2007-07-02 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49 #include "main.h"
50
51 #include "gdb_assert.h"
52 #include "mi/mi-common.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 struct execution_control_state;
78
79 static int currently_stepping (struct execution_control_state *ecs);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (void);
84
85 void _initialize_infrun (void);
86
87 int inferior_ignoring_startup_exec_events = 0;
88 int inferior_ignoring_leading_exec_events = 0;
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100
101 /* In asynchronous mode, but simulating synchronous execution. */
102
103 int sync_execution = 0;
104
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109 static ptid_t previous_inferior_ptid;
110
111 /* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114 #ifndef MAY_FOLLOW_EXEC
115 #define MAY_FOLLOW_EXEC (0)
116 #endif
117
118 static int may_follow_exec = MAY_FOLLOW_EXEC;
119
120 static int debug_infrun = 0;
121 static void
122 show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124 {
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126 }
127
128 /* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179
180 /* Convert the #defines into values. This is temporary until wfi control
181 flow is completely sorted out. */
182
183 #ifndef CANNOT_STEP_HW_WATCHPOINTS
184 #define CANNOT_STEP_HW_WATCHPOINTS 0
185 #else
186 #undef CANNOT_STEP_HW_WATCHPOINTS
187 #define CANNOT_STEP_HW_WATCHPOINTS 1
188 #endif
189
190 /* Tables of how to react to signals; the user sets them. */
191
192 static unsigned char *signal_stop;
193 static unsigned char *signal_print;
194 static unsigned char *signal_program;
195
196 #define SET_SIGS(nsigs,sigs,flags) \
197 do { \
198 int signum = (nsigs); \
199 while (signum-- > 0) \
200 if ((sigs)[signum]) \
201 (flags)[signum] = 1; \
202 } while (0)
203
204 #define UNSET_SIGS(nsigs,sigs,flags) \
205 do { \
206 int signum = (nsigs); \
207 while (signum-- > 0) \
208 if ((sigs)[signum]) \
209 (flags)[signum] = 0; \
210 } while (0)
211
212 /* Value to pass to target_resume() to cause all threads to resume */
213
214 #define RESUME_ALL (pid_to_ptid (-1))
215
216 /* Command list pointer for the "stop" placeholder. */
217
218 static struct cmd_list_element *stop_command;
219
220 /* Nonzero if breakpoints are now inserted in the inferior. */
221
222 static int breakpoints_inserted;
223
224 /* Function inferior was in as of last step command. */
225
226 static struct symbol *step_start_function;
227
228 /* Nonzero if we are expecting a trace trap and should proceed from it. */
229
230 static int trap_expected;
231
232 /* Nonzero if we want to give control to the user when we're notified
233 of shared library events by the dynamic linker. */
234 static int stop_on_solib_events;
235 static void
236 show_stop_on_solib_events (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
240 value);
241 }
242
243 /* Nonzero means expecting a trace trap
244 and should stop the inferior and return silently when it happens. */
245
246 int stop_after_trap;
247
248 /* Nonzero means expecting a trap and caller will handle it themselves.
249 It is used after attach, due to attaching to a process;
250 when running in the shell before the child program has been exec'd;
251 and when running some kinds of remote stuff (FIXME?). */
252
253 enum stop_kind stop_soon;
254
255 /* Nonzero if proceed is being used for a "finish" command or a similar
256 situation when stop_registers should be saved. */
257
258 int proceed_to_finish;
259
260 /* Save register contents here when about to pop a stack dummy frame,
261 if-and-only-if proceed_to_finish is set.
262 Thus this contains the return value from the called function (assuming
263 values are returned in a register). */
264
265 struct regcache *stop_registers;
266
267 /* Nonzero after stop if current stack frame should be printed. */
268
269 static int stop_print_frame;
270
271 static struct breakpoint *step_resume_breakpoint = NULL;
272
273 /* This is a cached copy of the pid/waitstatus of the last event
274 returned by target_wait()/deprecated_target_wait_hook(). This
275 information is returned by get_last_target_status(). */
276 static ptid_t target_last_wait_ptid;
277 static struct target_waitstatus target_last_waitstatus;
278
279 /* This is used to remember when a fork, vfork or exec event
280 was caught by a catchpoint, and thus the event is to be
281 followed at the next resume of the inferior, and not
282 immediately. */
283 static struct
284 {
285 enum target_waitkind kind;
286 struct
287 {
288 int parent_pid;
289 int child_pid;
290 }
291 fork_event;
292 char *execd_pathname;
293 }
294 pending_follow;
295
296 static const char follow_fork_mode_child[] = "child";
297 static const char follow_fork_mode_parent[] = "parent";
298
299 static const char *follow_fork_mode_kind_names[] = {
300 follow_fork_mode_child,
301 follow_fork_mode_parent,
302 NULL
303 };
304
305 static const char *follow_fork_mode_string = follow_fork_mode_parent;
306 static void
307 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
308 struct cmd_list_element *c, const char *value)
309 {
310 fprintf_filtered (file, _("\
311 Debugger response to a program call of fork or vfork is \"%s\".\n"),
312 value);
313 }
314 \f
315
316 static int
317 follow_fork (void)
318 {
319 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
320
321 return target_follow_fork (follow_child);
322 }
323
324 void
325 follow_inferior_reset_breakpoints (void)
326 {
327 /* Was there a step_resume breakpoint? (There was if the user
328 did a "next" at the fork() call.) If so, explicitly reset its
329 thread number.
330
331 step_resumes are a form of bp that are made to be per-thread.
332 Since we created the step_resume bp when the parent process
333 was being debugged, and now are switching to the child process,
334 from the breakpoint package's viewpoint, that's a switch of
335 "threads". We must update the bp's notion of which thread
336 it is for, or it'll be ignored when it triggers. */
337
338 if (step_resume_breakpoint)
339 breakpoint_re_set_thread (step_resume_breakpoint);
340
341 /* Reinsert all breakpoints in the child. The user may have set
342 breakpoints after catching the fork, in which case those
343 were never set in the child, but only in the parent. This makes
344 sure the inserted breakpoints match the breakpoint list. */
345
346 breakpoint_re_set ();
347 insert_breakpoints ();
348 }
349
350 /* EXECD_PATHNAME is assumed to be non-NULL. */
351
352 static void
353 follow_exec (int pid, char *execd_pathname)
354 {
355 int saved_pid = pid;
356 struct target_ops *tgt;
357
358 if (!may_follow_exec)
359 return;
360
361 /* This is an exec event that we actually wish to pay attention to.
362 Refresh our symbol table to the newly exec'd program, remove any
363 momentary bp's, etc.
364
365 If there are breakpoints, they aren't really inserted now,
366 since the exec() transformed our inferior into a fresh set
367 of instructions.
368
369 We want to preserve symbolic breakpoints on the list, since
370 we have hopes that they can be reset after the new a.out's
371 symbol table is read.
372
373 However, any "raw" breakpoints must be removed from the list
374 (e.g., the solib bp's), since their address is probably invalid
375 now.
376
377 And, we DON'T want to call delete_breakpoints() here, since
378 that may write the bp's "shadow contents" (the instruction
379 value that was overwritten witha TRAP instruction). Since
380 we now have a new a.out, those shadow contents aren't valid. */
381 update_breakpoints_after_exec ();
382
383 /* If there was one, it's gone now. We cannot truly step-to-next
384 statement through an exec(). */
385 step_resume_breakpoint = NULL;
386 step_range_start = 0;
387 step_range_end = 0;
388
389 /* What is this a.out's name? */
390 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
391
392 /* We've followed the inferior through an exec. Therefore, the
393 inferior has essentially been killed & reborn. */
394
395 /* First collect the run target in effect. */
396 tgt = find_run_target ();
397 /* If we can't find one, things are in a very strange state... */
398 if (tgt == NULL)
399 error (_("Could find run target to save before following exec"));
400
401 gdb_flush (gdb_stdout);
402 target_mourn_inferior ();
403 inferior_ptid = pid_to_ptid (saved_pid);
404 /* Because mourn_inferior resets inferior_ptid. */
405 push_target (tgt);
406
407 /* That a.out is now the one to use. */
408 exec_file_attach (execd_pathname, 0);
409
410 /* And also is where symbols can be found. */
411 symbol_file_add_main (execd_pathname, 0);
412
413 /* Reset the shared library package. This ensures that we get
414 a shlib event when the child reaches "_start", at which point
415 the dld will have had a chance to initialize the child. */
416 #if defined(SOLIB_RESTART)
417 SOLIB_RESTART ();
418 #endif
419 #ifdef SOLIB_CREATE_INFERIOR_HOOK
420 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
421 #else
422 solib_create_inferior_hook ();
423 #endif
424
425 /* Reinsert all breakpoints. (Those which were symbolic have
426 been reset to the proper address in the new a.out, thanks
427 to symbol_file_command...) */
428 insert_breakpoints ();
429
430 /* The next resume of this inferior should bring it to the shlib
431 startup breakpoints. (If the user had also set bp's on
432 "main" from the old (parent) process, then they'll auto-
433 matically get reset there in the new process.) */
434 }
435
436 /* Non-zero if we just simulating a single-step. This is needed
437 because we cannot remove the breakpoints in the inferior process
438 until after the `wait' in `wait_for_inferior'. */
439 static int singlestep_breakpoints_inserted_p = 0;
440
441 /* The thread we inserted single-step breakpoints for. */
442 static ptid_t singlestep_ptid;
443
444 /* PC when we started this single-step. */
445 static CORE_ADDR singlestep_pc;
446
447 /* If another thread hit the singlestep breakpoint, we save the original
448 thread here so that we can resume single-stepping it later. */
449 static ptid_t saved_singlestep_ptid;
450 static int stepping_past_singlestep_breakpoint;
451 \f
452
453 /* Things to clean up if we QUIT out of resume (). */
454 static void
455 resume_cleanups (void *ignore)
456 {
457 normal_stop ();
458 }
459
460 static const char schedlock_off[] = "off";
461 static const char schedlock_on[] = "on";
462 static const char schedlock_step[] = "step";
463 static const char *scheduler_enums[] = {
464 schedlock_off,
465 schedlock_on,
466 schedlock_step,
467 NULL
468 };
469 static const char *scheduler_mode = schedlock_off;
470 static void
471 show_scheduler_mode (struct ui_file *file, int from_tty,
472 struct cmd_list_element *c, const char *value)
473 {
474 fprintf_filtered (file, _("\
475 Mode for locking scheduler during execution is \"%s\".\n"),
476 value);
477 }
478
479 static void
480 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
481 {
482 if (!target_can_lock_scheduler)
483 {
484 scheduler_mode = schedlock_off;
485 error (_("Target '%s' cannot support this command."), target_shortname);
486 }
487 }
488
489
490 /* Resume the inferior, but allow a QUIT. This is useful if the user
491 wants to interrupt some lengthy single-stepping operation
492 (for child processes, the SIGINT goes to the inferior, and so
493 we get a SIGINT random_signal, but for remote debugging and perhaps
494 other targets, that's not true).
495
496 STEP nonzero if we should step (zero to continue instead).
497 SIG is the signal to give the inferior (zero for none). */
498 void
499 resume (int step, enum target_signal sig)
500 {
501 int should_resume = 1;
502 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
503 QUIT;
504
505 if (debug_infrun)
506 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
507 step, sig);
508
509 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
510
511
512 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
513 over an instruction that causes a page fault without triggering
514 a hardware watchpoint. The kernel properly notices that it shouldn't
515 stop, because the hardware watchpoint is not triggered, but it forgets
516 the step request and continues the program normally.
517 Work around the problem by removing hardware watchpoints if a step is
518 requested, GDB will check for a hardware watchpoint trigger after the
519 step anyway. */
520 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
521 remove_hw_watchpoints ();
522
523
524 /* Normally, by the time we reach `resume', the breakpoints are either
525 removed or inserted, as appropriate. The exception is if we're sitting
526 at a permanent breakpoint; we need to step over it, but permanent
527 breakpoints can't be removed. So we have to test for it here. */
528 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
529 {
530 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
531 gdbarch_skip_permanent_breakpoint (current_gdbarch,
532 get_current_regcache ());
533 else
534 error (_("\
535 The program is stopped at a permanent breakpoint, but GDB does not know\n\
536 how to step past a permanent breakpoint on this architecture. Try using\n\
537 a command like `return' or `jump' to continue execution."));
538 }
539
540 if (step && gdbarch_software_single_step_p (current_gdbarch))
541 {
542 /* Do it the hard way, w/temp breakpoints */
543 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
544 {
545 /* ...and don't ask hardware to do it. */
546 step = 0;
547 /* and do not pull these breakpoints until after a `wait' in
548 `wait_for_inferior' */
549 singlestep_breakpoints_inserted_p = 1;
550 singlestep_ptid = inferior_ptid;
551 singlestep_pc = read_pc ();
552 }
553 }
554
555 /* If there were any forks/vforks/execs that were caught and are
556 now to be followed, then do so. */
557 switch (pending_follow.kind)
558 {
559 case TARGET_WAITKIND_FORKED:
560 case TARGET_WAITKIND_VFORKED:
561 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
562 if (follow_fork ())
563 should_resume = 0;
564 break;
565
566 case TARGET_WAITKIND_EXECD:
567 /* follow_exec is called as soon as the exec event is seen. */
568 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
569 break;
570
571 default:
572 break;
573 }
574
575 /* Install inferior's terminal modes. */
576 target_terminal_inferior ();
577
578 if (should_resume)
579 {
580 ptid_t resume_ptid;
581
582 resume_ptid = RESUME_ALL; /* Default */
583
584 if ((step || singlestep_breakpoints_inserted_p)
585 && (stepping_past_singlestep_breakpoint
586 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
587 {
588 /* Stepping past a breakpoint without inserting breakpoints.
589 Make sure only the current thread gets to step, so that
590 other threads don't sneak past breakpoints while they are
591 not inserted. */
592
593 resume_ptid = inferior_ptid;
594 }
595
596 if ((scheduler_mode == schedlock_on)
597 || (scheduler_mode == schedlock_step
598 && (step || singlestep_breakpoints_inserted_p)))
599 {
600 /* User-settable 'scheduler' mode requires solo thread resume. */
601 resume_ptid = inferior_ptid;
602 }
603
604 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
605 {
606 /* Most targets can step a breakpoint instruction, thus
607 executing it normally. But if this one cannot, just
608 continue and we will hit it anyway. */
609 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
610 step = 0;
611 }
612 target_resume (resume_ptid, step, sig);
613 }
614
615 discard_cleanups (old_cleanups);
616 }
617 \f
618
619 /* Clear out all variables saying what to do when inferior is continued.
620 First do this, then set the ones you want, then call `proceed'. */
621
622 void
623 clear_proceed_status (void)
624 {
625 trap_expected = 0;
626 step_range_start = 0;
627 step_range_end = 0;
628 step_frame_id = null_frame_id;
629 step_over_calls = STEP_OVER_UNDEBUGGABLE;
630 stop_after_trap = 0;
631 stop_soon = NO_STOP_QUIETLY;
632 proceed_to_finish = 0;
633 breakpoint_proceeded = 1; /* We're about to proceed... */
634
635 if (stop_registers)
636 {
637 regcache_xfree (stop_registers);
638 stop_registers = NULL;
639 }
640
641 /* Discard any remaining commands or status from previous stop. */
642 bpstat_clear (&stop_bpstat);
643 }
644
645 /* This should be suitable for any targets that support threads. */
646
647 static int
648 prepare_to_proceed (void)
649 {
650 ptid_t wait_ptid;
651 struct target_waitstatus wait_status;
652
653 /* Get the last target status returned by target_wait(). */
654 get_last_target_status (&wait_ptid, &wait_status);
655
656 /* Make sure we were stopped either at a breakpoint, or because
657 of a Ctrl-C. */
658 if (wait_status.kind != TARGET_WAITKIND_STOPPED
659 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
660 && wait_status.value.sig != TARGET_SIGNAL_INT))
661 {
662 return 0;
663 }
664
665 if (!ptid_equal (wait_ptid, minus_one_ptid)
666 && !ptid_equal (inferior_ptid, wait_ptid))
667 {
668 /* Switched over from WAIT_PID. */
669 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
670
671 if (wait_pc != read_pc ())
672 {
673 /* Switch back to WAIT_PID thread. */
674 inferior_ptid = wait_ptid;
675
676 /* FIXME: This stuff came from switch_to_thread() in
677 thread.c (which should probably be a public function). */
678 reinit_frame_cache ();
679 registers_changed ();
680 stop_pc = wait_pc;
681 }
682
683 /* We return 1 to indicate that there is a breakpoint here,
684 so we need to step over it before continuing to avoid
685 hitting it straight away. */
686 if (breakpoint_here_p (wait_pc))
687 return 1;
688 }
689
690 return 0;
691
692 }
693
694 /* Record the pc of the program the last time it stopped. This is
695 just used internally by wait_for_inferior, but need to be preserved
696 over calls to it and cleared when the inferior is started. */
697 static CORE_ADDR prev_pc;
698
699 /* Basic routine for continuing the program in various fashions.
