*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51 #include "event-top.h"
52
53 /* Prototypes for local functions */
54
55 static void signals_info (char *, int);
56
57 static void handle_command (char *, int);
58
59 static void sig_print_info (enum target_signal);
60
61 static void sig_print_header (void);
62
63 static void resume_cleanups (void *);
64
65 static int hook_stop_stub (void *);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 struct thread_stepping_state;
77
78 static int currently_stepping (struct thread_stepping_state *tss);
79
80 static void xdb_handle_command (char *args, int from_tty);
81
82 static int prepare_to_proceed (int);
83
84 void _initialize_infrun (void);
85
86 /* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89 int step_stop_if_no_debug = 0;
90 static void
91 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
92 struct cmd_list_element *c, const char *value)
93 {
94 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
95 }
96
97 /* In asynchronous mode, but simulating synchronous execution. */
98
99 int sync_execution = 0;
100
101 /* wait_for_inferior and normal_stop use this to notify the user
102 when the inferior stopped in a different thread than it had been
103 running in. */
104
105 static ptid_t previous_inferior_ptid;
106
107 int debug_displaced = 0;
108 static void
109 show_debug_displaced (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111 {
112 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
113 }
114
115 static int debug_infrun = 0;
116 static void
117 show_debug_infrun (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
121 }
122
123 /* If the program uses ELF-style shared libraries, then calls to
124 functions in shared libraries go through stubs, which live in a
125 table called the PLT (Procedure Linkage Table). The first time the
126 function is called, the stub sends control to the dynamic linker,
127 which looks up the function's real address, patches the stub so
128 that future calls will go directly to the function, and then passes
129 control to the function.
130
131 If we are stepping at the source level, we don't want to see any of
132 this --- we just want to skip over the stub and the dynamic linker.
133 The simple approach is to single-step until control leaves the
134 dynamic linker.
135
136 However, on some systems (e.g., Red Hat's 5.2 distribution) the
137 dynamic linker calls functions in the shared C library, so you
138 can't tell from the PC alone whether the dynamic linker is still
139 running. In this case, we use a step-resume breakpoint to get us
140 past the dynamic linker, as if we were using "next" to step over a
141 function call.
142
143 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
144 linker code or not. Normally, this means we single-step. However,
145 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
146 address where we can place a step-resume breakpoint to get past the
147 linker's symbol resolution function.
148
149 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
150 pretty portable way, by comparing the PC against the address ranges
151 of the dynamic linker's sections.
152
153 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
154 it depends on internal details of the dynamic linker. It's usually
155 not too hard to figure out where to put a breakpoint, but it
156 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
157 sanity checking. If it can't figure things out, returning zero and
158 getting the (possibly confusing) stepping behavior is better than
159 signalling an error, which will obscure the change in the
160 inferior's state. */
161
162 /* This function returns TRUE if pc is the address of an instruction
163 that lies within the dynamic linker (such as the event hook, or the
164 dld itself).
165
166 This function must be used only when a dynamic linker event has
167 been caught, and the inferior is being stepped out of the hook, or
168 undefined results are guaranteed. */
169
170 #ifndef SOLIB_IN_DYNAMIC_LINKER
171 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
172 #endif
173
174
175 /* Convert the #defines into values. This is temporary until wfi control
176 flow is completely sorted out. */
177
178 #ifndef CANNOT_STEP_HW_WATCHPOINTS
179 #define CANNOT_STEP_HW_WATCHPOINTS 0
180 #else
181 #undef CANNOT_STEP_HW_WATCHPOINTS
182 #define CANNOT_STEP_HW_WATCHPOINTS 1
183 #endif
184
185 /* Tables of how to react to signals; the user sets them. */
186
187 static unsigned char *signal_stop;
188 static unsigned char *signal_print;
189 static unsigned char *signal_program;
190
191 #define SET_SIGS(nsigs,sigs,flags) \
192 do { \
193 int signum = (nsigs); \
194 while (signum-- > 0) \
195 if ((sigs)[signum]) \
196 (flags)[signum] = 1; \
197 } while (0)
198
199 #define UNSET_SIGS(nsigs,sigs,flags) \
200 do { \
201 int signum = (nsigs); \
202 while (signum-- > 0) \
203 if ((sigs)[signum]) \
204 (flags)[signum] = 0; \
205 } while (0)
206
207 /* Value to pass to target_resume() to cause all threads to resume */
208
209 #define RESUME_ALL (pid_to_ptid (-1))
210
211 /* Command list pointer for the "stop" placeholder. */
212
213 static struct cmd_list_element *stop_command;
214
215 /* Function inferior was in as of last step command. */
216
217 static struct symbol *step_start_function;
218
219 /* Nonzero if we are presently stepping over a breakpoint.
220
221 If we hit a breakpoint or watchpoint, and then continue,
222 we need to single step the current thread with breakpoints
223 disabled, to avoid hitting the same breakpoint or
224 watchpoint again. And we should step just a single
225 thread and keep other threads stopped, so that
226 other threads don't miss breakpoints while they are removed.
227
228 So, this variable simultaneously means that we need to single
229 step the current thread, keep other threads stopped, and that
230 breakpoints should be removed while we step.
231
232 This variable is set either:
233 - in proceed, when we resume inferior on user's explicit request
234 - in keep_going, if handle_inferior_event decides we need to
235 step over breakpoint.
236
237 The variable is cleared in clear_proceed_status, called every
238 time before we call proceed. The proceed calls wait_for_inferior,
239 which calls handle_inferior_event in a loop, and until
240 wait_for_inferior exits, this variable is changed only by keep_going. */
241
242 static int stepping_over_breakpoint;
243
244 /* Nonzero if we want to give control to the user when we're notified
245 of shared library events by the dynamic linker. */
246 static int stop_on_solib_events;
247 static void
248 show_stop_on_solib_events (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
252 value);
253 }
254
255 /* Nonzero means expecting a trace trap
256 and should stop the inferior and return silently when it happens. */
257
258 int stop_after_trap;
259
260 /* Nonzero means expecting a trap and caller will handle it themselves.
261 It is used after attach, due to attaching to a process;
262 when running in the shell before the child program has been exec'd;
263 and when running some kinds of remote stuff (FIXME?). */
264
265 enum stop_kind stop_soon;
266
267 /* Nonzero if proceed is being used for a "finish" command or a similar
268 situation when stop_registers should be saved. */
269
270 int proceed_to_finish;
271
272 /* Save register contents here when about to pop a stack dummy frame,
273 if-and-only-if proceed_to_finish is set.
274 Thus this contains the return value from the called function (assuming
275 values are returned in a register). */
276
277 struct regcache *stop_registers;
278
279 /* Nonzero after stop if current stack frame should be printed. */
280
281 static int stop_print_frame;
282
283 /* Step-resume or longjmp-resume breakpoint. */
284 static struct breakpoint *step_resume_breakpoint = NULL;
285
286 /* This is a cached copy of the pid/waitstatus of the last event
287 returned by target_wait()/deprecated_target_wait_hook(). This
288 information is returned by get_last_target_status(). */
289 static ptid_t target_last_wait_ptid;
290 static struct target_waitstatus target_last_waitstatus;
291
292 /* Context-switchable data. */
293 struct thread_stepping_state
294 {
295 /* Should we step over breakpoint next time keep_going
296 is called? */
297 int stepping_over_breakpoint;
298 int current_line;
299 struct symtab *current_symtab;
300 int step_after_step_resume_breakpoint;
301 int stepping_through_solib_after_catch;
302 bpstat stepping_through_solib_catchpoints;
303 };
304
305 struct thread_stepping_state gtss;
306 struct thread_stepping_state *tss = &gtss;
307
308 static void context_switch (ptid_t ptid);
309
310 void init_thread_stepping_state (struct thread_stepping_state *tss);
311
312 void init_infwait_state (void);
313
314 /* This is used to remember when a fork, vfork or exec event
315 was caught by a catchpoint, and thus the event is to be
316 followed at the next resume of the inferior, and not
317 immediately. */
318 static struct
319 {
320 enum target_waitkind kind;
321 struct
322 {
323 ptid_t parent_pid;
324 ptid_t child_pid;
325 }
326 fork_event;
327 char *execd_pathname;
328 }
329 pending_follow;
330
331 static const char follow_fork_mode_child[] = "child";
332 static const char follow_fork_mode_parent[] = "parent";
333
334 static const char *follow_fork_mode_kind_names[] = {
335 follow_fork_mode_child,
336 follow_fork_mode_parent,
337 NULL
338 };
339
340 static const char *follow_fork_mode_string = follow_fork_mode_parent;
341 static void
342 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
343 struct cmd_list_element *c, const char *value)
344 {
345 fprintf_filtered (file, _("\
346 Debugger response to a program call of fork or vfork is \"%s\".\n"),
347 value);
348 }
349 \f
350
351 static int
352 follow_fork (void)
353 {
354 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
355
356 return target_follow_fork (follow_child);
357 }
358
359 void
360 follow_inferior_reset_breakpoints (void)
361 {
362 /* Was there a step_resume breakpoint? (There was if the user
363 did a "next" at the fork() call.) If so, explicitly reset its
364 thread number.
365
366 step_resumes are a form of bp that are made to be per-thread.
367 Since we created the step_resume bp when the parent process
368 was being debugged, and now are switching to the child process,
369 from the breakpoint package's viewpoint, that's a switch of
370 "threads". We must update the bp's notion of which thread
371 it is for, or it'll be ignored when it triggers. */
372
373 if (step_resume_breakpoint)
374 breakpoint_re_set_thread (step_resume_breakpoint);
375
376 /* Reinsert all breakpoints in the child. The user may have set
377 breakpoints after catching the fork, in which case those
378 were never set in the child, but only in the parent. This makes
379 sure the inserted breakpoints match the breakpoint list. */
380
381 breakpoint_re_set ();
382 insert_breakpoints ();
383 }
384
385 /* EXECD_PATHNAME is assumed to be non-NULL. */
386
387 static void
388 follow_exec (ptid_t pid, char *execd_pathname)
389 {
390 ptid_t saved_pid = pid;
391 struct target_ops *tgt;
392
393 /* This is an exec event that we actually wish to pay attention to.
394 Refresh our symbol table to the newly exec'd program, remove any
395 momentary bp's, etc.
396
397 If there are breakpoints, they aren't really inserted now,
398 since the exec() transformed our inferior into a fresh set
399 of instructions.
400
401 We want to preserve symbolic breakpoints on the list, since
402 we have hopes that they can be reset after the new a.out's
403 symbol table is read.
404
405 However, any "raw" breakpoints must be removed from the list
406 (e.g., the solib bp's), since their address is probably invalid
407 now.
408
409 And, we DON'T want to call delete_breakpoints() here, since
410 that may write the bp's "shadow contents" (the instruction
411 value that was overwritten witha TRAP instruction). Since
412 we now have a new a.out, those shadow contents aren't valid. */
413 update_breakpoints_after_exec ();
414
415 /* If there was one, it's gone now. We cannot truly step-to-next
416 statement through an exec(). */
417 step_resume_breakpoint = NULL;
418 step_range_start = 0;
419 step_range_end = 0;
420
421 /* What is this a.out's name? */
422 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
423
424 /* We've followed the inferior through an exec. Therefore, the
425 inferior has essentially been killed & reborn. */
426
427 gdb_flush (gdb_stdout);
428 generic_mourn_inferior ();
429 /* Because mourn_inferior resets inferior_ptid. */
430 inferior_ptid = saved_pid;
431
432 if (gdb_sysroot && *gdb_sysroot)
433 {
434 char *name = alloca (strlen (gdb_sysroot)
435 + strlen (execd_pathname)
436 + 1);
437 strcpy (name, gdb_sysroot);
438 strcat (name, execd_pathname);
439 execd_pathname = name;
440 }
441
442 /* That a.out is now the one to use. */
443 exec_file_attach (execd_pathname, 0);
444
445 /* Reset the shared library package. This ensures that we get a
446 shlib event when the child reaches "_start", at which point the
447 dld will have had a chance to initialize the child. */
448 /* Also, loading a symbol file below may trigger symbol lookups, and
449 we don't want those to be satisfied by the libraries of the
450 previous incarnation of this process. */
451 no_shared_libraries (NULL, 0);
452
453 /* Load the main file's symbols. */
454 symbol_file_add_main (execd_pathname, 0);
455
456 #ifdef SOLIB_CREATE_INFERIOR_HOOK
457 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
458 #else
459 solib_create_inferior_hook ();
460 #endif
461
462 /* Reinsert all breakpoints. (Those which were symbolic have
463 been reset to the proper address in the new a.out, thanks
464 to symbol_file_command...) */
465 insert_breakpoints ();
466
467 /* The next resume of this inferior should bring it to the shlib
468 startup breakpoints. (If the user had also set bp's on
469 "main" from the old (parent) process, then they'll auto-
470 matically get reset there in the new process.) */
471 }
472
473 /* Non-zero if we just simulating a single-step. This is needed
474 because we cannot remove the breakpoints in the inferior process
475 until after the `wait' in `wait_for_inferior'. */
476 static int singlestep_breakpoints_inserted_p = 0;
477
478 /* The thread we inserted single-step breakpoints for. */
479 static ptid_t singlestep_ptid;
480
481 /* PC when we started this single-step. */
482 static CORE_ADDR singlestep_pc;
483
484 /* If another thread hit the singlestep breakpoint, we save the original
485 thread here so that we can resume single-stepping it later. */
486 static ptid_t saved_singlestep_ptid;
487 static int stepping_past_singlestep_breakpoint;
488
489 /* If not equal to null_ptid, this means that after stepping over breakpoint
490 is finished, we need to switch to deferred_step_ptid, and step it.
491
492 The use case is when one thread has hit a breakpoint, and then the user
493 has switched to another thread and issued 'step'. We need to step over
494 breakpoint in the thread which hit the breakpoint, but then continue
495 stepping the thread user has selected. */
496 static ptid_t deferred_step_ptid;
497 \f
498 /* Displaced stepping. */
499
500 /* In non-stop debugging mode, we must take special care to manage
501 breakpoints properly; in particular, the traditional strategy for
502 stepping a thread past a breakpoint it has hit is unsuitable.
503 'Displaced stepping' is a tactic for stepping one thread past a
504 breakpoint it has hit while ensuring that other threads running
505 concurrently will hit the breakpoint as they should.
506
507 The traditional way to step a thread T off a breakpoint in a
508 multi-threaded program in all-stop mode is as follows:
509
510 a0) Initially, all threads are stopped, and breakpoints are not
511 inserted.
512 a1) We single-step T, leaving breakpoints uninserted.
513 a2) We insert breakpoints, and resume all threads.
514
515 In non-stop debugging, however, this strategy is unsuitable: we
516 don't want to have to stop all threads in the system in order to
517 continue or step T past a breakpoint. Instead, we use displaced
518 stepping:
519
520 n0) Initially, T is stopped, other threads are running, and
521 breakpoints are inserted.
522 n1) We copy the instruction "under" the breakpoint to a separate
523 location, outside the main code stream, making any adjustments
524 to the instruction, register, and memory state as directed by
525 T's architecture.
526 n2) We single-step T over the instruction at its new location.
527 n3) We adjust the resulting register and memory state as directed
528 by T's architecture. This includes resetting T's PC to point
529 back into the main instruction stream.
530 n4) We resume T.
531
532 This approach depends on the following gdbarch methods:
533
534 - gdbarch_max_insn_length and gdbarch_displaced_step_location
535 indicate where to copy the instruction, and how much space must
536 be reserved there. We use these in step n1.
537
538 - gdbarch_displaced_step_copy_insn copies a instruction to a new
539 address, and makes any necessary adjustments to the instruction,
540 register contents, and memory. We use this in step n1.
541
542 - gdbarch_displaced_step_fixup adjusts registers and memory after
543 we have successfuly single-stepped the instruction, to yield the
544 same effect the instruction would have had if we had executed it
545 at its original address. We use this in step n3.
546
547 - gdbarch_displaced_step_free_closure provides cleanup.
548
549 The gdbarch_displaced_step_copy_insn and
550 gdbarch_displaced_step_fixup functions must be written so that
551 copying an instruction with gdbarch_displaced_step_copy_insn,
552 single-stepping across the copied instruction, and then applying
553 gdbarch_displaced_insn_fixup should have the same effects on the
554 thread's memory and registers as stepping the instruction in place
555 would have. Exactly which responsibilities fall to the copy and
556 which fall to the fixup is up to the author of those functions.
557
558 See the comments in gdbarch.sh for details.
559
560 Note that displaced stepping and software single-step cannot
561 currently be used in combination, although with some care I think
562 they could be made to. Software single-step works by placing
563 breakpoints on all possible subsequent instructions; if the
564 displaced instruction is a PC-relative jump, those breakpoints
565 could fall in very strange places --- on pages that aren't
566 executable, or at addresses that are not proper instruction
567 boundaries. (We do generally let other threads run while we wait
568 to hit the software single-step breakpoint, and they might
569 encounter such a corrupted instruction.) One way to work around
570 this would be to have gdbarch_displaced_step_copy_insn fully
571 simulate the effect of PC-relative instructions (and return NULL)
572 on architectures that use software single-stepping.
573
574 In non-stop mode, we can have independent and simultaneous step
575 requests, so more than one thread may need to simultaneously step
576 over a breakpoint. The current implementation assumes there is
577 only one scratch space per process. In this case, we have to
578 serialize access to the scratch space. If thread A wants to step
579 over a breakpoint, but we are currently waiting for some other
580 thread to complete a displaced step, we leave thread A stopped and
581 place it in the displaced_step_request_queue. Whenever a displaced
582 step finishes, we pick the next thread in the queue and start a new
583 displaced step operation on it. See displaced_step_prepare and
584 displaced_step_fixup for details. */
585
586 /* If this is not null_ptid, this is the thread carrying out a
587 displaced single-step. This thread's state will require fixing up
588 once it has completed its step. */
589 static ptid_t displaced_step_ptid;
590
591 struct displaced_step_request
592 {
593 ptid_t ptid;
594 struct displaced_step_request *next;
595 };
596
597 /* A queue of pending displaced stepping requests. */
598 struct displaced_step_request *displaced_step_request_queue;
599
600 /* The architecture the thread had when we stepped it. */
601 static struct gdbarch *displaced_step_gdbarch;
602
603 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
604 for post-step cleanup. */
605 static struct displaced_step_closure *displaced_step_closure;
606
607 /* The address of the original instruction, and the copy we made. */
608 static CORE_ADDR displaced_step_original, displaced_step_copy;
609
610 /* Saved contents of copy area. */
611 static gdb_byte *displaced_step_saved_copy;
612
613 /* When this is non-zero, we are allowed to use displaced stepping, if
614 the architecture supports it. When this is zero, we use
615 traditional the hold-and-step approach. */
616 int can_use_displaced_stepping = 1;
617 static void
618 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
619 struct cmd_list_element *c,
620 const char *value)
621 {
622 fprintf_filtered (file, _("\
623 Debugger's willingness to use displaced stepping to step over "
624 "breakpoints is %s.\n"), value);
625 }
626
627 /* Return non-zero if displaced stepping is enabled, and can be used
628 with GDBARCH. */
629 static int
630 use_displaced_stepping (struct gdbarch *gdbarch)
631 {
632 return (can_use_displaced_stepping
633 && gdbarch_displaced_step_copy_insn_p (gdbarch));
634 }
635
636 /* Clean out any stray displaced stepping state. */
637 static void
638 displaced_step_clear (void)
639 {
640 /* Indicate that there is no cleanup pending. */
641 displaced_step_ptid = null_ptid;
642
643 if (displaced_step_closure)
644 {
645 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
646 displaced_step_closure);
647 displaced_step_closure = NULL;
648 }
649 }
650
651 static void
652 cleanup_displaced_step_closure (void *ptr)
653 {
654 struct displaced_step_closure *closure = ptr;
655
656 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
657 }
658
659 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
660 void
661 displaced_step_dump_bytes (struct ui_file *file,
662 const gdb_byte *buf,
663 size_t len)
664 {
665 int i;
666
667 for (i = 0; i < len; i++)
668 fprintf_unfiltered (file, "%02x ", buf[i]);
669 fputs_unfiltered ("\n", file);
670 }
671
672 /* Prepare to single-step, using displaced stepping.
