2008-06-21 Hui Zhu <teawater@gmail.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 struct execution_control_state;
76
77 static int currently_stepping (struct execution_control_state *ecs);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89 static void
90 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92 {
93 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
94 }
95
96 /* In asynchronous mode, but simulating synchronous execution. */
97
98 int sync_execution = 0;
99
100 /* wait_for_inferior and normal_stop use this to notify the user
101 when the inferior stopped in a different thread than it had been
102 running in. */
103
104 static ptid_t previous_inferior_ptid;
105
106 int debug_displaced = 0;
107 static void
108 show_debug_displaced (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
112 }
113
114 static int debug_infrun = 0;
115 static void
116 show_debug_infrun (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118 {
119 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
120 }
121
122 /* If the program uses ELF-style shared libraries, then calls to
123 functions in shared libraries go through stubs, which live in a
124 table called the PLT (Procedure Linkage Table). The first time the
125 function is called, the stub sends control to the dynamic linker,
126 which looks up the function's real address, patches the stub so
127 that future calls will go directly to the function, and then passes
128 control to the function.
129
130 If we are stepping at the source level, we don't want to see any of
131 this --- we just want to skip over the stub and the dynamic linker.
132 The simple approach is to single-step until control leaves the
133 dynamic linker.
134
135 However, on some systems (e.g., Red Hat's 5.2 distribution) the
136 dynamic linker calls functions in the shared C library, so you
137 can't tell from the PC alone whether the dynamic linker is still
138 running. In this case, we use a step-resume breakpoint to get us
139 past the dynamic linker, as if we were using "next" to step over a
140 function call.
141
142 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
143 linker code or not. Normally, this means we single-step. However,
144 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
145 address where we can place a step-resume breakpoint to get past the
146 linker's symbol resolution function.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
149 pretty portable way, by comparing the PC against the address ranges
150 of the dynamic linker's sections.
151
152 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
153 it depends on internal details of the dynamic linker. It's usually
154 not too hard to figure out where to put a breakpoint, but it
155 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
156 sanity checking. If it can't figure things out, returning zero and
157 getting the (possibly confusing) stepping behavior is better than
158 signalling an error, which will obscure the change in the
159 inferior's state. */
160
161 /* This function returns TRUE if pc is the address of an instruction
162 that lies within the dynamic linker (such as the event hook, or the
163 dld itself).
164
165 This function must be used only when a dynamic linker event has
166 been caught, and the inferior is being stepped out of the hook, or
167 undefined results are guaranteed. */
168
169 #ifndef SOLIB_IN_DYNAMIC_LINKER
170 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
171 #endif
172
173
174 /* Convert the #defines into values. This is temporary until wfi control
175 flow is completely sorted out. */
176
177 #ifndef CANNOT_STEP_HW_WATCHPOINTS
178 #define CANNOT_STEP_HW_WATCHPOINTS 0
179 #else
180 #undef CANNOT_STEP_HW_WATCHPOINTS
181 #define CANNOT_STEP_HW_WATCHPOINTS 1
182 #endif
183
184 /* Tables of how to react to signals; the user sets them. */
185
186 static unsigned char *signal_stop;
187 static unsigned char *signal_print;
188 static unsigned char *signal_program;
189
190 #define SET_SIGS(nsigs,sigs,flags) \
191 do { \
192 int signum = (nsigs); \
193 while (signum-- > 0) \
194 if ((sigs)[signum]) \
195 (flags)[signum] = 1; \
196 } while (0)
197
198 #define UNSET_SIGS(nsigs,sigs,flags) \
199 do { \
200 int signum = (nsigs); \
201 while (signum-- > 0) \
202 if ((sigs)[signum]) \
203 (flags)[signum] = 0; \
204 } while (0)
205
206 /* Value to pass to target_resume() to cause all threads to resume */
207
208 #define RESUME_ALL (pid_to_ptid (-1))
209
210 /* Command list pointer for the "stop" placeholder. */
211
212 static struct cmd_list_element *stop_command;
213
214 /* Function inferior was in as of last step command. */
215
216 static struct symbol *step_start_function;
217
218 /* Nonzero if we are presently stepping over a breakpoint.
219
220 If we hit a breakpoint or watchpoint, and then continue,
221 we need to single step the current thread with breakpoints
222 disabled, to avoid hitting the same breakpoint or
223 watchpoint again. And we should step just a single
224 thread and keep other threads stopped, so that
225 other threads don't miss breakpoints while they are removed.
226
227 So, this variable simultaneously means that we need to single
228 step the current thread, keep other threads stopped, and that
229 breakpoints should be removed while we step.
230
231 This variable is set either:
232 - in proceed, when we resume inferior on user's explicit request
233 - in keep_going, if handle_inferior_event decides we need to
234 step over breakpoint.
235
236 The variable is cleared in clear_proceed_status, called every
237 time before we call proceed. The proceed calls wait_for_inferior,
238 which calls handle_inferior_event in a loop, and until
239 wait_for_inferior exits, this variable is changed only by keep_going. */
240
241 static int stepping_over_breakpoint;
242
243 /* Nonzero if we want to give control to the user when we're notified
244 of shared library events by the dynamic linker. */
245 static int stop_on_solib_events;
246 static void
247 show_stop_on_solib_events (struct ui_file *file, int from_tty,
248 struct cmd_list_element *c, const char *value)
249 {
250 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
251 value);
252 }
253
254 /* Nonzero means expecting a trace trap
255 and should stop the inferior and return silently when it happens. */
256
257 int stop_after_trap;
258
259 /* Nonzero means expecting a trap and caller will handle it themselves.
260 It is used after attach, due to attaching to a process;
261 when running in the shell before the child program has been exec'd;
262 and when running some kinds of remote stuff (FIXME?). */
263
264 enum stop_kind stop_soon;
265
266 /* Nonzero if proceed is being used for a "finish" command or a similar
267 situation when stop_registers should be saved. */
268
269 int proceed_to_finish;
270
271 /* Save register contents here when about to pop a stack dummy frame,
272 if-and-only-if proceed_to_finish is set.
273 Thus this contains the return value from the called function (assuming
274 values are returned in a register). */
275
276 struct regcache *stop_registers;
277
278 /* Nonzero after stop if current stack frame should be printed. */
279
280 static int stop_print_frame;
281
282 /* Step-resume or longjmp-resume breakpoint. */
283 static struct breakpoint *step_resume_breakpoint = NULL;
284
285 /* This is a cached copy of the pid/waitstatus of the last event
286 returned by target_wait()/deprecated_target_wait_hook(). This
287 information is returned by get_last_target_status(). */
288 static ptid_t target_last_wait_ptid;
289 static struct target_waitstatus target_last_waitstatus;
290
291 /* This is used to remember when a fork, vfork or exec event
292 was caught by a catchpoint, and thus the event is to be
293 followed at the next resume of the inferior, and not
294 immediately. */
295 static struct
296 {
297 enum target_waitkind kind;
298 struct
299 {
300 int parent_pid;
301 int child_pid;
302 }
303 fork_event;
304 char *execd_pathname;
305 }
306 pending_follow;
307
308 static const char follow_fork_mode_child[] = "child";
309 static const char follow_fork_mode_parent[] = "parent";
310
311 static const char *follow_fork_mode_kind_names[] = {
312 follow_fork_mode_child,
313 follow_fork_mode_parent,
314 NULL
315 };
316
317 static const char *follow_fork_mode_string = follow_fork_mode_parent;
318 static void
319 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
320 struct cmd_list_element *c, const char *value)
321 {
322 fprintf_filtered (file, _("\
323 Debugger response to a program call of fork or vfork is \"%s\".\n"),
324 value);
325 }
326 \f
327
328 static int
329 follow_fork (void)
330 {
331 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
332
333 return target_follow_fork (follow_child);
334 }
335
336 void
337 follow_inferior_reset_breakpoints (void)
338 {
339 /* Was there a step_resume breakpoint? (There was if the user
340 did a "next" at the fork() call.) If so, explicitly reset its
341 thread number.
342
343 step_resumes are a form of bp that are made to be per-thread.
344 Since we created the step_resume bp when the parent process
345 was being debugged, and now are switching to the child process,
346 from the breakpoint package's viewpoint, that's a switch of
347 "threads". We must update the bp's notion of which thread
348 it is for, or it'll be ignored when it triggers. */
349
350 if (step_resume_breakpoint)
351 breakpoint_re_set_thread (step_resume_breakpoint);
352
353 /* Reinsert all breakpoints in the child. The user may have set
354 breakpoints after catching the fork, in which case those
355 were never set in the child, but only in the parent. This makes
356 sure the inserted breakpoints match the breakpoint list. */
357
358 breakpoint_re_set ();
359 insert_breakpoints ();
360 }
361
362 /* EXECD_PATHNAME is assumed to be non-NULL. */
363
364 static void
365 follow_exec (int pid, char *execd_pathname)
366 {
367 int saved_pid = pid;
368 struct target_ops *tgt;
369
370 /* This is an exec event that we actually wish to pay attention to.
371 Refresh our symbol table to the newly exec'd program, remove any
372 momentary bp's, etc.
373
374 If there are breakpoints, they aren't really inserted now,
375 since the exec() transformed our inferior into a fresh set
376 of instructions.
377
378 We want to preserve symbolic breakpoints on the list, since
379 we have hopes that they can be reset after the new a.out's
380 symbol table is read.
381
382 However, any "raw" breakpoints must be removed from the list
383 (e.g., the solib bp's), since their address is probably invalid
384 now.
385
386 And, we DON'T want to call delete_breakpoints() here, since
387 that may write the bp's "shadow contents" (the instruction
388 value that was overwritten witha TRAP instruction). Since
389 we now have a new a.out, those shadow contents aren't valid. */
390 update_breakpoints_after_exec ();
391
392 /* If there was one, it's gone now. We cannot truly step-to-next
393 statement through an exec(). */
394 step_resume_breakpoint = NULL;
395 step_range_start = 0;
396 step_range_end = 0;
397
398 /* What is this a.out's name? */
399 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
400
401 /* We've followed the inferior through an exec. Therefore, the
402 inferior has essentially been killed & reborn. */
403
404 gdb_flush (gdb_stdout);
405 generic_mourn_inferior ();
406 /* Because mourn_inferior resets inferior_ptid. */
407 inferior_ptid = pid_to_ptid (saved_pid);
408
409 if (gdb_sysroot && *gdb_sysroot)
410 {
411 char *name = alloca (strlen (gdb_sysroot)
412 + strlen (execd_pathname)
413 + 1);
414 strcpy (name, gdb_sysroot);
415 strcat (name, execd_pathname);
416 execd_pathname = name;
417 }
418
419 /* That a.out is now the one to use. */
420 exec_file_attach (execd_pathname, 0);
421
422 /* And also is where symbols can be found. */
423 symbol_file_add_main (execd_pathname, 0);
424
425 /* Reset the shared library package. This ensures that we get
426 a shlib event when the child reaches "_start", at which point
427 the dld will have had a chance to initialize the child. */
428 no_shared_libraries (NULL, 0);
429 #ifdef SOLIB_CREATE_INFERIOR_HOOK
430 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
431 #else
432 solib_create_inferior_hook ();
433 #endif
434
435 /* Reinsert all breakpoints. (Those which were symbolic have
436 been reset to the proper address in the new a.out, thanks
437 to symbol_file_command...) */
438 insert_breakpoints ();
439
440 /* The next resume of this inferior should bring it to the shlib
441 startup breakpoints. (If the user had also set bp's on
442 "main" from the old (parent) process, then they'll auto-
443 matically get reset there in the new process.) */
444 }
445
446 /* Non-zero if we just simulating a single-step. This is needed
447 because we cannot remove the breakpoints in the inferior process
448 until after the `wait' in `wait_for_inferior'. */
449 static int singlestep_breakpoints_inserted_p = 0;
450
451 /* The thread we inserted single-step breakpoints for. */
452 static ptid_t singlestep_ptid;
453
454 /* PC when we started this single-step. */
455 static CORE_ADDR singlestep_pc;
456
457 /* If another thread hit the singlestep breakpoint, we save the original
458 thread here so that we can resume single-stepping it later. */
459 static ptid_t saved_singlestep_ptid;
460 static int stepping_past_singlestep_breakpoint;
461
462 /* If not equal to null_ptid, this means that after stepping over breakpoint
463 is finished, we need to switch to deferred_step_ptid, and step it.
464
465 The use case is when one thread has hit a breakpoint, and then the user
466 has switched to another thread and issued 'step'. We need to step over
467 breakpoint in the thread which hit the breakpoint, but then continue
468 stepping the thread user has selected. */
469 static ptid_t deferred_step_ptid;
470 \f
471 /* Displaced stepping. */
472
473 /* In non-stop debugging mode, we must take special care to manage
474 breakpoints properly; in particular, the traditional strategy for
475 stepping a thread past a breakpoint it has hit is unsuitable.
476 'Displaced stepping' is a tactic for stepping one thread past a
477 breakpoint it has hit while ensuring that other threads running
478 concurrently will hit the breakpoint as they should.
479
480 The traditional way to step a thread T off a breakpoint in a
481 multi-threaded program in all-stop mode is as follows:
482
483 a0) Initially, all threads are stopped, and breakpoints are not
484 inserted.
485 a1) We single-step T, leaving breakpoints uninserted.
486 a2) We insert breakpoints, and resume all threads.
487
488 In non-stop debugging, however, this strategy is unsuitable: we
489 don't want to have to stop all threads in the system in order to
490 continue or step T past a breakpoint. Instead, we use displaced
491 stepping:
492
493 n0) Initially, T is stopped, other threads are running, and
494 breakpoints are inserted.
495 n1) We copy the instruction "under" the breakpoint to a separate
496 location, outside the main code stream, making any adjustments
497 to the instruction, register, and memory state as directed by
498 T's architecture.
499 n2) We single-step T over the instruction at its new location.
500 n3) We adjust the resulting register and memory state as directed
501 by T's architecture. This includes resetting T's PC to point
502 back into the main instruction stream.
503 n4) We resume T.
504
505 This approach depends on the following gdbarch methods:
506
507 - gdbarch_max_insn_length and gdbarch_displaced_step_location
508 indicate where to copy the instruction, and how much space must
509 be reserved there. We use these in step n1.
510
511 - gdbarch_displaced_step_copy_insn copies a instruction to a new
512 address, and makes any necessary adjustments to the instruction,
513 register contents, and memory. We use this in step n1.
514
515 - gdbarch_displaced_step_fixup adjusts registers and memory after
516 we have successfuly single-stepped the instruction, to yield the
517 same effect the instruction would have had if we had executed it
518 at its original address. We use this in step n3.
519
520 - gdbarch_displaced_step_free_closure provides cleanup.
521
522 The gdbarch_displaced_step_copy_insn and
523 gdbarch_displaced_step_fixup functions must be written so that
524 copying an instruction with gdbarch_displaced_step_copy_insn,
525 single-stepping across the copied instruction, and then applying
526 gdbarch_displaced_insn_fixup should have the same effects on the
527 thread's memory and registers as stepping the instruction in place
528 would have. Exactly which responsibilities fall to the copy and
529 which fall to the fixup is up to the author of those functions.
530
531 See the comments in gdbarch.sh for details.
532
533 Note that displaced stepping and software single-step cannot
534 currently be used in combination, although with some care I think
535 they could be made to. Software single-step works by placing
536 breakpoints on all possible subsequent instructions; if the
537 displaced instruction is a PC-relative jump, those breakpoints
538 could fall in very strange places --- on pages that aren't
539 executable, or at addresses that are not proper instruction
540 boundaries. (We do generally let other threads run while we wait
541 to hit the software single-step breakpoint, and they might
542 encounter such a corrupted instruction.) One way to work around
543 this would be to have gdbarch_displaced_step_copy_insn fully
544 simulate the effect of PC-relative instructions (and return NULL)
545 on architectures that use software single-stepping.
546
547 In non-stop mode, we can have independent and simultaneous step
548 requests, so more than one thread may need to simultaneously step
549 over a breakpoint. The current implementation assumes there is
550 only one scratch space per process. In this case, we have to
551 serialize access to the scratch space. If thread A wants to step
552 over a breakpoint, but we are currently waiting for some other
553 thread to complete a displaced step, we leave thread A stopped and
554 place it in the displaced_step_request_queue. Whenever a displaced
555 step finishes, we pick the next thread in the queue and start a new
556 displaced step operation on it. See displaced_step_prepare and
557 displaced_step_fixup for details. */
558
559 /* If this is not null_ptid, this is the thread carrying out a
560 displaced single-step. This thread's state will require fixing up
561 once it has completed its step. */
562 static ptid_t displaced_step_ptid;
563
564 struct displaced_step_request
565 {
566 ptid_t ptid;
567 struct displaced_step_request *next;
568 };
569
570 /* A queue of pending displaced stepping requests. */
571 struct displaced_step_request *displaced_step_request_queue;
572
573 /* The architecture the thread had when we stepped it. */
574 static struct gdbarch *displaced_step_gdbarch;
575
576 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
577 for post-step cleanup. */
578 static struct displaced_step_closure *displaced_step_closure;
579
580 /* The address of the original instruction, and the copy we made. */
581 static CORE_ADDR displaced_step_original, displaced_step_copy;
582
583 /* Saved contents of copy area. */
584 static gdb_byte *displaced_step_saved_copy;
585
586 /* When this is non-zero, we are allowed to use displaced stepping, if
587 the architecture supports it. When this is zero, we use
588 traditional the hold-and-step approach. */
589 int can_use_displaced_stepping = 1;
590 static void
591 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
592 struct cmd_list_element *c,
593 const char *value)
594 {
595 fprintf_filtered (file, _("\
596 Debugger's willingness to use displaced stepping to step over "
597 "breakpoints is %s.\n"), value);
598 }
599
600 /* Return non-zero if displaced stepping is enabled, and can be used
601 with GDBARCH. */
602 static int
603 use_displaced_stepping (struct gdbarch *gdbarch)
604 {
605 return (can_use_displaced_stepping
606 && gdbarch_displaced_step_copy_insn_p (gdbarch));
607 }
608
609 /* Clean out any stray displaced stepping state. */
610 static void
611 displaced_step_clear (void)
612 {
613 /* Indicate that there is no cleanup pending. */
614 displaced_step_ptid = null_ptid;
615
616 if (displaced_step_closure)
617 {
618 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
619 displaced_step_closure);
620 displaced_step_closure = NULL;
621 }
622 }
623
624 static void
625 cleanup_displaced_step_closure (void *ptr)
626 {
627 struct displaced_step_closure *closure = ptr;
628
629 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
630 }
631
632 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
633 void
634 displaced_step_dump_bytes (struct ui_file *file,
635 const gdb_byte *buf,
636 size_t len)
637 {
638 int i;
639
640 for (i = 0; i < len; i++)
641 fprintf_unfiltered (file, "%02x ", buf[i]);
642 fputs_unfiltered ("\n", file);
643 }
644
645 /* Prepare to single-step, using displaced stepping.