700
701 ADDR is the address to resume at, or -1 for resume where stopped.
702 SIGGNAL is the signal to give it, or 0 for none,
703 or -1 for act according to how it stopped.
704 STEP is nonzero if should trap after one instruction.
705 -1 means return after that and print nothing.
706 You should probably set various step_... variables
707 before calling here, if you are stepping.
708
709 You should call clear_proceed_status before calling proceed. */
710
711 void
712 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
713 {
714 int oneproc = 0;
715
716 if (step > 0)
717 step_start_function = find_pc_function (read_pc ());
718 if (step < 0)
719 stop_after_trap = 1;
720
721 if (addr == (CORE_ADDR) -1)
722 {
723 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
724 /* There is a breakpoint at the address we will resume at,
725 step one instruction before inserting breakpoints so that
726 we do not stop right away (and report a second hit at this
727 breakpoint). */
728 oneproc = 1;
729 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
730 && gdbarch_single_step_through_delay (current_gdbarch,
731 get_current_frame ()))
732 /* We stepped onto an instruction that needs to be stepped
733 again before re-inserting the breakpoint, do so. */
734 oneproc = 1;
735 }
736 else
737 {
738 write_pc (addr);
739 }
740
741 if (debug_infrun)
742 fprintf_unfiltered (gdb_stdlog,
743 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
744 paddr_nz (addr), siggnal, step);
745
746 /* In a multi-threaded task we may select another thread
747 and then continue or step.
748
749 But if the old thread was stopped at a breakpoint, it
750 will immediately cause another breakpoint stop without
751 any execution (i.e. it will report a breakpoint hit
752 incorrectly). So we must step over it first.
753
754 prepare_to_proceed checks the current thread against the thread
755 that reported the most recent event. If a step-over is required
756 it returns TRUE and sets the current thread to the old thread. */
757 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
758 oneproc = 1;
759
760 if (oneproc)
761 /* We will get a trace trap after one instruction.
762 Continue it automatically and insert breakpoints then. */
763 trap_expected = 1;
764 else
765 {
766 insert_breakpoints ();
767 /* If we get here there was no call to error() in
768 insert breakpoints -- so they were inserted. */
769 breakpoints_inserted = 1;
770 }
771
772 if (siggnal != TARGET_SIGNAL_DEFAULT)
773 stop_signal = siggnal;
774 /* If this signal should not be seen by program,
775 give it zero. Used for debugging signals. */
776 else if (!signal_program[stop_signal])
777 stop_signal = TARGET_SIGNAL_0;
778
779 annotate_starting ();
780
781 /* Make sure that output from GDB appears before output from the
782 inferior. */
783 gdb_flush (gdb_stdout);
784
785 /* Refresh prev_pc value just prior to resuming. This used to be
786 done in stop_stepping, however, setting prev_pc there did not handle
787 scenarios such as inferior function calls or returning from
788 a function via the return command. In those cases, the prev_pc
789 value was not set properly for subsequent commands. The prev_pc value
790 is used to initialize the starting line number in the ecs. With an
791 invalid value, the gdb next command ends up stopping at the position
792 represented by the next line table entry past our start position.
793 On platforms that generate one line table entry per line, this
794 is not a problem. However, on the ia64, the compiler generates
795 extraneous line table entries that do not increase the line number.
796 When we issue the gdb next command on the ia64 after an inferior call
797 or a return command, we often end up a few instructions forward, still
798 within the original line we started.
799
800 An attempt was made to have init_execution_control_state () refresh
801 the prev_pc value before calculating the line number. This approach
802 did not work because on platforms that use ptrace, the pc register
803 cannot be read unless the inferior is stopped. At that point, we
804 are not guaranteed the inferior is stopped and so the read_pc ()
805 call can fail. Setting the prev_pc value here ensures the value is
806 updated correctly when the inferior is stopped. */
807 prev_pc = read_pc ();
808
809 /* Resume inferior. */
810 resume (oneproc || step || bpstat_should_step (), stop_signal);
811
812 /* Wait for it to stop (if not standalone)
813 and in any case decode why it stopped, and act accordingly. */
814 /* Do this only if we are not using the event loop, or if the target
815 does not support asynchronous execution. */
816 if (!target_can_async_p ())
817 {
818 wait_for_inferior ();
819 normal_stop ();
820 }
821 }
822 \f
823
824 /* Start remote-debugging of a machine over a serial link. */
825
826 void
827 start_remote (int from_tty)
828 {
829 init_thread_list ();
830 init_wait_for_inferior ();
831 stop_soon = STOP_QUIETLY;
832 trap_expected = 0;
833
834 /* Always go on waiting for the target, regardless of the mode. */
835 /* FIXME: cagney/1999-09-23: At present it isn't possible to
836 indicate to wait_for_inferior that a target should timeout if
837 nothing is returned (instead of just blocking). Because of this,
838 targets expecting an immediate response need to, internally, set
839 things up so that the target_wait() is forced to eventually
840 timeout. */
841 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
842 differentiate to its caller what the state of the target is after
843 the initial open has been performed. Here we're assuming that
844 the target has stopped. It should be possible to eventually have
845 target_open() return to the caller an indication that the target
846 is currently running and GDB state should be set to the same as
847 for an async run. */
848 wait_for_inferior ();
849
850 /* Now that the inferior has stopped, do any bookkeeping like
851 loading shared libraries. We want to do this before normal_stop,
852 so that the displayed frame is up to date. */
853 post_create_inferior (&current_target, from_tty);
854
855 normal_stop ();
856 }
857
858 /* Initialize static vars when a new inferior begins. */
859
860 void
861 init_wait_for_inferior (void)
862 {
863 /* These are meaningless until the first time through wait_for_inferior. */
864 prev_pc = 0;
865
866 breakpoints_inserted = 0;
867 breakpoint_init_inferior (inf_starting);
868
869 /* Don't confuse first call to proceed(). */
870 stop_signal = TARGET_SIGNAL_0;
871
872 /* The first resume is not following a fork/vfork/exec. */
873 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
874
875 clear_proceed_status ();
876
877 stepping_past_singlestep_breakpoint = 0;
878 }
879 \f
880 /* This enum encodes possible reasons for doing a target_wait, so that
881 wfi can call target_wait in one place. (Ultimately the call will be
882 moved out of the infinite loop entirely.) */
883
884 enum infwait_states
885 {
886 infwait_normal_state,
887 infwait_thread_hop_state,
888 infwait_nonstep_watch_state
889 };
890
891 /* Why did the inferior stop? Used to print the appropriate messages
892 to the interface from within handle_inferior_event(). */
893 enum inferior_stop_reason
894 {
895 /* Step, next, nexti, stepi finished. */
896 END_STEPPING_RANGE,
897 /* Inferior terminated by signal. */
898 SIGNAL_EXITED,
899 /* Inferior exited. */
900 EXITED,
901 /* Inferior received signal, and user asked to be notified. */
902 SIGNAL_RECEIVED
903 };
904
905 /* This structure contains what used to be local variables in
906 wait_for_inferior. Probably many of them can return to being
907 locals in handle_inferior_event. */
908
909 struct execution_control_state
910 {
911 struct target_waitstatus ws;
912 struct target_waitstatus *wp;
913 int another_trap;
914 int random_signal;
915 CORE_ADDR stop_func_start;
916 CORE_ADDR stop_func_end;
917 char *stop_func_name;
918 struct symtab_and_line sal;
919 int current_line;
920 struct symtab *current_symtab;
921 int handling_longjmp; /* FIXME */
922 ptid_t ptid;
923 ptid_t saved_inferior_ptid;
924 int step_after_step_resume_breakpoint;
925 int stepping_through_solib_after_catch;
926 bpstat stepping_through_solib_catchpoints;
927 int new_thread_event;
928 struct target_waitstatus tmpstatus;
929 enum infwait_states infwait_state;
930 ptid_t waiton_ptid;
931 int wait_some_more;
932 };
933
934 void init_execution_control_state (struct execution_control_state *ecs);
935
936 void handle_inferior_event (struct execution_control_state *ecs);
937
938 static void step_into_function (struct execution_control_state *ecs);
939 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
940 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
941 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
942 struct frame_id sr_id);
943 static void stop_stepping (struct execution_control_state *ecs);
944 static void prepare_to_wait (struct execution_control_state *ecs);
945 static void keep_going (struct execution_control_state *ecs);
946 static void print_stop_reason (enum inferior_stop_reason stop_reason,
947 int stop_info);
948
949 /* Wait for control to return from inferior to debugger.
950 If inferior gets a signal, we may decide to start it up again
951 instead of returning. That is why there is a loop in this function.
952 When this function actually returns it means the inferior
953 should be left stopped and GDB should read more commands. */
954
955 void
956 wait_for_inferior (void)
957 {
958 struct cleanup *old_cleanups;
959 struct execution_control_state ecss;
960 struct execution_control_state *ecs;
961
962 if (debug_infrun)
963 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
964
965 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
966 &step_resume_breakpoint);
967
968 /* wfi still stays in a loop, so it's OK just to take the address of
969 a local to get the ecs pointer. */
970 ecs = &ecss;
971
972 /* Fill in with reasonable starting values. */
973 init_execution_control_state (ecs);
974
975 /* We'll update this if & when we switch to a new thread. */
976 previous_inferior_ptid = inferior_ptid;
977
978 overlay_cache_invalid = 1;
979
980 /* We have to invalidate the registers BEFORE calling target_wait
981 because they can be loaded from the target while in target_wait.
982 This makes remote debugging a bit more efficient for those
983 targets that provide critical registers as part of their normal
984 status mechanism. */
985
986 registers_changed ();
987
988 while (1)
989 {
990 if (deprecated_target_wait_hook)
991 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
992 else
993 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
994
995 /* Now figure out what to do with the result of the result. */
996 handle_inferior_event (ecs);
997
998 if (!ecs->wait_some_more)
999 break;
1000 }
1001 do_cleanups (old_cleanups);
1002 }
1003
1004 /* Asynchronous version of wait_for_inferior. It is called by the
1005 event loop whenever a change of state is detected on the file
1006 descriptor corresponding to the target. It can be called more than
1007 once to complete a single execution command. In such cases we need
1008 to keep the state in a global variable ASYNC_ECSS. If it is the
1009 last time that this function is called for a single execution
1010 command, then report to the user that the inferior has stopped, and
1011 do the necessary cleanups. */
1012
1013 struct execution_control_state async_ecss;
1014 struct execution_control_state *async_ecs;
1015
1016 void
1017 fetch_inferior_event (void *client_data)
1018 {
1019 static struct cleanup *old_cleanups;
1020
1021 async_ecs = &async_ecss;
1022
1023 if (!async_ecs->wait_some_more)
1024 {
1025 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1026 &step_resume_breakpoint);
1027
1028 /* Fill in with reasonable starting values. */
1029 init_execution_control_state (async_ecs);
1030
1031 /* We'll update this if & when we switch to a new thread. */
1032 previous_inferior_ptid = inferior_ptid;
1033
1034 overlay_cache_invalid = 1;
1035
1036 /* We have to invalidate the registers BEFORE calling target_wait
1037 because they can be loaded from the target while in target_wait.
1038 This makes remote debugging a bit more efficient for those
1039 targets that provide critical registers as part of their normal
1040 status mechanism. */
1041
1042 registers_changed ();
1043 }
1044
1045 if (deprecated_target_wait_hook)
1046 async_ecs->ptid =
1047 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1048 else
1049 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1050
1051 /* Now figure out what to do with the result of the result. */
1052 handle_inferior_event (async_ecs);
1053
1054 if (!async_ecs->wait_some_more)
1055 {
1056 /* Do only the cleanups that have been added by this
1057 function. Let the continuations for the commands do the rest,
1058 if there are any. */
1059 do_exec_cleanups (old_cleanups);
1060 normal_stop ();
1061 if (step_multi && stop_step)
1062 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1063 else
1064 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1065 }
1066 }
1067
1068 /* Prepare an execution control state for looping through a
1069 wait_for_inferior-type loop. */
1070
1071 void
1072 init_execution_control_state (struct execution_control_state *ecs)
1073 {
1074 ecs->another_trap = 0;
1075 ecs->random_signal = 0;
1076 ecs->step_after_step_resume_breakpoint = 0;
1077 ecs->handling_longjmp = 0; /* FIXME */
1078 ecs->stepping_through_solib_after_catch = 0;
1079 ecs->stepping_through_solib_catchpoints = NULL;
1080 ecs->sal = find_pc_line (prev_pc, 0);
1081 ecs->current_line = ecs->sal.line;
1082 ecs->current_symtab = ecs->sal.symtab;
1083 ecs->infwait_state = infwait_normal_state;
1084 ecs->waiton_ptid = pid_to_ptid (-1);
1085 ecs->wp = &(ecs->ws);
1086 }
1087
1088 /* Return the cached copy of the last pid/waitstatus returned by
1089 target_wait()/deprecated_target_wait_hook(). The data is actually
1090 cached by handle_inferior_event(), which gets called immediately
1091 after target_wait()/deprecated_target_wait_hook(). */
1092
1093 void
1094 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1095 {
1096 *ptidp = target_last_wait_ptid;
1097 *status = target_last_waitstatus;
1098 }
1099
1100 void
1101 nullify_last_target_wait_ptid (void)
1102 {
1103 target_last_wait_ptid = minus_one_ptid;
1104 }
1105
1106 /* Switch thread contexts, maintaining "infrun state". */
1107
1108 static void
1109 context_switch (struct execution_control_state *ecs)
1110 {
1111 /* Caution: it may happen that the new thread (or the old one!)
1112 is not in the thread list. In this case we must not attempt
1113 to "switch context", or we run the risk that our context may
1114 be lost. This may happen as a result of the target module
1115 mishandling thread creation. */
1116
1117 if (debug_infrun)
1118 {
1119 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1120 target_pid_to_str (inferior_ptid));
1121 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1122 target_pid_to_str (ecs->ptid));
1123 }
1124
1125 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1126 { /* Perform infrun state context switch: */
1127 /* Save infrun state for the old thread. */
1128 save_infrun_state (inferior_ptid, prev_pc,
1129 trap_expected, step_resume_breakpoint,
1130 step_range_start,
1131 step_range_end, &step_frame_id,
1132 ecs->handling_longjmp, ecs->another_trap,
1133 ecs->stepping_through_solib_after_catch,
1134 ecs->stepping_through_solib_catchpoints,
1135 ecs->current_line, ecs->current_symtab);
1136
1137 /* Load infrun state for the new thread. */
1138 load_infrun_state (ecs->ptid, &prev_pc,
1139 &trap_expected, &step_resume_breakpoint,
1140 &step_range_start,
1141 &step_range_end, &step_frame_id,
1142 &ecs->handling_longjmp, &ecs->another_trap,
1143 &ecs->stepping_through_solib_after_catch,
1144 &ecs->stepping_through_solib_catchpoints,
1145 &ecs->current_line, &ecs->current_symtab);
1146 }
1147 inferior_ptid = ecs->ptid;
1148 reinit_frame_cache ();
1149 }
1150
1151 static void
1152 adjust_pc_after_break (struct execution_control_state *ecs)
1153 {
1154 CORE_ADDR breakpoint_pc;
1155
1156 /* If this target does not decrement the PC after breakpoints, then
1157 we have nothing to do. */
1158 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1159 return;
1160
1161 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1162 we aren't, just return.