673
674 Note that we cannot use displaced stepping when we have a signal to
675 deliver. If we have a signal to deliver and an instruction to step
676 over, then after the step, there will be no indication from the
677 target whether the thread entered a signal handler or ignored the
678 signal and stepped over the instruction successfully --- both cases
679 result in a simple SIGTRAP. In the first case we mustn't do a
680 fixup, and in the second case we must --- but we can't tell which.
681 Comments in the code for 'random signals' in handle_inferior_event
682 explain how we handle this case instead.
683
684 Returns 1 if preparing was successful -- this thread is going to be
685 stepped now; or 0 if displaced stepping this thread got queued. */
686 static int
687 displaced_step_prepare (ptid_t ptid)
688 {
689 struct cleanup *old_cleanups;
690 struct regcache *regcache = get_thread_regcache (ptid);
691 struct gdbarch *gdbarch = get_regcache_arch (regcache);
692 CORE_ADDR original, copy;
693 ULONGEST len;
694 struct displaced_step_closure *closure;
695
696 /* We should never reach this function if the architecture does not
697 support displaced stepping. */
698 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
699
700 /* For the first cut, we're displaced stepping one thread at a
701 time. */
702
703 if (!ptid_equal (displaced_step_ptid, null_ptid))
704 {
705 /* Already waiting for a displaced step to finish. Defer this
706 request and place in queue. */
707 struct displaced_step_request *req, *new_req;
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
711 "displaced: defering step of %s\n",
712 target_pid_to_str (ptid));
713
714 new_req = xmalloc (sizeof (*new_req));
715 new_req->ptid = ptid;
716 new_req->next = NULL;
717
718 if (displaced_step_request_queue)
719 {
720 for (req = displaced_step_request_queue;
721 req && req->next;
722 req = req->next)
723 ;
724 req->next = new_req;
725 }
726 else
727 displaced_step_request_queue = new_req;
728
729 return 0;
730 }
731 else
732 {
733 if (debug_displaced)
734 fprintf_unfiltered (gdb_stdlog,
735 "displaced: stepping %s now\n",
736 target_pid_to_str (ptid));
737 }
738
739 displaced_step_clear ();
740
741 original = regcache_read_pc (regcache);
742
743 copy = gdbarch_displaced_step_location (gdbarch);
744 len = gdbarch_max_insn_length (gdbarch);
745
746 /* Save the original contents of the copy area. */
747 displaced_step_saved_copy = xmalloc (len);
748 old_cleanups = make_cleanup (free_current_contents,
749 &displaced_step_saved_copy);
750 read_memory (copy, displaced_step_saved_copy, len);
751 if (debug_displaced)
752 {
753 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
754 paddr_nz (copy));
755 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
756 };
757
758 closure = gdbarch_displaced_step_copy_insn (gdbarch,
759 original, copy, regcache);
760
761 /* We don't support the fully-simulated case at present. */
762 gdb_assert (closure);
763
764 make_cleanup (cleanup_displaced_step_closure, closure);
765
766 /* Resume execution at the copy. */
767 regcache_write_pc (regcache, copy);
768
769 discard_cleanups (old_cleanups);
770
771 if (debug_displaced)
772 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
773 paddr_nz (copy));
774
775 /* Save the information we need to fix things up if the step
776 succeeds. */
777 displaced_step_ptid = ptid;
778 displaced_step_gdbarch = gdbarch;
779 displaced_step_closure = closure;
780 displaced_step_original = original;
781 displaced_step_copy = copy;
782 return 1;
783 }
784
785 static void
786 displaced_step_clear_cleanup (void *ignore)
787 {
788 displaced_step_clear ();
789 }
790
791 static void
792 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
793 {
794 struct cleanup *ptid_cleanup = save_inferior_ptid ();
795 inferior_ptid = ptid;
796 write_memory (memaddr, myaddr, len);
797 do_cleanups (ptid_cleanup);
798 }
799
800 static void
801 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
802 {
803 struct cleanup *old_cleanups;
804
805 /* Was this event for the pid we displaced? */
806 if (ptid_equal (displaced_step_ptid, null_ptid)
807 || ! ptid_equal (displaced_step_ptid, event_ptid))
808 return;
809
810 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
811
812 /* Restore the contents of the copy area. */
813 {
814 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
815 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
816 displaced_step_saved_copy, len);
817 if (debug_displaced)
818 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
819 paddr_nz (displaced_step_copy));
820 }
821
822 /* Did the instruction complete successfully? */
823 if (signal == TARGET_SIGNAL_TRAP)
824 {
825 /* Fix up the resulting state. */
826 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
827 displaced_step_closure,
828 displaced_step_original,
829 displaced_step_copy,
830 get_thread_regcache (displaced_step_ptid));
831 }
832 else
833 {
834 /* Since the instruction didn't complete, all we can do is
835 relocate the PC. */
836 struct regcache *regcache = get_thread_regcache (event_ptid);
837 CORE_ADDR pc = regcache_read_pc (regcache);
838 pc = displaced_step_original + (pc - displaced_step_copy);
839 regcache_write_pc (regcache, pc);
840 }
841
842 do_cleanups (old_cleanups);
843
844 /* Are there any pending displaced stepping requests? If so, run
845 one now. */
846 if (displaced_step_request_queue)
847 {
848 struct displaced_step_request *head;
849 ptid_t ptid;
850
851 head = displaced_step_request_queue;
852 ptid = head->ptid;
853 displaced_step_request_queue = head->next;
854 xfree (head);
855
856 if (debug_displaced)
857 fprintf_unfiltered (gdb_stdlog,
858 "displaced: stepping queued %s now\n",
859 target_pid_to_str (ptid));
860
861
862 displaced_step_ptid = null_ptid;
863 displaced_step_prepare (ptid);
864 target_resume (ptid, 1, TARGET_SIGNAL_0);
865 }
866 }
867
868 \f
869 /* Resuming. */
870
871 /* Things to clean up if we QUIT out of resume (). */
872 static void
873 resume_cleanups (void *ignore)
874 {
875 normal_stop ();
876 }
877
878 static const char schedlock_off[] = "off";
879 static const char schedlock_on[] = "on";
880 static const char schedlock_step[] = "step";
881 static const char *scheduler_enums[] = {
882 schedlock_off,
883 schedlock_on,
884 schedlock_step,
885 NULL
886 };
887 static const char *scheduler_mode = schedlock_off;
888 static void
889 show_scheduler_mode (struct ui_file *file, int from_tty,
890 struct cmd_list_element *c, const char *value)
891 {
892 fprintf_filtered (file, _("\
893 Mode for locking scheduler during execution is \"%s\".\n"),
894 value);
895 }
896
897 static void
898 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
899 {
900 if (!target_can_lock_scheduler)
901 {
902 scheduler_mode = schedlock_off;
903 error (_("Target '%s' cannot support this command."), target_shortname);
904 }
905 }
906
907
908 /* Resume the inferior, but allow a QUIT. This is useful if the user
909 wants to interrupt some lengthy single-stepping operation
910 (for child processes, the SIGINT goes to the inferior, and so
911 we get a SIGINT random_signal, but for remote debugging and perhaps
912 other targets, that's not true).
913
914 STEP nonzero if we should step (zero to continue instead).
915 SIG is the signal to give the inferior (zero for none). */
916 void
917 resume (int step, enum target_signal sig)
918 {
919 int should_resume = 1;
920 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
921 struct regcache *regcache = get_current_regcache ();
922 struct gdbarch *gdbarch = get_regcache_arch (regcache);
923 CORE_ADDR pc = regcache_read_pc (regcache);
924 QUIT;
925
926 if (debug_infrun)
927 fprintf_unfiltered (gdb_stdlog,
928 "infrun: resume (step=%d, signal=%d), "
929 "stepping_over_breakpoint=%d\n",
930 step, sig, stepping_over_breakpoint);
931
932 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
933 over an instruction that causes a page fault without triggering
934 a hardware watchpoint. The kernel properly notices that it shouldn't
935 stop, because the hardware watchpoint is not triggered, but it forgets
936 the step request and continues the program normally.
937 Work around the problem by removing hardware watchpoints if a step is
938 requested, GDB will check for a hardware watchpoint trigger after the
939 step anyway. */
940 if (CANNOT_STEP_HW_WATCHPOINTS && step)
941 remove_hw_watchpoints ();
942
943
944 /* Normally, by the time we reach `resume', the breakpoints are either
945 removed or inserted, as appropriate. The exception is if we're sitting
946 at a permanent breakpoint; we need to step over it, but permanent
947 breakpoints can't be removed. So we have to test for it here. */
948 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
949 {
950 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
951 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
952 else
953 error (_("\
954 The program is stopped at a permanent breakpoint, but GDB does not know\n\
955 how to step past a permanent breakpoint on this architecture. Try using\n\
956 a command like `return' or `jump' to continue execution."));
957 }
958
959 /* If enabled, step over breakpoints by executing a copy of the
960 instruction at a different address.
961
962 We can't use displaced stepping when we have a signal to deliver;
963 the comments for displaced_step_prepare explain why. The
964 comments in the handle_inferior event for dealing with 'random
965 signals' explain what we do instead. */
966 if (use_displaced_stepping (gdbarch)
967 && stepping_over_breakpoint
968 && sig == TARGET_SIGNAL_0)
969 {
970 if (!displaced_step_prepare (inferior_ptid))
971 {
972 /* Got placed in displaced stepping queue. Will be resumed
973 later when all the currently queued displaced stepping
974 requests finish. */
975 discard_cleanups (old_cleanups);
976 return;
977 }
978 }
979
980 if (step && gdbarch_software_single_step_p (gdbarch))
981 {
982 /* Do it the hard way, w/temp breakpoints */
983 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
984 {
985 /* ...and don't ask hardware to do it. */
986 step = 0;
987 /* and do not pull these breakpoints until after a `wait' in
988 `wait_for_inferior' */
989 singlestep_breakpoints_inserted_p = 1;
990 singlestep_ptid = inferior_ptid;
991 singlestep_pc = pc;
992 }
993 }
994
995 /* If there were any forks/vforks/execs that were caught and are
996 now to be followed, then do so. */
997 switch (pending_follow.kind)
998 {
999 case TARGET_WAITKIND_FORKED:
1000 case TARGET_WAITKIND_VFORKED:
1001 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1002 if (follow_fork ())
1003 should_resume = 0;
1004 break;
1005
1006 case TARGET_WAITKIND_EXECD:
1007 /* follow_exec is called as soon as the exec event is seen. */
1008 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1009 break;
1010
1011 default:
1012 break;
1013 }
1014
1015 /* Install inferior's terminal modes. */
1016 target_terminal_inferior ();
1017
1018 if (should_resume)
1019 {
1020 ptid_t resume_ptid;
1021
1022 resume_ptid = RESUME_ALL; /* Default */
1023
1024 /* If STEP is set, it's a request to use hardware stepping
1025 facilities. But in that case, we should never
1026 use singlestep breakpoint. */
1027 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1028
1029 if (singlestep_breakpoints_inserted_p
1030 && stepping_past_singlestep_breakpoint)
1031 {
1032 /* The situation here is as follows. In thread T1 we wanted to
1033 single-step. Lacking hardware single-stepping we've
1034 set breakpoint at the PC of the next instruction -- call it
1035 P. After resuming, we've hit that breakpoint in thread T2.
1036 Now we've removed original breakpoint, inserted breakpoint
1037 at P+1, and try to step to advance T2 past breakpoint.
1038 We need to step only T2, as if T1 is allowed to freely run,
1039 it can run past P, and if other threads are allowed to run,
1040 they can hit breakpoint at P+1, and nested hits of single-step
1041 breakpoints is not something we'd want -- that's complicated
1042 to support, and has no value. */
1043 resume_ptid = inferior_ptid;
1044 }
1045
1046 if ((step || singlestep_breakpoints_inserted_p)
1047 && stepping_over_breakpoint)
1048 {
1049 /* We're allowing a thread to run past a breakpoint it has
1050 hit, by single-stepping the thread with the breakpoint
1051 removed. In which case, we need to single-step only this
1052 thread, and keep others stopped, as they can miss this
1053 breakpoint if allowed to run.
1054
1055 The current code actually removes all breakpoints when
1056 doing this, not just the one being stepped over, so if we
1057 let other threads run, we can actually miss any
1058 breakpoint, not just the one at PC. */
1059 resume_ptid = inferior_ptid;
1060 }
1061
1062 if (non_stop)
1063 {
1064 /* With non-stop mode on, threads are always handled
1065 individually. */
1066 resume_ptid = inferior_ptid;
1067 }
1068 else if ((scheduler_mode == schedlock_on)
1069 || (scheduler_mode == schedlock_step
1070 && (step || singlestep_breakpoints_inserted_p)))
1071 {
1072 /* User-settable 'scheduler' mode requires solo thread resume. */
1073 resume_ptid = inferior_ptid;
1074 }
1075
1076 if (gdbarch_cannot_step_breakpoint (gdbarch))
1077 {
1078 /* Most targets can step a breakpoint instruction, thus
1079 executing it normally. But if this one cannot, just
1080 continue and we will hit it anyway. */
1081 if (step && breakpoint_inserted_here_p (pc))
1082 step = 0;
1083 }
1084
1085 if (debug_displaced
1086 && use_displaced_stepping (gdbarch)
1087 && stepping_over_breakpoint)
1088 {
1089 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1090 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1091 gdb_byte buf[4];
1092
1093 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1094 paddr_nz (actual_pc));
1095 read_memory (actual_pc, buf, sizeof (buf));
1096 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1097 }
1098
1099 target_resume (resume_ptid, step, sig);
1100 }
1101
1102 discard_cleanups (old_cleanups);
1103 }
1104 \f
1105 /* Proceeding. */
1106
1107 /* Clear out all variables saying what to do when inferior is continued.
1108 First do this, then set the ones you want, then call `proceed'. */
1109
1110 void
1111 clear_proceed_status (void)
1112 {
1113 stepping_over_breakpoint = 0;
1114 step_range_start = 0;
1115 step_range_end = 0;
1116 step_frame_id = null_frame_id;
1117 step_over_calls = STEP_OVER_UNDEBUGGABLE;
1118 stop_after_trap = 0;
1119 stop_soon = NO_STOP_QUIETLY;
1120 proceed_to_finish = 0;
1121 breakpoint_proceeded = 1; /* We're about to proceed... */
1122
1123 if (stop_registers)
1124 {
1125 regcache_xfree (stop_registers);
1126 stop_registers = NULL;
1127 }
1128
1129 /* Discard any remaining commands or status from previous stop. */
1130 bpstat_clear (&stop_bpstat);
1131 }
1132
1133 /* This should be suitable for any targets that support threads. */
1134
1135 static int
1136 prepare_to_proceed (int step)
1137 {
1138 ptid_t wait_ptid;
1139 struct target_waitstatus wait_status;
1140
1141 /* Get the last target status returned by target_wait(). */
1142 get_last_target_status (&wait_ptid, &wait_status);
1143
1144 /* Make sure we were stopped at a breakpoint. */
1145 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1146 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1147 {
1148 return 0;
1149 }
1150
1151 /* Switched over from WAIT_PID. */
1152 if (!ptid_equal (wait_ptid, minus_one_ptid)
1153 && !ptid_equal (inferior_ptid, wait_ptid))
1154 {
1155 struct regcache *regcache = get_thread_regcache (wait_ptid);
1156
1157 if (breakpoint_here_p (regcache_read_pc (regcache)))
1158 {
1159 /* If stepping, remember current thread to switch back to. */
1160 if (step)
1161 deferred_step_ptid = inferior_ptid;
1162
1163 /* Switch back to WAIT_PID thread. */
1164 switch_to_thread (wait_ptid);
1165
1166 /* We return 1 to indicate that there is a breakpoint here,
1167 so we need to step over it before continuing to avoid
1168 hitting it straight away. */
1169 return 1;
1170 }
1171 }
1172
1173 return 0;
1174 }
1175
1176 /* Record the pc of the program the last time it stopped. This is
1177 just used internally by wait_for_inferior, but need to be preserved
1178 over calls to it and cleared when the inferior is started. */
1179 static CORE_ADDR prev_pc;
1180
1181 /* Basic routine for continuing the program in various fashions.
1182
1183 ADDR is the address to resume at, or -1 for resume where stopped.
1184 SIGGNAL is the signal to give it, or 0 for none,
1185 or -1 for act according to how it stopped.
1186 STEP is nonzero if should trap after one instruction.
1187 -1 means return after that and print nothing.
1188 You should probably set various step_... variables
1189 before calling here, if you are stepping.
1190
1191 You should call clear_proceed_status before calling proceed. */
1192
1193 void
1194 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1195 {
1196 struct regcache *regcache = get_current_regcache ();
1197 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1198 CORE_ADDR pc = regcache_read_pc (regcache);
1199 int oneproc = 0;
1200
1201 if (step > 0)
1202 step_start_function = find_pc_function (pc);
1203 if (step < 0)
1204 stop_after_trap = 1;
1205
1206 if (addr == (CORE_ADDR) -1)
1207 {
1208 if (pc == stop_pc && breakpoint_here_p (pc))
1209 /* There is a breakpoint at the address we will resume at,
1210 step one instruction before inserting breakpoints so that
1211 we do not stop right away (and report a second hit at this
1212 breakpoint). */
1213 oneproc = 1;
1214 else if (gdbarch_single_step_through_delay_p (gdbarch)
1215 && gdbarch_single_step_through_delay (gdbarch,
1216 get_current_frame ()))
1217 /* We stepped onto an instruction that needs to be stepped
1218 again before re-inserting the breakpoint, do so. */
1219 oneproc = 1;
1220 }
1221 else
1222 {
1223 regcache_write_pc (regcache, addr);
1224 }
1225
1226 if (debug_infrun)
1227 fprintf_unfiltered (gdb_stdlog,
1228 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1229 paddr_nz (addr), siggnal, step);
1230
1231 if (non_stop)
1232 /* In non-stop, each thread is handled individually. The context
1233 must already be set to the right thread here. */
1234 ;
1235 else
1236 {
1237 /* In a multi-threaded task we may select another thread and
1238 then continue or step.
1239
1240 But if the old thread was stopped at a breakpoint, it will
1241 immediately cause another breakpoint stop without any
1242 execution (i.e. it will report a breakpoint hit incorrectly).
1243 So we must step over it first.
1244
1245 prepare_to_proceed checks the current thread against the
1246 thread that reported the most recent event. If a step-over
1247 is required it returns TRUE and sets the current thread to
1248 the old thread. */
1249 if (prepare_to_proceed (step))
1250 oneproc = 1;
1251 }
1252
1253 if (oneproc)
1254 {
1255 stepping_over_breakpoint = 1;
1256 /* If displaced stepping is enabled, we can step over the
1257 breakpoint without hitting it, so leave all breakpoints
1258 inserted. Otherwise we need to disable all breakpoints, step
1259 one instruction, and then re-add them when that step is
1260 finished. */
1261 if (!use_displaced_stepping (gdbarch))
1262 remove_breakpoints ();
1263 }
1264
1265 /* We can insert breakpoints if we're not trying to step over one,
1266 or if we are stepping over one but we're using displaced stepping
1267 to do so. */
1268 if (! stepping_over_breakpoint || use_displaced_stepping (gdbarch))
1269 insert_breakpoints ();
1270
1271 if (siggnal != TARGET_SIGNAL_DEFAULT)
1272 stop_signal = siggnal;
1273 /* If this signal should not be seen by program,
1274 give it zero. Used for debugging signals. */
1275 else if (!signal_program[stop_signal])
1276 stop_signal = TARGET_SIGNAL_0;
1277
1278 annotate_starting ();
1279
1280 /* Make sure that output from GDB appears before output from the
1281 inferior. */
1282 gdb_flush (gdb_stdout);
1283
1284 /* Refresh prev_pc value just prior to resuming. This used to be
1285 done in stop_stepping, however, setting prev_pc there did not handle
1286 scenarios such as inferior function calls or returning from
1287 a function via the return command. In those cases, the prev_pc
1288 value was not set properly for subsequent commands. The prev_pc value
1289 is used to initialize the starting line number in the ecs. With an
1290 invalid value, the gdb next command ends up stopping at the position
1291 represented by the next line table entry past our start position.
