
4684 }
4685 }
4686 }
4687 }
4688 }
4689
4690 do_cleanups (old_chain);
4691
4692 if (debug_infrun)
4693 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4694 }
4695
4696 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4697
4698 static int
4699 handle_no_resumed (struct execution_control_state *ecs)
4700 {
4701 struct inferior *inf;
4702 struct thread_info *thread;
4703
4704 if (target_can_async_p ())
4705 {
4706 struct ui *ui;
4707 int any_sync = 0;
4708
4709 ALL_UIS (ui)
4710 {
4711 if (ui->prompt_state == PROMPT_BLOCKED)
4712 {
4713 any_sync = 1;
4714 break;
4715 }
4716 }
4717 if (!any_sync)
4718 {
4719 /* There were no unwaited-for children left in the target, but,
4720 we're not synchronously waiting for events either. Just
4721 ignore. */
4722
4723 if (debug_infrun)
4724 fprintf_unfiltered (gdb_stdlog,
4725 "infrun: TARGET_WAITKIND_NO_RESUMED "
4726 "(ignoring: bg)\n");
4727 prepare_to_wait (ecs);
4728 return 1;
4729 }
4730 }
4731
4732 /* Otherwise, if we were running a synchronous execution command, we
4733 may need to cancel it and give the user back the terminal.
4734
4735 In non-stop mode, the target can't tell whether we've already
4736 consumed previous stop events, so it can end up sending us a
4737 no-resumed event like so:
4738
4739 #0 - thread 1 is left stopped
4740
4741 #1 - thread 2 is resumed and hits breakpoint
4742 -> TARGET_WAITKIND_STOPPED
4743
4744 #2 - thread 3 is resumed and exits
4745 this is the last resumed thread, so
4746 -> TARGET_WAITKIND_NO_RESUMED
4747
4748 #3 - gdb processes stop for thread 2 and decides to re-resume
4749 it.
4750
4751 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4752 thread 2 is now resumed, so the event should be ignored.
4753
4754 IOW, if the stop for thread 2 doesn't end a foreground command,
4755 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4756 event. But it could be that the event meant that thread 2 itself
4757 (or whatever other thread was the last resumed thread) exited.
4758
4759 To address this we refresh the thread list and check whether we
4760 have resumed threads _now_. In the example above, this removes
4761 thread 3 from the thread list. If thread 2 was re-resumed, we
4762 ignore this event. If we find no thread resumed, then we cancel
4763 the synchronous command show "no unwaited-for " to the user. */
4764 update_thread_list ();
4765
4766 ALL_NON_EXITED_THREADS (thread)
4767 {
4768 if (thread->executing
4769 || thread->suspend.waitstatus_pending_p)
4770 {
4771 /* There were no unwaited-for children left in the target at
4772 some point, but there are now. Just ignore. */
4773 if (debug_infrun)
4774 fprintf_unfiltered (gdb_stdlog,
4775 "infrun: TARGET_WAITKIND_NO_RESUMED "
4776 "(ignoring: found resumed)\n");
4777 prepare_to_wait (ecs);
4778 return 1;
4779 }
4780 }
4781
4782 /* Note however that we may find no resumed thread because the whole
4783 process exited meanwhile (thus updating the thread list results
4784 in an empty thread list). In this case we know we'll be getting
4785 a process exit event shortly. */
4786 ALL_INFERIORS (inf)
4787 {
4788 if (inf->pid == 0)
4789 continue;
4790
4791 thread = any_live_thread_of_process (inf->pid);
4792 if (thread == NULL)
4793 {
4794 if (debug_infrun)
4795 fprintf_unfiltered (gdb_stdlog,
4796 "infrun: TARGET_WAITKIND_NO_RESUMED "
4797 "(expect process exit)\n");
4798 prepare_to_wait (ecs);
4799 return 1;
4800 }
4801 }
4802
4803 /* Go ahead and report the event. */
4804 return 0;
4805 }
4806
4807 /* Given an execution control state that has been freshly filled in by
4808 an event from the inferior, figure out what it means and take
4809 appropriate action.
4810
4811 The alternatives are:
4812
4813 1) stop_waiting and return; to really stop and return to the
4814 debugger.
4815
4816 2) keep_going and return; to wait for the next event (set
4817 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4818 once). */
4819
4820 static void
4821 handle_inferior_event_1 (struct execution_control_state *ecs)
4822 {
4823 enum stop_kind stop_soon;
4824
4825 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4826 {
4827 /* We had an event in the inferior, but we are not interested in
4828 handling it at this level. The lower layers have already
4829 done what needs to be done, if anything.
4830
4831 One of the possible circumstances for this is when the
4832 inferior produces output for the console. The inferior has
4833 not stopped, and we are ignoring the event. Another possible
4834 circumstance is any event which the lower level knows will be
4835 reported multiple times without an intervening resume. */
4836 if (debug_infrun)
4837 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4838 prepare_to_wait (ecs);
4839 return;
4840 }
4841
4842 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4843 {
4844 if (debug_infrun)
4845 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4846 prepare_to_wait (ecs);
4847 return;
4848 }
4849
4850 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4851 && handle_no_resumed (ecs))
4852 return;
4853
4854 /* Cache the last pid/waitstatus. */
4855 set_last_target_status (ecs->ptid, ecs->ws);
4856
4857 /* Always clear state belonging to the previous time we stopped. */
4858 stop_stack_dummy = STOP_NONE;
4859
4860 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4861 {
4862 /* No unwaited-for children left. IOW, all resumed children
4863 have exited. */
4864 if (debug_infrun)
4865 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4866
4867 stop_print_frame = 0;
4868 stop_waiting (ecs);
4869 return;
4870 }
4871
4872 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4873 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4874 {
4875 ecs->event_thread = find_thread_ptid (ecs->ptid);
4876 /* If it's a new thread, add it to the thread database. */
4877 if (ecs->event_thread == NULL)
4878 ecs->event_thread = add_thread (ecs->ptid);
4879
4880 /* Disable range stepping. If the next step request could use a
4881 range, this will be end up re-enabled then. */
4882 ecs->event_thread->control.may_range_step = 0;
4883 }
4884
4885 /* Dependent on valid ECS->EVENT_THREAD. */
4886 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4887
4888 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4889 reinit_frame_cache ();
4890
4891 breakpoint_retire_moribund ();
4892
4893 /* First, distinguish signals caused by the debugger from signals
4894 that have to do with the program's own actions. Note that
4895 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4896 on the operating system version. Here we detect when a SIGILL or
4897 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4898 something similar for SIGSEGV, since a SIGSEGV will be generated
4899 when we're trying to execute a breakpoint instruction on a
4900 non-executable stack. This happens for call dummy breakpoints
4901 for architectures like SPARC that place call dummies on the
4902 stack. */
4903 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4904 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4905 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4906 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4907 {
4908 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4909
4910 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4911 regcache_read_pc (regcache)))
4912 {
4913 if (debug_infrun)
4914 fprintf_unfiltered (gdb_stdlog,
4915 "infrun: Treating signal as SIGTRAP\n");
4916 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4917 }
4918 }
4919
4920 /* Mark the non-executing threads accordingly. In all-stop, all
4921 threads of all processes are stopped when we get any event
4922 reported. In non-stop mode, only the event thread stops. */
4923 {
4924 ptid_t mark_ptid;
4925
4926 if (!target_is_non_stop_p ())
4927 mark_ptid = minus_one_ptid;
4928 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4929 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4930 {
4931 /* If we're handling a process exit in non-stop mode, even
4932 though threads haven't been deleted yet, one would think
4933 that there is nothing to do, as threads of the dead process
4934 will be soon deleted, and threads of any other process were
4935 left running. However, on some targets, threads survive a
4936 process exit event. E.g., for the "checkpoint" command,
4937 when the current checkpoint/fork exits, linux-fork.c
4938 automatically switches to another fork from within
4939 target_mourn_inferior, by associating the same
4940 inferior/thread to another fork. We haven't mourned yet at
4941 this point, but we must mark any threads left in the
4942 process as not-executing so that finish_thread_state marks
4943 them stopped (in the user's perspective) if/when we present
4944 the stop to the user. */
4945 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4946 }
4947 else
4948 mark_ptid = ecs->ptid;
4949
4950 set_executing (mark_ptid, 0);
4951
4952 /* Likewise the resumed flag. */
4953 set_resumed (mark_ptid, 0);
4954 }
4955
4956 switch (ecs->ws.kind)
4957 {
4958 case TARGET_WAITKIND_LOADED:
4959 if (debug_infrun)
4960 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4961 if (!ptid_equal (ecs->ptid, inferior_ptid))
4962 context_switch (ecs->ptid);
4963 /* Ignore gracefully during startup of the inferior, as it might
4964 be the shell which has just loaded some objects, otherwise
4965 add the symbols for the newly loaded objects. Also ignore at
4966 the beginning of an attach or remote session; we will query
4967 the full list of libraries once the connection is
4968 established. */
4969
4970 stop_soon = get_inferior_stop_soon (ecs->ptid);
4971 if (stop_soon == NO_STOP_QUIETLY)
4972 {
4973 struct regcache *regcache;
4974
4975 regcache = get_thread_regcache (ecs->ptid);
4976
4977 handle_solib_event ();
4978
4979 ecs->event_thread->control.stop_bpstat
4980 = bpstat_stop_status (get_regcache_aspace (regcache),
4981 stop_pc, ecs->ptid, &ecs->ws);
4982
4983 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4984 {
4985 /* A catchpoint triggered. */
4986 process_event_stop_test (ecs);
4987 return;
4988 }
4989
4990 /* If requested, stop when the dynamic linker notifies
4991 gdb of events. This allows the user to get control
4992 and place breakpoints in initializer routines for
4993 dynamically loaded objects (among other things). */
4994 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4995 if (stop_on_solib_events)
4996 {
4997 /* Make sure we print "Stopped due to solib-event" in
4998 normal_stop. */
4999 stop_print_frame = 1;
5000
5001 stop_waiting (ecs);
5002 return;
5003 }
5004 }
5005
5006 /* If we are skipping through a shell, or through shared library
5007 loading that we aren't interested in, resume the program. If
5008 we're running the program normally, also resume. */
5009 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5010 {
5011 /* Loading of shared libraries might have changed breakpoint
5012 addresses. Make sure new breakpoints are inserted. */
5013 if (stop_soon == NO_STOP_QUIETLY)
5014 insert_breakpoints ();
5015 resume (GDB_SIGNAL_0);
5016 prepare_to_wait (ecs);
5017 return;
5018 }
5019
5020 /* But stop if we're attaching or setting up a remote
5021 connection. */
5022 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5023 || stop_soon == STOP_QUIETLY_REMOTE)
5024 {
5025 if (debug_infrun)
5026 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5027 stop_waiting (ecs);
5028 return;
5029 }
5030
5031 internal_error (__FILE__, __LINE__,
5032 _("unhandled stop_soon: %d"), (int) stop_soon);
5033
5034 case TARGET_WAITKIND_SPURIOUS:
5035 if (debug_infrun)
5036 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5037 if (!ptid_equal (ecs->ptid, inferior_ptid))
5038 context_switch (ecs->ptid);
5039 resume (GDB_SIGNAL_0);
5040 prepare_to_wait (ecs);
5041 return;
5042
5043 case TARGET_WAITKIND_THREAD_CREATED:
5044 if (debug_infrun)
5045 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5046 if (!ptid_equal (ecs->ptid, inferior_ptid))
5047 context_switch (ecs->ptid);
5048 if (!switch_back_to_stepped_thread (ecs))
5049 keep_going (ecs);
5050 return;
5051
5052 case TARGET_WAITKIND_EXITED:
5053 case TARGET_WAITKIND_SIGNALLED:
5054 if (debug_infrun)
5055 {
5056 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5057 fprintf_unfiltered (gdb_stdlog,
5058 "infrun: TARGET_WAITKIND_EXITED\n");
5059 else
5060 fprintf_unfiltered (gdb_stdlog,
5061 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5062 }
5063
5064 inferior_ptid = ecs->ptid;
5065 set_current_inferior (find_inferior_ptid (ecs->ptid));
5066 set_current_program_space (current_inferior ()->pspace);
5067 handle_vfork_child_exec_or_exit (0);
5068 target_terminal_ours (); /* Must do this before mourn anyway. */
5069
5070 /* Clearing any previous state of convenience variables. */
5071 clear_exit_convenience_vars ();
5072
5073 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5074 {
5075 /* Record the exit code in the convenience variable $_exitcode, so
5076 that the user can inspect this again later. */
5077 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5078 (LONGEST) ecs->ws.value.integer);
5079
5080 /* Also record this in the inferior itself. */
5081 current_inferior ()->has_exit_code = 1;
5082 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5083
5084 /* Support the --return-child-result option. */
5085 return_child_result_value = ecs->ws.value.integer;
5086
5087 observer_notify_exited (ecs->ws.value.integer);
5088 }
5089 else
5090 {
5091 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5092 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5093
5094 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5095 {
5096 /* Set the value of the internal variable $_exitsignal,
5097 which holds the signal uncaught by the inferior. */
5098 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5099 gdbarch_gdb_signal_to_target (gdbarch,
5100 ecs->ws.value.sig));
5101 }
5102 else
5103 {
5104 /* We don't have access to the target's method used for
5105 converting between signal numbers (GDB's internal
5106 representation <-> target's representation).
5107 Therefore, we cannot do a good job at displaying this
5108 information to the user. It's better to just warn
5109 her about it (if infrun debugging is enabled), and
5110 give up. */
5111 if (debug_infrun)
5112 fprintf_filtered (gdb_stdlog, _("\
5113 Cannot fill $_exitsignal with the correct signal number.\n"));
5114 }
5115
5116 observer_notify_signal_exited (ecs->ws.value.sig);
5117 }
5118
5119 gdb_flush (gdb_stdout);
5120 target_mourn_inferior (inferior_ptid);
5121 stop_print_frame = 0;
5122 stop_waiting (ecs);
5123 return;
5124
5125 /* The following are the only cases in which we keep going;
5126 the above cases end in a continue or goto. */
5127 case TARGET_WAITKIND_FORKED:
5128 case TARGET_WAITKIND_VFORKED:
5129 if (debug_infrun)
5130 {
5131 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5132 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5133 else
5134 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5135 }
5136
5137 /* Check whether the inferior is displaced stepping. */
5138 {
5139 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5140 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5141
5142 /* If checking displaced stepping is supported, and thread
5143 ecs->ptid is displaced stepping. */
5144 if (displaced_step_in_progress_thread (ecs->ptid))
5145 {
5146 struct inferior *parent_inf
5147 = find_inferior_ptid (ecs->ptid);
5148 struct regcache *child_regcache;
5149 CORE_ADDR parent_pc;
5150
5151 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5152 indicating that the displaced stepping of syscall instruction
5153 has been done. Perform cleanup for parent process here. Note
5154 that this operation also cleans up the child process for vfork,
5155 because their pages are shared. */
5156 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5157 /* Start a new step-over in another thread if there's one
5158 that needs it. */
5159 start_step_over ();
5160
5161 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5162 {
5163 struct displaced_step_inferior_state *displaced
5164 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5165
5166 /* Restore scratch pad for child process. */
5167 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5168 }
5169
5170 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5171 the child's PC is also within the scratchpad. Set the child's PC
5172 to the parent's PC value, which has already been fixed up.
5173 FIXME: we use the parent's aspace here, although we're touching
5174 the child, because the child hasn't been added to the inferior
5175 list yet at this point. */
5176
5177 child_regcache
5178 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5179 gdbarch,
5180 parent_inf->aspace);
5181 /* Read PC value of parent process. */
5182 parent_pc = regcache_read_pc (regcache);
5183
5184 if (debug_displaced)
5185 fprintf_unfiltered (gdb_stdlog,
5186 "displaced: write child pc from %s to %s\n",
5187 paddress (gdbarch,
5188 regcache_read_pc (child_regcache)),
5189 paddress (gdbarch, parent_pc));
5190
5191 regcache_write_pc (child_regcache, parent_pc);
5192 }
5193 }
5194
5195 if (!ptid_equal (ecs->ptid, inferior_ptid))
5196 context_switch (ecs->ptid);
5197
5198 /* Immediately detach breakpoints from the child before there's
5199 any chance of letting the user delete breakpoints from the
5200 breakpoint lists. If we don't do this early, it's easy to
5201 leave left over traps in the child, vis: "break foo; catch
5202 fork; c; <fork>; del; c; <child calls foo>". We only follow
5203 the fork on the last `continue', and by that time the
5204 breakpoint at "foo" is long gone from the breakpoint table.
5205 If we vforked, then we don't need to unpatch here, since both
5206 parent and child are sharing the same memory pages; we'll
5207 need to unpatch at follow/detach time instead to be certain
5208 that new breakpoints added between catchpoint hit time and
5209 vfork follow are detached. */
5210 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5211 {
5212 /* This won't actually modify the breakpoint list, but will
5213 physically remove the breakpoints from the child. */
5214 detach_breakpoints (ecs->ws.value.related_pid);
5215 }
5216
5217 delete_just_stopped_threads_single_step_breakpoints ();
5218
5219 /* In case the event is caught by a catchpoint, remember that
5220 the event is to be followed at the next resume of the thread,
5221 and not immediately. */
5222 ecs->event_thread->pending_follow = ecs->ws;
5223
5224 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5225
5226 ecs->event_thread->control.stop_bpstat
5227 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5228 stop_pc, ecs->ptid, &ecs->ws);
5229
5230 /* If no catchpoint triggered for this, then keep going. Note
5231 that we're interested in knowing the bpstat actually causes a
5232 stop, not just if it may explain the signal. Software
5233 watchpoints, for example, always appear in the bpstat. */
5234 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5235 {
5236 ptid_t parent;
5237 ptid_t child;
5238 int should_resume;
5239 int follow_child
5240 = (follow_fork_mode_string == follow_fork_mode_child);
5241
5242 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5243
5244 should_resume = follow_fork ();
5245
5246 parent = ecs->ptid;
5247 child = ecs->ws.value.related_pid;
5248
5249 /* At this point, the parent is marked running, and the
5250 child is marked stopped. */
5251
5252 /* If not resuming the parent, mark it stopped. */
5253 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5254 set_running (parent, 0);
5255
5256 /* If resuming the child, mark it running. */
5257 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5258 set_running (child, 1);
5259
5260 /* In non-stop mode, also resume the other branch. */
5261 if (!detach_fork && (non_stop
5262 || (sched_multi && target_is_non_stop_p ())))
5263 {
5264 if (follow_child)
5265 switch_to_thread (parent);
5266 else
5267 switch_to_thread (child);
5268
5269 ecs->event_thread = inferior_thread ();
5270 ecs->ptid = inferior_ptid;
5271 keep_going (ecs);
5272 }
5273
5274 if (follow_child)
5275 switch_to_thread (child);
5276 else
5277 switch_to_thread (parent);
5278
5279 ecs->event_thread = inferior_thread ();
5280 ecs->ptid = inferior_ptid;
5281
5282 if (should_resume)
5283 keep_going (ecs);
5284 else
5285 stop_waiting (ecs);
5286 return;
5287 }
5288 process_event_stop_test (ecs);
5289 return;
5290
5291 case TARGET_WAITKIND_VFORK_DONE:
5292 /* Done with the shared memory region. Re-insert breakpoints in
5293 the parent, and keep going. */
5294
5295 if (debug_infrun)
5296 fprintf_unfiltered (gdb_stdlog,
5297 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5298
5299 if (!ptid_equal (ecs->ptid, inferior_ptid))
5300 context_switch (ecs->ptid);
5301
5302 current_inferior ()->waiting_for_vfork_done = 0;
5303 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5304 /* This also takes care of reinserting breakpoints in the
5305 previously locked inferior. */
5306 keep_going (ecs);
5307 return;
5308
5309 case TARGET_WAITKIND_EXECD:
5310 if (debug_infrun)
5311 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5312
5313 if (!ptid_equal (ecs->ptid, inferior_ptid))
5314 context_switch (ecs->ptid);
5315
5316 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5317
5318 /* Do whatever is necessary to the parent branch of the vfork. */
5319 handle_vfork_child_exec_or_exit (1);
5320
5321 /* This causes the eventpoints and symbol table to be reset.