1163
1164 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1165 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1166 implemented by software breakpoints should be handled through the normal
1167 breakpoint layer.
1168
1169 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1170 different signals (SIGILL or SIGEMT for instance), but it is less
1171 clear where the PC is pointing afterwards. It may not match
1172 gdbarch_decr_pc_after_break. I don't know any specific target that
1173 generates these signals at breakpoints (the code has been in GDB since at
1174 least 1992) so I can not guess how to handle them here.
1175
1176 In earlier versions of GDB, a target with
1177 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1178 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1179 target with both of these set in GDB history, and it seems unlikely to be
1180 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1181
1182 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1183 return;
1184
1185 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1186 return;
1187
1188 /* Find the location where (if we've hit a breakpoint) the
1189 breakpoint would be. */
1190 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1191 (current_gdbarch);
1192
1193 /* Check whether there actually is a software breakpoint inserted
1194 at that location. */
1195 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1196 {
1197 /* When using hardware single-step, a SIGTRAP is reported for both
1198 a completed single-step and a software breakpoint. Need to
1199 differentiate between the two, as the latter needs adjusting
1200 but the former does not.
1201
1202 The SIGTRAP can be due to a completed hardware single-step only if
1203 - we didn't insert software single-step breakpoints
1204 - the thread to be examined is still the current thread
1205 - this thread is currently being stepped
1206
1207 If any of these events did not occur, we must have stopped due
1208 to hitting a software breakpoint, and have to back up to the
1209 breakpoint address.
1210
1211 As a special case, we could have hardware single-stepped a
1212 software breakpoint. In this case (prev_pc == breakpoint_pc),
1213 we also need to back up to the breakpoint address. */
1214
1215 if (singlestep_breakpoints_inserted_p
1216 || !ptid_equal (ecs->ptid, inferior_ptid)
1217 || !currently_stepping (ecs)
1218 || prev_pc == breakpoint_pc)
1219 write_pc_pid (breakpoint_pc, ecs->ptid);
1220 }
1221 }
1222
1223 /* Given an execution control state that has been freshly filled in
1224 by an event from the inferior, figure out what it means and take
1225 appropriate action. */
1226
1227 int stepped_after_stopped_by_watchpoint;
1228
1229 void
1230 handle_inferior_event (struct execution_control_state *ecs)
1231 {
1232 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1233 that the variable stepped_after_stopped_by_watchpoint isn't used,
1234 then you're wrong! See remote.c:remote_stopped_data_address. */
1235
1236 int sw_single_step_trap_p = 0;
1237 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1238
1239 /* Cache the last pid/waitstatus. */
1240 target_last_wait_ptid = ecs->ptid;
1241 target_last_waitstatus = *ecs->wp;
1242
1243 adjust_pc_after_break (ecs);
1244
1245 switch (ecs->infwait_state)
1246 {
1247 case infwait_thread_hop_state:
1248 if (debug_infrun)
1249 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1250 /* Cancel the waiton_ptid. */
1251 ecs->waiton_ptid = pid_to_ptid (-1);
1252 break;
1253
1254 case infwait_normal_state:
1255 if (debug_infrun)
1256 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1257 stepped_after_stopped_by_watchpoint = 0;
1258 break;
1259
1260 case infwait_nonstep_watch_state:
1261 if (debug_infrun)
1262 fprintf_unfiltered (gdb_stdlog,
1263 "infrun: infwait_nonstep_watch_state\n");
1264 insert_breakpoints ();
1265
1266 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1267 handle things like signals arriving and other things happening
1268 in combination correctly? */
1269 stepped_after_stopped_by_watchpoint = 1;
1270 break;
1271
1272 default:
1273 internal_error (__FILE__, __LINE__, _("bad switch"));
1274 }
1275 ecs->infwait_state = infwait_normal_state;
1276
1277 reinit_frame_cache ();
1278
1279 /* If it's a new process, add it to the thread database */
1280
1281 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1282 && !ptid_equal (ecs->ptid, minus_one_ptid)
1283 && !in_thread_list (ecs->ptid));
1284
1285 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1286 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1287 {
1288 add_thread (ecs->ptid);
1289
1290 ui_out_text (uiout, "[New ");
1291 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1292 ui_out_text (uiout, "]\n");
1293 }
1294
1295 switch (ecs->ws.kind)
1296 {
1297 case TARGET_WAITKIND_LOADED:
1298 if (debug_infrun)
1299 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1300 /* Ignore gracefully during startup of the inferior, as it
1301 might be the shell which has just loaded some objects,
1302 otherwise add the symbols for the newly loaded objects. */
1303 #ifdef SOLIB_ADD
1304 if (stop_soon == NO_STOP_QUIETLY)
1305 {
1306 /* Remove breakpoints, SOLIB_ADD might adjust
1307 breakpoint addresses via breakpoint_re_set. */
1308 if (breakpoints_inserted)
1309 remove_breakpoints ();
1310
1311 /* Check for any newly added shared libraries if we're
1312 supposed to be adding them automatically. Switch
1313 terminal for any messages produced by
1314 breakpoint_re_set. */
1315 target_terminal_ours_for_output ();
1316 /* NOTE: cagney/2003-11-25: Make certain that the target
1317 stack's section table is kept up-to-date. Architectures,
1318 (e.g., PPC64), use the section table to perform
1319 operations such as address => section name and hence
1320 require the table to contain all sections (including
1321 those found in shared libraries). */
1322 /* NOTE: cagney/2003-11-25: Pass current_target and not
1323 exec_ops to SOLIB_ADD. This is because current GDB is
1324 only tooled to propagate section_table changes out from
1325 the "current_target" (see target_resize_to_sections), and
1326 not up from the exec stratum. This, of course, isn't
1327 right. "infrun.c" should only interact with the
1328 exec/process stratum, instead relying on the target stack
1329 to propagate relevant changes (stop, section table
1330 changed, ...) up to other layers. */
1331 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1332 target_terminal_inferior ();
1333
1334 /* Reinsert breakpoints and continue. */
1335 if (breakpoints_inserted)
1336 insert_breakpoints ();
1337 }
1338 #endif
1339 resume (0, TARGET_SIGNAL_0);
1340 prepare_to_wait (ecs);
1341 return;
1342
1343 case TARGET_WAITKIND_SPURIOUS:
1344 if (debug_infrun)
1345 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1346 resume (0, TARGET_SIGNAL_0);
1347 prepare_to_wait (ecs);
1348 return;
1349
1350 case TARGET_WAITKIND_EXITED:
1351 if (debug_infrun)
1352 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1353 target_terminal_ours (); /* Must do this before mourn anyway */
1354 print_stop_reason (EXITED, ecs->ws.value.integer);
1355
1356 /* Record the exit code in the convenience variable $_exitcode, so
1357 that the user can inspect this again later. */
1358 set_internalvar (lookup_internalvar ("_exitcode"),
1359 value_from_longest (builtin_type_int,
1360 (LONGEST) ecs->ws.value.integer));
1361 gdb_flush (gdb_stdout);
1362 target_mourn_inferior ();
1363 singlestep_breakpoints_inserted_p = 0;
1364 stop_print_frame = 0;
1365 stop_stepping (ecs);
1366 return;
1367
1368 case TARGET_WAITKIND_SIGNALLED:
1369 if (debug_infrun)
1370 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1371 stop_print_frame = 0;
1372 stop_signal = ecs->ws.value.sig;
1373 target_terminal_ours (); /* Must do this before mourn anyway */
1374
1375 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1376 reach here unless the inferior is dead. However, for years
1377 target_kill() was called here, which hints that fatal signals aren't
1378 really fatal on some systems. If that's true, then some changes
1379 may be needed. */
1380 target_mourn_inferior ();
1381
1382 print_stop_reason (SIGNAL_EXITED, stop_signal);
1383 singlestep_breakpoints_inserted_p = 0;
1384 stop_stepping (ecs);
1385 return;
1386
1387 /* The following are the only cases in which we keep going;
1388 the above cases end in a continue or goto. */
1389 case TARGET_WAITKIND_FORKED:
1390 case TARGET_WAITKIND_VFORKED:
1391 if (debug_infrun)
1392 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1393 stop_signal = TARGET_SIGNAL_TRAP;
1394 pending_follow.kind = ecs->ws.kind;
1395
1396 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1397 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1398
1399 if (!ptid_equal (ecs->ptid, inferior_ptid))
1400 {
1401 context_switch (ecs);
1402 reinit_frame_cache ();
1403 }
1404
1405 stop_pc = read_pc ();
1406
1407 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1408
1409 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1410
1411 /* If no catchpoint triggered for this, then keep going. */
1412 if (ecs->random_signal)
1413 {
1414 stop_signal = TARGET_SIGNAL_0;
1415 keep_going (ecs);
1416 return;
1417 }
1418 goto process_event_stop_test;
1419
1420 case TARGET_WAITKIND_EXECD:
1421 if (debug_infrun)
1422 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1423 stop_signal = TARGET_SIGNAL_TRAP;
1424
1425 /* NOTE drow/2002-12-05: This code should be pushed down into the
1426 target_wait function. Until then following vfork on HP/UX 10.20
1427 is probably broken by this. Of course, it's broken anyway. */
1428 /* Is this a target which reports multiple exec events per actual
1429 call to exec()? (HP-UX using ptrace does, for example.) If so,
1430 ignore all but the last one. Just resume the exec'r, and wait
1431 for the next exec event. */
1432 if (inferior_ignoring_leading_exec_events)
1433 {
1434 inferior_ignoring_leading_exec_events--;
1435 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1436 prepare_to_wait (ecs);
1437 return;
1438 }
1439 inferior_ignoring_leading_exec_events =
1440 target_reported_exec_events_per_exec_call () - 1;
1441
1442 pending_follow.execd_pathname =
1443 savestring (ecs->ws.value.execd_pathname,
1444 strlen (ecs->ws.value.execd_pathname));
1445
1446 /* This causes the eventpoints and symbol table to be reset. Must
1447 do this now, before trying to determine whether to stop. */
1448 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1449 xfree (pending_follow.execd_pathname);
1450
1451 stop_pc = read_pc_pid (ecs->ptid);
1452 ecs->saved_inferior_ptid = inferior_ptid;
1453 inferior_ptid = ecs->ptid;
1454
1455 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1456
1457 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1458 inferior_ptid = ecs->saved_inferior_ptid;
1459
1460 if (!ptid_equal (ecs->ptid, inferior_ptid))
1461 {
1462 context_switch (ecs);
1463 reinit_frame_cache ();
1464 }
1465
1466 /* If no catchpoint triggered for this, then keep going. */
1467 if (ecs->random_signal)
1468 {
1469 stop_signal = TARGET_SIGNAL_0;
1470 keep_going (ecs);
1471 return;
1472 }
1473 goto process_event_stop_test;
1474
1475 /* Be careful not to try to gather much state about a thread
1476 that's in a syscall. It's frequently a losing proposition. */
1477 case TARGET_WAITKIND_SYSCALL_ENTRY:
1478 if (debug_infrun)
1479 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1480 resume (0, TARGET_SIGNAL_0);
1481 prepare_to_wait (ecs);
1482 return;
1483
1484 /* Before examining the threads further, step this thread to
1485 get it entirely out of the syscall. (We get notice of the
1486 event when the thread is just on the verge of exiting a
1487 syscall. Stepping one instruction seems to get it back
1488 into user code.) */
1489 case TARGET_WAITKIND_SYSCALL_RETURN:
1490 if (debug_infrun)
1491 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1492 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1493 prepare_to_wait (ecs);
1494 return;
1495
1496 case TARGET_WAITKIND_STOPPED:
1497 if (debug_infrun)
1498 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1499 stop_signal = ecs->ws.value.sig;
1500 break;
1501
1502 /* We had an event in the inferior, but we are not interested
1503 in handling it at this level. The lower layers have already
1504 done what needs to be done, if anything.
1505
1506 One of the possible circumstances for this is when the
1507 inferior produces output for the console. The inferior has
1508 not stopped, and we are ignoring the event. Another possible
1509 circumstance is any event which the lower level knows will be
1510 reported multiple times without an intervening resume. */
1511 case TARGET_WAITKIND_IGNORE:
1512 if (debug_infrun)
1513 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1514 prepare_to_wait (ecs);
1515 return;
1516 }
1517
1518 /* We may want to consider not doing a resume here in order to give
1519 the user a chance to play with the new thread. It might be good
1520 to make that a user-settable option. */
1521
1522 /* At this point, all threads are stopped (happens automatically in
1523 either the OS or the native code). Therefore we need to continue
1524 all threads in order to make progress. */
1525 if (ecs->new_thread_event)
1526 {
1527 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1528 prepare_to_wait (ecs);
1529 return;
1530 }
1531
1532 stop_pc = read_pc_pid (ecs->ptid);
1533
1534 if (debug_infrun)
1535 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1536
1537 if (stepping_past_singlestep_breakpoint)
1538 {
1539 gdb_assert (singlestep_breakpoints_inserted_p);
1540 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1541 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1542
1543 stepping_past_singlestep_breakpoint = 0;
1544
1545 /* We've either finished single-stepping past the single-step
1546 breakpoint, or stopped for some other reason. It would be nice if
1547 we could tell, but we can't reliably. */
1548 if (stop_signal == TARGET_SIGNAL_TRAP)
1549 {
1550 if (debug_infrun)
1551 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1552 /* Pull the single step breakpoints out of the target. */
1553 remove_single_step_breakpoints ();
1554 singlestep_breakpoints_inserted_p = 0;
1555
1556 ecs->random_signal = 0;
1557
1558 ecs->ptid = saved_singlestep_ptid;
1559 context_switch (ecs);
1560 if (deprecated_context_hook)
1561 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1562
1563 resume (1, TARGET_SIGNAL_0);
1564 prepare_to_wait (ecs);
1565 return;
1566 }
1567 }
1568
1569 stepping_past_singlestep_breakpoint = 0;
1570
1571 /* See if a thread hit a thread-specific breakpoint that was meant for
1572 another thread. If so, then step that thread past the breakpoint,
1573 and continue it. */
1574
1575 if (stop_signal == TARGET_SIGNAL_TRAP)
1576 {
1577 int thread_hop_needed = 0;
1578
1579 /* Check if a regular breakpoint has been hit before checking
1580 for a potential single step breakpoint. Otherwise, GDB will
1581 not see this breakpoint hit when stepping onto breakpoints. */
1582 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1583 {
1584 ecs->random_signal = 0;
1585 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1586 thread_hop_needed = 1;
1587 }
1588 else if (singlestep_breakpoints_inserted_p)
1589 {
1590 /* We have not context switched yet, so this should be true
1591 no matter which thread hit the singlestep breakpoint. */
1592 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1593 if (debug_infrun)
1594 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1595 "trap for %s\n",
1596 target_pid_to_str (ecs->ptid));
1597
1598 ecs->random_signal = 0;
1599 /* The call to in_thread_list is necessary because PTIDs sometimes
1600 change when we go from single-threaded to multi-threaded. If
1601 the singlestep_ptid is still in the list, assume that it is
1602 really different from ecs->ptid. */
1603 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1604 && in_thread_list (singlestep_ptid))
1605 {
1606 /* If the PC of the thread we were trying to single-step
1607 has changed, discard this event (which we were going
1608 to ignore anyway), and pretend we saw that thread
1609 trap. This prevents us continuously moving the
1610 single-step breakpoint forward, one instruction at a
1611 time. If the PC has changed, then the thread we were
1612 trying to single-step has trapped or been signalled,
1613 but the event has not been reported to GDB yet.