1292 On platforms that generate one line table entry per line, this
1293 is not a problem. However, on the ia64, the compiler generates
1294 extraneous line table entries that do not increase the line number.
1295 When we issue the gdb next command on the ia64 after an inferior call
1296 or a return command, we often end up a few instructions forward, still
1297 within the original line we started.
1298
1299 An attempt was made to have init_execution_control_state () refresh
1300 the prev_pc value before calculating the line number. This approach
1301 did not work because on platforms that use ptrace, the pc register
1302 cannot be read unless the inferior is stopped. At that point, we
1303 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1304 call can fail. Setting the prev_pc value here ensures the value is
1305 updated correctly when the inferior is stopped. */
1306 prev_pc = regcache_read_pc (get_current_regcache ());
1307
1308 /* Fill in with reasonable starting values. */
1309 init_thread_stepping_state (tss);
1310
1311 /* We'll update this if & when we switch to a new thread. */
1312 previous_inferior_ptid = inferior_ptid;
1313
1314 /* Reset to normal state. */
1315 init_infwait_state ();
1316
1317 /* Resume inferior. */
1318 resume (oneproc || step || bpstat_should_step (), stop_signal);
1319
1320 /* Wait for it to stop (if not standalone)
1321 and in any case decode why it stopped, and act accordingly. */
1322 /* Do this only if we are not using the event loop, or if the target
1323 does not support asynchronous execution. */
1324 if (!target_can_async_p ())
1325 {
1326 wait_for_inferior (0);
1327 normal_stop ();
1328 }
1329 }
1330 \f
1331
1332 /* Start remote-debugging of a machine over a serial link. */
1333
1334 void
1335 start_remote (int from_tty)
1336 {
1337 init_wait_for_inferior ();
1338 stop_soon = STOP_QUIETLY_REMOTE;
1339 stepping_over_breakpoint = 0;
1340
1341 /* Always go on waiting for the target, regardless of the mode. */
1342 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1343 indicate to wait_for_inferior that a target should timeout if
1344 nothing is returned (instead of just blocking). Because of this,
1345 targets expecting an immediate response need to, internally, set
1346 things up so that the target_wait() is forced to eventually
1347 timeout. */
1348 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1349 differentiate to its caller what the state of the target is after
1350 the initial open has been performed. Here we're assuming that
1351 the target has stopped. It should be possible to eventually have
1352 target_open() return to the caller an indication that the target
1353 is currently running and GDB state should be set to the same as
1354 for an async run. */
1355 wait_for_inferior (0);
1356
1357 /* Now that the inferior has stopped, do any bookkeeping like
1358 loading shared libraries. We want to do this before normal_stop,
1359 so that the displayed frame is up to date. */
1360 post_create_inferior (&current_target, from_tty);
1361
1362 normal_stop ();
1363 }
1364
1365 /* Initialize static vars when a new inferior begins. */
1366
1367 void
1368 init_wait_for_inferior (void)
1369 {
1370 /* These are meaningless until the first time through wait_for_inferior. */
1371 prev_pc = 0;
1372
1373 breakpoint_init_inferior (inf_starting);
1374
1375 /* Don't confuse first call to proceed(). */
1376 stop_signal = TARGET_SIGNAL_0;
1377
1378 /* The first resume is not following a fork/vfork/exec. */
1379 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1380
1381 clear_proceed_status ();
1382
1383 stepping_past_singlestep_breakpoint = 0;
1384 deferred_step_ptid = null_ptid;
1385
1386 target_last_wait_ptid = minus_one_ptid;
1387
1388 init_thread_stepping_state (tss);
1389 previous_inferior_ptid = null_ptid;
1390 init_infwait_state ();
1391
1392 displaced_step_clear ();
1393 }
1394
1395 \f
1396 /* This enum encodes possible reasons for doing a target_wait, so that
1397 wfi can call target_wait in one place. (Ultimately the call will be
1398 moved out of the infinite loop entirely.) */
1399
1400 enum infwait_states
1401 {
1402 infwait_normal_state,
1403 infwait_thread_hop_state,
1404 infwait_step_watch_state,
1405 infwait_nonstep_watch_state
1406 };
1407
1408 /* Why did the inferior stop? Used to print the appropriate messages
1409 to the interface from within handle_inferior_event(). */
1410 enum inferior_stop_reason
1411 {
1412 /* Step, next, nexti, stepi finished. */
1413 END_STEPPING_RANGE,
1414 /* Inferior terminated by signal. */
1415 SIGNAL_EXITED,
1416 /* Inferior exited. */
1417 EXITED,
1418 /* Inferior received signal, and user asked to be notified. */
1419 SIGNAL_RECEIVED
1420 };
1421
1422 /* The PTID we'll do a target_wait on.*/
1423 ptid_t waiton_ptid;
1424
1425 /* Current inferior wait state. */
1426 enum infwait_states infwait_state;
1427
1428 /* Data to be passed around while handling an event. This data is
1429 discarded between events. */
1430 struct execution_control_state
1431 {
1432 ptid_t ptid;
1433 struct target_waitstatus ws;
1434 int random_signal;
1435 CORE_ADDR stop_func_start;
1436 CORE_ADDR stop_func_end;
1437 char *stop_func_name;
1438 int new_thread_event;
1439 int wait_some_more;
1440 };
1441
1442 void init_execution_control_state (struct execution_control_state *ecs);
1443
1444 void handle_inferior_event (struct execution_control_state *ecs);
1445
1446 static void step_into_function (struct execution_control_state *ecs);
1447 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1448 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1449 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1450 struct frame_id sr_id);
1451 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1452
1453 static void stop_stepping (struct execution_control_state *ecs);
1454 static void prepare_to_wait (struct execution_control_state *ecs);
1455 static void keep_going (struct execution_control_state *ecs);
1456 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1457 int stop_info);
1458
1459 /* Wait for control to return from inferior to debugger.
1460
1461 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1462 as if they were SIGTRAP signals. This can be useful during
1463 the startup sequence on some targets such as HP/UX, where
1464 we receive an EXEC event instead of the expected SIGTRAP.
1465
1466 If inferior gets a signal, we may decide to start it up again
1467 instead of returning. That is why there is a loop in this function.
1468 When this function actually returns it means the inferior
1469 should be left stopped and GDB should read more commands. */
1470
1471 void
1472 wait_for_inferior (int treat_exec_as_sigtrap)
1473 {
1474 struct cleanup *old_cleanups;
1475 struct execution_control_state ecss;
1476 struct execution_control_state *ecs;
1477
1478 if (debug_infrun)
1479 fprintf_unfiltered
1480 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1481 treat_exec_as_sigtrap);
1482
1483 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1484 &step_resume_breakpoint);
1485
1486 ecs = &ecss;
1487 memset (ecs, 0, sizeof (*ecs));
1488
1489 overlay_cache_invalid = 1;
1490
1491 /* We have to invalidate the registers BEFORE calling target_wait
1492 because they can be loaded from the target while in target_wait.
1493 This makes remote debugging a bit more efficient for those
1494 targets that provide critical registers as part of their normal
1495 status mechanism. */
1496
1497 registers_changed ();
1498
1499 while (1)
1500 {
1501 if (deprecated_target_wait_hook)
1502 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1503 else
1504 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1505
1506 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1507 {
1508 xfree (ecs->ws.value.execd_pathname);
1509 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1510 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1511 }
1512
1513 /* Now figure out what to do with the result of the result. */
1514 handle_inferior_event (ecs);
1515
1516 if (!ecs->wait_some_more)
1517 break;
1518 }
1519 do_cleanups (old_cleanups);
1520 }
1521
1522 /* Asynchronous version of wait_for_inferior. It is called by the
1523 event loop whenever a change of state is detected on the file
1524 descriptor corresponding to the target. It can be called more than
1525 once to complete a single execution command. In such cases we need
1526 to keep the state in a global variable ECSS. If it is the last time
1527 that this function is called for a single execution command, then
1528 report to the user that the inferior has stopped, and do the
1529 necessary cleanups. */
1530
1531 void
1532 fetch_inferior_event (void *client_data)
1533 {
1534 struct execution_control_state ecss;
1535 struct execution_control_state *ecs = &ecss;
1536 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1537 int was_sync = sync_execution;
1538
1539 memset (ecs, 0, sizeof (*ecs));
1540
1541 overlay_cache_invalid = 1;
1542
1543 if (non_stop)
1544 /* In non-stop mode, the user/frontend should not notice a thread
1545 switch due to internal events. Make sure we reverse to the
1546 user selected thread and frame after handling the event and
1547 running any breakpoint commands. */
1548 make_cleanup_restore_current_thread ();
1549
1550 /* We have to invalidate the registers BEFORE calling target_wait
1551 because they can be loaded from the target while in target_wait.
1552 This makes remote debugging a bit more efficient for those
1553 targets that provide critical registers as part of their normal
1554 status mechanism. */
1555
1556 registers_changed ();
1557
1558 if (deprecated_target_wait_hook)
1559 ecs->ptid =
1560 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1561 else
1562 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1563
1564 if (non_stop
1565 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1566 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1567 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1568 /* In non-stop mode, each thread is handled individually. Switch
1569 early, so the global state is set correctly for this
1570 thread. */
1571 context_switch (ecs->ptid);
1572
1573 /* Now figure out what to do with the result of the result. */
1574 handle_inferior_event (ecs);
1575
1576 if (!ecs->wait_some_more)
1577 {
1578 delete_step_resume_breakpoint (&step_resume_breakpoint);
1579
1580 normal_stop ();
1581 if (step_multi && stop_step)
1582 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1583 else
1584 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1585 }
1586
1587 /* Revert thread and frame. */
1588 do_cleanups (old_chain);
1589
1590 /* If the inferior was in sync execution mode, and now isn't,
1591 restore the prompt. */
1592 if (was_sync && !sync_execution)
1593 display_gdb_prompt (0);
1594 }
1595
1596 /* Prepare an execution control state for looping through a
1597 wait_for_inferior-type loop. */
1598
1599 void
1600 init_execution_control_state (struct execution_control_state *ecs)
1601 {
1602 ecs->random_signal = 0;
1603 }
1604
1605 /* Clear context switchable stepping state. */
1606
1607 void
1608 init_thread_stepping_state (struct thread_stepping_state *tss)
1609 {
1610 struct symtab_and_line sal;
1611
1612 tss->stepping_over_breakpoint = 0;
1613 tss->step_after_step_resume_breakpoint = 0;
1614 tss->stepping_through_solib_after_catch = 0;
1615 tss->stepping_through_solib_catchpoints = NULL;
1616
1617 sal = find_pc_line (prev_pc, 0);
1618 tss->current_line = sal.line;
1619 tss->current_symtab = sal.symtab;
1620 }
1621
1622 /* Return the cached copy of the last pid/waitstatus returned by
1623 target_wait()/deprecated_target_wait_hook(). The data is actually
1624 cached by handle_inferior_event(), which gets called immediately
1625 after target_wait()/deprecated_target_wait_hook(). */
1626
1627 void
1628 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1629 {
1630 *ptidp = target_last_wait_ptid;
1631 *status = target_last_waitstatus;
1632 }
1633
1634 void
1635 nullify_last_target_wait_ptid (void)
1636 {
1637 target_last_wait_ptid = minus_one_ptid;
1638 }
1639
1640 /* Switch thread contexts, maintaining "infrun state". */
1641
1642 static void
1643 context_switch (ptid_t ptid)
1644 {
1645 /* Caution: it may happen that the new thread (or the old one!)
1646 is not in the thread list. In this case we must not attempt
1647 to "switch context", or we run the risk that our context may
1648 be lost. This may happen as a result of the target module
1649 mishandling thread creation. */
1650
1651 if (debug_infrun)
1652 {
1653 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1654 target_pid_to_str (inferior_ptid));
1655 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1656 target_pid_to_str (ptid));
1657 }
1658
1659 if (in_thread_list (inferior_ptid) && in_thread_list (ptid))
1660 { /* Perform infrun state context switch: */
1661 /* Save infrun state for the old thread. */
1662 save_infrun_state (inferior_ptid, prev_pc,
1663 stepping_over_breakpoint, step_resume_breakpoint,
1664 step_range_start,
1665 step_range_end, &step_frame_id,
1666 tss->stepping_over_breakpoint,
1667 tss->stepping_through_solib_after_catch,
1668 tss->stepping_through_solib_catchpoints,
1669 tss->current_line, tss->current_symtab,
1670 cmd_continuation, intermediate_continuation,
1671 proceed_to_finish,
1672 step_over_calls,
1673 stop_step,
1674 step_multi,
1675 stop_signal,
1676 stop_bpstat);
1677
1678 /* Load infrun state for the new thread. */
1679 load_infrun_state (ptid, &prev_pc,
1680 &stepping_over_breakpoint, &step_resume_breakpoint,
1681 &step_range_start,
1682 &step_range_end, &step_frame_id,
1683 &tss->stepping_over_breakpoint,
1684 &tss->stepping_through_solib_after_catch,
1685 &tss->stepping_through_solib_catchpoints,
1686 &tss->current_line, &tss->current_symtab,
1687 &cmd_continuation, &intermediate_continuation,
1688 &proceed_to_finish,
1689 &step_over_calls,
1690 &stop_step,
1691 &step_multi,
1692 &stop_signal,
1693 &stop_bpstat);
1694 }
1695
1696 switch_to_thread (ptid);
1697 }
1698
1699 /* Context switch to thread PTID. */
1700 ptid_t
1701 context_switch_to (ptid_t ptid)
1702 {
1703 ptid_t current_ptid = inferior_ptid;
1704
1705 /* Context switch to the new thread. */
1706 if (!ptid_equal (ptid, inferior_ptid))
1707 {
1708 context_switch (ptid);
1709 }
1710 return current_ptid;
1711 }
1712
1713 static void
1714 adjust_pc_after_break (struct execution_control_state *ecs)
1715 {
1716 struct regcache *regcache = get_thread_regcache (ecs->ptid);
1717 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1718 CORE_ADDR breakpoint_pc;
1719
1720 /* If this target does not decrement the PC after breakpoints, then
1721 we have nothing to do. */
1722 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
1723 return;
1724
1725 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1726 we aren't, just return.
1727
1728 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1729 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1730 implemented by software breakpoints should be handled through the normal
1731 breakpoint layer.
1732
1733 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1734 different signals (SIGILL or SIGEMT for instance), but it is less
1735 clear where the PC is pointing afterwards. It may not match
1736 gdbarch_decr_pc_after_break. I don't know any specific target that
1737 generates these signals at breakpoints (the code has been in GDB since at
1738 least 1992) so I can not guess how to handle them here.
1739
1740 In earlier versions of GDB, a target with
1741 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1742 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1743 target with both of these set in GDB history, and it seems unlikely to be
1744 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1745
1746 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1747 return;
1748
1749 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1750 return;
1751
1752 /* Find the location where (if we've hit a breakpoint) the
1753 breakpoint would be. */
1754 breakpoint_pc = regcache_read_pc (regcache)
1755 - gdbarch_decr_pc_after_break (gdbarch);
1756
1757 /* Check whether there actually is a software breakpoint inserted
1758 at that location. */
1759 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1760 {
1761 /* When using hardware single-step, a SIGTRAP is reported for both
1762 a completed single-step and a software breakpoint. Need to
1763 differentiate between the two, as the latter needs adjusting
1764 but the former does not.
1765
1766 The SIGTRAP can be due to a completed hardware single-step only if
1767 - we didn't insert software single-step breakpoints
1768 - the thread to be examined is still the current thread
1769 - this thread is currently being stepped
1770
1771 If any of these events did not occur, we must have stopped due
1772 to hitting a software breakpoint, and have to back up to the
1773 breakpoint address.
