*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
6 2006
7 Free Software Foundation, Inc.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include "symtab.h"
30 #include "frame.h"
31 #include "inferior.h"
32 #include "exceptions.h"
33 #include "breakpoint.h"
34 #include "gdb_wait.h"
35 #include "gdbcore.h"
36 #include "gdbcmd.h"
37 #include "cli/cli-script.h"
38 #include "target.h"
39 #include "gdbthread.h"
40 #include "annotate.h"
41 #include "symfile.h"
42 #include "top.h"
43 #include <signal.h>
44 #include "inf-loop.h"
45 #include "regcache.h"
46 #include "value.h"
47 #include "observer.h"
48 #include "language.h"
49 #include "solib.h"
50 #include "main.h"
51
52 #include "gdb_assert.h"
53 #include "mi/mi-common.h"
54
55 /* Prototypes for local functions */
56
57 static void signals_info (char *, int);
58
59 static void handle_command (char *, int);
60
61 static void sig_print_info (enum target_signal);
62
63 static void sig_print_header (void);
64
65 static void resume_cleanups (void *);
66
67 static int hook_stop_stub (void *);
68
69 static int restore_selected_frame (void *);
70
71 static void build_infrun (void);
72
73 static int follow_fork (void);
74
75 static void set_schedlock_func (char *args, int from_tty,
76 struct cmd_list_element *c);
77
78 struct execution_control_state;
79
80 static int currently_stepping (struct execution_control_state *ecs);
81
82 static void xdb_handle_command (char *args, int from_tty);
83
84 static int prepare_to_proceed (void);
85
86 void _initialize_infrun (void);
87
88 int inferior_ignoring_startup_exec_events = 0;
89 int inferior_ignoring_leading_exec_events = 0;
90
91 /* When set, stop the 'step' command if we enter a function which has
92 no line number information. The normal behavior is that we step
93 over such function. */
94 int step_stop_if_no_debug = 0;
95 static void
96 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98 {
99 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
100 }
101
102 /* In asynchronous mode, but simulating synchronous execution. */
103
104 int sync_execution = 0;
105
106 /* wait_for_inferior and normal_stop use this to notify the user
107 when the inferior stopped in a different thread than it had been
108 running in. */
109
110 static ptid_t previous_inferior_ptid;
111
112 /* This is true for configurations that may follow through execl() and
113 similar functions. At present this is only true for HP-UX native. */
114
115 #ifndef MAY_FOLLOW_EXEC
116 #define MAY_FOLLOW_EXEC (0)
117 #endif
118
119 static int may_follow_exec = MAY_FOLLOW_EXEC;
120
121 static int debug_infrun = 0;
122 static void
123 show_debug_infrun (struct ui_file *file, int from_tty,
124 struct cmd_list_element *c, const char *value)
125 {
126 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
127 }
128
129 /* If the program uses ELF-style shared libraries, then calls to
130 functions in shared libraries go through stubs, which live in a
131 table called the PLT (Procedure Linkage Table). The first time the
132 function is called, the stub sends control to the dynamic linker,
133 which looks up the function's real address, patches the stub so
134 that future calls will go directly to the function, and then passes
135 control to the function.
136
137 If we are stepping at the source level, we don't want to see any of
138 this --- we just want to skip over the stub and the dynamic linker.
139 The simple approach is to single-step until control leaves the
140 dynamic linker.
141
142 However, on some systems (e.g., Red Hat's 5.2 distribution) the
143 dynamic linker calls functions in the shared C library, so you
144 can't tell from the PC alone whether the dynamic linker is still
145 running. In this case, we use a step-resume breakpoint to get us
146 past the dynamic linker, as if we were using "next" to step over a
147 function call.
148
149 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
150 linker code or not. Normally, this means we single-step. However,
151 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
152 address where we can place a step-resume breakpoint to get past the
153 linker's symbol resolution function.
154
155 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
156 pretty portable way, by comparing the PC against the address ranges
157 of the dynamic linker's sections.
158
159 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
160 it depends on internal details of the dynamic linker. It's usually
161 not too hard to figure out where to put a breakpoint, but it
162 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
163 sanity checking. If it can't figure things out, returning zero and
164 getting the (possibly confusing) stepping behavior is better than
165 signalling an error, which will obscure the change in the
166 inferior's state. */
167
168 /* This function returns TRUE if pc is the address of an instruction
169 that lies within the dynamic linker (such as the event hook, or the
170 dld itself).
171
172 This function must be used only when a dynamic linker event has
173 been caught, and the inferior is being stepped out of the hook, or
174 undefined results are guaranteed. */
175
176 #ifndef SOLIB_IN_DYNAMIC_LINKER
177 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
178 #endif
179
180 /* We can't step off a permanent breakpoint in the ordinary way, because we
181 can't remove it. Instead, we have to advance the PC to the next
182 instruction. This macro should expand to a pointer to a function that
183 does that, or zero if we have no such function. If we don't have a
184 definition for it, we have to report an error. */
185 #ifndef SKIP_PERMANENT_BREAKPOINT
186 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
187 static void
188 default_skip_permanent_breakpoint (void)
189 {
190 error (_("\
191 The program is stopped at a permanent breakpoint, but GDB does not know\n\
192 how to step past a permanent breakpoint on this architecture. Try using\n\
193 a command like `return' or `jump' to continue execution."));
194 }
195 #endif
196
197
198 /* Convert the #defines into values. This is temporary until wfi control
199 flow is completely sorted out. */
200
201 #ifndef HAVE_STEPPABLE_WATCHPOINT
202 #define HAVE_STEPPABLE_WATCHPOINT 0
203 #else
204 #undef HAVE_STEPPABLE_WATCHPOINT
205 #define HAVE_STEPPABLE_WATCHPOINT 1
206 #endif
207
208 #ifndef CANNOT_STEP_HW_WATCHPOINTS
209 #define CANNOT_STEP_HW_WATCHPOINTS 0
210 #else
211 #undef CANNOT_STEP_HW_WATCHPOINTS
212 #define CANNOT_STEP_HW_WATCHPOINTS 1
213 #endif
214
215 /* Tables of how to react to signals; the user sets them. */
216
217 static unsigned char *signal_stop;
218 static unsigned char *signal_print;
219 static unsigned char *signal_program;
220
221 #define SET_SIGS(nsigs,sigs,flags) \
222 do { \
223 int signum = (nsigs); \
224 while (signum-- > 0) \
225 if ((sigs)[signum]) \
226 (flags)[signum] = 1; \
227 } while (0)
228
229 #define UNSET_SIGS(nsigs,sigs,flags) \
230 do { \
231 int signum = (nsigs); \
232 while (signum-- > 0) \
233 if ((sigs)[signum]) \
234 (flags)[signum] = 0; \
235 } while (0)
236
237 /* Value to pass to target_resume() to cause all threads to resume */
238
239 #define RESUME_ALL (pid_to_ptid (-1))
240
241 /* Command list pointer for the "stop" placeholder. */
242
243 static struct cmd_list_element *stop_command;
244
245 /* Nonzero if breakpoints are now inserted in the inferior. */
246
247 static int breakpoints_inserted;
248
249 /* Function inferior was in as of last step command. */
250
251 static struct symbol *step_start_function;
252
253 /* Nonzero if we are expecting a trace trap and should proceed from it. */
254
255 static int trap_expected;
256
257 /* Nonzero if we want to give control to the user when we're notified
258 of shared library events by the dynamic linker. */
259 static int stop_on_solib_events;
260 static void
261 show_stop_on_solib_events (struct ui_file *file, int from_tty,
262 struct cmd_list_element *c, const char *value)
263 {
264 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
265 value);
266 }
267
268 /* Nonzero means expecting a trace trap
269 and should stop the inferior and return silently when it happens. */
270
271 int stop_after_trap;
272
273 /* Nonzero means expecting a trap and caller will handle it themselves.
274 It is used after attach, due to attaching to a process;
275 when running in the shell before the child program has been exec'd;
276 and when running some kinds of remote stuff (FIXME?). */
277
278 enum stop_kind stop_soon;
279
280 /* Nonzero if proceed is being used for a "finish" command or a similar
281 situation when stop_registers should be saved. */
282
283 int proceed_to_finish;
284
285 /* Save register contents here when about to pop a stack dummy frame,
286 if-and-only-if proceed_to_finish is set.
287 Thus this contains the return value from the called function (assuming
288 values are returned in a register). */
289
290 struct regcache *stop_registers;
291
292 /* Nonzero if program stopped due to error trying to insert breakpoints. */
293
294 static int breakpoints_failed;
295
296 /* Nonzero after stop if current stack frame should be printed. */
297
298 static int stop_print_frame;
299
300 static struct breakpoint *step_resume_breakpoint = NULL;
301
302 /* This is a cached copy of the pid/waitstatus of the last event
303 returned by target_wait()/deprecated_target_wait_hook(). This
304 information is returned by get_last_target_status(). */
305 static ptid_t target_last_wait_ptid;
306 static struct target_waitstatus target_last_waitstatus;
307
308 /* This is used to remember when a fork, vfork or exec event
309 was caught by a catchpoint, and thus the event is to be
310 followed at the next resume of the inferior, and not
311 immediately. */
312 static struct
313 {
314 enum target_waitkind kind;
315 struct
316 {
317 int parent_pid;
318 int child_pid;
319 }
320 fork_event;
321 char *execd_pathname;
322 }
323 pending_follow;
324
325 static const char follow_fork_mode_child[] = "child";
326 static const char follow_fork_mode_parent[] = "parent";
327
328 static const char *follow_fork_mode_kind_names[] = {
329 follow_fork_mode_child,
330 follow_fork_mode_parent,
331 NULL
332 };
333
334 static const char *follow_fork_mode_string = follow_fork_mode_parent;
335 static void
336 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
337 struct cmd_list_element *c, const char *value)
338 {
339 fprintf_filtered (file, _("\
340 Debugger response to a program call of fork or vfork is \"%s\".\n"),
341 value);
342 }
343 \f
344
345 static int
346 follow_fork (void)
347 {
348 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
349
350 return target_follow_fork (follow_child);
351 }
352
353 void
354 follow_inferior_reset_breakpoints (void)
355 {
356 /* Was there a step_resume breakpoint? (There was if the user
357 did a "next" at the fork() call.) If so, explicitly reset its
358 thread number.
359
360 step_resumes are a form of bp that are made to be per-thread.
361 Since we created the step_resume bp when the parent process
362 was being debugged, and now are switching to the child process,
363 from the breakpoint package's viewpoint, that's a switch of
364 "threads". We must update the bp's notion of which thread
365 it is for, or it'll be ignored when it triggers. */
366
367 if (step_resume_breakpoint)
368 breakpoint_re_set_thread (step_resume_breakpoint);
369
370 /* Reinsert all breakpoints in the child. The user may have set
371 breakpoints after catching the fork, in which case those
372 were never set in the child, but only in the parent. This makes
373 sure the inserted breakpoints match the breakpoint list. */
374
375 breakpoint_re_set ();
376 insert_breakpoints ();
377 }
378
379 /* EXECD_PATHNAME is assumed to be non-NULL. */
380
381 static void
382 follow_exec (int pid, char *execd_pathname)
383 {
384 int saved_pid = pid;
385 struct target_ops *tgt;
386
387 if (!may_follow_exec)
388 return;
389
390 /* This is an exec event that we actually wish to pay attention to.
391 Refresh our symbol table to the newly exec'd program, remove any
392 momentary bp's, etc.
393
394 If there are breakpoints, they aren't really inserted now,
395 since the exec() transformed our inferior into a fresh set
396 of instructions.
397
398 We want to preserve symbolic breakpoints on the list, since
399 we have hopes that they can be reset after the new a.out's
400 symbol table is read.
401
402 However, any "raw" breakpoints must be removed from the list
403 (e.g., the solib bp's), since their address is probably invalid
404 now.
405
406 And, we DON'T want to call delete_breakpoints() here, since
407 that may write the bp's "shadow contents" (the instruction
408 value that was overwritten witha TRAP instruction). Since
409 we now have a new a.out, those shadow contents aren't valid. */
410 update_breakpoints_after_exec ();
411
412 /* If there was one, it's gone now. We cannot truly step-to-next
413 statement through an exec(). */
414 step_resume_breakpoint = NULL;
415 step_range_start = 0;
416 step_range_end = 0;
417
418 /* What is this a.out's name? */
419 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
420
421 /* We've followed the inferior through an exec. Therefore, the
422 inferior has essentially been killed & reborn. */
423
424 /* First collect the run target in effect. */
425 tgt = find_run_target ();
426 /* If we can't find one, things are in a very strange state... */
427 if (tgt == NULL)
428 error (_("Could find run target to save before following exec"));
429
430 gdb_flush (gdb_stdout);
431 target_mourn_inferior ();
432 inferior_ptid = pid_to_ptid (saved_pid);
433 /* Because mourn_inferior resets inferior_ptid. */
434 push_target (tgt);
435
436 /* That a.out is now the one to use. */
437 exec_file_attach (execd_pathname, 0);
438
439 /* And also is where symbols can be found. */
440 symbol_file_add_main (execd_pathname, 0);
441
442 /* Reset the shared library package. This ensures that we get
443 a shlib event when the child reaches "_start", at which point
444 the dld will have had a chance to initialize the child. */
445 #if defined(SOLIB_RESTART)
446 SOLIB_RESTART ();
447 #endif
448 #ifdef SOLIB_CREATE_INFERIOR_HOOK
449 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
450 #else
451 solib_create_inferior_hook ();
452 #endif
453
454 /* Reinsert all breakpoints. (Those which were symbolic have
455 been reset to the proper address in the new a.out, thanks
456 to symbol_file_command...) */
457 insert_breakpoints ();
458
459 /* The next resume of this inferior should bring it to the shlib
460 startup breakpoints. (If the user had also set bp's on
461 "main" from the old (parent) process, then they'll auto-
462 matically get reset there in the new process.) */
463 }
464
465 /* Non-zero if we just simulating a single-step. This is needed
466 because we cannot remove the breakpoints in the inferior process
467 until after the `wait' in `wait_for_inferior'. */
468 static int singlestep_breakpoints_inserted_p = 0;
469
470 /* The thread we inserted single-step breakpoints for. */
471 static ptid_t singlestep_ptid;
472
473 /* If another thread hit the singlestep breakpoint, we save the original
474 thread here so that we can resume single-stepping it later. */
475 static ptid_t saved_singlestep_ptid;
476 static int stepping_past_singlestep_breakpoint;
477 \f
478
479 /* Things to clean up if we QUIT out of resume (). */
480 static void
481 resume_cleanups (void *ignore)
482 {
483 normal_stop ();
484 }
485
486 static const char schedlock_off[] = "off";
487 static const char schedlock_on[] = "on";
488 static const char schedlock_step[] = "step";
489 static const char *scheduler_enums[] = {
490 schedlock_off,
491 schedlock_on,
492 schedlock_step,
493 NULL
494 };
495 static const char *scheduler_mode = schedlock_off;
496 static void
497 show_scheduler_mode (struct ui_file *file, int from_tty,
498 struct cmd_list_element *c, const char *value)
499 {
500 fprintf_filtered (file, _("\
501 Mode for locking scheduler during execution is \"%s\".\n"),
502 value);
503 }
504
505 static void
506 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
507 {
508 if (!target_can_lock_scheduler)
509 {
510 scheduler_mode = schedlock_off;
511 error (_("Target '%s' cannot support this command."), target_shortname);
512 }
513 }
514
515
516 /* Resume the inferior, but allow a QUIT. This is useful if the user
517 wants to interrupt some lengthy single-stepping operation
518 (for child processes, the SIGINT goes to the inferior, and so
519 we get a SIGINT random_signal, but for remote debugging and perhaps
520 other targets, that's not true).