1614
1615 There might be some cases where this loses signal
1616 information, if a signal has arrived at exactly the
1617 same time that the PC changed, but this is the best
1618 we can do with the information available. Perhaps we
1619 should arrange to report all events for all threads
1620 when they stop, or to re-poll the remote looking for
1621 this particular thread (i.e. temporarily enable
1622 schedlock). */
1623 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1624 {
1625 if (debug_infrun)
1626 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1627 " but expected thread advanced also\n");
1628
1629 /* The current context still belongs to
1630 singlestep_ptid. Don't swap here, since that's
1631 the context we want to use. Just fudge our
1632 state and continue. */
1633 ecs->ptid = singlestep_ptid;
1634 stop_pc = read_pc_pid (ecs->ptid);
1635 }
1636 else
1637 {
1638 if (debug_infrun)
1639 fprintf_unfiltered (gdb_stdlog,
1640 "infrun: unexpected thread\n");
1641
1642 thread_hop_needed = 1;
1643 stepping_past_singlestep_breakpoint = 1;
1644 saved_singlestep_ptid = singlestep_ptid;
1645 }
1646 }
1647 }
1648
1649 if (thread_hop_needed)
1650 {
1651 int remove_status;
1652
1653 if (debug_infrun)
1654 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1655
1656 /* Saw a breakpoint, but it was hit by the wrong thread.
1657 Just continue. */
1658
1659 if (singlestep_breakpoints_inserted_p)
1660 {
1661 /* Pull the single step breakpoints out of the target. */
1662 remove_single_step_breakpoints ();
1663 singlestep_breakpoints_inserted_p = 0;
1664 }
1665
1666 remove_status = remove_breakpoints ();
1667 /* Did we fail to remove breakpoints? If so, try
1668 to set the PC past the bp. (There's at least
1669 one situation in which we can fail to remove
1670 the bp's: On HP-UX's that use ttrace, we can't
1671 change the address space of a vforking child
1672 process until the child exits (well, okay, not
1673 then either :-) or execs. */
1674 if (remove_status != 0)
1675 {
1676 /* FIXME! This is obviously non-portable! */
1677 write_pc_pid (stop_pc + 4, ecs->ptid);
1678 /* We need to restart all the threads now,
1679 * unles we're running in scheduler-locked mode.
1680 * Use currently_stepping to determine whether to
1681 * step or continue.
1682 */
1683 /* FIXME MVS: is there any reason not to call resume()? */
1684 if (scheduler_mode == schedlock_on)
1685 target_resume (ecs->ptid,
1686 currently_stepping (ecs), TARGET_SIGNAL_0);
1687 else
1688 target_resume (RESUME_ALL,
1689 currently_stepping (ecs), TARGET_SIGNAL_0);
1690 prepare_to_wait (ecs);
1691 return;
1692 }
1693 else
1694 { /* Single step */
1695 breakpoints_inserted = 0;
1696 if (!ptid_equal (inferior_ptid, ecs->ptid))
1697 context_switch (ecs);
1698 ecs->waiton_ptid = ecs->ptid;
1699 ecs->wp = &(ecs->ws);
1700 ecs->another_trap = 1;
1701
1702 ecs->infwait_state = infwait_thread_hop_state;
1703 keep_going (ecs);
1704 registers_changed ();
1705 return;
1706 }
1707 }
1708 else if (singlestep_breakpoints_inserted_p)
1709 {
1710 sw_single_step_trap_p = 1;
1711 ecs->random_signal = 0;
1712 }
1713 }
1714 else
1715 ecs->random_signal = 1;
1716
1717 /* See if something interesting happened to the non-current thread. If
1718 so, then switch to that thread. */
1719 if (!ptid_equal (ecs->ptid, inferior_ptid))
1720 {
1721 if (debug_infrun)
1722 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1723
1724 context_switch (ecs);
1725
1726 if (deprecated_context_hook)
1727 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1728 }
1729
1730 if (singlestep_breakpoints_inserted_p)
1731 {
1732 /* Pull the single step breakpoints out of the target. */
1733 remove_single_step_breakpoints ();
1734 singlestep_breakpoints_inserted_p = 0;
1735 }
1736
1737 /* It may not be necessary to disable the watchpoint to stop over
1738 it. For example, the PA can (with some kernel cooperation)
1739 single step over a watchpoint without disabling the watchpoint. */
1740 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1741 {
1742 if (debug_infrun)
1743 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1744 resume (1, 0);
1745 prepare_to_wait (ecs);
1746 return;
1747 }
1748
1749 /* It is far more common to need to disable a watchpoint to step
1750 the inferior over it. FIXME. What else might a debug
1751 register or page protection watchpoint scheme need here? */
1752 if (gdbarch_have_nonsteppable_watchpoint (current_gdbarch)
1753 && STOPPED_BY_WATCHPOINT (ecs->ws))
1754 {
1755 /* At this point, we are stopped at an instruction which has
1756 attempted to write to a piece of memory under control of
1757 a watchpoint. The instruction hasn't actually executed
1758 yet. If we were to evaluate the watchpoint expression
1759 now, we would get the old value, and therefore no change
1760 would seem to have occurred.
1761
1762 In order to make watchpoints work `right', we really need
1763 to complete the memory write, and then evaluate the
1764 watchpoint expression. The following code does that by
1765 removing the watchpoint (actually, all watchpoints and
1766 breakpoints), single-stepping the target, re-inserting
1767 watchpoints, and then falling through to let normal
1768 single-step processing handle proceed. Since this
1769 includes evaluating watchpoints, things will come to a
1770 stop in the correct manner. */
1771
1772 if (debug_infrun)
1773 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1774 remove_breakpoints ();
1775 registers_changed ();
1776 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1777
1778 ecs->waiton_ptid = ecs->ptid;
1779 ecs->wp = &(ecs->ws);
1780 ecs->infwait_state = infwait_nonstep_watch_state;
1781 prepare_to_wait (ecs);
1782 return;
1783 }
1784
1785 /* It may be possible to simply continue after a watchpoint. */
1786 if (HAVE_CONTINUABLE_WATCHPOINT)
1787 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1788
1789 ecs->stop_func_start = 0;
1790 ecs->stop_func_end = 0;
1791 ecs->stop_func_name = 0;
1792 /* Don't care about return value; stop_func_start and stop_func_name
1793 will both be 0 if it doesn't work. */
1794 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1795 &ecs->stop_func_start, &ecs->stop_func_end);
1796 ecs->stop_func_start
1797 += gdbarch_deprecated_function_start_offset (current_gdbarch);
1798 ecs->another_trap = 0;
1799 bpstat_clear (&stop_bpstat);
1800 stop_step = 0;
1801 stop_stack_dummy = 0;
1802 stop_print_frame = 1;
1803 ecs->random_signal = 0;
1804 stopped_by_random_signal = 0;
1805
1806 if (stop_signal == TARGET_SIGNAL_TRAP
1807 && trap_expected
1808 && gdbarch_single_step_through_delay_p (current_gdbarch)
1809 && currently_stepping (ecs))
1810 {
1811 /* We're trying to step of a breakpoint. Turns out that we're
1812 also on an instruction that needs to be stepped multiple
1813 times before it's been fully executing. E.g., architectures
1814 with a delay slot. It needs to be stepped twice, once for
1815 the instruction and once for the delay slot. */
1816 int step_through_delay
1817 = gdbarch_single_step_through_delay (current_gdbarch,
1818 get_current_frame ());
1819 if (debug_infrun && step_through_delay)
1820 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1821 if (step_range_end == 0 && step_through_delay)
1822 {
1823 /* The user issued a continue when stopped at a breakpoint.
1824 Set up for another trap and get out of here. */
1825 ecs->another_trap = 1;
1826 keep_going (ecs);
1827 return;
1828 }
1829 else if (step_through_delay)
1830 {
1831 /* The user issued a step when stopped at a breakpoint.
1832 Maybe we should stop, maybe we should not - the delay
1833 slot *might* correspond to a line of source. In any
1834 case, don't decide that here, just set ecs->another_trap,
1835 making sure we single-step again before breakpoints are
1836 re-inserted. */
1837 ecs->another_trap = 1;
1838 }
1839 }
1840
1841 /* Look at the cause of the stop, and decide what to do.
1842 The alternatives are:
1843 1) break; to really stop and return to the debugger,
1844 2) drop through to start up again
1845 (set ecs->another_trap to 1 to single step once)
1846 3) set ecs->random_signal to 1, and the decision between 1 and 2
1847 will be made according to the signal handling tables. */
1848
1849 /* First, distinguish signals caused by the debugger from signals
1850 that have to do with the program's own actions. Note that
1851 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1852 on the operating system version. Here we detect when a SIGILL or
1853 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1854 something similar for SIGSEGV, since a SIGSEGV will be generated
1855 when we're trying to execute a breakpoint instruction on a
1856 non-executable stack. This happens for call dummy breakpoints
1857 for architectures like SPARC that place call dummies on the
1858 stack. */
1859
1860 if (stop_signal == TARGET_SIGNAL_TRAP
1861 || (breakpoints_inserted
1862 && (stop_signal == TARGET_SIGNAL_ILL
1863 || stop_signal == TARGET_SIGNAL_SEGV
1864 || stop_signal == TARGET_SIGNAL_EMT))
1865 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1866 {
1867 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1868 {
1869 if (debug_infrun)
1870 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1871 stop_print_frame = 0;
1872 stop_stepping (ecs);
1873 return;
1874 }
1875
1876 /* This is originated from start_remote(), start_inferior() and
1877 shared libraries hook functions. */
1878 if (stop_soon == STOP_QUIETLY)
1879 {
1880 if (debug_infrun)
1881 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1882 stop_stepping (ecs);
1883 return;
1884 }
1885
1886 /* This originates from attach_command(). We need to overwrite
1887 the stop_signal here, because some kernels don't ignore a
1888 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1889 See more comments in inferior.h. */
1890 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1891 {
1892 stop_stepping (ecs);
1893 if (stop_signal == TARGET_SIGNAL_STOP)
1894 stop_signal = TARGET_SIGNAL_0;
1895 return;
1896 }
1897
1898 /* Don't even think about breakpoints if just proceeded over a
1899 breakpoint. */
1900 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1901 {
1902 if (debug_infrun)
1903 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1904 bpstat_clear (&stop_bpstat);
1905 }
1906 else
1907 {
1908 /* See if there is a breakpoint at the current PC. */
1909 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1910 stopped_by_watchpoint);
1911
1912 /* Following in case break condition called a
1913 function. */
1914 stop_print_frame = 1;
1915 }
1916
1917 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1918 at one stage in the past included checks for an inferior
1919 function call's call dummy's return breakpoint. The original
1920 comment, that went with the test, read:
1921
1922 ``End of a stack dummy. Some systems (e.g. Sony news) give
1923 another signal besides SIGTRAP, so check here as well as
1924 above.''
1925
1926 If someone ever tries to get get call dummys on a
1927 non-executable stack to work (where the target would stop
1928 with something like a SIGSEGV), then those tests might need
1929 to be re-instated. Given, however, that the tests were only
1930 enabled when momentary breakpoints were not being used, I
1931 suspect that it won't be the case.
1932
1933 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1934 be necessary for call dummies on a non-executable stack on
1935 SPARC. */
1936
1937 if (stop_signal == TARGET_SIGNAL_TRAP)
1938 ecs->random_signal
1939 = !(bpstat_explains_signal (stop_bpstat)
1940 || trap_expected
1941 || (step_range_end && step_resume_breakpoint == NULL));
1942 else
1943 {
1944 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1945 if (!ecs->random_signal)
1946 stop_signal = TARGET_SIGNAL_TRAP;
1947 }
1948 }
1949
1950 /* When we reach this point, we've pretty much decided
1951 that the reason for stopping must've been a random
1952 (unexpected) signal. */
1953
1954 else
1955 ecs->random_signal = 1;
1956
1957 process_event_stop_test:
1958 /* For the program's own signals, act according to
1959 the signal handling tables. */
1960
1961 if (ecs->random_signal)
1962 {
1963 /* Signal not for debugging purposes. */
1964 int printed = 0;
1965
1966 if (debug_infrun)
1967 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1968
1969 stopped_by_random_signal = 1;
1970
1971 if (signal_print[stop_signal])
1972 {
1973 printed = 1;
1974 target_terminal_ours_for_output ();
1975 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1976 }
1977 if (signal_stop[stop_signal])
1978 {
1979 stop_stepping (ecs);
1980 return;
1981 }
1982 /* If not going to stop, give terminal back
1983 if we took it away. */
1984 else if (printed)
1985 target_terminal_inferior ();
1986
1987 /* Clear the signal if it should not be passed. */
1988 if (signal_program[stop_signal] == 0)
1989 stop_signal = TARGET_SIGNAL_0;
1990
1991 if (prev_pc == read_pc ()
1992 && !breakpoints_inserted
1993 && breakpoint_here_p (read_pc ())
1994 && step_resume_breakpoint == NULL)
1995 {
1996 /* We were just starting a new sequence, attempting to
1997 single-step off of a breakpoint and expecting a SIGTRAP.
1998 Intead this signal arrives. This signal will take us out
1999 of the stepping range so GDB needs to remember to, when
2000 the signal handler returns, resume stepping off that
2001 breakpoint. */
2002 /* To simplify things, "continue" is forced to use the same
2003 code paths as single-step - set a breakpoint at the
2004 signal return address and then, once hit, step off that
2005 breakpoint. */
2006
2007 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2008 ecs->step_after_step_resume_breakpoint = 1;
2009 keep_going (ecs);
2010 return;
2011 }
2012
2013 if (step_range_end != 0
2014 && stop_signal != TARGET_SIGNAL_0
2015 && stop_pc >= step_range_start && stop_pc < step_range_end
2016 && frame_id_eq (get_frame_id (get_current_frame ()),
2017 step_frame_id)
2018 && step_resume_breakpoint == NULL)
2019 {
2020 /* The inferior is about to take a signal that will take it
2021 out of the single step range. Set a breakpoint at the
2022 current PC (which is presumably where the signal handler
2023 will eventually return) and then allow the inferior to
2024 run free.
2025
2026 Note that this is only needed for a signal delivered
2027 while in the single-step range. Nested signals aren't a
2028 problem as they eventually all return. */
2029 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2030 keep_going (ecs);
2031 return;
2032 }
2033
2034 /* Note: step_resume_breakpoint may be non-NULL. This occures
2035 when either there's a nested signal, or when there's a
2036 pending signal enabled just as the signal handler returns
2037 (leaving the inferior at the step-resume-breakpoint without
2038 actually executing it). Either way continue until the
2039 breakpoint is really hit. */
2040 keep_going (ecs);
2041 return;
2042 }
2043
2044 /* Handle cases caused by hitting a breakpoint. */
2045 {
2046 CORE_ADDR jmp_buf_pc;
2047 struct bpstat_what what;
2048
2049 what = bpstat_what (stop_bpstat);
2050
2051 if (what.call_dummy)
2052 {
2053 stop_stack_dummy = 1;
2054 }
2055
2056 switch (what.main_action)
2057 {
2058 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2059 /* If we hit the breakpoint at longjmp, disable it for the
2060 duration of this command. Then, install a temporary
2061 breakpoint at the target of the jmp_buf. */
2062 if (debug_infrun)
2063 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2064 disable_longjmp_breakpoint ();
2065 remove_breakpoints ();
2066 breakpoints_inserted = 0;
2067 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2068 || !gdbarch_get_longjmp_target (current_gdbarch,
2069 get_current_frame (), &jmp_buf_pc))
2070 {
2071 keep_going (ecs);
2072 return;
2073 }
2074
2075 /* Need to blow away step-resume breakpoint, as it
2076 interferes with us */
2077 if (step_resume_breakpoint != NULL)
2078 {
2079 delete_step_resume_breakpoint (&step_resume_breakpoint);
2080 }
2081
2082 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2083 ecs->handling_longjmp = 1; /* FIXME */
2084 keep_going (ecs);
2085 return;
2086
2087 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2088 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2089 if (debug_infrun)
2090 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2091 remove_breakpoints ();
2092 breakpoints_inserted = 0;
2093 disable_longjmp_breakpoint ();
2094 ecs->handling_longjmp = 0; /* FIXME */
2095 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2096 break;
2097 /* else fallthrough */
2098
2099 case BPSTAT_WHAT_SINGLE:
2100 if (debug_infrun)
2101 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2102 if (breakpoints_inserted)
2103 remove_breakpoints ();
2104 breakpoints_inserted = 0;
2105 ecs->another_trap = 1;
2106 /* Still need to check other stuff, at least the case
2107 where we are stepping and step out of the right range. */
2108 break;
2109
2110 case BPSTAT_WHAT_STOP_NOISY:
2111 if (debug_infrun)
2112 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2113 stop_print_frame = 1;
2114
2115 /* We are about to nuke the step_resume_breakpointt via the
2116 cleanup chain, so no need to worry about it here. */
2117
2118 stop_stepping (ecs);
2119 return;
2120
2121 case BPSTAT_WHAT_STOP_SILENT:
2122 if (debug_infrun)
2123 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2124 stop_print_frame = 0;
2125
2126 /* We are about to nuke the step_resume_breakpoin via the
2127 cleanup chain, so no need to worry about it here. */
2128
2129 stop_stepping (ecs);
2130 return;
2131
2132 case BPSTAT_WHAT_STEP_RESUME:
2133 /* This proably demands a more elegant solution, but, yeah
2134 right...