646
647 Note that we cannot use displaced stepping when we have a signal to
648 deliver. If we have a signal to deliver and an instruction to step
649 over, then after the step, there will be no indication from the
650 target whether the thread entered a signal handler or ignored the
651 signal and stepped over the instruction successfully --- both cases
652 result in a simple SIGTRAP. In the first case we mustn't do a
653 fixup, and in the second case we must --- but we can't tell which.
654 Comments in the code for 'random signals' in handle_inferior_event
655 explain how we handle this case instead.
656
657 Returns 1 if preparing was successful -- this thread is going to be
658 stepped now; or 0 if displaced stepping this thread got queued. */
659 static int
660 displaced_step_prepare (ptid_t ptid)
661 {
662 struct cleanup *old_cleanups;
663 struct regcache *regcache = get_thread_regcache (ptid);
664 struct gdbarch *gdbarch = get_regcache_arch (regcache);
665 CORE_ADDR original, copy;
666 ULONGEST len;
667 struct displaced_step_closure *closure;
668
669 /* We should never reach this function if the architecture does not
670 support displaced stepping. */
671 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
672
673 /* For the first cut, we're displaced stepping one thread at a
674 time. */
675
676 if (!ptid_equal (displaced_step_ptid, null_ptid))
677 {
678 /* Already waiting for a displaced step to finish. Defer this
679 request and place in queue. */
680 struct displaced_step_request *req, *new_req;
681
682 if (debug_displaced)
683 fprintf_unfiltered (gdb_stdlog,
684 "displaced: defering step of %s\n",
685 target_pid_to_str (ptid));
686
687 new_req = xmalloc (sizeof (*new_req));
688 new_req->ptid = ptid;
689 new_req->next = NULL;
690
691 if (displaced_step_request_queue)
692 {
693 for (req = displaced_step_request_queue;
694 req && req->next;
695 req = req->next)
696 ;
697 req->next = new_req;
698 }
699 else
700 displaced_step_request_queue = new_req;
701
702 return 0;
703 }
704 else
705 {
706 if (debug_displaced)
707 fprintf_unfiltered (gdb_stdlog,
708 "displaced: stepping %s now\n",
709 target_pid_to_str (ptid));
710 }
711
712 displaced_step_clear ();
713
714 original = regcache_read_pc (regcache);
715
716 copy = gdbarch_displaced_step_location (gdbarch);
717 len = gdbarch_max_insn_length (gdbarch);
718
719 /* Save the original contents of the copy area. */
720 displaced_step_saved_copy = xmalloc (len);
721 old_cleanups = make_cleanup (free_current_contents,
722 &displaced_step_saved_copy);
723 read_memory (copy, displaced_step_saved_copy, len);
724 if (debug_displaced)
725 {
726 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
727 paddr_nz (copy));
728 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
729 };
730
731 closure = gdbarch_displaced_step_copy_insn (gdbarch,
732 original, copy, regcache);
733
734 /* We don't support the fully-simulated case at present. */
735 gdb_assert (closure);
736
737 make_cleanup (cleanup_displaced_step_closure, closure);
738
739 /* Resume execution at the copy. */
740 regcache_write_pc (regcache, copy);
741
742 discard_cleanups (old_cleanups);
743
744 if (debug_displaced)
745 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
746 paddr_nz (copy));
747
748 /* Save the information we need to fix things up if the step
749 succeeds. */
750 displaced_step_ptid = ptid;
751 displaced_step_gdbarch = gdbarch;
752 displaced_step_closure = closure;
753 displaced_step_original = original;
754 displaced_step_copy = copy;
755 return 1;
756 }
757
758 static void
759 displaced_step_clear_cleanup (void *ignore)
760 {
761 displaced_step_clear ();
762 }
763
764 static void
765 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
766 {
767 struct cleanup *ptid_cleanup = save_inferior_ptid ();
768 inferior_ptid = ptid;
769 write_memory (memaddr, myaddr, len);
770 do_cleanups (ptid_cleanup);
771 }
772
773 static void
774 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
775 {
776 struct cleanup *old_cleanups;
777
778 /* Was this event for the pid we displaced? */
779 if (ptid_equal (displaced_step_ptid, null_ptid)
780 || ! ptid_equal (displaced_step_ptid, event_ptid))
781 return;
782
783 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
784
785 /* Restore the contents of the copy area. */
786 {
787 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
788 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
789 displaced_step_saved_copy, len);
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
792 paddr_nz (displaced_step_copy));
793 }
794
795 /* Did the instruction complete successfully? */
796 if (signal == TARGET_SIGNAL_TRAP)
797 {
798 /* Fix up the resulting state. */
799 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
800 displaced_step_closure,
801 displaced_step_original,
802 displaced_step_copy,
803 get_thread_regcache (displaced_step_ptid));
804 }
805 else
806 {
807 /* Since the instruction didn't complete, all we can do is
808 relocate the PC. */
809 struct regcache *regcache = get_thread_regcache (event_ptid);
810 CORE_ADDR pc = regcache_read_pc (regcache);
811 pc = displaced_step_original + (pc - displaced_step_copy);
812 regcache_write_pc (regcache, pc);
813 }
814
815 do_cleanups (old_cleanups);
816
817 /* Are there any pending displaced stepping requests? If so, run
818 one now. */
819 if (displaced_step_request_queue)
820 {
821 struct displaced_step_request *head;
822 ptid_t ptid;
823
824 head = displaced_step_request_queue;
825 ptid = head->ptid;
826 displaced_step_request_queue = head->next;
827 xfree (head);
828
829 if (debug_displaced)
830 fprintf_unfiltered (gdb_stdlog,
831 "displaced: stepping queued %s now\n",
832 target_pid_to_str (ptid));
833
834
835 displaced_step_ptid = null_ptid;
836 displaced_step_prepare (ptid);
837 target_resume (ptid, 1, TARGET_SIGNAL_0);
838 }
839 }
840
841 \f
842 /* Resuming. */
843
844 /* Things to clean up if we QUIT out of resume (). */
845 static void
846 resume_cleanups (void *ignore)
847 {
848 normal_stop ();
849 }
850
851 static const char schedlock_off[] = "off";
852 static const char schedlock_on[] = "on";
853 static const char schedlock_step[] = "step";
854 static const char *scheduler_enums[] = {
855 schedlock_off,
856 schedlock_on,
857 schedlock_step,
858 NULL
859 };
860 static const char *scheduler_mode = schedlock_off;
861 static void
862 show_scheduler_mode (struct ui_file *file, int from_tty,
863 struct cmd_list_element *c, const char *value)
864 {
865 fprintf_filtered (file, _("\
866 Mode for locking scheduler during execution is \"%s\".\n"),
867 value);
868 }
869
870 static void
871 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
872 {
873 if (!target_can_lock_scheduler)
874 {
875 scheduler_mode = schedlock_off;
876 error (_("Target '%s' cannot support this command."), target_shortname);
877 }
878 }
879
880
881 /* Resume the inferior, but allow a QUIT. This is useful if the user
882 wants to interrupt some lengthy single-stepping operation
883 (for child processes, the SIGINT goes to the inferior, and so
884 we get a SIGINT random_signal, but for remote debugging and perhaps
885 other targets, that's not true).
886
887 STEP nonzero if we should step (zero to continue instead).
888 SIG is the signal to give the inferior (zero for none). */
889 void
890 resume (int step, enum target_signal sig)
891 {
892 int should_resume = 1;
893 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
894 struct regcache *regcache = get_current_regcache ();
895 struct gdbarch *gdbarch = get_regcache_arch (regcache);
896 CORE_ADDR pc = regcache_read_pc (regcache);
897 QUIT;
898
899 if (debug_infrun)
900 fprintf_unfiltered (gdb_stdlog,
901 "infrun: resume (step=%d, signal=%d), "
902 "stepping_over_breakpoint=%d\n",
903 step, sig, stepping_over_breakpoint);
904
905 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
906 over an instruction that causes a page fault without triggering
907 a hardware watchpoint. The kernel properly notices that it shouldn't
908 stop, because the hardware watchpoint is not triggered, but it forgets
909 the step request and continues the program normally.
910 Work around the problem by removing hardware watchpoints if a step is
911 requested, GDB will check for a hardware watchpoint trigger after the
912 step anyway. */
913 if (CANNOT_STEP_HW_WATCHPOINTS && step)
914 remove_hw_watchpoints ();
915
916
917 /* Normally, by the time we reach `resume', the breakpoints are either
918 removed or inserted, as appropriate. The exception is if we're sitting
919 at a permanent breakpoint; we need to step over it, but permanent
920 breakpoints can't be removed. So we have to test for it here. */
921 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
922 {
923 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
924 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
925 else
926 error (_("\
927 The program is stopped at a permanent breakpoint, but GDB does not know\n\
928 how to step past a permanent breakpoint on this architecture. Try using\n\
929 a command like `return' or `jump' to continue execution."));
930 }
931
932 /* If enabled, step over breakpoints by executing a copy of the
933 instruction at a different address.
934
935 We can't use displaced stepping when we have a signal to deliver;
936 the comments for displaced_step_prepare explain why. The
937 comments in the handle_inferior event for dealing with 'random
938 signals' explain what we do instead. */
939 if (use_displaced_stepping (gdbarch)
940 && stepping_over_breakpoint
941 && sig == TARGET_SIGNAL_0)
942 {
943 if (!displaced_step_prepare (inferior_ptid))
944 /* Got placed in displaced stepping queue. Will be resumed
945 later when all the currently queued displaced stepping
946 requests finish. */
947 return;
948 }
949
950 if (step && gdbarch_software_single_step_p (gdbarch))
951 {
952 /* Do it the hard way, w/temp breakpoints */
953 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
954 {
955 /* ...and don't ask hardware to do it. */
956 step = 0;
957 /* and do not pull these breakpoints until after a `wait' in
958 `wait_for_inferior' */
959 singlestep_breakpoints_inserted_p = 1;
960 singlestep_ptid = inferior_ptid;
961 singlestep_pc = pc;
962 }
963 }
964
965 /* If there were any forks/vforks/execs that were caught and are
966 now to be followed, then do so. */
967 switch (pending_follow.kind)
968 {
969 case TARGET_WAITKIND_FORKED:
970 case TARGET_WAITKIND_VFORKED:
971 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
972 if (follow_fork ())
973 should_resume = 0;
974 break;
975
976 case TARGET_WAITKIND_EXECD:
977 /* follow_exec is called as soon as the exec event is seen. */
978 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
979 break;
980
981 default:
982 break;
983 }
984
985 /* Install inferior's terminal modes. */
986 target_terminal_inferior ();
987
988 if (should_resume)
989 {
990 ptid_t resume_ptid;
991
992 resume_ptid = RESUME_ALL; /* Default */
993
994 /* If STEP is set, it's a request to use hardware stepping
995 facilities. But in that case, we should never
996 use singlestep breakpoint. */
997 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
998
999 if (singlestep_breakpoints_inserted_p
1000 && stepping_past_singlestep_breakpoint)
1001 {
1002 /* The situation here is as follows. In thread T1 we wanted to
1003 single-step. Lacking hardware single-stepping we've
1004 set breakpoint at the PC of the next instruction -- call it
1005 P. After resuming, we've hit that breakpoint in thread T2.
1006 Now we've removed original breakpoint, inserted breakpoint
1007 at P+1, and try to step to advance T2 past breakpoint.
1008 We need to step only T2, as if T1 is allowed to freely run,
1009 it can run past P, and if other threads are allowed to run,
1010 they can hit breakpoint at P+1, and nested hits of single-step
1011 breakpoints is not something we'd want -- that's complicated
1012 to support, and has no value. */
1013 resume_ptid = inferior_ptid;
1014 }
1015
1016 if ((step || singlestep_breakpoints_inserted_p)
1017 && stepping_over_breakpoint)
1018 {
1019 /* We're allowing a thread to run past a breakpoint it has
1020 hit, by single-stepping the thread with the breakpoint
1021 removed. In which case, we need to single-step only this
1022 thread, and keep others stopped, as they can miss this
1023 breakpoint if allowed to run.
1024
1025 The current code actually removes all breakpoints when
1026 doing this, not just the one being stepped over, so if we
1027 let other threads run, we can actually miss any
1028 breakpoint, not just the one at PC. */
1029 resume_ptid = inferior_ptid;
1030 }
1031
1032 if ((scheduler_mode == schedlock_on)
1033 || (scheduler_mode == schedlock_step
1034 && (step || singlestep_breakpoints_inserted_p)))
1035 {
1036 /* User-settable 'scheduler' mode requires solo thread resume. */
1037 resume_ptid = inferior_ptid;
1038 }
1039
1040 if (gdbarch_cannot_step_breakpoint (gdbarch))
1041 {
1042 /* Most targets can step a breakpoint instruction, thus
1043 executing it normally. But if this one cannot, just
1044 continue and we will hit it anyway. */
1045 if (step && breakpoint_inserted_here_p (pc))
1046 step = 0;
1047 }
1048
1049 if (debug_displaced
1050 && use_displaced_stepping (gdbarch)
1051 && stepping_over_breakpoint)
1052 {
1053 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1054 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1055 gdb_byte buf[4];
1056
1057 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1058 paddr_nz (actual_pc));
1059 read_memory (actual_pc, buf, sizeof (buf));
1060 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1061 }
1062
1063 target_resume (resume_ptid, step, sig);
1064 }
1065
1066 discard_cleanups (old_cleanups);
1067 }
1068 \f
1069 /* Proceeding. */
1070
1071 /* Clear out all variables saying what to do when inferior is continued.
1072 First do this, then set the ones you want, then call `proceed'. */
1073
1074 void
1075 clear_proceed_status (void)
1076 {
1077 stepping_over_breakpoint = 0;
1078 step_range_start = 0;
1079 step_range_end = 0;
1080 step_frame_id = null_frame_id;
1081 step_over_calls = STEP_OVER_UNDEBUGGABLE;
1082 stop_after_trap = 0;
1083 stop_soon = NO_STOP_QUIETLY;
1084 proceed_to_finish = 0;
1085 breakpoint_proceeded = 1; /* We're about to proceed... */
1086
1087 if (stop_registers)
1088 {
1089 regcache_xfree (stop_registers);
1090 stop_registers = NULL;
1091 }
1092
1093 /* Discard any remaining commands or status from previous stop. */
1094 bpstat_clear (&stop_bpstat);
1095 }
1096
1097 /* This should be suitable for any targets that support threads. */
1098
1099 static int
1100 prepare_to_proceed (int step)
1101 {
1102 ptid_t wait_ptid;
1103 struct target_waitstatus wait_status;
1104
1105 /* Get the last target status returned by target_wait(). */
1106 get_last_target_status (&wait_ptid, &wait_status);
1107
1108 /* Make sure we were stopped at a breakpoint. */
1109 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1110 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1111 {
1112 return 0;
1113 }
1114
1115 /* Switched over from WAIT_PID. */
1116 if (!ptid_equal (wait_ptid, minus_one_ptid)
1117 && !ptid_equal (inferior_ptid, wait_ptid))
1118 {
1119 struct regcache *regcache = get_thread_regcache (wait_ptid);
1120
1121 if (breakpoint_here_p (regcache_read_pc (regcache)))
1122 {
1123 /* If stepping, remember current thread to switch back to. */
1124 if (step)
1125 deferred_step_ptid = inferior_ptid;
1126
1127 /* Switch back to WAIT_PID thread. */
1128 switch_to_thread (wait_ptid);
1129
1130 /* We return 1 to indicate that there is a breakpoint here,
1131 so we need to step over it before continuing to avoid
1132 hitting it straight away. */
1133 return 1;
1134 }
1135 }
1136
1137 return 0;
1138 }
1139
1140 /* Record the pc of the program the last time it stopped. This is
1141 just used internally by wait_for_inferior, but need to be preserved
1142 over calls to it and cleared when the inferior is started. */
1143 static CORE_ADDR prev_pc;
1144
1145 /* Basic routine for continuing the program in various fashions.
1146
1147 ADDR is the address to resume at, or -1 for resume where stopped.
1148 SIGGNAL is the signal to give it, or 0 for none,
1149 or -1 for act according to how it stopped.
1150 STEP is nonzero if should trap after one instruction.
1151 -1 means return after that and print nothing.
1152 You should probably set various step_... variables
1153 before calling here, if you are stepping.
1154
1155 You should call clear_proceed_status before calling proceed. */
1156
1157 void
1158 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1159 {
1160 struct regcache *regcache = get_current_regcache ();
1161 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1162 CORE_ADDR pc = regcache_read_pc (regcache);
1163 int oneproc = 0;
1164
1165 if (step > 0)
1166 step_start_function = find_pc_function (pc);
1167 if (step < 0)
1168 stop_after_trap = 1;
1169
1170 if (addr == (CORE_ADDR) -1)
1171 {
1172 if (pc == stop_pc && breakpoint_here_p (pc))
1173 /* There is a breakpoint at the address we will resume at,
1174 step one instruction before inserting breakpoints so that
1175 we do not stop right away (and report a second hit at this
1176 breakpoint). */
1177 oneproc = 1;
1178 else if (gdbarch_single_step_through_delay_p (gdbarch)
1179 && gdbarch_single_step_through_delay (gdbarch,
1180 get_current_frame ()))
1181 /* We stepped onto an instruction that needs to be stepped
1182 again before re-inserting the breakpoint, do so. */
1183 oneproc = 1;
1184 }
1185 else
1186 {
1187 regcache_write_pc (regcache, addr);
1188 }
1189
1190 if (debug_infrun)
1191 fprintf_unfiltered (gdb_stdlog,
1192 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1193 paddr_nz (addr), siggnal, step);
1194
1195 /* In a multi-threaded task we may select another thread
1196 and then continue or step.
1197
1198 But if the old thread was stopped at a breakpoint, it
1199 will immediately cause another breakpoint stop without
1200 any execution (i.e. it will report a breakpoint hit
1201 incorrectly). So we must step over it first.
1202
1203 prepare_to_proceed checks the current thread against the thread
1204 that reported the most recent event. If a step-over is required
1205 it returns TRUE and sets the current thread to the old thread. */
1206 if (prepare_to_proceed (step))
1207 oneproc = 1;
1208
1209 if (oneproc)
1210 {
1211 stepping_over_breakpoint = 1;
1212 /* If displaced stepping is enabled, we can step over the
1213 breakpoint without hitting it, so leave all breakpoints
1214 inserted. Otherwise we need to disable all breakpoints, step
1215 one instruction, and then re-add them when that step is
1216 finished. */
1217 if (!use_displaced_stepping (gdbarch))
1218 remove_breakpoints ();
1219 }
1220
1221 /* We can insert breakpoints if we're not trying to step over one,
1222 or if we are stepping over one but we're using displaced stepping
1223 to do so. */
1224 if (! stepping_over_breakpoint || use_displaced_stepping (gdbarch))
1225 insert_breakpoints ();
1226
1227 if (siggnal != TARGET_SIGNAL_DEFAULT)
1228 stop_signal = siggnal;
1229 /* If this signal should not be seen by program,
1230 give it zero. Used for debugging signals. */
1231 else if (!signal_program[stop_signal])
1232 stop_signal = TARGET_SIGNAL_0;
1233
1234 annotate_starting ();
1235
1236 /* Make sure that output from GDB appears before output from the
1237 inferior. */
1238 gdb_flush (gdb_stdout);
1239
1240 /* Refresh prev_pc value just prior to resuming. This used to be
1241 done in stop_stepping, however, setting prev_pc there did not handle
1242 scenarios such as inferior function calls or returning from
1243 a function via the return command. In those cases, the prev_pc
1244 value was not set properly for subsequent commands. The prev_pc value
1245 is used to initialize the starting line number in the ecs. With an
1246 invalid value, the gdb next command ends up stopping at the position
1247 represented by the next line table entry past our start position.