521
522 STEP nonzero if we should step (zero to continue instead).
523 SIG is the signal to give the inferior (zero for none). */
524 void
525 resume (int step, enum target_signal sig)
526 {
527 int should_resume = 1;
528 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
529 QUIT;
530
531 if (debug_infrun)
532 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
533 step, sig);
534
535 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
536
537
538 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
539 over an instruction that causes a page fault without triggering
540 a hardware watchpoint. The kernel properly notices that it shouldn't
541 stop, because the hardware watchpoint is not triggered, but it forgets
542 the step request and continues the program normally.
543 Work around the problem by removing hardware watchpoints if a step is
544 requested, GDB will check for a hardware watchpoint trigger after the
545 step anyway. */
546 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
547 remove_hw_watchpoints ();
548
549
550 /* Normally, by the time we reach `resume', the breakpoints are either
551 removed or inserted, as appropriate. The exception is if we're sitting
552 at a permanent breakpoint; we need to step over it, but permanent
553 breakpoints can't be removed. So we have to test for it here. */
554 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
555 SKIP_PERMANENT_BREAKPOINT ();
556
557 if (SOFTWARE_SINGLE_STEP_P () && step)
558 {
559 /* Do it the hard way, w/temp breakpoints */
560 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
561 /* ...and don't ask hardware to do it. */
562 step = 0;
563 /* and do not pull these breakpoints until after a `wait' in
564 `wait_for_inferior' */
565 singlestep_breakpoints_inserted_p = 1;
566 singlestep_ptid = inferior_ptid;
567 }
568
569 /* If there were any forks/vforks/execs that were caught and are
570 now to be followed, then do so. */
571 switch (pending_follow.kind)
572 {
573 case TARGET_WAITKIND_FORKED:
574 case TARGET_WAITKIND_VFORKED:
575 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
576 if (follow_fork ())
577 should_resume = 0;
578 break;
579
580 case TARGET_WAITKIND_EXECD:
581 /* follow_exec is called as soon as the exec event is seen. */
582 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
583 break;
584
585 default:
586 break;
587 }
588
589 /* Install inferior's terminal modes. */
590 target_terminal_inferior ();
591
592 if (should_resume)
593 {
594 ptid_t resume_ptid;
595
596 resume_ptid = RESUME_ALL; /* Default */
597
598 if ((step || singlestep_breakpoints_inserted_p)
599 && (stepping_past_singlestep_breakpoint
600 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
601 {
602 /* Stepping past a breakpoint without inserting breakpoints.
603 Make sure only the current thread gets to step, so that
604 other threads don't sneak past breakpoints while they are
605 not inserted. */
606
607 resume_ptid = inferior_ptid;
608 }
609
610 if ((scheduler_mode == schedlock_on)
611 || (scheduler_mode == schedlock_step
612 && (step || singlestep_breakpoints_inserted_p)))
613 {
614 /* User-settable 'scheduler' mode requires solo thread resume. */
615 resume_ptid = inferior_ptid;
616 }
617
618 if (CANNOT_STEP_BREAKPOINT)
619 {
620 /* Most targets can step a breakpoint instruction, thus
621 executing it normally. But if this one cannot, just
622 continue and we will hit it anyway. */
623 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
624 step = 0;
625 }
626 target_resume (resume_ptid, step, sig);
627 }
628
629 discard_cleanups (old_cleanups);
630 }
631 \f
632
633 /* Clear out all variables saying what to do when inferior is continued.
634 First do this, then set the ones you want, then call `proceed'. */
635
636 void
637 clear_proceed_status (void)
638 {
639 trap_expected = 0;
640 step_range_start = 0;
641 step_range_end = 0;
642 step_frame_id = null_frame_id;
643 step_over_calls = STEP_OVER_UNDEBUGGABLE;
644 stop_after_trap = 0;
645 stop_soon = NO_STOP_QUIETLY;
646 proceed_to_finish = 0;
647 breakpoint_proceeded = 1; /* We're about to proceed... */
648
649 /* Discard any remaining commands or status from previous stop. */
650 bpstat_clear (&stop_bpstat);
651 }
652
653 /* This should be suitable for any targets that support threads. */
654
655 static int
656 prepare_to_proceed (void)
657 {
658 ptid_t wait_ptid;
659 struct target_waitstatus wait_status;
660
661 /* Get the last target status returned by target_wait(). */
662 get_last_target_status (&wait_ptid, &wait_status);
663
664 /* Make sure we were stopped either at a breakpoint, or because
665 of a Ctrl-C. */
666 if (wait_status.kind != TARGET_WAITKIND_STOPPED
667 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
668 && wait_status.value.sig != TARGET_SIGNAL_INT))
669 {
670 return 0;
671 }
672
673 if (!ptid_equal (wait_ptid, minus_one_ptid)
674 && !ptid_equal (inferior_ptid, wait_ptid))
675 {
676 /* Switched over from WAIT_PID. */
677 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
678
679 if (wait_pc != read_pc ())
680 {
681 /* Switch back to WAIT_PID thread. */
682 inferior_ptid = wait_ptid;
683
684 /* FIXME: This stuff came from switch_to_thread() in
685 thread.c (which should probably be a public function). */
686 flush_cached_frames ();
687 registers_changed ();
688 stop_pc = wait_pc;
689 select_frame (get_current_frame ());
690 }
691
692 /* We return 1 to indicate that there is a breakpoint here,
693 so we need to step over it before continuing to avoid
694 hitting it straight away. */
695 if (breakpoint_here_p (wait_pc))
696 return 1;
697 }
698
699 return 0;
700
701 }
702
703 /* Record the pc of the program the last time it stopped. This is
704 just used internally by wait_for_inferior, but need to be preserved
705 over calls to it and cleared when the inferior is started. */
706 static CORE_ADDR prev_pc;
707
708 /* Basic routine for continuing the program in various fashions.
709
710 ADDR is the address to resume at, or -1 for resume where stopped.
711 SIGGNAL is the signal to give it, or 0 for none,
712 or -1 for act according to how it stopped.
713 STEP is nonzero if should trap after one instruction.
714 -1 means return after that and print nothing.
715 You should probably set various step_... variables
716 before calling here, if you are stepping.
717
718 You should call clear_proceed_status before calling proceed. */
719
720 void
721 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
722 {
723 int oneproc = 0;
724
725 if (step > 0)
726 step_start_function = find_pc_function (read_pc ());
727 if (step < 0)
728 stop_after_trap = 1;
729
730 if (addr == (CORE_ADDR) -1)
731 {
732 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
733 /* There is a breakpoint at the address we will resume at,
734 step one instruction before inserting breakpoints so that
735 we do not stop right away (and report a second hit at this
736 breakpoint). */
737 oneproc = 1;
738 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
739 && gdbarch_single_step_through_delay (current_gdbarch,
740 get_current_frame ()))
741 /* We stepped onto an instruction that needs to be stepped
742 again before re-inserting the breakpoint, do so. */
743 oneproc = 1;
744 }
745 else
746 {
747 write_pc (addr);
748 }
749
750 if (debug_infrun)
751 fprintf_unfiltered (gdb_stdlog,
752 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
753 paddr_nz (addr), siggnal, step);
754
755 /* In a multi-threaded task we may select another thread
756 and then continue or step.
757
758 But if the old thread was stopped at a breakpoint, it
759 will immediately cause another breakpoint stop without
760 any execution (i.e. it will report a breakpoint hit
761 incorrectly). So we must step over it first.
762
763 prepare_to_proceed checks the current thread against the thread
764 that reported the most recent event. If a step-over is required
765 it returns TRUE and sets the current thread to the old thread. */
766 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
767 oneproc = 1;
768
769 if (oneproc)
770 /* We will get a trace trap after one instruction.
771 Continue it automatically and insert breakpoints then. */
772 trap_expected = 1;
773 else
774 {
775 insert_breakpoints ();
776 /* If we get here there was no call to error() in
777 insert breakpoints -- so they were inserted. */
778 breakpoints_inserted = 1;
779 }
780
781 if (siggnal != TARGET_SIGNAL_DEFAULT)
782 stop_signal = siggnal;
783 /* If this signal should not be seen by program,
784 give it zero. Used for debugging signals. */
785 else if (!signal_program[stop_signal])
786 stop_signal = TARGET_SIGNAL_0;
787
788 annotate_starting ();
789
790 /* Make sure that output from GDB appears before output from the
791 inferior. */
792 gdb_flush (gdb_stdout);
793
794 /* Refresh prev_pc value just prior to resuming. This used to be
795 done in stop_stepping, however, setting prev_pc there did not handle
796 scenarios such as inferior function calls or returning from
797 a function via the return command. In those cases, the prev_pc
798 value was not set properly for subsequent commands. The prev_pc value
799 is used to initialize the starting line number in the ecs. With an
800 invalid value, the gdb next command ends up stopping at the position
801 represented by the next line table entry past our start position.
802 On platforms that generate one line table entry per line, this
803 is not a problem. However, on the ia64, the compiler generates
804 extraneous line table entries that do not increase the line number.
805 When we issue the gdb next command on the ia64 after an inferior call
806 or a return command, we often end up a few instructions forward, still
807 within the original line we started.
808
809 An attempt was made to have init_execution_control_state () refresh
810 the prev_pc value before calculating the line number. This approach
811 did not work because on platforms that use ptrace, the pc register
812 cannot be read unless the inferior is stopped. At that point, we
813 are not guaranteed the inferior is stopped and so the read_pc ()
814 call can fail. Setting the prev_pc value here ensures the value is
815 updated correctly when the inferior is stopped. */
816 prev_pc = read_pc ();
817
818 /* Resume inferior. */
819 resume (oneproc || step || bpstat_should_step (), stop_signal);
820
821 /* Wait for it to stop (if not standalone)
822 and in any case decode why it stopped, and act accordingly. */
823 /* Do this only if we are not using the event loop, or if the target
824 does not support asynchronous execution. */
825 if (!target_can_async_p ())
826 {
827 wait_for_inferior ();
828 normal_stop ();
829 }
830 }
831 \f
832
833 /* Start remote-debugging of a machine over a serial link. */
834
835 void
836 start_remote (int from_tty)
837 {
838 init_thread_list ();
839 init_wait_for_inferior ();
840 stop_soon = STOP_QUIETLY;
841 trap_expected = 0;
842
843 /* Always go on waiting for the target, regardless of the mode. */
844 /* FIXME: cagney/1999-09-23: At present it isn't possible to
845 indicate to wait_for_inferior that a target should timeout if
846 nothing is returned (instead of just blocking). Because of this,
847 targets expecting an immediate response need to, internally, set
848 things up so that the target_wait() is forced to eventually
849 timeout. */
850 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
851 differentiate to its caller what the state of the target is after
852 the initial open has been performed. Here we're assuming that
853 the target has stopped. It should be possible to eventually have
854 target_open() return to the caller an indication that the target
855 is currently running and GDB state should be set to the same as
856 for an async run. */
857 wait_for_inferior ();
858
859 /* Now that the inferior has stopped, do any bookkeeping like
860 loading shared libraries. We want to do this before normal_stop,
861 so that the displayed frame is up to date. */
862 post_create_inferior (&current_target, from_tty);
863
864 normal_stop ();
865 }
866
867 /* Initialize static vars when a new inferior begins. */
868
869 void
870 init_wait_for_inferior (void)
871 {
872 /* These are meaningless until the first time through wait_for_inferior. */
873 prev_pc = 0;
874
875 breakpoints_inserted = 0;
876 breakpoint_init_inferior (inf_starting);
877
878 /* Don't confuse first call to proceed(). */
879 stop_signal = TARGET_SIGNAL_0;
880
881 /* The first resume is not following a fork/vfork/exec. */
882 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
883
884 clear_proceed_status ();
885
886 stepping_past_singlestep_breakpoint = 0;
887 }
888 \f
889 /* This enum encodes possible reasons for doing a target_wait, so that
890 wfi can call target_wait in one place. (Ultimately the call will be
891 moved out of the infinite loop entirely.) */
892
893 enum infwait_states
894 {
895 infwait_normal_state,
896 infwait_thread_hop_state,
897 infwait_nonstep_watch_state
898 };
899
900 /* Why did the inferior stop? Used to print the appropriate messages
901 to the interface from within handle_inferior_event(). */
902 enum inferior_stop_reason
903 {
904 /* We don't know why. */
905 STOP_UNKNOWN,
906 /* Step, next, nexti, stepi finished. */
907 END_STEPPING_RANGE,
908 /* Found breakpoint. */
909 BREAKPOINT_HIT,
910 /* Inferior terminated by signal. */
911 SIGNAL_EXITED,
912 /* Inferior exited. */
913 EXITED,
914 /* Inferior received signal, and user asked to be notified. */
915 SIGNAL_RECEIVED
916 };
917
918 /* This structure contains what used to be local variables in
919 wait_for_inferior. Probably many of them can return to being
920 locals in handle_inferior_event. */
921
922 struct execution_control_state
923 {
924 struct target_waitstatus ws;
925 struct target_waitstatus *wp;
926 int another_trap;
927 int random_signal;
928 CORE_ADDR stop_func_start;
929 CORE_ADDR stop_func_end;
930 char *stop_func_name;
931 struct symtab_and_line sal;
932 int current_line;
933 struct symtab *current_symtab;
934 int handling_longjmp; /* FIXME */
935 ptid_t ptid;
936 ptid_t saved_inferior_ptid;
937 int step_after_step_resume_breakpoint;
938 int stepping_through_solib_after_catch;
939 bpstat stepping_through_solib_catchpoints;
940 int new_thread_event;
941 struct target_waitstatus tmpstatus;
942 enum infwait_states infwait_state;
943 ptid_t waiton_ptid;
944 int wait_some_more;
945 };
946
947 void init_execution_control_state (struct execution_control_state *ecs);
948
949 void handle_inferior_event (struct execution_control_state *ecs);
950
951 static void step_into_function (struct execution_control_state *ecs);
952 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
953 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
954 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
955 struct frame_id sr_id);
956 static void stop_stepping (struct execution_control_state *ecs);
957 static void prepare_to_wait (struct execution_control_state *ecs);
958 static void keep_going (struct execution_control_state *ecs);
959 static void print_stop_reason (enum inferior_stop_reason stop_reason,
960 int stop_info);
961
962 /* Wait for control to return from inferior to debugger.