1774
1775 As a special case, we could have hardware single-stepped a
1776 software breakpoint. In this case (prev_pc == breakpoint_pc),
1777 we also need to back up to the breakpoint address. */
1778
1779 if (singlestep_breakpoints_inserted_p
1780 || !ptid_equal (ecs->ptid, inferior_ptid)
1781 || !currently_stepping (tss)
1782 || prev_pc == breakpoint_pc)
1783 regcache_write_pc (regcache, breakpoint_pc);
1784 }
1785 }
1786
1787 void
1788 init_infwait_state (void)
1789 {
1790 waiton_ptid = pid_to_ptid (-1);
1791 infwait_state = infwait_normal_state;
1792 }
1793
1794 void
1795 error_is_running (void)
1796 {
1797 error (_("\
1798 Cannot execute this command while the selected thread is running."));
1799 }
1800
1801 void
1802 ensure_not_running (void)
1803 {
1804 if (is_running (inferior_ptid))
1805 error_is_running ();
1806 }
1807
1808 /* Given an execution control state that has been freshly filled in
1809 by an event from the inferior, figure out what it means and take
1810 appropriate action. */
1811
1812 void
1813 handle_inferior_event (struct execution_control_state *ecs)
1814 {
1815 int sw_single_step_trap_p = 0;
1816 int stopped_by_watchpoint;
1817 int stepped_after_stopped_by_watchpoint = 0;
1818 struct symtab_and_line stop_pc_sal;
1819
1820 breakpoint_retire_moribund ();
1821
1822 /* Cache the last pid/waitstatus. */
1823 target_last_wait_ptid = ecs->ptid;
1824 target_last_waitstatus = ecs->ws;
1825
1826 /* Always clear state belonging to the previous time we stopped. */
1827 stop_stack_dummy = 0;
1828
1829 adjust_pc_after_break (ecs);
1830
1831 reinit_frame_cache ();
1832
1833 /* If it's a new process, add it to the thread database */
1834
1835 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1836 && !ptid_equal (ecs->ptid, minus_one_ptid)
1837 && !in_thread_list (ecs->ptid));
1838
1839 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1840 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1841 add_thread (ecs->ptid);
1842
1843 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
1844 {
1845 /* Mark the non-executing threads accordingly. */
1846 if (!non_stop
1847 || ecs->ws.kind == TARGET_WAITKIND_EXITED
1848 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
1849 set_executing (pid_to_ptid (-1), 0);
1850 else
1851 set_executing (ecs->ptid, 0);
1852 }
1853
1854 switch (infwait_state)
1855 {
1856 case infwait_thread_hop_state:
1857 if (debug_infrun)
1858 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1859 /* Cancel the waiton_ptid. */
1860 waiton_ptid = pid_to_ptid (-1);
1861 break;
1862
1863 case infwait_normal_state:
1864 if (debug_infrun)
1865 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1866 break;
1867
1868 case infwait_step_watch_state:
1869 if (debug_infrun)
1870 fprintf_unfiltered (gdb_stdlog,
1871 "infrun: infwait_step_watch_state\n");
1872
1873 stepped_after_stopped_by_watchpoint = 1;
1874 break;
1875
1876 case infwait_nonstep_watch_state:
1877 if (debug_infrun)
1878 fprintf_unfiltered (gdb_stdlog,
1879 "infrun: infwait_nonstep_watch_state\n");
1880 insert_breakpoints ();
1881
1882 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1883 handle things like signals arriving and other things happening
1884 in combination correctly? */
1885 stepped_after_stopped_by_watchpoint = 1;
1886 break;
1887
1888 default:
1889 internal_error (__FILE__, __LINE__, _("bad switch"));
1890 }
1891 infwait_state = infwait_normal_state;
1892
1893 switch (ecs->ws.kind)
1894 {
1895 case TARGET_WAITKIND_LOADED:
1896 if (debug_infrun)
1897 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1898 /* Ignore gracefully during startup of the inferior, as it might
1899 be the shell which has just loaded some objects, otherwise
1900 add the symbols for the newly loaded objects. Also ignore at
1901 the beginning of an attach or remote session; we will query
1902 the full list of libraries once the connection is
1903 established. */
1904 if (stop_soon == NO_STOP_QUIETLY)
1905 {
1906 /* Check for any newly added shared libraries if we're
1907 supposed to be adding them automatically. Switch
1908 terminal for any messages produced by
1909 breakpoint_re_set. */
1910 target_terminal_ours_for_output ();
1911 /* NOTE: cagney/2003-11-25: Make certain that the target
1912 stack's section table is kept up-to-date. Architectures,
1913 (e.g., PPC64), use the section table to perform
1914 operations such as address => section name and hence
1915 require the table to contain all sections (including
1916 those found in shared libraries). */
1917 /* NOTE: cagney/2003-11-25: Pass current_target and not
1918 exec_ops to SOLIB_ADD. This is because current GDB is
1919 only tooled to propagate section_table changes out from
1920 the "current_target" (see target_resize_to_sections), and
1921 not up from the exec stratum. This, of course, isn't
1922 right. "infrun.c" should only interact with the
1923 exec/process stratum, instead relying on the target stack
1924 to propagate relevant changes (stop, section table
1925 changed, ...) up to other layers. */
1926 #ifdef SOLIB_ADD
1927 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1928 #else
1929 solib_add (NULL, 0, &current_target, auto_solib_add);
1930 #endif
1931 target_terminal_inferior ();
1932
1933 /* If requested, stop when the dynamic linker notifies
1934 gdb of events. This allows the user to get control
1935 and place breakpoints in initializer routines for
1936 dynamically loaded objects (among other things). */
1937 if (stop_on_solib_events)
1938 {
1939 stop_stepping (ecs);
1940 return;
1941 }
1942
1943 /* NOTE drow/2007-05-11: This might be a good place to check
1944 for "catch load". */
1945 }
1946
1947 /* If we are skipping through a shell, or through shared library
1948 loading that we aren't interested in, resume the program. If
1949 we're running the program normally, also resume. But stop if
1950 we're attaching or setting up a remote connection. */
1951 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1952 {
1953 /* Loading of shared libraries might have changed breakpoint
1954 addresses. Make sure new breakpoints are inserted. */
1955 if (stop_soon == NO_STOP_QUIETLY
1956 && !breakpoints_always_inserted_mode ())
1957 insert_breakpoints ();
1958 resume (0, TARGET_SIGNAL_0);
1959 prepare_to_wait (ecs);
1960 return;
1961 }
1962
1963 break;
1964
1965 case TARGET_WAITKIND_SPURIOUS:
1966 if (debug_infrun)
1967 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1968 resume (0, TARGET_SIGNAL_0);
1969 prepare_to_wait (ecs);
1970 return;
1971
1972 case TARGET_WAITKIND_EXITED:
1973 if (debug_infrun)
1974 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1975 target_terminal_ours (); /* Must do this before mourn anyway */
1976 print_stop_reason (EXITED, ecs->ws.value.integer);
1977
1978 /* Record the exit code in the convenience variable $_exitcode, so
1979 that the user can inspect this again later. */
1980 set_internalvar (lookup_internalvar ("_exitcode"),
1981 value_from_longest (builtin_type_int,
1982 (LONGEST) ecs->ws.value.integer));
1983 gdb_flush (gdb_stdout);
1984 target_mourn_inferior ();
1985 singlestep_breakpoints_inserted_p = 0;
1986 stop_print_frame = 0;
1987 stop_stepping (ecs);
1988 return;
1989
1990 case TARGET_WAITKIND_SIGNALLED:
1991 if (debug_infrun)
1992 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1993 stop_print_frame = 0;
1994 stop_signal = ecs->ws.value.sig;
1995 target_terminal_ours (); /* Must do this before mourn anyway */
1996
1997 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1998 reach here unless the inferior is dead. However, for years
1999 target_kill() was called here, which hints that fatal signals aren't
2000 really fatal on some systems. If that's true, then some changes
2001 may be needed. */
2002 target_mourn_inferior ();
2003
2004 print_stop_reason (SIGNAL_EXITED, stop_signal);
2005 singlestep_breakpoints_inserted_p = 0;
2006 stop_stepping (ecs);
2007 return;
2008
2009 /* The following are the only cases in which we keep going;
2010 the above cases end in a continue or goto. */
2011 case TARGET_WAITKIND_FORKED:
2012 case TARGET_WAITKIND_VFORKED:
2013 if (debug_infrun)
2014 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2015 stop_signal = TARGET_SIGNAL_TRAP;
2016 pending_follow.kind = ecs->ws.kind;
2017
2018 pending_follow.fork_event.parent_pid = ecs->ptid;
2019 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
2020
2021 if (!ptid_equal (ecs->ptid, inferior_ptid))
2022 {
2023 context_switch (ecs->ptid);
2024 reinit_frame_cache ();
2025 }
2026
2027 stop_pc = read_pc ();
2028
2029 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2030
2031 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2032
2033 /* If no catchpoint triggered for this, then keep going. */
2034 if (ecs->random_signal)
2035 {
2036 stop_signal = TARGET_SIGNAL_0;
2037 keep_going (ecs);
2038 return;
2039 }
2040 goto process_event_stop_test;
2041
2042 case TARGET_WAITKIND_EXECD:
2043 if (debug_infrun)
2044 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2045 stop_signal = TARGET_SIGNAL_TRAP;
2046
2047 pending_follow.execd_pathname =
2048 savestring (ecs->ws.value.execd_pathname,
2049 strlen (ecs->ws.value.execd_pathname));
2050
2051 /* This causes the eventpoints and symbol table to be reset. Must
2052 do this now, before trying to determine whether to stop. */
2053 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2054 xfree (pending_follow.execd_pathname);
2055
2056 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2057
2058 {
2059 /* The breakpoints module may need to touch the inferior's
2060 memory. Switch to the (stopped) event ptid
2061 momentarily. */
2062 ptid_t saved_inferior_ptid = inferior_ptid;
2063 inferior_ptid = ecs->ptid;
2064
2065 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2066
2067 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2068 inferior_ptid = saved_inferior_ptid;
2069 }
2070
2071 if (!ptid_equal (ecs->ptid, inferior_ptid))
2072 {
2073 context_switch (ecs->ptid);
2074 reinit_frame_cache ();
2075 }
2076
2077 /* If no catchpoint triggered for this, then keep going. */
2078 if (ecs->random_signal)
2079 {
2080 stop_signal = TARGET_SIGNAL_0;
2081 keep_going (ecs);
2082 return;
2083 }
2084 goto process_event_stop_test;
2085
2086 /* Be careful not to try to gather much state about a thread
2087 that's in a syscall. It's frequently a losing proposition. */
2088 case TARGET_WAITKIND_SYSCALL_ENTRY:
2089 if (debug_infrun)
2090 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2091 resume (0, TARGET_SIGNAL_0);
2092 prepare_to_wait (ecs);
2093 return;
2094
2095 /* Before examining the threads further, step this thread to
2096 get it entirely out of the syscall. (We get notice of the
2097 event when the thread is just on the verge of exiting a
2098 syscall. Stepping one instruction seems to get it back
2099 into user code.) */
2100 case TARGET_WAITKIND_SYSCALL_RETURN:
2101 if (debug_infrun)
2102 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2103 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2104 prepare_to_wait (ecs);
2105 return;
2106
2107 case TARGET_WAITKIND_STOPPED:
2108 if (debug_infrun)
2109 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2110 stop_signal = ecs->ws.value.sig;
2111 break;
2112
2113 /* We had an event in the inferior, but we are not interested
2114 in handling it at this level. The lower layers have already
2115 done what needs to be done, if anything.
2116
2117 One of the possible circumstances for this is when the
2118 inferior produces output for the console. The inferior has
2119 not stopped, and we are ignoring the event. Another possible
2120 circumstance is any event which the lower level knows will be
2121 reported multiple times without an intervening resume. */
2122 case TARGET_WAITKIND_IGNORE:
2123 if (debug_infrun)
2124 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2125 prepare_to_wait (ecs);
2126 return;
2127 }
2128
2129 if (ecs->new_thread_event)
2130 {
2131 if (non_stop)
2132 /* Non-stop assumes that the target handles adding new threads
2133 to the thread list. */
2134 internal_error (__FILE__, __LINE__, "\
2135 targets should add new threads to the thread list themselves in non-stop mode.");
2136
2137 /* We may want to consider not doing a resume here in order to
2138 give the user a chance to play with the new thread. It might
2139 be good to make that a user-settable option. */
2140
2141 /* At this point, all threads are stopped (happens automatically
2142 in either the OS or the native code). Therefore we need to
2143 continue all threads in order to make progress. */
2144
2145 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2146 prepare_to_wait (ecs);
2147 return;
2148 }
2149
2150 /* Do we need to clean up the state of a thread that has completed a
2151 displaced single-step? (Doing so usually affects the PC, so do
2152 it here, before we set stop_pc.) */
2153 displaced_step_fixup (ecs->ptid, stop_signal);
2154
2155 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2156
2157 if (debug_infrun)
2158 {
2159 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2160 paddr_nz (stop_pc));
2161 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2162 {
2163 CORE_ADDR addr;
2164 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2165
2166 if (target_stopped_data_address (&current_target, &addr))
2167 fprintf_unfiltered (gdb_stdlog,
2168 "infrun: stopped data address = 0x%s\n",
2169 paddr_nz (addr));
2170 else
2171 fprintf_unfiltered (gdb_stdlog,
2172 "infrun: (no data address available)\n");
2173 }
2174 }
2175
2176 if (stepping_past_singlestep_breakpoint)
2177 {
2178 gdb_assert (singlestep_breakpoints_inserted_p);
2179 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2180 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2181
2182 stepping_past_singlestep_breakpoint = 0;
2183
2184 /* We've either finished single-stepping past the single-step
2185 breakpoint, or stopped for some other reason. It would be nice if
2186 we could tell, but we can't reliably. */
2187 if (stop_signal == TARGET_SIGNAL_TRAP)
2188 {
2189 if (debug_infrun)
2190 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2191 /* Pull the single step breakpoints out of the target. */
2192 remove_single_step_breakpoints ();
2193 singlestep_breakpoints_inserted_p = 0;
2194
2195 ecs->random_signal = 0;
2196
2197 context_switch (saved_singlestep_ptid);
2198 if (deprecated_context_hook)
2199 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2200
2201 resume (1, TARGET_SIGNAL_0);
2202 prepare_to_wait (ecs);
2203 return;
2204 }
2205 }
2206
2207 stepping_past_singlestep_breakpoint = 0;
2208
2209 if (!ptid_equal (deferred_step_ptid, null_ptid))
2210 {
2211 /* In non-stop mode, there's never a deferred_step_ptid set. */
2212 gdb_assert (!non_stop);
2213
2214 /* If we stopped for some other reason than single-stepping, ignore
2215 the fact that we were supposed to switch back. */
2216 if (stop_signal == TARGET_SIGNAL_TRAP)
2217 {
2218 if (debug_infrun)
2219 fprintf_unfiltered (gdb_stdlog,
2220 "infrun: handling deferred step\n");
2221
2222 /* Pull the single step breakpoints out of the target. */
2223 if (singlestep_breakpoints_inserted_p)
2224 {
2225 remove_single_step_breakpoints ();
2226 singlestep_breakpoints_inserted_p = 0;
2227 }
2228
2229 /* Note: We do not call context_switch at this point, as the
2230 context is already set up for stepping the original thread. */
2231 switch_to_thread (deferred_step_ptid);
2232 deferred_step_ptid = null_ptid;
2233 /* Suppress spurious "Switching to ..." message. */
2234 previous_inferior_ptid = inferior_ptid;
2235
2236 resume (1, TARGET_SIGNAL_0);
2237 prepare_to_wait (ecs);
2238 return;
2239 }
2240
2241 deferred_step_ptid = null_ptid;
2242 }
2243
2244 /* See if a thread hit a thread-specific breakpoint that was meant for
2245 another thread. If so, then step that thread past the breakpoint,
2246 and continue it. */
2247
2248 if (stop_signal == TARGET_SIGNAL_TRAP)
2249 {
2250 int thread_hop_needed = 0;
2251
2252 /* Check if a regular breakpoint has been hit before checking
2253 for a potential single step breakpoint. Otherwise, GDB will
2254 not see this breakpoint hit when stepping onto breakpoints. */
2255 if (regular_breakpoint_inserted_here_p (stop_pc))
2256 {
2257 ecs->random_signal = 0;
2258 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2259 thread_hop_needed = 1;
2260 }
2261 else if (singlestep_breakpoints_inserted_p)
2262 {
2263 /* We have not context switched yet, so this should be true
2264 no matter which thread hit the singlestep breakpoint. */
2265 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2266 if (debug_infrun)
2267 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2268 "trap for %s\n",
2269 target_pid_to_str (ecs->ptid));
2270
2271 ecs->random_signal = 0;
2272 /* The call to in_thread_list is necessary because PTIDs sometimes
2273 change when we go from single-threaded to multi-threaded. If
2274 the singlestep_ptid is still in the list, assume that it is
2275 really different from ecs->ptid. */
2276 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2277 && in_thread_list (singlestep_ptid))
2278 {
2279 /* If the PC of the thread we were trying to single-step
2280 has changed, discard this event (which we were going
2281 to ignore anyway), and pretend we saw that thread
2282 trap. This prevents us continuously moving the
2283 single-step breakpoint forward, one instruction at a
2284 time. If the PC has changed, then the thread we were
2285 trying to single-step has trapped or been signalled,
2286 but the event has not been reported to GDB yet.
2287
2288 There might be some cases where this loses signal
2289 information, if a signal has arrived at exactly the
2290 same time that the PC changed, but this is the best
2291 we can do with the information available. Perhaps we
2292 should arrange to report all events for all threads
2293 when they stop, or to re-poll the remote looking for
2294 this particular thread (i.e. temporarily enable
2295 schedlock). */
2296
2297 CORE_ADDR new_singlestep_pc
2298 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2299
2300 if (new_singlestep_pc != singlestep_pc)
2301 {
2302 if (debug_infrun)
2303 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2304 " but expected thread advanced also\n");
2305
2306 /* The current context still belongs to
2307 singlestep_ptid. Don't swap here, since that's
2308 the context we want to use. Just fudge our
2309 state and continue. */
2310 ecs->ptid = singlestep_ptid;
2311 stop_pc = new_singlestep_pc;
2312 }
2313 else
2314 {
2315 if (debug_infrun)
2316 fprintf_unfiltered (gdb_stdlog,
2317 "infrun: unexpected thread\n");
2318
2319 thread_hop_needed = 1;
2320 stepping_past_singlestep_breakpoint = 1;
2321 saved_singlestep_ptid = singlestep_ptid;
2322 }
2323 }
2324 }
2325
2326 if (thread_hop_needed)
2327 {
2328 int remove_status = 0;
2329
2330 if (debug_infrun)
2331 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2332
2333 /* Saw a breakpoint, but it was hit by the wrong thread.
2334 Just continue. */
2335
2336 if (singlestep_breakpoints_inserted_p)
2337 {
2338 /* Pull the single step breakpoints out of the target. */
2339 remove_single_step_breakpoints ();
2340 singlestep_breakpoints_inserted_p = 0;
2341 }
2342
2343 /* If the arch can displace step, don't remove the
2344 breakpoints. */
2345 if (!use_displaced_stepping (current_gdbarch))
2346 remove_status = remove_breakpoints ();
2347
2348 /* Did we fail to remove breakpoints? If so, try
2349 to set the PC past the bp. (There's at least
2350 one situation in which we can fail to remove
2351 the bp's: On HP-UX's that use ttrace, we can't
2352 change the address space of a vforking child
2353 process until the child exits (well, okay, not
2354 then either :-) or execs. */
2355 if (remove_status != 0)
2356 error (_("Cannot step over breakpoint hit in wrong thread"));
2357 else
2358 { /* Single step */
2359 if (!ptid_equal (inferior_ptid, ecs->ptid))
2360 context_switch (ecs->ptid);
2361
2362 if (!non_stop)
2363 {
2364 /* Only need to require the next event from this
2365 thread in all-stop mode. */
2366 waiton_ptid = ecs->ptid;
2367 infwait_state = infwait_thread_hop_state;
2368 }
2369
2370 tss->stepping_over_breakpoint = 1;
2371 keep_going (ecs);
2372 registers_changed ();
2373 return;
2374 }
2375 }
2376 else if (singlestep_breakpoints_inserted_p)
2377 {
2378 sw_single_step_trap_p = 1;
2379 ecs->random_signal = 0;
2380 }
2381 }
2382 else
2383 ecs->random_signal = 1;
2384
2385 /* See if something interesting happened to the non-current thread. If
2386 so, then switch to that thread. */
2387 if (!ptid_equal (ecs->ptid, inferior_ptid))
2388 {
2389 if (debug_infrun)
2390 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2391
2392 context_switch (ecs->ptid);
2393
2394 if (deprecated_context_hook)
2395 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2396 }
2397
2398 if (singlestep_breakpoints_inserted_p)
2399 {
2400 /* Pull the single step breakpoints out of the target. */
2401 remove_single_step_breakpoints ();
2402 singlestep_breakpoints_inserted_p = 0;
2403 }
2404
2405 if (stepped_after_stopped_by_watchpoint)
2406 stopped_by_watchpoint = 0;
2407 else
2408 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2409
2410 /* If necessary, step over this watchpoint. We'll be back to display
2411 it in a moment. */
2412 if (stopped_by_watchpoint
2413 && (HAVE_STEPPABLE_WATCHPOINT
2414 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2415 {
2416 /* At this point, we are stopped at an instruction which has
2417 attempted to write to a piece of memory under control of
2418 a watchpoint. The instruction hasn't actually executed
2419 yet. If we were to evaluate the watchpoint expression
2420 now, we would get the old value, and therefore no change
2421 would seem to have occurred.
2422
2423 In order to make watchpoints work `right', we really need
2424 to complete the memory write, and then evaluate the
2425 watchpoint expression. We do this by single-stepping the
2426 target.
2427
2428 It may not be necessary to disable the watchpoint to stop over
2429 it. For example, the PA can (with some kernel cooperation)
2430 single step over a watchpoint without disabling the watchpoint.
2431
2432 It is far more common to need to disable a watchpoint to step
2433 the inferior over it. If we have non-steppable watchpoints,
2434 we must disable the current watchpoint; it's simplest to
2435 disable all watchpoints and breakpoints. */
2436
2437 if (!HAVE_STEPPABLE_WATCHPOINT)
2438 remove_breakpoints ();
2439 registers_changed ();
2440 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2441 waiton_ptid = ecs->ptid;
2442 if (HAVE_STEPPABLE_WATCHPOINT)
2443 infwait_state = infwait_step_watch_state;
2444 else
2445 infwait_state = infwait_nonstep_watch_state;
2446 prepare_to_wait (ecs);
2447 return;
2448 }
2449
2450 ecs->stop_func_start = 0;
2451 ecs->stop_func_end = 0;
2452 ecs->stop_func_name = 0;
2453 /* Don't care about return value; stop_func_start and stop_func_name
2454 will both be 0 if it doesn't work. */
2455 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2456 &ecs->stop_func_start, &ecs->stop_func_end);
2457 ecs->stop_func_start
2458 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2459 tss->stepping_over_breakpoint = 0;
2460 bpstat_clear (&stop_bpstat);
2461 stop_step = 0;
2462 stop_print_frame = 1;
2463 ecs->random_signal = 0;
2464 stopped_by_random_signal = 0;
2465
2466 if (stop_signal == TARGET_SIGNAL_TRAP
2467 && stepping_over_breakpoint
2468 && gdbarch_single_step_through_delay_p (current_gdbarch)
2469 && currently_stepping (tss))
2470 {
2471 /* We're trying to step off a breakpoint. Turns out that we're
2472 also on an instruction that needs to be stepped multiple
2473 times before it's been fully executing. E.g., architectures
2474 with a delay slot. It needs to be stepped twice, once for
2475 the instruction and once for the delay slot. */
2476 int step_through_delay
2477 = gdbarch_single_step_through_delay (current_gdbarch,
2478 get_current_frame ());
2479 if (debug_infrun && step_through_delay)
2480 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2481 if (step_range_end == 0 && step_through_delay)
2482 {
2483 /* The user issued a continue when stopped at a breakpoint.