1248 On platforms that generate one line table entry per line, this
1249 is not a problem. However, on the ia64, the compiler generates
1250 extraneous line table entries that do not increase the line number.
1251 When we issue the gdb next command on the ia64 after an inferior call
1252 or a return command, we often end up a few instructions forward, still
1253 within the original line we started.
1254
1255 An attempt was made to have init_execution_control_state () refresh
1256 the prev_pc value before calculating the line number. This approach
1257 did not work because on platforms that use ptrace, the pc register
1258 cannot be read unless the inferior is stopped. At that point, we
1259 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1260 call can fail. Setting the prev_pc value here ensures the value is
1261 updated correctly when the inferior is stopped. */
1262 prev_pc = regcache_read_pc (get_current_regcache ());
1263
1264 /* Resume inferior. */
1265 resume (oneproc || step || bpstat_should_step (), stop_signal);
1266
1267 /* Wait for it to stop (if not standalone)
1268 and in any case decode why it stopped, and act accordingly. */
1269 /* Do this only if we are not using the event loop, or if the target
1270 does not support asynchronous execution. */
1271 if (!target_can_async_p ())
1272 {
1273 wait_for_inferior (0);
1274 normal_stop ();
1275 }
1276 }
1277 \f
1278
1279 /* Start remote-debugging of a machine over a serial link. */
1280
1281 void
1282 start_remote (int from_tty)
1283 {
1284 init_wait_for_inferior ();
1285 stop_soon = STOP_QUIETLY_REMOTE;
1286 stepping_over_breakpoint = 0;
1287
1288 /* Always go on waiting for the target, regardless of the mode. */
1289 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1290 indicate to wait_for_inferior that a target should timeout if
1291 nothing is returned (instead of just blocking). Because of this,
1292 targets expecting an immediate response need to, internally, set
1293 things up so that the target_wait() is forced to eventually
1294 timeout. */
1295 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1296 differentiate to its caller what the state of the target is after
1297 the initial open has been performed. Here we're assuming that
1298 the target has stopped. It should be possible to eventually have
1299 target_open() return to the caller an indication that the target
1300 is currently running and GDB state should be set to the same as
1301 for an async run. */
1302 wait_for_inferior (0);
1303
1304 /* Now that the inferior has stopped, do any bookkeeping like
1305 loading shared libraries. We want to do this before normal_stop,
1306 so that the displayed frame is up to date. */
1307 post_create_inferior (&current_target, from_tty);
1308
1309 normal_stop ();
1310 }
1311
1312 /* Initialize static vars when a new inferior begins. */
1313
1314 void
1315 init_wait_for_inferior (void)
1316 {
1317 /* These are meaningless until the first time through wait_for_inferior. */
1318 prev_pc = 0;
1319
1320 breakpoint_init_inferior (inf_starting);
1321
1322 /* Don't confuse first call to proceed(). */
1323 stop_signal = TARGET_SIGNAL_0;
1324
1325 /* The first resume is not following a fork/vfork/exec. */
1326 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1327
1328 clear_proceed_status ();
1329
1330 stepping_past_singlestep_breakpoint = 0;
1331 deferred_step_ptid = null_ptid;
1332
1333 target_last_wait_ptid = minus_one_ptid;
1334
1335 displaced_step_clear ();
1336 }
1337
1338 \f
1339 /* This enum encodes possible reasons for doing a target_wait, so that
1340 wfi can call target_wait in one place. (Ultimately the call will be
1341 moved out of the infinite loop entirely.) */
1342
1343 enum infwait_states
1344 {
1345 infwait_normal_state,
1346 infwait_thread_hop_state,
1347 infwait_step_watch_state,
1348 infwait_nonstep_watch_state
1349 };
1350
1351 /* Why did the inferior stop? Used to print the appropriate messages
1352 to the interface from within handle_inferior_event(). */
1353 enum inferior_stop_reason
1354 {
1355 /* Step, next, nexti, stepi finished. */
1356 END_STEPPING_RANGE,
1357 /* Inferior terminated by signal. */
1358 SIGNAL_EXITED,
1359 /* Inferior exited. */
1360 EXITED,
1361 /* Inferior received signal, and user asked to be notified. */
1362 SIGNAL_RECEIVED
1363 };
1364
1365 /* This structure contains what used to be local variables in
1366 wait_for_inferior. Probably many of them can return to being
1367 locals in handle_inferior_event. */
1368
1369 struct execution_control_state
1370 {
1371 struct target_waitstatus ws;
1372 struct target_waitstatus *wp;
1373 /* Should we step over breakpoint next time keep_going
1374 is called? */
1375 int stepping_over_breakpoint;
1376 int random_signal;
1377 CORE_ADDR stop_func_start;
1378 CORE_ADDR stop_func_end;
1379 char *stop_func_name;
1380 struct symtab_and_line sal;
1381 int current_line;
1382 struct symtab *current_symtab;
1383 ptid_t ptid;
1384 ptid_t saved_inferior_ptid;
1385 int step_after_step_resume_breakpoint;
1386 int stepping_through_solib_after_catch;
1387 bpstat stepping_through_solib_catchpoints;
1388 int new_thread_event;
1389 struct target_waitstatus tmpstatus;
1390 enum infwait_states infwait_state;
1391 ptid_t waiton_ptid;
1392 int wait_some_more;
1393 };
1394
1395 void init_execution_control_state (struct execution_control_state *ecs);
1396
1397 void handle_inferior_event (struct execution_control_state *ecs);
1398
1399 static void step_into_function (struct execution_control_state *ecs);
1400 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1401 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1402 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1403 struct frame_id sr_id);
1404 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1405
1406 static void stop_stepping (struct execution_control_state *ecs);
1407 static void prepare_to_wait (struct execution_control_state *ecs);
1408 static void keep_going (struct execution_control_state *ecs);
1409 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1410 int stop_info);
1411
1412 /* Wait for control to return from inferior to debugger.
1413
1414 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1415 as if they were SIGTRAP signals. This can be useful during
1416 the startup sequence on some targets such as HP/UX, where
1417 we receive an EXEC event instead of the expected SIGTRAP.
1418
1419 If inferior gets a signal, we may decide to start it up again
1420 instead of returning. That is why there is a loop in this function.
1421 When this function actually returns it means the inferior
1422 should be left stopped and GDB should read more commands. */
1423
1424 void
1425 wait_for_inferior (int treat_exec_as_sigtrap)
1426 {
1427 struct cleanup *old_cleanups;
1428 struct execution_control_state ecss;
1429 struct execution_control_state *ecs;
1430
1431 if (debug_infrun)
1432 fprintf_unfiltered
1433 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1434 treat_exec_as_sigtrap);
1435
1436 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1437 &step_resume_breakpoint);
1438
1439 /* wfi still stays in a loop, so it's OK just to take the address of
1440 a local to get the ecs pointer. */
1441 ecs = &ecss;
1442
1443 /* Fill in with reasonable starting values. */
1444 init_execution_control_state (ecs);
1445
1446 /* We'll update this if & when we switch to a new thread. */
1447 previous_inferior_ptid = inferior_ptid;
1448
1449 overlay_cache_invalid = 1;
1450
1451 /* We have to invalidate the registers BEFORE calling target_wait
1452 because they can be loaded from the target while in target_wait.
1453 This makes remote debugging a bit more efficient for those
1454 targets that provide critical registers as part of their normal
1455 status mechanism. */
1456
1457 registers_changed ();
1458
1459 while (1)
1460 {
1461 if (deprecated_target_wait_hook)
1462 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1463 else
1464 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1465
1466 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1467 {
1468 xfree (ecs->ws.value.execd_pathname);
1469 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1470 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1471 }
1472
1473 /* Now figure out what to do with the result of the result. */
1474 handle_inferior_event (ecs);
1475
1476 if (!ecs->wait_some_more)
1477 break;
1478 }
1479 do_cleanups (old_cleanups);
1480 }
1481
1482 /* Asynchronous version of wait_for_inferior. It is called by the
1483 event loop whenever a change of state is detected on the file
1484 descriptor corresponding to the target. It can be called more than
1485 once to complete a single execution command. In such cases we need
1486 to keep the state in a global variable ASYNC_ECSS. If it is the
1487 last time that this function is called for a single execution
1488 command, then report to the user that the inferior has stopped, and
1489 do the necessary cleanups. */
1490
1491 struct execution_control_state async_ecss;
1492 struct execution_control_state *async_ecs;
1493
1494 void
1495 fetch_inferior_event (void *client_data)
1496 {
1497 static struct cleanup *old_cleanups;
1498
1499 async_ecs = &async_ecss;
1500
1501 if (!async_ecs->wait_some_more)
1502 {
1503 /* Fill in with reasonable starting values. */
1504 init_execution_control_state (async_ecs);
1505
1506 /* We'll update this if & when we switch to a new thread. */
1507 previous_inferior_ptid = inferior_ptid;
1508
1509 overlay_cache_invalid = 1;
1510
1511 /* We have to invalidate the registers BEFORE calling target_wait
1512 because they can be loaded from the target while in target_wait.
1513 This makes remote debugging a bit more efficient for those
1514 targets that provide critical registers as part of their normal
1515 status mechanism. */
1516
1517 registers_changed ();
1518 }
1519
1520 if (deprecated_target_wait_hook)
1521 async_ecs->ptid =
1522 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1523 else
1524 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1525
1526 /* Now figure out what to do with the result of the result. */
1527 handle_inferior_event (async_ecs);
1528
1529 if (!async_ecs->wait_some_more)
1530 {
1531 delete_step_resume_breakpoint (&step_resume_breakpoint);
1532
1533 normal_stop ();
1534 if (step_multi && stop_step)
1535 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1536 else
1537 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1538 }
1539 }
1540
1541 /* Prepare an execution control state for looping through a
1542 wait_for_inferior-type loop. */
1543
1544 void
1545 init_execution_control_state (struct execution_control_state *ecs)
1546 {
1547 ecs->stepping_over_breakpoint = 0;
1548 ecs->random_signal = 0;
1549 ecs->step_after_step_resume_breakpoint = 0;
1550 ecs->stepping_through_solib_after_catch = 0;
1551 ecs->stepping_through_solib_catchpoints = NULL;
1552 ecs->sal = find_pc_line (prev_pc, 0);
1553 ecs->current_line = ecs->sal.line;
1554 ecs->current_symtab = ecs->sal.symtab;
1555 ecs->infwait_state = infwait_normal_state;
1556 ecs->waiton_ptid = pid_to_ptid (-1);
1557 ecs->wp = &(ecs->ws);
1558 }
1559
1560 /* Return the cached copy of the last pid/waitstatus returned by
1561 target_wait()/deprecated_target_wait_hook(). The data is actually
1562 cached by handle_inferior_event(), which gets called immediately
1563 after target_wait()/deprecated_target_wait_hook(). */
1564
1565 void
1566 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1567 {
1568 *ptidp = target_last_wait_ptid;
1569 *status = target_last_waitstatus;
1570 }
1571
1572 void
1573 nullify_last_target_wait_ptid (void)
1574 {
1575 target_last_wait_ptid = minus_one_ptid;
1576 }
1577
1578 /* Switch thread contexts, maintaining "infrun state". */
1579
1580 static void
1581 context_switch (struct execution_control_state *ecs)
1582 {
1583 /* Caution: it may happen that the new thread (or the old one!)
1584 is not in the thread list. In this case we must not attempt
1585 to "switch context", or we run the risk that our context may
1586 be lost. This may happen as a result of the target module
1587 mishandling thread creation. */
1588
1589 if (debug_infrun)
1590 {
1591 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1592 target_pid_to_str (inferior_ptid));
1593 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1594 target_pid_to_str (ecs->ptid));
1595 }
1596
1597 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1598 { /* Perform infrun state context switch: */
1599 /* Save infrun state for the old thread. */
1600 save_infrun_state (inferior_ptid, prev_pc,
1601 stepping_over_breakpoint, step_resume_breakpoint,
1602 step_range_start,
1603 step_range_end, &step_frame_id,
1604 ecs->stepping_over_breakpoint,
1605 ecs->stepping_through_solib_after_catch,
1606 ecs->stepping_through_solib_catchpoints,
1607 ecs->current_line, ecs->current_symtab);
1608
1609 /* Load infrun state for the new thread. */
1610 load_infrun_state (ecs->ptid, &prev_pc,
1611 &stepping_over_breakpoint, &step_resume_breakpoint,
1612 &step_range_start,
1613 &step_range_end, &step_frame_id,
1614 &ecs->stepping_over_breakpoint,
1615 &ecs->stepping_through_solib_after_catch,
1616 &ecs->stepping_through_solib_catchpoints,
1617 &ecs->current_line, &ecs->current_symtab);
1618 }
1619
1620 switch_to_thread (ecs->ptid);
1621 }
1622
1623 static void
1624 adjust_pc_after_break (struct execution_control_state *ecs)
1625 {
1626 struct regcache *regcache = get_thread_regcache (ecs->ptid);
1627 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1628 CORE_ADDR breakpoint_pc;
1629
1630 /* If this target does not decrement the PC after breakpoints, then
1631 we have nothing to do. */
1632 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
1633 return;
1634
1635 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1636 we aren't, just return.
1637
1638 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1639 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1640 implemented by software breakpoints should be handled through the normal
1641 breakpoint layer.
1642
1643 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1644 different signals (SIGILL or SIGEMT for instance), but it is less
1645 clear where the PC is pointing afterwards. It may not match
1646 gdbarch_decr_pc_after_break. I don't know any specific target that
1647 generates these signals at breakpoints (the code has been in GDB since at
1648 least 1992) so I can not guess how to handle them here.
1649
1650 In earlier versions of GDB, a target with
1651 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1652 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1653 target with both of these set in GDB history, and it seems unlikely to be
1654 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1655
1656 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1657 return;
1658
1659 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1660 return;
1661
1662 /* Find the location where (if we've hit a breakpoint) the
1663 breakpoint would be. */
1664 breakpoint_pc = regcache_read_pc (regcache)
1665 - gdbarch_decr_pc_after_break (gdbarch);
1666
1667 /* Check whether there actually is a software breakpoint inserted
1668 at that location. */
1669 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1670 {
1671 /* When using hardware single-step, a SIGTRAP is reported for both
1672 a completed single-step and a software breakpoint. Need to
1673 differentiate between the two, as the latter needs adjusting
1674 but the former does not.
1675
1676 The SIGTRAP can be due to a completed hardware single-step only if
1677 - we didn't insert software single-step breakpoints
1678 - the thread to be examined is still the current thread
1679 - this thread is currently being stepped
1680
1681 If any of these events did not occur, we must have stopped due
1682 to hitting a software breakpoint, and have to back up to the
1683 breakpoint address.