963 If inferior gets a signal, we may decide to start it up again
964 instead of returning. That is why there is a loop in this function.
965 When this function actually returns it means the inferior
966 should be left stopped and GDB should read more commands. */
967
968 void
969 wait_for_inferior (void)
970 {
971 struct cleanup *old_cleanups;
972 struct execution_control_state ecss;
973 struct execution_control_state *ecs;
974
975 if (debug_infrun)
976 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
977
978 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
979 &step_resume_breakpoint);
980
981 /* wfi still stays in a loop, so it's OK just to take the address of
982 a local to get the ecs pointer. */
983 ecs = &ecss;
984
985 /* Fill in with reasonable starting values. */
986 init_execution_control_state (ecs);
987
988 /* We'll update this if & when we switch to a new thread. */
989 previous_inferior_ptid = inferior_ptid;
990
991 overlay_cache_invalid = 1;
992
993 /* We have to invalidate the registers BEFORE calling target_wait
994 because they can be loaded from the target while in target_wait.
995 This makes remote debugging a bit more efficient for those
996 targets that provide critical registers as part of their normal
997 status mechanism. */
998
999 registers_changed ();
1000
1001 while (1)
1002 {
1003 if (deprecated_target_wait_hook)
1004 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1005 else
1006 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1007
1008 /* Now figure out what to do with the result of the result. */
1009 handle_inferior_event (ecs);
1010
1011 if (!ecs->wait_some_more)
1012 break;
1013 }
1014 do_cleanups (old_cleanups);
1015 }
1016
1017 /* Asynchronous version of wait_for_inferior. It is called by the
1018 event loop whenever a change of state is detected on the file
1019 descriptor corresponding to the target. It can be called more than
1020 once to complete a single execution command. In such cases we need
1021 to keep the state in a global variable ASYNC_ECSS. If it is the
1022 last time that this function is called for a single execution
1023 command, then report to the user that the inferior has stopped, and
1024 do the necessary cleanups. */
1025
1026 struct execution_control_state async_ecss;
1027 struct execution_control_state *async_ecs;
1028
1029 void
1030 fetch_inferior_event (void *client_data)
1031 {
1032 static struct cleanup *old_cleanups;
1033
1034 async_ecs = &async_ecss;
1035
1036 if (!async_ecs->wait_some_more)
1037 {
1038 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1039 &step_resume_breakpoint);
1040
1041 /* Fill in with reasonable starting values. */
1042 init_execution_control_state (async_ecs);
1043
1044 /* We'll update this if & when we switch to a new thread. */
1045 previous_inferior_ptid = inferior_ptid;
1046
1047 overlay_cache_invalid = 1;
1048
1049 /* We have to invalidate the registers BEFORE calling target_wait
1050 because they can be loaded from the target while in target_wait.
1051 This makes remote debugging a bit more efficient for those
1052 targets that provide critical registers as part of their normal
1053 status mechanism. */
1054
1055 registers_changed ();
1056 }
1057
1058 if (deprecated_target_wait_hook)
1059 async_ecs->ptid =
1060 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1061 else
1062 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1063
1064 /* Now figure out what to do with the result of the result. */
1065 handle_inferior_event (async_ecs);
1066
1067 if (!async_ecs->wait_some_more)
1068 {
1069 /* Do only the cleanups that have been added by this
1070 function. Let the continuations for the commands do the rest,
1071 if there are any. */
1072 do_exec_cleanups (old_cleanups);
1073 normal_stop ();
1074 if (step_multi && stop_step)
1075 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1076 else
1077 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1078 }
1079 }
1080
1081 /* Prepare an execution control state for looping through a
1082 wait_for_inferior-type loop. */
1083
1084 void
1085 init_execution_control_state (struct execution_control_state *ecs)
1086 {
1087 ecs->another_trap = 0;
1088 ecs->random_signal = 0;
1089 ecs->step_after_step_resume_breakpoint = 0;
1090 ecs->handling_longjmp = 0; /* FIXME */
1091 ecs->stepping_through_solib_after_catch = 0;
1092 ecs->stepping_through_solib_catchpoints = NULL;
1093 ecs->sal = find_pc_line (prev_pc, 0);
1094 ecs->current_line = ecs->sal.line;
1095 ecs->current_symtab = ecs->sal.symtab;
1096 ecs->infwait_state = infwait_normal_state;
1097 ecs->waiton_ptid = pid_to_ptid (-1);
1098 ecs->wp = &(ecs->ws);
1099 }
1100
1101 /* Return the cached copy of the last pid/waitstatus returned by
1102 target_wait()/deprecated_target_wait_hook(). The data is actually
1103 cached by handle_inferior_event(), which gets called immediately
1104 after target_wait()/deprecated_target_wait_hook(). */
1105
1106 void
1107 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1108 {
1109 *ptidp = target_last_wait_ptid;
1110 *status = target_last_waitstatus;
1111 }
1112
1113 void
1114 nullify_last_target_wait_ptid (void)
1115 {
1116 target_last_wait_ptid = minus_one_ptid;
1117 }
1118
1119 /* Switch thread contexts, maintaining "infrun state". */
1120
1121 static void
1122 context_switch (struct execution_control_state *ecs)
1123 {
1124 /* Caution: it may happen that the new thread (or the old one!)
1125 is not in the thread list. In this case we must not attempt
1126 to "switch context", or we run the risk that our context may
1127 be lost. This may happen as a result of the target module
1128 mishandling thread creation. */
1129
1130 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1131 { /* Perform infrun state context switch: */
1132 /* Save infrun state for the old thread. */
1133 save_infrun_state (inferior_ptid, prev_pc,
1134 trap_expected, step_resume_breakpoint,
1135 step_range_start,
1136 step_range_end, &step_frame_id,
1137 ecs->handling_longjmp, ecs->another_trap,
1138 ecs->stepping_through_solib_after_catch,
1139 ecs->stepping_through_solib_catchpoints,
1140 ecs->current_line, ecs->current_symtab);
1141
1142 /* Load infrun state for the new thread. */
1143 load_infrun_state (ecs->ptid, &prev_pc,
1144 &trap_expected, &step_resume_breakpoint,
1145 &step_range_start,
1146 &step_range_end, &step_frame_id,
1147 &ecs->handling_longjmp, &ecs->another_trap,
1148 &ecs->stepping_through_solib_after_catch,
1149 &ecs->stepping_through_solib_catchpoints,
1150 &ecs->current_line, &ecs->current_symtab);
1151 }
1152 inferior_ptid = ecs->ptid;
1153 }
1154
1155 static void
1156 adjust_pc_after_break (struct execution_control_state *ecs)
1157 {
1158 CORE_ADDR breakpoint_pc;
1159
1160 /* If this target does not decrement the PC after breakpoints, then
1161 we have nothing to do. */
1162 if (DECR_PC_AFTER_BREAK == 0)
1163 return;
1164
1165 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1166 we aren't, just return.
1167
1168 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1169 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1170 by software breakpoints should be handled through the normal breakpoint
1171 layer.
1172
1173 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1174 different signals (SIGILL or SIGEMT for instance), but it is less
1175 clear where the PC is pointing afterwards. It may not match
1176 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1177 these signals at breakpoints (the code has been in GDB since at least
1178 1992) so I can not guess how to handle them here.
1179
1180 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1181 would have the PC after hitting a watchpoint affected by
1182 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1183 in GDB history, and it seems unlikely to be correct, so
1184 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1185
1186 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1187 return;
1188
1189 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1190 return;
1191
1192 /* Find the location where (if we've hit a breakpoint) the
1193 breakpoint would be. */
1194 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1195
1196 if (SOFTWARE_SINGLE_STEP_P ())
1197 {
1198 /* When using software single-step, a SIGTRAP can only indicate
1199 an inserted breakpoint. This actually makes things
1200 easier. */
1201 if (singlestep_breakpoints_inserted_p)
1202 /* When software single stepping, the instruction at [prev_pc]
1203 is never a breakpoint, but the instruction following
1204 [prev_pc] (in program execution order) always is. Assume
1205 that following instruction was reached and hence a software
1206 breakpoint was hit. */
1207 write_pc_pid (breakpoint_pc, ecs->ptid);
1208 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1209 /* The inferior was free running (i.e., no single-step
1210 breakpoints inserted) and it hit a software breakpoint. */
1211 write_pc_pid (breakpoint_pc, ecs->ptid);
1212 }
1213 else
1214 {
1215 /* When using hardware single-step, a SIGTRAP is reported for
1216 both a completed single-step and a software breakpoint. Need
1217 to differentiate between the two as the latter needs
1218 adjusting but the former does not.