2484 Set up for another trap and get out of here. */
2485 tss->stepping_over_breakpoint = 1;
2486 keep_going (ecs);
2487 return;
2488 }
2489 else if (step_through_delay)
2490 {
2491 /* The user issued a step when stopped at a breakpoint.
2492 Maybe we should stop, maybe we should not - the delay
2493 slot *might* correspond to a line of source. In any
2494 case, don't decide that here, just set
2495 ecs->stepping_over_breakpoint, making sure we
2496 single-step again before breakpoints are re-inserted. */
2497 tss->stepping_over_breakpoint = 1;
2498 }
2499 }
2500
2501 /* Look at the cause of the stop, and decide what to do.
2502 The alternatives are:
2503 1) stop_stepping and return; to really stop and return to the debugger,
2504 2) keep_going and return to start up again
2505 (set tss->stepping_over_breakpoint to 1 to single step once)
2506 3) set ecs->random_signal to 1, and the decision between 1 and 2
2507 will be made according to the signal handling tables. */
2508
2509 /* First, distinguish signals caused by the debugger from signals
2510 that have to do with the program's own actions. Note that
2511 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2512 on the operating system version. Here we detect when a SIGILL or
2513 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2514 something similar for SIGSEGV, since a SIGSEGV will be generated
2515 when we're trying to execute a breakpoint instruction on a
2516 non-executable stack. This happens for call dummy breakpoints
2517 for architectures like SPARC that place call dummies on the
2518 stack.
2519
2520 If we're doing a displaced step past a breakpoint, then the
2521 breakpoint is always inserted at the original instruction;
2522 non-standard signals can't be explained by the breakpoint. */
2523 if (stop_signal == TARGET_SIGNAL_TRAP
2524 || (! stepping_over_breakpoint
2525 && breakpoint_inserted_here_p (stop_pc)
2526 && (stop_signal == TARGET_SIGNAL_ILL
2527 || stop_signal == TARGET_SIGNAL_SEGV
2528 || stop_signal == TARGET_SIGNAL_EMT))
2529 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2530 || stop_soon == STOP_QUIETLY_REMOTE)
2531 {
2532 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2533 {
2534 if (debug_infrun)
2535 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2536 stop_print_frame = 0;
2537 stop_stepping (ecs);
2538 return;
2539 }
2540
2541 /* This is originated from start_remote(), start_inferior() and
2542 shared libraries hook functions. */
2543 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2544 {
2545 if (debug_infrun)
2546 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2547 stop_stepping (ecs);
2548 return;
2549 }
2550
2551 /* This originates from attach_command(). We need to overwrite
2552 the stop_signal here, because some kernels don't ignore a
2553 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2554 See more comments in inferior.h. On the other hand, if we
2555 get a non-SIGSTOP, report it to the user - assume the backend
2556 will handle the SIGSTOP if it should show up later.
2557
2558 Also consider that the attach is complete when we see a
2559 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2560 target extended-remote report it instead of a SIGSTOP
2561 (e.g. gdbserver). We already rely on SIGTRAP being our
2562 signal, so this is no exception. */
2563 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2564 && (stop_signal == TARGET_SIGNAL_STOP
2565 || stop_signal == TARGET_SIGNAL_TRAP))
2566 {
2567 stop_stepping (ecs);
2568 stop_signal = TARGET_SIGNAL_0;
2569 return;
2570 }
2571
2572 /* See if there is a breakpoint at the current PC. */
2573 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2574
2575 /* Following in case break condition called a
2576 function. */
2577 stop_print_frame = 1;
2578
2579 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2580 at one stage in the past included checks for an inferior
2581 function call's call dummy's return breakpoint. The original
2582 comment, that went with the test, read:
2583
2584 ``End of a stack dummy. Some systems (e.g. Sony news) give
2585 another signal besides SIGTRAP, so check here as well as
2586 above.''
2587
2588 If someone ever tries to get get call dummys on a
2589 non-executable stack to work (where the target would stop
2590 with something like a SIGSEGV), then those tests might need
2591 to be re-instated. Given, however, that the tests were only
2592 enabled when momentary breakpoints were not being used, I
2593 suspect that it won't be the case.
2594
2595 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2596 be necessary for call dummies on a non-executable stack on
2597 SPARC. */
2598
2599 if (stop_signal == TARGET_SIGNAL_TRAP)
2600 ecs->random_signal
2601 = !(bpstat_explains_signal (stop_bpstat)
2602 || stepping_over_breakpoint
2603 || (step_range_end && step_resume_breakpoint == NULL));
2604 else
2605 {
2606 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2607 if (!ecs->random_signal)
2608 stop_signal = TARGET_SIGNAL_TRAP;
2609 }
2610 }
2611
2612 /* When we reach this point, we've pretty much decided
2613 that the reason for stopping must've been a random
2614 (unexpected) signal. */
2615
2616 else
2617 ecs->random_signal = 1;
2618
2619 process_event_stop_test:
2620 /* For the program's own signals, act according to
2621 the signal handling tables. */
2622
2623 if (ecs->random_signal)
2624 {
2625 /* Signal not for debugging purposes. */
2626 int printed = 0;
2627
2628 if (debug_infrun)
2629 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2630
2631 stopped_by_random_signal = 1;
2632
2633 if (signal_print[stop_signal])
2634 {
2635 printed = 1;
2636 target_terminal_ours_for_output ();
2637 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2638 }
2639 if (signal_stop_state (stop_signal))
2640 {
2641 stop_stepping (ecs);
2642 return;
2643 }
2644 /* If not going to stop, give terminal back
2645 if we took it away. */
2646 else if (printed)
2647 target_terminal_inferior ();
2648
2649 /* Clear the signal if it should not be passed. */
2650 if (signal_program[stop_signal] == 0)
2651 stop_signal = TARGET_SIGNAL_0;
2652
2653 if (prev_pc == read_pc ()
2654 && stepping_over_breakpoint
2655 && step_resume_breakpoint == NULL)
2656 {
2657 /* We were just starting a new sequence, attempting to
2658 single-step off of a breakpoint and expecting a SIGTRAP.
2659 Instead this signal arrives. This signal will take us out
2660 of the stepping range so GDB needs to remember to, when
2661 the signal handler returns, resume stepping off that
2662 breakpoint. */
2663 /* To simplify things, "continue" is forced to use the same
2664 code paths as single-step - set a breakpoint at the
2665 signal return address and then, once hit, step off that
2666 breakpoint. */
2667 if (debug_infrun)
2668 fprintf_unfiltered (gdb_stdlog,
2669 "infrun: signal arrived while stepping over "
2670 "breakpoint\n");
2671
2672 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2673 tss->step_after_step_resume_breakpoint = 1;
2674 keep_going (ecs);
2675 return;
2676 }
2677
2678 if (step_range_end != 0
2679 && stop_signal != TARGET_SIGNAL_0
2680 && stop_pc >= step_range_start && stop_pc < step_range_end
2681 && frame_id_eq (get_frame_id (get_current_frame ()),
2682 step_frame_id)
2683 && step_resume_breakpoint == NULL)
2684 {
2685 /* The inferior is about to take a signal that will take it
2686 out of the single step range. Set a breakpoint at the
2687 current PC (which is presumably where the signal handler
2688 will eventually return) and then allow the inferior to
2689 run free.
2690
2691 Note that this is only needed for a signal delivered
2692 while in the single-step range. Nested signals aren't a
2693 problem as they eventually all return. */
2694 if (debug_infrun)
2695 fprintf_unfiltered (gdb_stdlog,
2696 "infrun: signal may take us out of "
2697 "single-step range\n");
2698
2699 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2700 keep_going (ecs);
2701 return;
2702 }
2703
2704 /* Note: step_resume_breakpoint may be non-NULL. This occures
2705 when either there's a nested signal, or when there's a
2706 pending signal enabled just as the signal handler returns
2707 (leaving the inferior at the step-resume-breakpoint without
2708 actually executing it). Either way continue until the
2709 breakpoint is really hit. */
2710 keep_going (ecs);
2711 return;
2712 }
2713
2714 /* Handle cases caused by hitting a breakpoint. */
2715 {
2716 CORE_ADDR jmp_buf_pc;
2717 struct bpstat_what what;
2718
2719 what = bpstat_what (stop_bpstat);
2720
2721 if (what.call_dummy)
2722 {
2723 stop_stack_dummy = 1;
2724 }
2725
2726 switch (what.main_action)
2727 {
2728 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2729 /* If we hit the breakpoint at longjmp while stepping, we
2730 install a momentary breakpoint at the target of the
2731 jmp_buf. */
2732
2733 if (debug_infrun)
2734 fprintf_unfiltered (gdb_stdlog,
2735 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2736
2737 tss->stepping_over_breakpoint = 1;
2738
2739 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2740 || !gdbarch_get_longjmp_target (current_gdbarch,
2741 get_current_frame (), &jmp_buf_pc))
2742 {
2743 if (debug_infrun)
2744 fprintf_unfiltered (gdb_stdlog, "\
2745 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
2746 keep_going (ecs);
2747 return;
2748 }
2749
2750 /* We're going to replace the current step-resume breakpoint
2751 with a longjmp-resume breakpoint. */
2752 if (step_resume_breakpoint != NULL)
2753 delete_step_resume_breakpoint (&step_resume_breakpoint);
2754
2755 /* Insert a breakpoint at resume address. */
2756 insert_longjmp_resume_breakpoint (jmp_buf_pc);
2757
2758 keep_going (ecs);
2759 return;
2760
2761 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2762 if (debug_infrun)
2763 fprintf_unfiltered (gdb_stdlog,
2764 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2765
2766 gdb_assert (step_resume_breakpoint != NULL);
2767 delete_step_resume_breakpoint (&step_resume_breakpoint);
2768
2769 stop_step = 1;
2770 print_stop_reason (END_STEPPING_RANGE, 0);
2771 stop_stepping (ecs);
2772 return;
2773
2774 case BPSTAT_WHAT_SINGLE:
2775 if (debug_infrun)
2776 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2777 tss->stepping_over_breakpoint = 1;
2778 /* Still need to check other stuff, at least the case
2779 where we are stepping and step out of the right range. */
2780 break;
2781
2782 case BPSTAT_WHAT_STOP_NOISY:
2783 if (debug_infrun)
2784 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2785 stop_print_frame = 1;
2786
2787 /* We are about to nuke the step_resume_breakpointt via the
2788 cleanup chain, so no need to worry about it here. */
2789
2790 stop_stepping (ecs);
2791 return;
2792
2793 case BPSTAT_WHAT_STOP_SILENT:
2794 if (debug_infrun)
2795 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2796 stop_print_frame = 0;
2797
2798 /* We are about to nuke the step_resume_breakpoin via the
2799 cleanup chain, so no need to worry about it here. */
2800
2801 stop_stepping (ecs);
2802 return;
2803
2804 case BPSTAT_WHAT_STEP_RESUME:
2805 /* This proably demands a more elegant solution, but, yeah
2806 right...
2807
2808 This function's use of the simple variable
2809 step_resume_breakpoint doesn't seem to accomodate
2810 simultaneously active step-resume bp's, although the
2811 breakpoint list certainly can.
2812
2813 If we reach here and step_resume_breakpoint is already
2814 NULL, then apparently we have multiple active
2815 step-resume bp's. We'll just delete the breakpoint we
2816 stopped at, and carry on.
2817
2818 Correction: what the code currently does is delete a
2819 step-resume bp, but it makes no effort to ensure that
2820 the one deleted is the one currently stopped at. MVS */
2821
2822 if (debug_infrun)
2823 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2824
2825 if (step_resume_breakpoint == NULL)
2826 {
2827 step_resume_breakpoint =
2828 bpstat_find_step_resume_breakpoint (stop_bpstat);
2829 }
2830 delete_step_resume_breakpoint (&step_resume_breakpoint);
2831 if (tss->step_after_step_resume_breakpoint)
2832 {
2833 /* Back when the step-resume breakpoint was inserted, we
2834 were trying to single-step off a breakpoint. Go back
2835 to doing that. */
2836 tss->step_after_step_resume_breakpoint = 0;
2837 tss->stepping_over_breakpoint = 1;
2838 keep_going (ecs);
2839 return;
2840 }
2841 break;
2842
2843 case BPSTAT_WHAT_CHECK_SHLIBS:
2844 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2845 {
2846 if (debug_infrun)
2847 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2848
2849 /* Check for any newly added shared libraries if we're
2850 supposed to be adding them automatically. Switch
2851 terminal for any messages produced by
2852 breakpoint_re_set. */
2853 target_terminal_ours_for_output ();
2854 /* NOTE: cagney/2003-11-25: Make certain that the target
2855 stack's section table is kept up-to-date. Architectures,
2856 (e.g., PPC64), use the section table to perform
2857 operations such as address => section name and hence
2858 require the table to contain all sections (including
2859 those found in shared libraries). */
2860 /* NOTE: cagney/2003-11-25: Pass current_target and not
2861 exec_ops to SOLIB_ADD. This is because current GDB is
2862 only tooled to propagate section_table changes out from
2863 the "current_target" (see target_resize_to_sections), and
2864 not up from the exec stratum. This, of course, isn't
2865 right. "infrun.c" should only interact with the
2866 exec/process stratum, instead relying on the target stack
2867 to propagate relevant changes (stop, section table
2868 changed, ...) up to other layers. */
2869 #ifdef SOLIB_ADD
2870 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2871 #else
2872 solib_add (NULL, 0, &current_target, auto_solib_add);
2873 #endif
2874 target_terminal_inferior ();
2875
2876 /* If requested, stop when the dynamic linker notifies
2877 gdb of events. This allows the user to get control
2878 and place breakpoints in initializer routines for
2879 dynamically loaded objects (among other things). */
2880 if (stop_on_solib_events || stop_stack_dummy)
2881 {
2882 stop_stepping (ecs);
2883 return;
2884 }
2885
2886 /* If we stopped due to an explicit catchpoint, then the
2887 (see above) call to SOLIB_ADD pulled in any symbols
2888 from a newly-loaded library, if appropriate.
2889
2890 We do want the inferior to stop, but not where it is
2891 now, which is in the dynamic linker callback. Rather,
2892 we would like it stop in the user's program, just after
2893 the call that caused this catchpoint to trigger. That
2894 gives the user a more useful vantage from which to
2895 examine their program's state. */
2896 else if (what.main_action
2897 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2898 {
2899 /* ??rehrauer: If I could figure out how to get the
2900 right return PC from here, we could just set a temp
2901 breakpoint and resume. I'm not sure we can without
2902 cracking open the dld's shared libraries and sniffing
2903 their unwind tables and text/data ranges, and that's
2904 not a terribly portable notion.
2905
2906 Until that time, we must step the inferior out of the
2907 dld callback, and also out of the dld itself (and any
2908 code or stubs in libdld.sl, such as "shl_load" and
2909 friends) until we reach non-dld code. At that point,
2910 we can stop stepping. */
2911 bpstat_get_triggered_catchpoints (stop_bpstat,
2912 &tss->
2913 stepping_through_solib_catchpoints);
2914 tss->stepping_through_solib_after_catch = 1;
2915
2916 /* Be sure to lift all breakpoints, so the inferior does
2917 actually step past this point... */
2918 tss->stepping_over_breakpoint = 1;
2919 break;
2920 }
2921 else
2922 {
2923 /* We want to step over this breakpoint, then keep going. */
2924 tss->stepping_over_breakpoint = 1;
2925 break;
2926 }
2927 }
2928 break;
2929
2930 case BPSTAT_WHAT_LAST:
2931 /* Not a real code, but listed here to shut up gcc -Wall. */
2932
2933 case BPSTAT_WHAT_KEEP_CHECKING:
2934 break;
2935 }
2936 }
2937
2938 /* We come here if we hit a breakpoint but should not
2939 stop for it. Possibly we also were stepping
2940 and should stop for that. So fall through and
2941 test for stepping. But, if not stepping,
2942 do not stop. */
2943
2944 /* Are we stepping to get the inferior out of the dynamic linker's
2945 hook (and possibly the dld itself) after catching a shlib
2946 event? */
2947 if (tss->stepping_through_solib_after_catch)
2948 {
2949 #if defined(SOLIB_ADD)
2950 /* Have we reached our destination? If not, keep going. */
2951 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2952 {
2953 if (debug_infrun)
2954 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2955 tss->stepping_over_breakpoint = 1;
2956 keep_going (ecs);
2957 return;
2958 }
2959 #endif
2960 if (debug_infrun)
2961 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2962 /* Else, stop and report the catchpoint(s) whose triggering
2963 caused us to begin stepping. */
2964 tss->stepping_through_solib_after_catch = 0;
2965 bpstat_clear (&stop_bpstat);
2966 stop_bpstat = bpstat_copy (tss->stepping_through_solib_catchpoints);
2967 bpstat_clear (&tss->stepping_through_solib_catchpoints);
2968 stop_print_frame = 1;
2969 stop_stepping (ecs);
2970 return;
2971 }
2972
2973 if (step_resume_breakpoint)
2974 {
2975 if (debug_infrun)
2976 fprintf_unfiltered (gdb_stdlog,
2977 "infrun: step-resume breakpoint is inserted\n");
2978
2979 /* Having a step-resume breakpoint overrides anything
2980 else having to do with stepping commands until
2981 that breakpoint is reached. */
2982 keep_going (ecs);
2983 return;
2984 }
2985
2986 if (step_range_end == 0)
2987 {
2988 if (debug_infrun)
2989 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2990 /* Likewise if we aren't even stepping. */
2991 keep_going (ecs);
2992 return;
2993 }
2994
2995 /* If stepping through a line, keep going if still within it.
2996
2997 Note that step_range_end is the address of the first instruction
2998 beyond the step range, and NOT the address of the last instruction
2999 within it! */
3000 if (stop_pc >= step_range_start && stop_pc < step_range_end)
3001 {
3002 if (debug_infrun)
3003 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3004 paddr_nz (step_range_start),
3005 paddr_nz (step_range_end));
3006 keep_going (ecs);
3007 return;
3008 }
3009
3010 /* We stepped out of the stepping range. */
3011
3012 /* If we are stepping at the source level and entered the runtime
3013 loader dynamic symbol resolution code, we keep on single stepping
3014 until we exit the run time loader code and reach the callee's
3015 address. */
3016 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
3017 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
3018 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
3019 #else
3020 && in_solib_dynsym_resolve_code (stop_pc)
3021 #endif
3022 )
3023 {
3024 CORE_ADDR pc_after_resolver =
3025 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3026
3027 if (debug_infrun)
3028 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3029
3030 if (pc_after_resolver)
3031 {
3032 /* Set up a step-resume breakpoint at the address
3033 indicated by SKIP_SOLIB_RESOLVER. */
3034 struct symtab_and_line sr_sal;
3035 init_sal (&sr_sal);
3036 sr_sal.pc = pc_after_resolver;
3037
3038 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3039 }
3040
3041 keep_going (ecs);
3042 return;
3043 }
3044
3045 if (step_range_end != 1
3046 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
3047 || step_over_calls == STEP_OVER_ALL)
3048 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3049 {
3050 if (debug_infrun)
3051 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3052 /* The inferior, while doing a "step" or "next", has ended up in
3053 a signal trampoline (either by a signal being delivered or by
3054 the signal handler returning). Just single-step until the
3055 inferior leaves the trampoline (either by calling the handler
3056 or returning). */
3057 keep_going (ecs);
3058 return;
3059 }
3060
3061 /* Check for subroutine calls. The check for the current frame
3062 equalling the step ID is not necessary - the check of the
3063 previous frame's ID is sufficient - but it is a common case and
3064 cheaper than checking the previous frame's ID.