1684
1685 As a special case, we could have hardware single-stepped a
1686 software breakpoint. In this case (prev_pc == breakpoint_pc),
1687 we also need to back up to the breakpoint address. */
1688
1689 if (singlestep_breakpoints_inserted_p
1690 || !ptid_equal (ecs->ptid, inferior_ptid)
1691 || !currently_stepping (ecs)
1692 || prev_pc == breakpoint_pc)
1693 regcache_write_pc (regcache, breakpoint_pc);
1694 }
1695 }
1696
1697 /* Given an execution control state that has been freshly filled in
1698 by an event from the inferior, figure out what it means and take
1699 appropriate action. */
1700
1701 void
1702 handle_inferior_event (struct execution_control_state *ecs)
1703 {
1704 int sw_single_step_trap_p = 0;
1705 int stopped_by_watchpoint;
1706 int stepped_after_stopped_by_watchpoint = 0;
1707
1708 breakpoint_retire_moribund ();
1709
1710 /* Cache the last pid/waitstatus. */
1711 target_last_wait_ptid = ecs->ptid;
1712 target_last_waitstatus = *ecs->wp;
1713
1714 /* Always clear state belonging to the previous time we stopped. */
1715 stop_stack_dummy = 0;
1716
1717 adjust_pc_after_break (ecs);
1718
1719 switch (ecs->infwait_state)
1720 {
1721 case infwait_thread_hop_state:
1722 if (debug_infrun)
1723 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1724 /* Cancel the waiton_ptid. */
1725 ecs->waiton_ptid = pid_to_ptid (-1);
1726 break;
1727
1728 case infwait_normal_state:
1729 if (debug_infrun)
1730 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1731 break;
1732
1733 case infwait_step_watch_state:
1734 if (debug_infrun)
1735 fprintf_unfiltered (gdb_stdlog,
1736 "infrun: infwait_step_watch_state\n");
1737
1738 stepped_after_stopped_by_watchpoint = 1;
1739 break;
1740
1741 case infwait_nonstep_watch_state:
1742 if (debug_infrun)
1743 fprintf_unfiltered (gdb_stdlog,
1744 "infrun: infwait_nonstep_watch_state\n");
1745 insert_breakpoints ();
1746
1747 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1748 handle things like signals arriving and other things happening
1749 in combination correctly? */
1750 stepped_after_stopped_by_watchpoint = 1;
1751 break;
1752
1753 default:
1754 internal_error (__FILE__, __LINE__, _("bad switch"));
1755 }
1756 ecs->infwait_state = infwait_normal_state;
1757
1758 reinit_frame_cache ();
1759
1760 /* If it's a new process, add it to the thread database */
1761
1762 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1763 && !ptid_equal (ecs->ptid, minus_one_ptid)
1764 && !in_thread_list (ecs->ptid));
1765
1766 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1767 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1768 add_thread (ecs->ptid);
1769
1770 switch (ecs->ws.kind)
1771 {
1772 case TARGET_WAITKIND_LOADED:
1773 if (debug_infrun)
1774 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1775 /* Ignore gracefully during startup of the inferior, as it might
1776 be the shell which has just loaded some objects, otherwise
1777 add the symbols for the newly loaded objects. Also ignore at
1778 the beginning of an attach or remote session; we will query
1779 the full list of libraries once the connection is
1780 established. */
1781 if (stop_soon == NO_STOP_QUIETLY)
1782 {
1783 /* Check for any newly added shared libraries if we're
1784 supposed to be adding them automatically. Switch
1785 terminal for any messages produced by
1786 breakpoint_re_set. */
1787 target_terminal_ours_for_output ();
1788 /* NOTE: cagney/2003-11-25: Make certain that the target
1789 stack's section table is kept up-to-date. Architectures,
1790 (e.g., PPC64), use the section table to perform
1791 operations such as address => section name and hence
1792 require the table to contain all sections (including
1793 those found in shared libraries). */
1794 /* NOTE: cagney/2003-11-25: Pass current_target and not
1795 exec_ops to SOLIB_ADD. This is because current GDB is
1796 only tooled to propagate section_table changes out from
1797 the "current_target" (see target_resize_to_sections), and
1798 not up from the exec stratum. This, of course, isn't
1799 right. "infrun.c" should only interact with the
1800 exec/process stratum, instead relying on the target stack
1801 to propagate relevant changes (stop, section table
1802 changed, ...) up to other layers. */
1803 #ifdef SOLIB_ADD
1804 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1805 #else
1806 solib_add (NULL, 0, &current_target, auto_solib_add);
1807 #endif
1808 target_terminal_inferior ();
1809
1810 /* If requested, stop when the dynamic linker notifies
1811 gdb of events. This allows the user to get control
1812 and place breakpoints in initializer routines for
1813 dynamically loaded objects (among other things). */
1814 if (stop_on_solib_events)
1815 {
1816 stop_stepping (ecs);
1817 return;
1818 }
1819
1820 /* NOTE drow/2007-05-11: This might be a good place to check
1821 for "catch load". */
1822 }
1823
1824 /* If we are skipping through a shell, or through shared library
1825 loading that we aren't interested in, resume the program. If
1826 we're running the program normally, also resume. But stop if
1827 we're attaching or setting up a remote connection. */
1828 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1829 {
1830 /* Loading of shared libraries might have changed breakpoint
1831 addresses. Make sure new breakpoints are inserted. */
1832 if (stop_soon == NO_STOP_QUIETLY
1833 && !breakpoints_always_inserted_mode ())
1834 insert_breakpoints ();
1835 resume (0, TARGET_SIGNAL_0);
1836 prepare_to_wait (ecs);
1837 return;
1838 }
1839
1840 break;
1841
1842 case TARGET_WAITKIND_SPURIOUS:
1843 if (debug_infrun)
1844 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1845 resume (0, TARGET_SIGNAL_0);
1846 prepare_to_wait (ecs);
1847 return;
1848
1849 case TARGET_WAITKIND_EXITED:
1850 if (debug_infrun)
1851 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1852 target_terminal_ours (); /* Must do this before mourn anyway */
1853 print_stop_reason (EXITED, ecs->ws.value.integer);
1854
1855 /* Record the exit code in the convenience variable $_exitcode, so
1856 that the user can inspect this again later. */
1857 set_internalvar (lookup_internalvar ("_exitcode"),
1858 value_from_longest (builtin_type_int,
1859 (LONGEST) ecs->ws.value.integer));
1860 gdb_flush (gdb_stdout);
1861 target_mourn_inferior ();
1862 singlestep_breakpoints_inserted_p = 0;
1863 stop_print_frame = 0;
1864 stop_stepping (ecs);
1865 return;
1866
1867 case TARGET_WAITKIND_SIGNALLED:
1868 if (debug_infrun)
1869 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1870 stop_print_frame = 0;
1871 stop_signal = ecs->ws.value.sig;
1872 target_terminal_ours (); /* Must do this before mourn anyway */
1873
1874 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1875 reach here unless the inferior is dead. However, for years
1876 target_kill() was called here, which hints that fatal signals aren't
1877 really fatal on some systems. If that's true, then some changes
1878 may be needed. */
1879 target_mourn_inferior ();
1880
1881 print_stop_reason (SIGNAL_EXITED, stop_signal);
1882 singlestep_breakpoints_inserted_p = 0;
1883 stop_stepping (ecs);
1884 return;
1885
1886 /* The following are the only cases in which we keep going;
1887 the above cases end in a continue or goto. */
1888 case TARGET_WAITKIND_FORKED:
1889 case TARGET_WAITKIND_VFORKED:
1890 if (debug_infrun)
1891 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1892 stop_signal = TARGET_SIGNAL_TRAP;
1893 pending_follow.kind = ecs->ws.kind;
1894
1895 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1896 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1897
1898 if (!ptid_equal (ecs->ptid, inferior_ptid))
1899 {
1900 context_switch (ecs);
1901 reinit_frame_cache ();
1902 }
1903
1904 stop_pc = read_pc ();
1905
1906 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1907
1908 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1909
1910 /* If no catchpoint triggered for this, then keep going. */
1911 if (ecs->random_signal)
1912 {
1913 stop_signal = TARGET_SIGNAL_0;
1914 keep_going (ecs);
1915 return;
1916 }
1917 goto process_event_stop_test;
1918
1919 case TARGET_WAITKIND_EXECD:
1920 if (debug_infrun)
1921 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1922 stop_signal = TARGET_SIGNAL_TRAP;
1923
1924 pending_follow.execd_pathname =
1925 savestring (ecs->ws.value.execd_pathname,
1926 strlen (ecs->ws.value.execd_pathname));
1927
1928 /* This causes the eventpoints and symbol table to be reset. Must
1929 do this now, before trying to determine whether to stop. */
1930 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1931 xfree (pending_follow.execd_pathname);
1932
1933 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
1934 ecs->saved_inferior_ptid = inferior_ptid;
1935 inferior_ptid = ecs->ptid;
1936
1937 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1938
1939 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1940 inferior_ptid = ecs->saved_inferior_ptid;
1941
1942 if (!ptid_equal (ecs->ptid, inferior_ptid))
1943 {
1944 context_switch (ecs);
1945 reinit_frame_cache ();
1946 }
1947
1948 /* If no catchpoint triggered for this, then keep going. */
1949 if (ecs->random_signal)
1950 {
1951 stop_signal = TARGET_SIGNAL_0;
1952 keep_going (ecs);
1953 return;
1954 }
1955 goto process_event_stop_test;
1956
1957 /* Be careful not to try to gather much state about a thread
1958 that's in a syscall. It's frequently a losing proposition. */
1959 case TARGET_WAITKIND_SYSCALL_ENTRY:
1960 if (debug_infrun)
1961 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1962 resume (0, TARGET_SIGNAL_0);
1963 prepare_to_wait (ecs);
1964 return;
1965
1966 /* Before examining the threads further, step this thread to
1967 get it entirely out of the syscall. (We get notice of the
1968 event when the thread is just on the verge of exiting a
1969 syscall. Stepping one instruction seems to get it back
1970 into user code.) */
1971 case TARGET_WAITKIND_SYSCALL_RETURN:
1972 if (debug_infrun)
1973 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1974 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1975 prepare_to_wait (ecs);
1976 return;
1977
1978 case TARGET_WAITKIND_STOPPED:
1979 if (debug_infrun)
1980 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1981 stop_signal = ecs->ws.value.sig;
1982 break;
1983
1984 /* We had an event in the inferior, but we are not interested
1985 in handling it at this level. The lower layers have already
1986 done what needs to be done, if anything.
1987
1988 One of the possible circumstances for this is when the
1989 inferior produces output for the console. The inferior has
1990 not stopped, and we are ignoring the event. Another possible
1991 circumstance is any event which the lower level knows will be
1992 reported multiple times without an intervening resume. */
1993 case TARGET_WAITKIND_IGNORE:
1994 if (debug_infrun)
1995 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1996 prepare_to_wait (ecs);
1997 return;
1998 }
1999
2000 /* We may want to consider not doing a resume here in order to give
2001 the user a chance to play with the new thread. It might be good
2002 to make that a user-settable option. */
2003
2004 /* At this point, all threads are stopped (happens automatically in
2005 either the OS or the native code). Therefore we need to continue
2006 all threads in order to make progress. */
2007 if (ecs->new_thread_event)
2008 {
2009 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2010 prepare_to_wait (ecs);
2011 return;
2012 }
2013
2014 /* Do we need to clean up the state of a thread that has completed a
2015 displaced single-step? (Doing so usually affects the PC, so do
2016 it here, before we set stop_pc.) */
2017 displaced_step_fixup (ecs->ptid, stop_signal);
2018
2019 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2020
2021 if (debug_infrun)
2022 {
2023 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2024 paddr_nz (stop_pc));
2025 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2026 {
2027 CORE_ADDR addr;
2028 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2029
2030 if (target_stopped_data_address (&current_target, &addr))
2031 fprintf_unfiltered (gdb_stdlog,
2032 "infrun: stopped data address = 0x%s\n",
2033 paddr_nz (addr));
2034 else
2035 fprintf_unfiltered (gdb_stdlog,
2036 "infrun: (no data address available)\n");
2037 }
2038 }
2039
2040 if (stepping_past_singlestep_breakpoint)
2041 {
2042 gdb_assert (singlestep_breakpoints_inserted_p);
2043 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2044 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2045
2046 stepping_past_singlestep_breakpoint = 0;
2047
2048 /* We've either finished single-stepping past the single-step
2049 breakpoint, or stopped for some other reason. It would be nice if
2050 we could tell, but we can't reliably. */
2051 if (stop_signal == TARGET_SIGNAL_TRAP)
2052 {
2053 if (debug_infrun)
2054 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2055 /* Pull the single step breakpoints out of the target. */
2056 remove_single_step_breakpoints ();
2057 singlestep_breakpoints_inserted_p = 0;
2058
2059 ecs->random_signal = 0;
2060
2061 ecs->ptid = saved_singlestep_ptid;
2062 context_switch (ecs);
2063 if (deprecated_context_hook)
2064 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2065
2066 resume (1, TARGET_SIGNAL_0);
2067 prepare_to_wait (ecs);
2068 return;
2069 }
2070 }
2071
2072 stepping_past_singlestep_breakpoint = 0;
2073
2074 if (!ptid_equal (deferred_step_ptid, null_ptid))
2075 {
2076 /* If we stopped for some other reason than single-stepping, ignore
2077 the fact that we were supposed to switch back. */
2078 if (stop_signal == TARGET_SIGNAL_TRAP)
2079 {
2080 if (debug_infrun)
2081 fprintf_unfiltered (gdb_stdlog,
2082 "infrun: handling deferred step\n");
2083
2084 /* Pull the single step breakpoints out of the target. */
2085 if (singlestep_breakpoints_inserted_p)
2086 {
2087 remove_single_step_breakpoints ();
2088 singlestep_breakpoints_inserted_p = 0;
2089 }
2090
2091 /* Note: We do not call context_switch at this point, as the
2092 context is already set up for stepping the original thread. */
2093 switch_to_thread (deferred_step_ptid);
2094 deferred_step_ptid = null_ptid;
2095 /* Suppress spurious "Switching to ..." message. */
2096 previous_inferior_ptid = inferior_ptid;
2097
2098 resume (1, TARGET_SIGNAL_0);
2099 prepare_to_wait (ecs);
2100 return;
2101 }
2102
2103 deferred_step_ptid = null_ptid;
2104 }
2105
2106 /* See if a thread hit a thread-specific breakpoint that was meant for
2107 another thread. If so, then step that thread past the breakpoint,
2108 and continue it. */
2109
2110 if (stop_signal == TARGET_SIGNAL_TRAP)
2111 {
2112 int thread_hop_needed = 0;
2113
2114 /* Check if a regular breakpoint has been hit before checking
2115 for a potential single step breakpoint. Otherwise, GDB will
2116 not see this breakpoint hit when stepping onto breakpoints. */
2117 if (regular_breakpoint_inserted_here_p (stop_pc))
2118 {
2119 ecs->random_signal = 0;
2120 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2121 thread_hop_needed = 1;
2122 }
2123 else if (singlestep_breakpoints_inserted_p)
2124 {
2125 /* We have not context switched yet, so this should be true
2126 no matter which thread hit the singlestep breakpoint. */
2127 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2128 if (debug_infrun)
2129 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2130 "trap for %s\n",
2131 target_pid_to_str (ecs->ptid));
2132
2133 ecs->random_signal = 0;
2134 /* The call to in_thread_list is necessary because PTIDs sometimes
2135 change when we go from single-threaded to multi-threaded. If
2136 the singlestep_ptid is still in the list, assume that it is
2137 really different from ecs->ptid. */
2138 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2139 && in_thread_list (singlestep_ptid))
2140 {
2141 /* If the PC of the thread we were trying to single-step
2142 has changed, discard this event (which we were going
2143 to ignore anyway), and pretend we saw that thread
2144 trap. This prevents us continuously moving the
2145 single-step breakpoint forward, one instruction at a
2146 time. If the PC has changed, then the thread we were
2147 trying to single-step has trapped or been signalled,
2148 but the event has not been reported to GDB yet.
2149
2150 There might be some cases where this loses signal
2151 information, if a signal has arrived at exactly the
2152 same time that the PC changed, but this is the best
2153 we can do with the information available. Perhaps we
2154 should arrange to report all events for all threads
2155 when they stop, or to re-poll the remote looking for
2156 this particular thread (i.e. temporarily enable
2157 schedlock). */
2158
2159 CORE_ADDR new_singlestep_pc
2160 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2161
2162 if (new_singlestep_pc != singlestep_pc)
2163 {
2164 if (debug_infrun)
2165 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2166 " but expected thread advanced also\n");
2167
2168 /* The current context still belongs to
2169 singlestep_ptid. Don't swap here, since that's
2170 the context we want to use. Just fudge our
2171 state and continue. */
2172 ecs->ptid = singlestep_ptid;
2173 stop_pc = new_singlestep_pc;
2174 }
2175 else
2176 {
2177 if (debug_infrun)
2178 fprintf_unfiltered (gdb_stdlog,
2179 "infrun: unexpected thread\n");
2180
2181 thread_hop_needed = 1;
2182 stepping_past_singlestep_breakpoint = 1;
2183 saved_singlestep_ptid = singlestep_ptid;
2184 }
2185 }
2186 }
2187
2188 if (thread_hop_needed)
2189 {
2190 int remove_status = 0;
2191
2192 if (debug_infrun)
2193 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2194
2195 /* Saw a breakpoint, but it was hit by the wrong thread.
2196 Just continue. */
2197
2198 if (singlestep_breakpoints_inserted_p)
2199 {
2200 /* Pull the single step breakpoints out of the target. */
2201 remove_single_step_breakpoints ();
2202 singlestep_breakpoints_inserted_p = 0;
2203 }
2204
2205 /* If the arch can displace step, don't remove the
2206 breakpoints. */
2207 if (!use_displaced_stepping (current_gdbarch))
2208 remove_status = remove_breakpoints ();
2209
2210 /* Did we fail to remove breakpoints? If so, try
2211 to set the PC past the bp. (There's at least
2212 one situation in which we can fail to remove
2213 the bp's: On HP-UX's that use ttrace, we can't
2214 change the address space of a vforking child
2215 process until the child exits (well, okay, not
2216 then either :-) or execs. */
2217 if (remove_status != 0)
2218 error (_("Cannot step over breakpoint hit in wrong thread"));
2219 else
2220 { /* Single step */
2221 if (!ptid_equal (inferior_ptid, ecs->ptid))
2222 context_switch (ecs);
2223 ecs->waiton_ptid = ecs->ptid;
2224 ecs->wp = &(ecs->ws);
2225 ecs->stepping_over_breakpoint = 1;
2226
2227 ecs->infwait_state = infwait_thread_hop_state;
2228 keep_going (ecs);
2229 registers_changed ();
2230 return;
2231 }
2232 }
2233 else if (singlestep_breakpoints_inserted_p)
2234 {
2235 sw_single_step_trap_p = 1;
2236 ecs->random_signal = 0;
2237 }
2238 }
2239 else
2240 ecs->random_signal = 1;
2241
2242 /* See if something interesting happened to the non-current thread. If
2243 so, then switch to that thread. */
2244 if (!ptid_equal (ecs->ptid, inferior_ptid))
2245 {
2246 if (debug_infrun)
2247 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2248
2249 context_switch (ecs);
2250
2251 if (deprecated_context_hook)
2252 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2253 }
2254
2255 if (singlestep_breakpoints_inserted_p)
2256 {
2257 /* Pull the single step breakpoints out of the target. */
2258 remove_single_step_breakpoints ();
2259 singlestep_breakpoints_inserted_p = 0;
2260 }
2261
2262 if (stepped_after_stopped_by_watchpoint)
2263 stopped_by_watchpoint = 0;
2264 else
2265 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2266
2267 /* If necessary, step over this watchpoint. We'll be back to display
2268 it in a moment. */
2269 if (stopped_by_watchpoint
2270 && (HAVE_STEPPABLE_WATCHPOINT
2271 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2272 {
2273 /* At this point, we are stopped at an instruction which has
2274 attempted to write to a piece of memory under control of
2275 a watchpoint. The instruction hasn't actually executed
2276 yet. If we were to evaluate the watchpoint expression
2277 now, we would get the old value, and therefore no change
2278 would seem to have occurred.
2279
2280 In order to make watchpoints work `right', we really need
2281 to complete the memory write, and then evaluate the
2282 watchpoint expression. We do this by single-stepping the
2283 target.
2284
2285 It may not be necessary to disable the watchpoint to stop over
2286 it. For example, the PA can (with some kernel cooperation)
2287 single step over a watchpoint without disabling the watchpoint.
2288
2289 It is far more common to need to disable a watchpoint to step
2290 the inferior over it. If we have non-steppable watchpoints,
2291 we must disable the current watchpoint; it's simplest to
2292 disable all watchpoints and breakpoints. */
2293
2294 if (!HAVE_STEPPABLE_WATCHPOINT)
2295 remove_breakpoints ();
2296 registers_changed ();
2297 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2298 ecs->waiton_ptid = ecs->ptid;
2299 if (HAVE_STEPPABLE_WATCHPOINT)
2300 ecs->infwait_state = infwait_step_watch_state;
2301 else
2302 ecs->infwait_state = infwait_nonstep_watch_state;
2303 prepare_to_wait (ecs);
2304 return;
2305 }
2306
2307 ecs->stop_func_start = 0;
2308 ecs->stop_func_end = 0;
2309 ecs->stop_func_name = 0;
2310 /* Don't care about return value; stop_func_start and stop_func_name
2311 will both be 0 if it doesn't work. */
2312 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2313 &ecs->stop_func_start, &ecs->stop_func_end);
2314 ecs->stop_func_start
2315 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2316 ecs->stepping_over_breakpoint = 0;
2317 bpstat_clear (&stop_bpstat);
2318 stop_step = 0;
2319 stop_print_frame = 1;
2320 ecs->random_signal = 0;
2321 stopped_by_random_signal = 0;
2322
2323 if (stop_signal == TARGET_SIGNAL_TRAP
2324 && stepping_over_breakpoint
2325 && gdbarch_single_step_through_delay_p (current_gdbarch)
2326 && currently_stepping (ecs))
2327 {
2328 /* We're trying to step off a breakpoint. Turns out that we're
2329 also on an instruction that needs to be stepped multiple
2330 times before it's been fully executing. E.g., architectures
2331 with a delay slot. It needs to be stepped twice, once for
2332 the instruction and once for the delay slot. */
2333 int step_through_delay
2334 = gdbarch_single_step_through_delay (current_gdbarch,
2335 get_current_frame ());
2336 if (debug_infrun && step_through_delay)
2337 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2338 if (step_range_end == 0 && step_through_delay)
2339 {
2340 /* The user issued a continue when stopped at a breakpoint.