2135
2136 This function's use of the simple variable
2137 step_resume_breakpoint doesn't seem to accomodate
2138 simultaneously active step-resume bp's, although the
2139 breakpoint list certainly can.
2140
2141 If we reach here and step_resume_breakpoint is already
2142 NULL, then apparently we have multiple active
2143 step-resume bp's. We'll just delete the breakpoint we
2144 stopped at, and carry on.
2145
2146 Correction: what the code currently does is delete a
2147 step-resume bp, but it makes no effort to ensure that
2148 the one deleted is the one currently stopped at. MVS */
2149
2150 if (debug_infrun)
2151 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2152
2153 if (step_resume_breakpoint == NULL)
2154 {
2155 step_resume_breakpoint =
2156 bpstat_find_step_resume_breakpoint (stop_bpstat);
2157 }
2158 delete_step_resume_breakpoint (&step_resume_breakpoint);
2159 if (ecs->step_after_step_resume_breakpoint)
2160 {
2161 /* Back when the step-resume breakpoint was inserted, we
2162 were trying to single-step off a breakpoint. Go back
2163 to doing that. */
2164 ecs->step_after_step_resume_breakpoint = 0;
2165 remove_breakpoints ();
2166 breakpoints_inserted = 0;
2167 ecs->another_trap = 1;
2168 keep_going (ecs);
2169 return;
2170 }
2171 break;
2172
2173 case BPSTAT_WHAT_CHECK_SHLIBS:
2174 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2175 {
2176 if (debug_infrun)
2177 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2178 /* Remove breakpoints, we eventually want to step over the
2179 shlib event breakpoint, and SOLIB_ADD might adjust
2180 breakpoint addresses via breakpoint_re_set. */
2181 if (breakpoints_inserted)
2182 remove_breakpoints ();
2183 breakpoints_inserted = 0;
2184
2185 /* Check for any newly added shared libraries if we're
2186 supposed to be adding them automatically. Switch
2187 terminal for any messages produced by
2188 breakpoint_re_set. */
2189 target_terminal_ours_for_output ();
2190 /* NOTE: cagney/2003-11-25: Make certain that the target
2191 stack's section table is kept up-to-date. Architectures,
2192 (e.g., PPC64), use the section table to perform
2193 operations such as address => section name and hence
2194 require the table to contain all sections (including
2195 those found in shared libraries). */
2196 /* NOTE: cagney/2003-11-25: Pass current_target and not
2197 exec_ops to SOLIB_ADD. This is because current GDB is
2198 only tooled to propagate section_table changes out from
2199 the "current_target" (see target_resize_to_sections), and
2200 not up from the exec stratum. This, of course, isn't
2201 right. "infrun.c" should only interact with the
2202 exec/process stratum, instead relying on the target stack
2203 to propagate relevant changes (stop, section table
2204 changed, ...) up to other layers. */
2205 #ifdef SOLIB_ADD
2206 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2207 #else
2208 solib_add (NULL, 0, &current_target, auto_solib_add);
2209 #endif
2210 target_terminal_inferior ();
2211
2212 /* Try to reenable shared library breakpoints, additional
2213 code segments in shared libraries might be mapped in now. */
2214 re_enable_breakpoints_in_shlibs ();
2215
2216 /* If requested, stop when the dynamic linker notifies
2217 gdb of events. This allows the user to get control
2218 and place breakpoints in initializer routines for
2219 dynamically loaded objects (among other things). */
2220 if (stop_on_solib_events || stop_stack_dummy)
2221 {
2222 stop_stepping (ecs);
2223 return;
2224 }
2225
2226 /* If we stopped due to an explicit catchpoint, then the
2227 (see above) call to SOLIB_ADD pulled in any symbols
2228 from a newly-loaded library, if appropriate.
2229
2230 We do want the inferior to stop, but not where it is
2231 now, which is in the dynamic linker callback. Rather,
2232 we would like it stop in the user's program, just after
2233 the call that caused this catchpoint to trigger. That
2234 gives the user a more useful vantage from which to
2235 examine their program's state. */
2236 else if (what.main_action
2237 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2238 {
2239 /* ??rehrauer: If I could figure out how to get the
2240 right return PC from here, we could just set a temp
2241 breakpoint and resume. I'm not sure we can without
2242 cracking open the dld's shared libraries and sniffing
2243 their unwind tables and text/data ranges, and that's
2244 not a terribly portable notion.
2245
2246 Until that time, we must step the inferior out of the
2247 dld callback, and also out of the dld itself (and any
2248 code or stubs in libdld.sl, such as "shl_load" and
2249 friends) until we reach non-dld code. At that point,
2250 we can stop stepping. */
2251 bpstat_get_triggered_catchpoints (stop_bpstat,
2252 &ecs->
2253 stepping_through_solib_catchpoints);
2254 ecs->stepping_through_solib_after_catch = 1;
2255
2256 /* Be sure to lift all breakpoints, so the inferior does
2257 actually step past this point... */
2258 ecs->another_trap = 1;
2259 break;
2260 }
2261 else
2262 {
2263 /* We want to step over this breakpoint, then keep going. */
2264 ecs->another_trap = 1;
2265 break;
2266 }
2267 }
2268 break;
2269
2270 case BPSTAT_WHAT_LAST:
2271 /* Not a real code, but listed here to shut up gcc -Wall. */
2272
2273 case BPSTAT_WHAT_KEEP_CHECKING:
2274 break;
2275 }
2276 }
2277
2278 /* We come here if we hit a breakpoint but should not
2279 stop for it. Possibly we also were stepping
2280 and should stop for that. So fall through and
2281 test for stepping. But, if not stepping,
2282 do not stop. */
2283
2284 /* Are we stepping to get the inferior out of the dynamic linker's
2285 hook (and possibly the dld itself) after catching a shlib
2286 event? */
2287 if (ecs->stepping_through_solib_after_catch)
2288 {
2289 #if defined(SOLIB_ADD)
2290 /* Have we reached our destination? If not, keep going. */
2291 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2292 {
2293 if (debug_infrun)
2294 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2295 ecs->another_trap = 1;
2296 keep_going (ecs);
2297 return;
2298 }
2299 #endif
2300 if (debug_infrun)
2301 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2302 /* Else, stop and report the catchpoint(s) whose triggering
2303 caused us to begin stepping. */
2304 ecs->stepping_through_solib_after_catch = 0;
2305 bpstat_clear (&stop_bpstat);
2306 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2307 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2308 stop_print_frame = 1;
2309 stop_stepping (ecs);
2310 return;
2311 }
2312
2313 if (step_resume_breakpoint)
2314 {
2315 if (debug_infrun)
2316 fprintf_unfiltered (gdb_stdlog,
2317 "infrun: step-resume breakpoint is inserted\n");
2318
2319 /* Having a step-resume breakpoint overrides anything
2320 else having to do with stepping commands until
2321 that breakpoint is reached. */
2322 keep_going (ecs);
2323 return;
2324 }
2325
2326 if (step_range_end == 0)
2327 {
2328 if (debug_infrun)
2329 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2330 /* Likewise if we aren't even stepping. */
2331 keep_going (ecs);
2332 return;
2333 }
2334
2335 /* If stepping through a line, keep going if still within it.
2336
2337 Note that step_range_end is the address of the first instruction
2338 beyond the step range, and NOT the address of the last instruction
2339 within it! */
2340 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2341 {
2342 if (debug_infrun)
2343 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2344 paddr_nz (step_range_start),
2345 paddr_nz (step_range_end));
2346 keep_going (ecs);
2347 return;
2348 }
2349
2350 /* We stepped out of the stepping range. */
2351
2352 /* If we are stepping at the source level and entered the runtime
2353 loader dynamic symbol resolution code, we keep on single stepping
2354 until we exit the run time loader code and reach the callee's
2355 address. */
2356 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2357 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2358 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2359 #else
2360 && in_solib_dynsym_resolve_code (stop_pc)
2361 #endif
2362 )
2363 {
2364 CORE_ADDR pc_after_resolver =
2365 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2366
2367 if (debug_infrun)
2368 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2369
2370 if (pc_after_resolver)
2371 {
2372 /* Set up a step-resume breakpoint at the address
2373 indicated by SKIP_SOLIB_RESOLVER. */
2374 struct symtab_and_line sr_sal;
2375 init_sal (&sr_sal);
2376 sr_sal.pc = pc_after_resolver;
2377
2378 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2379 }
2380
2381 keep_going (ecs);
2382 return;
2383 }
2384
2385 if (step_range_end != 1
2386 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2387 || step_over_calls == STEP_OVER_ALL)
2388 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2389 {
2390 if (debug_infrun)
2391 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2392 /* The inferior, while doing a "step" or "next", has ended up in
2393 a signal trampoline (either by a signal being delivered or by
2394 the signal handler returning). Just single-step until the
2395 inferior leaves the trampoline (either by calling the handler
2396 or returning). */
2397 keep_going (ecs);
2398 return;
2399 }
2400
2401 /* Check for subroutine calls. The check for the current frame
2402 equalling the step ID is not necessary - the check of the
2403 previous frame's ID is sufficient - but it is a common case and
2404 cheaper than checking the previous frame's ID.
2405
2406 NOTE: frame_id_eq will never report two invalid frame IDs as
2407 being equal, so to get into this block, both the current and
2408 previous frame must have valid frame IDs. */
2409 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2410 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2411 {
2412 CORE_ADDR real_stop_pc;
2413
2414 if (debug_infrun)
2415 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2416
2417 if ((step_over_calls == STEP_OVER_NONE)
2418 || ((step_range_end == 1)
2419 && in_prologue (prev_pc, ecs->stop_func_start)))
2420 {
2421 /* I presume that step_over_calls is only 0 when we're
2422 supposed to be stepping at the assembly language level
2423 ("stepi"). Just stop. */
2424 /* Also, maybe we just did a "nexti" inside a prolog, so we
2425 thought it was a subroutine call but it was not. Stop as
2426 well. FENN */
2427 stop_step = 1;
2428 print_stop_reason (END_STEPPING_RANGE, 0);
2429 stop_stepping (ecs);
2430 return;
2431 }
2432
2433 if (step_over_calls == STEP_OVER_ALL)
2434 {
2435 /* We're doing a "next", set a breakpoint at callee's return
2436 address (the address at which the caller will
2437 resume). */
2438 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2439 keep_going (ecs);
2440 return;
2441 }
2442
2443 /* If we are in a function call trampoline (a stub between the
2444 calling routine and the real function), locate the real
2445 function. That's what tells us (a) whether we want to step
2446 into it at all, and (b) what prologue we want to run to the
2447 end of, if we do step into it. */
2448 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2449 if (real_stop_pc == 0)
2450 real_stop_pc = gdbarch_skip_trampoline_code
2451 (current_gdbarch, get_current_frame (), stop_pc);
2452 if (real_stop_pc != 0)
2453 ecs->stop_func_start = real_stop_pc;
2454
2455 if (
2456 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2457 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2458 #else
2459 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2460 #endif
2461 )
2462 {
2463 struct symtab_and_line sr_sal;
2464 init_sal (&sr_sal);
2465 sr_sal.pc = ecs->stop_func_start;
2466
2467 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2468 keep_going (ecs);
2469 return;
2470 }
2471
2472 /* If we have line number information for the function we are
2473 thinking of stepping into, step into it.
2474
2475 If there are several symtabs at that PC (e.g. with include
2476 files), just want to know whether *any* of them have line
2477 numbers. find_pc_line handles this. */
2478 {
2479 struct symtab_and_line tmp_sal;
2480
2481 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2482 if (tmp_sal.line != 0)
2483 {
2484 step_into_function (ecs);
2485 return;
2486 }
2487 }
2488
2489 /* If we have no line number and the step-stop-if-no-debug is
2490 set, we stop the step so that the user has a chance to switch
2491 in assembly mode. */
2492 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2493 {
2494 stop_step = 1;
2495 print_stop_reason (END_STEPPING_RANGE, 0);
2496 stop_stepping (ecs);
2497 return;
2498 }
2499
2500 /* Set a breakpoint at callee's return address (the address at
2501 which the caller will resume). */
2502 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2503 keep_going (ecs);
2504 return;
2505 }
2506
2507 /* If we're in the return path from a shared library trampoline,
2508 we want to proceed through the trampoline when stepping. */
2509 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2510 stop_pc, ecs->stop_func_name))
2511 {
2512 /* Determine where this trampoline returns. */
2513 CORE_ADDR real_stop_pc;
2514 real_stop_pc = gdbarch_skip_trampoline_code
2515 (current_gdbarch, get_current_frame (), stop_pc);
2516
2517 if (debug_infrun)
2518 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2519
2520 /* Only proceed through if we know where it's going. */
2521 if (real_stop_pc)
2522 {
2523 /* And put the step-breakpoint there and go until there. */
2524 struct symtab_and_line sr_sal;
2525
2526 init_sal (&sr_sal); /* initialize to zeroes */
2527 sr_sal.pc = real_stop_pc;
2528 sr_sal.section = find_pc_overlay (sr_sal.pc);
2529
2530 /* Do not specify what the fp should be when we stop since
2531 on some machines the prologue is where the new fp value
2532 is established. */
2533 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2534
2535 /* Restart without fiddling with the step ranges or
2536 other state. */
2537 keep_going (ecs);
2538 return;
2539 }
2540 }
2541
2542 ecs->sal = find_pc_line (stop_pc, 0);
2543
2544 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2545 the trampoline processing logic, however, there are some trampolines
2546 that have no names, so we should do trampoline handling first. */
2547 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2548 && ecs->stop_func_name == NULL
2549 && ecs->sal.line == 0)
2550 {
2551 if (debug_infrun)
2552 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2553
2554 /* The inferior just stepped into, or returned to, an
2555 undebuggable function (where there is no debugging information
2556 and no line number corresponding to the address where the
2557 inferior stopped). Since we want to skip this kind of code,
2558 we keep going until the inferior returns from this
2559 function - unless the user has asked us not to (via
2560 set step-mode) or we no longer know how to get back
2561 to the call site. */
2562 if (step_stop_if_no_debug
2563 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2564 {
2565 /* If we have no line number and the step-stop-if-no-debug
2566 is set, we stop the step so that the user has a chance to
2567 switch in assembly mode. */
2568 stop_step = 1;
2569 print_stop_reason (END_STEPPING_RANGE, 0);
2570 stop_stepping (ecs);
2571 return;
2572 }
2573 else
2574 {
2575 /* Set a breakpoint at callee's return address (the address
2576 at which the caller will resume). */
2577 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2578 keep_going (ecs);
2579 return;
2580 }
2581 }
2582
2583 if (step_range_end == 1)
2584 {
2585 /* It is stepi or nexti. We always want to stop stepping after
2586 one instruction. */
2587 if (debug_infrun)
2588 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2589 stop_step = 1;
2590 print_stop_reason (END_STEPPING_RANGE, 0);
2591 stop_stepping (ecs);
2592 return;
2593 }
2594
2595 if (ecs->sal.line == 0)
2596 {
2597 /* We have no line number information. That means to stop
2598 stepping (does this always happen right after one instruction,
2599 when we do "s" in a function with no line numbers,
2600 or can this happen as a result of a return or longjmp?). */
2601 if (debug_infrun)
2602 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2603 stop_step = 1;
2604 print_stop_reason (END_STEPPING_RANGE, 0);
2605 stop_stepping (ecs);
2606 return;
2607 }
2608
2609 if ((stop_pc == ecs->sal.pc)
2610 && (ecs->current_line != ecs->sal.line
2611 || ecs->current_symtab != ecs->sal.symtab))
2612 {
2613 /* We are at the start of a different line. So stop. Note that
2614 we don't stop if we step into the middle of a different line.