5322 Must do this now, before trying to determine whether to
5323 stop. */
5324 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5325
5326 /* In follow_exec we may have deleted the original thread and
5327 created a new one. Make sure that the event thread is the
5328 execd thread for that case (this is a nop otherwise). */
5329 ecs->event_thread = inferior_thread ();
5330
5331 ecs->event_thread->control.stop_bpstat
5332 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5333 stop_pc, ecs->ptid, &ecs->ws);
5334
5335 /* Note that this may be referenced from inside
5336 bpstat_stop_status above, through inferior_has_execd. */
5337 xfree (ecs->ws.value.execd_pathname);
5338 ecs->ws.value.execd_pathname = NULL;
5339
5340 /* If no catchpoint triggered for this, then keep going. */
5341 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5342 {
5343 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5344 keep_going (ecs);
5345 return;
5346 }
5347 process_event_stop_test (ecs);
5348 return;
5349
5350 /* Be careful not to try to gather much state about a thread
5351 that's in a syscall. It's frequently a losing proposition. */
5352 case TARGET_WAITKIND_SYSCALL_ENTRY:
5353 if (debug_infrun)
5354 fprintf_unfiltered (gdb_stdlog,
5355 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5356 /* Getting the current syscall number. */
5357 if (handle_syscall_event (ecs) == 0)
5358 process_event_stop_test (ecs);
5359 return;
5360
5361 /* Before examining the threads further, step this thread to
5362 get it entirely out of the syscall. (We get notice of the
5363 event when the thread is just on the verge of exiting a
5364 syscall. Stepping one instruction seems to get it back
5365 into user code.) */
5366 case TARGET_WAITKIND_SYSCALL_RETURN:
5367 if (debug_infrun)
5368 fprintf_unfiltered (gdb_stdlog,
5369 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5370 if (handle_syscall_event (ecs) == 0)
5371 process_event_stop_test (ecs);
5372 return;
5373
5374 case TARGET_WAITKIND_STOPPED:
5375 if (debug_infrun)
5376 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5377 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5378 handle_signal_stop (ecs);
5379 return;
5380
5381 case TARGET_WAITKIND_NO_HISTORY:
5382 if (debug_infrun)
5383 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5384 /* Reverse execution: target ran out of history info. */
5385
5386 /* Switch to the stopped thread. */
5387 if (!ptid_equal (ecs->ptid, inferior_ptid))
5388 context_switch (ecs->ptid);
5389 if (debug_infrun)
5390 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5391
5392 delete_just_stopped_threads_single_step_breakpoints ();
5393 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5394 observer_notify_no_history ();
5395 stop_waiting (ecs);
5396 return;
5397 }
5398 }
5399
5400 /* A wrapper around handle_inferior_event_1, which also makes sure
5401 that all temporary struct value objects that were created during
5402 the handling of the event get deleted at the end. */
5403
5404 static void
5405 handle_inferior_event (struct execution_control_state *ecs)
5406 {
5407 struct value *mark = value_mark ();
5408
5409 handle_inferior_event_1 (ecs);
5410 /* Purge all temporary values created during the event handling,
5411 as it could be a long time before we return to the command level
5412 where such values would otherwise be purged. */
5413 value_free_to_mark (mark);
5414 }
5415
5416 /* Restart threads back to what they were trying to do back when we
5417 paused them for an in-line step-over. The EVENT_THREAD thread is
5418 ignored. */
5419
5420 static void
5421 restart_threads (struct thread_info *event_thread)
5422 {
5423 struct thread_info *tp;
5424
5425 /* In case the instruction just stepped spawned a new thread. */
5426 update_thread_list ();
5427
5428 ALL_NON_EXITED_THREADS (tp)
5429 {
5430 if (tp == event_thread)
5431 {
5432 if (debug_infrun)
5433 fprintf_unfiltered (gdb_stdlog,
5434 "infrun: restart threads: "
5435 "[%s] is event thread\n",
5436 target_pid_to_str (tp->ptid));
5437 continue;
5438 }
5439
5440 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5441 {
5442 if (debug_infrun)
5443 fprintf_unfiltered (gdb_stdlog,
5444 "infrun: restart threads: "
5445 "[%s] not meant to be running\n",
5446 target_pid_to_str (tp->ptid));
5447 continue;
5448 }
5449
5450 if (tp->resumed)
5451 {
5452 if (debug_infrun)
5453 fprintf_unfiltered (gdb_stdlog,
5454 "infrun: restart threads: [%s] resumed\n",
5455 target_pid_to_str (tp->ptid));
5456 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5457 continue;
5458 }
5459
5460 if (thread_is_in_step_over_chain (tp))
5461 {
5462 if (debug_infrun)
5463 fprintf_unfiltered (gdb_stdlog,
5464 "infrun: restart threads: "
5465 "[%s] needs step-over\n",
5466 target_pid_to_str (tp->ptid));
5467 gdb_assert (!tp->resumed);
5468 continue;
5469 }
5470
5471
5472 if (tp->suspend.waitstatus_pending_p)
5473 {
5474 if (debug_infrun)
5475 fprintf_unfiltered (gdb_stdlog,
5476 "infrun: restart threads: "
5477 "[%s] has pending status\n",
5478 target_pid_to_str (tp->ptid));
5479 tp->resumed = 1;
5480 continue;
5481 }
5482
5483 /* If some thread needs to start a step-over at this point, it
5484 should still be in the step-over queue, and thus skipped
5485 above. */
5486 if (thread_still_needs_step_over (tp))
5487 {
5488 internal_error (__FILE__, __LINE__,
5489 "thread [%s] needs a step-over, but not in "
5490 "step-over queue\n",
5491 target_pid_to_str (tp->ptid));
5492 }
5493
5494 if (currently_stepping (tp))
5495 {
5496 if (debug_infrun)
5497 fprintf_unfiltered (gdb_stdlog,
5498 "infrun: restart threads: [%s] was stepping\n",
5499 target_pid_to_str (tp->ptid));
5500 keep_going_stepped_thread (tp);
5501 }
5502 else
5503 {
5504 struct execution_control_state ecss;
5505 struct execution_control_state *ecs = &ecss;
5506
5507 if (debug_infrun)
5508 fprintf_unfiltered (gdb_stdlog,
5509 "infrun: restart threads: [%s] continuing\n",
5510 target_pid_to_str (tp->ptid));
5511 reset_ecs (ecs, tp);
5512 switch_to_thread (tp->ptid);
5513 keep_going_pass_signal (ecs);
5514 }
5515 }
5516 }
5517
5518 /* Callback for iterate_over_threads. Find a resumed thread that has
5519 a pending waitstatus. */
5520
5521 static int
5522 resumed_thread_with_pending_status (struct thread_info *tp,
5523 void *arg)
5524 {
5525 return (tp->resumed
5526 && tp->suspend.waitstatus_pending_p);
5527 }
5528
5529 /* Called when we get an event that may finish an in-line or
5530 out-of-line (displaced stepping) step-over started previously.
5531 Return true if the event is processed and we should go back to the
5532 event loop; false if the caller should continue processing the
5533 event. */
5534
5535 static int
5536 finish_step_over (struct execution_control_state *ecs)
5537 {
5538 int had_step_over_info;
5539
5540 displaced_step_fixup (ecs->ptid,
5541 ecs->event_thread->suspend.stop_signal);
5542
5543 had_step_over_info = step_over_info_valid_p ();
5544
5545 if (had_step_over_info)
5546 {
5547 /* If we're stepping over a breakpoint with all threads locked,
5548 then only the thread that was stepped should be reporting
5549 back an event. */
5550 gdb_assert (ecs->event_thread->control.trap_expected);
5551
5552 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5553 clear_step_over_info ();
5554 }
5555
5556 if (!target_is_non_stop_p ())
5557 return 0;
5558
5559 /* Start a new step-over in another thread if there's one that
5560 needs it. */
5561 start_step_over ();
5562
5563 /* If we were stepping over a breakpoint before, and haven't started
5564 a new in-line step-over sequence, then restart all other threads
5565 (except the event thread). We can't do this in all-stop, as then
5566 e.g., we wouldn't be able to issue any other remote packet until
5567 these other threads stop. */
5568 if (had_step_over_info && !step_over_info_valid_p ())
5569 {
5570 struct thread_info *pending;
5571
5572 /* If we only have threads with pending statuses, the restart
5573 below won't restart any thread and so nothing re-inserts the
5574 breakpoint we just stepped over. But we need it inserted
5575 when we later process the pending events, otherwise if
5576 another thread has a pending event for this breakpoint too,
5577 we'd discard its event (because the breakpoint that
5578 originally caused the event was no longer inserted). */
5579 context_switch (ecs->ptid);
5580 insert_breakpoints ();
5581
5582 restart_threads (ecs->event_thread);
5583
5584 /* If we have events pending, go through handle_inferior_event
5585 again, picking up a pending event at random. This avoids
5586 thread starvation. */
5587
5588 /* But not if we just stepped over a watchpoint in order to let
5589 the instruction execute so we can evaluate its expression.
5590 The set of watchpoints that triggered is recorded in the
5591 breakpoint objects themselves (see bp->watchpoint_triggered).
5592 If we processed another event first, that other event could
5593 clobber this info. */
5594 if (ecs->event_thread->stepping_over_watchpoint)
5595 return 0;
5596
5597 pending = iterate_over_threads (resumed_thread_with_pending_status,
5598 NULL);
5599 if (pending != NULL)
5600 {
5601 struct thread_info *tp = ecs->event_thread;
5602 struct regcache *regcache;
5603
5604 if (debug_infrun)
5605 {
5606 fprintf_unfiltered (gdb_stdlog,
5607 "infrun: found resumed threads with "
5608 "pending events, saving status\n");
5609 }
5610
5611 gdb_assert (pending != tp);
5612
5613 /* Record the event thread's event for later. */
5614 save_waitstatus (tp, &ecs->ws);
5615 /* This was cleared early, by handle_inferior_event. Set it
5616 so this pending event is considered by
5617 do_target_wait. */
5618 tp->resumed = 1;
5619
5620 gdb_assert (!tp->executing);
5621
5622 regcache = get_thread_regcache (tp->ptid);
5623 tp->suspend.stop_pc = regcache_read_pc (regcache);
5624
5625 if (debug_infrun)
5626 {
5627 fprintf_unfiltered (gdb_stdlog,
5628 "infrun: saved stop_pc=%s for %s "
5629 "(currently_stepping=%d)\n",
5630 paddress (target_gdbarch (),
5631 tp->suspend.stop_pc),
5632 target_pid_to_str (tp->ptid),
5633 currently_stepping (tp));
5634 }
5635
5636 /* This in-line step-over finished; clear this so we won't
5637 start a new one. This is what handle_signal_stop would
5638 do, if we returned false. */
5639 tp->stepping_over_breakpoint = 0;
5640
5641 /* Wake up the event loop again. */
5642 mark_async_event_handler (infrun_async_inferior_event_token);
5643
5644 prepare_to_wait (ecs);
5645 return 1;
5646 }
5647 }
5648
5649 return 0;
5650 }
5651
5652 /* Come here when the program has stopped with a signal. */
5653
5654 static void
5655 handle_signal_stop (struct execution_control_state *ecs)
5656 {
5657 struct frame_info *frame;
5658 struct gdbarch *gdbarch;
5659 int stopped_by_watchpoint;
5660 enum stop_kind stop_soon;
5661 int random_signal;
5662
5663 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5664
5665 /* Do we need to clean up the state of a thread that has
5666 completed a displaced single-step? (Doing so usually affects
5667 the PC, so do it here, before we set stop_pc.) */
5668 if (finish_step_over (ecs))
5669 return;
5670
5671 /* If we either finished a single-step or hit a breakpoint, but
5672 the user wanted this thread to be stopped, pretend we got a
5673 SIG0 (generic unsignaled stop). */
5674 if (ecs->event_thread->stop_requested
5675 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5676 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5677
5678 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5679
5680 if (debug_infrun)
5681 {
5682 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5683 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5684 struct cleanup *old_chain = save_inferior_ptid ();
5685
5686 inferior_ptid = ecs->ptid;
5687
5688 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5689 paddress (gdbarch, stop_pc));
5690 if (target_stopped_by_watchpoint ())
5691 {
5692 CORE_ADDR addr;
5693
5694 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5695
5696 if (target_stopped_data_address (&current_target, &addr))
5697 fprintf_unfiltered (gdb_stdlog,
5698 "infrun: stopped data address = %s\n",
5699 paddress (gdbarch, addr));
5700 else
5701 fprintf_unfiltered (gdb_stdlog,
5702 "infrun: (no data address available)\n");
5703 }
5704
5705 do_cleanups (old_chain);
5706 }
5707
5708 /* This is originated from start_remote(), start_inferior() and
5709 shared libraries hook functions. */
5710 stop_soon = get_inferior_stop_soon (ecs->ptid);
5711 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5712 {
5713 if (!ptid_equal (ecs->ptid, inferior_ptid))
5714 context_switch (ecs->ptid);
5715 if (debug_infrun)
5716 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5717 stop_print_frame = 1;
5718 stop_waiting (ecs);
5719 return;
5720 }
5721
5722 /* This originates from attach_command(). We need to overwrite
5723 the stop_signal here, because some kernels don't ignore a
5724 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5725 See more comments in inferior.h. On the other hand, if we
5726 get a non-SIGSTOP, report it to the user - assume the backend
5727 will handle the SIGSTOP if it should show up later.
5728
5729 Also consider that the attach is complete when we see a
5730 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5731 target extended-remote report it instead of a SIGSTOP
5732 (e.g. gdbserver). We already rely on SIGTRAP being our
5733 signal, so this is no exception.
5734
5735 Also consider that the attach is complete when we see a
5736 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5737 the target to stop all threads of the inferior, in case the
5738 low level attach operation doesn't stop them implicitly. If
5739 they weren't stopped implicitly, then the stub will report a
5740 GDB_SIGNAL_0, meaning: stopped for no particular reason
5741 other than GDB's request. */
5742 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5743 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5744 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5745 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5746 {
5747 stop_print_frame = 1;
5748 stop_waiting (ecs);
5749 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5750 return;
5751 }
5752
5753 /* See if something interesting happened to the non-current thread. If
5754 so, then switch to that thread. */
5755 if (!ptid_equal (ecs->ptid, inferior_ptid))
5756 {
5757 if (debug_infrun)
5758 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5759
5760 context_switch (ecs->ptid);
5761
5762 if (deprecated_context_hook)
5763 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5764 }
5765
5766 /* At this point, get hold of the now-current thread's frame. */
5767 frame = get_current_frame ();
5768 gdbarch = get_frame_arch (frame);
5769
5770 /* Pull the single step breakpoints out of the target. */
5771 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5772 {
5773 struct regcache *regcache;
5774 struct address_space *aspace;
5775 CORE_ADDR pc;
5776
5777 regcache = get_thread_regcache (ecs->ptid);
5778 aspace = get_regcache_aspace (regcache);
5779 pc = regcache_read_pc (regcache);
5780
5781 /* However, before doing so, if this single-step breakpoint was
5782 actually for another thread, set this thread up for moving
5783 past it. */
5784 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5785 aspace, pc))
5786 {
5787 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5788 {
5789 if (debug_infrun)
5790 {
5791 fprintf_unfiltered (gdb_stdlog,
5792 "infrun: [%s] hit another thread's "
5793 "single-step breakpoint\n",
5794 target_pid_to_str (ecs->ptid));
5795 }
5796 ecs->hit_singlestep_breakpoint = 1;
5797 }
5798 }
5799 else
5800 {
5801 if (debug_infrun)
5802 {
5803 fprintf_unfiltered (gdb_stdlog,
5804 "infrun: [%s] hit its "
5805 "single-step breakpoint\n",
5806 target_pid_to_str (ecs->ptid));
5807 }
5808 }
5809 }
5810 delete_just_stopped_threads_single_step_breakpoints ();
5811
5812 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5813 && ecs->event_thread->control.trap_expected
5814 && ecs->event_thread->stepping_over_watchpoint)
5815 stopped_by_watchpoint = 0;
5816 else
5817 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5818
5819 /* If necessary, step over this watchpoint. We'll be back to display
5820 it in a moment. */
5821 if (stopped_by_watchpoint
5822 && (target_have_steppable_watchpoint
5823 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5824 {
5825 /* At this point, we are stopped at an instruction which has
5826 attempted to write to a piece of memory under control of
5827 a watchpoint. The instruction hasn't actually executed
5828 yet. If we were to evaluate the watchpoint expression
5829 now, we would get the old value, and therefore no change
5830 would seem to have occurred.
5831
5832 In order to make watchpoints work `right', we really need
5833 to complete the memory write, and then evaluate the
5834 watchpoint expression. We do this by single-stepping the
5835 target.
5836
5837 It may not be necessary to disable the watchpoint to step over
5838 it. For example, the PA can (with some kernel cooperation)
5839 single step over a watchpoint without disabling the watchpoint.
5840
5841 It is far more common to need to disable a watchpoint to step
5842 the inferior over it. If we have non-steppable watchpoints,
5843 we must disable the current watchpoint; it's simplest to
5844 disable all watchpoints.
5845
5846 Any breakpoint at PC must also be stepped over -- if there's
5847 one, it will have already triggered before the watchpoint
5848 triggered, and we either already reported it to the user, or
5849 it didn't cause a stop and we called keep_going. In either
5850 case, if there was a breakpoint at PC, we must be trying to
5851 step past it. */
5852 ecs->event_thread->stepping_over_watchpoint = 1;
5853 keep_going (ecs);
5854 return;
5855 }
5856
5857 ecs->event_thread->stepping_over_breakpoint = 0;
5858 ecs->event_thread->stepping_over_watchpoint = 0;
5859 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5860 ecs->event_thread->control.stop_step = 0;
5861 stop_print_frame = 1;
5862 stopped_by_random_signal = 0;
5863
5864 /* Hide inlined functions starting here, unless we just performed stepi or
5865 nexti. After stepi and nexti, always show the innermost frame (not any
5866 inline function call sites). */
5867 if (ecs->event_thread->control.step_range_end != 1)
5868 {
5869 struct address_space *aspace =
5870 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5871
5872 /* skip_inline_frames is expensive, so we avoid it if we can
5873 determine that the address is one where functions cannot have
5874 been inlined. This improves performance with inferiors that
5875 load a lot of shared libraries, because the solib event
5876 breakpoint is defined as the address of a function (i.e. not
5877 inline). Note that we have to check the previous PC as well
5878 as the current one to catch cases when we have just
5879 single-stepped off a breakpoint prior to reinstating it.