2341 Set up for another trap and get out of here. */
2342 ecs->stepping_over_breakpoint = 1;
2343 keep_going (ecs);
2344 return;
2345 }
2346 else if (step_through_delay)
2347 {
2348 /* The user issued a step when stopped at a breakpoint.
2349 Maybe we should stop, maybe we should not - the delay
2350 slot *might* correspond to a line of source. In any
2351 case, don't decide that here, just set
2352 ecs->stepping_over_breakpoint, making sure we
2353 single-step again before breakpoints are re-inserted. */
2354 ecs->stepping_over_breakpoint = 1;
2355 }
2356 }
2357
2358 /* Look at the cause of the stop, and decide what to do.
2359 The alternatives are:
2360 1) break; to really stop and return to the debugger,
2361 2) drop through to start up again
2362 (set ecs->stepping_over_breakpoint to 1 to single step once)
2363 3) set ecs->random_signal to 1, and the decision between 1 and 2
2364 will be made according to the signal handling tables. */
2365
2366 /* First, distinguish signals caused by the debugger from signals
2367 that have to do with the program's own actions. Note that
2368 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2369 on the operating system version. Here we detect when a SIGILL or
2370 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2371 something similar for SIGSEGV, since a SIGSEGV will be generated
2372 when we're trying to execute a breakpoint instruction on a
2373 non-executable stack. This happens for call dummy breakpoints
2374 for architectures like SPARC that place call dummies on the
2375 stack.
2376
2377 If we're doing a displaced step past a breakpoint, then the
2378 breakpoint is always inserted at the original instruction;
2379 non-standard signals can't be explained by the breakpoint. */
2380 if (stop_signal == TARGET_SIGNAL_TRAP
2381 || (! stepping_over_breakpoint
2382 && breakpoint_inserted_here_p (stop_pc)
2383 && (stop_signal == TARGET_SIGNAL_ILL
2384 || stop_signal == TARGET_SIGNAL_SEGV
2385 || stop_signal == TARGET_SIGNAL_EMT))
2386 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2387 || stop_soon == STOP_QUIETLY_REMOTE)
2388 {
2389 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2390 {
2391 if (debug_infrun)
2392 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2393 stop_print_frame = 0;
2394 stop_stepping (ecs);
2395 return;
2396 }
2397
2398 /* This is originated from start_remote(), start_inferior() and
2399 shared libraries hook functions. */
2400 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2401 {
2402 if (debug_infrun)
2403 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2404 stop_stepping (ecs);
2405 return;
2406 }
2407
2408 /* This originates from attach_command(). We need to overwrite
2409 the stop_signal here, because some kernels don't ignore a
2410 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2411 See more comments in inferior.h. On the other hand, if we
2412 get a non-SIGSTOP, report it to the user - assume the backend
2413 will handle the SIGSTOP if it should show up later. */
2414 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2415 && stop_signal == TARGET_SIGNAL_STOP)
2416 {
2417 stop_stepping (ecs);
2418 stop_signal = TARGET_SIGNAL_0;
2419 return;
2420 }
2421
2422 /* See if there is a breakpoint at the current PC. */
2423 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2424
2425 /* Following in case break condition called a
2426 function. */
2427 stop_print_frame = 1;
2428
2429 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2430 at one stage in the past included checks for an inferior
2431 function call's call dummy's return breakpoint. The original
2432 comment, that went with the test, read:
2433
2434 ``End of a stack dummy. Some systems (e.g. Sony news) give
2435 another signal besides SIGTRAP, so check here as well as
2436 above.''
2437
2438 If someone ever tries to get get call dummys on a
2439 non-executable stack to work (where the target would stop
2440 with something like a SIGSEGV), then those tests might need
2441 to be re-instated. Given, however, that the tests were only
2442 enabled when momentary breakpoints were not being used, I
2443 suspect that it won't be the case.
2444
2445 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2446 be necessary for call dummies on a non-executable stack on
2447 SPARC. */
2448
2449 if (stop_signal == TARGET_SIGNAL_TRAP)
2450 ecs->random_signal
2451 = !(bpstat_explains_signal (stop_bpstat)
2452 || stepping_over_breakpoint
2453 || (step_range_end && step_resume_breakpoint == NULL));
2454 else
2455 {
2456 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2457 if (!ecs->random_signal)
2458 stop_signal = TARGET_SIGNAL_TRAP;
2459 }
2460 }
2461
2462 /* When we reach this point, we've pretty much decided
2463 that the reason for stopping must've been a random
2464 (unexpected) signal. */
2465
2466 else
2467 ecs->random_signal = 1;
2468
2469 process_event_stop_test:
2470 /* For the program's own signals, act according to
2471 the signal handling tables. */
2472
2473 if (ecs->random_signal)
2474 {
2475 /* Signal not for debugging purposes. */
2476 int printed = 0;
2477
2478 if (debug_infrun)
2479 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2480
2481 stopped_by_random_signal = 1;
2482
2483 if (signal_print[stop_signal])
2484 {
2485 printed = 1;
2486 target_terminal_ours_for_output ();
2487 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2488 }
2489 if (signal_stop_state (stop_signal))
2490 {
2491 stop_stepping (ecs);
2492 return;
2493 }
2494 /* If not going to stop, give terminal back
2495 if we took it away. */
2496 else if (printed)
2497 target_terminal_inferior ();
2498
2499 /* Clear the signal if it should not be passed. */
2500 if (signal_program[stop_signal] == 0)
2501 stop_signal = TARGET_SIGNAL_0;
2502
2503 if (prev_pc == read_pc ()
2504 && stepping_over_breakpoint
2505 && step_resume_breakpoint == NULL)
2506 {
2507 /* We were just starting a new sequence, attempting to
2508 single-step off of a breakpoint and expecting a SIGTRAP.
2509 Instead this signal arrives. This signal will take us out
2510 of the stepping range so GDB needs to remember to, when
2511 the signal handler returns, resume stepping off that
2512 breakpoint. */
2513 /* To simplify things, "continue" is forced to use the same
2514 code paths as single-step - set a breakpoint at the
2515 signal return address and then, once hit, step off that
2516 breakpoint. */
2517 if (debug_infrun)
2518 fprintf_unfiltered (gdb_stdlog,
2519 "infrun: signal arrived while stepping over "
2520 "breakpoint\n");
2521
2522 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2523 ecs->step_after_step_resume_breakpoint = 1;
2524 keep_going (ecs);
2525 return;
2526 }
2527
2528 if (step_range_end != 0
2529 && stop_signal != TARGET_SIGNAL_0
2530 && stop_pc >= step_range_start && stop_pc < step_range_end
2531 && frame_id_eq (get_frame_id (get_current_frame ()),
2532 step_frame_id)
2533 && step_resume_breakpoint == NULL)
2534 {
2535 /* The inferior is about to take a signal that will take it
2536 out of the single step range. Set a breakpoint at the
2537 current PC (which is presumably where the signal handler
2538 will eventually return) and then allow the inferior to
2539 run free.
2540
2541 Note that this is only needed for a signal delivered
2542 while in the single-step range. Nested signals aren't a
2543 problem as they eventually all return. */
2544 if (debug_infrun)
2545 fprintf_unfiltered (gdb_stdlog,
2546 "infrun: signal may take us out of "
2547 "single-step range\n");
2548
2549 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2550 keep_going (ecs);
2551 return;
2552 }
2553
2554 /* Note: step_resume_breakpoint may be non-NULL. This occures
2555 when either there's a nested signal, or when there's a
2556 pending signal enabled just as the signal handler returns
2557 (leaving the inferior at the step-resume-breakpoint without
2558 actually executing it). Either way continue until the
2559 breakpoint is really hit. */
2560 keep_going (ecs);
2561 return;
2562 }
2563
2564 /* Handle cases caused by hitting a breakpoint. */
2565 {
2566 CORE_ADDR jmp_buf_pc;
2567 struct bpstat_what what;
2568
2569 what = bpstat_what (stop_bpstat);
2570
2571 if (what.call_dummy)
2572 {
2573 stop_stack_dummy = 1;
2574 }
2575
2576 switch (what.main_action)
2577 {
2578 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2579 /* If we hit the breakpoint at longjmp while stepping, we
2580 install a momentary breakpoint at the target of the
2581 jmp_buf. */
2582
2583 if (debug_infrun)
2584 fprintf_unfiltered (gdb_stdlog,
2585 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2586
2587 ecs->stepping_over_breakpoint = 1;
2588
2589 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2590 || !gdbarch_get_longjmp_target (current_gdbarch,
2591 get_current_frame (), &jmp_buf_pc))
2592 {
2593 if (debug_infrun)
2594 fprintf_unfiltered (gdb_stdlog, "\
2595 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
2596 keep_going (ecs);
2597 return;
2598 }
2599
2600 /* We're going to replace the current step-resume breakpoint
2601 with a longjmp-resume breakpoint. */
2602 if (step_resume_breakpoint != NULL)
2603 delete_step_resume_breakpoint (&step_resume_breakpoint);
2604
2605 /* Insert a breakpoint at resume address. */
2606 insert_longjmp_resume_breakpoint (jmp_buf_pc);
2607
2608 keep_going (ecs);
2609 return;
2610
2611 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2612 if (debug_infrun)
2613 fprintf_unfiltered (gdb_stdlog,
2614 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2615
2616 gdb_assert (step_resume_breakpoint != NULL);
2617 delete_step_resume_breakpoint (&step_resume_breakpoint);
2618
2619 stop_step = 1;
2620 print_stop_reason (END_STEPPING_RANGE, 0);
2621 stop_stepping (ecs);
2622 return;
2623
2624 case BPSTAT_WHAT_SINGLE:
2625 if (debug_infrun)
2626 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2627 ecs->stepping_over_breakpoint = 1;
2628 /* Still need to check other stuff, at least the case
2629 where we are stepping and step out of the right range. */
2630 break;
2631
2632 case BPSTAT_WHAT_STOP_NOISY:
2633 if (debug_infrun)
2634 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2635 stop_print_frame = 1;
2636
2637 /* We are about to nuke the step_resume_breakpointt via the
2638 cleanup chain, so no need to worry about it here. */
2639
2640 stop_stepping (ecs);
2641 return;
2642
2643 case BPSTAT_WHAT_STOP_SILENT:
2644 if (debug_infrun)
2645 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2646 stop_print_frame = 0;
2647
2648 /* We are about to nuke the step_resume_breakpoin via the
2649 cleanup chain, so no need to worry about it here. */
2650
2651 stop_stepping (ecs);
2652 return;
2653
2654 case BPSTAT_WHAT_STEP_RESUME:
2655 /* This proably demands a more elegant solution, but, yeah
2656 right...
2657
2658 This function's use of the simple variable
2659 step_resume_breakpoint doesn't seem to accomodate
2660 simultaneously active step-resume bp's, although the
2661 breakpoint list certainly can.
2662
2663 If we reach here and step_resume_breakpoint is already
2664 NULL, then apparently we have multiple active
2665 step-resume bp's. We'll just delete the breakpoint we
2666 stopped at, and carry on.
2667
2668 Correction: what the code currently does is delete a
2669 step-resume bp, but it makes no effort to ensure that
2670 the one deleted is the one currently stopped at. MVS */
2671
2672 if (debug_infrun)
2673 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2674
2675 if (step_resume_breakpoint == NULL)
2676 {
2677 step_resume_breakpoint =
2678 bpstat_find_step_resume_breakpoint (stop_bpstat);
2679 }
2680 delete_step_resume_breakpoint (&step_resume_breakpoint);
2681 if (ecs->step_after_step_resume_breakpoint)
2682 {
2683 /* Back when the step-resume breakpoint was inserted, we
2684 were trying to single-step off a breakpoint. Go back
2685 to doing that. */
2686 ecs->step_after_step_resume_breakpoint = 0;
2687 ecs->stepping_over_breakpoint = 1;
2688 keep_going (ecs);
2689 return;
2690 }
2691 break;
2692
2693 case BPSTAT_WHAT_CHECK_SHLIBS:
2694 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2695 {
2696 if (debug_infrun)
2697 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2698
2699 /* Check for any newly added shared libraries if we're
2700 supposed to be adding them automatically. Switch
2701 terminal for any messages produced by
2702 breakpoint_re_set. */
2703 target_terminal_ours_for_output ();
2704 /* NOTE: cagney/2003-11-25: Make certain that the target
2705 stack's section table is kept up-to-date. Architectures,
2706 (e.g., PPC64), use the section table to perform
2707 operations such as address => section name and hence
2708 require the table to contain all sections (including
2709 those found in shared libraries). */
2710 /* NOTE: cagney/2003-11-25: Pass current_target and not
2711 exec_ops to SOLIB_ADD. This is because current GDB is
2712 only tooled to propagate section_table changes out from
2713 the "current_target" (see target_resize_to_sections), and
2714 not up from the exec stratum. This, of course, isn't
2715 right. "infrun.c" should only interact with the
2716 exec/process stratum, instead relying on the target stack
2717 to propagate relevant changes (stop, section table
2718 changed, ...) up to other layers. */
2719 #ifdef SOLIB_ADD
2720 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2721 #else
2722 solib_add (NULL, 0, &current_target, auto_solib_add);
2723 #endif
2724 target_terminal_inferior ();
2725
2726 /* If requested, stop when the dynamic linker notifies
2727 gdb of events. This allows the user to get control
2728 and place breakpoints in initializer routines for
2729 dynamically loaded objects (among other things). */
2730 if (stop_on_solib_events || stop_stack_dummy)
2731 {
2732 stop_stepping (ecs);
2733 return;
2734 }
2735
2736 /* If we stopped due to an explicit catchpoint, then the
2737 (see above) call to SOLIB_ADD pulled in any symbols
2738 from a newly-loaded library, if appropriate.
2739
2740 We do want the inferior to stop, but not where it is
2741 now, which is in the dynamic linker callback. Rather,
2742 we would like it stop in the user's program, just after
2743 the call that caused this catchpoint to trigger. That
2744 gives the user a more useful vantage from which to
2745 examine their program's state. */
2746 else if (what.main_action
2747 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2748 {
2749 /* ??rehrauer: If I could figure out how to get the
2750 right return PC from here, we could just set a temp
2751 breakpoint and resume. I'm not sure we can without
2752 cracking open the dld's shared libraries and sniffing
2753 their unwind tables and text/data ranges, and that's
2754 not a terribly portable notion.
2755
2756 Until that time, we must step the inferior out of the
2757 dld callback, and also out of the dld itself (and any
2758 code or stubs in libdld.sl, such as "shl_load" and
2759 friends) until we reach non-dld code. At that point,
2760 we can stop stepping. */
2761 bpstat_get_triggered_catchpoints (stop_bpstat,
2762 &ecs->
2763 stepping_through_solib_catchpoints);
2764 ecs->stepping_through_solib_after_catch = 1;
2765
2766 /* Be sure to lift all breakpoints, so the inferior does
2767 actually step past this point... */
2768 ecs->stepping_over_breakpoint = 1;
2769 break;
2770 }
2771 else
2772 {
2773 /* We want to step over this breakpoint, then keep going. */
2774 ecs->stepping_over_breakpoint = 1;
2775 break;
2776 }
2777 }
2778 break;
2779
2780 case BPSTAT_WHAT_LAST:
2781 /* Not a real code, but listed here to shut up gcc -Wall. */
2782
2783 case BPSTAT_WHAT_KEEP_CHECKING:
2784 break;
2785 }
2786 }
2787
2788 /* We come here if we hit a breakpoint but should not
2789 stop for it. Possibly we also were stepping
2790 and should stop for that. So fall through and
2791 test for stepping. But, if not stepping,
2792 do not stop. */
2793
2794 /* Are we stepping to get the inferior out of the dynamic linker's
2795 hook (and possibly the dld itself) after catching a shlib
2796 event? */
2797 if (ecs->stepping_through_solib_after_catch)
2798 {
2799 #if defined(SOLIB_ADD)
2800 /* Have we reached our destination? If not, keep going. */
2801 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2802 {
2803 if (debug_infrun)
2804 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2805 ecs->stepping_over_breakpoint = 1;
2806 keep_going (ecs);
2807 return;
2808 }
2809 #endif
2810 if (debug_infrun)
2811 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2812 /* Else, stop and report the catchpoint(s) whose triggering
2813 caused us to begin stepping. */
2814 ecs->stepping_through_solib_after_catch = 0;
2815 bpstat_clear (&stop_bpstat);
2816 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2817 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2818 stop_print_frame = 1;
2819 stop_stepping (ecs);
2820 return;
2821 }
2822
2823 if (step_resume_breakpoint)
2824 {
2825 if (debug_infrun)
2826 fprintf_unfiltered (gdb_stdlog,
2827 "infrun: step-resume breakpoint is inserted\n");
2828
2829 /* Having a step-resume breakpoint overrides anything
2830 else having to do with stepping commands until
2831 that breakpoint is reached. */
2832 keep_going (ecs);
2833 return;
2834 }
2835
2836 if (step_range_end == 0)
2837 {
2838 if (debug_infrun)
2839 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2840 /* Likewise if we aren't even stepping. */
2841 keep_going (ecs);
2842 return;
2843 }
2844
2845 /* If stepping through a line, keep going if still within it.
2846
2847 Note that step_range_end is the address of the first instruction
2848 beyond the step range, and NOT the address of the last instruction
2849 within it! */
2850 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2851 {
2852 if (debug_infrun)
2853 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2854 paddr_nz (step_range_start),
2855 paddr_nz (step_range_end));
2856 keep_going (ecs);
2857 return;
2858 }
2859
2860 /* We stepped out of the stepping range. */
2861
2862 /* If we are stepping at the source level and entered the runtime
2863 loader dynamic symbol resolution code, we keep on single stepping
2864 until we exit the run time loader code and reach the callee's
2865 address. */
2866 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2867 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2868 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2869 #else
2870 && in_solib_dynsym_resolve_code (stop_pc)
2871 #endif
2872 )
2873 {
2874 CORE_ADDR pc_after_resolver =
2875 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2876
2877 if (debug_infrun)
2878 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2879
2880 if (pc_after_resolver)
2881 {
2882 /* Set up a step-resume breakpoint at the address
2883 indicated by SKIP_SOLIB_RESOLVER. */
2884 struct symtab_and_line sr_sal;
2885 init_sal (&sr_sal);
2886 sr_sal.pc = pc_after_resolver;
2887
2888 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2889 }
2890
2891 keep_going (ecs);
2892 return;
2893 }
2894
2895 if (step_range_end != 1
2896 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2897 || step_over_calls == STEP_OVER_ALL)
2898 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2899 {
2900 if (debug_infrun)
2901 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2902 /* The inferior, while doing a "step" or "next", has ended up in
2903 a signal trampoline (either by a signal being delivered or by
2904 the signal handler returning). Just single-step until the
2905 inferior leaves the trampoline (either by calling the handler
2906 or returning). */
2907 keep_going (ecs);
2908 return;
2909 }
2910
2911 /* Check for subroutine calls. The check for the current frame
2912 equalling the step ID is not necessary - the check of the
2913 previous frame's ID is sufficient - but it is a common case and
2914 cheaper than checking the previous frame's ID.