1219
1220 When the thread to be examined does not match the current thread
1221 context we can't use currently_stepping, so assume no
1222 single-stepping in this case. */
1223 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1224 {
1225 if (prev_pc == breakpoint_pc
1226 && software_breakpoint_inserted_here_p (breakpoint_pc))
1227 /* Hardware single-stepped a software breakpoint (as
1228 occures when the inferior is resumed with PC pointing
1229 at not-yet-hit software breakpoint). Since the
1230 breakpoint really is executed, the inferior needs to be
1231 backed up to the breakpoint address. */
1232 write_pc_pid (breakpoint_pc, ecs->ptid);
1233 }
1234 else
1235 {
1236 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1237 /* The inferior was free running (i.e., no hardware
1238 single-step and no possibility of a false SIGTRAP) and
1239 hit a software breakpoint. */
1240 write_pc_pid (breakpoint_pc, ecs->ptid);
1241 }
1242 }
1243 }
1244
1245 /* Given an execution control state that has been freshly filled in
1246 by an event from the inferior, figure out what it means and take
1247 appropriate action. */
1248
1249 int stepped_after_stopped_by_watchpoint;
1250
1251 void
1252 handle_inferior_event (struct execution_control_state *ecs)
1253 {
1254 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1255 that the variable stepped_after_stopped_by_watchpoint isn't used,
1256 then you're wrong! See remote.c:remote_stopped_data_address. */
1257
1258 int sw_single_step_trap_p = 0;
1259 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1260
1261 /* Cache the last pid/waitstatus. */
1262 target_last_wait_ptid = ecs->ptid;
1263 target_last_waitstatus = *ecs->wp;
1264
1265 adjust_pc_after_break (ecs);
1266
1267 switch (ecs->infwait_state)
1268 {
1269 case infwait_thread_hop_state:
1270 if (debug_infrun)
1271 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1272 /* Cancel the waiton_ptid. */
1273 ecs->waiton_ptid = pid_to_ptid (-1);
1274 break;
1275
1276 case infwait_normal_state:
1277 if (debug_infrun)
1278 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1279 stepped_after_stopped_by_watchpoint = 0;
1280 break;
1281
1282 case infwait_nonstep_watch_state:
1283 if (debug_infrun)
1284 fprintf_unfiltered (gdb_stdlog,
1285 "infrun: infwait_nonstep_watch_state\n");
1286 insert_breakpoints ();
1287
1288 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1289 handle things like signals arriving and other things happening
1290 in combination correctly? */
1291 stepped_after_stopped_by_watchpoint = 1;
1292 break;
1293
1294 default:
1295 internal_error (__FILE__, __LINE__, _("bad switch"));
1296 }
1297 ecs->infwait_state = infwait_normal_state;
1298
1299 flush_cached_frames ();
1300
1301 /* If it's a new process, add it to the thread database */
1302
1303 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1304 && !ptid_equal (ecs->ptid, minus_one_ptid)
1305 && !in_thread_list (ecs->ptid));
1306
1307 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1308 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1309 {
1310 add_thread (ecs->ptid);
1311
1312 ui_out_text (uiout, "[New ");
1313 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1314 ui_out_text (uiout, "]\n");
1315 }
1316
1317 switch (ecs->ws.kind)
1318 {
1319 case TARGET_WAITKIND_LOADED:
1320 if (debug_infrun)
1321 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1322 /* Ignore gracefully during startup of the inferior, as it
1323 might be the shell which has just loaded some objects,
1324 otherwise add the symbols for the newly loaded objects. */
1325 #ifdef SOLIB_ADD
1326 if (stop_soon == NO_STOP_QUIETLY)
1327 {
1328 /* Remove breakpoints, SOLIB_ADD might adjust
1329 breakpoint addresses via breakpoint_re_set. */
1330 if (breakpoints_inserted)
1331 remove_breakpoints ();
1332
1333 /* Check for any newly added shared libraries if we're
1334 supposed to be adding them automatically. Switch
1335 terminal for any messages produced by
1336 breakpoint_re_set. */
1337 target_terminal_ours_for_output ();
1338 /* NOTE: cagney/2003-11-25: Make certain that the target
1339 stack's section table is kept up-to-date. Architectures,
1340 (e.g., PPC64), use the section table to perform
1341 operations such as address => section name and hence
1342 require the table to contain all sections (including
1343 those found in shared libraries). */
1344 /* NOTE: cagney/2003-11-25: Pass current_target and not
1345 exec_ops to SOLIB_ADD. This is because current GDB is
1346 only tooled to propagate section_table changes out from
1347 the "current_target" (see target_resize_to_sections), and
1348 not up from the exec stratum. This, of course, isn't
1349 right. "infrun.c" should only interact with the
1350 exec/process stratum, instead relying on the target stack
1351 to propagate relevant changes (stop, section table
1352 changed, ...) up to other layers. */
1353 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1354 target_terminal_inferior ();
1355
1356 /* Reinsert breakpoints and continue. */
1357 if (breakpoints_inserted)
1358 insert_breakpoints ();
1359 }
1360 #endif
1361 resume (0, TARGET_SIGNAL_0);
1362 prepare_to_wait (ecs);
1363 return;
1364
1365 case TARGET_WAITKIND_SPURIOUS:
1366 if (debug_infrun)
1367 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1368 resume (0, TARGET_SIGNAL_0);
1369 prepare_to_wait (ecs);
1370 return;
1371
1372 case TARGET_WAITKIND_EXITED:
1373 if (debug_infrun)
1374 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1375 target_terminal_ours (); /* Must do this before mourn anyway */
1376 print_stop_reason (EXITED, ecs->ws.value.integer);
1377
1378 /* Record the exit code in the convenience variable $_exitcode, so
1379 that the user can inspect this again later. */
1380 set_internalvar (lookup_internalvar ("_exitcode"),
1381 value_from_longest (builtin_type_int,
1382 (LONGEST) ecs->ws.value.integer));
1383 gdb_flush (gdb_stdout);
1384 target_mourn_inferior ();
1385 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1386 stop_print_frame = 0;
1387 stop_stepping (ecs);
1388 return;
1389
1390 case TARGET_WAITKIND_SIGNALLED:
1391 if (debug_infrun)
1392 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1393 stop_print_frame = 0;
1394 stop_signal = ecs->ws.value.sig;
1395 target_terminal_ours (); /* Must do this before mourn anyway */
1396
1397 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1398 reach here unless the inferior is dead. However, for years
1399 target_kill() was called here, which hints that fatal signals aren't
1400 really fatal on some systems. If that's true, then some changes
1401 may be needed. */
1402 target_mourn_inferior ();
1403
1404 print_stop_reason (SIGNAL_EXITED, stop_signal);
1405 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1406 stop_stepping (ecs);
1407 return;
1408
1409 /* The following are the only cases in which we keep going;
1410 the above cases end in a continue or goto. */
1411 case TARGET_WAITKIND_FORKED:
1412 case TARGET_WAITKIND_VFORKED:
1413 if (debug_infrun)
1414 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1415 stop_signal = TARGET_SIGNAL_TRAP;
1416 pending_follow.kind = ecs->ws.kind;
1417
1418 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1419 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1420
1421 if (!ptid_equal (ecs->ptid, inferior_ptid))
1422 {
1423 context_switch (ecs);
1424 flush_cached_frames ();
1425 }
1426
1427 stop_pc = read_pc ();
1428
1429 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1430
1431 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1432
1433 /* If no catchpoint triggered for this, then keep going. */
1434 if (ecs->random_signal)
1435 {
1436 stop_signal = TARGET_SIGNAL_0;
1437 keep_going (ecs);
1438 return;
1439 }
1440 goto process_event_stop_test;
1441
1442 case TARGET_WAITKIND_EXECD:
1443 if (debug_infrun)
1444 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1445 stop_signal = TARGET_SIGNAL_TRAP;
1446
1447 /* NOTE drow/2002-12-05: This code should be pushed down into the
1448 target_wait function. Until then following vfork on HP/UX 10.20
1449 is probably broken by this. Of course, it's broken anyway. */
1450 /* Is this a target which reports multiple exec events per actual
1451 call to exec()? (HP-UX using ptrace does, for example.) If so,
1452 ignore all but the last one. Just resume the exec'r, and wait
1453 for the next exec event. */
1454 if (inferior_ignoring_leading_exec_events)
1455 {
1456 inferior_ignoring_leading_exec_events--;
1457 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1458 prepare_to_wait (ecs);
1459 return;
1460 }
1461 inferior_ignoring_leading_exec_events =
1462 target_reported_exec_events_per_exec_call () - 1;
1463
1464 pending_follow.execd_pathname =
1465 savestring (ecs->ws.value.execd_pathname,
1466 strlen (ecs->ws.value.execd_pathname));
1467
1468 /* This causes the eventpoints and symbol table to be reset. Must
1469 do this now, before trying to determine whether to stop. */
1470 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1471 xfree (pending_follow.execd_pathname);
1472
1473 stop_pc = read_pc_pid (ecs->ptid);
1474 ecs->saved_inferior_ptid = inferior_ptid;
1475 inferior_ptid = ecs->ptid;
1476
1477 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1478
1479 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1480 inferior_ptid = ecs->saved_inferior_ptid;
1481
1482 if (!ptid_equal (ecs->ptid, inferior_ptid))
1483 {
1484 context_switch (ecs);
1485 flush_cached_frames ();
1486 }
1487
1488 /* If no catchpoint triggered for this, then keep going. */
1489 if (ecs->random_signal)
1490 {
1491 stop_signal = TARGET_SIGNAL_0;
1492 keep_going (ecs);
1493 return;
1494 }
1495 goto process_event_stop_test;
1496
1497 /* Be careful not to try to gather much state about a thread
1498 that's in a syscall. It's frequently a losing proposition. */
1499 case TARGET_WAITKIND_SYSCALL_ENTRY:
1500 if (debug_infrun)
1501 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1502 resume (0, TARGET_SIGNAL_0);
1503 prepare_to_wait (ecs);
1504 return;
1505
1506 /* Before examining the threads further, step this thread to
1507 get it entirely out of the syscall. (We get notice of the
1508 event when the thread is just on the verge of exiting a
1509 syscall. Stepping one instruction seems to get it back
1510 into user code.) */
1511 case TARGET_WAITKIND_SYSCALL_RETURN:
1512 if (debug_infrun)
1513 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1514 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1515 prepare_to_wait (ecs);
1516 return;
1517
1518 case TARGET_WAITKIND_STOPPED:
1519 if (debug_infrun)
1520 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1521 stop_signal = ecs->ws.value.sig;
1522 break;
1523
1524 /* We had an event in the inferior, but we are not interested
1525 in handling it at this level. The lower layers have already
1526 done what needs to be done, if anything.
1527
1528 One of the possible circumstances for this is when the
1529 inferior produces output for the console. The inferior has
1530 not stopped, and we are ignoring the event. Another possible
1531 circumstance is any event which the lower level knows will be
1532 reported multiple times without an intervening resume. */
1533 case TARGET_WAITKIND_IGNORE:
1534 if (debug_infrun)
1535 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1536 prepare_to_wait (ecs);
1537 return;
1538 }
1539
1540 /* We may want to consider not doing a resume here in order to give
1541 the user a chance to play with the new thread. It might be good
1542 to make that a user-settable option. */
1543
1544 /* At this point, all threads are stopped (happens automatically in
1545 either the OS or the native code). Therefore we need to continue
1546 all threads in order to make progress. */
1547 if (ecs->new_thread_event)
1548 {
1549 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1550 prepare_to_wait (ecs);
1551 return;
1552 }
1553
1554 stop_pc = read_pc_pid (ecs->ptid);
1555
1556 if (debug_infrun)
1557 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1558
1559 if (stepping_past_singlestep_breakpoint)
1560 {
1561 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1562 && singlestep_breakpoints_inserted_p);
1563 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1564 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1565
1566 stepping_past_singlestep_breakpoint = 0;
1567
1568 /* We've either finished single-stepping past the single-step
1569 breakpoint, or stopped for some other reason. It would be nice if
1570 we could tell, but we can't reliably. */
1571 if (stop_signal == TARGET_SIGNAL_TRAP)
1572 {
1573 if (debug_infrun)
1574 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1575 /* Pull the single step breakpoints out of the target. */
1576 SOFTWARE_SINGLE_STEP (0, 0);
1577 singlestep_breakpoints_inserted_p = 0;
1578
1579 ecs->random_signal = 0;
1580
1581 ecs->ptid = saved_singlestep_ptid;
1582 context_switch (ecs);
1583 if (deprecated_context_hook)
1584 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1585
1586 resume (1, TARGET_SIGNAL_0);
1587 prepare_to_wait (ecs);
1588 return;
1589 }
1590 }
1591
1592 stepping_past_singlestep_breakpoint = 0;
1593
1594 /* See if a thread hit a thread-specific breakpoint that was meant for
1595 another thread. If so, then step that thread past the breakpoint,
1596 and continue it. */
1597
1598 if (stop_signal == TARGET_SIGNAL_TRAP)
1599 {
1600 int thread_hop_needed = 0;
1601
1602 /* Check if a regular breakpoint has been hit before checking
1603 for a potential single step breakpoint. Otherwise, GDB will
1604 not see this breakpoint hit when stepping onto breakpoints. */
1605 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1606 {
1607 ecs->random_signal = 0;
1608 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1609 thread_hop_needed = 1;
1610 }
1611 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1612 {
1613 ecs->random_signal = 0;
1614 /* The call to in_thread_list is necessary because PTIDs sometimes
1615 change when we go from single-threaded to multi-threaded. If
1616 the singlestep_ptid is still in the list, assume that it is
1617 really different from ecs->ptid. */
1618 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1619 && in_thread_list (singlestep_ptid))
1620 {
1621 thread_hop_needed = 1;
1622 stepping_past_singlestep_breakpoint = 1;
1623 saved_singlestep_ptid = singlestep_ptid;
1624 }
1625 }
1626
1627 if (thread_hop_needed)
1628 {
1629 int remove_status;
1630
1631 if (debug_infrun)
1632 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1633
1634 /* Saw a breakpoint, but it was hit by the wrong thread.
1635 Just continue. */
1636
1637 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1638 {
1639 /* Pull the single step breakpoints out of the target. */
1640 SOFTWARE_SINGLE_STEP (0, 0);
1641 singlestep_breakpoints_inserted_p = 0;
1642 }
1643
1644 remove_status = remove_breakpoints ();
1645 /* Did we fail to remove breakpoints? If so, try
1646 to set the PC past the bp. (There's at least
1647 one situation in which we can fail to remove
1648 the bp's: On HP-UX's that use ttrace, we can't
1649 change the address space of a vforking child
1650 process until the child exits (well, okay, not
1651 then either :-) or execs. */
1652 if (remove_status != 0)
1653 {
1654 /* FIXME! This is obviously non-portable! */
1655 write_pc_pid (stop_pc + 4, ecs->ptid);
1656 /* We need to restart all the threads now,
1657 * unles we're running in scheduler-locked mode.
1658 * Use currently_stepping to determine whether to
1659 * step or continue.
1660 */
1661 /* FIXME MVS: is there any reason not to call resume()? */
1662 if (scheduler_mode == schedlock_on)
1663 target_resume (ecs->ptid,
1664 currently_stepping (ecs), TARGET_SIGNAL_0);
1665 else
1666 target_resume (RESUME_ALL,
1667 currently_stepping (ecs), TARGET_SIGNAL_0);
1668 prepare_to_wait (ecs);
1669 return;
1670 }
1671 else
1672 { /* Single step */
1673 breakpoints_inserted = 0;
1674 if (!ptid_equal (inferior_ptid, ecs->ptid))
1675 context_switch (ecs);
1676 ecs->waiton_ptid = ecs->ptid;
1677 ecs->wp = &(ecs->ws);
1678 ecs->another_trap = 1;
1679
1680 ecs->infwait_state = infwait_thread_hop_state;
1681 keep_going (ecs);
1682 registers_changed ();
1683 return;
1684 }
1685 }
1686 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1687 {
1688 sw_single_step_trap_p = 1;
1689 ecs->random_signal = 0;
1690 }
1691 }
1692 else
1693 ecs->random_signal = 1;
1694
1695 /* See if something interesting happened to the non-current thread. If
1696 so, then switch to that thread. */
1697 if (!ptid_equal (ecs->ptid, inferior_ptid))
1698 {
1699 if (debug_infrun)
1700 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1701
1702 context_switch (ecs);
1703
1704 if (deprecated_context_hook)
1705 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1706
1707 flush_cached_frames ();
1708 }
1709
1710 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1711 {
1712 /* Pull the single step breakpoints out of the target. */
1713 SOFTWARE_SINGLE_STEP (0, 0);
1714 singlestep_breakpoints_inserted_p = 0;
1715 }
1716
1717 /* It may not be necessary to disable the watchpoint to stop over
1718 it. For example, the PA can (with some kernel cooperation)
1719 single step over a watchpoint without disabling the watchpoint. */
1720 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1721 {
1722 if (debug_infrun)
1723 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1724 resume (1, 0);
1725 prepare_to_wait (ecs);
1726 return;
1727 }
1728
1729 /* It is far more common to need to disable a watchpoint to step
1730 the inferior over it. FIXME. What else might a debug
1731 register or page protection watchpoint scheme need here? */
1732 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1733 {
1734 /* At this point, we are stopped at an instruction which has
1735 attempted to write to a piece of memory under control of
1736 a watchpoint. The instruction hasn't actually executed
1737 yet. If we were to evaluate the watchpoint expression
1738 now, we would get the old value, and therefore no change
1739 would seem to have occurred.