5880 Note that we're assuming that the code we single-step to is
5881 not inline, but that's not definitive: there's nothing
5882 preventing the event breakpoint function from containing
5883 inlined code, and the single-step ending up there. If the
5884 user had set a breakpoint on that inlined code, the missing
5885 skip_inline_frames call would break things. Fortunately
5886 that's an extremely unlikely scenario. */
5887 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5888 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5889 && ecs->event_thread->control.trap_expected
5890 && pc_at_non_inline_function (aspace,
5891 ecs->event_thread->prev_pc,
5892 &ecs->ws)))
5893 {
5894 skip_inline_frames (ecs->ptid);
5895
5896 /* Re-fetch current thread's frame in case that invalidated
5897 the frame cache. */
5898 frame = get_current_frame ();
5899 gdbarch = get_frame_arch (frame);
5900 }
5901 }
5902
5903 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5904 && ecs->event_thread->control.trap_expected
5905 && gdbarch_single_step_through_delay_p (gdbarch)
5906 && currently_stepping (ecs->event_thread))
5907 {
5908 /* We're trying to step off a breakpoint. Turns out that we're
5909 also on an instruction that needs to be stepped multiple
5910 times before it's been fully executing. E.g., architectures
5911 with a delay slot. It needs to be stepped twice, once for
5912 the instruction and once for the delay slot. */
5913 int step_through_delay
5914 = gdbarch_single_step_through_delay (gdbarch, frame);
5915
5916 if (debug_infrun && step_through_delay)
5917 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5918 if (ecs->event_thread->control.step_range_end == 0
5919 && step_through_delay)
5920 {
5921 /* The user issued a continue when stopped at a breakpoint.
5922 Set up for another trap and get out of here. */
5923 ecs->event_thread->stepping_over_breakpoint = 1;
5924 keep_going (ecs);
5925 return;
5926 }
5927 else if (step_through_delay)
5928 {
5929 /* The user issued a step when stopped at a breakpoint.
5930 Maybe we should stop, maybe we should not - the delay
5931 slot *might* correspond to a line of source. In any
5932 case, don't decide that here, just set
5933 ecs->stepping_over_breakpoint, making sure we
5934 single-step again before breakpoints are re-inserted. */
5935 ecs->event_thread->stepping_over_breakpoint = 1;
5936 }
5937 }
5938
5939 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5940 handles this event. */
5941 ecs->event_thread->control.stop_bpstat
5942 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5943 stop_pc, ecs->ptid, &ecs->ws);
5944
5945 /* Following in case break condition called a
5946 function. */
5947 stop_print_frame = 1;
5948
5949 /* This is where we handle "moribund" watchpoints. Unlike
5950 software breakpoints traps, hardware watchpoint traps are
5951 always distinguishable from random traps. If no high-level
5952 watchpoint is associated with the reported stop data address
5953 anymore, then the bpstat does not explain the signal ---
5954 simply make sure to ignore it if `stopped_by_watchpoint' is
5955 set. */
5956
5957 if (debug_infrun
5958 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5959 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5960 GDB_SIGNAL_TRAP)
5961 && stopped_by_watchpoint)
5962 fprintf_unfiltered (gdb_stdlog,
5963 "infrun: no user watchpoint explains "
5964 "watchpoint SIGTRAP, ignoring\n");
5965
5966 /* NOTE: cagney/2003-03-29: These checks for a random signal
5967 at one stage in the past included checks for an inferior
5968 function call's call dummy's return breakpoint. The original
5969 comment, that went with the test, read:
5970
5971 ``End of a stack dummy. Some systems (e.g. Sony news) give
5972 another signal besides SIGTRAP, so check here as well as
5973 above.''
5974
5975 If someone ever tries to get call dummys on a
5976 non-executable stack to work (where the target would stop
5977 with something like a SIGSEGV), then those tests might need
5978 to be re-instated. Given, however, that the tests were only
5979 enabled when momentary breakpoints were not being used, I
5980 suspect that it won't be the case.
5981
5982 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5983 be necessary for call dummies on a non-executable stack on
5984 SPARC. */
5985
5986 /* See if the breakpoints module can explain the signal. */
5987 random_signal
5988 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5989 ecs->event_thread->suspend.stop_signal);
5990
5991 /* Maybe this was a trap for a software breakpoint that has since
5992 been removed. */
5993 if (random_signal && target_stopped_by_sw_breakpoint ())
5994 {
5995 if (program_breakpoint_here_p (gdbarch, stop_pc))
5996 {
5997 struct regcache *regcache;
5998 int decr_pc;
5999
6000 /* Re-adjust PC to what the program would see if GDB was not
6001 debugging it. */
6002 regcache = get_thread_regcache (ecs->event_thread->ptid);
6003 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6004 if (decr_pc != 0)
6005 {
6006 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6007
6008 if (record_full_is_used ())
6009 record_full_gdb_operation_disable_set ();
6010
6011 regcache_write_pc (regcache, stop_pc + decr_pc);
6012
6013 do_cleanups (old_cleanups);
6014 }
6015 }
6016 else
6017 {
6018 /* A delayed software breakpoint event. Ignore the trap. */
6019 if (debug_infrun)
6020 fprintf_unfiltered (gdb_stdlog,
6021 "infrun: delayed software breakpoint "
6022 "trap, ignoring\n");
6023 random_signal = 0;
6024 }
6025 }
6026
6027 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6028 has since been removed. */
6029 if (random_signal && target_stopped_by_hw_breakpoint ())
6030 {
6031 /* A delayed hardware breakpoint event. Ignore the trap. */
6032 if (debug_infrun)
6033 fprintf_unfiltered (gdb_stdlog,
6034 "infrun: delayed hardware breakpoint/watchpoint "
6035 "trap, ignoring\n");
6036 random_signal = 0;
6037 }
6038
6039 /* If not, perhaps stepping/nexting can. */
6040 if (random_signal)
6041 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6042 && currently_stepping (ecs->event_thread));
6043
6044 /* Perhaps the thread hit a single-step breakpoint of _another_
6045 thread. Single-step breakpoints are transparent to the
6046 breakpoints module. */
6047 if (random_signal)
6048 random_signal = !ecs->hit_singlestep_breakpoint;
6049
6050 /* No? Perhaps we got a moribund watchpoint. */
6051 if (random_signal)
6052 random_signal = !stopped_by_watchpoint;
6053
6054 /* For the program's own signals, act according to
6055 the signal handling tables. */
6056
6057 if (random_signal)
6058 {
6059 /* Signal not for debugging purposes. */
6060 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6061 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6062
6063 if (debug_infrun)
6064 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6065 gdb_signal_to_symbol_string (stop_signal));
6066
6067 stopped_by_random_signal = 1;
6068
6069 /* Always stop on signals if we're either just gaining control
6070 of the program, or the user explicitly requested this thread
6071 to remain stopped. */
6072 if (stop_soon != NO_STOP_QUIETLY
6073 || ecs->event_thread->stop_requested
6074 || (!inf->detaching
6075 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6076 {
6077 stop_waiting (ecs);
6078 return;
6079 }
6080
6081 /* Notify observers the signal has "handle print" set. Note we
6082 returned early above if stopping; normal_stop handles the
6083 printing in that case. */
6084 if (signal_print[ecs->event_thread->suspend.stop_signal])
6085 {
6086 /* The signal table tells us to print about this signal. */
6087 target_terminal_ours_for_output ();
6088 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6089 target_terminal_inferior ();
6090 }
6091
6092 /* Clear the signal if it should not be passed. */
6093 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6094 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6095
6096 if (ecs->event_thread->prev_pc == stop_pc
6097 && ecs->event_thread->control.trap_expected
6098 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6099 {
6100 int was_in_line;
6101
6102 /* We were just starting a new sequence, attempting to
6103 single-step off of a breakpoint and expecting a SIGTRAP.
6104 Instead this signal arrives. This signal will take us out
6105 of the stepping range so GDB needs to remember to, when
6106 the signal handler returns, resume stepping off that
6107 breakpoint. */
6108 /* To simplify things, "continue" is forced to use the same
6109 code paths as single-step - set a breakpoint at the
6110 signal return address and then, once hit, step off that
6111 breakpoint. */
6112 if (debug_infrun)
6113 fprintf_unfiltered (gdb_stdlog,
6114 "infrun: signal arrived while stepping over "
6115 "breakpoint\n");
6116
6117 was_in_line = step_over_info_valid_p ();
6118 clear_step_over_info ();
6119 insert_hp_step_resume_breakpoint_at_frame (frame);
6120 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6121 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6122 ecs->event_thread->control.trap_expected = 0;
6123
6124 if (target_is_non_stop_p ())
6125 {
6126 /* Either "set non-stop" is "on", or the target is
6127 always in non-stop mode. In this case, we have a bit
6128 more work to do. Resume the current thread, and if
6129 we had paused all threads, restart them while the
6130 signal handler runs. */
6131 keep_going (ecs);
6132
6133 if (was_in_line)
6134 {
6135 restart_threads (ecs->event_thread);
6136 }
6137 else if (debug_infrun)
6138 {
6139 fprintf_unfiltered (gdb_stdlog,
6140 "infrun: no need to restart threads\n");
6141 }
6142 return;
6143 }
6144
6145 /* If we were nexting/stepping some other thread, switch to
6146 it, so that we don't continue it, losing control. */
6147 if (!switch_back_to_stepped_thread (ecs))
6148 keep_going (ecs);
6149 return;
6150 }
6151
6152 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6153 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6154 || ecs->event_thread->control.step_range_end == 1)
6155 && frame_id_eq (get_stack_frame_id (frame),
6156 ecs->event_thread->control.step_stack_frame_id)
6157 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6158 {
6159 /* The inferior is about to take a signal that will take it
6160 out of the single step range. Set a breakpoint at the
6161 current PC (which is presumably where the signal handler
6162 will eventually return) and then allow the inferior to
6163 run free.
6164
6165 Note that this is only needed for a signal delivered
6166 while in the single-step range. Nested signals aren't a
6167 problem as they eventually all return. */
6168 if (debug_infrun)
6169 fprintf_unfiltered (gdb_stdlog,
6170 "infrun: signal may take us out of "
6171 "single-step range\n");
6172
6173 clear_step_over_info ();
6174 insert_hp_step_resume_breakpoint_at_frame (frame);
6175 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6176 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6177 ecs->event_thread->control.trap_expected = 0;
6178 keep_going (ecs);
6179 return;
6180 }
6181
6182 /* Note: step_resume_breakpoint may be non-NULL. This occures
6183 when either there's a nested signal, or when there's a
6184 pending signal enabled just as the signal handler returns
6185 (leaving the inferior at the step-resume-breakpoint without
6186 actually executing it). Either way continue until the
6187 breakpoint is really hit. */
6188
6189 if (!switch_back_to_stepped_thread (ecs))
6190 {
6191 if (debug_infrun)
6192 fprintf_unfiltered (gdb_stdlog,
6193 "infrun: random signal, keep going\n");
6194
6195 keep_going (ecs);
6196 }
6197 return;
6198 }
6199
6200 process_event_stop_test (ecs);
6201 }
6202
6203 /* Come here when we've got some debug event / signal we can explain
6204 (IOW, not a random signal), and test whether it should cause a
6205 stop, or whether we should resume the inferior (transparently).
6206 E.g., could be a breakpoint whose condition evaluates false; we
6207 could be still stepping within the line; etc. */
6208
6209 static void
6210 process_event_stop_test (struct execution_control_state *ecs)
6211 {
6212 struct symtab_and_line stop_pc_sal;
6213 struct frame_info *frame;
6214 struct gdbarch *gdbarch;
6215 CORE_ADDR jmp_buf_pc;
6216 struct bpstat_what what;
6217
6218 /* Handle cases caused by hitting a breakpoint. */
6219
6220 frame = get_current_frame ();
6221 gdbarch = get_frame_arch (frame);
6222
6223 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6224
6225 if (what.call_dummy)
6226 {
6227 stop_stack_dummy = what.call_dummy;
6228 }
6229
6230 /* A few breakpoint types have callbacks associated (e.g.,
6231 bp_jit_event). Run them now. */
6232 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6233
6234 /* If we hit an internal event that triggers symbol changes, the
6235 current frame will be invalidated within bpstat_what (e.g., if we
6236 hit an internal solib event). Re-fetch it. */
6237 frame = get_current_frame ();
6238 gdbarch = get_frame_arch (frame);
6239
6240 switch (what.main_action)
6241 {
6242 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6243 /* If we hit the breakpoint at longjmp while stepping, we
6244 install a momentary breakpoint at the target of the
6245 jmp_buf. */
6246
6247 if (debug_infrun)
6248 fprintf_unfiltered (gdb_stdlog,
6249 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6250
6251 ecs->event_thread->stepping_over_breakpoint = 1;
6252
6253 if (what.is_longjmp)
6254 {
6255 struct value *arg_value;
6256
6257 /* If we set the longjmp breakpoint via a SystemTap probe,
6258 then use it to extract the arguments. The destination PC
6259 is the third argument to the probe. */
6260 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6261 if (arg_value)
6262 {
6263 jmp_buf_pc = value_as_address (arg_value);
6264 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6265 }
6266 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6267 || !gdbarch_get_longjmp_target (gdbarch,
6268 frame, &jmp_buf_pc))
6269 {
6270 if (debug_infrun)
6271 fprintf_unfiltered (gdb_stdlog,
6272 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6273 "(!gdbarch_get_longjmp_target)\n");
6274 keep_going (ecs);
6275 return;
6276 }
6277
6278 /* Insert a breakpoint at resume address. */
6279 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6280 }
6281 else
6282 check_exception_resume (ecs, frame);
6283 keep_going (ecs);
6284 return;
6285
6286 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6287 {
6288 struct frame_info *init_frame;
6289
6290 /* There are several cases to consider.
6291
6292 1. The initiating frame no longer exists. In this case we
6293 must stop, because the exception or longjmp has gone too
6294 far.
6295
6296 2. The initiating frame exists, and is the same as the
6297 current frame. We stop, because the exception or longjmp
6298 has been caught.
6299
6300 3. The initiating frame exists and is different from the
6301 current frame. This means the exception or longjmp has
6302 been caught beneath the initiating frame, so keep going.
6303
6304 4. longjmp breakpoint has been placed just to protect
6305 against stale dummy frames and user is not interested in
6306 stopping around longjmps. */
6307
6308 if (debug_infrun)
6309 fprintf_unfiltered (gdb_stdlog,
6310 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6311
6312 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6313 != NULL);
6314 delete_exception_resume_breakpoint (ecs->event_thread);
6315
6316 if (what.is_longjmp)
6317 {
6318 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6319
6320 if (!frame_id_p (ecs->event_thread->initiating_frame))
6321 {
6322 /* Case 4. */
6323 keep_going (ecs);
6324 return;
6325 }
6326 }
6327
6328 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6329
6330 if (init_frame)
6331 {
6332 struct frame_id current_id
6333 = get_frame_id (get_current_frame ());
6334 if (frame_id_eq (current_id,
6335 ecs->event_thread->initiating_frame))
6336 {
6337 /* Case 2. Fall through. */
6338 }
6339 else
6340 {
6341 /* Case 3. */
6342 keep_going (ecs);
6343 return;
6344 }
6345 }
6346
6347 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6348 exists. */
6349 delete_step_resume_breakpoint (ecs->event_thread);
6350
6351 end_stepping_range (ecs);
6352 }
6353 return;
6354
6355 case BPSTAT_WHAT_SINGLE:
6356 if (debug_infrun)
6357 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6358 ecs->event_thread->stepping_over_breakpoint = 1;
6359 /* Still need to check other stuff, at least the case where we
6360 are stepping and step out of the right range. */
6361 break;
6362
6363 case BPSTAT_WHAT_STEP_RESUME:
6364 if (debug_infrun)
6365 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6366
6367 delete_step_resume_breakpoint (ecs->event_thread);
6368 if (ecs->event_thread->control.proceed_to_finish
6369 && execution_direction == EXEC_REVERSE)
6370 {
6371 struct thread_info *tp = ecs->event_thread;
6372
6373 /* We are finishing a function in reverse, and just hit the
6374 step-resume breakpoint at the start address of the
6375 function, and we're almost there -- just need to back up
6376 by one more single-step, which should take us back to the
6377 function call. */
6378 tp->control.step_range_start = tp->control.step_range_end = 1;
6379 keep_going (ecs);
6380 return;
6381 }
6382 fill_in_stop_func (gdbarch, ecs);
6383 if (stop_pc == ecs->stop_func_start
6384 && execution_direction == EXEC_REVERSE)
6385 {
6386 /* We are stepping over a function call in reverse, and just
6387 hit the step-resume breakpoint at the start address of
6388 the function. Go back to single-stepping, which should
6389 take us back to the function call. */
6390 ecs->event_thread->stepping_over_breakpoint = 1;
6391 keep_going (ecs);
6392 return;
6393 }
6394 break;
6395
6396 case BPSTAT_WHAT_STOP_NOISY:
6397 if (debug_infrun)
6398 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6399 stop_print_frame = 1;
6400
6401 /* Assume the thread stopped for a breapoint. We'll still check
6402 whether a/the breakpoint is there when the thread is next
6403 resumed. */
6404 ecs->event_thread->stepping_over_breakpoint = 1;
6405
6406 stop_waiting (ecs);
6407 return;
6408
6409 case BPSTAT_WHAT_STOP_SILENT:
6410 if (debug_infrun)
6411 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6412 stop_print_frame = 0;
6413
6414 /* Assume the thread stopped for a breapoint. We'll still check
6415 whether a/the breakpoint is there when the thread is next
6416 resumed. */
6417 ecs->event_thread->stepping_over_breakpoint = 1;
6418 stop_waiting (ecs);
6419 return;
6420
6421 case BPSTAT_WHAT_HP_STEP_RESUME:
6422 if (debug_infrun)
6423 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6424
6425 delete_step_resume_breakpoint (ecs->event_thread);
6426 if (ecs->event_thread->step_after_step_resume_breakpoint)
6427 {
6428 /* Back when the step-resume breakpoint was inserted, we
6429 were trying to single-step off a breakpoint. Go back to
6430 doing that. */
6431 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6432 ecs->event_thread->stepping_over_breakpoint = 1;
6433 keep_going (ecs);
6434 return;
6435 }
6436 break;
6437
6438 case BPSTAT_WHAT_KEEP_CHECKING:
6439 break;
6440 }
6441
6442 /* If we stepped a permanent breakpoint and we had a high priority
6443 step-resume breakpoint for the address we stepped, but we didn't
6444 hit it, then we must have stepped into the signal handler. The
6445 step-resume was only necessary to catch the case of _not_
6446 stepping into the handler, so delete it, and fall through to
6447 checking whether the step finished. */
6448 if (ecs->event_thread->stepped_breakpoint)
6449 {
6450 struct breakpoint *sr_bp
6451 = ecs->event_thread->control.step_resume_breakpoint;
6452
6453 if (sr_bp != NULL
6454 && sr_bp->loc->permanent
6455 && sr_bp->type == bp_hp_step_resume
6456 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6457 {
6458 if (debug_infrun)
6459 fprintf_unfiltered (gdb_stdlog,
6460 "infrun: stepped permanent breakpoint, stopped in "
6461 "handler\n");
6462 delete_step_resume_breakpoint (ecs->event_thread);
6463 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6464 }
6465 }
6466
6467 /* We come here if we hit a breakpoint but should not stop for it.
6468 Possibly we also were stepping and should stop for that. So fall
6469 through and test for stepping. But, if not stepping, do not
6470 stop. */
6471
6472 /* In all-stop mode, if we're currently stepping but have stopped in
6473 some other thread, we need to switch back to the stepped thread. */
6474 if (switch_back_to_stepped_thread (ecs))
6475 return;
6476
6477 if (ecs->event_thread->control.step_resume_breakpoint)
6478 {
6479 if (debug_infrun)
6480 fprintf_unfiltered (gdb_stdlog,
6481 "infrun: step-resume breakpoint is inserted\n");
6482
6483 /* Having a step-resume breakpoint overrides anything
6484 else having to do with stepping commands until
6485 that breakpoint is reached. */
6486 keep_going (ecs);
6487 return;
6488 }
6489
6490 if (ecs->event_thread->control.step_range_end == 0)
6491 {
6492 if (debug_infrun)
6493 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6494 /* Likewise if we aren't even stepping. */
6495 keep_going (ecs);
6496 return;
6497 }
6498
6499 /* Re-fetch current thread's frame in case the code above caused
6500 the frame cache to be re-initialized, making our FRAME variable
6501 a dangling pointer. */
6502 frame = get_current_frame ();
6503 gdbarch = get_frame_arch (frame);
6504 fill_in_stop_func (gdbarch, ecs);
6505
6506 /* If stepping through a line, keep going if still within it.