3065
3066 NOTE: frame_id_eq will never report two invalid frame IDs as
3067 being equal, so to get into this block, both the current and
3068 previous frame must have valid frame IDs. */
3069 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
3070 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
3071 {
3072 CORE_ADDR real_stop_pc;
3073
3074 if (debug_infrun)
3075 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3076
3077 if ((step_over_calls == STEP_OVER_NONE)
3078 || ((step_range_end == 1)
3079 && in_prologue (prev_pc, ecs->stop_func_start)))
3080 {
3081 /* I presume that step_over_calls is only 0 when we're
3082 supposed to be stepping at the assembly language level
3083 ("stepi"). Just stop. */
3084 /* Also, maybe we just did a "nexti" inside a prolog, so we
3085 thought it was a subroutine call but it was not. Stop as
3086 well. FENN */
3087 stop_step = 1;
3088 print_stop_reason (END_STEPPING_RANGE, 0);
3089 stop_stepping (ecs);
3090 return;
3091 }
3092
3093 if (step_over_calls == STEP_OVER_ALL)
3094 {
3095 /* We're doing a "next", set a breakpoint at callee's return
3096 address (the address at which the caller will
3097 resume). */
3098 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3099 keep_going (ecs);
3100 return;
3101 }
3102
3103 /* If we are in a function call trampoline (a stub between the
3104 calling routine and the real function), locate the real
3105 function. That's what tells us (a) whether we want to step
3106 into it at all, and (b) what prologue we want to run to the
3107 end of, if we do step into it. */
3108 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3109 if (real_stop_pc == 0)
3110 real_stop_pc = gdbarch_skip_trampoline_code
3111 (current_gdbarch, get_current_frame (), stop_pc);
3112 if (real_stop_pc != 0)
3113 ecs->stop_func_start = real_stop_pc;
3114
3115 if (
3116 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
3117 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
3118 #else
3119 in_solib_dynsym_resolve_code (ecs->stop_func_start)
3120 #endif
3121 )
3122 {
3123 struct symtab_and_line sr_sal;
3124 init_sal (&sr_sal);
3125 sr_sal.pc = ecs->stop_func_start;
3126
3127 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3128 keep_going (ecs);
3129 return;
3130 }
3131
3132 /* If we have line number information for the function we are
3133 thinking of stepping into, step into it.
3134
3135 If there are several symtabs at that PC (e.g. with include
3136 files), just want to know whether *any* of them have line
3137 numbers. find_pc_line handles this. */
3138 {
3139 struct symtab_and_line tmp_sal;
3140
3141 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3142 if (tmp_sal.line != 0)
3143 {
3144 step_into_function (ecs);
3145 return;
3146 }
3147 }
3148
3149 /* If we have no line number and the step-stop-if-no-debug is
3150 set, we stop the step so that the user has a chance to switch
3151 in assembly mode. */
3152 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
3153 {
3154 stop_step = 1;
3155 print_stop_reason (END_STEPPING_RANGE, 0);
3156 stop_stepping (ecs);
3157 return;
3158 }
3159
3160 /* Set a breakpoint at callee's return address (the address at
3161 which the caller will resume). */
3162 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3163 keep_going (ecs);
3164 return;
3165 }
3166
3167 /* If we're in the return path from a shared library trampoline,
3168 we want to proceed through the trampoline when stepping. */
3169 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3170 stop_pc, ecs->stop_func_name))
3171 {
3172 /* Determine where this trampoline returns. */
3173 CORE_ADDR real_stop_pc;
3174 real_stop_pc = gdbarch_skip_trampoline_code
3175 (current_gdbarch, get_current_frame (), stop_pc);
3176
3177 if (debug_infrun)
3178 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3179
3180 /* Only proceed through if we know where it's going. */
3181 if (real_stop_pc)
3182 {
3183 /* And put the step-breakpoint there and go until there. */
3184 struct symtab_and_line sr_sal;
3185
3186 init_sal (&sr_sal); /* initialize to zeroes */
3187 sr_sal.pc = real_stop_pc;
3188 sr_sal.section = find_pc_overlay (sr_sal.pc);
3189
3190 /* Do not specify what the fp should be when we stop since
3191 on some machines the prologue is where the new fp value
3192 is established. */
3193 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3194
3195 /* Restart without fiddling with the step ranges or
3196 other state. */
3197 keep_going (ecs);
3198 return;
3199 }
3200 }
3201
3202 stop_pc_sal = find_pc_line (stop_pc, 0);
3203
3204 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3205 the trampoline processing logic, however, there are some trampolines
3206 that have no names, so we should do trampoline handling first. */
3207 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
3208 && ecs->stop_func_name == NULL
3209 && stop_pc_sal.line == 0)
3210 {
3211 if (debug_infrun)
3212 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3213
3214 /* The inferior just stepped into, or returned to, an
3215 undebuggable function (where there is no debugging information
3216 and no line number corresponding to the address where the
3217 inferior stopped). Since we want to skip this kind of code,
3218 we keep going until the inferior returns from this
3219 function - unless the user has asked us not to (via
3220 set step-mode) or we no longer know how to get back
3221 to the call site. */
3222 if (step_stop_if_no_debug
3223 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3224 {
3225 /* If we have no line number and the step-stop-if-no-debug
3226 is set, we stop the step so that the user has a chance to
3227 switch in assembly mode. */
3228 stop_step = 1;
3229 print_stop_reason (END_STEPPING_RANGE, 0);
3230 stop_stepping (ecs);
3231 return;
3232 }
3233 else
3234 {
3235 /* Set a breakpoint at callee's return address (the address
3236 at which the caller will resume). */
3237 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3238 keep_going (ecs);
3239 return;
3240 }
3241 }
3242
3243 if (step_range_end == 1)
3244 {
3245 /* It is stepi or nexti. We always want to stop stepping after
3246 one instruction. */
3247 if (debug_infrun)
3248 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3249 stop_step = 1;
3250 print_stop_reason (END_STEPPING_RANGE, 0);
3251 stop_stepping (ecs);
3252 return;
3253 }
3254
3255 if (stop_pc_sal.line == 0)
3256 {
3257 /* We have no line number information. That means to stop
3258 stepping (does this always happen right after one instruction,
3259 when we do "s" in a function with no line numbers,
3260 or can this happen as a result of a return or longjmp?). */
3261 if (debug_infrun)
3262 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3263 stop_step = 1;
3264 print_stop_reason (END_STEPPING_RANGE, 0);
3265 stop_stepping (ecs);
3266 return;
3267 }
3268
3269 if ((stop_pc == stop_pc_sal.pc)
3270 && (tss->current_line != stop_pc_sal.line
3271 || tss->current_symtab != stop_pc_sal.symtab))
3272 {
3273 /* We are at the start of a different line. So stop. Note that
3274 we don't stop if we step into the middle of a different line.
3275 That is said to make things like for (;;) statements work
3276 better. */
3277 if (debug_infrun)
3278 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3279 stop_step = 1;
3280 print_stop_reason (END_STEPPING_RANGE, 0);
3281 stop_stepping (ecs);
3282 return;
3283 }
3284
3285 /* We aren't done stepping.
3286
3287 Optimize by setting the stepping range to the line.
3288 (We might not be in the original line, but if we entered a
3289 new line in mid-statement, we continue stepping. This makes
3290 things like for(;;) statements work better.) */
3291
3292 step_range_start = stop_pc_sal.pc;
3293 step_range_end = stop_pc_sal.end;
3294 step_frame_id = get_frame_id (get_current_frame ());
3295 tss->current_line = stop_pc_sal.line;
3296 tss->current_symtab = stop_pc_sal.symtab;
3297
3298 /* In the case where we just stepped out of a function into the
3299 middle of a line of the caller, continue stepping, but
3300 step_frame_id must be modified to current frame */
3301 #if 0
3302 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
3303 generous. It will trigger on things like a step into a frameless
3304 stackless leaf function. I think the logic should instead look
3305 at the unwound frame ID has that should give a more robust
3306 indication of what happened. */
3307 if (step - ID == current - ID)
3308 still stepping in same function;
3309 else if (step - ID == unwind (current - ID))
3310 stepped into a function;
3311 else
3312 stepped out of a function;
3313 /* Of course this assumes that the frame ID unwind code is robust
3314 and we're willing to introduce frame unwind logic into this
3315 function. Fortunately, those days are nearly upon us. */
3316 #endif
3317 {
3318 struct frame_info *frame = get_current_frame ();
3319 struct frame_id current_frame = get_frame_id (frame);
3320 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
3321 step_frame_id)))
3322 step_frame_id = current_frame;
3323 }
3324
3325 if (debug_infrun)
3326 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3327 keep_going (ecs);
3328 }
3329
3330 /* Are we in the middle of stepping? */
3331
3332 static int
3333 currently_stepping (struct thread_stepping_state *tss)
3334 {
3335 return (((step_range_end && step_resume_breakpoint == NULL)
3336 || stepping_over_breakpoint)
3337 || tss->stepping_through_solib_after_catch
3338 || bpstat_should_step ());
3339 }
3340
3341 /* Subroutine call with source code we should not step over. Do step
3342 to the first line of code in it. */
3343
3344 static void
3345 step_into_function (struct execution_control_state *ecs)
3346 {
3347 struct symtab *s;
3348 struct symtab_and_line stop_func_sal, sr_sal;
3349
3350 s = find_pc_symtab (stop_pc);
3351 if (s && s->language != language_asm)
3352 ecs->stop_func_start = gdbarch_skip_prologue
3353 (current_gdbarch, ecs->stop_func_start);
3354
3355 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3356 /* Use the step_resume_break to step until the end of the prologue,
3357 even if that involves jumps (as it seems to on the vax under
3358 4.2). */
3359 /* If the prologue ends in the middle of a source line, continue to
3360 the end of that source line (if it is still within the function).
3361 Otherwise, just go to end of prologue. */
3362 if (stop_func_sal.end
3363 && stop_func_sal.pc != ecs->stop_func_start
3364 && stop_func_sal.end < ecs->stop_func_end)
3365 ecs->stop_func_start = stop_func_sal.end;
3366
3367 /* Architectures which require breakpoint adjustment might not be able
3368 to place a breakpoint at the computed address. If so, the test
3369 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3370 ecs->stop_func_start to an address at which a breakpoint may be
3371 legitimately placed.
3372
3373 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3374 made, GDB will enter an infinite loop when stepping through
3375 optimized code consisting of VLIW instructions which contain
3376 subinstructions corresponding to different source lines. On
3377 FR-V, it's not permitted to place a breakpoint on any but the
3378 first subinstruction of a VLIW instruction. When a breakpoint is
3379 set, GDB will adjust the breakpoint address to the beginning of
3380 the VLIW instruction. Thus, we need to make the corresponding
3381 adjustment here when computing the stop address. */
3382
3383 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3384 {
3385 ecs->stop_func_start
3386 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3387 ecs->stop_func_start);
3388 }
3389
3390 if (ecs->stop_func_start == stop_pc)
3391 {
3392 /* We are already there: stop now. */
3393 stop_step = 1;
3394 print_stop_reason (END_STEPPING_RANGE, 0);
3395 stop_stepping (ecs);
3396 return;
3397 }
3398 else
3399 {
3400 /* Put the step-breakpoint there and go until there. */
3401 init_sal (&sr_sal); /* initialize to zeroes */
3402 sr_sal.pc = ecs->stop_func_start;
3403 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3404
3405 /* Do not specify what the fp should be when we stop since on
3406 some machines the prologue is where the new fp value is
3407 established. */
3408 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3409
3410 /* And make sure stepping stops right away then. */
3411 step_range_end = step_range_start;
3412 }
3413 keep_going (ecs);
3414 }
3415
3416 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3417 This is used to both functions and to skip over code. */
3418
3419 static void
3420 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3421 struct frame_id sr_id)
3422 {
3423 /* There should never be more than one step-resume or longjmp-resume
3424 breakpoint per thread, so we should never be setting a new
3425 step_resume_breakpoint when one is already active. */
3426 gdb_assert (step_resume_breakpoint == NULL);
3427
3428 if (debug_infrun)
3429 fprintf_unfiltered (gdb_stdlog,
3430 "infrun: inserting step-resume breakpoint at 0x%s\n",
3431 paddr_nz (sr_sal.pc));
3432
3433 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
3434 bp_step_resume);
3435 }
3436
3437 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3438 to skip a potential signal handler.
3439
3440 This is called with the interrupted function's frame. The signal
3441 handler, when it returns, will resume the interrupted function at
3442 RETURN_FRAME.pc. */
3443
3444 static void
3445 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3446 {
3447 struct symtab_and_line sr_sal;
3448
3449 gdb_assert (return_frame != NULL);
3450 init_sal (&sr_sal); /* initialize to zeros */
3451
3452 sr_sal.pc = gdbarch_addr_bits_remove
3453 (current_gdbarch, get_frame_pc (return_frame));
3454 sr_sal.section = find_pc_overlay (sr_sal.pc);
3455
3456 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3457 }
3458
3459 /* Similar to insert_step_resume_breakpoint_at_frame, except
3460 but a breakpoint at the previous frame's PC. This is used to
3461 skip a function after stepping into it (for "next" or if the called
3462 function has no debugging information).
3463
3464 The current function has almost always been reached by single
3465 stepping a call or return instruction. NEXT_FRAME belongs to the
3466 current function, and the breakpoint will be set at the caller's
3467 resume address.
3468
3469 This is a separate function rather than reusing
3470 insert_step_resume_breakpoint_at_frame in order to avoid
3471 get_prev_frame, which may stop prematurely (see the implementation
3472 of frame_unwind_id for an example). */
3473
3474 static void
3475 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3476 {
3477 struct symtab_and_line sr_sal;
3478
3479 /* We shouldn't have gotten here if we don't know where the call site
3480 is. */
3481 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3482
3483 init_sal (&sr_sal); /* initialize to zeros */
3484
3485 sr_sal.pc = gdbarch_addr_bits_remove
3486 (current_gdbarch, frame_pc_unwind (next_frame));
3487 sr_sal.section = find_pc_overlay (sr_sal.pc);
3488
3489 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3490 }
3491
3492 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3493 new breakpoint at the target of a jmp_buf. The handling of
3494 longjmp-resume uses the same mechanisms used for handling
3495 "step-resume" breakpoints. */
3496
3497 static void
3498 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3499 {
3500 /* There should never be more than one step-resume or longjmp-resume
3501 breakpoint per thread, so we should never be setting a new
3502 longjmp_resume_breakpoint when one is already active. */
3503 gdb_assert (step_resume_breakpoint == NULL);
3504
3505 if (debug_infrun)
3506 fprintf_unfiltered (gdb_stdlog,
3507 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3508 paddr_nz (pc));
3509
3510 step_resume_breakpoint =
3511 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3512 }
3513
3514 static void
3515 stop_stepping (struct execution_control_state *ecs)
3516 {
3517 if (debug_infrun)
3518 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3519
3520 /* Let callers know we don't want to wait for the inferior anymore. */
3521 ecs->wait_some_more = 0;
3522 }
3523
3524 /* This function handles various cases where we need to continue
3525 waiting for the inferior. */
3526 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3527
3528 static void
3529 keep_going (struct execution_control_state *ecs)
3530 {
3531 /* Save the pc before execution, to compare with pc after stop. */
3532 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3533
3534 /* If we did not do break;, it means we should keep running the
3535 inferior and not return to debugger. */
3536
3537 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
3538 {
3539 /* We took a signal (which we are supposed to pass through to
3540 the inferior, else we'd have done a break above) and we
3541 haven't yet gotten our trap. Simply continue. */
3542 resume (currently_stepping (tss), stop_signal);
3543 }
3544 else
3545 {
3546 /* Either the trap was not expected, but we are continuing
3547 anyway (the user asked that this signal be passed to the
3548 child)
3549 -- or --
3550 The signal was SIGTRAP, e.g. it was our signal, but we
3551 decided we should resume from it.
3552
3553 We're going to run this baby now!
3554
3555 Note that insert_breakpoints won't try to re-insert
3556 already inserted breakpoints. Therefore, we don't
3557 care if breakpoints were already inserted, or not. */
3558
3559 if (tss->stepping_over_breakpoint)
3560 {
3561 if (! use_displaced_stepping (current_gdbarch))
3562 /* Since we can't do a displaced step, we have to remove
3563 the breakpoint while we step it. To keep things
3564 simple, we remove them all. */
3565 remove_breakpoints ();
3566 }
3567 else
3568 {
3569 struct gdb_exception e;
3570 /* Stop stepping when inserting breakpoints
3571 has failed. */
3572 TRY_CATCH (e, RETURN_MASK_ERROR)
3573 {
3574 insert_breakpoints ();
3575 }
3576 if (e.reason < 0)
3577 {
3578 stop_stepping (ecs);
3579 return;
3580 }
3581 }
3582
3583 stepping_over_breakpoint = tss->stepping_over_breakpoint;
3584
3585 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3586 specifies that such a signal should be delivered to the
3587 target program).
3588
3589 Typically, this would occure when a user is debugging a
3590 target monitor on a simulator: the target monitor sets a
3591 breakpoint; the simulator encounters this break-point and
3592 halts the simulation handing control to GDB; GDB, noteing
3593 that the break-point isn't valid, returns control back to the
3594 simulator; the simulator then delivers the hardware
3595 equivalent of a SIGNAL_TRAP to the program being debugged. */
3596
3597 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
3598 stop_signal = TARGET_SIGNAL_0;
3599
3600
3601 resume (currently_stepping (tss), stop_signal);
3602 }
3603
3604 prepare_to_wait (ecs);
3605 }
3606
3607 /* This function normally comes after a resume, before
3608 handle_inferior_event exits. It takes care of any last bits of
3609 housekeeping, and sets the all-important wait_some_more flag. */
3610
3611 static void
3612 prepare_to_wait (struct execution_control_state *ecs)
3613 {
3614 if (debug_infrun)
3615 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
3616 if (infwait_state == infwait_normal_state)
3617 {
3618 overlay_cache_invalid = 1;
3619
3620 /* We have to invalidate the registers BEFORE calling
3621 target_wait because they can be loaded from the target while
3622 in target_wait. This makes remote debugging a bit more
3623 efficient for those targets that provide critical registers
3624 as part of their normal status mechanism. */
3625
3626 registers_changed ();
3627 waiton_ptid = pid_to_ptid (-1);
3628 }
3629 /* This is the old end of the while loop. Let everybody know we
3630 want to wait for the inferior some more and get called again
3631 soon. */
3632 ecs->wait_some_more = 1;
3633 }
3634
3635 /* Print why the inferior has stopped. We always print something when
3636 the inferior exits, or receives a signal. The rest of the cases are
3637 dealt with later on in normal_stop() and print_it_typical(). Ideally
3638 there should be a call to this function from handle_inferior_event()
3639 each time stop_stepping() is called.*/
3640 static void
3641 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3642 {
3643 switch (stop_reason)
3644 {
3645 case END_STEPPING_RANGE:
3646 /* We are done with a step/next/si/ni command. */
3647 /* For now print nothing. */
3648 /* Print a message only if not in the middle of doing a "step n"
3649 operation for n > 1 */
3650 if (!step_multi || !stop_step)
3651 if (ui_out_is_mi_like_p (uiout))
3652 ui_out_field_string
3653 (uiout, "reason",
3654 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3655 break;
3656 case SIGNAL_EXITED:
3657 /* The inferior was terminated by a signal. */
3658 annotate_signalled ();
3659 if (ui_out_is_mi_like_p (uiout))
3660 ui_out_field_string
3661 (uiout, "reason",
3662 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3663 ui_out_text (uiout, "\nProgram terminated with signal ");
3664 annotate_signal_name ();
3665 ui_out_field_string (uiout, "signal-name",
3666 target_signal_to_name (stop_info));
3667 annotate_signal_name_end ();
3668 ui_out_text (uiout, ", ");
3669 annotate_signal_string ();
3670 ui_out_field_string (uiout, "signal-meaning",
3671 target_signal_to_string (stop_info));
3672 annotate_signal_string_end ();
3673 ui_out_text (uiout, ".\n");
3674 ui_out_text (uiout, "The program no longer exists.\n");
3675 break;
3676 case EXITED:
3677 /* The inferior program is finished. */
3678 annotate_exited (stop_info);
3679 if (stop_info)
3680 {
3681 if (ui_out_is_mi_like_p (uiout))
3682 ui_out_field_string (uiout, "reason",
3683 async_reason_lookup (EXEC_ASYNC_EXITED));
3684 ui_out_text (uiout, "\nProgram exited with code ");
3685 ui_out_field_fmt (uiout, "exit-code", "0%o",
3686 (unsigned int) stop_info);
3687 ui_out_text (uiout, ".\n");
3688 }
3689 else
3690 {
3691 if (ui_out_is_mi_like_p (uiout))
3692 ui_out_field_string
3693 (uiout, "reason",
3694 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3695 ui_out_text (uiout, "\nProgram exited normally.\n");
3696 }
3697 /* Support the --return-child-result option. */
3698 return_child_result_value = stop_info;
3699 break;
3700 case SIGNAL_RECEIVED:
3701 /* Signal received. The signal table tells us to print about
3702 it. */
3703 annotate_signal ();
3704 ui_out_text (uiout, "\nProgram received signal ");
3705 annotate_signal_name ();
3706 if (ui_out_is_mi_like_p (uiout))
3707 ui_out_field_string
3708 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3709 ui_out_field_string (uiout, "signal-name",
3710 target_signal_to_name (stop_info));
3711 annotate_signal_name_end ();
3712 ui_out_text (uiout, ", ");
3713 annotate_signal_string ();
3714 ui_out_field_string (uiout, "signal-meaning",
3715 target_signal_to_string (stop_info));
3716 annotate_signal_string_end ();
3717 ui_out_text (uiout, ".\n");
3718 break;
3719 default:
3720 internal_error (__FILE__, __LINE__,
3721 _("print_stop_reason: unrecognized enum value"));
3722 break;
3723 }
3724 }
3725 \f
3726
3727 /* Here to return control to GDB when the inferior stops for real.