1740
1741 In order to make watchpoints work `right', we really need
1742 to complete the memory write, and then evaluate the
1743 watchpoint expression. The following code does that by
1744 removing the watchpoint (actually, all watchpoints and
1745 breakpoints), single-stepping the target, re-inserting
1746 watchpoints, and then falling through to let normal
1747 single-step processing handle proceed. Since this
1748 includes evaluating watchpoints, things will come to a
1749 stop in the correct manner. */
1750
1751 if (debug_infrun)
1752 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1753 remove_breakpoints ();
1754 registers_changed ();
1755 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1756
1757 ecs->waiton_ptid = ecs->ptid;
1758 ecs->wp = &(ecs->ws);
1759 ecs->infwait_state = infwait_nonstep_watch_state;
1760 prepare_to_wait (ecs);
1761 return;
1762 }
1763
1764 /* It may be possible to simply continue after a watchpoint. */
1765 if (HAVE_CONTINUABLE_WATCHPOINT)
1766 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1767
1768 ecs->stop_func_start = 0;
1769 ecs->stop_func_end = 0;
1770 ecs->stop_func_name = 0;
1771 /* Don't care about return value; stop_func_start and stop_func_name
1772 will both be 0 if it doesn't work. */
1773 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1774 &ecs->stop_func_start, &ecs->stop_func_end);
1775 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1776 ecs->another_trap = 0;
1777 bpstat_clear (&stop_bpstat);
1778 stop_step = 0;
1779 stop_stack_dummy = 0;
1780 stop_print_frame = 1;
1781 ecs->random_signal = 0;
1782 stopped_by_random_signal = 0;
1783 breakpoints_failed = 0;
1784
1785 if (stop_signal == TARGET_SIGNAL_TRAP
1786 && trap_expected
1787 && gdbarch_single_step_through_delay_p (current_gdbarch)
1788 && currently_stepping (ecs))
1789 {
1790 /* We're trying to step of a breakpoint. Turns out that we're
1791 also on an instruction that needs to be stepped multiple
1792 times before it's been fully executing. E.g., architectures
1793 with a delay slot. It needs to be stepped twice, once for
1794 the instruction and once for the delay slot. */
1795 int step_through_delay
1796 = gdbarch_single_step_through_delay (current_gdbarch,
1797 get_current_frame ());
1798 if (debug_infrun && step_through_delay)
1799 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1800 if (step_range_end == 0 && step_through_delay)
1801 {
1802 /* The user issued a continue when stopped at a breakpoint.
1803 Set up for another trap and get out of here. */
1804 ecs->another_trap = 1;
1805 keep_going (ecs);
1806 return;
1807 }
1808 else if (step_through_delay)
1809 {
1810 /* The user issued a step when stopped at a breakpoint.
1811 Maybe we should stop, maybe we should not - the delay
1812 slot *might* correspond to a line of source. In any
1813 case, don't decide that here, just set ecs->another_trap,
1814 making sure we single-step again before breakpoints are
1815 re-inserted. */
1816 ecs->another_trap = 1;
1817 }
1818 }
1819
1820 /* Look at the cause of the stop, and decide what to do.
1821 The alternatives are:
1822 1) break; to really stop and return to the debugger,
1823 2) drop through to start up again
1824 (set ecs->another_trap to 1 to single step once)
1825 3) set ecs->random_signal to 1, and the decision between 1 and 2
1826 will be made according to the signal handling tables. */
1827
1828 /* First, distinguish signals caused by the debugger from signals
1829 that have to do with the program's own actions. Note that
1830 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1831 on the operating system version. Here we detect when a SIGILL or
1832 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1833 something similar for SIGSEGV, since a SIGSEGV will be generated
1834 when we're trying to execute a breakpoint instruction on a
1835 non-executable stack. This happens for call dummy breakpoints
1836 for architectures like SPARC that place call dummies on the
1837 stack. */
1838
1839 if (stop_signal == TARGET_SIGNAL_TRAP
1840 || (breakpoints_inserted
1841 && (stop_signal == TARGET_SIGNAL_ILL
1842 || stop_signal == TARGET_SIGNAL_SEGV
1843 || stop_signal == TARGET_SIGNAL_EMT))
1844 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1845 {
1846 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1847 {
1848 if (debug_infrun)
1849 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1850 stop_print_frame = 0;
1851 stop_stepping (ecs);
1852 return;
1853 }
1854
1855 /* This is originated from start_remote(), start_inferior() and
1856 shared libraries hook functions. */
1857 if (stop_soon == STOP_QUIETLY)
1858 {
1859 if (debug_infrun)
1860 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1861 stop_stepping (ecs);
1862 return;
1863 }
1864
1865 /* This originates from attach_command(). We need to overwrite
1866 the stop_signal here, because some kernels don't ignore a
1867 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1868 See more comments in inferior.h. */
1869 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1870 {
1871 stop_stepping (ecs);
1872 if (stop_signal == TARGET_SIGNAL_STOP)
1873 stop_signal = TARGET_SIGNAL_0;
1874 return;
1875 }
1876
1877 /* Don't even think about breakpoints if just proceeded over a
1878 breakpoint. */
1879 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1880 {
1881 if (debug_infrun)
1882 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1883 bpstat_clear (&stop_bpstat);
1884 }
1885 else
1886 {
1887 /* See if there is a breakpoint at the current PC. */
1888 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1889 stopped_by_watchpoint);
1890
1891 /* Following in case break condition called a
1892 function. */
1893 stop_print_frame = 1;
1894 }
1895
1896 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1897 at one stage in the past included checks for an inferior
1898 function call's call dummy's return breakpoint. The original
1899 comment, that went with the test, read:
1900
1901 ``End of a stack dummy. Some systems (e.g. Sony news) give
1902 another signal besides SIGTRAP, so check here as well as
1903 above.''
1904
1905 If someone ever tries to get get call dummys on a
1906 non-executable stack to work (where the target would stop
1907 with something like a SIGSEGV), then those tests might need
1908 to be re-instated. Given, however, that the tests were only
1909 enabled when momentary breakpoints were not being used, I
1910 suspect that it won't be the case.
1911
1912 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1913 be necessary for call dummies on a non-executable stack on
1914 SPARC. */
1915
1916 if (stop_signal == TARGET_SIGNAL_TRAP)
1917 ecs->random_signal
1918 = !(bpstat_explains_signal (stop_bpstat)
1919 || trap_expected
1920 || (step_range_end && step_resume_breakpoint == NULL));
1921 else
1922 {
1923 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1924 if (!ecs->random_signal)
1925 stop_signal = TARGET_SIGNAL_TRAP;
1926 }
1927 }
1928
1929 /* When we reach this point, we've pretty much decided
1930 that the reason for stopping must've been a random
1931 (unexpected) signal. */
1932
1933 else
1934 ecs->random_signal = 1;
1935
1936 process_event_stop_test:
1937 /* For the program's own signals, act according to
1938 the signal handling tables. */
1939
1940 if (ecs->random_signal)
1941 {
1942 /* Signal not for debugging purposes. */
1943 int printed = 0;
1944
1945 if (debug_infrun)
1946 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1947
1948 stopped_by_random_signal = 1;
1949
1950 if (signal_print[stop_signal])
1951 {
1952 printed = 1;
1953 target_terminal_ours_for_output ();
1954 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1955 }
1956 if (signal_stop[stop_signal])
1957 {
1958 stop_stepping (ecs);
1959 return;
1960 }
1961 /* If not going to stop, give terminal back
1962 if we took it away. */
1963 else if (printed)
1964 target_terminal_inferior ();
1965
1966 /* Clear the signal if it should not be passed. */
1967 if (signal_program[stop_signal] == 0)
1968 stop_signal = TARGET_SIGNAL_0;
1969
1970 if (prev_pc == read_pc ()
1971 && !breakpoints_inserted
1972 && breakpoint_here_p (read_pc ())
1973 && step_resume_breakpoint == NULL)
1974 {
1975 /* We were just starting a new sequence, attempting to
1976 single-step off of a breakpoint and expecting a SIGTRAP.
1977 Intead this signal arrives. This signal will take us out
1978 of the stepping range so GDB needs to remember to, when
1979 the signal handler returns, resume stepping off that
1980 breakpoint. */
1981 /* To simplify things, "continue" is forced to use the same
1982 code paths as single-step - set a breakpoint at the
1983 signal return address and then, once hit, step off that
1984 breakpoint. */
1985 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1986 ecs->step_after_step_resume_breakpoint = 1;
1987 keep_going (ecs);
1988 return;
1989 }
1990
1991 if (step_range_end != 0
1992 && stop_signal != TARGET_SIGNAL_0
1993 && stop_pc >= step_range_start && stop_pc < step_range_end
1994 && frame_id_eq (get_frame_id (get_current_frame ()),
1995 step_frame_id)
1996 && step_resume_breakpoint == NULL)
1997 {
1998 /* The inferior is about to take a signal that will take it
1999 out of the single step range. Set a breakpoint at the
2000 current PC (which is presumably where the signal handler
2001 will eventually return) and then allow the inferior to
2002 run free.
2003
2004 Note that this is only needed for a signal delivered
2005 while in the single-step range. Nested signals aren't a
2006 problem as they eventually all return. */
2007 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2008 keep_going (ecs);
2009 return;
2010 }
2011
2012 /* Note: step_resume_breakpoint may be non-NULL. This occures
2013 when either there's a nested signal, or when there's a
2014 pending signal enabled just as the signal handler returns
2015 (leaving the inferior at the step-resume-breakpoint without
2016 actually executing it). Either way continue until the
2017 breakpoint is really hit. */
2018 keep_going (ecs);
2019 return;
2020 }
2021
2022 /* Handle cases caused by hitting a breakpoint. */
2023 {
2024 CORE_ADDR jmp_buf_pc;
2025 struct bpstat_what what;
2026
2027 what = bpstat_what (stop_bpstat);
2028
2029 if (what.call_dummy)
2030 {
2031 stop_stack_dummy = 1;
2032 }
2033
2034 switch (what.main_action)
2035 {
2036 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2037 /* If we hit the breakpoint at longjmp, disable it for the
2038 duration of this command. Then, install a temporary
2039 breakpoint at the target of the jmp_buf. */
2040 if (debug_infrun)
2041 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2042 disable_longjmp_breakpoint ();
2043 remove_breakpoints ();
2044 breakpoints_inserted = 0;
2045 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2046 {
2047 keep_going (ecs);
2048 return;
2049 }
2050
2051 /* Need to blow away step-resume breakpoint, as it
2052 interferes with us */
2053 if (step_resume_breakpoint != NULL)
2054 {
2055 delete_step_resume_breakpoint (&step_resume_breakpoint);
2056 }
2057
2058 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2059 ecs->handling_longjmp = 1; /* FIXME */
2060 keep_going (ecs);
2061 return;
2062
2063 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2064 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2065 if (debug_infrun)
2066 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2067 remove_breakpoints ();
2068 breakpoints_inserted = 0;
2069 disable_longjmp_breakpoint ();
2070 ecs->handling_longjmp = 0; /* FIXME */
2071 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2072 break;
2073 /* else fallthrough */
2074
2075 case BPSTAT_WHAT_SINGLE:
2076 if (debug_infrun)
2077 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2078 if (breakpoints_inserted)
2079 {
2080 remove_breakpoints ();
2081 }
2082 breakpoints_inserted = 0;
2083 ecs->another_trap = 1;
2084 /* Still need to check other stuff, at least the case
2085 where we are stepping and step out of the right range. */
2086 break;
2087
2088 case BPSTAT_WHAT_STOP_NOISY:
2089 if (debug_infrun)
2090 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2091 stop_print_frame = 1;
2092
2093 /* We are about to nuke the step_resume_breakpointt via the
2094 cleanup chain, so no need to worry about it here. */
2095
2096 stop_stepping (ecs);
2097 return;
2098
2099 case BPSTAT_WHAT_STOP_SILENT:
2100 if (debug_infrun)
2101 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2102 stop_print_frame = 0;
2103
2104 /* We are about to nuke the step_resume_breakpoin via the
2105 cleanup chain, so no need to worry about it here. */
2106
2107 stop_stepping (ecs);
2108 return;
2109
2110 case BPSTAT_WHAT_STEP_RESUME:
2111 /* This proably demands a more elegant solution, but, yeah
2112 right...
2113
2114 This function's use of the simple variable
2115 step_resume_breakpoint doesn't seem to accomodate
2116 simultaneously active step-resume bp's, although the
2117 breakpoint list certainly can.
2118
2119 If we reach here and step_resume_breakpoint is already
2120 NULL, then apparently we have multiple active
2121 step-resume bp's. We'll just delete the breakpoint we
2122 stopped at, and carry on.