2915
2916 NOTE: frame_id_eq will never report two invalid frame IDs as
2917 being equal, so to get into this block, both the current and
2918 previous frame must have valid frame IDs. */
2919 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2920 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2921 {
2922 CORE_ADDR real_stop_pc;
2923
2924 if (debug_infrun)
2925 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2926
2927 if ((step_over_calls == STEP_OVER_NONE)
2928 || ((step_range_end == 1)
2929 && in_prologue (prev_pc, ecs->stop_func_start)))
2930 {
2931 /* I presume that step_over_calls is only 0 when we're
2932 supposed to be stepping at the assembly language level
2933 ("stepi"). Just stop. */
2934 /* Also, maybe we just did a "nexti" inside a prolog, so we
2935 thought it was a subroutine call but it was not. Stop as
2936 well. FENN */
2937 stop_step = 1;
2938 print_stop_reason (END_STEPPING_RANGE, 0);
2939 stop_stepping (ecs);
2940 return;
2941 }
2942
2943 if (step_over_calls == STEP_OVER_ALL)
2944 {
2945 /* We're doing a "next", set a breakpoint at callee's return
2946 address (the address at which the caller will
2947 resume). */
2948 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2949 keep_going (ecs);
2950 return;
2951 }
2952
2953 /* If we are in a function call trampoline (a stub between the
2954 calling routine and the real function), locate the real
2955 function. That's what tells us (a) whether we want to step
2956 into it at all, and (b) what prologue we want to run to the
2957 end of, if we do step into it. */
2958 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2959 if (real_stop_pc == 0)
2960 real_stop_pc = gdbarch_skip_trampoline_code
2961 (current_gdbarch, get_current_frame (), stop_pc);
2962 if (real_stop_pc != 0)
2963 ecs->stop_func_start = real_stop_pc;
2964
2965 if (
2966 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2967 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2968 #else
2969 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2970 #endif
2971 )
2972 {
2973 struct symtab_and_line sr_sal;
2974 init_sal (&sr_sal);
2975 sr_sal.pc = ecs->stop_func_start;
2976
2977 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2978 keep_going (ecs);
2979 return;
2980 }
2981
2982 /* If we have line number information for the function we are
2983 thinking of stepping into, step into it.
2984
2985 If there are several symtabs at that PC (e.g. with include
2986 files), just want to know whether *any* of them have line
2987 numbers. find_pc_line handles this. */
2988 {
2989 struct symtab_and_line tmp_sal;
2990
2991 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2992 if (tmp_sal.line != 0)
2993 {
2994 step_into_function (ecs);
2995 return;
2996 }
2997 }
2998
2999 /* If we have no line number and the step-stop-if-no-debug is
3000 set, we stop the step so that the user has a chance to switch
3001 in assembly mode. */
3002 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
3003 {
3004 stop_step = 1;
3005 print_stop_reason (END_STEPPING_RANGE, 0);
3006 stop_stepping (ecs);
3007 return;
3008 }
3009
3010 /* Set a breakpoint at callee's return address (the address at
3011 which the caller will resume). */
3012 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3013 keep_going (ecs);
3014 return;
3015 }
3016
3017 /* If we're in the return path from a shared library trampoline,
3018 we want to proceed through the trampoline when stepping. */
3019 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3020 stop_pc, ecs->stop_func_name))
3021 {
3022 /* Determine where this trampoline returns. */
3023 CORE_ADDR real_stop_pc;
3024 real_stop_pc = gdbarch_skip_trampoline_code
3025 (current_gdbarch, get_current_frame (), stop_pc);
3026
3027 if (debug_infrun)
3028 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3029
3030 /* Only proceed through if we know where it's going. */
3031 if (real_stop_pc)
3032 {
3033 /* And put the step-breakpoint there and go until there. */
3034 struct symtab_and_line sr_sal;
3035
3036 init_sal (&sr_sal); /* initialize to zeroes */
3037 sr_sal.pc = real_stop_pc;
3038 sr_sal.section = find_pc_overlay (sr_sal.pc);
3039
3040 /* Do not specify what the fp should be when we stop since
3041 on some machines the prologue is where the new fp value
3042 is established. */
3043 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3044
3045 /* Restart without fiddling with the step ranges or
3046 other state. */
3047 keep_going (ecs);
3048 return;
3049 }
3050 }
3051
3052 ecs->sal = find_pc_line (stop_pc, 0);
3053
3054 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3055 the trampoline processing logic, however, there are some trampolines
3056 that have no names, so we should do trampoline handling first. */
3057 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
3058 && ecs->stop_func_name == NULL
3059 && ecs->sal.line == 0)
3060 {
3061 if (debug_infrun)
3062 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3063
3064 /* The inferior just stepped into, or returned to, an
3065 undebuggable function (where there is no debugging information
3066 and no line number corresponding to the address where the
3067 inferior stopped). Since we want to skip this kind of code,
3068 we keep going until the inferior returns from this
3069 function - unless the user has asked us not to (via
3070 set step-mode) or we no longer know how to get back
3071 to the call site. */
3072 if (step_stop_if_no_debug
3073 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3074 {
3075 /* If we have no line number and the step-stop-if-no-debug
3076 is set, we stop the step so that the user has a chance to
3077 switch in assembly mode. */
3078 stop_step = 1;
3079 print_stop_reason (END_STEPPING_RANGE, 0);
3080 stop_stepping (ecs);
3081 return;
3082 }
3083 else
3084 {
3085 /* Set a breakpoint at callee's return address (the address
3086 at which the caller will resume). */
3087 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3088 keep_going (ecs);
3089 return;
3090 }
3091 }
3092
3093 if (step_range_end == 1)
3094 {
3095 /* It is stepi or nexti. We always want to stop stepping after
3096 one instruction. */
3097 if (debug_infrun)
3098 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3099 stop_step = 1;
3100 print_stop_reason (END_STEPPING_RANGE, 0);
3101 stop_stepping (ecs);
3102 return;
3103 }
3104
3105 if (ecs->sal.line == 0)
3106 {
3107 /* We have no line number information. That means to stop
3108 stepping (does this always happen right after one instruction,
3109 when we do "s" in a function with no line numbers,
3110 or can this happen as a result of a return or longjmp?). */
3111 if (debug_infrun)
3112 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3113 stop_step = 1;
3114 print_stop_reason (END_STEPPING_RANGE, 0);
3115 stop_stepping (ecs);
3116 return;
3117 }
3118
3119 if ((stop_pc == ecs->sal.pc)
3120 && (ecs->current_line != ecs->sal.line
3121 || ecs->current_symtab != ecs->sal.symtab))
3122 {
3123 /* We are at the start of a different line. So stop. Note that
3124 we don't stop if we step into the middle of a different line.
3125 That is said to make things like for (;;) statements work
3126 better. */
3127 if (debug_infrun)
3128 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3129 stop_step = 1;
3130 print_stop_reason (END_STEPPING_RANGE, 0);
3131 stop_stepping (ecs);
3132 return;
3133 }
3134
3135 /* We aren't done stepping.
3136
3137 Optimize by setting the stepping range to the line.
3138 (We might not be in the original line, but if we entered a
3139 new line in mid-statement, we continue stepping. This makes
3140 things like for(;;) statements work better.) */
3141
3142 step_range_start = ecs->sal.pc;
3143 step_range_end = ecs->sal.end;
3144 step_frame_id = get_frame_id (get_current_frame ());
3145 ecs->current_line = ecs->sal.line;
3146 ecs->current_symtab = ecs->sal.symtab;
3147
3148 /* In the case where we just stepped out of a function into the
3149 middle of a line of the caller, continue stepping, but
3150 step_frame_id must be modified to current frame */
3151 #if 0
3152 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
3153 generous. It will trigger on things like a step into a frameless
3154 stackless leaf function. I think the logic should instead look
3155 at the unwound frame ID has that should give a more robust
3156 indication of what happened. */
3157 if (step - ID == current - ID)
3158 still stepping in same function;
3159 else if (step - ID == unwind (current - ID))
3160 stepped into a function;
3161 else
3162 stepped out of a function;
3163 /* Of course this assumes that the frame ID unwind code is robust
3164 and we're willing to introduce frame unwind logic into this
3165 function. Fortunately, those days are nearly upon us. */
3166 #endif
3167 {
3168 struct frame_info *frame = get_current_frame ();
3169 struct frame_id current_frame = get_frame_id (frame);
3170 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
3171 step_frame_id)))
3172 step_frame_id = current_frame;
3173 }
3174
3175 if (debug_infrun)
3176 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3177 keep_going (ecs);
3178 }
3179
3180 /* Are we in the middle of stepping? */
3181
3182 static int
3183 currently_stepping (struct execution_control_state *ecs)
3184 {
3185 return (((step_range_end && step_resume_breakpoint == NULL)
3186 || stepping_over_breakpoint)
3187 || ecs->stepping_through_solib_after_catch
3188 || bpstat_should_step ());
3189 }
3190
3191 /* Subroutine call with source code we should not step over. Do step
3192 to the first line of code in it. */
3193
3194 static void
3195 step_into_function (struct execution_control_state *ecs)
3196 {
3197 struct symtab *s;
3198 struct symtab_and_line sr_sal;
3199
3200 s = find_pc_symtab (stop_pc);
3201 if (s && s->language != language_asm)
3202 ecs->stop_func_start = gdbarch_skip_prologue
3203 (current_gdbarch, ecs->stop_func_start);
3204
3205 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
3206 /* Use the step_resume_break to step until the end of the prologue,
3207 even if that involves jumps (as it seems to on the vax under
3208 4.2). */
3209 /* If the prologue ends in the middle of a source line, continue to
3210 the end of that source line (if it is still within the function).
3211 Otherwise, just go to end of prologue. */
3212 if (ecs->sal.end
3213 && ecs->sal.pc != ecs->stop_func_start
3214 && ecs->sal.end < ecs->stop_func_end)
3215 ecs->stop_func_start = ecs->sal.end;
3216
3217 /* Architectures which require breakpoint adjustment might not be able
3218 to place a breakpoint at the computed address. If so, the test
3219 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3220 ecs->stop_func_start to an address at which a breakpoint may be
3221 legitimately placed.
3222
3223 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3224 made, GDB will enter an infinite loop when stepping through
3225 optimized code consisting of VLIW instructions which contain
3226 subinstructions corresponding to different source lines. On
3227 FR-V, it's not permitted to place a breakpoint on any but the
3228 first subinstruction of a VLIW instruction. When a breakpoint is
3229 set, GDB will adjust the breakpoint address to the beginning of
3230 the VLIW instruction. Thus, we need to make the corresponding
3231 adjustment here when computing the stop address. */
3232
3233 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3234 {
3235 ecs->stop_func_start
3236 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3237 ecs->stop_func_start);
3238 }
3239
3240 if (ecs->stop_func_start == stop_pc)
3241 {
3242 /* We are already there: stop now. */
3243 stop_step = 1;
3244 print_stop_reason (END_STEPPING_RANGE, 0);
3245 stop_stepping (ecs);
3246 return;
3247 }
3248 else
3249 {
3250 /* Put the step-breakpoint there and go until there. */
3251 init_sal (&sr_sal); /* initialize to zeroes */
3252 sr_sal.pc = ecs->stop_func_start;
3253 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3254
3255 /* Do not specify what the fp should be when we stop since on
3256 some machines the prologue is where the new fp value is
3257 established. */
3258 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3259
3260 /* And make sure stepping stops right away then. */
3261 step_range_end = step_range_start;
3262 }
3263 keep_going (ecs);
3264 }
3265
3266 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3267 This is used to both functions and to skip over code. */
3268
3269 static void
3270 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3271 struct frame_id sr_id)
3272 {
3273 /* There should never be more than one step-resume or longjmp-resume
3274 breakpoint per thread, so we should never be setting a new
3275 step_resume_breakpoint when one is already active. */
3276 gdb_assert (step_resume_breakpoint == NULL);
3277
3278 if (debug_infrun)
3279 fprintf_unfiltered (gdb_stdlog,
3280 "infrun: inserting step-resume breakpoint at 0x%s\n",
3281 paddr_nz (sr_sal.pc));
3282
3283 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
3284 bp_step_resume);
3285 }
3286
3287 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3288 to skip a potential signal handler.
3289
3290 This is called with the interrupted function's frame. The signal
3291 handler, when it returns, will resume the interrupted function at
3292 RETURN_FRAME.pc. */
3293
3294 static void
3295 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3296 {
3297 struct symtab_and_line sr_sal;
3298
3299 gdb_assert (return_frame != NULL);
3300 init_sal (&sr_sal); /* initialize to zeros */
3301
3302 sr_sal.pc = gdbarch_addr_bits_remove
3303 (current_gdbarch, get_frame_pc (return_frame));
3304 sr_sal.section = find_pc_overlay (sr_sal.pc);
3305
3306 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3307 }
3308
3309 /* Similar to insert_step_resume_breakpoint_at_frame, except
3310 but a breakpoint at the previous frame's PC. This is used to
3311 skip a function after stepping into it (for "next" or if the called
3312 function has no debugging information).
3313
3314 The current function has almost always been reached by single
3315 stepping a call or return instruction. NEXT_FRAME belongs to the
3316 current function, and the breakpoint will be set at the caller's
3317 resume address.
3318
3319 This is a separate function rather than reusing
3320 insert_step_resume_breakpoint_at_frame in order to avoid
3321 get_prev_frame, which may stop prematurely (see the implementation
3322 of frame_unwind_id for an example). */
3323
3324 static void
3325 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3326 {
3327 struct symtab_and_line sr_sal;
3328
3329 /* We shouldn't have gotten here if we don't know where the call site
3330 is. */
3331 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3332
3333 init_sal (&sr_sal); /* initialize to zeros */
3334
3335 sr_sal.pc = gdbarch_addr_bits_remove
3336 (current_gdbarch, frame_pc_unwind (next_frame));
3337 sr_sal.section = find_pc_overlay (sr_sal.pc);
3338
3339 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3340 }
3341
3342 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3343 new breakpoint at the target of a jmp_buf. The handling of
3344 longjmp-resume uses the same mechanisms used for handling
3345 "step-resume" breakpoints. */
3346
3347 static void
3348 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3349 {
3350 /* There should never be more than one step-resume or longjmp-resume
3351 breakpoint per thread, so we should never be setting a new
3352 longjmp_resume_breakpoint when one is already active. */
3353 gdb_assert (step_resume_breakpoint == NULL);
3354
3355 if (debug_infrun)
3356 fprintf_unfiltered (gdb_stdlog,
3357 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3358 paddr_nz (pc));
3359
3360 step_resume_breakpoint =
3361 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3362 }
3363
3364 static void
3365 stop_stepping (struct execution_control_state *ecs)
3366 {
3367 if (debug_infrun)
3368 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3369
3370 /* Let callers know we don't want to wait for the inferior anymore. */
3371 ecs->wait_some_more = 0;
3372 }
3373
3374 /* This function handles various cases where we need to continue
3375 waiting for the inferior. */
3376 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3377
3378 static void
3379 keep_going (struct execution_control_state *ecs)
3380 {
3381 /* Save the pc before execution, to compare with pc after stop. */
3382 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3383
3384 /* If we did not do break;, it means we should keep running the
3385 inferior and not return to debugger. */
3386
3387 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
3388 {
3389 /* We took a signal (which we are supposed to pass through to
3390 the inferior, else we'd have done a break above) and we
3391 haven't yet gotten our trap. Simply continue. */
3392 resume (currently_stepping (ecs), stop_signal);
3393 }
3394 else
3395 {
3396 /* Either the trap was not expected, but we are continuing
3397 anyway (the user asked that this signal be passed to the
3398 child)
3399 -- or --
3400 The signal was SIGTRAP, e.g. it was our signal, but we
3401 decided we should resume from it.
3402
3403 We're going to run this baby now!
3404
3405 Note that insert_breakpoints won't try to re-insert
3406 already inserted breakpoints. Therefore, we don't
3407 care if breakpoints were already inserted, or not. */
3408
3409 if (ecs->stepping_over_breakpoint)
3410 {
3411 if (! use_displaced_stepping (current_gdbarch))
3412 /* Since we can't do a displaced step, we have to remove
3413 the breakpoint while we step it. To keep things
3414 simple, we remove them all. */
3415 remove_breakpoints ();
3416 }
3417 else
3418 {
3419 struct gdb_exception e;
3420 /* Stop stepping when inserting breakpoints
3421 has failed. */
3422 TRY_CATCH (e, RETURN_MASK_ERROR)
3423 {
3424 insert_breakpoints ();
3425 }
3426 if (e.reason < 0)
3427 {
3428 stop_stepping (ecs);
3429 return;
3430 }
3431 }
3432
3433 stepping_over_breakpoint = ecs->stepping_over_breakpoint;
3434
3435 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3436 specifies that such a signal should be delivered to the
3437 target program).