3728 Print appropriate messages, remove breakpoints, give terminal our modes.
3729
3730 STOP_PRINT_FRAME nonzero means print the executing frame
3731 (pc, function, args, file, line number and line text).
3732 BREAKPOINTS_FAILED nonzero means stop was due to error
3733 attempting to insert breakpoints. */
3734
3735 void
3736 normal_stop (void)
3737 {
3738 struct target_waitstatus last;
3739 ptid_t last_ptid;
3740
3741 get_last_target_status (&last_ptid, &last);
3742
3743 /* In non-stop mode, we don't want GDB to switch threads behind the
3744 user's back, to avoid races where the user is typing a command to
3745 apply to thread x, but GDB switches to thread y before the user
3746 finishes entering the command. */
3747
3748 /* As with the notification of thread events, we want to delay
3749 notifying the user that we've switched thread context until
3750 the inferior actually stops.
3751
3752 There's no point in saying anything if the inferior has exited.
3753 Note that SIGNALLED here means "exited with a signal", not
3754 "received a signal". */
3755 if (!non_stop
3756 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
3757 && target_has_execution
3758 && last.kind != TARGET_WAITKIND_SIGNALLED
3759 && last.kind != TARGET_WAITKIND_EXITED)
3760 {
3761 target_terminal_ours_for_output ();
3762 printf_filtered (_("[Switching to %s]\n"),
3763 target_pid_to_str (inferior_ptid));
3764 annotate_thread_changed ();
3765 previous_inferior_ptid = inferior_ptid;
3766 }
3767
3768 /* NOTE drow/2004-01-17: Is this still necessary? */
3769 /* Make sure that the current_frame's pc is correct. This
3770 is a correction for setting up the frame info before doing
3771 gdbarch_decr_pc_after_break */
3772 if (target_has_execution)
3773 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3774 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3775 frame code to check for this and sort out any resultant mess.
3776 gdbarch_decr_pc_after_break needs to just go away. */
3777 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3778
3779 if (!breakpoints_always_inserted_mode () && target_has_execution)
3780 {
3781 if (remove_breakpoints ())
3782 {
3783 target_terminal_ours_for_output ();
3784 printf_filtered (_("\
3785 Cannot remove breakpoints because program is no longer writable.\n\
3786 It might be running in another process.\n\
3787 Further execution is probably impossible.\n"));
3788 }
3789 }
3790
3791 /* If an auto-display called a function and that got a signal,
3792 delete that auto-display to avoid an infinite recursion. */
3793
3794 if (stopped_by_random_signal)
3795 disable_current_display ();
3796
3797 /* Don't print a message if in the middle of doing a "step n"
3798 operation for n > 1 */
3799 if (step_multi && stop_step)
3800 goto done;
3801
3802 target_terminal_ours ();
3803
3804 /* Set the current source location. This will also happen if we
3805 display the frame below, but the current SAL will be incorrect
3806 during a user hook-stop function. */
3807 if (target_has_stack && !stop_stack_dummy)
3808 set_current_sal_from_frame (get_current_frame (), 1);
3809
3810 /* Look up the hook_stop and run it (CLI internally handles problem
3811 of stop_command's pre-hook not existing). */
3812 if (stop_command)
3813 catch_errors (hook_stop_stub, stop_command,
3814 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3815
3816 if (!target_has_stack)
3817 {
3818
3819 goto done;
3820 }
3821
3822 /* Select innermost stack frame - i.e., current frame is frame 0,
3823 and current location is based on that.
3824 Don't do this on return from a stack dummy routine,
3825 or if the program has exited. */
3826
3827 if (!stop_stack_dummy)
3828 {
3829 select_frame (get_current_frame ());
3830
3831 /* Print current location without a level number, if
3832 we have changed functions or hit a breakpoint.
3833 Print source line if we have one.
3834 bpstat_print() contains the logic deciding in detail
3835 what to print, based on the event(s) that just occurred. */
3836
3837 /* If --batch-silent is enabled then there's no need to print the current
3838 source location, and to try risks causing an error message about
3839 missing source files. */
3840 if (stop_print_frame && !batch_silent)
3841 {
3842 int bpstat_ret;
3843 int source_flag;
3844 int do_frame_printing = 1;
3845
3846 bpstat_ret = bpstat_print (stop_bpstat);
3847 switch (bpstat_ret)
3848 {
3849 case PRINT_UNKNOWN:
3850 /* If we had hit a shared library event breakpoint,
3851 bpstat_print would print out this message. If we hit
3852 an OS-level shared library event, do the same
3853 thing. */
3854 if (last.kind == TARGET_WAITKIND_LOADED)
3855 {
3856 printf_filtered (_("Stopped due to shared library event\n"));
3857 source_flag = SRC_LINE; /* something bogus */
3858 do_frame_printing = 0;
3859 break;
3860 }
3861
3862 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3863 (or should) carry around the function and does (or
3864 should) use that when doing a frame comparison. */
3865 if (stop_step
3866 && frame_id_eq (step_frame_id,
3867 get_frame_id (get_current_frame ()))
3868 && step_start_function == find_pc_function (stop_pc))
3869 source_flag = SRC_LINE; /* finished step, just print source line */
3870 else
3871 source_flag = SRC_AND_LOC; /* print location and source line */
3872 break;
3873 case PRINT_SRC_AND_LOC:
3874 source_flag = SRC_AND_LOC; /* print location and source line */
3875 break;
3876 case PRINT_SRC_ONLY:
3877 source_flag = SRC_LINE;
3878 break;
3879 case PRINT_NOTHING:
3880 source_flag = SRC_LINE; /* something bogus */
3881 do_frame_printing = 0;
3882 break;
3883 default:
3884 internal_error (__FILE__, __LINE__, _("Unknown value."));
3885 }
3886
3887 if (ui_out_is_mi_like_p (uiout))
3888 {
3889
3890 ui_out_field_int (uiout, "thread-id",
3891 pid_to_thread_id (inferior_ptid));
3892 if (non_stop)
3893 {
3894 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
3895 (uiout, "stopped-threads");
3896 ui_out_field_int (uiout, NULL,
3897 pid_to_thread_id (inferior_ptid));
3898 do_cleanups (back_to);
3899 }
3900 else
3901 ui_out_field_string (uiout, "stopped-threads", "all");
3902 }
3903 /* The behavior of this routine with respect to the source
3904 flag is:
3905 SRC_LINE: Print only source line
3906 LOCATION: Print only location
3907 SRC_AND_LOC: Print location and source line */
3908 if (do_frame_printing)
3909 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3910
3911 /* Display the auto-display expressions. */
3912 do_displays ();
3913 }
3914 }
3915
3916 /* Save the function value return registers, if we care.
3917 We might be about to restore their previous contents. */
3918 if (proceed_to_finish)
3919 {
3920 /* This should not be necessary. */
3921 if (stop_registers)
3922 regcache_xfree (stop_registers);
3923
3924 /* NB: The copy goes through to the target picking up the value of
3925 all the registers. */
3926 stop_registers = regcache_dup (get_current_regcache ());
3927 }
3928
3929 if (stop_stack_dummy)
3930 {
3931 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3932 ends with a setting of the current frame, so we can use that
3933 next. */
3934 frame_pop (get_current_frame ());
3935 /* Set stop_pc to what it was before we called the function.
3936 Can't rely on restore_inferior_status because that only gets
3937 called if we don't stop in the called function. */
3938 stop_pc = read_pc ();
3939 select_frame (get_current_frame ());
3940 }
3941
3942 done:
3943 annotate_stopped ();
3944 if (!suppress_stop_observer && !step_multi)
3945 observer_notify_normal_stop (stop_bpstat);
3946 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3947 Delete any breakpoint that is to be deleted at the next stop. */
3948 breakpoint_auto_delete (stop_bpstat);
3949
3950 if (target_has_execution
3951 && last.kind != TARGET_WAITKIND_SIGNALLED
3952 && last.kind != TARGET_WAITKIND_EXITED)
3953 {
3954 if (!non_stop)
3955 set_running (pid_to_ptid (-1), 0);
3956 else
3957 set_running (inferior_ptid, 0);
3958 }
3959 }
3960
3961 static int
3962 hook_stop_stub (void *cmd)
3963 {
3964 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3965 return (0);
3966 }
3967 \f
3968 int
3969 signal_stop_state (int signo)
3970 {
3971 /* Always stop on signals if we're just gaining control of the
3972 program. */
3973 return signal_stop[signo] || stop_soon != NO_STOP_QUIETLY;
3974 }
3975
3976 int
3977 signal_print_state (int signo)
3978 {
3979 return signal_print[signo];
3980 }
3981
3982 int
3983 signal_pass_state (int signo)
3984 {
3985 return signal_program[signo];
3986 }
3987
3988 int
3989 signal_stop_update (int signo, int state)
3990 {
3991 int ret = signal_stop[signo];
3992 signal_stop[signo] = state;
3993 return ret;
3994 }
3995
3996 int
3997 signal_print_update (int signo, int state)
3998 {
3999 int ret = signal_print[signo];
4000 signal_print[signo] = state;
4001 return ret;
4002 }
4003
4004 int
4005 signal_pass_update (int signo, int state)
4006 {
4007 int ret = signal_program[signo];
4008 signal_program[signo] = state;
4009 return ret;
4010 }
4011
4012 static void
4013 sig_print_header (void)
4014 {
4015 printf_filtered (_("\
4016 Signal Stop\tPrint\tPass to program\tDescription\n"));
4017 }
4018
4019 static void
4020 sig_print_info (enum target_signal oursig)
4021 {
4022 char *name = target_signal_to_name (oursig);
4023 int name_padding = 13 - strlen (name);
4024
4025 if (name_padding <= 0)
4026 name_padding = 0;
4027
4028 printf_filtered ("%s", name);
4029 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4030 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4031 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4032 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4033 printf_filtered ("%s\n", target_signal_to_string (oursig));
4034 }
4035
4036 /* Specify how various signals in the inferior should be handled. */
4037
4038 static void
4039 handle_command (char *args, int from_tty)
4040 {
4041 char **argv;
4042 int digits, wordlen;
4043 int sigfirst, signum, siglast;
4044 enum target_signal oursig;
4045 int allsigs;
4046 int nsigs;
4047 unsigned char *sigs;
4048 struct cleanup *old_chain;
4049
4050 if (args == NULL)
4051 {
4052 error_no_arg (_("signal to handle"));
4053 }
4054
4055 /* Allocate and zero an array of flags for which signals to handle. */
4056
4057 nsigs = (int) TARGET_SIGNAL_LAST;
4058 sigs = (unsigned char *) alloca (nsigs);
4059 memset (sigs, 0, nsigs);
4060
4061 /* Break the command line up into args. */
4062
4063 argv = buildargv (args);
4064 if (argv == NULL)
4065 {
4066 nomem (0);
4067 }
4068 old_chain = make_cleanup_freeargv (argv);
4069
4070 /* Walk through the args, looking for signal oursigs, signal names, and
4071 actions. Signal numbers and signal names may be interspersed with
4072 actions, with the actions being performed for all signals cumulatively
4073 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4074
4075 while (*argv != NULL)
4076 {
4077 wordlen = strlen (*argv);
4078 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4079 {;
4080 }
4081 allsigs = 0;
4082 sigfirst = siglast = -1;
4083
4084 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4085 {
4086 /* Apply action to all signals except those used by the
4087 debugger. Silently skip those. */
4088 allsigs = 1;
4089 sigfirst = 0;
4090 siglast = nsigs - 1;
4091 }
4092 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4093 {
4094 SET_SIGS (nsigs, sigs, signal_stop);
4095 SET_SIGS (nsigs, sigs, signal_print);
4096 }
4097 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4098 {
4099 UNSET_SIGS (nsigs, sigs, signal_program);
4100 }
4101 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4102 {
4103 SET_SIGS (nsigs, sigs, signal_print);
4104 }
4105 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4106 {
4107 SET_SIGS (nsigs, sigs, signal_program);
4108 }
4109 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4110 {
4111 UNSET_SIGS (nsigs, sigs, signal_stop);
4112 }
4113 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4114 {
4115 SET_SIGS (nsigs, sigs, signal_program);
4116 }
4117 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4118 {
4119 UNSET_SIGS (nsigs, sigs, signal_print);
4120 UNSET_SIGS (nsigs, sigs, signal_stop);
4121 }
4122 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4123 {
4124 UNSET_SIGS (nsigs, sigs, signal_program);
4125 }
4126 else if (digits > 0)
4127 {
4128 /* It is numeric. The numeric signal refers to our own
4129 internal signal numbering from target.h, not to host/target
4130 signal number. This is a feature; users really should be
4131 using symbolic names anyway, and the common ones like
4132 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4133
4134 sigfirst = siglast = (int)
4135 target_signal_from_command (atoi (*argv));
4136 if ((*argv)[digits] == '-')
4137 {
4138 siglast = (int)
4139 target_signal_from_command (atoi ((*argv) + digits + 1));
4140 }
4141 if (sigfirst > siglast)
4142 {
4143 /* Bet he didn't figure we'd think of this case... */
4144 signum = sigfirst;
4145 sigfirst = siglast;
4146 siglast = signum;
4147 }
4148 }
4149 else
4150 {
4151 oursig = target_signal_from_name (*argv);
4152 if (oursig != TARGET_SIGNAL_UNKNOWN)
4153 {
4154 sigfirst = siglast = (int) oursig;
4155 }
4156 else
4157 {
4158 /* Not a number and not a recognized flag word => complain. */
4159 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4160 }
4161 }
4162
4163 /* If any signal numbers or symbol names were found, set flags for
4164 which signals to apply actions to. */
4165
4166 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4167 {
4168 switch ((enum target_signal) signum)
4169 {
4170 case TARGET_SIGNAL_TRAP:
4171 case TARGET_SIGNAL_INT:
4172 if (!allsigs && !sigs[signum])
4173 {
4174 if (query ("%s is used by the debugger.\n\
4175 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4176 {
4177 sigs[signum] = 1;
4178 }
4179 else
4180 {
4181 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4182 gdb_flush (gdb_stdout);
4183 }
4184 }
4185 break;
4186 case TARGET_SIGNAL_0:
4187 case TARGET_SIGNAL_DEFAULT:
4188 case TARGET_SIGNAL_UNKNOWN:
4189 /* Make sure that "all" doesn't print these. */
4190 break;
4191 default:
4192 sigs[signum] = 1;
4193 break;
4194 }
4195 }
4196
4197 argv++;
4198 }
4199
4200 target_notice_signals (inferior_ptid);
4201
4202 if (from_tty)
4203 {
4204 /* Show the results. */
4205 sig_print_header ();
4206 for (signum = 0; signum < nsigs; signum++)
4207 {
4208 if (sigs[signum])
4209 {
4210 sig_print_info (signum);
4211 }
4212 }
4213 }
4214
4215 do_cleanups (old_chain);
4216 }
4217
4218 static void
4219 xdb_handle_command (char *args, int from_tty)
4220 {
4221 char **argv;
4222 struct cleanup *old_chain;
4223
4224 /* Break the command line up into args. */
4225
4226 argv = buildargv (args);
4227 if (argv == NULL)
4228 {
4229 nomem (0);
4230 }
4231 old_chain = make_cleanup_freeargv (argv);
4232 if (argv[1] != (char *) NULL)
4233 {
4234 char *argBuf;
4235 int bufLen;
4236
4237 bufLen = strlen (argv[0]) + 20;
4238 argBuf = (char *) xmalloc (bufLen);
4239 if (argBuf)
4240 {
4241 int validFlag = 1;
4242 enum target_signal oursig;
4243
4244 oursig = target_signal_from_name (argv[0]);
4245 memset (argBuf, 0, bufLen);
4246 if (strcmp (argv[1], "Q") == 0)
4247 sprintf (argBuf, "%s %s", argv[0], "noprint");
4248 else
4249 {
4250 if (strcmp (argv[1], "s") == 0)
4251 {
4252 if (!signal_stop[oursig])
4253 sprintf (argBuf, "%s %s", argv[0], "stop");
4254 else
4255 sprintf (argBuf, "%s %s", argv[0], "nostop");
4256 }
4257 else if (strcmp (argv[1], "i") == 0)
4258 {
4259 if (!signal_program[oursig])
4260 sprintf (argBuf, "%s %s", argv[0], "pass");
4261 else
4262 sprintf (argBuf, "%s %s", argv[0], "nopass");
4263 }
4264 else if (strcmp (argv[1], "r") == 0)
4265 {
4266 if (!signal_print[oursig])
4267 sprintf (argBuf, "%s %s", argv[0], "print");
4268 else
4269 sprintf (argBuf, "%s %s", argv[0], "noprint");
4270 }
4271 else
4272 validFlag = 0;
4273 }
4274 if (validFlag)
4275 handle_command (argBuf, from_tty);
4276 else
4277 printf_filtered (_("Invalid signal handling flag.\n"));
4278 if (argBuf)
4279 xfree (argBuf);
4280 }
4281 }
4282 do_cleanups (old_chain);
4283 }
4284
4285 /* Print current contents of the tables set by the handle command.