2615 That is said to make things like for (;;) statements work
2616 better. */
2617 if (debug_infrun)
2618 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2619 stop_step = 1;
2620 print_stop_reason (END_STEPPING_RANGE, 0);
2621 stop_stepping (ecs);
2622 return;
2623 }
2624
2625 /* We aren't done stepping.
2626
2627 Optimize by setting the stepping range to the line.
2628 (We might not be in the original line, but if we entered a
2629 new line in mid-statement, we continue stepping. This makes
2630 things like for(;;) statements work better.) */
2631
2632 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2633 {
2634 /* If this is the last line of the function, don't keep stepping
2635 (it would probably step us out of the function).
2636 This is particularly necessary for a one-line function,
2637 in which after skipping the prologue we better stop even though
2638 we will be in mid-line. */
2639 if (debug_infrun)
2640 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2641 stop_step = 1;
2642 print_stop_reason (END_STEPPING_RANGE, 0);
2643 stop_stepping (ecs);
2644 return;
2645 }
2646 step_range_start = ecs->sal.pc;
2647 step_range_end = ecs->sal.end;
2648 step_frame_id = get_frame_id (get_current_frame ());
2649 ecs->current_line = ecs->sal.line;
2650 ecs->current_symtab = ecs->sal.symtab;
2651
2652 /* In the case where we just stepped out of a function into the
2653 middle of a line of the caller, continue stepping, but
2654 step_frame_id must be modified to current frame */
2655 #if 0
2656 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2657 generous. It will trigger on things like a step into a frameless
2658 stackless leaf function. I think the logic should instead look
2659 at the unwound frame ID has that should give a more robust
2660 indication of what happened. */
2661 if (step - ID == current - ID)
2662 still stepping in same function;
2663 else if (step - ID == unwind (current - ID))
2664 stepped into a function;
2665 else
2666 stepped out of a function;
2667 /* Of course this assumes that the frame ID unwind code is robust
2668 and we're willing to introduce frame unwind logic into this
2669 function. Fortunately, those days are nearly upon us. */
2670 #endif
2671 {
2672 struct frame_id current_frame = get_frame_id (get_current_frame ());
2673 if (!(frame_id_inner (current_frame, step_frame_id)))
2674 step_frame_id = current_frame;
2675 }
2676
2677 if (debug_infrun)
2678 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2679 keep_going (ecs);
2680 }
2681
2682 /* Are we in the middle of stepping? */
2683
2684 static int
2685 currently_stepping (struct execution_control_state *ecs)
2686 {
2687 return ((!ecs->handling_longjmp
2688 && ((step_range_end && step_resume_breakpoint == NULL)
2689 || trap_expected))
2690 || ecs->stepping_through_solib_after_catch
2691 || bpstat_should_step ());
2692 }
2693
2694 /* Subroutine call with source code we should not step over. Do step
2695 to the first line of code in it. */
2696
2697 static void
2698 step_into_function (struct execution_control_state *ecs)
2699 {
2700 struct symtab *s;
2701 struct symtab_and_line sr_sal;
2702
2703 s = find_pc_symtab (stop_pc);
2704 if (s && s->language != language_asm)
2705 ecs->stop_func_start = gdbarch_skip_prologue
2706 (current_gdbarch, ecs->stop_func_start);
2707
2708 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2709 /* Use the step_resume_break to step until the end of the prologue,
2710 even if that involves jumps (as it seems to on the vax under
2711 4.2). */
2712 /* If the prologue ends in the middle of a source line, continue to
2713 the end of that source line (if it is still within the function).
2714 Otherwise, just go to end of prologue. */
2715 if (ecs->sal.end
2716 && ecs->sal.pc != ecs->stop_func_start
2717 && ecs->sal.end < ecs->stop_func_end)
2718 ecs->stop_func_start = ecs->sal.end;
2719
2720 /* Architectures which require breakpoint adjustment might not be able
2721 to place a breakpoint at the computed address. If so, the test
2722 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2723 ecs->stop_func_start to an address at which a breakpoint may be
2724 legitimately placed.
2725
2726 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2727 made, GDB will enter an infinite loop when stepping through
2728 optimized code consisting of VLIW instructions which contain
2729 subinstructions corresponding to different source lines. On
2730 FR-V, it's not permitted to place a breakpoint on any but the
2731 first subinstruction of a VLIW instruction. When a breakpoint is
2732 set, GDB will adjust the breakpoint address to the beginning of
2733 the VLIW instruction. Thus, we need to make the corresponding
2734 adjustment here when computing the stop address. */
2735
2736 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2737 {
2738 ecs->stop_func_start
2739 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2740 ecs->stop_func_start);
2741 }
2742
2743 if (ecs->stop_func_start == stop_pc)
2744 {
2745 /* We are already there: stop now. */
2746 stop_step = 1;
2747 print_stop_reason (END_STEPPING_RANGE, 0);
2748 stop_stepping (ecs);
2749 return;
2750 }
2751 else
2752 {
2753 /* Put the step-breakpoint there and go until there. */
2754 init_sal (&sr_sal); /* initialize to zeroes */
2755 sr_sal.pc = ecs->stop_func_start;
2756 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2757
2758 /* Do not specify what the fp should be when we stop since on
2759 some machines the prologue is where the new fp value is
2760 established. */
2761 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2762
2763 /* And make sure stepping stops right away then. */
2764 step_range_end = step_range_start;
2765 }
2766 keep_going (ecs);
2767 }
2768
2769 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2770 This is used to both functions and to skip over code. */
2771
2772 static void
2773 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2774 struct frame_id sr_id)
2775 {
2776 /* There should never be more than one step-resume breakpoint per
2777 thread, so we should never be setting a new
2778 step_resume_breakpoint when one is already active. */
2779 gdb_assert (step_resume_breakpoint == NULL);
2780
2781 if (debug_infrun)
2782 fprintf_unfiltered (gdb_stdlog,
2783 "infrun: inserting step-resume breakpoint at 0x%s\n",
2784 paddr_nz (sr_sal.pc));
2785
2786 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2787 bp_step_resume);
2788 if (breakpoints_inserted)
2789 insert_breakpoints ();
2790 }
2791
2792 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2793 to skip a potential signal handler.
2794
2795 This is called with the interrupted function's frame. The signal
2796 handler, when it returns, will resume the interrupted function at
2797 RETURN_FRAME.pc. */
2798
2799 static void
2800 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2801 {
2802 struct symtab_and_line sr_sal;
2803
2804 init_sal (&sr_sal); /* initialize to zeros */
2805
2806 sr_sal.pc = gdbarch_addr_bits_remove
2807 (current_gdbarch, get_frame_pc (return_frame));
2808 sr_sal.section = find_pc_overlay (sr_sal.pc);
2809
2810 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2811 }
2812
2813 /* Similar to insert_step_resume_breakpoint_at_frame, except
2814 but a breakpoint at the previous frame's PC. This is used to
2815 skip a function after stepping into it (for "next" or if the called
2816 function has no debugging information).
2817
2818 The current function has almost always been reached by single
2819 stepping a call or return instruction. NEXT_FRAME belongs to the
2820 current function, and the breakpoint will be set at the caller's
2821 resume address.
2822
2823 This is a separate function rather than reusing
2824 insert_step_resume_breakpoint_at_frame in order to avoid
2825 get_prev_frame, which may stop prematurely (see the implementation
2826 of frame_unwind_id for an example). */
2827
2828 static void
2829 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2830 {
2831 struct symtab_and_line sr_sal;
2832
2833 /* We shouldn't have gotten here if we don't know where the call site
2834 is. */
2835 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2836
2837 init_sal (&sr_sal); /* initialize to zeros */
2838
2839 sr_sal.pc = gdbarch_addr_bits_remove
2840 (current_gdbarch, frame_pc_unwind (next_frame));
2841 sr_sal.section = find_pc_overlay (sr_sal.pc);
2842
2843 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2844 }
2845
2846 static void
2847 stop_stepping (struct execution_control_state *ecs)
2848 {
2849 if (debug_infrun)
2850 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2851
2852 /* Let callers know we don't want to wait for the inferior anymore. */
2853 ecs->wait_some_more = 0;
2854 }
2855
2856 /* This function handles various cases where we need to continue
2857 waiting for the inferior. */
2858 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2859
2860 static void
2861 keep_going (struct execution_control_state *ecs)
2862 {
2863 /* Save the pc before execution, to compare with pc after stop. */
2864 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2865
2866 /* If we did not do break;, it means we should keep running the
2867 inferior and not return to debugger. */
2868
2869 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2870 {
2871 /* We took a signal (which we are supposed to pass through to
2872 the inferior, else we'd have done a break above) and we
2873 haven't yet gotten our trap. Simply continue. */
2874 resume (currently_stepping (ecs), stop_signal);
2875 }
2876 else
2877 {
2878 /* Either the trap was not expected, but we are continuing
2879 anyway (the user asked that this signal be passed to the
2880 child)
2881 -- or --
2882 The signal was SIGTRAP, e.g. it was our signal, but we
2883 decided we should resume from it.
2884
2885 We're going to run this baby now! */
2886
2887 if (!breakpoints_inserted && !ecs->another_trap)
2888 {
2889 /* Stop stepping when inserting breakpoints
2890 has failed. */
2891 if (insert_breakpoints () != 0)
2892 {
2893 stop_stepping (ecs);
2894 return;
2895 }
2896 breakpoints_inserted = 1;
2897 }
2898
2899 trap_expected = ecs->another_trap;
2900
2901 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2902 specifies that such a signal should be delivered to the
2903 target program).
2904
2905 Typically, this would occure when a user is debugging a
2906 target monitor on a simulator: the target monitor sets a
2907 breakpoint; the simulator encounters this break-point and
2908 halts the simulation handing control to GDB; GDB, noteing
2909 that the break-point isn't valid, returns control back to the
2910 simulator; the simulator then delivers the hardware
2911 equivalent of a SIGNAL_TRAP to the program being debugged. */
2912
2913 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2914 stop_signal = TARGET_SIGNAL_0;
2915
2916
2917 resume (currently_stepping (ecs), stop_signal);
2918 }
2919
2920 prepare_to_wait (ecs);
2921 }
2922
2923 /* This function normally comes after a resume, before
2924 handle_inferior_event exits. It takes care of any last bits of
2925 housekeeping, and sets the all-important wait_some_more flag. */
2926
2927 static void
2928 prepare_to_wait (struct execution_control_state *ecs)
2929 {
2930 if (debug_infrun)
2931 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2932 if (ecs->infwait_state == infwait_normal_state)
2933 {
2934 overlay_cache_invalid = 1;
2935
2936 /* We have to invalidate the registers BEFORE calling
2937 target_wait because they can be loaded from the target while
2938 in target_wait. This makes remote debugging a bit more
2939 efficient for those targets that provide critical registers
2940 as part of their normal status mechanism. */
2941
2942 registers_changed ();
2943 ecs->waiton_ptid = pid_to_ptid (-1);
2944 ecs->wp = &(ecs->ws);
2945 }
2946 /* This is the old end of the while loop. Let everybody know we
2947 want to wait for the inferior some more and get called again
2948 soon. */
2949 ecs->wait_some_more = 1;
2950 }
2951
2952 /* Print why the inferior has stopped. We always print something when
2953 the inferior exits, or receives a signal. The rest of the cases are
2954 dealt with later on in normal_stop() and print_it_typical(). Ideally
2955 there should be a call to this function from handle_inferior_event()
2956 each time stop_stepping() is called.*/
2957 static void
2958 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2959 {
2960 switch (stop_reason)
2961 {
2962 case END_STEPPING_RANGE:
2963 /* We are done with a step/next/si/ni command. */
2964 /* For now print nothing. */
2965 /* Print a message only if not in the middle of doing a "step n"
2966 operation for n > 1 */
2967 if (!step_multi || !stop_step)
2968 if (ui_out_is_mi_like_p (uiout))
2969 ui_out_field_string
2970 (uiout, "reason",
2971 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2972 break;
2973 case SIGNAL_EXITED:
2974 /* The inferior was terminated by a signal. */
2975 annotate_signalled ();
2976 if (ui_out_is_mi_like_p (uiout))
2977 ui_out_field_string
2978 (uiout, "reason",
2979 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2980 ui_out_text (uiout, "\nProgram terminated with signal ");
2981 annotate_signal_name ();
2982 ui_out_field_string (uiout, "signal-name",
2983 target_signal_to_name (stop_info));
2984 annotate_signal_name_end ();
2985 ui_out_text (uiout, ", ");
2986 annotate_signal_string ();
2987 ui_out_field_string (uiout, "signal-meaning",
2988 target_signal_to_string (stop_info));
2989 annotate_signal_string_end ();
2990 ui_out_text (uiout, ".\n");
2991 ui_out_text (uiout, "The program no longer exists.\n");
2992 break;
2993 case EXITED:
2994 /* The inferior program is finished. */
2995 annotate_exited (stop_info);
2996 if (stop_info)
2997 {
2998 if (ui_out_is_mi_like_p (uiout))
2999 ui_out_field_string (uiout, "reason",
3000 async_reason_lookup (EXEC_ASYNC_EXITED));
3001 ui_out_text (uiout, "\nProgram exited with code ");
3002 ui_out_field_fmt (uiout, "exit-code", "0%o",
3003 (unsigned int) stop_info);
3004 ui_out_text (uiout, ".\n");
3005 }
3006 else
3007 {
3008 if (ui_out_is_mi_like_p (uiout))
3009 ui_out_field_string
3010 (uiout, "reason",
3011 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3012 ui_out_text (uiout, "\nProgram exited normally.\n");
3013 }
3014 /* Support the --return-child-result option. */
3015 return_child_result_value = stop_info;
3016 break;
3017 case SIGNAL_RECEIVED:
3018 /* Signal received. The signal table tells us to print about
3019 it. */
3020 annotate_signal ();
3021 ui_out_text (uiout, "\nProgram received signal ");
3022 annotate_signal_name ();
3023 if (ui_out_is_mi_like_p (uiout))
3024 ui_out_field_string
3025 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3026 ui_out_field_string (uiout, "signal-name",
3027 target_signal_to_name (stop_info));
3028 annotate_signal_name_end ();
3029 ui_out_text (uiout, ", ");
3030 annotate_signal_string ();
3031 ui_out_field_string (uiout, "signal-meaning",
3032 target_signal_to_string (stop_info));
3033 annotate_signal_string_end ();
3034 ui_out_text (uiout, ".\n");
3035 break;
3036 default:
3037 internal_error (__FILE__, __LINE__,
3038 _("print_stop_reason: unrecognized enum value"));
3039 break;
3040 }
3041 }
3042 \f
3043
3044 /* Here to return control to GDB when the inferior stops for real.
3045 Print appropriate messages, remove breakpoints, give terminal our modes.
3046
3047 STOP_PRINT_FRAME nonzero means print the executing frame
3048 (pc, function, args, file, line number and line text).
3049 BREAKPOINTS_FAILED nonzero means stop was due to error
3050 attempting to insert breakpoints. */
3051
3052 void
3053 normal_stop (void)
3054 {
3055 struct target_waitstatus last;
3056 ptid_t last_ptid;
3057
3058 get_last_target_status (&last_ptid, &last);
3059
3060 /* As with the notification of thread events, we want to delay
3061 notifying the user that we've switched thread context until
3062 the inferior actually stops.