6507
6508 Note that step_range_end is the address of the first instruction
6509 beyond the step range, and NOT the address of the last instruction
6510 within it!
6511
6512 Note also that during reverse execution, we may be stepping
6513 through a function epilogue and therefore must detect when
6514 the current-frame changes in the middle of a line. */
6515
6516 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6517 && (execution_direction != EXEC_REVERSE
6518 || frame_id_eq (get_frame_id (frame),
6519 ecs->event_thread->control.step_frame_id)))
6520 {
6521 if (debug_infrun)
6522 fprintf_unfiltered
6523 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6524 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6525 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6526
6527 /* Tentatively re-enable range stepping; `resume' disables it if
6528 necessary (e.g., if we're stepping over a breakpoint or we
6529 have software watchpoints). */
6530 ecs->event_thread->control.may_range_step = 1;
6531
6532 /* When stepping backward, stop at beginning of line range
6533 (unless it's the function entry point, in which case
6534 keep going back to the call point). */
6535 if (stop_pc == ecs->event_thread->control.step_range_start
6536 && stop_pc != ecs->stop_func_start
6537 && execution_direction == EXEC_REVERSE)
6538 end_stepping_range (ecs);
6539 else
6540 keep_going (ecs);
6541
6542 return;
6543 }
6544
6545 /* We stepped out of the stepping range. */
6546
6547 /* If we are stepping at the source level and entered the runtime
6548 loader dynamic symbol resolution code...
6549
6550 EXEC_FORWARD: we keep on single stepping until we exit the run
6551 time loader code and reach the callee's address.
6552
6553 EXEC_REVERSE: we've already executed the callee (backward), and
6554 the runtime loader code is handled just like any other
6555 undebuggable function call. Now we need only keep stepping
6556 backward through the trampoline code, and that's handled further
6557 down, so there is nothing for us to do here. */
6558
6559 if (execution_direction != EXEC_REVERSE
6560 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6561 && in_solib_dynsym_resolve_code (stop_pc))
6562 {
6563 CORE_ADDR pc_after_resolver =
6564 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6565
6566 if (debug_infrun)
6567 fprintf_unfiltered (gdb_stdlog,
6568 "infrun: stepped into dynsym resolve code\n");
6569
6570 if (pc_after_resolver)
6571 {
6572 /* Set up a step-resume breakpoint at the address
6573 indicated by SKIP_SOLIB_RESOLVER. */
6574 struct symtab_and_line sr_sal;
6575
6576 init_sal (&sr_sal);
6577 sr_sal.pc = pc_after_resolver;
6578 sr_sal.pspace = get_frame_program_space (frame);
6579
6580 insert_step_resume_breakpoint_at_sal (gdbarch,
6581 sr_sal, null_frame_id);
6582 }
6583
6584 keep_going (ecs);
6585 return;
6586 }
6587
6588 if (ecs->event_thread->control.step_range_end != 1
6589 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6590 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6591 && get_frame_type (frame) == SIGTRAMP_FRAME)
6592 {
6593 if (debug_infrun)
6594 fprintf_unfiltered (gdb_stdlog,
6595 "infrun: stepped into signal trampoline\n");
6596 /* The inferior, while doing a "step" or "next", has ended up in
6597 a signal trampoline (either by a signal being delivered or by
6598 the signal handler returning). Just single-step until the
6599 inferior leaves the trampoline (either by calling the handler
6600 or returning). */
6601 keep_going (ecs);
6602 return;
6603 }
6604
6605 /* If we're in the return path from a shared library trampoline,
6606 we want to proceed through the trampoline when stepping. */
6607 /* macro/2012-04-25: This needs to come before the subroutine
6608 call check below as on some targets return trampolines look
6609 like subroutine calls (MIPS16 return thunks). */
6610 if (gdbarch_in_solib_return_trampoline (gdbarch,
6611 stop_pc, ecs->stop_func_name)
6612 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6613 {
6614 /* Determine where this trampoline returns. */
6615 CORE_ADDR real_stop_pc;
6616
6617 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6618
6619 if (debug_infrun)
6620 fprintf_unfiltered (gdb_stdlog,
6621 "infrun: stepped into solib return tramp\n");
6622
6623 /* Only proceed through if we know where it's going. */
6624 if (real_stop_pc)
6625 {
6626 /* And put the step-breakpoint there and go until there. */
6627 struct symtab_and_line sr_sal;
6628
6629 init_sal (&sr_sal); /* initialize to zeroes */
6630 sr_sal.pc = real_stop_pc;
6631 sr_sal.section = find_pc_overlay (sr_sal.pc);
6632 sr_sal.pspace = get_frame_program_space (frame);
6633
6634 /* Do not specify what the fp should be when we stop since
6635 on some machines the prologue is where the new fp value
6636 is established. */
6637 insert_step_resume_breakpoint_at_sal (gdbarch,
6638 sr_sal, null_frame_id);
6639
6640 /* Restart without fiddling with the step ranges or
6641 other state. */
6642 keep_going (ecs);
6643 return;
6644 }
6645 }
6646
6647 /* Check for subroutine calls. The check for the current frame
6648 equalling the step ID is not necessary - the check of the
6649 previous frame's ID is sufficient - but it is a common case and
6650 cheaper than checking the previous frame's ID.
6651
6652 NOTE: frame_id_eq will never report two invalid frame IDs as
6653 being equal, so to get into this block, both the current and
6654 previous frame must have valid frame IDs. */
6655 /* The outer_frame_id check is a heuristic to detect stepping
6656 through startup code. If we step over an instruction which
6657 sets the stack pointer from an invalid value to a valid value,
6658 we may detect that as a subroutine call from the mythical
6659 "outermost" function. This could be fixed by marking
6660 outermost frames as !stack_p,code_p,special_p. Then the
6661 initial outermost frame, before sp was valid, would
6662 have code_addr == &_start. See the comment in frame_id_eq
6663 for more. */
6664 if (!frame_id_eq (get_stack_frame_id (frame),
6665 ecs->event_thread->control.step_stack_frame_id)
6666 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6667 ecs->event_thread->control.step_stack_frame_id)
6668 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6669 outer_frame_id)
6670 || (ecs->event_thread->control.step_start_function
6671 != find_pc_function (stop_pc)))))
6672 {
6673 CORE_ADDR real_stop_pc;
6674
6675 if (debug_infrun)
6676 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6677
6678 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6679 {
6680 /* I presume that step_over_calls is only 0 when we're
6681 supposed to be stepping at the assembly language level
6682 ("stepi"). Just stop. */
6683 /* And this works the same backward as frontward. MVS */
6684 end_stepping_range (ecs);
6685 return;
6686 }
6687
6688 /* Reverse stepping through solib trampolines. */
6689
6690 if (execution_direction == EXEC_REVERSE
6691 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6692 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6693 || (ecs->stop_func_start == 0
6694 && in_solib_dynsym_resolve_code (stop_pc))))
6695 {
6696 /* Any solib trampoline code can be handled in reverse
6697 by simply continuing to single-step. We have already
6698 executed the solib function (backwards), and a few
6699 steps will take us back through the trampoline to the
6700 caller. */
6701 keep_going (ecs);
6702 return;
6703 }
6704
6705 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6706 {
6707 /* We're doing a "next".
6708
6709 Normal (forward) execution: set a breakpoint at the
6710 callee's return address (the address at which the caller
6711 will resume).
6712
6713 Reverse (backward) execution. set the step-resume
6714 breakpoint at the start of the function that we just
6715 stepped into (backwards), and continue to there. When we
6716 get there, we'll need to single-step back to the caller. */
6717
6718 if (execution_direction == EXEC_REVERSE)
6719 {
6720 /* If we're already at the start of the function, we've either
6721 just stepped backward into a single instruction function,
6722 or stepped back out of a signal handler to the first instruction
6723 of the function. Just keep going, which will single-step back
6724 to the caller. */
6725 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6726 {
6727 struct symtab_and_line sr_sal;
6728
6729 /* Normal function call return (static or dynamic). */
6730 init_sal (&sr_sal);
6731 sr_sal.pc = ecs->stop_func_start;
6732 sr_sal.pspace = get_frame_program_space (frame);
6733 insert_step_resume_breakpoint_at_sal (gdbarch,
6734 sr_sal, null_frame_id);
6735 }
6736 }
6737 else
6738 insert_step_resume_breakpoint_at_caller (frame);
6739
6740 keep_going (ecs);
6741 return;
6742 }
6743
6744 /* If we are in a function call trampoline (a stub between the
6745 calling routine and the real function), locate the real
6746 function. That's what tells us (a) whether we want to step
6747 into it at all, and (b) what prologue we want to run to the
6748 end of, if we do step into it. */
6749 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6750 if (real_stop_pc == 0)
6751 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6752 if (real_stop_pc != 0)
6753 ecs->stop_func_start = real_stop_pc;
6754
6755 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6756 {
6757 struct symtab_and_line sr_sal;
6758
6759 init_sal (&sr_sal);
6760 sr_sal.pc = ecs->stop_func_start;
6761 sr_sal.pspace = get_frame_program_space (frame);
6762
6763 insert_step_resume_breakpoint_at_sal (gdbarch,
6764 sr_sal, null_frame_id);
6765 keep_going (ecs);
6766 return;
6767 }
6768
6769 /* If we have line number information for the function we are
6770 thinking of stepping into and the function isn't on the skip
6771 list, step into it.
6772
6773 If there are several symtabs at that PC (e.g. with include
6774 files), just want to know whether *any* of them have line
6775 numbers. find_pc_line handles this. */
6776 {
6777 struct symtab_and_line tmp_sal;
6778
6779 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6780 if (tmp_sal.line != 0
6781 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6782 &tmp_sal))
6783 {
6784 if (execution_direction == EXEC_REVERSE)
6785 handle_step_into_function_backward (gdbarch, ecs);
6786 else
6787 handle_step_into_function (gdbarch, ecs);
6788 return;
6789 }
6790 }
6791
6792 /* If we have no line number and the step-stop-if-no-debug is
6793 set, we stop the step so that the user has a chance to switch
6794 in assembly mode. */
6795 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6796 && step_stop_if_no_debug)
6797 {
6798 end_stepping_range (ecs);
6799 return;
6800 }
6801
6802 if (execution_direction == EXEC_REVERSE)
6803 {
6804 /* If we're already at the start of the function, we've either just
6805 stepped backward into a single instruction function without line
6806 number info, or stepped back out of a signal handler to the first
6807 instruction of the function without line number info. Just keep
6808 going, which will single-step back to the caller. */
6809 if (ecs->stop_func_start != stop_pc)
6810 {
6811 /* Set a breakpoint at callee's start address.
6812 From there we can step once and be back in the caller. */
6813 struct symtab_and_line sr_sal;
6814
6815 init_sal (&sr_sal);
6816 sr_sal.pc = ecs->stop_func_start;
6817 sr_sal.pspace = get_frame_program_space (frame);
6818 insert_step_resume_breakpoint_at_sal (gdbarch,
6819 sr_sal, null_frame_id);
6820 }
6821 }
6822 else
6823 /* Set a breakpoint at callee's return address (the address
6824 at which the caller will resume). */
6825 insert_step_resume_breakpoint_at_caller (frame);
6826
6827 keep_going (ecs);
6828 return;
6829 }
6830
6831 /* Reverse stepping through solib trampolines. */
6832
6833 if (execution_direction == EXEC_REVERSE
6834 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6835 {
6836 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6837 || (ecs->stop_func_start == 0
6838 && in_solib_dynsym_resolve_code (stop_pc)))
6839 {
6840 /* Any solib trampoline code can be handled in reverse
6841 by simply continuing to single-step. We have already
6842 executed the solib function (backwards), and a few
6843 steps will take us back through the trampoline to the
6844 caller. */
6845 keep_going (ecs);
6846 return;
6847 }
6848 else if (in_solib_dynsym_resolve_code (stop_pc))
6849 {
6850 /* Stepped backward into the solib dynsym resolver.
6851 Set a breakpoint at its start and continue, then
6852 one more step will take us out. */
6853 struct symtab_and_line sr_sal;
6854
6855 init_sal (&sr_sal);
6856 sr_sal.pc = ecs->stop_func_start;
6857 sr_sal.pspace = get_frame_program_space (frame);
6858 insert_step_resume_breakpoint_at_sal (gdbarch,
6859 sr_sal, null_frame_id);
6860 keep_going (ecs);
6861 return;
6862 }
6863 }
6864
6865 stop_pc_sal = find_pc_line (stop_pc, 0);
6866
6867 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6868 the trampoline processing logic, however, there are some trampolines
6869 that have no names, so we should do trampoline handling first. */
6870 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6871 && ecs->stop_func_name == NULL
6872 && stop_pc_sal.line == 0)
6873 {
6874 if (debug_infrun)
6875 fprintf_unfiltered (gdb_stdlog,
6876 "infrun: stepped into undebuggable function\n");
6877
6878 /* The inferior just stepped into, or returned to, an
6879 undebuggable function (where there is no debugging information
6880 and no line number corresponding to the address where the
6881 inferior stopped). Since we want to skip this kind of code,
6882 we keep going until the inferior returns from this
6883 function - unless the user has asked us not to (via
6884 set step-mode) or we no longer know how to get back
6885 to the call site. */
6886 if (step_stop_if_no_debug
6887 || !frame_id_p (frame_unwind_caller_id (frame)))
6888 {
6889 /* If we have no line number and the step-stop-if-no-debug
6890 is set, we stop the step so that the user has a chance to
6891 switch in assembly mode. */
6892 end_stepping_range (ecs);
6893 return;
6894 }
6895 else
6896 {
6897 /* Set a breakpoint at callee's return address (the address
6898 at which the caller will resume). */
6899 insert_step_resume_breakpoint_at_caller (frame);
6900 keep_going (ecs);
6901 return;
6902 }
6903 }
6904
6905 if (ecs->event_thread->control.step_range_end == 1)
6906 {
6907 /* It is stepi or nexti. We always want to stop stepping after
6908 one instruction. */
6909 if (debug_infrun)
6910 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6911 end_stepping_range (ecs);
6912 return;
6913 }
6914
6915 if (stop_pc_sal.line == 0)
6916 {
6917 /* We have no line number information. That means to stop
6918 stepping (does this always happen right after one instruction,
6919 when we do "s" in a function with no line numbers,
6920 or can this happen as a result of a return or longjmp?). */
6921 if (debug_infrun)
6922 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6923 end_stepping_range (ecs);
6924 return;
6925 }
6926
6927 /* Look for "calls" to inlined functions, part one. If the inline
6928 frame machinery detected some skipped call sites, we have entered
6929 a new inline function. */
6930
6931 if (frame_id_eq (get_frame_id (get_current_frame ()),
6932 ecs->event_thread->control.step_frame_id)
6933 && inline_skipped_frames (ecs->ptid))
6934 {
6935 struct symtab_and_line call_sal;
6936
6937 if (debug_infrun)
6938 fprintf_unfiltered (gdb_stdlog,
6939 "infrun: stepped into inlined function\n");
6940
6941 find_frame_sal (get_current_frame (), &call_sal);
6942
6943 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6944 {
6945 /* For "step", we're going to stop. But if the call site
6946 for this inlined function is on the same source line as
6947 we were previously stepping, go down into the function
6948 first. Otherwise stop at the call site. */
6949
6950 if (call_sal.line == ecs->event_thread->current_line
6951 && call_sal.symtab == ecs->event_thread->current_symtab)
6952 step_into_inline_frame (ecs->ptid);
6953
6954 end_stepping_range (ecs);
6955 return;
6956 }
6957 else
6958 {
6959 /* For "next", we should stop at the call site if it is on a
6960 different source line. Otherwise continue through the
6961 inlined function. */
6962 if (call_sal.line == ecs->event_thread->current_line
6963 && call_sal.symtab == ecs->event_thread->current_symtab)
6964 keep_going (ecs);
6965 else
6966 end_stepping_range (ecs);
6967 return;
6968 }
6969 }
6970
6971 /* Look for "calls" to inlined functions, part two. If we are still
6972 in the same real function we were stepping through, but we have
6973 to go further up to find the exact frame ID, we are stepping
6974 through a more inlined call beyond its call site. */
6975
6976 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6977 && !frame_id_eq (get_frame_id (get_current_frame ()),
6978 ecs->event_thread->control.step_frame_id)
6979 && stepped_in_from (get_current_frame (),
6980 ecs->event_thread->control.step_frame_id))
6981 {
6982 if (debug_infrun)
6983 fprintf_unfiltered (gdb_stdlog,
6984 "infrun: stepping through inlined function\n");
6985
6986 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6987 keep_going (ecs);
6988 else
6989 end_stepping_range (ecs);
6990 return;
6991 }
6992
6993 if ((stop_pc == stop_pc_sal.pc)
6994 && (ecs->event_thread->current_line != stop_pc_sal.line
6995 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6996 {
6997 /* We are at the start of a different line. So stop. Note that
6998 we don't stop if we step into the middle of a different line.
6999 That is said to make things like for (;;) statements work
7000 better. */
7001 if (debug_infrun)
7002 fprintf_unfiltered (gdb_stdlog,
7003 "infrun: stepped to a different line\n");
7004 end_stepping_range (ecs);
7005 return;
7006 }
7007
7008 /* We aren't done stepping.
7009
7010 Optimize by setting the stepping range to the line.
7011 (We might not be in the original line, but if we entered a
7012 new line in mid-statement, we continue stepping. This makes
7013 things like for(;;) statements work better.) */
7014
7015 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7016 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7017 ecs->event_thread->control.may_range_step = 1;
7018 set_step_info (frame, stop_pc_sal);
7019
7020 if (debug_infrun)
7021 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7022 keep_going (ecs);
7023 }
7024
7025 /* In all-stop mode, if we're currently stepping but have stopped in
7026 some other thread, we may need to switch back to the stepped
7027 thread. Returns true we set the inferior running, false if we left
7028 it stopped (and the event needs further processing). */
7029
7030 static int
7031 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7032 {
7033 if (!target_is_non_stop_p ())
7034 {
7035 struct thread_info *tp;
7036 struct thread_info *stepping_thread;
7037
7038 /* If any thread is blocked on some internal breakpoint, and we
7039 simply need to step over that breakpoint to get it going
7040 again, do that first. */
7041
7042 /* However, if we see an event for the stepping thread, then we
7043 know all other threads have been moved past their breakpoints
7044 already. Let the caller check whether the step is finished,
7045 etc., before deciding to move it past a breakpoint. */
7046 if (ecs->event_thread->control.step_range_end != 0)
7047 return 0;
7048
7049 /* Check if the current thread is blocked on an incomplete
7050 step-over, interrupted by a random signal. */
7051 if (ecs->event_thread->control.trap_expected
7052 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7053 {
7054 if (debug_infrun)
7055 {
7056 fprintf_unfiltered (gdb_stdlog,
7057 "infrun: need to finish step-over of [%s]\n",
7058 target_pid_to_str (ecs->event_thread->ptid));
7059 }
7060 keep_going (ecs);
7061 return 1;
7062 }
7063
7064 /* Check if the current thread is blocked by a single-step
7065 breakpoint of another thread. */
7066 if (ecs->hit_singlestep_breakpoint)
7067 {
7068 if (debug_infrun)
7069 {
7070 fprintf_unfiltered (gdb_stdlog,
7071 "infrun: need to step [%s] over single-step "
7072 "breakpoint\n",
7073 target_pid_to_str (ecs->ptid));
7074 }
7075 keep_going (ecs);
7076 return 1;
7077 }
7078
7079 /* If this thread needs yet another step-over (e.g., stepping
7080 through a delay slot), do it first before moving on to
7081 another thread. */
7082 if (thread_still_needs_step_over (ecs->event_thread))
7083 {
7084 if (debug_infrun)
7085 {
7086 fprintf_unfiltered (gdb_stdlog,
7087 "infrun: thread [%s] still needs step-over\n",
7088 target_pid_to_str (ecs->event_thread->ptid));
7089 }
7090 keep_going (ecs);
7091 return 1;
7092 }
7093
7094 /* If scheduler locking applies even if not stepping, there's no
7095 need to walk over threads. Above we've checked whether the
7096 current thread is stepping. If some other thread not the
7097 event thread is stepping, then it must be that scheduler
7098 locking is not in effect. */
7099 if (schedlock_applies (ecs->event_thread))
7100 return 0;
7101
7102 /* Otherwise, we no longer expect a trap in the current thread.