2123
2124 Correction: what the code currently does is delete a
2125 step-resume bp, but it makes no effort to ensure that
2126 the one deleted is the one currently stopped at. MVS */
2127
2128 if (debug_infrun)
2129 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2130
2131 if (step_resume_breakpoint == NULL)
2132 {
2133 step_resume_breakpoint =
2134 bpstat_find_step_resume_breakpoint (stop_bpstat);
2135 }
2136 delete_step_resume_breakpoint (&step_resume_breakpoint);
2137 if (ecs->step_after_step_resume_breakpoint)
2138 {
2139 /* Back when the step-resume breakpoint was inserted, we
2140 were trying to single-step off a breakpoint. Go back
2141 to doing that. */
2142 ecs->step_after_step_resume_breakpoint = 0;
2143 remove_breakpoints ();
2144 breakpoints_inserted = 0;
2145 ecs->another_trap = 1;
2146 keep_going (ecs);
2147 return;
2148 }
2149 break;
2150
2151 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2152 if (debug_infrun)
2153 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_THROUGH_SIGTRAMP\n");
2154 /* If were waiting for a trap, hitting the step_resume_break
2155 doesn't count as getting it. */
2156 if (trap_expected)
2157 ecs->another_trap = 1;
2158 break;
2159
2160 case BPSTAT_WHAT_CHECK_SHLIBS:
2161 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2162 {
2163 if (debug_infrun)
2164 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2165 /* Remove breakpoints, we eventually want to step over the
2166 shlib event breakpoint, and SOLIB_ADD might adjust
2167 breakpoint addresses via breakpoint_re_set. */
2168 if (breakpoints_inserted)
2169 remove_breakpoints ();
2170 breakpoints_inserted = 0;
2171
2172 /* Check for any newly added shared libraries if we're
2173 supposed to be adding them automatically. Switch
2174 terminal for any messages produced by
2175 breakpoint_re_set. */
2176 target_terminal_ours_for_output ();
2177 /* NOTE: cagney/2003-11-25: Make certain that the target
2178 stack's section table is kept up-to-date. Architectures,
2179 (e.g., PPC64), use the section table to perform
2180 operations such as address => section name and hence
2181 require the table to contain all sections (including
2182 those found in shared libraries). */
2183 /* NOTE: cagney/2003-11-25: Pass current_target and not
2184 exec_ops to SOLIB_ADD. This is because current GDB is
2185 only tooled to propagate section_table changes out from
2186 the "current_target" (see target_resize_to_sections), and
2187 not up from the exec stratum. This, of course, isn't
2188 right. "infrun.c" should only interact with the
2189 exec/process stratum, instead relying on the target stack
2190 to propagate relevant changes (stop, section table
2191 changed, ...) up to other layers. */
2192 #ifdef SOLIB_ADD
2193 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2194 #else
2195 solib_add (NULL, 0, &current_target, auto_solib_add);
2196 #endif
2197 target_terminal_inferior ();
2198
2199 /* Try to reenable shared library breakpoints, additional
2200 code segments in shared libraries might be mapped in now. */
2201 re_enable_breakpoints_in_shlibs ();
2202
2203 /* If requested, stop when the dynamic linker notifies
2204 gdb of events. This allows the user to get control
2205 and place breakpoints in initializer routines for
2206 dynamically loaded objects (among other things). */
2207 if (stop_on_solib_events || stop_stack_dummy)
2208 {
2209 stop_stepping (ecs);
2210 return;
2211 }
2212
2213 /* If we stopped due to an explicit catchpoint, then the
2214 (see above) call to SOLIB_ADD pulled in any symbols
2215 from a newly-loaded library, if appropriate.
2216
2217 We do want the inferior to stop, but not where it is
2218 now, which is in the dynamic linker callback. Rather,
2219 we would like it stop in the user's program, just after
2220 the call that caused this catchpoint to trigger. That
2221 gives the user a more useful vantage from which to
2222 examine their program's state. */
2223 else if (what.main_action
2224 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2225 {
2226 /* ??rehrauer: If I could figure out how to get the
2227 right return PC from here, we could just set a temp
2228 breakpoint and resume. I'm not sure we can without
2229 cracking open the dld's shared libraries and sniffing
2230 their unwind tables and text/data ranges, and that's
2231 not a terribly portable notion.
2232
2233 Until that time, we must step the inferior out of the
2234 dld callback, and also out of the dld itself (and any
2235 code or stubs in libdld.sl, such as "shl_load" and
2236 friends) until we reach non-dld code. At that point,
2237 we can stop stepping. */
2238 bpstat_get_triggered_catchpoints (stop_bpstat,
2239 &ecs->
2240 stepping_through_solib_catchpoints);
2241 ecs->stepping_through_solib_after_catch = 1;
2242
2243 /* Be sure to lift all breakpoints, so the inferior does
2244 actually step past this point... */
2245 ecs->another_trap = 1;
2246 break;
2247 }
2248 else
2249 {
2250 /* We want to step over this breakpoint, then keep going. */
2251 ecs->another_trap = 1;
2252 break;
2253 }
2254 }
2255 break;
2256
2257 case BPSTAT_WHAT_LAST:
2258 /* Not a real code, but listed here to shut up gcc -Wall. */
2259
2260 case BPSTAT_WHAT_KEEP_CHECKING:
2261 break;
2262 }
2263 }
2264
2265 /* We come here if we hit a breakpoint but should not
2266 stop for it. Possibly we also were stepping
2267 and should stop for that. So fall through and
2268 test for stepping. But, if not stepping,
2269 do not stop. */
2270
2271 /* Are we stepping to get the inferior out of the dynamic linker's
2272 hook (and possibly the dld itself) after catching a shlib
2273 event? */
2274 if (ecs->stepping_through_solib_after_catch)
2275 {
2276 #if defined(SOLIB_ADD)
2277 /* Have we reached our destination? If not, keep going. */
2278 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2279 {
2280 if (debug_infrun)
2281 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2282 ecs->another_trap = 1;
2283 keep_going (ecs);
2284 return;
2285 }
2286 #endif
2287 if (debug_infrun)
2288 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2289 /* Else, stop and report the catchpoint(s) whose triggering
2290 caused us to begin stepping. */
2291 ecs->stepping_through_solib_after_catch = 0;
2292 bpstat_clear (&stop_bpstat);
2293 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2294 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2295 stop_print_frame = 1;
2296 stop_stepping (ecs);
2297 return;
2298 }
2299
2300 if (step_resume_breakpoint)
2301 {
2302 if (debug_infrun)
2303 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
2304
2305 /* Having a step-resume breakpoint overrides anything
2306 else having to do with stepping commands until
2307 that breakpoint is reached. */
2308 keep_going (ecs);
2309 return;
2310 }
2311
2312 if (step_range_end == 0)
2313 {
2314 if (debug_infrun)
2315 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2316 /* Likewise if we aren't even stepping. */
2317 keep_going (ecs);
2318 return;
2319 }
2320
2321 /* If stepping through a line, keep going if still within it.
2322
2323 Note that step_range_end is the address of the first instruction
2324 beyond the step range, and NOT the address of the last instruction
2325 within it! */
2326 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2327 {
2328 if (debug_infrun)
2329 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2330 paddr_nz (step_range_start),
2331 paddr_nz (step_range_end));
2332 keep_going (ecs);
2333 return;
2334 }
2335
2336 /* We stepped out of the stepping range. */
2337
2338 /* If we are stepping at the source level and entered the runtime
2339 loader dynamic symbol resolution code, we keep on single stepping
2340 until we exit the run time loader code and reach the callee's
2341 address. */
2342 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2343 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2344 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2345 #else
2346 && in_solib_dynsym_resolve_code (stop_pc)
2347 #endif
2348 )
2349 {
2350 CORE_ADDR pc_after_resolver =
2351 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2352
2353 if (debug_infrun)
2354 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2355
2356 if (pc_after_resolver)
2357 {
2358 /* Set up a step-resume breakpoint at the address
2359 indicated by SKIP_SOLIB_RESOLVER. */
2360 struct symtab_and_line sr_sal;
2361 init_sal (&sr_sal);
2362 sr_sal.pc = pc_after_resolver;
2363
2364 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2365 }
2366
2367 keep_going (ecs);
2368 return;
2369 }
2370
2371 if (step_range_end != 1
2372 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2373 || step_over_calls == STEP_OVER_ALL)
2374 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2375 {
2376 if (debug_infrun)
2377 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2378 /* The inferior, while doing a "step" or "next", has ended up in
2379 a signal trampoline (either by a signal being delivered or by
2380 the signal handler returning). Just single-step until the
2381 inferior leaves the trampoline (either by calling the handler
2382 or returning). */
2383 keep_going (ecs);
2384 return;
2385 }
2386
2387 /* Check for subroutine calls. The check for the current frame
2388 equalling the step ID is not necessary - the check of the
2389 previous frame's ID is sufficient - but it is a common case and
2390 cheaper than checking the previous frame's ID.
2391
2392 NOTE: frame_id_eq will never report two invalid frame IDs as
2393 being equal, so to get into this block, both the current and
2394 previous frame must have valid frame IDs. */
2395 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2396 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2397 {
2398 CORE_ADDR real_stop_pc;
2399
2400 if (debug_infrun)
2401 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2402
2403 if ((step_over_calls == STEP_OVER_NONE)
2404 || ((step_range_end == 1)
2405 && in_prologue (prev_pc, ecs->stop_func_start)))
2406 {
2407 /* I presume that step_over_calls is only 0 when we're
2408 supposed to be stepping at the assembly language level
2409 ("stepi"). Just stop. */
2410 /* Also, maybe we just did a "nexti" inside a prolog, so we
2411 thought it was a subroutine call but it was not. Stop as
2412 well. FENN */
2413 stop_step = 1;
2414 print_stop_reason (END_STEPPING_RANGE, 0);
2415 stop_stepping (ecs);
2416 return;
2417 }
2418
2419 if (step_over_calls == STEP_OVER_ALL)
2420 {
2421 /* We're doing a "next", set a breakpoint at callee's return
2422 address (the address at which the caller will
2423 resume). */
2424 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2425 keep_going (ecs);
2426 return;
2427 }
2428
2429 /* If we are in a function call trampoline (a stub between the
2430 calling routine and the real function), locate the real
2431 function. That's what tells us (a) whether we want to step
2432 into it at all, and (b) what prologue we want to run to the
2433 end of, if we do step into it. */
2434 real_stop_pc = skip_language_trampoline (stop_pc);
2435 if (real_stop_pc == 0)
2436 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2437 if (real_stop_pc != 0)
2438 ecs->stop_func_start = real_stop_pc;
2439
2440 if (
2441 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2442 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2443 #else
2444 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2445 #endif
2446 )
2447 {
2448 struct symtab_and_line sr_sal;
2449 init_sal (&sr_sal);
2450 sr_sal.pc = ecs->stop_func_start;
2451
2452 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2453 keep_going (ecs);
2454 return;
2455 }
2456
2457 /* If we have line number information for the function we are
2458 thinking of stepping into, step into it.
2459
2460 If there are several symtabs at that PC (e.g. with include
2461 files), just want to know whether *any* of them have line
2462 numbers. find_pc_line handles this. */
2463 {
2464 struct symtab_and_line tmp_sal;
2465
2466 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2467 if (tmp_sal.line != 0)
2468 {
2469 step_into_function (ecs);
2470 return;
2471 }
2472 }
2473
2474 /* If we have no line number and the step-stop-if-no-debug is
2475 set, we stop the step so that the user has a chance to switch
2476 in assembly mode. */
2477 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2478 {
2479 stop_step = 1;
2480 print_stop_reason (END_STEPPING_RANGE, 0);
2481 stop_stepping (ecs);
2482 return;
2483 }
2484
2485 /* Set a breakpoint at callee's return address (the address at
2486 which the caller will resume). */
2487 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2488 keep_going (ecs);
2489 return;
2490 }
2491
2492 /* If we're in the return path from a shared library trampoline,
2493 we want to proceed through the trampoline when stepping. */
2494 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2495 {
2496 /* Determine where this trampoline returns. */
2497 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2498
2499 if (debug_infrun)
2500 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2501
2502 /* Only proceed through if we know where it's going. */
2503 if (real_stop_pc)
2504 {
2505 /* And put the step-breakpoint there and go until there. */
2506 struct symtab_and_line sr_sal;
2507
2508 init_sal (&sr_sal); /* initialize to zeroes */
2509 sr_sal.pc = real_stop_pc;
2510 sr_sal.section = find_pc_overlay (sr_sal.pc);
2511
2512 /* Do not specify what the fp should be when we stop since
2513 on some machines the prologue is where the new fp value
2514 is established. */
2515 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2516
2517 /* Restart without fiddling with the step ranges or
2518 other state. */
2519 keep_going (ecs);
2520 return;
2521 }
2522 }
2523
2524 ecs->sal = find_pc_line (stop_pc, 0);
2525
2526 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2527 the trampoline processing logic, however, there are some trampolines
2528 that have no names, so we should do trampoline handling first. */
2529 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2530 && ecs->stop_func_name == NULL
2531 && ecs->sal.line == 0)
2532 {
2533 if (debug_infrun)
2534 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2535
2536 /* The inferior just stepped into, or returned to, an
2537 undebuggable function (where there is no debugging information
2538 and no line number corresponding to the address where the
2539 inferior stopped). Since we want to skip this kind of code,
2540 we keep going until the inferior returns from this
2541 function - unless the user has asked us not to (via
2542 set step-mode) or we no longer know how to get back
2543 to the call site. */
2544 if (step_stop_if_no_debug
2545 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2546 {
2547 /* If we have no line number and the step-stop-if-no-debug
2548 is set, we stop the step so that the user has a chance to
2549 switch in assembly mode. */
2550 stop_step = 1;
2551 print_stop_reason (END_STEPPING_RANGE, 0);
2552 stop_stepping (ecs);
2553 return;
2554 }
2555 else
2556 {
2557 /* Set a breakpoint at callee's return address (the address
2558 at which the caller will resume). */
2559 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2560 keep_going (ecs);
2561 return;
2562 }
2563 }
2564
2565 if (step_range_end == 1)
2566 {
2567 /* It is stepi or nexti. We always want to stop stepping after
2568 one instruction. */
2569 if (debug_infrun)
2570 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2571 stop_step = 1;
2572 print_stop_reason (END_STEPPING_RANGE, 0);
2573 stop_stepping (ecs);
2574 return;
2575 }
2576
2577 if (ecs->sal.line == 0)
2578 {
2579 /* We have no line number information. That means to stop
2580 stepping (does this always happen right after one instruction,
2581 when we do "s" in a function with no line numbers,
2582 or can this happen as a result of a return or longjmp?). */
2583 if (debug_infrun)
2584 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2585 stop_step = 1;
2586 print_stop_reason (END_STEPPING_RANGE, 0);
2587 stop_stepping (ecs);
2588 return;
2589 }
2590
2591 if ((stop_pc == ecs->sal.pc)
2592 && (ecs->current_line != ecs->sal.line
2593 || ecs->current_symtab != ecs->sal.symtab))
2594 {
2595 /* We are at the start of a different line. So stop. Note that
2596 we don't stop if we step into the middle of a different line.