3438
3439 Typically, this would occure when a user is debugging a
3440 target monitor on a simulator: the target monitor sets a
3441 breakpoint; the simulator encounters this break-point and
3442 halts the simulation handing control to GDB; GDB, noteing
3443 that the break-point isn't valid, returns control back to the
3444 simulator; the simulator then delivers the hardware
3445 equivalent of a SIGNAL_TRAP to the program being debugged. */
3446
3447 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
3448 stop_signal = TARGET_SIGNAL_0;
3449
3450
3451 resume (currently_stepping (ecs), stop_signal);
3452 }
3453
3454 prepare_to_wait (ecs);
3455 }
3456
3457 /* This function normally comes after a resume, before
3458 handle_inferior_event exits. It takes care of any last bits of
3459 housekeeping, and sets the all-important wait_some_more flag. */
3460
3461 static void
3462 prepare_to_wait (struct execution_control_state *ecs)
3463 {
3464 if (debug_infrun)
3465 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
3466 if (ecs->infwait_state == infwait_normal_state)
3467 {
3468 overlay_cache_invalid = 1;
3469
3470 /* We have to invalidate the registers BEFORE calling
3471 target_wait because they can be loaded from the target while
3472 in target_wait. This makes remote debugging a bit more
3473 efficient for those targets that provide critical registers
3474 as part of their normal status mechanism. */
3475
3476 registers_changed ();
3477 ecs->waiton_ptid = pid_to_ptid (-1);
3478 ecs->wp = &(ecs->ws);
3479 }
3480 /* This is the old end of the while loop. Let everybody know we
3481 want to wait for the inferior some more and get called again
3482 soon. */
3483 ecs->wait_some_more = 1;
3484 }
3485
3486 /* Print why the inferior has stopped. We always print something when
3487 the inferior exits, or receives a signal. The rest of the cases are
3488 dealt with later on in normal_stop() and print_it_typical(). Ideally
3489 there should be a call to this function from handle_inferior_event()
3490 each time stop_stepping() is called.*/
3491 static void
3492 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3493 {
3494 switch (stop_reason)
3495 {
3496 case END_STEPPING_RANGE:
3497 /* We are done with a step/next/si/ni command. */
3498 /* For now print nothing. */
3499 /* Print a message only if not in the middle of doing a "step n"
3500 operation for n > 1 */
3501 if (!step_multi || !stop_step)
3502 if (ui_out_is_mi_like_p (uiout))
3503 ui_out_field_string
3504 (uiout, "reason",
3505 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3506 break;
3507 case SIGNAL_EXITED:
3508 /* The inferior was terminated by a signal. */
3509 annotate_signalled ();
3510 if (ui_out_is_mi_like_p (uiout))
3511 ui_out_field_string
3512 (uiout, "reason",
3513 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3514 ui_out_text (uiout, "\nProgram terminated with signal ");
3515 annotate_signal_name ();
3516 ui_out_field_string (uiout, "signal-name",
3517 target_signal_to_name (stop_info));
3518 annotate_signal_name_end ();
3519 ui_out_text (uiout, ", ");
3520 annotate_signal_string ();
3521 ui_out_field_string (uiout, "signal-meaning",
3522 target_signal_to_string (stop_info));
3523 annotate_signal_string_end ();
3524 ui_out_text (uiout, ".\n");
3525 ui_out_text (uiout, "The program no longer exists.\n");
3526 break;
3527 case EXITED:
3528 /* The inferior program is finished. */
3529 annotate_exited (stop_info);
3530 if (stop_info)
3531 {
3532 if (ui_out_is_mi_like_p (uiout))
3533 ui_out_field_string (uiout, "reason",
3534 async_reason_lookup (EXEC_ASYNC_EXITED));
3535 ui_out_text (uiout, "\nProgram exited with code ");
3536 ui_out_field_fmt (uiout, "exit-code", "0%o",
3537 (unsigned int) stop_info);
3538 ui_out_text (uiout, ".\n");
3539 }
3540 else
3541 {
3542 if (ui_out_is_mi_like_p (uiout))
3543 ui_out_field_string
3544 (uiout, "reason",
3545 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3546 ui_out_text (uiout, "\nProgram exited normally.\n");
3547 }
3548 /* Support the --return-child-result option. */
3549 return_child_result_value = stop_info;
3550 break;
3551 case SIGNAL_RECEIVED:
3552 /* Signal received. The signal table tells us to print about
3553 it. */
3554 annotate_signal ();
3555 ui_out_text (uiout, "\nProgram received signal ");
3556 annotate_signal_name ();
3557 if (ui_out_is_mi_like_p (uiout))
3558 ui_out_field_string
3559 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3560 ui_out_field_string (uiout, "signal-name",
3561 target_signal_to_name (stop_info));
3562 annotate_signal_name_end ();
3563 ui_out_text (uiout, ", ");
3564 annotate_signal_string ();
3565 ui_out_field_string (uiout, "signal-meaning",
3566 target_signal_to_string (stop_info));
3567 annotate_signal_string_end ();
3568 ui_out_text (uiout, ".\n");
3569 break;
3570 default:
3571 internal_error (__FILE__, __LINE__,
3572 _("print_stop_reason: unrecognized enum value"));
3573 break;
3574 }
3575 }
3576 \f
3577
3578 /* Here to return control to GDB when the inferior stops for real.
3579 Print appropriate messages, remove breakpoints, give terminal our modes.
3580
3581 STOP_PRINT_FRAME nonzero means print the executing frame
3582 (pc, function, args, file, line number and line text).
3583 BREAKPOINTS_FAILED nonzero means stop was due to error
3584 attempting to insert breakpoints. */
3585
3586 void
3587 normal_stop (void)
3588 {
3589 struct target_waitstatus last;
3590 ptid_t last_ptid;
3591
3592 get_last_target_status (&last_ptid, &last);
3593
3594 /* As with the notification of thread events, we want to delay
3595 notifying the user that we've switched thread context until
3596 the inferior actually stops.
3597
3598 There's no point in saying anything if the inferior has exited.
3599 Note that SIGNALLED here means "exited with a signal", not
3600 "received a signal". */
3601 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3602 && target_has_execution
3603 && last.kind != TARGET_WAITKIND_SIGNALLED
3604 && last.kind != TARGET_WAITKIND_EXITED)
3605 {
3606 target_terminal_ours_for_output ();
3607 printf_filtered (_("[Switching to %s]\n"),
3608 target_pid_to_str (inferior_ptid));
3609 annotate_thread_changed ();
3610 previous_inferior_ptid = inferior_ptid;
3611 }
3612
3613 /* NOTE drow/2004-01-17: Is this still necessary? */
3614 /* Make sure that the current_frame's pc is correct. This
3615 is a correction for setting up the frame info before doing
3616 gdbarch_decr_pc_after_break */
3617 if (target_has_execution)
3618 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3619 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3620 frame code to check for this and sort out any resultant mess.
3621 gdbarch_decr_pc_after_break needs to just go away. */
3622 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3623
3624 if (!breakpoints_always_inserted_mode () && target_has_execution)
3625 {
3626 if (remove_breakpoints ())
3627 {
3628 target_terminal_ours_for_output ();
3629 printf_filtered (_("\
3630 Cannot remove breakpoints because program is no longer writable.\n\
3631 It might be running in another process.\n\
3632 Further execution is probably impossible.\n"));
3633 }
3634 }
3635
3636 /* If an auto-display called a function and that got a signal,
3637 delete that auto-display to avoid an infinite recursion. */
3638
3639 if (stopped_by_random_signal)
3640 disable_current_display ();
3641
3642 /* Don't print a message if in the middle of doing a "step n"
3643 operation for n > 1 */
3644 if (step_multi && stop_step)
3645 goto done;
3646
3647 target_terminal_ours ();
3648
3649 /* Set the current source location. This will also happen if we
3650 display the frame below, but the current SAL will be incorrect
3651 during a user hook-stop function. */
3652 if (target_has_stack && !stop_stack_dummy)
3653 set_current_sal_from_frame (get_current_frame (), 1);
3654
3655 /* Look up the hook_stop and run it (CLI internally handles problem
3656 of stop_command's pre-hook not existing). */
3657 if (stop_command)
3658 catch_errors (hook_stop_stub, stop_command,
3659 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3660
3661 if (!target_has_stack)
3662 {
3663
3664 goto done;
3665 }
3666
3667 /* Select innermost stack frame - i.e., current frame is frame 0,
3668 and current location is based on that.
3669 Don't do this on return from a stack dummy routine,
3670 or if the program has exited. */
3671
3672 if (!stop_stack_dummy)
3673 {
3674 select_frame (get_current_frame ());
3675
3676 /* Print current location without a level number, if
3677 we have changed functions or hit a breakpoint.
3678 Print source line if we have one.
3679 bpstat_print() contains the logic deciding in detail
3680 what to print, based on the event(s) that just occurred. */
3681
3682 /* If --batch-silent is enabled then there's no need to print the current
3683 source location, and to try risks causing an error message about
3684 missing source files. */
3685 if (stop_print_frame && !batch_silent)
3686 {
3687 int bpstat_ret;
3688 int source_flag;
3689 int do_frame_printing = 1;
3690
3691 bpstat_ret = bpstat_print (stop_bpstat);
3692 switch (bpstat_ret)
3693 {
3694 case PRINT_UNKNOWN:
3695 /* If we had hit a shared library event breakpoint,
3696 bpstat_print would print out this message. If we hit
3697 an OS-level shared library event, do the same
3698 thing. */
3699 if (last.kind == TARGET_WAITKIND_LOADED)
3700 {
3701 printf_filtered (_("Stopped due to shared library event\n"));
3702 source_flag = SRC_LINE; /* something bogus */
3703 do_frame_printing = 0;
3704 break;
3705 }
3706
3707 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3708 (or should) carry around the function and does (or
3709 should) use that when doing a frame comparison. */
3710 if (stop_step
3711 && frame_id_eq (step_frame_id,
3712 get_frame_id (get_current_frame ()))
3713 && step_start_function == find_pc_function (stop_pc))
3714 source_flag = SRC_LINE; /* finished step, just print source line */
3715 else
3716 source_flag = SRC_AND_LOC; /* print location and source line */
3717 break;
3718 case PRINT_SRC_AND_LOC:
3719 source_flag = SRC_AND_LOC; /* print location and source line */
3720 break;
3721 case PRINT_SRC_ONLY:
3722 source_flag = SRC_LINE;
3723 break;
3724 case PRINT_NOTHING:
3725 source_flag = SRC_LINE; /* something bogus */
3726 do_frame_printing = 0;
3727 break;
3728 default:
3729 internal_error (__FILE__, __LINE__, _("Unknown value."));
3730 }
3731
3732 if (ui_out_is_mi_like_p (uiout))
3733 ui_out_field_int (uiout, "thread-id",
3734 pid_to_thread_id (inferior_ptid));
3735 /* The behavior of this routine with respect to the source
3736 flag is:
3737 SRC_LINE: Print only source line
3738 LOCATION: Print only location
3739 SRC_AND_LOC: Print location and source line */
3740 if (do_frame_printing)
3741 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3742
3743 /* Display the auto-display expressions. */
3744 do_displays ();
3745 }
3746 }
3747
3748 /* Save the function value return registers, if we care.
3749 We might be about to restore their previous contents. */
3750 if (proceed_to_finish)
3751 {
3752 /* This should not be necessary. */
3753 if (stop_registers)
3754 regcache_xfree (stop_registers);
3755
3756 /* NB: The copy goes through to the target picking up the value of
3757 all the registers. */
3758 stop_registers = regcache_dup (get_current_regcache ());
3759 }
3760
3761 if (stop_stack_dummy)
3762 {
3763 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3764 ends with a setting of the current frame, so we can use that
3765 next. */
3766 frame_pop (get_current_frame ());
3767 /* Set stop_pc to what it was before we called the function.
3768 Can't rely on restore_inferior_status because that only gets
3769 called if we don't stop in the called function. */
3770 stop_pc = read_pc ();
3771 select_frame (get_current_frame ());
3772 }
3773
3774 done:
3775 annotate_stopped ();
3776 if (!suppress_stop_observer && !step_multi)
3777 observer_notify_normal_stop (stop_bpstat);
3778 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3779 Delete any breakpoint that is to be deleted at the next stop. */
3780 breakpoint_auto_delete (stop_bpstat);
3781 set_running (pid_to_ptid (-1), 0);
3782 }
3783
3784 static int
3785 hook_stop_stub (void *cmd)
3786 {
3787 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3788 return (0);
3789 }
3790 \f
3791 int
3792 signal_stop_state (int signo)
3793 {
3794 /* Always stop on signals if we're just gaining control of the
3795 program. */
3796 return signal_stop[signo] || stop_soon != NO_STOP_QUIETLY;
3797 }
3798
3799 int
3800 signal_print_state (int signo)
3801 {
3802 return signal_print[signo];
3803 }
3804
3805 int
3806 signal_pass_state (int signo)
3807 {
3808 return signal_program[signo];
3809 }
3810
3811 int
3812 signal_stop_update (int signo, int state)
3813 {
3814 int ret = signal_stop[signo];
3815 signal_stop[signo] = state;
3816 return ret;
3817 }
3818
3819 int
3820 signal_print_update (int signo, int state)
3821 {
3822 int ret = signal_print[signo];
3823 signal_print[signo] = state;
3824 return ret;
3825 }
3826
3827 int
3828 signal_pass_update (int signo, int state)
3829 {
3830 int ret = signal_program[signo];
3831 signal_program[signo] = state;
3832 return ret;
3833 }
3834
3835 static void
3836 sig_print_header (void)
3837 {
3838 printf_filtered (_("\
3839 Signal Stop\tPrint\tPass to program\tDescription\n"));
3840 }
3841
3842 static void
3843 sig_print_info (enum target_signal oursig)
3844 {
3845 char *name = target_signal_to_name (oursig);
3846 int name_padding = 13 - strlen (name);
3847
3848 if (name_padding <= 0)
3849 name_padding = 0;
3850
3851 printf_filtered ("%s", name);
3852 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3853 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3854 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3855 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3856 printf_filtered ("%s\n", target_signal_to_string (oursig));
3857 }
3858
3859 /* Specify how various signals in the inferior should be handled. */
3860
3861 static void
3862 handle_command (char *args, int from_tty)
3863 {
3864 char **argv;
3865 int digits, wordlen;
3866 int sigfirst, signum, siglast;
3867 enum target_signal oursig;
3868 int allsigs;
3869 int nsigs;
3870 unsigned char *sigs;
3871 struct cleanup *old_chain;
3872
3873 if (args == NULL)
3874 {
3875 error_no_arg (_("signal to handle"));
3876 }
3877
3878 /* Allocate and zero an array of flags for which signals to handle. */
3879
3880 nsigs = (int) TARGET_SIGNAL_LAST;
3881 sigs = (unsigned char *) alloca (nsigs);
3882 memset (sigs, 0, nsigs);
3883
3884 /* Break the command line up into args. */
3885
3886 argv = buildargv (args);
3887 if (argv == NULL)
3888 {
3889 nomem (0);
3890 }
3891 old_chain = make_cleanup_freeargv (argv);
3892
3893 /* Walk through the args, looking for signal oursigs, signal names, and
3894 actions. Signal numbers and signal names may be interspersed with
3895 actions, with the actions being performed for all signals cumulatively
3896 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3897
3898 while (*argv != NULL)
3899 {
3900 wordlen = strlen (*argv);
3901 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3902 {;
3903 }
3904 allsigs = 0;
3905 sigfirst = siglast = -1;
3906
3907 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3908 {
3909 /* Apply action to all signals except those used by the
3910 debugger. Silently skip those. */
3911 allsigs = 1;
3912 sigfirst = 0;
3913 siglast = nsigs - 1;
3914 }
3915 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3916 {
3917 SET_SIGS (nsigs, sigs, signal_stop);
3918 SET_SIGS (nsigs, sigs, signal_print);
3919 }
3920 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3921 {
3922 UNSET_SIGS (nsigs, sigs, signal_program);
3923 }
3924 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3925 {
3926 SET_SIGS (nsigs, sigs, signal_print);
3927 }
3928 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3929 {
3930 SET_SIGS (nsigs, sigs, signal_program);
3931 }
3932 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3933 {
3934 UNSET_SIGS (nsigs, sigs, signal_stop);
3935 }
3936 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3937 {
3938 SET_SIGS (nsigs, sigs, signal_program);
3939 }
3940 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3941 {
3942 UNSET_SIGS (nsigs, sigs, signal_print);
3943 UNSET_SIGS (nsigs, sigs, signal_stop);
3944 }
3945 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3946 {
3947 UNSET_SIGS (nsigs, sigs, signal_program);
3948 }
3949 else if (digits > 0)
3950 {
3951 /* It is numeric. The numeric signal refers to our own
3952 internal signal numbering from target.h, not to host/target
3953 signal number. This is a feature; users really should be
3954 using symbolic names anyway, and the common ones like
3955 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3956
3957 sigfirst = siglast = (int)
3958 target_signal_from_command (atoi (*argv));
3959 if ((*argv)[digits] == '-')
3960 {
3961 siglast = (int)
3962 target_signal_from_command (atoi ((*argv) + digits + 1));
3963 }
3964 if (sigfirst > siglast)
3965 {
3966 /* Bet he didn't figure we'd think of this case... */
3967 signum = sigfirst;
3968 sigfirst = siglast;
3969 siglast = signum;
3970 }
3971 }
3972 else
3973 {
3974 oursig = target_signal_from_name (*argv);
3975 if (oursig != TARGET_SIGNAL_UNKNOWN)
3976 {
3977 sigfirst = siglast = (int) oursig;
3978 }
3979 else
3980 {
3981 /* Not a number and not a recognized flag word => complain. */
3982 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3983 }
3984 }
3985
3986 /* If any signal numbers or symbol names were found, set flags for
3987 which signals to apply actions to. */
3988
3989 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3990 {
3991 switch ((enum target_signal) signum)
3992 {
3993 case TARGET_SIGNAL_TRAP:
3994 case TARGET_SIGNAL_INT:
3995 if (!allsigs && !sigs[signum])
3996 {
3997 if (query ("%s is used by the debugger.\n\
3998 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3999 {
4000 sigs[signum] = 1;
4001 }
4002 else
4003 {
4004 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4005 gdb_flush (gdb_stdout);
4006 }
4007 }
4008 break;
4009 case TARGET_SIGNAL_0:
4010 case TARGET_SIGNAL_DEFAULT:
4011 case TARGET_SIGNAL_UNKNOWN:
4012 /* Make sure that "all" doesn't print these. */
4013 break;
4014 default:
4015 sigs[signum] = 1;
4016 break;
4017 }
4018 }
4019
4020 argv++;
4021 }
4022
4023 target_notice_signals (inferior_ptid);
4024
4025 if (from_tty)
4026 {
4027 /* Show the results. */
4028 sig_print_header ();
4029 for (signum = 0; signum < nsigs; signum++)
4030 {
4031 if (sigs[signum])
4032 {
4033 sig_print_info (signum);
4034 }
4035 }
4036 }
4037
4038 do_cleanups (old_chain);
4039 }
4040
4041 static void
4042 xdb_handle_command (char *args, int from_tty)
4043 {
4044 char **argv;
4045 struct cleanup *old_chain;
4046
4047 /* Break the command line up into args. */
4048
4049 argv = buildargv (args);
4050 if (argv == NULL)
4051 {
4052 nomem (0);
4053 }
4054 old_chain = make_cleanup_freeargv (argv);
4055 if (argv[1] != (char *) NULL)
4056 {
4057 char *argBuf;
4058 int bufLen;
4059
4060 bufLen = strlen (argv[0]) + 20;
4061 argBuf = (char *) xmalloc (bufLen);
4062 if (argBuf)
4063 {
4064 int validFlag = 1;
4065 enum target_signal oursig;
4066
4067 oursig = target_signal_from_name (argv[0]);
4068 memset (argBuf, 0, bufLen);
4069 if (strcmp (argv[1], "Q") == 0)
4070 sprintf (argBuf, "%s %s", argv[0], "noprint");
4071 else
4072 {
4073 if (strcmp (argv[1], "s") == 0)
4074 {
4075 if (!signal_stop[oursig])
4076 sprintf (argBuf, "%s %s", argv[0], "stop");
4077 else
4078 sprintf (argBuf, "%s %s", argv[0], "nostop");
4079 }
4080 else if (strcmp (argv[1], "i") == 0)
4081 {
4082 if (!signal_program[oursig])
4083 sprintf (argBuf, "%s %s", argv[0], "pass");
4084 else
4085 sprintf (argBuf, "%s %s", argv[0], "nopass");
4086 }
4087 else if (strcmp (argv[1], "r") == 0)
4088 {
4089 if (!signal_print[oursig])
4090 sprintf (argBuf, "%s %s", argv[0], "print");
4091 else
4092 sprintf (argBuf, "%s %s", argv[0], "noprint");
4093 }
4094 else
4095 validFlag = 0;
4096 }
4097 if (validFlag)
4098 handle_command (argBuf, from_tty);
4099 else
4100 printf_filtered (_("Invalid signal handling flag.\n"));
4101 if (argBuf)
4102 xfree (argBuf);
4103 }
4104 }
4105 do_cleanups (old_chain);
4106 }
4107
4108 /* Print current contents of the tables set by the handle command.