7103 Clear the trap_expected flag before switching back -- this is
7104 what keep_going does as well, if we call it. */
7105 ecs->event_thread->control.trap_expected = 0;
7106
7107 /* Likewise, clear the signal if it should not be passed. */
7108 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7109 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7110
7111 /* Do all pending step-overs before actually proceeding with
7112 step/next/etc. */
7113 if (start_step_over ())
7114 {
7115 prepare_to_wait (ecs);
7116 return 1;
7117 }
7118
7119 /* Look for the stepping/nexting thread. */
7120 stepping_thread = NULL;
7121
7122 ALL_NON_EXITED_THREADS (tp)
7123 {
7124 /* Ignore threads of processes the caller is not
7125 resuming. */
7126 if (!sched_multi
7127 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7128 continue;
7129
7130 /* When stepping over a breakpoint, we lock all threads
7131 except the one that needs to move past the breakpoint.
7132 If a non-event thread has this set, the "incomplete
7133 step-over" check above should have caught it earlier. */
7134 if (tp->control.trap_expected)
7135 {
7136 internal_error (__FILE__, __LINE__,
7137 "[%s] has inconsistent state: "
7138 "trap_expected=%d\n",
7139 target_pid_to_str (tp->ptid),
7140 tp->control.trap_expected);
7141 }
7142
7143 /* Did we find the stepping thread? */
7144 if (tp->control.step_range_end)
7145 {
7146 /* Yep. There should only one though. */
7147 gdb_assert (stepping_thread == NULL);
7148
7149 /* The event thread is handled at the top, before we
7150 enter this loop. */
7151 gdb_assert (tp != ecs->event_thread);
7152
7153 /* If some thread other than the event thread is
7154 stepping, then scheduler locking can't be in effect,
7155 otherwise we wouldn't have resumed the current event
7156 thread in the first place. */
7157 gdb_assert (!schedlock_applies (tp));
7158
7159 stepping_thread = tp;
7160 }
7161 }
7162
7163 if (stepping_thread != NULL)
7164 {
7165 if (debug_infrun)
7166 fprintf_unfiltered (gdb_stdlog,
7167 "infrun: switching back to stepped thread\n");
7168
7169 if (keep_going_stepped_thread (stepping_thread))
7170 {
7171 prepare_to_wait (ecs);
7172 return 1;
7173 }
7174 }
7175 }
7176
7177 return 0;
7178 }
7179
7180 /* Set a previously stepped thread back to stepping. Returns true on
7181 success, false if the resume is not possible (e.g., the thread
7182 vanished). */
7183
7184 static int
7185 keep_going_stepped_thread (struct thread_info *tp)
7186 {
7187 struct frame_info *frame;
7188 struct execution_control_state ecss;
7189 struct execution_control_state *ecs = &ecss;
7190
7191 /* If the stepping thread exited, then don't try to switch back and
7192 resume it, which could fail in several different ways depending
7193 on the target. Instead, just keep going.
7194
7195 We can find a stepping dead thread in the thread list in two
7196 cases:
7197
7198 - The target supports thread exit events, and when the target
7199 tries to delete the thread from the thread list, inferior_ptid
7200 pointed at the exiting thread. In such case, calling
7201 delete_thread does not really remove the thread from the list;
7202 instead, the thread is left listed, with 'exited' state.
7203
7204 - The target's debug interface does not support thread exit
7205 events, and so we have no idea whatsoever if the previously
7206 stepping thread is still alive. For that reason, we need to
7207 synchronously query the target now. */
7208
7209 if (is_exited (tp->ptid)
7210 || !target_thread_alive (tp->ptid))
7211 {
7212 if (debug_infrun)
7213 fprintf_unfiltered (gdb_stdlog,
7214 "infrun: not resuming previously "
7215 "stepped thread, it has vanished\n");
7216
7217 delete_thread (tp->ptid);
7218 return 0;
7219 }
7220
7221 if (debug_infrun)
7222 fprintf_unfiltered (gdb_stdlog,
7223 "infrun: resuming previously stepped thread\n");
7224
7225 reset_ecs (ecs, tp);
7226 switch_to_thread (tp->ptid);
7227
7228 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7229 frame = get_current_frame ();
7230
7231 /* If the PC of the thread we were trying to single-step has
7232 changed, then that thread has trapped or been signaled, but the
7233 event has not been reported to GDB yet. Re-poll the target
7234 looking for this particular thread's event (i.e. temporarily
7235 enable schedlock) by:
7236
7237 - setting a break at the current PC
7238 - resuming that particular thread, only (by setting trap
7239 expected)
7240
7241 This prevents us continuously moving the single-step breakpoint
7242 forward, one instruction at a time, overstepping. */
7243
7244 if (stop_pc != tp->prev_pc)
7245 {
7246 ptid_t resume_ptid;
7247
7248 if (debug_infrun)
7249 fprintf_unfiltered (gdb_stdlog,
7250 "infrun: expected thread advanced also (%s -> %s)\n",
7251 paddress (target_gdbarch (), tp->prev_pc),
7252 paddress (target_gdbarch (), stop_pc));
7253
7254 /* Clear the info of the previous step-over, as it's no longer
7255 valid (if the thread was trying to step over a breakpoint, it
7256 has already succeeded). It's what keep_going would do too,
7257 if we called it. Do this before trying to insert the sss
7258 breakpoint, otherwise if we were previously trying to step
7259 over this exact address in another thread, the breakpoint is
7260 skipped. */
7261 clear_step_over_info ();
7262 tp->control.trap_expected = 0;
7263
7264 insert_single_step_breakpoint (get_frame_arch (frame),
7265 get_frame_address_space (frame),
7266 stop_pc);
7267
7268 tp->resumed = 1;
7269 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7270 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7271 }
7272 else
7273 {
7274 if (debug_infrun)
7275 fprintf_unfiltered (gdb_stdlog,
7276 "infrun: expected thread still hasn't advanced\n");
7277
7278 keep_going_pass_signal (ecs);
7279 }
7280 return 1;
7281 }
7282
7283 /* Is thread TP in the middle of (software or hardware)
7284 single-stepping? (Note the result of this function must never be
7285 passed directly as target_resume's STEP parameter.) */
7286
7287 static int
7288 currently_stepping (struct thread_info *tp)
7289 {
7290 return ((tp->control.step_range_end
7291 && tp->control.step_resume_breakpoint == NULL)
7292 || tp->control.trap_expected
7293 || tp->stepped_breakpoint
7294 || bpstat_should_step ());
7295 }
7296
7297 /* Inferior has stepped into a subroutine call with source code that
7298 we should not step over. Do step to the first line of code in
7299 it. */
7300
7301 static void
7302 handle_step_into_function (struct gdbarch *gdbarch,
7303 struct execution_control_state *ecs)
7304 {
7305 struct compunit_symtab *cust;
7306 struct symtab_and_line stop_func_sal, sr_sal;
7307
7308 fill_in_stop_func (gdbarch, ecs);
7309
7310 cust = find_pc_compunit_symtab (stop_pc);
7311 if (cust != NULL && compunit_language (cust) != language_asm)
7312 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7313 ecs->stop_func_start);
7314
7315 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7316 /* Use the step_resume_break to step until the end of the prologue,
7317 even if that involves jumps (as it seems to on the vax under
7318 4.2). */
7319 /* If the prologue ends in the middle of a source line, continue to
7320 the end of that source line (if it is still within the function).
7321 Otherwise, just go to end of prologue. */
7322 if (stop_func_sal.end
7323 && stop_func_sal.pc != ecs->stop_func_start
7324 && stop_func_sal.end < ecs->stop_func_end)
7325 ecs->stop_func_start = stop_func_sal.end;
7326
7327 /* Architectures which require breakpoint adjustment might not be able
7328 to place a breakpoint at the computed address. If so, the test
7329 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7330 ecs->stop_func_start to an address at which a breakpoint may be
7331 legitimately placed.
7332
7333 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7334 made, GDB will enter an infinite loop when stepping through
7335 optimized code consisting of VLIW instructions which contain
7336 subinstructions corresponding to different source lines. On
7337 FR-V, it's not permitted to place a breakpoint on any but the
7338 first subinstruction of a VLIW instruction. When a breakpoint is
7339 set, GDB will adjust the breakpoint address to the beginning of
7340 the VLIW instruction. Thus, we need to make the corresponding
7341 adjustment here when computing the stop address. */
7342
7343 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7344 {
7345 ecs->stop_func_start
7346 = gdbarch_adjust_breakpoint_address (gdbarch,
7347 ecs->stop_func_start);
7348 }
7349
7350 if (ecs->stop_func_start == stop_pc)
7351 {
7352 /* We are already there: stop now. */
7353 end_stepping_range (ecs);
7354 return;
7355 }
7356 else
7357 {
7358 /* Put the step-breakpoint there and go until there. */
7359 init_sal (&sr_sal); /* initialize to zeroes */
7360 sr_sal.pc = ecs->stop_func_start;
7361 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7362 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7363
7364 /* Do not specify what the fp should be when we stop since on
7365 some machines the prologue is where the new fp value is
7366 established. */
7367 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7368
7369 /* And make sure stepping stops right away then. */
7370 ecs->event_thread->control.step_range_end
7371 = ecs->event_thread->control.step_range_start;
7372 }
7373 keep_going (ecs);
7374 }
7375
7376 /* Inferior has stepped backward into a subroutine call with source
7377 code that we should not step over. Do step to the beginning of the
7378 last line of code in it. */
7379
7380 static void
7381 handle_step_into_function_backward (struct gdbarch *gdbarch,
7382 struct execution_control_state *ecs)
7383 {
7384 struct compunit_symtab *cust;
7385 struct symtab_and_line stop_func_sal;
7386
7387 fill_in_stop_func (gdbarch, ecs);
7388
7389 cust = find_pc_compunit_symtab (stop_pc);
7390 if (cust != NULL && compunit_language (cust) != language_asm)
7391 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7392 ecs->stop_func_start);
7393
7394 stop_func_sal = find_pc_line (stop_pc, 0);
7395
7396 /* OK, we're just going to keep stepping here. */
7397 if (stop_func_sal.pc == stop_pc)
7398 {
7399 /* We're there already. Just stop stepping now. */
7400 end_stepping_range (ecs);
7401 }
7402 else
7403 {
7404 /* Else just reset the step range and keep going.
7405 No step-resume breakpoint, they don't work for
7406 epilogues, which can have multiple entry paths. */
7407 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7408 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7409 keep_going (ecs);
7410 }
7411 return;
7412 }
7413
7414 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7415 This is used to both functions and to skip over code. */
7416
7417 static void
7418 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7419 struct symtab_and_line sr_sal,
7420 struct frame_id sr_id,
7421 enum bptype sr_type)
7422 {
7423 /* There should never be more than one step-resume or longjmp-resume
7424 breakpoint per thread, so we should never be setting a new
7425 step_resume_breakpoint when one is already active. */
7426 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7427 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7428
7429 if (debug_infrun)
7430 fprintf_unfiltered (gdb_stdlog,
7431 "infrun: inserting step-resume breakpoint at %s\n",
7432 paddress (gdbarch, sr_sal.pc));
7433
7434 inferior_thread ()->control.step_resume_breakpoint
7435 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7436 }
7437
7438 void
7439 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7440 struct symtab_and_line sr_sal,
7441 struct frame_id sr_id)
7442 {
7443 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7444 sr_sal, sr_id,
7445 bp_step_resume);
7446 }
7447
7448 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7449 This is used to skip a potential signal handler.
7450
7451 This is called with the interrupted function's frame. The signal
7452 handler, when it returns, will resume the interrupted function at
7453 RETURN_FRAME.pc. */
7454
7455 static void
7456 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7457 {
7458 struct symtab_and_line sr_sal;
7459 struct gdbarch *gdbarch;
7460
7461 gdb_assert (return_frame != NULL);
7462 init_sal (&sr_sal); /* initialize to zeros */
7463
7464 gdbarch = get_frame_arch (return_frame);
7465 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7466 sr_sal.section = find_pc_overlay (sr_sal.pc);
7467 sr_sal.pspace = get_frame_program_space (return_frame);
7468
7469 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7470 get_stack_frame_id (return_frame),
7471 bp_hp_step_resume);
7472 }
7473
7474 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7475 is used to skip a function after stepping into it (for "next" or if
7476 the called function has no debugging information).
7477
7478 The current function has almost always been reached by single
7479 stepping a call or return instruction. NEXT_FRAME belongs to the
7480 current function, and the breakpoint will be set at the caller's
7481 resume address.
7482
7483 This is a separate function rather than reusing
7484 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7485 get_prev_frame, which may stop prematurely (see the implementation
7486 of frame_unwind_caller_id for an example). */
7487
7488 static void
7489 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7490 {
7491 struct symtab_and_line sr_sal;
7492 struct gdbarch *gdbarch;
7493
7494 /* We shouldn't have gotten here if we don't know where the call site
7495 is. */
7496 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7497
7498 init_sal (&sr_sal); /* initialize to zeros */
7499
7500 gdbarch = frame_unwind_caller_arch (next_frame);
7501 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7502 frame_unwind_caller_pc (next_frame));
7503 sr_sal.section = find_pc_overlay (sr_sal.pc);
7504 sr_sal.pspace = frame_unwind_program_space (next_frame);
7505
7506 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7507 frame_unwind_caller_id (next_frame));
7508 }
7509
7510 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7511 new breakpoint at the target of a jmp_buf. The handling of
7512 longjmp-resume uses the same mechanisms used for handling
7513 "step-resume" breakpoints. */
7514
7515 static void
7516 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7517 {
7518 /* There should never be more than one longjmp-resume breakpoint per
7519 thread, so we should never be setting a new
7520 longjmp_resume_breakpoint when one is already active. */
7521 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7522
7523 if (debug_infrun)
7524 fprintf_unfiltered (gdb_stdlog,
7525 "infrun: inserting longjmp-resume breakpoint at %s\n",
7526 paddress (gdbarch, pc));
7527
7528 inferior_thread ()->control.exception_resume_breakpoint =
7529 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7530 }
7531
7532 /* Insert an exception resume breakpoint. TP is the thread throwing
7533 the exception. The block B is the block of the unwinder debug hook
7534 function. FRAME is the frame corresponding to the call to this
7535 function. SYM is the symbol of the function argument holding the
7536 target PC of the exception. */
7537
7538 static void
7539 insert_exception_resume_breakpoint (struct thread_info *tp,
7540 const struct block *b,
7541 struct frame_info *frame,
7542 struct symbol *sym)
7543 {
7544 TRY
7545 {
7546 struct block_symbol vsym;
7547 struct value *value;
7548 CORE_ADDR handler;
7549 struct breakpoint *bp;
7550
7551 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7552 value = read_var_value (vsym.symbol, vsym.block, frame);
7553 /* If the value was optimized out, revert to the old behavior. */
7554 if (! value_optimized_out (value))
7555 {
7556 handler = value_as_address (value);
7557
7558 if (debug_infrun)
7559 fprintf_unfiltered (gdb_stdlog,
7560 "infrun: exception resume at %lx\n",
7561 (unsigned long) handler);
7562
7563 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7564 handler, bp_exception_resume);
7565
7566 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7567 frame = NULL;
7568
7569 bp->thread = tp->global_num;
7570 inferior_thread ()->control.exception_resume_breakpoint = bp;
7571 }
7572 }
7573 CATCH (e, RETURN_MASK_ERROR)
7574 {
7575 /* We want to ignore errors here. */
7576 }
7577 END_CATCH
7578 }
7579
7580 /* A helper for check_exception_resume that sets an
7581 exception-breakpoint based on a SystemTap probe. */
7582
7583 static void
7584 insert_exception_resume_from_probe (struct thread_info *tp,
7585 const struct bound_probe *probe,
7586 struct frame_info *frame)
7587 {
7588 struct value *arg_value;
7589 CORE_ADDR handler;
7590 struct breakpoint *bp;
7591
7592 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7593 if (!arg_value)
7594 return;
7595
7596 handler = value_as_address (arg_value);
7597
7598 if (debug_infrun)
7599 fprintf_unfiltered (gdb_stdlog,
7600 "infrun: exception resume at %s\n",
7601 paddress (get_objfile_arch (probe->objfile),
7602 handler));
7603
7604 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7605 handler, bp_exception_resume);
7606 bp->thread = tp->global_num;
7607 inferior_thread ()->control.exception_resume_breakpoint = bp;
7608 }
7609
7610 /* This is called when an exception has been intercepted. Check to
7611 see whether the exception's destination is of interest, and if so,
7612 set an exception resume breakpoint there. */
7613
7614 static void
7615 check_exception_resume (struct execution_control_state *ecs,
7616 struct frame_info *frame)
7617 {
7618 struct bound_probe probe;
7619 struct symbol *func;
7620
7621 /* First see if this exception unwinding breakpoint was set via a
7622 SystemTap probe point. If so, the probe has two arguments: the
7623 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7624 set a breakpoint there. */
7625 probe = find_probe_by_pc (get_frame_pc (frame));
7626 if (probe.probe)
7627 {
7628 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7629 return;
7630 }
7631
7632 func = get_frame_function (frame);
7633 if (!func)
7634 return;
7635
7636 TRY
7637 {
7638 const struct block *b;
7639 struct block_iterator iter;
7640 struct symbol *sym;
7641 int argno = 0;
7642
7643 /* The exception breakpoint is a thread-specific breakpoint on
7644 the unwinder's debug hook, declared as:
7645
7646 void _Unwind_DebugHook (void *cfa, void *handler);
7647
7648 The CFA argument indicates the frame to which control is
7649 about to be transferred. HANDLER is the destination PC.