2597 That is said to make things like for (;;) statements work
2598 better. */
2599 if (debug_infrun)
2600 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2601 stop_step = 1;
2602 print_stop_reason (END_STEPPING_RANGE, 0);
2603 stop_stepping (ecs);
2604 return;
2605 }
2606
2607 /* We aren't done stepping.
2608
2609 Optimize by setting the stepping range to the line.
2610 (We might not be in the original line, but if we entered a
2611 new line in mid-statement, we continue stepping. This makes
2612 things like for(;;) statements work better.) */
2613
2614 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2615 {
2616 /* If this is the last line of the function, don't keep stepping
2617 (it would probably step us out of the function).
2618 This is particularly necessary for a one-line function,
2619 in which after skipping the prologue we better stop even though
2620 we will be in mid-line. */
2621 if (debug_infrun)
2622 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2623 stop_step = 1;
2624 print_stop_reason (END_STEPPING_RANGE, 0);
2625 stop_stepping (ecs);
2626 return;
2627 }
2628 step_range_start = ecs->sal.pc;
2629 step_range_end = ecs->sal.end;
2630 step_frame_id = get_frame_id (get_current_frame ());
2631 ecs->current_line = ecs->sal.line;
2632 ecs->current_symtab = ecs->sal.symtab;
2633
2634 /* In the case where we just stepped out of a function into the
2635 middle of a line of the caller, continue stepping, but
2636 step_frame_id must be modified to current frame */
2637 #if 0
2638 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2639 generous. It will trigger on things like a step into a frameless
2640 stackless leaf function. I think the logic should instead look
2641 at the unwound frame ID has that should give a more robust
2642 indication of what happened. */
2643 if (step - ID == current - ID)
2644 still stepping in same function;
2645 else if (step - ID == unwind (current - ID))
2646 stepped into a function;
2647 else
2648 stepped out of a function;
2649 /* Of course this assumes that the frame ID unwind code is robust
2650 and we're willing to introduce frame unwind logic into this
2651 function. Fortunately, those days are nearly upon us. */
2652 #endif
2653 {
2654 struct frame_id current_frame = get_frame_id (get_current_frame ());
2655 if (!(frame_id_inner (current_frame, step_frame_id)))
2656 step_frame_id = current_frame;
2657 }
2658
2659 if (debug_infrun)
2660 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2661 keep_going (ecs);
2662 }
2663
2664 /* Are we in the middle of stepping? */
2665
2666 static int
2667 currently_stepping (struct execution_control_state *ecs)
2668 {
2669 return ((!ecs->handling_longjmp
2670 && ((step_range_end && step_resume_breakpoint == NULL)
2671 || trap_expected))
2672 || ecs->stepping_through_solib_after_catch
2673 || bpstat_should_step ());
2674 }
2675
2676 /* Subroutine call with source code we should not step over. Do step
2677 to the first line of code in it. */
2678
2679 static void
2680 step_into_function (struct execution_control_state *ecs)
2681 {
2682 struct symtab *s;
2683 struct symtab_and_line sr_sal;
2684
2685 s = find_pc_symtab (stop_pc);
2686 if (s && s->language != language_asm)
2687 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2688
2689 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2690 /* Use the step_resume_break to step until the end of the prologue,
2691 even if that involves jumps (as it seems to on the vax under
2692 4.2). */
2693 /* If the prologue ends in the middle of a source line, continue to
2694 the end of that source line (if it is still within the function).
2695 Otherwise, just go to end of prologue. */
2696 if (ecs->sal.end
2697 && ecs->sal.pc != ecs->stop_func_start
2698 && ecs->sal.end < ecs->stop_func_end)
2699 ecs->stop_func_start = ecs->sal.end;
2700
2701 /* Architectures which require breakpoint adjustment might not be able
2702 to place a breakpoint at the computed address. If so, the test
2703 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2704 ecs->stop_func_start to an address at which a breakpoint may be
2705 legitimately placed.
2706
2707 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2708 made, GDB will enter an infinite loop when stepping through
2709 optimized code consisting of VLIW instructions which contain
2710 subinstructions corresponding to different source lines. On
2711 FR-V, it's not permitted to place a breakpoint on any but the
2712 first subinstruction of a VLIW instruction. When a breakpoint is
2713 set, GDB will adjust the breakpoint address to the beginning of
2714 the VLIW instruction. Thus, we need to make the corresponding
2715 adjustment here when computing the stop address. */
2716
2717 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2718 {
2719 ecs->stop_func_start
2720 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2721 ecs->stop_func_start);
2722 }
2723
2724 if (ecs->stop_func_start == stop_pc)
2725 {
2726 /* We are already there: stop now. */
2727 stop_step = 1;
2728 print_stop_reason (END_STEPPING_RANGE, 0);
2729 stop_stepping (ecs);
2730 return;
2731 }
2732 else
2733 {
2734 /* Put the step-breakpoint there and go until there. */
2735 init_sal (&sr_sal); /* initialize to zeroes */
2736 sr_sal.pc = ecs->stop_func_start;
2737 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2738
2739 /* Do not specify what the fp should be when we stop since on
2740 some machines the prologue is where the new fp value is
2741 established. */
2742 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2743
2744 /* And make sure stepping stops right away then. */
2745 step_range_end = step_range_start;
2746 }
2747 keep_going (ecs);
2748 }
2749
2750 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2751 This is used to both functions and to skip over code. */
2752
2753 static void
2754 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2755 struct frame_id sr_id)
2756 {
2757 /* There should never be more than one step-resume breakpoint per
2758 thread, so we should never be setting a new
2759 step_resume_breakpoint when one is already active. */
2760 gdb_assert (step_resume_breakpoint == NULL);
2761 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2762 bp_step_resume);
2763 if (breakpoints_inserted)
2764 insert_breakpoints ();
2765 }
2766
2767 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2768 to skip a potential signal handler.
2769
2770 This is called with the interrupted function's frame. The signal
2771 handler, when it returns, will resume the interrupted function at
2772 RETURN_FRAME.pc. */
2773
2774 static void
2775 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2776 {
2777 struct symtab_and_line sr_sal;
2778
2779 init_sal (&sr_sal); /* initialize to zeros */
2780
2781 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2782 sr_sal.section = find_pc_overlay (sr_sal.pc);
2783
2784 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2785 }
2786
2787 /* Similar to insert_step_resume_breakpoint_at_frame, except
2788 but a breakpoint at the previous frame's PC. This is used to
2789 skip a function after stepping into it (for "next" or if the called
2790 function has no debugging information).
2791
2792 The current function has almost always been reached by single
2793 stepping a call or return instruction. NEXT_FRAME belongs to the
2794 current function, and the breakpoint will be set at the caller's
2795 resume address.
2796
2797 This is a separate function rather than reusing
2798 insert_step_resume_breakpoint_at_frame in order to avoid
2799 get_prev_frame, which may stop prematurely (see the implementation
2800 of frame_unwind_id for an example). */
2801
2802 static void
2803 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2804 {
2805 struct symtab_and_line sr_sal;
2806
2807 /* We shouldn't have gotten here if we don't know where the call site
2808 is. */
2809 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2810
2811 init_sal (&sr_sal); /* initialize to zeros */
2812
2813 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (next_frame));
2814 sr_sal.section = find_pc_overlay (sr_sal.pc);
2815
2816 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2817 }
2818
2819 static void
2820 stop_stepping (struct execution_control_state *ecs)
2821 {
2822 if (debug_infrun)
2823 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2824
2825 /* Let callers know we don't want to wait for the inferior anymore. */
2826 ecs->wait_some_more = 0;
2827 }
2828
2829 /* This function handles various cases where we need to continue
2830 waiting for the inferior. */
2831 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2832
2833 static void
2834 keep_going (struct execution_control_state *ecs)
2835 {
2836 /* Save the pc before execution, to compare with pc after stop. */
2837 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2838
2839 /* If we did not do break;, it means we should keep running the
2840 inferior and not return to debugger. */
2841
2842 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2843 {
2844 /* We took a signal (which we are supposed to pass through to
2845 the inferior, else we'd have done a break above) and we
2846 haven't yet gotten our trap. Simply continue. */
2847 resume (currently_stepping (ecs), stop_signal);
2848 }
2849 else
2850 {
2851 /* Either the trap was not expected, but we are continuing
2852 anyway (the user asked that this signal be passed to the
2853 child)
2854 -- or --
2855 The signal was SIGTRAP, e.g. it was our signal, but we
2856 decided we should resume from it.
2857
2858 We're going to run this baby now! */
2859
2860 if (!breakpoints_inserted && !ecs->another_trap)
2861 {
2862 breakpoints_failed = insert_breakpoints ();
2863 if (breakpoints_failed)
2864 {
2865 stop_stepping (ecs);
2866 return;
2867 }
2868 breakpoints_inserted = 1;
2869 }
2870
2871 trap_expected = ecs->another_trap;
2872
2873 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2874 specifies that such a signal should be delivered to the
2875 target program).
2876
2877 Typically, this would occure when a user is debugging a
2878 target monitor on a simulator: the target monitor sets a
2879 breakpoint; the simulator encounters this break-point and
2880 halts the simulation handing control to GDB; GDB, noteing
2881 that the break-point isn't valid, returns control back to the
2882 simulator; the simulator then delivers the hardware
2883 equivalent of a SIGNAL_TRAP to the program being debugged. */
2884
2885 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2886 stop_signal = TARGET_SIGNAL_0;
2887
2888
2889 resume (currently_stepping (ecs), stop_signal);
2890 }
2891
2892 prepare_to_wait (ecs);
2893 }
2894
2895 /* This function normally comes after a resume, before
2896 handle_inferior_event exits. It takes care of any last bits of
2897 housekeeping, and sets the all-important wait_some_more flag. */
2898
2899 static void
2900 prepare_to_wait (struct execution_control_state *ecs)
2901 {
2902 if (debug_infrun)
2903 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2904 if (ecs->infwait_state == infwait_normal_state)
2905 {
2906 overlay_cache_invalid = 1;
2907
2908 /* We have to invalidate the registers BEFORE calling
2909 target_wait because they can be loaded from the target while
2910 in target_wait. This makes remote debugging a bit more
2911 efficient for those targets that provide critical registers
2912 as part of their normal status mechanism. */
2913
2914 registers_changed ();
2915 ecs->waiton_ptid = pid_to_ptid (-1);
2916 ecs->wp = &(ecs->ws);
2917 }
2918 /* This is the old end of the while loop. Let everybody know we
2919 want to wait for the inferior some more and get called again
2920 soon. */
2921 ecs->wait_some_more = 1;
2922 }
2923
2924 /* Print why the inferior has stopped. We always print something when
2925 the inferior exits, or receives a signal. The rest of the cases are
2926 dealt with later on in normal_stop() and print_it_typical(). Ideally
2927 there should be a call to this function from handle_inferior_event()
2928 each time stop_stepping() is called.*/
2929 static void
2930 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2931 {
2932 switch (stop_reason)
2933 {
2934 case STOP_UNKNOWN:
2935 /* We don't deal with these cases from handle_inferior_event()
2936 yet. */
2937 break;
2938 case END_STEPPING_RANGE:
2939 /* We are done with a step/next/si/ni command. */
2940 /* For now print nothing. */
2941 /* Print a message only if not in the middle of doing a "step n"
2942 operation for n > 1 */
2943 if (!step_multi || !stop_step)
2944 if (ui_out_is_mi_like_p (uiout))
2945 ui_out_field_string
2946 (uiout, "reason",
2947 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2948 break;
2949 case BREAKPOINT_HIT:
2950 /* We found a breakpoint. */
2951 /* For now print nothing. */
2952 break;
2953 case SIGNAL_EXITED:
2954 /* The inferior was terminated by a signal. */
2955 annotate_signalled ();
2956 if (ui_out_is_mi_like_p (uiout))
2957 ui_out_field_string
2958 (uiout, "reason",
2959 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2960 ui_out_text (uiout, "\nProgram terminated with signal ");
2961 annotate_signal_name ();
2962 ui_out_field_string (uiout, "signal-name",
2963 target_signal_to_name (stop_info));
2964 annotate_signal_name_end ();
2965 ui_out_text (uiout, ", ");
2966 annotate_signal_string ();
2967 ui_out_field_string (uiout, "signal-meaning",
2968 target_signal_to_string (stop_info));
2969 annotate_signal_string_end ();
2970 ui_out_text (uiout, ".\n");
2971 ui_out_text (uiout, "The program no longer exists.\n");
2972 break;
2973 case EXITED:
2974 /* The inferior program is finished. */
2975 annotate_exited (stop_info);
2976 if (stop_info)
2977 {
2978 if (ui_out_is_mi_like_p (uiout))
2979 ui_out_field_string (uiout, "reason",
2980 async_reason_lookup (EXEC_ASYNC_EXITED));
2981 ui_out_text (uiout, "\nProgram exited with code ");
2982 ui_out_field_fmt (uiout, "exit-code", "0%o",
2983 (unsigned int) stop_info);
2984 ui_out_text (uiout, ".\n");
2985 }
2986 else
2987 {
2988 if (ui_out_is_mi_like_p (uiout))
2989 ui_out_field_string
2990 (uiout, "reason",
2991 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
2992 ui_out_text (uiout, "\nProgram exited normally.\n");
2993 }
2994 /* Support the --return-child-result option. */
2995 return_child_result_value = stop_info;
2996 break;
2997 case SIGNAL_RECEIVED:
2998 /* Signal received. The signal table tells us to print about
2999 it. */
3000 annotate_signal ();
3001 ui_out_text (uiout, "\nProgram received signal ");
3002 annotate_signal_name ();
3003 if (ui_out_is_mi_like_p (uiout))
3004 ui_out_field_string
3005 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3006 ui_out_field_string (uiout, "signal-name",
3007 target_signal_to_name (stop_info));
3008 annotate_signal_name_end ();
3009 ui_out_text (uiout, ", ");
3010 annotate_signal_string ();
3011 ui_out_field_string (uiout, "signal-meaning",
3012 target_signal_to_string (stop_info));
3013 annotate_signal_string_end ();
3014 ui_out_text (uiout, ".\n");
3015 break;
3016 default:
3017 internal_error (__FILE__, __LINE__,
3018 _("print_stop_reason: unrecognized enum value"));
3019 break;
3020 }
3021 }
3022 \f
3023
3024 /* Here to return control to GDB when the inferior stops for real.