4109 It is possible we should just be printing signals actually used
4110 by the current target (but for things to work right when switching
4111 targets, all signals should be in the signal tables). */
4112
4113 static void
4114 signals_info (char *signum_exp, int from_tty)
4115 {
4116 enum target_signal oursig;
4117 sig_print_header ();
4118
4119 if (signum_exp)
4120 {
4121 /* First see if this is a symbol name. */
4122 oursig = target_signal_from_name (signum_exp);
4123 if (oursig == TARGET_SIGNAL_UNKNOWN)
4124 {
4125 /* No, try numeric. */
4126 oursig =
4127 target_signal_from_command (parse_and_eval_long (signum_exp));
4128 }
4129 sig_print_info (oursig);
4130 return;
4131 }
4132
4133 printf_filtered ("\n");
4134 /* These ugly casts brought to you by the native VAX compiler. */
4135 for (oursig = TARGET_SIGNAL_FIRST;
4136 (int) oursig < (int) TARGET_SIGNAL_LAST;
4137 oursig = (enum target_signal) ((int) oursig + 1))
4138 {
4139 QUIT;
4140
4141 if (oursig != TARGET_SIGNAL_UNKNOWN
4142 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4143 sig_print_info (oursig);
4144 }
4145
4146 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4147 }
4148 \f
4149 struct inferior_status
4150 {
4151 enum target_signal stop_signal;
4152 CORE_ADDR stop_pc;
4153 bpstat stop_bpstat;
4154 int stop_step;
4155 int stop_stack_dummy;
4156 int stopped_by_random_signal;
4157 int stepping_over_breakpoint;
4158 CORE_ADDR step_range_start;
4159 CORE_ADDR step_range_end;
4160 struct frame_id step_frame_id;
4161 enum step_over_calls_kind step_over_calls;
4162 CORE_ADDR step_resume_break_address;
4163 int stop_after_trap;
4164 int stop_soon;
4165
4166 /* These are here because if call_function_by_hand has written some
4167 registers and then decides to call error(), we better not have changed
4168 any registers. */
4169 struct regcache *registers;
4170
4171 /* A frame unique identifier. */
4172 struct frame_id selected_frame_id;
4173
4174 int breakpoint_proceeded;
4175 int restore_stack_info;
4176 int proceed_to_finish;
4177 };
4178
4179 void
4180 write_inferior_status_register (struct inferior_status *inf_status, int regno,
4181 LONGEST val)
4182 {
4183 int size = register_size (current_gdbarch, regno);
4184 void *buf = alloca (size);
4185 store_signed_integer (buf, size, val);
4186 regcache_raw_write (inf_status->registers, regno, buf);
4187 }
4188
4189 /* Save all of the information associated with the inferior<==>gdb
4190 connection. INF_STATUS is a pointer to a "struct inferior_status"
4191 (defined in inferior.h). */
4192
4193 struct inferior_status *
4194 save_inferior_status (int restore_stack_info)
4195 {
4196 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4197
4198 inf_status->stop_signal = stop_signal;
4199 inf_status->stop_pc = stop_pc;
4200 inf_status->stop_step = stop_step;
4201 inf_status->stop_stack_dummy = stop_stack_dummy;
4202 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4203 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
4204 inf_status->step_range_start = step_range_start;
4205 inf_status->step_range_end = step_range_end;
4206 inf_status->step_frame_id = step_frame_id;
4207 inf_status->step_over_calls = step_over_calls;
4208 inf_status->stop_after_trap = stop_after_trap;
4209 inf_status->stop_soon = stop_soon;
4210 /* Save original bpstat chain here; replace it with copy of chain.
4211 If caller's caller is walking the chain, they'll be happier if we
4212 hand them back the original chain when restore_inferior_status is
4213 called. */
4214 inf_status->stop_bpstat = stop_bpstat;
4215 stop_bpstat = bpstat_copy (stop_bpstat);
4216 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4217 inf_status->restore_stack_info = restore_stack_info;
4218 inf_status->proceed_to_finish = proceed_to_finish;
4219
4220 inf_status->registers = regcache_dup (get_current_regcache ());
4221
4222 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4223 return inf_status;
4224 }
4225
4226 static int
4227 restore_selected_frame (void *args)
4228 {
4229 struct frame_id *fid = (struct frame_id *) args;
4230 struct frame_info *frame;
4231
4232 frame = frame_find_by_id (*fid);
4233
4234 /* If inf_status->selected_frame_id is NULL, there was no previously
4235 selected frame. */
4236 if (frame == NULL)
4237 {
4238 warning (_("Unable to restore previously selected frame."));
4239 return 0;
4240 }
4241
4242 select_frame (frame);
4243
4244 return (1);
4245 }
4246
4247 void
4248 restore_inferior_status (struct inferior_status *inf_status)
4249 {
4250 stop_signal = inf_status->stop_signal;
4251 stop_pc = inf_status->stop_pc;
4252 stop_step = inf_status->stop_step;
4253 stop_stack_dummy = inf_status->stop_stack_dummy;
4254 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4255 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
4256 step_range_start = inf_status->step_range_start;
4257 step_range_end = inf_status->step_range_end;
4258 step_frame_id = inf_status->step_frame_id;
4259 step_over_calls = inf_status->step_over_calls;
4260 stop_after_trap = inf_status->stop_after_trap;
4261 stop_soon = inf_status->stop_soon;
4262 bpstat_clear (&stop_bpstat);
4263 stop_bpstat = inf_status->stop_bpstat;
4264 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4265 proceed_to_finish = inf_status->proceed_to_finish;
4266
4267 /* The inferior can be gone if the user types "print exit(0)"
4268 (and perhaps other times). */
4269 if (target_has_execution)
4270 /* NB: The register write goes through to the target. */
4271 regcache_cpy (get_current_regcache (), inf_status->registers);
4272 regcache_xfree (inf_status->registers);
4273
4274 /* FIXME: If we are being called after stopping in a function which
4275 is called from gdb, we should not be trying to restore the
4276 selected frame; it just prints a spurious error message (The
4277 message is useful, however, in detecting bugs in gdb (like if gdb
4278 clobbers the stack)). In fact, should we be restoring the
4279 inferior status at all in that case? . */
4280
4281 if (target_has_stack && inf_status->restore_stack_info)
4282 {
4283 /* The point of catch_errors is that if the stack is clobbered,
4284 walking the stack might encounter a garbage pointer and
4285 error() trying to dereference it. */
4286 if (catch_errors
4287 (restore_selected_frame, &inf_status->selected_frame_id,
4288 "Unable to restore previously selected frame:\n",
4289 RETURN_MASK_ERROR) == 0)
4290 /* Error in restoring the selected frame. Select the innermost
4291 frame. */
4292 select_frame (get_current_frame ());
4293
4294 }
4295
4296 xfree (inf_status);
4297 }
4298
4299 static void
4300 do_restore_inferior_status_cleanup (void *sts)
4301 {
4302 restore_inferior_status (sts);
4303 }
4304
4305 struct cleanup *
4306 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4307 {
4308 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4309 }
4310
4311 void
4312 discard_inferior_status (struct inferior_status *inf_status)
4313 {
4314 /* See save_inferior_status for info on stop_bpstat. */
4315 bpstat_clear (&inf_status->stop_bpstat);
4316 regcache_xfree (inf_status->registers);
4317 xfree (inf_status);
4318 }
4319
4320 int
4321 inferior_has_forked (int pid, int *child_pid)
4322 {
4323 struct target_waitstatus last;
4324 ptid_t last_ptid;
4325
4326 get_last_target_status (&last_ptid, &last);
4327
4328 if (last.kind != TARGET_WAITKIND_FORKED)
4329 return 0;
4330
4331 if (ptid_get_pid (last_ptid) != pid)
4332 return 0;
4333
4334 *child_pid = last.value.related_pid;
4335 return 1;
4336 }
4337
4338 int
4339 inferior_has_vforked (int pid, int *child_pid)
4340 {
4341 struct target_waitstatus last;
4342 ptid_t last_ptid;
4343
4344 get_last_target_status (&last_ptid, &last);
4345
4346 if (last.kind != TARGET_WAITKIND_VFORKED)
4347 return 0;
4348
4349 if (ptid_get_pid (last_ptid) != pid)
4350 return 0;
4351
4352 *child_pid = last.value.related_pid;
4353 return 1;
4354 }
4355
4356 int
4357 inferior_has_execd (int pid, char **execd_pathname)
4358 {
4359 struct target_waitstatus last;
4360 ptid_t last_ptid;
4361
4362 get_last_target_status (&last_ptid, &last);
4363
4364 if (last.kind != TARGET_WAITKIND_EXECD)
4365 return 0;
4366
4367 if (ptid_get_pid (last_ptid) != pid)
4368 return 0;
4369
4370 *execd_pathname = xstrdup (last.value.execd_pathname);
4371 return 1;
4372 }
4373
4374 /* Oft used ptids */
4375 ptid_t null_ptid;
4376 ptid_t minus_one_ptid;
4377
4378 /* Create a ptid given the necessary PID, LWP, and TID components. */
4379
4380 ptid_t
4381 ptid_build (int pid, long lwp, long tid)
4382 {
4383 ptid_t ptid;
4384
4385 ptid.pid = pid;
4386 ptid.lwp = lwp;
4387 ptid.tid = tid;
4388 return ptid;
4389 }
4390
4391 /* Create a ptid from just a pid. */
4392
4393 ptid_t
4394 pid_to_ptid (int pid)
4395 {
4396 return ptid_build (pid, 0, 0);
4397 }
4398
4399 /* Fetch the pid (process id) component from a ptid. */
4400
4401 int
4402 ptid_get_pid (ptid_t ptid)
4403 {
4404 return ptid.pid;
4405 }
4406
4407 /* Fetch the lwp (lightweight process) component from a ptid. */
4408
4409 long
4410 ptid_get_lwp (ptid_t ptid)
4411 {
4412 return ptid.lwp;
4413 }
4414
4415 /* Fetch the tid (thread id) component from a ptid. */
4416
4417 long
4418 ptid_get_tid (ptid_t ptid)
4419 {
4420 return ptid.tid;
4421 }
4422
4423 /* ptid_equal() is used to test equality of two ptids. */
4424
4425 int
4426 ptid_equal (ptid_t ptid1, ptid_t ptid2)
4427 {
4428 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4429 && ptid1.tid == ptid2.tid);
4430 }
4431
4432 /* restore_inferior_ptid() will be used by the cleanup machinery
4433 to restore the inferior_ptid value saved in a call to
4434 save_inferior_ptid(). */
4435
4436 static void
4437 restore_inferior_ptid (void *arg)
4438 {
4439 ptid_t *saved_ptid_ptr = arg;
4440 inferior_ptid = *saved_ptid_ptr;
4441 xfree (arg);
4442 }
4443
4444 /* Save the value of inferior_ptid so that it may be restored by a
4445 later call to do_cleanups(). Returns the struct cleanup pointer
4446 needed for later doing the cleanup. */
4447
4448 struct cleanup *
4449 save_inferior_ptid (void)
4450 {
4451 ptid_t *saved_ptid_ptr;
4452
4453 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4454 *saved_ptid_ptr = inferior_ptid;
4455 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4456 }
4457 \f
4458
4459 void
4460 _initialize_infrun (void)
4461 {
4462 int i;
4463 int numsigs;
4464 struct cmd_list_element *c;
4465
4466 add_info ("signals", signals_info, _("\
4467 What debugger does when program gets various signals.\n\
4468 Specify a signal as argument to print info on that signal only."));
4469 add_info_alias ("handle", "signals", 0);
4470
4471 add_com ("handle", class_run, handle_command, _("\
4472 Specify how to handle a signal.\n\
4473 Args are signals and actions to apply to those signals.\n\
4474 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4475 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4476 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4477 The special arg \"all\" is recognized to mean all signals except those\n\
4478 used by the debugger, typically SIGTRAP and SIGINT.\n\
4479 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4480 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4481 Stop means reenter debugger if this signal happens (implies print).\n\
4482 Print means print a message if this signal happens.\n\
4483 Pass means let program see this signal; otherwise program doesn't know.\n\
4484 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4485 Pass and Stop may be combined."));
4486 if (xdb_commands)
4487 {
4488 add_com ("lz", class_info, signals_info, _("\
4489 What debugger does when program gets various signals.\n\
4490 Specify a signal as argument to print info on that signal only."));
4491 add_com ("z", class_run, xdb_handle_command, _("\
4492 Specify how to handle a signal.\n\
4493 Args are signals and actions to apply to those signals.\n\
4494 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4495 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4496 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4497 The special arg \"all\" is recognized to mean all signals except those\n\
4498 used by the debugger, typically SIGTRAP and SIGINT.\n\
4499 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4500 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4501 nopass), \"Q\" (noprint)\n\
4502 Stop means reenter debugger if this signal happens (implies print).\n\
4503 Print means print a message if this signal happens.\n\
4504 Pass means let program see this signal; otherwise program doesn't know.\n\
4505 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4506 Pass and Stop may be combined."));
4507 }
4508
4509 if (!dbx_commands)
4510 stop_command = add_cmd ("stop", class_obscure,
4511 not_just_help_class_command, _("\
4512 There is no `stop' command, but you can set a hook on `stop'.\n\
4513 This allows you to set a list of commands to be run each time execution\n\
4514 of the program stops."), &cmdlist);
4515
4516 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4517 Set inferior debugging."), _("\
4518 Show inferior debugging."), _("\
4519 When non-zero, inferior specific debugging is enabled."),
4520 NULL,
4521 show_debug_infrun,
4522 &setdebuglist, &showdebuglist);
4523
4524 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4525 Set displaced stepping debugging."), _("\
4526 Show displaced stepping debugging."), _("\
4527 When non-zero, displaced stepping specific debugging is enabled."),
4528 NULL,
4529 show_debug_displaced,
4530 &setdebuglist, &showdebuglist);
4531
4532 numsigs = (int) TARGET_SIGNAL_LAST;
4533 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4534 signal_print = (unsigned char *)
4535 xmalloc (sizeof (signal_print[0]) * numsigs);
4536 signal_program = (unsigned char *)
4537 xmalloc (sizeof (signal_program[0]) * numsigs);
4538 for (i = 0; i < numsigs; i++)
4539 {
4540 signal_stop[i] = 1;
4541 signal_print[i] = 1;
4542 signal_program[i] = 1;
4543 }
4544
4545 /* Signals caused by debugger's own actions
4546 should not be given to the program afterwards. */
4547 signal_program[TARGET_SIGNAL_TRAP] = 0;
4548 signal_program[TARGET_SIGNAL_INT] = 0;
4549
4550 /* Signals that are not errors should not normally enter the debugger. */
4551 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4552 signal_print[TARGET_SIGNAL_ALRM] = 0;
4553 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4554 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4555 signal_stop[TARGET_SIGNAL_PROF] = 0;
4556 signal_print[TARGET_SIGNAL_PROF] = 0;
4557 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4558 signal_print[TARGET_SIGNAL_CHLD] = 0;
4559 signal_stop[TARGET_SIGNAL_IO] = 0;
4560 signal_print[TARGET_SIGNAL_IO] = 0;
4561 signal_stop[TARGET_SIGNAL_POLL] = 0;
4562 signal_print[TARGET_SIGNAL_POLL] = 0;
4563 signal_stop[TARGET_SIGNAL_URG] = 0;
4564 signal_print[TARGET_SIGNAL_URG] = 0;
4565 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4566 signal_print[TARGET_SIGNAL_WINCH] = 0;
4567
4568 /* These signals are used internally by user-level thread
4569 implementations. (See signal(5) on Solaris.) Like the above
4570 signals, a healthy program receives and handles them as part of
4571 its normal operation. */
4572 signal_stop[TARGET_SIGNAL_LWP] = 0;
4573 signal_print[TARGET_SIGNAL_LWP] = 0;
4574 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4575 signal_print[TARGET_SIGNAL_WAITING] = 0;
4576 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4577 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4578
4579 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4580 &stop_on_solib_events, _("\
4581 Set stopping for shared library events."), _("\
4582 Show stopping for shared library events."), _("\
4583 If nonzero, gdb will give control to the user when the dynamic linker\n\
4584 notifies gdb of shared library events. The most common event of interest\n\
4585 to the user would be loading/unloading of a new library."),
4586 NULL,
4587 show_stop_on_solib_events,
4588 &setlist, &showlist);
4589
4590 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4591 follow_fork_mode_kind_names,
4592 &follow_fork_mode_string, _("\
4593 Set debugger response to a program call of fork or vfork."), _("\
4594 Show debugger response to a program call of fork or vfork."), _("\
4595 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4596 parent - the original process is debugged after a fork\n\
4597 child - the new process is debugged after a fork\n\
4598 The unfollowed process will continue to run.\n\
4599 By default, the debugger will follow the parent process."),
4600 NULL,
4601 show_follow_fork_mode_string,
4602 &setlist, &showlist);
4603
4604 add_setshow_enum_cmd ("scheduler-locking", class_run,
4605 scheduler_enums, &scheduler_mode, _("\
4606 Set mode for locking scheduler during execution."), _("\
4607 Show mode for locking scheduler during execution."), _("\
4608 off == no locking (threads may preempt at any time)\n\
4609 on == full locking (no thread except the current thread may run)\n\
4610 step == scheduler locked during every single-step operation.\n\
4611 In this mode, no other thread may run during a step command.\n\
4612 Other threads may run while stepping over a function call ('next')."),
4613 set_schedlock_func, /* traps on target vector */
4614 show_scheduler_mode,
4615 &setlist, &showlist);
4616
4617 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4618 Set mode of the step operation."), _("\
4619 Show mode of the step operation."), _("\
4620 When set, doing a step over a function without debug line information\n\
4621 will stop at the first instruction of that function. Otherwise, the\n\
4622 function is skipped and the step command stops at a different source line."),
4623 NULL,
4624 show_step_stop_if_no_debug,
4625 &setlist, &showlist);
4626
4627 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
4628 &can_use_displaced_stepping, _("\
4629 Set debugger's willingness to use displaced stepping."), _("\
4630 Show debugger's willingness to use displaced stepping."), _("\
4631 If zero, gdb will not use displaced stepping to step over\n\
4632 breakpoints, even if such is supported by the target."),
4633 NULL,
4634 show_can_use_displaced_stepping,
4635 &maintenance_set_cmdlist,
4636 &maintenance_show_cmdlist);
4637
4638 /* ptid initializations */
4639 null_ptid = ptid_build (0, 0, 0);
4640 minus_one_ptid = ptid_build (-1, 0, 0);
4641 inferior_ptid = null_ptid;
4642 target_last_wait_ptid = minus_one_ptid;
4643 displaced_step_ptid = null_ptid;
4644 }
This page took 0.1296 seconds and 4 git commands to generate.