7650
7651 We ignore the CFA and set a temporary breakpoint at HANDLER.
7652 This is not extremely efficient but it avoids issues in gdb
7653 with computing the DWARF CFA, and it also works even in weird
7654 cases such as throwing an exception from inside a signal
7655 handler. */
7656
7657 b = SYMBOL_BLOCK_VALUE (func);
7658 ALL_BLOCK_SYMBOLS (b, iter, sym)
7659 {
7660 if (!SYMBOL_IS_ARGUMENT (sym))
7661 continue;
7662
7663 if (argno == 0)
7664 ++argno;
7665 else
7666 {
7667 insert_exception_resume_breakpoint (ecs->event_thread,
7668 b, frame, sym);
7669 break;
7670 }
7671 }
7672 }
7673 CATCH (e, RETURN_MASK_ERROR)
7674 {
7675 }
7676 END_CATCH
7677 }
7678
7679 static void
7680 stop_waiting (struct execution_control_state *ecs)
7681 {
7682 if (debug_infrun)
7683 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7684
7685 clear_step_over_info ();
7686
7687 /* Let callers know we don't want to wait for the inferior anymore. */
7688 ecs->wait_some_more = 0;
7689
7690 /* If all-stop, but the target is always in non-stop mode, stop all
7691 threads now that we're presenting the stop to the user. */
7692 if (!non_stop && target_is_non_stop_p ())
7693 stop_all_threads ();
7694 }
7695
7696 /* Like keep_going, but passes the signal to the inferior, even if the
7697 signal is set to nopass. */
7698
7699 static void
7700 keep_going_pass_signal (struct execution_control_state *ecs)
7701 {
7702 /* Make sure normal_stop is called if we get a QUIT handled before
7703 reaching resume. */
7704 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7705
7706 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7707 gdb_assert (!ecs->event_thread->resumed);
7708
7709 /* Save the pc before execution, to compare with pc after stop. */
7710 ecs->event_thread->prev_pc
7711 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7712
7713 if (ecs->event_thread->control.trap_expected)
7714 {
7715 struct thread_info *tp = ecs->event_thread;
7716
7717 if (debug_infrun)
7718 fprintf_unfiltered (gdb_stdlog,
7719 "infrun: %s has trap_expected set, "
7720 "resuming to collect trap\n",
7721 target_pid_to_str (tp->ptid));
7722
7723 /* We haven't yet gotten our trap, and either: intercepted a
7724 non-signal event (e.g., a fork); or took a signal which we
7725 are supposed to pass through to the inferior. Simply
7726 continue. */
7727 discard_cleanups (old_cleanups);
7728 resume (ecs->event_thread->suspend.stop_signal);
7729 }
7730 else if (step_over_info_valid_p ())
7731 {
7732 /* Another thread is stepping over a breakpoint in-line. If
7733 this thread needs a step-over too, queue the request. In
7734 either case, this resume must be deferred for later. */
7735 struct thread_info *tp = ecs->event_thread;
7736
7737 if (ecs->hit_singlestep_breakpoint
7738 || thread_still_needs_step_over (tp))
7739 {
7740 if (debug_infrun)
7741 fprintf_unfiltered (gdb_stdlog,
7742 "infrun: step-over already in progress: "
7743 "step-over for %s deferred\n",
7744 target_pid_to_str (tp->ptid));
7745 thread_step_over_chain_enqueue (tp);
7746 }
7747 else
7748 {
7749 if (debug_infrun)
7750 fprintf_unfiltered (gdb_stdlog,
7751 "infrun: step-over in progress: "
7752 "resume of %s deferred\n",
7753 target_pid_to_str (tp->ptid));
7754 }
7755
7756 discard_cleanups (old_cleanups);
7757 }
7758 else
7759 {
7760 struct regcache *regcache = get_current_regcache ();
7761 int remove_bp;
7762 int remove_wps;
7763 step_over_what step_what;
7764
7765 /* Either the trap was not expected, but we are continuing
7766 anyway (if we got a signal, the user asked it be passed to
7767 the child)
7768 -- or --
7769 We got our expected trap, but decided we should resume from
7770 it.
7771
7772 We're going to run this baby now!
7773
7774 Note that insert_breakpoints won't try to re-insert
7775 already inserted breakpoints. Therefore, we don't
7776 care if breakpoints were already inserted, or not. */
7777
7778 /* If we need to step over a breakpoint, and we're not using
7779 displaced stepping to do so, insert all breakpoints
7780 (watchpoints, etc.) but the one we're stepping over, step one
7781 instruction, and then re-insert the breakpoint when that step
7782 is finished. */
7783
7784 step_what = thread_still_needs_step_over (ecs->event_thread);
7785
7786 remove_bp = (ecs->hit_singlestep_breakpoint
7787 || (step_what & STEP_OVER_BREAKPOINT));
7788 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7789
7790 /* We can't use displaced stepping if we need to step past a
7791 watchpoint. The instruction copied to the scratch pad would
7792 still trigger the watchpoint. */
7793 if (remove_bp
7794 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7795 {
7796 set_step_over_info (get_regcache_aspace (regcache),
7797 regcache_read_pc (regcache), remove_wps,
7798 ecs->event_thread->global_num);
7799 }
7800 else if (remove_wps)
7801 set_step_over_info (NULL, 0, remove_wps, -1);
7802
7803 /* If we now need to do an in-line step-over, we need to stop
7804 all other threads. Note this must be done before
7805 insert_breakpoints below, because that removes the breakpoint
7806 we're about to step over, otherwise other threads could miss
7807 it. */
7808 if (step_over_info_valid_p () && target_is_non_stop_p ())
7809 stop_all_threads ();
7810
7811 /* Stop stepping if inserting breakpoints fails. */
7812 TRY
7813 {
7814 insert_breakpoints ();
7815 }
7816 CATCH (e, RETURN_MASK_ERROR)
7817 {
7818 exception_print (gdb_stderr, e);
7819 stop_waiting (ecs);
7820 discard_cleanups (old_cleanups);
7821 return;
7822 }
7823 END_CATCH
7824
7825 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7826
7827 discard_cleanups (old_cleanups);
7828 resume (ecs->event_thread->suspend.stop_signal);
7829 }
7830
7831 prepare_to_wait (ecs);
7832 }
7833
7834 /* Called when we should continue running the inferior, because the
7835 current event doesn't cause a user visible stop. This does the
7836 resuming part; waiting for the next event is done elsewhere. */
7837
7838 static void
7839 keep_going (struct execution_control_state *ecs)
7840 {
7841 if (ecs->event_thread->control.trap_expected
7842 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7843 ecs->event_thread->control.trap_expected = 0;
7844
7845 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7846 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7847 keep_going_pass_signal (ecs);
7848 }
7849
7850 /* This function normally comes after a resume, before
7851 handle_inferior_event exits. It takes care of any last bits of
7852 housekeeping, and sets the all-important wait_some_more flag. */
7853
7854 static void
7855 prepare_to_wait (struct execution_control_state *ecs)
7856 {
7857 if (debug_infrun)
7858 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7859
7860 ecs->wait_some_more = 1;
7861
7862 if (!target_is_async_p ())
7863 mark_infrun_async_event_handler ();
7864 }
7865
7866 /* We are done with the step range of a step/next/si/ni command.
7867 Called once for each n of a "step n" operation. */
7868
7869 static void
7870 end_stepping_range (struct execution_control_state *ecs)
7871 {
7872 ecs->event_thread->control.stop_step = 1;
7873 stop_waiting (ecs);
7874 }
7875
7876 /* Several print_*_reason functions to print why the inferior has stopped.
7877 We always print something when the inferior exits, or receives a signal.
7878 The rest of the cases are dealt with later on in normal_stop and
7879 print_it_typical. Ideally there should be a call to one of these
7880 print_*_reason functions functions from handle_inferior_event each time
7881 stop_waiting is called.
7882
7883 Note that we don't call these directly, instead we delegate that to
7884 the interpreters, through observers. Interpreters then call these
7885 with whatever uiout is right. */
7886
7887 void
7888 print_end_stepping_range_reason (struct ui_out *uiout)
7889 {
7890 /* For CLI-like interpreters, print nothing. */
7891
7892 if (uiout->is_mi_like_p ())
7893 {
7894 uiout->field_string ("reason",
7895 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7896 }
7897 }
7898
7899 void
7900 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7901 {
7902 annotate_signalled ();
7903 if (uiout->is_mi_like_p ())
7904 uiout->field_string
7905 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7906 uiout->text ("\nProgram terminated with signal ");
7907 annotate_signal_name ();
7908 uiout->field_string ("signal-name",
7909 gdb_signal_to_name (siggnal));
7910 annotate_signal_name_end ();
7911 uiout->text (", ");
7912 annotate_signal_string ();
7913 uiout->field_string ("signal-meaning",
7914 gdb_signal_to_string (siggnal));
7915 annotate_signal_string_end ();
7916 uiout->text (".\n");
7917 uiout->text ("The program no longer exists.\n");
7918 }
7919
7920 void
7921 print_exited_reason (struct ui_out *uiout, int exitstatus)
7922 {
7923 struct inferior *inf = current_inferior ();
7924 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7925
7926 annotate_exited (exitstatus);
7927 if (exitstatus)
7928 {
7929 if (uiout->is_mi_like_p ())
7930 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7931 uiout->text ("[Inferior ");
7932 uiout->text (plongest (inf->num));
7933 uiout->text (" (");
7934 uiout->text (pidstr);
7935 uiout->text (") exited with code ");
7936 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7937 uiout->text ("]\n");
7938 }
7939 else
7940 {
7941 if (uiout->is_mi_like_p ())
7942 uiout->field_string
7943 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7944 uiout->text ("[Inferior ");
7945 uiout->text (plongest (inf->num));
7946 uiout->text (" (");
7947 uiout->text (pidstr);
7948 uiout->text (") exited normally]\n");
7949 }
7950 }
7951
7952 /* Some targets/architectures can do extra processing/display of
7953 segmentation faults. E.g., Intel MPX boundary faults.
7954 Call the architecture dependent function to handle the fault. */
7955
7956 static void
7957 handle_segmentation_fault (struct ui_out *uiout)
7958 {
7959 struct regcache *regcache = get_current_regcache ();
7960 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7961
7962 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7963 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7964 }
7965
7966 void
7967 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7968 {
7969 struct thread_info *thr = inferior_thread ();
7970
7971 annotate_signal ();
7972
7973 if (uiout->is_mi_like_p ())
7974 ;
7975 else if (show_thread_that_caused_stop ())
7976 {
7977 const char *name;
7978
7979 uiout->text ("\nThread ");
7980 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7981
7982 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7983 if (name != NULL)
7984 {
7985 uiout->text (" \"");
7986 uiout->field_fmt ("name", "%s", name);
7987 uiout->text ("\"");
7988 }
7989 }
7990 else
7991 uiout->text ("\nProgram");
7992
7993 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7994 uiout->text (" stopped");
7995 else
7996 {
7997 uiout->text (" received signal ");
7998 annotate_signal_name ();
7999 if (uiout->is_mi_like_p ())
8000 uiout->field_string
8001 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8002 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8003 annotate_signal_name_end ();
8004 uiout->text (", ");
8005 annotate_signal_string ();
8006 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8007
8008 if (siggnal == GDB_SIGNAL_SEGV)
8009 handle_segmentation_fault (uiout);
8010
8011 annotate_signal_string_end ();
8012 }
8013 uiout->text (".\n");
8014 }
8015
8016 void
8017 print_no_history_reason (struct ui_out *uiout)
8018 {
8019 uiout->text ("\nNo more reverse-execution history.\n");
8020 }
8021
8022 /* Print current location without a level number, if we have changed
8023 functions or hit a breakpoint. Print source line if we have one.
8024 bpstat_print contains the logic deciding in detail what to print,
8025 based on the event(s) that just occurred. */
8026
8027 static void
8028 print_stop_location (struct target_waitstatus *ws)
8029 {
8030 int bpstat_ret;
8031 enum print_what source_flag;
8032 int do_frame_printing = 1;
8033 struct thread_info *tp = inferior_thread ();
8034
8035 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8036 switch (bpstat_ret)
8037 {
8038 case PRINT_UNKNOWN:
8039 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8040 should) carry around the function and does (or should) use
8041 that when doing a frame comparison. */
8042 if (tp->control.stop_step
8043 && frame_id_eq (tp->control.step_frame_id,
8044 get_frame_id (get_current_frame ()))
8045 && tp->control.step_start_function == find_pc_function (stop_pc))
8046 {
8047 /* Finished step, just print source line. */
8048 source_flag = SRC_LINE;
8049 }
8050 else
8051 {
8052 /* Print location and source line. */
8053 source_flag = SRC_AND_LOC;
8054 }
8055 break;
8056 case PRINT_SRC_AND_LOC:
8057 /* Print location and source line. */
8058 source_flag = SRC_AND_LOC;
8059 break;
8060 case PRINT_SRC_ONLY:
8061 source_flag = SRC_LINE;
8062 break;
8063 case PRINT_NOTHING:
8064 /* Something bogus. */
8065 source_flag = SRC_LINE;
8066 do_frame_printing = 0;
8067 break;
8068 default:
8069 internal_error (__FILE__, __LINE__, _("Unknown value."));
8070 }
8071
8072 /* The behavior of this routine with respect to the source
8073 flag is:
8074 SRC_LINE: Print only source line
8075 LOCATION: Print only location
8076 SRC_AND_LOC: Print location and source line. */
8077 if (do_frame_printing)
8078 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8079 }
8080
8081 /* See infrun.h. */
8082
8083 void
8084 print_stop_event (struct ui_out *uiout)
8085 {
8086 struct target_waitstatus last;
8087 ptid_t last_ptid;
8088 struct thread_info *tp;
8089
8090 get_last_target_status (&last_ptid, &last);
8091
8092 {
8093 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8094
8095 print_stop_location (&last);
8096
8097 /* Display the auto-display expressions. */
8098 do_displays ();
8099 }
8100
8101 tp = inferior_thread ();
8102 if (tp->thread_fsm != NULL
8103 && thread_fsm_finished_p (tp->thread_fsm))
8104 {
8105 struct return_value_info *rv;
8106
8107 rv = thread_fsm_return_value (tp->thread_fsm);
8108 if (rv != NULL)
8109 print_return_value (uiout, rv);
8110 }
8111 }
8112
8113 /* See infrun.h. */
8114
8115 void
8116 maybe_remove_breakpoints (void)
8117 {
8118 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8119 {
8120 if (remove_breakpoints ())
8121 {
8122 target_terminal_ours_for_output ();
8123 printf_filtered (_("Cannot remove breakpoints because "
8124 "program is no longer writable.\nFurther "
8125 "execution is probably impossible.\n"));
8126 }
8127 }
8128 }
8129
8130 /* The execution context that just caused a normal stop. */
8131
8132 struct stop_context
8133 {
8134 /* The stop ID. */
8135 ULONGEST stop_id;
8136
8137 /* The event PTID. */
8138
8139 ptid_t ptid;
8140
8141 /* If stopp for a thread event, this is the thread that caused the
8142 stop. */
8143 struct thread_info *thread;
8144
8145 /* The inferior that caused the stop. */
8146 int inf_num;
8147 };
8148
8149 /* Returns a new stop context. If stopped for a thread event, this
8150 takes a strong reference to the thread. */
8151
8152 static struct stop_context *
8153 save_stop_context (void)
8154 {
8155 struct stop_context *sc = XNEW (struct stop_context);
8156
8157 sc->stop_id = get_stop_id ();
8158 sc->ptid = inferior_ptid;
8159 sc->inf_num = current_inferior ()->num;
8160
8161 if (!ptid_equal (inferior_ptid, null_ptid))
8162 {
8163 /* Take a strong reference so that the thread can't be deleted
8164 yet. */
8165 sc->thread = inferior_thread ();
8166 sc->thread->refcount++;
8167 }
8168 else
8169 sc->thread = NULL;
8170
8171 return sc;
8172 }
8173
8174 /* Release a stop context previously created with save_stop_context.
8175 Releases the strong reference to the thread as well. */
8176
8177 static void
8178 release_stop_context_cleanup (void *arg)
8179 {
8180 struct stop_context *sc = (struct stop_context *) arg;
8181
8182 if (sc->thread != NULL)
8183 sc->thread->refcount--;
8184 xfree (sc);
8185 }
8186
8187 /* Return true if the current context no longer matches the saved stop
8188 context. */
8189
8190 static int
8191 stop_context_changed (struct stop_context *prev)
8192 {
8193 if (!ptid_equal (prev->ptid, inferior_ptid))
8194 return 1;
8195 if (prev->inf_num != current_inferior ()->num)
8196 return 1;
8197 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8198 return 1;
8199 if (get_stop_id () != prev->stop_id)
8200 return 1;
8201 return 0;
8202 }
8203
8204 /* See infrun.h. */
8205
8206 int
8207 normal_stop (void)
8208 {
8209 struct target_waitstatus last;
8210 ptid_t last_ptid;
8211 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8212 ptid_t pid_ptid;
8213
8214 get_last_target_status (&last_ptid, &last);
8215
8216 new_stop_id ();
8217
8218 /* If an exception is thrown from this point on, make sure to
8219 propagate GDB's knowledge of the executing state to the
8220 frontend/user running state. A QUIT is an easy exception to see
8221 here, so do this before any filtered output. */
8222 if (!non_stop)
8223 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8224 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8225 || last.kind == TARGET_WAITKIND_EXITED)
8226 {
8227 /* On some targets, we may still have live threads in the
8228 inferior when we get a process exit event. E.g., for
8229 "checkpoint", when the current checkpoint/fork exits,
8230 linux-fork.c automatically switches to another fork from
8231 within target_mourn_inferior. */
8232 if (!ptid_equal (inferior_ptid, null_ptid))
8233 {
8234 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8235 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8236 }
8237 }
8238 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8239 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8240
8241 /* As we're presenting a stop, and potentially removing breakpoints,
8242 update the thread list so we can tell whether there are threads
8243 running on the target. With target remote, for example, we can
8244 only learn about new threads when we explicitly update the thread
8245 list. Do this before notifying the interpreters about signal
8246 stops, end of stepping ranges, etc., so that the "new thread"
8247 output is emitted before e.g., "Program received signal FOO",
8248 instead of after. */
8249 update_thread_list ();
8250
8251 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8252 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8253
8254 /* As with the notification of thread events, we want to delay
8255 notifying the user that we've switched thread context until
8256 the inferior actually stops.
8257
8258 There's no point in saying anything if the inferior has exited.
8259 Note that SIGNALLED here means "exited with a signal", not
8260 "received a signal".
8261
8262 Also skip saying anything in non-stop mode. In that mode, as we
8263 don't want GDB to switch threads behind the user's back, to avoid
8264 races where the user is typing a command to apply to thread x,
8265 but GDB switches to thread y before the user finishes entering
8266 the command, fetch_inferior_event installs a cleanup to restore
8267 the current thread back to the thread the user had selected right
8268 after this event is handled, so we're not really switching, only
8269 informing of a stop. */
8270 if (!non_stop
8271 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8272 && target_has_execution
8273 && last.kind != TARGET_WAITKIND_SIGNALLED
8274 && last.kind != TARGET_WAITKIND_EXITED
8275 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8276 {
8277 SWITCH_THRU_ALL_UIS ()
8278 {
8279 target_terminal_ours_for_output ();
8280 printf_filtered (_("[Switching to %s]\n"),
8281 target_pid_to_str (inferior_ptid));
8282 annotate_thread_changed ();
8283 }
8284 previous_inferior_ptid = inferior_ptid;
8285 }
8286
8287 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8288 {
8289 SWITCH_THRU_ALL_UIS ()
8290 if (current_ui->prompt_state == PROMPT_BLOCKED)
8291 {
8292 target_terminal_ours_for_output ();
8293 printf_filtered (_("No unwaited-for children left.\n"));
8294 }
8295 }
8296
8297 /* Note: this depends on the update_thread_list call above. */
8298 maybe_remove_breakpoints ();
8299
8300 /* If an auto-display called a function and that got a signal,
8301 delete that auto-display to avoid an infinite recursion. */
8302
8303 if (stopped_by_random_signal)
8304 disable_current_display ();
8305
8306 SWITCH_THRU_ALL_UIS ()
8307 {
8308 async_enable_stdin ();
8309 }
8310
8311 /* Let the user/frontend see the threads as stopped. */
8312 do_cleanups (old_chain);
8313
8314 /* Select innermost stack frame - i.e., current frame is frame 0,
8315 and current location is based on that. Handle the case where the
8316 dummy call is returning after being stopped. E.g. the dummy call
8317 previously hit a breakpoint. (If the dummy call returns
8318 normally, we won't reach here.) Do this before the stop hook is
8319 run, so that it doesn't get to see the temporary dummy frame,
8320 which is not where we'll present the stop. */
8321 if (has_stack_frames ())
8322 {
8323 if (stop_stack_dummy == STOP_STACK_DUMMY)
8324 {
8325 /* Pop the empty frame that contains the stack dummy. This
8326 also restores inferior state prior to the call (struct
8327 infcall_suspend_state). */
8328 struct frame_info *frame = get_current_frame ();
8329
8330 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8331 frame_pop (frame);
8332 /* frame_pop calls reinit_frame_cache as the last thing it
8333 does which means there's now no selected frame. */
8334 }
8335
8336 select_frame (get_current_frame ());
8337
8338 /* Set the current source location. */
8339 set_current_sal_from_frame (get_current_frame ());
8340 }
8341
8342 /* Look up the hook_stop and run it (CLI internally handles problem
8343 of stop_command's pre-hook not existing). */
8344 if (stop_command != NULL)
8345 {
8346 struct stop_context *saved_context = save_stop_context ();
8347 struct cleanup *old_chain
8348 = make_cleanup (release_stop_context_cleanup, saved_context);
8349
8350 catch_errors (hook_stop_stub, stop_command,
8351 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8352
8353 /* If the stop hook resumes the target, then there's no point in
8354 trying to notify about the previous stop; its context is
8355 gone. Likewise if the command switches thread or inferior --
8356 the observers would print a stop for the wrong
8357 thread/inferior. */
8358 if (stop_context_changed (saved_context))
8359 {
8360 do_cleanups (old_chain);
8361 return 1;
8362 }
8363 do_cleanups (old_chain);
8364 }
8365
8366 /* Notify observers about the stop. This is where the interpreters
8367 print the stop event. */
8368 if (!ptid_equal (inferior_ptid, null_ptid))
8369 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8370 stop_print_frame);
8371 else
8372 observer_notify_normal_stop (NULL, stop_print_frame);
8373
8374 annotate_stopped ();
8375
8376 if (target_has_execution)
8377 {
8378 if (last.kind != TARGET_WAITKIND_SIGNALLED
8379 && last.kind != TARGET_WAITKIND_EXITED)
8380 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8381 Delete any breakpoint that is to be deleted at the next stop. */
8382 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8383 }
8384
8385 /* Try to get rid of automatically added inferiors that are no
8386 longer needed. Keeping those around slows down things linearly.