3063
3064 There's no point in saying anything if the inferior has exited.
3065 Note that SIGNALLED here means "exited with a signal", not
3066 "received a signal". */
3067 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3068 && target_has_execution
3069 && last.kind != TARGET_WAITKIND_SIGNALLED
3070 && last.kind != TARGET_WAITKIND_EXITED)
3071 {
3072 target_terminal_ours_for_output ();
3073 printf_filtered (_("[Switching to %s]\n"),
3074 target_pid_or_tid_to_str (inferior_ptid));
3075 previous_inferior_ptid = inferior_ptid;
3076 }
3077
3078 /* NOTE drow/2004-01-17: Is this still necessary? */
3079 /* Make sure that the current_frame's pc is correct. This
3080 is a correction for setting up the frame info before doing
3081 gdbarch_decr_pc_after_break */
3082 if (target_has_execution)
3083 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3084 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3085 frame code to check for this and sort out any resultant mess.
3086 gdbarch_decr_pc_after_break needs to just go away. */
3087 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3088
3089 if (target_has_execution && breakpoints_inserted)
3090 {
3091 if (remove_breakpoints ())
3092 {
3093 target_terminal_ours_for_output ();
3094 printf_filtered (_("\
3095 Cannot remove breakpoints because program is no longer writable.\n\
3096 It might be running in another process.\n\
3097 Further execution is probably impossible.\n"));
3098 }
3099 }
3100 breakpoints_inserted = 0;
3101
3102 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3103 Delete any breakpoint that is to be deleted at the next stop. */
3104
3105 breakpoint_auto_delete (stop_bpstat);
3106
3107 /* If an auto-display called a function and that got a signal,
3108 delete that auto-display to avoid an infinite recursion. */
3109
3110 if (stopped_by_random_signal)
3111 disable_current_display ();
3112
3113 /* Don't print a message if in the middle of doing a "step n"
3114 operation for n > 1 */
3115 if (step_multi && stop_step)
3116 goto done;
3117
3118 target_terminal_ours ();
3119
3120 /* Set the current source location. This will also happen if we
3121 display the frame below, but the current SAL will be incorrect
3122 during a user hook-stop function. */
3123 if (target_has_stack && !stop_stack_dummy)
3124 set_current_sal_from_frame (get_current_frame (), 1);
3125
3126 /* Look up the hook_stop and run it (CLI internally handles problem
3127 of stop_command's pre-hook not existing). */
3128 if (stop_command)
3129 catch_errors (hook_stop_stub, stop_command,
3130 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3131
3132 if (!target_has_stack)
3133 {
3134
3135 goto done;
3136 }
3137
3138 /* Select innermost stack frame - i.e., current frame is frame 0,
3139 and current location is based on that.
3140 Don't do this on return from a stack dummy routine,
3141 or if the program has exited. */
3142
3143 if (!stop_stack_dummy)
3144 {
3145 select_frame (get_current_frame ());
3146
3147 /* Print current location without a level number, if
3148 we have changed functions or hit a breakpoint.
3149 Print source line if we have one.
3150 bpstat_print() contains the logic deciding in detail
3151 what to print, based on the event(s) that just occurred. */
3152
3153 if (stop_print_frame)
3154 {
3155 int bpstat_ret;
3156 int source_flag;
3157 int do_frame_printing = 1;
3158
3159 bpstat_ret = bpstat_print (stop_bpstat);
3160 switch (bpstat_ret)
3161 {
3162 case PRINT_UNKNOWN:
3163 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3164 (or should) carry around the function and does (or
3165 should) use that when doing a frame comparison. */
3166 if (stop_step
3167 && frame_id_eq (step_frame_id,
3168 get_frame_id (get_current_frame ()))
3169 && step_start_function == find_pc_function (stop_pc))
3170 source_flag = SRC_LINE; /* finished step, just print source line */
3171 else
3172 source_flag = SRC_AND_LOC; /* print location and source line */
3173 break;
3174 case PRINT_SRC_AND_LOC:
3175 source_flag = SRC_AND_LOC; /* print location and source line */
3176 break;
3177 case PRINT_SRC_ONLY:
3178 source_flag = SRC_LINE;
3179 break;
3180 case PRINT_NOTHING:
3181 source_flag = SRC_LINE; /* something bogus */
3182 do_frame_printing = 0;
3183 break;
3184 default:
3185 internal_error (__FILE__, __LINE__, _("Unknown value."));
3186 }
3187
3188 if (ui_out_is_mi_like_p (uiout))
3189 ui_out_field_int (uiout, "thread-id",
3190 pid_to_thread_id (inferior_ptid));
3191 /* The behavior of this routine with respect to the source
3192 flag is:
3193 SRC_LINE: Print only source line
3194 LOCATION: Print only location
3195 SRC_AND_LOC: Print location and source line */
3196 if (do_frame_printing)
3197 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3198
3199 /* Display the auto-display expressions. */
3200 do_displays ();
3201 }
3202 }
3203
3204 /* Save the function value return registers, if we care.
3205 We might be about to restore their previous contents. */
3206 if (proceed_to_finish)
3207 {
3208 /* This should not be necessary. */
3209 if (stop_registers)
3210 regcache_xfree (stop_registers);
3211
3212 /* NB: The copy goes through to the target picking up the value of
3213 all the registers. */
3214 stop_registers = regcache_dup (get_current_regcache ());
3215 }
3216
3217 if (stop_stack_dummy)
3218 {
3219 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3220 ends with a setting of the current frame, so we can use that
3221 next. */
3222 frame_pop (get_current_frame ());
3223 /* Set stop_pc to what it was before we called the function.
3224 Can't rely on restore_inferior_status because that only gets
3225 called if we don't stop in the called function. */
3226 stop_pc = read_pc ();
3227 select_frame (get_current_frame ());
3228 }
3229
3230 done:
3231 annotate_stopped ();
3232 observer_notify_normal_stop (stop_bpstat);
3233 }
3234
3235 static int
3236 hook_stop_stub (void *cmd)
3237 {
3238 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3239 return (0);
3240 }
3241 \f
3242 int
3243 signal_stop_state (int signo)
3244 {
3245 return signal_stop[signo];
3246 }
3247
3248 int
3249 signal_print_state (int signo)
3250 {
3251 return signal_print[signo];
3252 }
3253
3254 int
3255 signal_pass_state (int signo)
3256 {
3257 return signal_program[signo];
3258 }
3259
3260 int
3261 signal_stop_update (int signo, int state)
3262 {
3263 int ret = signal_stop[signo];
3264 signal_stop[signo] = state;
3265 return ret;
3266 }
3267
3268 int
3269 signal_print_update (int signo, int state)
3270 {
3271 int ret = signal_print[signo];
3272 signal_print[signo] = state;
3273 return ret;
3274 }
3275
3276 int
3277 signal_pass_update (int signo, int state)
3278 {
3279 int ret = signal_program[signo];
3280 signal_program[signo] = state;
3281 return ret;
3282 }
3283
3284 static void
3285 sig_print_header (void)
3286 {
3287 printf_filtered (_("\
3288 Signal Stop\tPrint\tPass to program\tDescription\n"));
3289 }
3290
3291 static void
3292 sig_print_info (enum target_signal oursig)
3293 {
3294 char *name = target_signal_to_name (oursig);
3295 int name_padding = 13 - strlen (name);
3296
3297 if (name_padding <= 0)
3298 name_padding = 0;
3299
3300 printf_filtered ("%s", name);
3301 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3302 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3303 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3304 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3305 printf_filtered ("%s\n", target_signal_to_string (oursig));
3306 }
3307
3308 /* Specify how various signals in the inferior should be handled. */
3309
3310 static void
3311 handle_command (char *args, int from_tty)
3312 {
3313 char **argv;
3314 int digits, wordlen;
3315 int sigfirst, signum, siglast;
3316 enum target_signal oursig;
3317 int allsigs;
3318 int nsigs;
3319 unsigned char *sigs;
3320 struct cleanup *old_chain;
3321
3322 if (args == NULL)
3323 {
3324 error_no_arg (_("signal to handle"));
3325 }
3326
3327 /* Allocate and zero an array of flags for which signals to handle. */
3328
3329 nsigs = (int) TARGET_SIGNAL_LAST;
3330 sigs = (unsigned char *) alloca (nsigs);
3331 memset (sigs, 0, nsigs);
3332
3333 /* Break the command line up into args. */
3334
3335 argv = buildargv (args);
3336 if (argv == NULL)
3337 {
3338 nomem (0);
3339 }
3340 old_chain = make_cleanup_freeargv (argv);
3341
3342 /* Walk through the args, looking for signal oursigs, signal names, and
3343 actions. Signal numbers and signal names may be interspersed with
3344 actions, with the actions being performed for all signals cumulatively
3345 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3346
3347 while (*argv != NULL)
3348 {
3349 wordlen = strlen (*argv);
3350 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3351 {;
3352 }
3353 allsigs = 0;
3354 sigfirst = siglast = -1;
3355
3356 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3357 {
3358 /* Apply action to all signals except those used by the
3359 debugger. Silently skip those. */
3360 allsigs = 1;
3361 sigfirst = 0;
3362 siglast = nsigs - 1;
3363 }
3364 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3365 {
3366 SET_SIGS (nsigs, sigs, signal_stop);
3367 SET_SIGS (nsigs, sigs, signal_print);
3368 }
3369 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3370 {
3371 UNSET_SIGS (nsigs, sigs, signal_program);
3372 }
3373 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3374 {
3375 SET_SIGS (nsigs, sigs, signal_print);
3376 }
3377 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3378 {
3379 SET_SIGS (nsigs, sigs, signal_program);
3380 }
3381 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3382 {
3383 UNSET_SIGS (nsigs, sigs, signal_stop);
3384 }
3385 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3386 {
3387 SET_SIGS (nsigs, sigs, signal_program);
3388 }
3389 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3390 {
3391 UNSET_SIGS (nsigs, sigs, signal_print);
3392 UNSET_SIGS (nsigs, sigs, signal_stop);
3393 }
3394 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3395 {
3396 UNSET_SIGS (nsigs, sigs, signal_program);
3397 }
3398 else if (digits > 0)
3399 {
3400 /* It is numeric. The numeric signal refers to our own
3401 internal signal numbering from target.h, not to host/target
3402 signal number. This is a feature; users really should be
3403 using symbolic names anyway, and the common ones like
3404 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3405
3406 sigfirst = siglast = (int)
3407 target_signal_from_command (atoi (*argv));
3408 if ((*argv)[digits] == '-')
3409 {
3410 siglast = (int)
3411 target_signal_from_command (atoi ((*argv) + digits + 1));
3412 }
3413 if (sigfirst > siglast)
3414 {
3415 /* Bet he didn't figure we'd think of this case... */
3416 signum = sigfirst;
3417 sigfirst = siglast;
3418 siglast = signum;
3419 }
3420 }
3421 else
3422 {
3423 oursig = target_signal_from_name (*argv);
3424 if (oursig != TARGET_SIGNAL_UNKNOWN)
3425 {
3426 sigfirst = siglast = (int) oursig;
3427 }
3428 else
3429 {
3430 /* Not a number and not a recognized flag word => complain. */
3431 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3432 }
3433 }
3434
3435 /* If any signal numbers or symbol names were found, set flags for
3436 which signals to apply actions to. */
3437
3438 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3439 {
3440 switch ((enum target_signal) signum)
3441 {
3442 case TARGET_SIGNAL_TRAP:
3443 case TARGET_SIGNAL_INT:
3444 if (!allsigs && !sigs[signum])
3445 {
3446 if (query ("%s is used by the debugger.\n\
3447 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3448 {
3449 sigs[signum] = 1;
3450 }
3451 else
3452 {
3453 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3454 gdb_flush (gdb_stdout);
3455 }
3456 }
3457 break;
3458 case TARGET_SIGNAL_0:
3459 case TARGET_SIGNAL_DEFAULT:
3460 case TARGET_SIGNAL_UNKNOWN:
3461 /* Make sure that "all" doesn't print these. */
3462 break;
3463 default:
3464 sigs[signum] = 1;
3465 break;
3466 }
3467 }
3468
3469 argv++;
3470 }
3471
3472 target_notice_signals (inferior_ptid);
3473
3474 if (from_tty)
3475 {
3476 /* Show the results. */
3477 sig_print_header ();
3478 for (signum = 0; signum < nsigs; signum++)
3479 {
3480 if (sigs[signum])
3481 {
3482 sig_print_info (signum);
3483 }
3484 }
3485 }
3486
3487 do_cleanups (old_chain);
3488 }
3489
3490 static void
3491 xdb_handle_command (char *args, int from_tty)
3492 {
3493 char **argv;
3494 struct cleanup *old_chain;
3495
3496 /* Break the command line up into args. */
3497
3498 argv = buildargv (args);
3499 if (argv == NULL)
3500 {
3501 nomem (0);
3502 }
3503 old_chain = make_cleanup_freeargv (argv);
3504 if (argv[1] != (char *) NULL)
3505 {
3506 char *argBuf;
3507 int bufLen;
3508
3509 bufLen = strlen (argv[0]) + 20;
3510 argBuf = (char *) xmalloc (bufLen);
3511 if (argBuf)
3512 {
3513 int validFlag = 1;
3514 enum target_signal oursig;
3515
3516 oursig = target_signal_from_name (argv[0]);
3517 memset (argBuf, 0, bufLen);
3518 if (strcmp (argv[1], "Q") == 0)
3519 sprintf (argBuf, "%s %s", argv[0], "noprint");
3520 else
3521 {
3522 if (strcmp (argv[1], "s") == 0)
3523 {
3524 if (!signal_stop[oursig])
3525 sprintf (argBuf, "%s %s", argv[0], "stop");
3526 else
3527 sprintf (argBuf, "%s %s", argv[0], "nostop");
3528 }
3529 else if (strcmp (argv[1], "i") == 0)
3530 {
3531 if (!signal_program[oursig])
3532 sprintf (argBuf, "%s %s", argv[0], "pass");
3533 else
3534 sprintf (argBuf, "%s %s", argv[0], "nopass");
3535 }
3536 else if (strcmp (argv[1], "r") == 0)
3537 {
3538 if (!signal_print[oursig])
3539 sprintf (argBuf, "%s %s", argv[0], "print");
3540 else
3541 sprintf (argBuf, "%s %s", argv[0], "noprint");
3542 }
3543 else
3544 validFlag = 0;
3545 }
3546 if (validFlag)
3547 handle_command (argBuf, from_tty);
3548 else
3549 printf_filtered (_("Invalid signal handling flag.\n"));
3550 if (argBuf)
3551 xfree (argBuf);
3552 }
3553 }
3554 do_cleanups (old_chain);
3555 }
3556
3557 /* Print current contents of the tables set by the handle command.
3558 It is possible we should just be printing signals actually used
3559 by the current target (but for things to work right when switching
3560 targets, all signals should be in the signal tables). */
3561
3562 static void
3563 signals_info (char *signum_exp, int from_tty)
3564 {
3565 enum target_signal oursig;
3566 sig_print_header ();
3567
3568 if (signum_exp)
3569 {
3570 /* First see if this is a symbol name. */
3571 oursig = target_signal_from_name (signum_exp);
3572 if (oursig == TARGET_SIGNAL_UNKNOWN)
3573 {
3574 /* No, try numeric. */
3575 oursig =
3576 target_signal_from_command (parse_and_eval_long (signum_exp));
3577 }
3578 sig_print_info (oursig);
3579 return;
3580 }
3581
3582 printf_filtered ("\n");
3583 /* These ugly casts brought to you by the native VAX compiler. */
3584 for (oursig = TARGET_SIGNAL_FIRST;
3585 (int) oursig < (int) TARGET_SIGNAL_LAST;
3586 oursig = (enum target_signal) ((int) oursig + 1))
3587 {
3588 QUIT;
3589
3590 if (oursig != TARGET_SIGNAL_UNKNOWN
3591 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3592 sig_print_info (oursig);
3593 }
3594
3595 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3596 }
3597 \f
3598 struct inferior_status
3599 {
3600 enum target_signal stop_signal;
3601 CORE_ADDR stop_pc;
3602 bpstat stop_bpstat;
3603 int stop_step;
3604 int stop_stack_dummy;
3605 int stopped_by_random_signal;
3606 int trap_expected;
3607 CORE_ADDR step_range_start;
3608 CORE_ADDR step_range_end;
3609 struct frame_id step_frame_id;
3610 enum step_over_calls_kind step_over_calls;
3611 CORE_ADDR step_resume_break_address;
3612 int stop_after_trap;
3613 int stop_soon;
3614
3615 /* These are here because if call_function_by_hand has written some
3616 registers and then decides to call error(), we better not have changed
3617 any registers. */
3618 struct regcache *registers;
3619
3620 /* A frame unique identifier. */
3621 struct frame_id selected_frame_id;
3622
3623 int breakpoint_proceeded;
3624 int restore_stack_info;
3625 int proceed_to_finish;
3626 };
3627
3628 void
3629 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3630 LONGEST val)
3631 {
3632 int size = register_size (current_gdbarch, regno);
3633 void *buf = alloca (size);
3634 store_signed_integer (buf, size, val);
3635 regcache_raw_write (inf_status->registers, regno, buf);
3636 }
3637
3638 /* Save all of the information associated with the inferior<==>gdb
3639 connection. INF_STATUS is a pointer to a "struct inferior_status"
3640 (defined in inferior.h). */
3641
3642 struct inferior_status *
3643 save_inferior_status (int restore_stack_info)
3644 {
3645 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3646
3647 inf_status->stop_signal = stop_signal;
3648 inf_status->stop_pc = stop_pc;
3649 inf_status->stop_step = stop_step;
3650 inf_status->stop_stack_dummy = stop_stack_dummy;
3651 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3652 inf_status->trap_expected = trap_expected;
3653 inf_status->step_range_start = step_range_start;
3654 inf_status->step_range_end = step_range_end;
3655 inf_status->step_frame_id = step_frame_id;
3656 inf_status->step_over_calls = step_over_calls;
3657 inf_status->stop_after_trap = stop_after_trap;
3658 inf_status->stop_soon = stop_soon;
3659 /* Save original bpstat chain here; replace it with copy of chain.