4286 It is possible we should just be printing signals actually used
4287 by the current target (but for things to work right when switching
4288 targets, all signals should be in the signal tables). */
4289
4290 static void
4291 signals_info (char *signum_exp, int from_tty)
4292 {
4293 enum target_signal oursig;
4294 sig_print_header ();
4295
4296 if (signum_exp)
4297 {
4298 /* First see if this is a symbol name. */
4299 oursig = target_signal_from_name (signum_exp);
4300 if (oursig == TARGET_SIGNAL_UNKNOWN)
4301 {
4302 /* No, try numeric. */
4303 oursig =
4304 target_signal_from_command (parse_and_eval_long (signum_exp));
4305 }
4306 sig_print_info (oursig);
4307 return;
4308 }
4309
4310 printf_filtered ("\n");
4311 /* These ugly casts brought to you by the native VAX compiler. */
4312 for (oursig = TARGET_SIGNAL_FIRST;
4313 (int) oursig < (int) TARGET_SIGNAL_LAST;
4314 oursig = (enum target_signal) ((int) oursig + 1))
4315 {
4316 QUIT;
4317
4318 if (oursig != TARGET_SIGNAL_UNKNOWN
4319 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4320 sig_print_info (oursig);
4321 }
4322
4323 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4324 }
4325 \f
4326 struct inferior_status
4327 {
4328 enum target_signal stop_signal;
4329 CORE_ADDR stop_pc;
4330 bpstat stop_bpstat;
4331 int stop_step;
4332 int stop_stack_dummy;
4333 int stopped_by_random_signal;
4334 int stepping_over_breakpoint;
4335 CORE_ADDR step_range_start;
4336 CORE_ADDR step_range_end;
4337 struct frame_id step_frame_id;
4338 enum step_over_calls_kind step_over_calls;
4339 CORE_ADDR step_resume_break_address;
4340 int stop_after_trap;
4341 int stop_soon;
4342
4343 /* These are here because if call_function_by_hand has written some
4344 registers and then decides to call error(), we better not have changed
4345 any registers. */
4346 struct regcache *registers;
4347
4348 /* A frame unique identifier. */
4349 struct frame_id selected_frame_id;
4350
4351 int breakpoint_proceeded;
4352 int restore_stack_info;
4353 int proceed_to_finish;
4354 };
4355
4356 void
4357 write_inferior_status_register (struct inferior_status *inf_status, int regno,
4358 LONGEST val)
4359 {
4360 int size = register_size (current_gdbarch, regno);
4361 void *buf = alloca (size);
4362 store_signed_integer (buf, size, val);
4363 regcache_raw_write (inf_status->registers, regno, buf);
4364 }
4365
4366 /* Save all of the information associated with the inferior<==>gdb
4367 connection. INF_STATUS is a pointer to a "struct inferior_status"
4368 (defined in inferior.h). */
4369
4370 struct inferior_status *
4371 save_inferior_status (int restore_stack_info)
4372 {
4373 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4374
4375 inf_status->stop_signal = stop_signal;
4376 inf_status->stop_pc = stop_pc;
4377 inf_status->stop_step = stop_step;
4378 inf_status->stop_stack_dummy = stop_stack_dummy;
4379 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4380 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
4381 inf_status->step_range_start = step_range_start;
4382 inf_status->step_range_end = step_range_end;
4383 inf_status->step_frame_id = step_frame_id;
4384 inf_status->step_over_calls = step_over_calls;
4385 inf_status->stop_after_trap = stop_after_trap;
4386 inf_status->stop_soon = stop_soon;
4387 /* Save original bpstat chain here; replace it with copy of chain.
4388 If caller's caller is walking the chain, they'll be happier if we
4389 hand them back the original chain when restore_inferior_status is
4390 called. */
4391 inf_status->stop_bpstat = stop_bpstat;
4392 stop_bpstat = bpstat_copy (stop_bpstat);
4393 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4394 inf_status->restore_stack_info = restore_stack_info;
4395 inf_status->proceed_to_finish = proceed_to_finish;
4396
4397 inf_status->registers = regcache_dup (get_current_regcache ());
4398
4399 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4400 return inf_status;
4401 }
4402
4403 static int
4404 restore_selected_frame (void *args)
4405 {
4406 struct frame_id *fid = (struct frame_id *) args;
4407 struct frame_info *frame;
4408
4409 frame = frame_find_by_id (*fid);
4410
4411 /* If inf_status->selected_frame_id is NULL, there was no previously
4412 selected frame. */
4413 if (frame == NULL)
4414 {
4415 warning (_("Unable to restore previously selected frame."));
4416 return 0;
4417 }
4418
4419 select_frame (frame);
4420
4421 return (1);
4422 }
4423
4424 void
4425 restore_inferior_status (struct inferior_status *inf_status)
4426 {
4427 stop_signal = inf_status->stop_signal;
4428 stop_pc = inf_status->stop_pc;
4429 stop_step = inf_status->stop_step;
4430 stop_stack_dummy = inf_status->stop_stack_dummy;
4431 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4432 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
4433 step_range_start = inf_status->step_range_start;
4434 step_range_end = inf_status->step_range_end;
4435 step_frame_id = inf_status->step_frame_id;
4436 step_over_calls = inf_status->step_over_calls;
4437 stop_after_trap = inf_status->stop_after_trap;
4438 stop_soon = inf_status->stop_soon;
4439 bpstat_clear (&stop_bpstat);
4440 stop_bpstat = inf_status->stop_bpstat;
4441 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4442 proceed_to_finish = inf_status->proceed_to_finish;
4443
4444 /* The inferior can be gone if the user types "print exit(0)"
4445 (and perhaps other times). */
4446 if (target_has_execution)
4447 /* NB: The register write goes through to the target. */
4448 regcache_cpy (get_current_regcache (), inf_status->registers);
4449 regcache_xfree (inf_status->registers);
4450
4451 /* FIXME: If we are being called after stopping in a function which
4452 is called from gdb, we should not be trying to restore the
4453 selected frame; it just prints a spurious error message (The
4454 message is useful, however, in detecting bugs in gdb (like if gdb
4455 clobbers the stack)). In fact, should we be restoring the
4456 inferior status at all in that case? . */
4457
4458 if (target_has_stack && inf_status->restore_stack_info)
4459 {
4460 /* The point of catch_errors is that if the stack is clobbered,
4461 walking the stack might encounter a garbage pointer and
4462 error() trying to dereference it. */
4463 if (catch_errors
4464 (restore_selected_frame, &inf_status->selected_frame_id,
4465 "Unable to restore previously selected frame:\n",
4466 RETURN_MASK_ERROR) == 0)
4467 /* Error in restoring the selected frame. Select the innermost
4468 frame. */
4469 select_frame (get_current_frame ());
4470
4471 }
4472
4473 xfree (inf_status);
4474 }
4475
4476 static void
4477 do_restore_inferior_status_cleanup (void *sts)
4478 {
4479 restore_inferior_status (sts);
4480 }
4481
4482 struct cleanup *
4483 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4484 {
4485 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4486 }
4487
4488 void
4489 discard_inferior_status (struct inferior_status *inf_status)
4490 {
4491 /* See save_inferior_status for info on stop_bpstat. */
4492 bpstat_clear (&inf_status->stop_bpstat);
4493 regcache_xfree (inf_status->registers);
4494 xfree (inf_status);
4495 }
4496
4497 int
4498 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
4499 {
4500 struct target_waitstatus last;
4501 ptid_t last_ptid;
4502
4503 get_last_target_status (&last_ptid, &last);
4504
4505 if (last.kind != TARGET_WAITKIND_FORKED)
4506 return 0;
4507
4508 if (!ptid_equal (last_ptid, pid))
4509 return 0;
4510
4511 *child_pid = last.value.related_pid;
4512 return 1;
4513 }
4514
4515 int
4516 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
4517 {
4518 struct target_waitstatus last;
4519 ptid_t last_ptid;
4520
4521 get_last_target_status (&last_ptid, &last);
4522
4523 if (last.kind != TARGET_WAITKIND_VFORKED)
4524 return 0;
4525
4526 if (!ptid_equal (last_ptid, pid))
4527 return 0;
4528
4529 *child_pid = last.value.related_pid;
4530 return 1;
4531 }
4532
4533 int
4534 inferior_has_execd (ptid_t pid, char **execd_pathname)
4535 {
4536 struct target_waitstatus last;
4537 ptid_t last_ptid;
4538
4539 get_last_target_status (&last_ptid, &last);
4540
4541 if (last.kind != TARGET_WAITKIND_EXECD)
4542 return 0;
4543
4544 if (!ptid_equal (last_ptid, pid))
4545 return 0;
4546
4547 *execd_pathname = xstrdup (last.value.execd_pathname);
4548 return 1;
4549 }
4550
4551 /* Oft used ptids */
4552 ptid_t null_ptid;
4553 ptid_t minus_one_ptid;
4554
4555 /* Create a ptid given the necessary PID, LWP, and TID components. */
4556
4557 ptid_t
4558 ptid_build (int pid, long lwp, long tid)
4559 {
4560 ptid_t ptid;
4561
4562 ptid.pid = pid;
4563 ptid.lwp = lwp;
4564 ptid.tid = tid;
4565 return ptid;
4566 }
4567
4568 /* Create a ptid from just a pid. */
4569
4570 ptid_t
4571 pid_to_ptid (int pid)
4572 {
4573 return ptid_build (pid, 0, 0);
4574 }
4575
4576 /* Fetch the pid (process id) component from a ptid. */
4577
4578 int
4579 ptid_get_pid (ptid_t ptid)
4580 {
4581 return ptid.pid;
4582 }
4583
4584 /* Fetch the lwp (lightweight process) component from a ptid. */
4585
4586 long
4587 ptid_get_lwp (ptid_t ptid)
4588 {
4589 return ptid.lwp;
4590 }
4591
4592 /* Fetch the tid (thread id) component from a ptid. */
4593
4594 long
4595 ptid_get_tid (ptid_t ptid)
4596 {
4597 return ptid.tid;
4598 }
4599
4600 /* ptid_equal() is used to test equality of two ptids. */
4601
4602 int
4603 ptid_equal (ptid_t ptid1, ptid_t ptid2)
4604 {
4605 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4606 && ptid1.tid == ptid2.tid);
4607 }
4608
4609 /* restore_inferior_ptid() will be used by the cleanup machinery
4610 to restore the inferior_ptid value saved in a call to
4611 save_inferior_ptid(). */
4612
4613 static void
4614 restore_inferior_ptid (void *arg)
4615 {
4616 ptid_t *saved_ptid_ptr = arg;
4617 inferior_ptid = *saved_ptid_ptr;
4618 xfree (arg);
4619 }
4620
4621 /* Save the value of inferior_ptid so that it may be restored by a
4622 later call to do_cleanups(). Returns the struct cleanup pointer
4623 needed for later doing the cleanup. */
4624
4625 struct cleanup *
4626 save_inferior_ptid (void)
4627 {
4628 ptid_t *saved_ptid_ptr;
4629
4630 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4631 *saved_ptid_ptr = inferior_ptid;
4632 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4633 }
4634 \f
4635
4636 int non_stop = 0;
4637 static int non_stop_1 = 0;
4638
4639 static void
4640 set_non_stop (char *args, int from_tty,
4641 struct cmd_list_element *c)
4642 {
4643 if (target_has_execution)
4644 {
4645 non_stop_1 = non_stop;
4646 error (_("Cannot change this setting while the inferior is running."));
4647 }
4648
4649 non_stop = non_stop_1;
4650 }
4651
4652 static void
4653 show_non_stop (struct ui_file *file, int from_tty,
4654 struct cmd_list_element *c, const char *value)
4655 {
4656 fprintf_filtered (file,
4657 _("Controlling the inferior in non-stop mode is %s.\n"),
4658 value);
4659 }
4660
4661
4662 void
4663 _initialize_infrun (void)
4664 {
4665 int i;
4666 int numsigs;
4667 struct cmd_list_element *c;
4668
4669 add_info ("signals", signals_info, _("\
4670 What debugger does when program gets various signals.\n\
4671 Specify a signal as argument to print info on that signal only."));
4672 add_info_alias ("handle", "signals", 0);
4673
4674 add_com ("handle", class_run, handle_command, _("\
4675 Specify how to handle a signal.\n\
4676 Args are signals and actions to apply to those signals.\n\
4677 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4678 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4679 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4680 The special arg \"all\" is recognized to mean all signals except those\n\
4681 used by the debugger, typically SIGTRAP and SIGINT.\n\
4682 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4683 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4684 Stop means reenter debugger if this signal happens (implies print).\n\
4685 Print means print a message if this signal happens.\n\
4686 Pass means let program see this signal; otherwise program doesn't know.\n\
4687 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4688 Pass and Stop may be combined."));
4689 if (xdb_commands)
4690 {
4691 add_com ("lz", class_info, signals_info, _("\
4692 What debugger does when program gets various signals.\n\
4693 Specify a signal as argument to print info on that signal only."));
4694 add_com ("z", class_run, xdb_handle_command, _("\
4695 Specify how to handle a signal.\n\
4696 Args are signals and actions to apply to those signals.\n\
4697 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4698 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4699 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4700 The special arg \"all\" is recognized to mean all signals except those\n\
4701 used by the debugger, typically SIGTRAP and SIGINT.\n\
4702 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4703 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4704 nopass), \"Q\" (noprint)\n\
4705 Stop means reenter debugger if this signal happens (implies print).\n\
4706 Print means print a message if this signal happens.\n\
4707 Pass means let program see this signal; otherwise program doesn't know.\n\
4708 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4709 Pass and Stop may be combined."));
4710 }
4711
4712 if (!dbx_commands)
4713 stop_command = add_cmd ("stop", class_obscure,
4714 not_just_help_class_command, _("\
4715 There is no `stop' command, but you can set a hook on `stop'.\n\
4716 This allows you to set a list of commands to be run each time execution\n\
4717 of the program stops."), &cmdlist);
4718
4719 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4720 Set inferior debugging."), _("\
4721 Show inferior debugging."), _("\
4722 When non-zero, inferior specific debugging is enabled."),
4723 NULL,
4724 show_debug_infrun,
4725 &setdebuglist, &showdebuglist);
4726
4727 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4728 Set displaced stepping debugging."), _("\
4729 Show displaced stepping debugging."), _("\
4730 When non-zero, displaced stepping specific debugging is enabled."),
4731 NULL,
4732 show_debug_displaced,
4733 &setdebuglist, &showdebuglist);
4734
4735 add_setshow_boolean_cmd ("non-stop", no_class,
4736 &non_stop_1, _("\
4737 Set whether gdb controls the inferior in non-stop mode."), _("\
4738 Show whether gdb controls the inferior in non-stop mode."), _("\
4739 When debugging a multi-threaded program and this setting is\n\
4740 off (the default, also called all-stop mode), when one thread stops\n\
4741 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
4742 all other threads in the program while you interact with the thread of\n\
4743 interest. When you continue or step a thread, you can allow the other\n\
4744 threads to run, or have them remain stopped, but while you inspect any\n\
4745 thread's state, all threads stop.\n\
4746 \n\
4747 In non-stop mode, when one thread stops, other threads can continue\n\
4748 to run freely. You'll be able to step each thread independently,\n\
4749 leave it stopped or free to run as needed."),
4750 set_non_stop,
4751 show_non_stop,
4752 &setlist,
4753 &showlist);
4754
4755 numsigs = (int) TARGET_SIGNAL_LAST;
4756 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4757 signal_print = (unsigned char *)
4758 xmalloc (sizeof (signal_print[0]) * numsigs);
4759 signal_program = (unsigned char *)
4760 xmalloc (sizeof (signal_program[0]) * numsigs);
4761 for (i = 0; i < numsigs; i++)
4762 {
4763 signal_stop[i] = 1;
4764 signal_print[i] = 1;
4765 signal_program[i] = 1;
4766 }
4767
4768 /* Signals caused by debugger's own actions
4769 should not be given to the program afterwards. */
4770 signal_program[TARGET_SIGNAL_TRAP] = 0;
4771 signal_program[TARGET_SIGNAL_INT] = 0;
4772
4773 /* Signals that are not errors should not normally enter the debugger. */
4774 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4775 signal_print[TARGET_SIGNAL_ALRM] = 0;
4776 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4777 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4778 signal_stop[TARGET_SIGNAL_PROF] = 0;
4779 signal_print[TARGET_SIGNAL_PROF] = 0;
4780 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4781 signal_print[TARGET_SIGNAL_CHLD] = 0;
4782 signal_stop[TARGET_SIGNAL_IO] = 0;
4783 signal_print[TARGET_SIGNAL_IO] = 0;
4784 signal_stop[TARGET_SIGNAL_POLL] = 0;
4785 signal_print[TARGET_SIGNAL_POLL] = 0;
4786 signal_stop[TARGET_SIGNAL_URG] = 0;
4787 signal_print[TARGET_SIGNAL_URG] = 0;
4788 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4789 signal_print[TARGET_SIGNAL_WINCH] = 0;
4790
4791 /* These signals are used internally by user-level thread
4792 implementations. (See signal(5) on Solaris.) Like the above
4793 signals, a healthy program receives and handles them as part of
4794 its normal operation. */
4795 signal_stop[TARGET_SIGNAL_LWP] = 0;
4796 signal_print[TARGET_SIGNAL_LWP] = 0;
4797 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4798 signal_print[TARGET_SIGNAL_WAITING] = 0;
4799 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4800 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4801
4802 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4803 &stop_on_solib_events, _("\
4804 Set stopping for shared library events."), _("\
4805 Show stopping for shared library events."), _("\
4806 If nonzero, gdb will give control to the user when the dynamic linker\n\
4807 notifies gdb of shared library events. The most common event of interest\n\
4808 to the user would be loading/unloading of a new library."),
4809 NULL,
4810 show_stop_on_solib_events,
4811 &setlist, &showlist);
4812
4813 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4814 follow_fork_mode_kind_names,
4815 &follow_fork_mode_string, _("\
4816 Set debugger response to a program call of fork or vfork."), _("\
4817 Show debugger response to a program call of fork or vfork."), _("\
4818 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4819 parent - the original process is debugged after a fork\n\
4820 child - the new process is debugged after a fork\n\
4821 The unfollowed process will continue to run.\n\
4822 By default, the debugger will follow the parent process."),
4823 NULL,
4824 show_follow_fork_mode_string,
4825 &setlist, &showlist);
4826
4827 add_setshow_enum_cmd ("scheduler-locking", class_run,
4828 scheduler_enums, &scheduler_mode, _("\
4829 Set mode for locking scheduler during execution."), _("\
4830 Show mode for locking scheduler during execution."), _("\
4831 off == no locking (threads may preempt at any time)\n\
4832 on == full locking (no thread except the current thread may run)\n\
4833 step == scheduler locked during every single-step operation.\n\
4834 In this mode, no other thread may run during a step command.\n\
4835 Other threads may run while stepping over a function call ('next')."),
4836 set_schedlock_func, /* traps on target vector */
4837 show_scheduler_mode,
4838 &setlist, &showlist);
4839
4840 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4841 Set mode of the step operation."), _("\
4842 Show mode of the step operation."), _("\
4843 When set, doing a step over a function without debug line information\n\
4844 will stop at the first instruction of that function. Otherwise, the\n\
4845 function is skipped and the step command stops at a different source line."),
4846 NULL,
4847 show_step_stop_if_no_debug,
4848 &setlist, &showlist);
4849
4850 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
4851 &can_use_displaced_stepping, _("\
4852 Set debugger's willingness to use displaced stepping."), _("\
4853 Show debugger's willingness to use displaced stepping."), _("\
4854 If zero, gdb will not use displaced stepping to step over\n\
4855 breakpoints, even if such is supported by the target."),
4856 NULL,
4857 show_can_use_displaced_stepping,
4858 &maintenance_set_cmdlist,
4859 &maintenance_show_cmdlist);
4860
4861 /* ptid initializations */
4862 null_ptid = ptid_build (0, 0, 0);
4863 minus_one_ptid = ptid_build (-1, 0, 0);
4864 inferior_ptid = null_ptid;
4865 target_last_wait_ptid = minus_one_ptid;
4866 displaced_step_ptid = null_ptid;
4867 }
This page took 0.130651 seconds and 4 git commands to generate.