8387 Note that this never removes the current inferior. */
8388 prune_inferiors ();
8389
8390 return 0;
8391 }
8392
8393 static int
8394 hook_stop_stub (void *cmd)
8395 {
8396 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8397 return (0);
8398 }
8399 \f
8400 int
8401 signal_stop_state (int signo)
8402 {
8403 return signal_stop[signo];
8404 }
8405
8406 int
8407 signal_print_state (int signo)
8408 {
8409 return signal_print[signo];
8410 }
8411
8412 int
8413 signal_pass_state (int signo)
8414 {
8415 return signal_program[signo];
8416 }
8417
8418 static void
8419 signal_cache_update (int signo)
8420 {
8421 if (signo == -1)
8422 {
8423 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8424 signal_cache_update (signo);
8425
8426 return;
8427 }
8428
8429 signal_pass[signo] = (signal_stop[signo] == 0
8430 && signal_print[signo] == 0
8431 && signal_program[signo] == 1
8432 && signal_catch[signo] == 0);
8433 }
8434
8435 int
8436 signal_stop_update (int signo, int state)
8437 {
8438 int ret = signal_stop[signo];
8439
8440 signal_stop[signo] = state;
8441 signal_cache_update (signo);
8442 return ret;
8443 }
8444
8445 int
8446 signal_print_update (int signo, int state)
8447 {
8448 int ret = signal_print[signo];
8449
8450 signal_print[signo] = state;
8451 signal_cache_update (signo);
8452 return ret;
8453 }
8454
8455 int
8456 signal_pass_update (int signo, int state)
8457 {
8458 int ret = signal_program[signo];
8459
8460 signal_program[signo] = state;
8461 signal_cache_update (signo);
8462 return ret;
8463 }
8464
8465 /* Update the global 'signal_catch' from INFO and notify the
8466 target. */
8467
8468 void
8469 signal_catch_update (const unsigned int *info)
8470 {
8471 int i;
8472
8473 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8474 signal_catch[i] = info[i] > 0;
8475 signal_cache_update (-1);
8476 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8477 }
8478
8479 static void
8480 sig_print_header (void)
8481 {
8482 printf_filtered (_("Signal Stop\tPrint\tPass "
8483 "to program\tDescription\n"));
8484 }
8485
8486 static void
8487 sig_print_info (enum gdb_signal oursig)
8488 {
8489 const char *name = gdb_signal_to_name (oursig);
8490 int name_padding = 13 - strlen (name);
8491
8492 if (name_padding <= 0)
8493 name_padding = 0;
8494
8495 printf_filtered ("%s", name);
8496 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8497 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8498 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8499 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8500 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8501 }
8502
8503 /* Specify how various signals in the inferior should be handled. */
8504
8505 static void
8506 handle_command (char *args, int from_tty)
8507 {
8508 char **argv;
8509 int digits, wordlen;
8510 int sigfirst, signum, siglast;
8511 enum gdb_signal oursig;
8512 int allsigs;
8513 int nsigs;
8514 unsigned char *sigs;
8515 struct cleanup *old_chain;
8516
8517 if (args == NULL)
8518 {
8519 error_no_arg (_("signal to handle"));
8520 }
8521
8522 /* Allocate and zero an array of flags for which signals to handle. */
8523
8524 nsigs = (int) GDB_SIGNAL_LAST;
8525 sigs = (unsigned char *) alloca (nsigs);
8526 memset (sigs, 0, nsigs);
8527
8528 /* Break the command line up into args. */
8529
8530 argv = gdb_buildargv (args);
8531 old_chain = make_cleanup_freeargv (argv);
8532
8533 /* Walk through the args, looking for signal oursigs, signal names, and
8534 actions. Signal numbers and signal names may be interspersed with
8535 actions, with the actions being performed for all signals cumulatively
8536 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8537
8538 while (*argv != NULL)
8539 {
8540 wordlen = strlen (*argv);
8541 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8542 {;
8543 }
8544 allsigs = 0;
8545 sigfirst = siglast = -1;
8546
8547 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8548 {
8549 /* Apply action to all signals except those used by the
8550 debugger. Silently skip those. */
8551 allsigs = 1;
8552 sigfirst = 0;
8553 siglast = nsigs - 1;
8554 }
8555 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8556 {
8557 SET_SIGS (nsigs, sigs, signal_stop);
8558 SET_SIGS (nsigs, sigs, signal_print);
8559 }
8560 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8561 {
8562 UNSET_SIGS (nsigs, sigs, signal_program);
8563 }
8564 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8565 {
8566 SET_SIGS (nsigs, sigs, signal_print);
8567 }
8568 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8569 {
8570 SET_SIGS (nsigs, sigs, signal_program);
8571 }
8572 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8573 {
8574 UNSET_SIGS (nsigs, sigs, signal_stop);
8575 }
8576 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8577 {
8578 SET_SIGS (nsigs, sigs, signal_program);
8579 }
8580 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8581 {
8582 UNSET_SIGS (nsigs, sigs, signal_print);
8583 UNSET_SIGS (nsigs, sigs, signal_stop);
8584 }
8585 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8586 {
8587 UNSET_SIGS (nsigs, sigs, signal_program);
8588 }
8589 else if (digits > 0)
8590 {
8591 /* It is numeric. The numeric signal refers to our own
8592 internal signal numbering from target.h, not to host/target
8593 signal number. This is a feature; users really should be
8594 using symbolic names anyway, and the common ones like
8595 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8596
8597 sigfirst = siglast = (int)
8598 gdb_signal_from_command (atoi (*argv));
8599 if ((*argv)[digits] == '-')
8600 {
8601 siglast = (int)
8602 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8603 }
8604 if (sigfirst > siglast)
8605 {
8606 /* Bet he didn't figure we'd think of this case... */
8607 signum = sigfirst;
8608 sigfirst = siglast;
8609 siglast = signum;
8610 }
8611 }
8612 else
8613 {
8614 oursig = gdb_signal_from_name (*argv);
8615 if (oursig != GDB_SIGNAL_UNKNOWN)
8616 {
8617 sigfirst = siglast = (int) oursig;
8618 }
8619 else
8620 {
8621 /* Not a number and not a recognized flag word => complain. */
8622 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8623 }
8624 }
8625
8626 /* If any signal numbers or symbol names were found, set flags for
8627 which signals to apply actions to. */
8628
8629 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8630 {
8631 switch ((enum gdb_signal) signum)
8632 {
8633 case GDB_SIGNAL_TRAP:
8634 case GDB_SIGNAL_INT:
8635 if (!allsigs && !sigs[signum])
8636 {
8637 if (query (_("%s is used by the debugger.\n\
8638 Are you sure you want to change it? "),
8639 gdb_signal_to_name ((enum gdb_signal) signum)))
8640 {
8641 sigs[signum] = 1;
8642 }
8643 else
8644 {
8645 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8646 gdb_flush (gdb_stdout);
8647 }
8648 }
8649 break;
8650 case GDB_SIGNAL_0:
8651 case GDB_SIGNAL_DEFAULT:
8652 case GDB_SIGNAL_UNKNOWN:
8653 /* Make sure that "all" doesn't print these. */
8654 break;
8655 default:
8656 sigs[signum] = 1;
8657 break;
8658 }
8659 }
8660
8661 argv++;
8662 }
8663
8664 for (signum = 0; signum < nsigs; signum++)
8665 if (sigs[signum])
8666 {
8667 signal_cache_update (-1);
8668 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8669 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8670
8671 if (from_tty)
8672 {
8673 /* Show the results. */
8674 sig_print_header ();
8675 for (; signum < nsigs; signum++)
8676 if (sigs[signum])
8677 sig_print_info ((enum gdb_signal) signum);
8678 }
8679
8680 break;
8681 }
8682
8683 do_cleanups (old_chain);
8684 }
8685
8686 /* Complete the "handle" command. */
8687
8688 static VEC (char_ptr) *
8689 handle_completer (struct cmd_list_element *ignore,
8690 const char *text, const char *word)
8691 {
8692 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8693 static const char * const keywords[] =
8694 {
8695 "all",
8696 "stop",
8697 "ignore",
8698 "print",
8699 "pass",
8700 "nostop",
8701 "noignore",
8702 "noprint",
8703 "nopass",
8704 NULL,
8705 };
8706
8707 vec_signals = signal_completer (ignore, text, word);
8708 vec_keywords = complete_on_enum (keywords, word, word);
8709
8710 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8711 VEC_free (char_ptr, vec_signals);
8712 VEC_free (char_ptr, vec_keywords);
8713 return return_val;
8714 }
8715
8716 enum gdb_signal
8717 gdb_signal_from_command (int num)
8718 {
8719 if (num >= 1 && num <= 15)
8720 return (enum gdb_signal) num;
8721 error (_("Only signals 1-15 are valid as numeric signals.\n\
8722 Use \"info signals\" for a list of symbolic signals."));
8723 }
8724
8725 /* Print current contents of the tables set by the handle command.
8726 It is possible we should just be printing signals actually used
8727 by the current target (but for things to work right when switching
8728 targets, all signals should be in the signal tables). */
8729
8730 static void
8731 signals_info (char *signum_exp, int from_tty)
8732 {
8733 enum gdb_signal oursig;
8734
8735 sig_print_header ();
8736
8737 if (signum_exp)
8738 {
8739 /* First see if this is a symbol name. */
8740 oursig = gdb_signal_from_name (signum_exp);
8741 if (oursig == GDB_SIGNAL_UNKNOWN)
8742 {
8743 /* No, try numeric. */
8744 oursig =
8745 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8746 }
8747 sig_print_info (oursig);
8748 return;
8749 }
8750
8751 printf_filtered ("\n");
8752 /* These ugly casts brought to you by the native VAX compiler. */
8753 for (oursig = GDB_SIGNAL_FIRST;
8754 (int) oursig < (int) GDB_SIGNAL_LAST;
8755 oursig = (enum gdb_signal) ((int) oursig + 1))
8756 {
8757 QUIT;
8758
8759 if (oursig != GDB_SIGNAL_UNKNOWN
8760 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8761 sig_print_info (oursig);
8762 }
8763
8764 printf_filtered (_("\nUse the \"handle\" command "
8765 "to change these tables.\n"));
8766 }
8767
8768 /* The $_siginfo convenience variable is a bit special. We don't know
8769 for sure the type of the value until we actually have a chance to
8770 fetch the data. The type can change depending on gdbarch, so it is
8771 also dependent on which thread you have selected.
8772
8773 1. making $_siginfo be an internalvar that creates a new value on
8774 access.
8775
8776 2. making the value of $_siginfo be an lval_computed value. */
8777
8778 /* This function implements the lval_computed support for reading a
8779 $_siginfo value. */
8780
8781 static void
8782 siginfo_value_read (struct value *v)
8783 {
8784 LONGEST transferred;
8785
8786 /* If we can access registers, so can we access $_siginfo. Likewise
8787 vice versa. */
8788 validate_registers_access ();
8789
8790 transferred =
8791 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8792 NULL,
8793 value_contents_all_raw (v),
8794 value_offset (v),
8795 TYPE_LENGTH (value_type (v)));
8796
8797 if (transferred != TYPE_LENGTH (value_type (v)))
8798 error (_("Unable to read siginfo"));
8799 }
8800
8801 /* This function implements the lval_computed support for writing a
8802 $_siginfo value. */
8803
8804 static void
8805 siginfo_value_write (struct value *v, struct value *fromval)
8806 {
8807 LONGEST transferred;
8808
8809 /* If we can access registers, so can we access $_siginfo. Likewise
8810 vice versa. */
8811 validate_registers_access ();
8812
8813 transferred = target_write (&current_target,
8814 TARGET_OBJECT_SIGNAL_INFO,
8815 NULL,
8816 value_contents_all_raw (fromval),
8817 value_offset (v),
8818 TYPE_LENGTH (value_type (fromval)));
8819
8820 if (transferred != TYPE_LENGTH (value_type (fromval)))
8821 error (_("Unable to write siginfo"));
8822 }
8823
8824 static const struct lval_funcs siginfo_value_funcs =
8825 {
8826 siginfo_value_read,
8827 siginfo_value_write
8828 };
8829
8830 /* Return a new value with the correct type for the siginfo object of
8831 the current thread using architecture GDBARCH. Return a void value
8832 if there's no object available. */
8833
8834 static struct value *
8835 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8836 void *ignore)
8837 {
8838 if (target_has_stack
8839 && !ptid_equal (inferior_ptid, null_ptid)
8840 && gdbarch_get_siginfo_type_p (gdbarch))
8841 {
8842 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8843
8844 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8845 }
8846
8847 return allocate_value (builtin_type (gdbarch)->builtin_void);
8848 }
8849
8850 \f
8851 /* infcall_suspend_state contains state about the program itself like its
8852 registers and any signal it received when it last stopped.