3660 If caller's caller is walking the chain, they'll be happier if we
3661 hand them back the original chain when restore_inferior_status is
3662 called. */
3663 inf_status->stop_bpstat = stop_bpstat;
3664 stop_bpstat = bpstat_copy (stop_bpstat);
3665 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3666 inf_status->restore_stack_info = restore_stack_info;
3667 inf_status->proceed_to_finish = proceed_to_finish;
3668
3669 inf_status->registers = regcache_dup (get_current_regcache ());
3670
3671 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3672 return inf_status;
3673 }
3674
3675 static int
3676 restore_selected_frame (void *args)
3677 {
3678 struct frame_id *fid = (struct frame_id *) args;
3679 struct frame_info *frame;
3680
3681 frame = frame_find_by_id (*fid);
3682
3683 /* If inf_status->selected_frame_id is NULL, there was no previously
3684 selected frame. */
3685 if (frame == NULL)
3686 {
3687 warning (_("Unable to restore previously selected frame."));
3688 return 0;
3689 }
3690
3691 select_frame (frame);
3692
3693 return (1);
3694 }
3695
3696 void
3697 restore_inferior_status (struct inferior_status *inf_status)
3698 {
3699 stop_signal = inf_status->stop_signal;
3700 stop_pc = inf_status->stop_pc;
3701 stop_step = inf_status->stop_step;
3702 stop_stack_dummy = inf_status->stop_stack_dummy;
3703 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3704 trap_expected = inf_status->trap_expected;
3705 step_range_start = inf_status->step_range_start;
3706 step_range_end = inf_status->step_range_end;
3707 step_frame_id = inf_status->step_frame_id;
3708 step_over_calls = inf_status->step_over_calls;
3709 stop_after_trap = inf_status->stop_after_trap;
3710 stop_soon = inf_status->stop_soon;
3711 bpstat_clear (&stop_bpstat);
3712 stop_bpstat = inf_status->stop_bpstat;
3713 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3714 proceed_to_finish = inf_status->proceed_to_finish;
3715
3716 /* The inferior can be gone if the user types "print exit(0)"
3717 (and perhaps other times). */
3718 if (target_has_execution)
3719 /* NB: The register write goes through to the target. */
3720 regcache_cpy (get_current_regcache (), inf_status->registers);
3721 regcache_xfree (inf_status->registers);
3722
3723 /* FIXME: If we are being called after stopping in a function which
3724 is called from gdb, we should not be trying to restore the
3725 selected frame; it just prints a spurious error message (The
3726 message is useful, however, in detecting bugs in gdb (like if gdb
3727 clobbers the stack)). In fact, should we be restoring the
3728 inferior status at all in that case? . */
3729
3730 if (target_has_stack && inf_status->restore_stack_info)
3731 {
3732 /* The point of catch_errors is that if the stack is clobbered,
3733 walking the stack might encounter a garbage pointer and
3734 error() trying to dereference it. */
3735 if (catch_errors
3736 (restore_selected_frame, &inf_status->selected_frame_id,
3737 "Unable to restore previously selected frame:\n",
3738 RETURN_MASK_ERROR) == 0)
3739 /* Error in restoring the selected frame. Select the innermost
3740 frame. */
3741 select_frame (get_current_frame ());
3742
3743 }
3744
3745 xfree (inf_status);
3746 }
3747
3748 static void
3749 do_restore_inferior_status_cleanup (void *sts)
3750 {
3751 restore_inferior_status (sts);
3752 }
3753
3754 struct cleanup *
3755 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3756 {
3757 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3758 }
3759
3760 void
3761 discard_inferior_status (struct inferior_status *inf_status)
3762 {
3763 /* See save_inferior_status for info on stop_bpstat. */
3764 bpstat_clear (&inf_status->stop_bpstat);
3765 regcache_xfree (inf_status->registers);
3766 xfree (inf_status);
3767 }
3768
3769 int
3770 inferior_has_forked (int pid, int *child_pid)
3771 {
3772 struct target_waitstatus last;
3773 ptid_t last_ptid;
3774
3775 get_last_target_status (&last_ptid, &last);
3776
3777 if (last.kind != TARGET_WAITKIND_FORKED)
3778 return 0;
3779
3780 if (ptid_get_pid (last_ptid) != pid)
3781 return 0;
3782
3783 *child_pid = last.value.related_pid;
3784 return 1;
3785 }
3786
3787 int
3788 inferior_has_vforked (int pid, int *child_pid)
3789 {
3790 struct target_waitstatus last;
3791 ptid_t last_ptid;
3792
3793 get_last_target_status (&last_ptid, &last);
3794
3795 if (last.kind != TARGET_WAITKIND_VFORKED)
3796 return 0;
3797
3798 if (ptid_get_pid (last_ptid) != pid)
3799 return 0;
3800
3801 *child_pid = last.value.related_pid;
3802 return 1;
3803 }
3804
3805 int
3806 inferior_has_execd (int pid, char **execd_pathname)
3807 {
3808 struct target_waitstatus last;
3809 ptid_t last_ptid;
3810
3811 get_last_target_status (&last_ptid, &last);
3812
3813 if (last.kind != TARGET_WAITKIND_EXECD)
3814 return 0;
3815
3816 if (ptid_get_pid (last_ptid) != pid)
3817 return 0;
3818
3819 *execd_pathname = xstrdup (last.value.execd_pathname);
3820 return 1;
3821 }
3822
3823 /* Oft used ptids */
3824 ptid_t null_ptid;
3825 ptid_t minus_one_ptid;
3826
3827 /* Create a ptid given the necessary PID, LWP, and TID components. */
3828
3829 ptid_t
3830 ptid_build (int pid, long lwp, long tid)
3831 {
3832 ptid_t ptid;
3833
3834 ptid.pid = pid;
3835 ptid.lwp = lwp;
3836 ptid.tid = tid;
3837 return ptid;
3838 }
3839
3840 /* Create a ptid from just a pid. */
3841
3842 ptid_t
3843 pid_to_ptid (int pid)
3844 {
3845 return ptid_build (pid, 0, 0);
3846 }
3847
3848 /* Fetch the pid (process id) component from a ptid. */
3849
3850 int
3851 ptid_get_pid (ptid_t ptid)
3852 {
3853 return ptid.pid;
3854 }
3855
3856 /* Fetch the lwp (lightweight process) component from a ptid. */
3857
3858 long
3859 ptid_get_lwp (ptid_t ptid)
3860 {
3861 return ptid.lwp;
3862 }
3863
3864 /* Fetch the tid (thread id) component from a ptid. */
3865
3866 long
3867 ptid_get_tid (ptid_t ptid)
3868 {
3869 return ptid.tid;
3870 }
3871
3872 /* ptid_equal() is used to test equality of two ptids. */
3873
3874 int
3875 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3876 {
3877 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3878 && ptid1.tid == ptid2.tid);
3879 }
3880
3881 /* restore_inferior_ptid() will be used by the cleanup machinery
3882 to restore the inferior_ptid value saved in a call to
3883 save_inferior_ptid(). */
3884
3885 static void
3886 restore_inferior_ptid (void *arg)
3887 {
3888 ptid_t *saved_ptid_ptr = arg;
3889 inferior_ptid = *saved_ptid_ptr;
3890 xfree (arg);
3891 }
3892
3893 /* Save the value of inferior_ptid so that it may be restored by a
3894 later call to do_cleanups(). Returns the struct cleanup pointer
3895 needed for later doing the cleanup. */
3896
3897 struct cleanup *
3898 save_inferior_ptid (void)
3899 {
3900 ptid_t *saved_ptid_ptr;
3901
3902 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3903 *saved_ptid_ptr = inferior_ptid;
3904 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3905 }
3906 \f
3907
3908 void
3909 _initialize_infrun (void)
3910 {
3911 int i;
3912 int numsigs;
3913 struct cmd_list_element *c;
3914
3915 add_info ("signals", signals_info, _("\
3916 What debugger does when program gets various signals.\n\
3917 Specify a signal as argument to print info on that signal only."));
3918 add_info_alias ("handle", "signals", 0);
3919
3920 add_com ("handle", class_run, handle_command, _("\
3921 Specify how to handle a signal.\n\
3922 Args are signals and actions to apply to those signals.\n\
3923 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3924 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3925 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3926 The special arg \"all\" is recognized to mean all signals except those\n\
3927 used by the debugger, typically SIGTRAP and SIGINT.\n\
3928 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3929 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3930 Stop means reenter debugger if this signal happens (implies print).\n\
3931 Print means print a message if this signal happens.\n\
3932 Pass means let program see this signal; otherwise program doesn't know.\n\
3933 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3934 Pass and Stop may be combined."));
3935 if (xdb_commands)
3936 {
3937 add_com ("lz", class_info, signals_info, _("\
3938 What debugger does when program gets various signals.\n\
3939 Specify a signal as argument to print info on that signal only."));
3940 add_com ("z", class_run, xdb_handle_command, _("\
3941 Specify how to handle a signal.\n\
3942 Args are signals and actions to apply to those signals.\n\
3943 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3944 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3945 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3946 The special arg \"all\" is recognized to mean all signals except those\n\
3947 used by the debugger, typically SIGTRAP and SIGINT.\n\
3948 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3949 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3950 nopass), \"Q\" (noprint)\n\
3951 Stop means reenter debugger if this signal happens (implies print).\n\
3952 Print means print a message if this signal happens.\n\
3953 Pass means let program see this signal; otherwise program doesn't know.\n\
3954 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3955 Pass and Stop may be combined."));
3956 }
3957
3958 if (!dbx_commands)
3959 stop_command = add_cmd ("stop", class_obscure,
3960 not_just_help_class_command, _("\
3961 There is no `stop' command, but you can set a hook on `stop'.\n\
3962 This allows you to set a list of commands to be run each time execution\n\
3963 of the program stops."), &cmdlist);
3964
3965 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3966 Set inferior debugging."), _("\
3967 Show inferior debugging."), _("\
3968 When non-zero, inferior specific debugging is enabled."),
3969 NULL,
3970 show_debug_infrun,
3971 &setdebuglist, &showdebuglist);
3972
3973 numsigs = (int) TARGET_SIGNAL_LAST;
3974 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3975 signal_print = (unsigned char *)
3976 xmalloc (sizeof (signal_print[0]) * numsigs);
3977 signal_program = (unsigned char *)
3978 xmalloc (sizeof (signal_program[0]) * numsigs);
3979 for (i = 0; i < numsigs; i++)
3980 {
3981 signal_stop[i] = 1;
3982 signal_print[i] = 1;
3983 signal_program[i] = 1;
3984 }
3985
3986 /* Signals caused by debugger's own actions
3987 should not be given to the program afterwards. */
3988 signal_program[TARGET_SIGNAL_TRAP] = 0;
3989 signal_program[TARGET_SIGNAL_INT] = 0;
3990
3991 /* Signals that are not errors should not normally enter the debugger. */
3992 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3993 signal_print[TARGET_SIGNAL_ALRM] = 0;
3994 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3995 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3996 signal_stop[TARGET_SIGNAL_PROF] = 0;
3997 signal_print[TARGET_SIGNAL_PROF] = 0;
3998 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3999 signal_print[TARGET_SIGNAL_CHLD] = 0;
4000 signal_stop[TARGET_SIGNAL_IO] = 0;
4001 signal_print[TARGET_SIGNAL_IO] = 0;
4002 signal_stop[TARGET_SIGNAL_POLL] = 0;
4003 signal_print[TARGET_SIGNAL_POLL] = 0;
4004 signal_stop[TARGET_SIGNAL_URG] = 0;
4005 signal_print[TARGET_SIGNAL_URG] = 0;
4006 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4007 signal_print[TARGET_SIGNAL_WINCH] = 0;
4008
4009 /* These signals are used internally by user-level thread
4010 implementations. (See signal(5) on Solaris.) Like the above
4011 signals, a healthy program receives and handles them as part of
4012 its normal operation. */
4013 signal_stop[TARGET_SIGNAL_LWP] = 0;
4014 signal_print[TARGET_SIGNAL_LWP] = 0;
4015 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4016 signal_print[TARGET_SIGNAL_WAITING] = 0;
4017 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4018 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4019
4020 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4021 &stop_on_solib_events, _("\
4022 Set stopping for shared library events."), _("\
4023 Show stopping for shared library events."), _("\
4024 If nonzero, gdb will give control to the user when the dynamic linker\n\
4025 notifies gdb of shared library events. The most common event of interest\n\
4026 to the user would be loading/unloading of a new library."),
4027 NULL,
4028 show_stop_on_solib_events,
4029 &setlist, &showlist);
4030
4031 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4032 follow_fork_mode_kind_names,
4033 &follow_fork_mode_string, _("\
4034 Set debugger response to a program call of fork or vfork."), _("\
4035 Show debugger response to a program call of fork or vfork."), _("\
4036 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4037 parent - the original process is debugged after a fork\n\
4038 child - the new process is debugged after a fork\n\
4039 The unfollowed process will continue to run.\n\
4040 By default, the debugger will follow the parent process."),
4041 NULL,
4042 show_follow_fork_mode_string,
4043 &setlist, &showlist);
4044
4045 add_setshow_enum_cmd ("scheduler-locking", class_run,
4046 scheduler_enums, &scheduler_mode, _("\
4047 Set mode for locking scheduler during execution."), _("\
4048 Show mode for locking scheduler during execution."), _("\
4049 off == no locking (threads may preempt at any time)\n\
4050 on == full locking (no thread except the current thread may run)\n\
4051 step == scheduler locked during every single-step operation.\n\
4052 In this mode, no other thread may run during a step command.\n\
4053 Other threads may run while stepping over a function call ('next')."),
4054 set_schedlock_func, /* traps on target vector */
4055 show_scheduler_mode,
4056 &setlist, &showlist);
4057
4058 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4059 Set mode of the step operation."), _("\
4060 Show mode of the step operation."), _("\
4061 When set, doing a step over a function without debug line information\n\
4062 will stop at the first instruction of that function. Otherwise, the\n\
4063 function is skipped and the step command stops at a different source line."),
4064 NULL,
4065 show_step_stop_if_no_debug,
4066 &setlist, &showlist);
4067
4068 /* ptid initializations */
4069 null_ptid = ptid_build (0, 0, 0);
4070 minus_one_ptid = ptid_build (-1, 0, 0);
4071 inferior_ptid = null_ptid;
4072 target_last_wait_ptid = minus_one_ptid;
4073 }
This page took 0.155217 seconds and 4 git commands to generate.