8853 This state must be restored regardless of how the inferior function call
8854 ends (either successfully, or after it hits a breakpoint or signal)
8855 if the program is to properly continue where it left off. */
8856
8857 struct infcall_suspend_state
8858 {
8859 struct thread_suspend_state thread_suspend;
8860
8861 /* Other fields: */
8862 CORE_ADDR stop_pc;
8863 struct regcache *registers;
8864
8865 /* Format of SIGINFO_DATA or NULL if it is not present. */
8866 struct gdbarch *siginfo_gdbarch;
8867
8868 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8869 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8870 content would be invalid. */
8871 gdb_byte *siginfo_data;
8872 };
8873
8874 struct infcall_suspend_state *
8875 save_infcall_suspend_state (void)
8876 {
8877 struct infcall_suspend_state *inf_state;
8878 struct thread_info *tp = inferior_thread ();
8879 struct regcache *regcache = get_current_regcache ();
8880 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8881 gdb_byte *siginfo_data = NULL;
8882
8883 if (gdbarch_get_siginfo_type_p (gdbarch))
8884 {
8885 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8886 size_t len = TYPE_LENGTH (type);
8887 struct cleanup *back_to;
8888
8889 siginfo_data = (gdb_byte *) xmalloc (len);
8890 back_to = make_cleanup (xfree, siginfo_data);
8891
8892 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8893 siginfo_data, 0, len) == len)
8894 discard_cleanups (back_to);
8895 else
8896 {
8897 /* Errors ignored. */
8898 do_cleanups (back_to);
8899 siginfo_data = NULL;
8900 }
8901 }
8902
8903 inf_state = XCNEW (struct infcall_suspend_state);
8904
8905 if (siginfo_data)
8906 {
8907 inf_state->siginfo_gdbarch = gdbarch;
8908 inf_state->siginfo_data = siginfo_data;
8909 }
8910
8911 inf_state->thread_suspend = tp->suspend;
8912
8913 /* run_inferior_call will not use the signal due to its `proceed' call with
8914 GDB_SIGNAL_0 anyway. */
8915 tp->suspend.stop_signal = GDB_SIGNAL_0;
8916
8917 inf_state->stop_pc = stop_pc;
8918
8919 inf_state->registers = regcache_dup (regcache);
8920
8921 return inf_state;
8922 }
8923
8924 /* Restore inferior session state to INF_STATE. */
8925
8926 void
8927 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8928 {
8929 struct thread_info *tp = inferior_thread ();
8930 struct regcache *regcache = get_current_regcache ();
8931 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8932
8933 tp->suspend = inf_state->thread_suspend;
8934
8935 stop_pc = inf_state->stop_pc;
8936
8937 if (inf_state->siginfo_gdbarch == gdbarch)
8938 {
8939 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8940
8941 /* Errors ignored. */
8942 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8943 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8944 }
8945
8946 /* The inferior can be gone if the user types "print exit(0)"
8947 (and perhaps other times). */
8948 if (target_has_execution)
8949 /* NB: The register write goes through to the target. */
8950 regcache_cpy (regcache, inf_state->registers);
8951
8952 discard_infcall_suspend_state (inf_state);
8953 }
8954
8955 static void
8956 do_restore_infcall_suspend_state_cleanup (void *state)
8957 {
8958 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8959 }
8960
8961 struct cleanup *
8962 make_cleanup_restore_infcall_suspend_state
8963 (struct infcall_suspend_state *inf_state)
8964 {
8965 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8966 }
8967
8968 void
8969 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8970 {
8971 regcache_xfree (inf_state->registers);
8972 xfree (inf_state->siginfo_data);
8973 xfree (inf_state);
8974 }
8975
8976 struct regcache *
8977 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8978 {
8979 return inf_state->registers;
8980 }
8981
8982 /* infcall_control_state contains state regarding gdb's control of the
8983 inferior itself like stepping control. It also contains session state like
8984 the user's currently selected frame. */
8985
8986 struct infcall_control_state
8987 {
8988 struct thread_control_state thread_control;
8989 struct inferior_control_state inferior_control;
8990
8991 /* Other fields: */
8992 enum stop_stack_kind stop_stack_dummy;
8993 int stopped_by_random_signal;
8994
8995 /* ID if the selected frame when the inferior function call was made. */
8996 struct frame_id selected_frame_id;
8997 };
8998
8999 /* Save all of the information associated with the inferior<==>gdb
9000 connection. */
9001
9002 struct infcall_control_state *
9003 save_infcall_control_state (void)
9004 {
9005 struct infcall_control_state *inf_status =
9006 XNEW (struct infcall_control_state);
9007 struct thread_info *tp = inferior_thread ();
9008 struct inferior *inf = current_inferior ();
9009
9010 inf_status->thread_control = tp->control;
9011 inf_status->inferior_control = inf->control;
9012
9013 tp->control.step_resume_breakpoint = NULL;
9014 tp->control.exception_resume_breakpoint = NULL;
9015
9016 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9017 chain. If caller's caller is walking the chain, they'll be happier if we
9018 hand them back the original chain when restore_infcall_control_state is
9019 called. */
9020 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9021
9022 /* Other fields: */
9023 inf_status->stop_stack_dummy = stop_stack_dummy;
9024 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9025
9026 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9027
9028 return inf_status;
9029 }
9030
9031 static int
9032 restore_selected_frame (void *args)
9033 {
9034 struct frame_id *fid = (struct frame_id *) args;
9035 struct frame_info *frame;
9036
9037 frame = frame_find_by_id (*fid);
9038
9039 /* If inf_status->selected_frame_id is NULL, there was no previously
9040 selected frame. */
9041 if (frame == NULL)
9042 {
9043 warning (_("Unable to restore previously selected frame."));
9044 return 0;
9045 }
9046
9047 select_frame (frame);
9048
9049 return (1);
9050 }
9051
9052 /* Restore inferior session state to INF_STATUS. */
9053
9054 void
9055 restore_infcall_control_state (struct infcall_control_state *inf_status)
9056 {
9057 struct thread_info *tp = inferior_thread ();
9058 struct inferior *inf = current_inferior ();
9059
9060 if (tp->control.step_resume_breakpoint)
9061 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9062
9063 if (tp->control.exception_resume_breakpoint)
9064 tp->control.exception_resume_breakpoint->disposition
9065 = disp_del_at_next_stop;
9066
9067 /* Handle the bpstat_copy of the chain. */
9068 bpstat_clear (&tp->control.stop_bpstat);
9069
9070 tp->control = inf_status->thread_control;
9071 inf->control = inf_status->inferior_control;
9072
9073 /* Other fields: */
9074 stop_stack_dummy = inf_status->stop_stack_dummy;
9075 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9076
9077 if (target_has_stack)
9078 {
9079 /* The point of catch_errors is that if the stack is clobbered,
9080 walking the stack might encounter a garbage pointer and
9081 error() trying to dereference it. */
9082 if (catch_errors
9083 (restore_selected_frame, &inf_status->selected_frame_id,
9084 "Unable to restore previously selected frame:\n",
9085 RETURN_MASK_ERROR) == 0)
9086 /* Error in restoring the selected frame. Select the innermost
9087 frame. */
9088 select_frame (get_current_frame ());
9089 }
9090
9091 xfree (inf_status);
9092 }
9093
9094 static void
9095 do_restore_infcall_control_state_cleanup (void *sts)
9096 {
9097 restore_infcall_control_state ((struct infcall_control_state *) sts);
9098 }
9099
9100 struct cleanup *
9101 make_cleanup_restore_infcall_control_state
9102 (struct infcall_control_state *inf_status)
9103 {
9104 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9105 }
9106
9107 void
9108 discard_infcall_control_state (struct infcall_control_state *inf_status)
9109 {
9110 if (inf_status->thread_control.step_resume_breakpoint)
9111 inf_status->thread_control.step_resume_breakpoint->disposition
9112 = disp_del_at_next_stop;
9113
9114 if (inf_status->thread_control.exception_resume_breakpoint)
9115 inf_status->thread_control.exception_resume_breakpoint->disposition
9116 = disp_del_at_next_stop;
9117
9118 /* See save_infcall_control_state for info on stop_bpstat. */
9119 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9120
9121 xfree (inf_status);
9122 }
9123 \f
9124 /* restore_inferior_ptid() will be used by the cleanup machinery
9125 to restore the inferior_ptid value saved in a call to
9126 save_inferior_ptid(). */
9127
9128 static void
9129 restore_inferior_ptid (void *arg)
9130 {
9131 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
9132
9133 inferior_ptid = *saved_ptid_ptr;
9134 xfree (arg);
9135 }
9136
9137 /* Save the value of inferior_ptid so that it may be restored by a
9138 later call to do_cleanups(). Returns the struct cleanup pointer
9139 needed for later doing the cleanup. */
9140
9141 struct cleanup *
9142 save_inferior_ptid (void)
9143 {
9144 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
9145
9146 *saved_ptid_ptr = inferior_ptid;
9147 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9148 }
9149
9150 /* See infrun.h. */
9151
9152 void
9153 clear_exit_convenience_vars (void)
9154 {
9155 clear_internalvar (lookup_internalvar ("_exitsignal"));
9156 clear_internalvar (lookup_internalvar ("_exitcode"));
9157 }
9158 \f
9159
9160 /* User interface for reverse debugging:
9161 Set exec-direction / show exec-direction commands
9162 (returns error unless target implements to_set_exec_direction method). */
9163
9164 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9165 static const char exec_forward[] = "forward";
9166 static const char exec_reverse[] = "reverse";
9167 static const char *exec_direction = exec_forward;
9168 static const char *const exec_direction_names[] = {
9169 exec_forward,
9170 exec_reverse,
9171 NULL
9172 };
9173
9174 static void
9175 set_exec_direction_func (char *args, int from_tty,
9176 struct cmd_list_element *cmd)
9177 {
9178 if (target_can_execute_reverse)
9179 {
9180 if (!strcmp (exec_direction, exec_forward))
9181 execution_direction = EXEC_FORWARD;
9182 else if (!strcmp (exec_direction, exec_reverse))
9183 execution_direction = EXEC_REVERSE;
9184 }
9185 else
9186 {
9187 exec_direction = exec_forward;
9188 error (_("Target does not support this operation."));
9189 }
9190 }
9191
9192 static void
9193 show_exec_direction_func (struct ui_file *out, int from_tty,
9194 struct cmd_list_element *cmd, const char *value)
9195 {
9196 switch (execution_direction) {
9197 case EXEC_FORWARD:
9198 fprintf_filtered (out, _("Forward.\n"));
9199 break;
9200 case EXEC_REVERSE:
9201 fprintf_filtered (out, _("Reverse.\n"));
9202 break;
9203 default:
9204 internal_error (__FILE__, __LINE__,
9205 _("bogus execution_direction value: %d"),
9206 (int) execution_direction);
9207 }
9208 }
9209
9210 static void
9211 show_schedule_multiple (struct ui_file *file, int from_tty,
9212 struct cmd_list_element *c, const char *value)
9213 {
9214 fprintf_filtered (file, _("Resuming the execution of threads "
9215 "of all processes is %s.\n"), value);
9216 }
9217
9218 /* Implementation of `siginfo' variable. */
9219
9220 static const struct internalvar_funcs siginfo_funcs =
9221 {
9222 siginfo_make_value,
9223 NULL,
9224 NULL
9225 };
9226
9227 /* Callback for infrun's target events source. This is marked when a
9228 thread has a pending status to process. */
9229
9230 static void
9231 infrun_async_inferior_event_handler (gdb_client_data data)
9232 {
9233 inferior_event_handler (INF_REG_EVENT, NULL);
9234 }
9235
9236 void
9237 _initialize_infrun (void)
9238 {
9239 int i;
9240 int numsigs;
9241 struct cmd_list_element *c;
9242
9243 /* Register extra event sources in the event loop. */
9244 infrun_async_inferior_event_token
9245 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9246
9247 add_info ("signals", signals_info, _("\
9248 What debugger does when program gets various signals.\n\
9249 Specify a signal as argument to print info on that signal only."));
9250 add_info_alias ("handle", "signals", 0);
9251
9252 c = add_com ("handle", class_run, handle_command, _("\
9253 Specify how to handle signals.\n\
9254 Usage: handle SIGNAL [ACTIONS]\n\
9255 Args are signals and actions to apply to those signals.\n\
9256 If no actions are specified, the current settings for the specified signals\n\
9257 will be displayed instead.\n\
9258 \n\
9259 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9260 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9261 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9262 The special arg \"all\" is recognized to mean all signals except those\n\
9263 used by the debugger, typically SIGTRAP and SIGINT.\n\
9264 \n\
9265 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9266 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9267 Stop means reenter debugger if this signal happens (implies print).\n\
9268 Print means print a message if this signal happens.\n\
9269 Pass means let program see this signal; otherwise program doesn't know.\n\
9270 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9271 Pass and Stop may be combined.\n\
9272 \n\
9273 Multiple signals may be specified. Signal numbers and signal names\n\
9274 may be interspersed with actions, with the actions being performed for\n\
9275 all signals cumulatively specified."));
9276 set_cmd_completer (c, handle_completer);
9277
9278 if (!dbx_commands)
9279 stop_command = add_cmd ("stop", class_obscure,
9280 not_just_help_class_command, _("\
9281 There is no `stop' command, but you can set a hook on `stop'.\n\
9282 This allows you to set a list of commands to be run each time execution\n\
9283 of the program stops."), &cmdlist);
9284
9285 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9286 Set inferior debugging."), _("\
9287 Show inferior debugging."), _("\
9288 When non-zero, inferior specific debugging is enabled."),
9289 NULL,
9290 show_debug_infrun,
9291 &setdebuglist, &showdebuglist);
9292
9293 add_setshow_boolean_cmd ("displaced", class_maintenance,
9294 &debug_displaced, _("\
9295 Set displaced stepping debugging."), _("\
9296 Show displaced stepping debugging."), _("\
9297 When non-zero, displaced stepping specific debugging is enabled."),
9298 NULL,
9299 show_debug_displaced,
9300 &setdebuglist, &showdebuglist);
9301
9302 add_setshow_boolean_cmd ("non-stop", no_class,
9303 &non_stop_1, _("\
9304 Set whether gdb controls the inferior in non-stop mode."), _("\
9305 Show whether gdb controls the inferior in non-stop mode."), _("\
9306 When debugging a multi-threaded program and this setting is\n\
9307 off (the default, also called all-stop mode), when one thread stops\n\
9308 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9309 all other threads in the program while you interact with the thread of\n\
9310 interest. When you continue or step a thread, you can allow the other\n\
9311 threads to run, or have them remain stopped, but while you inspect any\n\
9312 thread's state, all threads stop.\n\
9313 \n\
9314 In non-stop mode, when one thread stops, other threads can continue\n\
9315 to run freely. You'll be able to step each thread independently,\n\
9316 leave it stopped or free to run as needed."),
9317 set_non_stop,
9318 show_non_stop,
9319 &setlist,
9320 &showlist);
9321
9322 numsigs = (int) GDB_SIGNAL_LAST;
9323 signal_stop = XNEWVEC (unsigned char, numsigs);
9324 signal_print = XNEWVEC (unsigned char, numsigs);
9325 signal_program = XNEWVEC (unsigned char, numsigs);
9326 signal_catch = XNEWVEC (unsigned char, numsigs);
9327 signal_pass = XNEWVEC (unsigned char, numsigs);
9328 for (i = 0; i < numsigs; i++)
9329 {
9330 signal_stop[i] = 1;
9331 signal_print[i] = 1;
9332 signal_program[i] = 1;
9333 signal_catch[i] = 0;
9334 }
9335
9336 /* Signals caused by debugger's own actions should not be given to
9337 the program afterwards.
9338
9339 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9340 explicitly specifies that it should be delivered to the target
9341 program. Typically, that would occur when a user is debugging a
9342 target monitor on a simulator: the target monitor sets a
9343 breakpoint; the simulator encounters this breakpoint and halts
9344 the simulation handing control to GDB; GDB, noting that the stop
9345 address doesn't map to any known breakpoint, returns control back
9346 to the simulator; the simulator then delivers the hardware
9347 equivalent of a GDB_SIGNAL_TRAP to the program being
9348 debugged. */
9349 signal_program[GDB_SIGNAL_TRAP] = 0;
9350 signal_program[GDB_SIGNAL_INT] = 0;
9351
9352 /* Signals that are not errors should not normally enter the debugger. */
9353 signal_stop[GDB_SIGNAL_ALRM] = 0;
9354 signal_print[GDB_SIGNAL_ALRM] = 0;
9355 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9356 signal_print[GDB_SIGNAL_VTALRM] = 0;
9357 signal_stop[GDB_SIGNAL_PROF] = 0;
9358 signal_print[GDB_SIGNAL_PROF] = 0;
9359 signal_stop[GDB_SIGNAL_CHLD] = 0;
9360 signal_print[GDB_SIGNAL_CHLD] = 0;
9361 signal_stop[GDB_SIGNAL_IO] = 0;
9362 signal_print[GDB_SIGNAL_IO] = 0;
9363 signal_stop[GDB_SIGNAL_POLL] = 0;
9364 signal_print[GDB_SIGNAL_POLL] = 0;
9365 signal_stop[GDB_SIGNAL_URG] = 0;
9366 signal_print[GDB_SIGNAL_URG] = 0;
9367 signal_stop[GDB_SIGNAL_WINCH] = 0;
9368 signal_print[GDB_SIGNAL_WINCH] = 0;
9369 signal_stop[GDB_SIGNAL_PRIO] = 0;
9370 signal_print[GDB_SIGNAL_PRIO] = 0;
9371
9372 /* These signals are used internally by user-level thread
9373 implementations. (See signal(5) on Solaris.) Like the above
9374 signals, a healthy program receives and handles them as part of
9375 its normal operation. */
9376 signal_stop[GDB_SIGNAL_LWP] = 0;
9377 signal_print[GDB_SIGNAL_LWP] = 0;
9378 signal_stop[GDB_SIGNAL_WAITING] = 0;
9379 signal_print[GDB_SIGNAL_WAITING] = 0;
9380 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9381 signal_print[GDB_SIGNAL_CANCEL] = 0;
9382 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9383 signal_print[GDB_SIGNAL_LIBRT] = 0;
9384
9385 /* Update cached state. */
9386 signal_cache_update (-1);
9387
9388 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9389 &stop_on_solib_events, _("\
9390 Set stopping for shared library events."), _("\
9391 Show stopping for shared library events."), _("\
9392 If nonzero, gdb will give control to the user when the dynamic linker\n\
9393 notifies gdb of shared library events. The most common event of interest\n\
9394 to the user would be loading/unloading of a new library."),
9395 set_stop_on_solib_events,
9396 show_stop_on_solib_events,
9397 &setlist, &showlist);
9398
9399 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9400 follow_fork_mode_kind_names,
9401 &follow_fork_mode_string, _("\
9402 Set debugger response to a program call of fork or vfork."), _("\
9403 Show debugger response to a program call of fork or vfork."), _("\
9404 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9405 parent - the original process is debugged after a fork\n\
9406 child - the new process is debugged after a fork\n\
9407 The unfollowed process will continue to run.\n\
9408 By default, the debugger will follow the parent process."),
9409 NULL,
9410 show_follow_fork_mode_string,
9411 &setlist, &showlist);
9412
9413 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9414 follow_exec_mode_names,
9415 &follow_exec_mode_string, _("\
9416 Set debugger response to a program call of exec."), _("\
9417 Show debugger response to a program call of exec."), _("\
9418 An exec call replaces the program image of a process.\n\
9419 \n\
9420 follow-exec-mode can be:\n\
9421 \n\
9422 new - the debugger creates a new inferior and rebinds the process\n\
9423 to this new inferior. The program the process was running before\n\
9424 the exec call can be restarted afterwards by restarting the original\n\
9425 inferior.\n\
9426 \n\
9427 same - the debugger keeps the process bound to the same inferior.\n\
9428 The new executable image replaces the previous executable loaded in\n\
9429 the inferior. Restarting the inferior after the exec call restarts\n\
9430 the executable the process was running after the exec call.\n\
9431 \n\
9432 By default, the debugger will use the same inferior."),
9433 NULL,
9434 show_follow_exec_mode_string,
9435 &setlist, &showlist);
9436
9437 add_setshow_enum_cmd ("scheduler-locking", class_run,
9438 scheduler_enums, &scheduler_mode, _("\
9439 Set mode for locking scheduler during execution."), _("\
9440 Show mode for locking scheduler during execution."), _("\
9441 off == no locking (threads may preempt at any time)\n\
9442 on == full locking (no thread except the current thread may run)\n\
9443 This applies to both normal execution and replay mode.\n\
9444 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9445 In this mode, other threads may run during other commands.\n\
9446 This applies to both normal execution and replay mode.\n\
9447 replay == scheduler locked in replay mode and unlocked during normal execution."),
9448 set_schedlock_func, /* traps on target vector */
9449 show_scheduler_mode,
9450 &setlist, &showlist);
9451
9452 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9453 Set mode for resuming threads of all processes."), _("\
9454 Show mode for resuming threads of all processes."), _("\
9455 When on, execution commands (such as 'continue' or 'next') resume all\n\
9456 threads of all processes. When off (which is the default), execution\n\
9457 commands only resume the threads of the current process. The set of\n\
9458 threads that are resumed is further refined by the scheduler-locking\n\
9459 mode (see help set scheduler-locking)."),
9460 NULL,
9461 show_schedule_multiple,
9462 &setlist, &showlist);
9463
9464 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9465 Set mode of the step operation."), _("\
9466 Show mode of the step operation."), _("\
9467 When set, doing a step over a function without debug line information\n\
9468 will stop at the first instruction of that function. Otherwise, the\n\
9469 function is skipped and the step command stops at a different source line."),
9470 NULL,
9471 show_step_stop_if_no_debug,
9472 &setlist, &showlist);
9473
9474 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9475 &can_use_displaced_stepping, _("\
9476 Set debugger's willingness to use displaced stepping."), _("\
9477 Show debugger's willingness to use displaced stepping."), _("\
9478 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9479 supported by the target architecture. If off, gdb will not use displaced\n\
9480 stepping to step over breakpoints, even if such is supported by the target\n\
9481 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9482 if the target architecture supports it and non-stop mode is active, but will not\n\
9483 use it in all-stop mode (see help set non-stop)."),
9484 NULL,
9485 show_can_use_displaced_stepping,
9486 &setlist, &showlist);
9487
9488 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9489 &exec_direction, _("Set direction of execution.\n\
9490 Options are 'forward' or 'reverse'."),
9491 _("Show direction of execution (forward/reverse)."),
9492 _("Tells gdb whether to execute forward or backward."),
9493 set_exec_direction_func, show_exec_direction_func,
9494 &setlist, &showlist);
9495
9496 /* Set/show detach-on-fork: user-settable mode. */
9497
9498 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9499 Set whether gdb will detach the child of a fork."), _("\
9500 Show whether gdb will detach the child of a fork."), _("\
9501 Tells gdb whether to detach the child of a fork."),
9502 NULL, NULL, &setlist, &showlist);
9503
9504 /* Set/show disable address space randomization mode. */
9505
9506 add_setshow_boolean_cmd ("disable-randomization", class_support,
9507 &disable_randomization, _("\
9508 Set disabling of debuggee's virtual address space randomization."), _("\
9509 Show disabling of debuggee's virtual address space randomization."), _("\
9510 When this mode is on (which is the default), randomization of the virtual\n\
9511 address space is disabled. Standalone programs run with the randomization\n\
9512 enabled by default on some platforms."),
9513 &set_disable_randomization,
9514 &show_disable_randomization,
9515 &setlist, &showlist);
9516
9517 /* ptid initializations */
9518 inferior_ptid = null_ptid;
9519 target_last_wait_ptid = minus_one_ptid;
9520
9521 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9522 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9523 observer_attach_thread_exit (infrun_thread_thread_exit);
9524 observer_attach_inferior_exit (infrun_inferior_exit);
9525
9526 /* Explicitly create without lookup, since that tries to create a
9527 value with a void typed value, and when we get here, gdbarch
9528 isn't initialized yet. At this point, we're quite sure there
9529 isn't another convenience variable of the same name. */
9530 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9531
9532 add_setshow_boolean_cmd ("observer", no_class,
9533 &observer_mode_1, _("\
9534 Set whether gdb controls the inferior in observer mode."), _("\
9535 Show whether gdb controls the inferior in observer mode."), _("\
9536 In observer mode, GDB can get data from the inferior, but not\n\
9537 affect its execution. Registers and memory may not be changed,\n\
9538 breakpoints may not be set, and the program cannot be interrupted\n\
9539 or signalled."),
9540 set_observer_mode,
9541 show_observer_mode,
9542 &setlist,
9543 &showlist);
9544 }
This page took 0.265021 seconds and 4 git commands to generate.