3025 Print appropriate messages, remove breakpoints, give terminal our modes.
3026
3027 STOP_PRINT_FRAME nonzero means print the executing frame
3028 (pc, function, args, file, line number and line text).
3029 BREAKPOINTS_FAILED nonzero means stop was due to error
3030 attempting to insert breakpoints. */
3031
3032 void
3033 normal_stop (void)
3034 {
3035 struct target_waitstatus last;
3036 ptid_t last_ptid;
3037
3038 get_last_target_status (&last_ptid, &last);
3039
3040 /* As with the notification of thread events, we want to delay
3041 notifying the user that we've switched thread context until
3042 the inferior actually stops.
3043
3044 There's no point in saying anything if the inferior has exited.
3045 Note that SIGNALLED here means "exited with a signal", not
3046 "received a signal". */
3047 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3048 && target_has_execution
3049 && last.kind != TARGET_WAITKIND_SIGNALLED
3050 && last.kind != TARGET_WAITKIND_EXITED)
3051 {
3052 target_terminal_ours_for_output ();
3053 printf_filtered (_("[Switching to %s]\n"),
3054 target_pid_or_tid_to_str (inferior_ptid));
3055 previous_inferior_ptid = inferior_ptid;
3056 }
3057
3058 /* NOTE drow/2004-01-17: Is this still necessary? */
3059 /* Make sure that the current_frame's pc is correct. This
3060 is a correction for setting up the frame info before doing
3061 DECR_PC_AFTER_BREAK */
3062 if (target_has_execution)
3063 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3064 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3065 frame code to check for this and sort out any resultant mess.
3066 DECR_PC_AFTER_BREAK needs to just go away. */
3067 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3068
3069 if (target_has_execution && breakpoints_inserted)
3070 {
3071 if (remove_breakpoints ())
3072 {
3073 target_terminal_ours_for_output ();
3074 printf_filtered (_("\
3075 Cannot remove breakpoints because program is no longer writable.\n\
3076 It might be running in another process.\n\
3077 Further execution is probably impossible.\n"));
3078 }
3079 }
3080 breakpoints_inserted = 0;
3081
3082 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3083 Delete any breakpoint that is to be deleted at the next stop. */
3084
3085 breakpoint_auto_delete (stop_bpstat);
3086
3087 /* If an auto-display called a function and that got a signal,
3088 delete that auto-display to avoid an infinite recursion. */
3089
3090 if (stopped_by_random_signal)
3091 disable_current_display ();
3092
3093 /* Don't print a message if in the middle of doing a "step n"
3094 operation for n > 1 */
3095 if (step_multi && stop_step)
3096 goto done;
3097
3098 target_terminal_ours ();
3099
3100 /* Set the current source location. This will also happen if we
3101 display the frame below, but the current SAL will be incorrect
3102 during a user hook-stop function. */
3103 if (target_has_stack && !stop_stack_dummy)
3104 set_current_sal_from_frame (get_current_frame (), 1);
3105
3106 /* Look up the hook_stop and run it (CLI internally handles problem
3107 of stop_command's pre-hook not existing). */
3108 if (stop_command)
3109 catch_errors (hook_stop_stub, stop_command,
3110 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3111
3112 if (!target_has_stack)
3113 {
3114
3115 goto done;
3116 }
3117
3118 /* Select innermost stack frame - i.e., current frame is frame 0,
3119 and current location is based on that.
3120 Don't do this on return from a stack dummy routine,
3121 or if the program has exited. */
3122
3123 if (!stop_stack_dummy)
3124 {
3125 select_frame (get_current_frame ());
3126
3127 /* Print current location without a level number, if
3128 we have changed functions or hit a breakpoint.
3129 Print source line if we have one.
3130 bpstat_print() contains the logic deciding in detail
3131 what to print, based on the event(s) that just occurred. */
3132
3133 if (stop_print_frame && deprecated_selected_frame)
3134 {
3135 int bpstat_ret;
3136 int source_flag;
3137 int do_frame_printing = 1;
3138
3139 bpstat_ret = bpstat_print (stop_bpstat);
3140 switch (bpstat_ret)
3141 {
3142 case PRINT_UNKNOWN:
3143 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3144 (or should) carry around the function and does (or
3145 should) use that when doing a frame comparison. */
3146 if (stop_step
3147 && frame_id_eq (step_frame_id,
3148 get_frame_id (get_current_frame ()))
3149 && step_start_function == find_pc_function (stop_pc))
3150 source_flag = SRC_LINE; /* finished step, just print source line */
3151 else
3152 source_flag = SRC_AND_LOC; /* print location and source line */
3153 break;
3154 case PRINT_SRC_AND_LOC:
3155 source_flag = SRC_AND_LOC; /* print location and source line */
3156 break;
3157 case PRINT_SRC_ONLY:
3158 source_flag = SRC_LINE;
3159 break;
3160 case PRINT_NOTHING:
3161 source_flag = SRC_LINE; /* something bogus */
3162 do_frame_printing = 0;
3163 break;
3164 default:
3165 internal_error (__FILE__, __LINE__, _("Unknown value."));
3166 }
3167 /* For mi, have the same behavior every time we stop:
3168 print everything but the source line. */
3169 if (ui_out_is_mi_like_p (uiout))
3170 source_flag = LOC_AND_ADDRESS;
3171
3172 if (ui_out_is_mi_like_p (uiout))
3173 ui_out_field_int (uiout, "thread-id",
3174 pid_to_thread_id (inferior_ptid));
3175 /* The behavior of this routine with respect to the source
3176 flag is:
3177 SRC_LINE: Print only source line
3178 LOCATION: Print only location
3179 SRC_AND_LOC: Print location and source line */
3180 if (do_frame_printing)
3181 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3182
3183 /* Display the auto-display expressions. */
3184 do_displays ();
3185 }
3186 }
3187
3188 /* Save the function value return registers, if we care.
3189 We might be about to restore their previous contents. */
3190 if (proceed_to_finish)
3191 /* NB: The copy goes through to the target picking up the value of
3192 all the registers. */
3193 regcache_cpy (stop_registers, current_regcache);
3194
3195 if (stop_stack_dummy)
3196 {
3197 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3198 ends with a setting of the current frame, so we can use that
3199 next. */
3200 frame_pop (get_current_frame ());
3201 /* Set stop_pc to what it was before we called the function.
3202 Can't rely on restore_inferior_status because that only gets
3203 called if we don't stop in the called function. */
3204 stop_pc = read_pc ();
3205 select_frame (get_current_frame ());
3206 }
3207
3208 done:
3209 annotate_stopped ();
3210 observer_notify_normal_stop (stop_bpstat);
3211 }
3212
3213 static int
3214 hook_stop_stub (void *cmd)
3215 {
3216 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3217 return (0);
3218 }
3219 \f
3220 int
3221 signal_stop_state (int signo)
3222 {
3223 return signal_stop[signo];
3224 }
3225
3226 int
3227 signal_print_state (int signo)
3228 {
3229 return signal_print[signo];
3230 }
3231
3232 int
3233 signal_pass_state (int signo)
3234 {
3235 return signal_program[signo];
3236 }
3237
3238 int
3239 signal_stop_update (int signo, int state)
3240 {
3241 int ret = signal_stop[signo];
3242 signal_stop[signo] = state;
3243 return ret;
3244 }
3245
3246 int
3247 signal_print_update (int signo, int state)
3248 {
3249 int ret = signal_print[signo];
3250 signal_print[signo] = state;
3251 return ret;
3252 }
3253
3254 int
3255 signal_pass_update (int signo, int state)
3256 {
3257 int ret = signal_program[signo];
3258 signal_program[signo] = state;
3259 return ret;
3260 }
3261
3262 static void
3263 sig_print_header (void)
3264 {
3265 printf_filtered (_("\
3266 Signal Stop\tPrint\tPass to program\tDescription\n"));
3267 }
3268
3269 static void
3270 sig_print_info (enum target_signal oursig)
3271 {
3272 char *name = target_signal_to_name (oursig);
3273 int name_padding = 13 - strlen (name);
3274
3275 if (name_padding <= 0)
3276 name_padding = 0;
3277
3278 printf_filtered ("%s", name);
3279 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3280 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3281 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3282 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3283 printf_filtered ("%s\n", target_signal_to_string (oursig));
3284 }
3285
3286 /* Specify how various signals in the inferior should be handled. */
3287
3288 static void
3289 handle_command (char *args, int from_tty)
3290 {
3291 char **argv;
3292 int digits, wordlen;
3293 int sigfirst, signum, siglast;
3294 enum target_signal oursig;
3295 int allsigs;
3296 int nsigs;
3297 unsigned char *sigs;
3298 struct cleanup *old_chain;
3299
3300 if (args == NULL)
3301 {
3302 error_no_arg (_("signal to handle"));
3303 }
3304
3305 /* Allocate and zero an array of flags for which signals to handle. */
3306
3307 nsigs = (int) TARGET_SIGNAL_LAST;
3308 sigs = (unsigned char *) alloca (nsigs);
3309 memset (sigs, 0, nsigs);
3310
3311 /* Break the command line up into args. */
3312
3313 argv = buildargv (args);
3314 if (argv == NULL)
3315 {
3316 nomem (0);
3317 }
3318 old_chain = make_cleanup_freeargv (argv);
3319
3320 /* Walk through the args, looking for signal oursigs, signal names, and
3321 actions. Signal numbers and signal names may be interspersed with
3322 actions, with the actions being performed for all signals cumulatively
3323 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3324
3325 while (*argv != NULL)
3326 {
3327 wordlen = strlen (*argv);
3328 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3329 {;
3330 }
3331 allsigs = 0;
3332 sigfirst = siglast = -1;
3333
3334 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3335 {
3336 /* Apply action to all signals except those used by the
3337 debugger. Silently skip those. */
3338 allsigs = 1;
3339 sigfirst = 0;
3340 siglast = nsigs - 1;
3341 }
3342 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3343 {
3344 SET_SIGS (nsigs, sigs, signal_stop);
3345 SET_SIGS (nsigs, sigs, signal_print);
3346 }
3347 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3348 {
3349 UNSET_SIGS (nsigs, sigs, signal_program);
3350 }
3351 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3352 {
3353 SET_SIGS (nsigs, sigs, signal_print);
3354 }
3355 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3356 {
3357 SET_SIGS (nsigs, sigs, signal_program);
3358 }
3359 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3360 {
3361 UNSET_SIGS (nsigs, sigs, signal_stop);
3362 }
3363 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3364 {
3365 SET_SIGS (nsigs, sigs, signal_program);
3366 }
3367 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3368 {
3369 UNSET_SIGS (nsigs, sigs, signal_print);
3370 UNSET_SIGS (nsigs, sigs, signal_stop);
3371 }
3372 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3373 {
3374 UNSET_SIGS (nsigs, sigs, signal_program);
3375 }
3376 else if (digits > 0)
3377 {
3378 /* It is numeric. The numeric signal refers to our own
3379 internal signal numbering from target.h, not to host/target
3380 signal number. This is a feature; users really should be
3381 using symbolic names anyway, and the common ones like
3382 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3383
3384 sigfirst = siglast = (int)
3385 target_signal_from_command (atoi (*argv));
3386 if ((*argv)[digits] == '-')
3387 {
3388 siglast = (int)
3389 target_signal_from_command (atoi ((*argv) + digits + 1));
3390 }
3391 if (sigfirst > siglast)
3392 {
3393 /* Bet he didn't figure we'd think of this case... */
3394 signum = sigfirst;
3395 sigfirst = siglast;
3396 siglast = signum;
3397 }
3398 }
3399 else
3400 {
3401 oursig = target_signal_from_name (*argv);
3402 if (oursig != TARGET_SIGNAL_UNKNOWN)
3403 {
3404 sigfirst = siglast = (int) oursig;
3405 }
3406 else
3407 {
3408 /* Not a number and not a recognized flag word => complain. */
3409 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3410 }
3411 }
3412
3413 /* If any signal numbers or symbol names were found, set flags for
3414 which signals to apply actions to. */
3415
3416 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3417 {
3418 switch ((enum target_signal) signum)
3419 {
3420 case TARGET_SIGNAL_TRAP:
3421 case TARGET_SIGNAL_INT:
3422 if (!allsigs && !sigs[signum])
3423 {
3424 if (query ("%s is used by the debugger.\n\
3425 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3426 {
3427 sigs[signum] = 1;
3428 }
3429 else
3430 {
3431 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3432 gdb_flush (gdb_stdout);
3433 }
3434 }
3435 break;
3436 case TARGET_SIGNAL_0:
3437 case TARGET_SIGNAL_DEFAULT:
3438 case TARGET_SIGNAL_UNKNOWN:
3439 /* Make sure that "all" doesn't print these. */
3440 break;
3441 default:
3442 sigs[signum] = 1;
3443 break;
3444 }
3445 }
3446
3447 argv++;
3448 }
3449
3450 target_notice_signals (inferior_ptid);
3451
3452 if (from_tty)
3453 {
3454 /* Show the results. */
3455 sig_print_header ();
3456 for (signum = 0; signum < nsigs; signum++)
3457 {
3458 if (sigs[signum])
3459 {
3460 sig_print_info (signum);
3461 }
3462 }
3463 }
3464
3465 do_cleanups (old_chain);
3466 }
3467
3468 static void
3469 xdb_handle_command (char *args, int from_tty)
3470 {
3471 char **argv;
3472 struct cleanup *old_chain;
3473
3474 /* Break the command line up into args. */
3475
3476 argv = buildargv (args);
3477 if (argv == NULL)
3478 {
3479 nomem (0);
3480 }
3481 old_chain = make_cleanup_freeargv (argv);
3482 if (argv[1] != (char *) NULL)
3483 {
3484 char *argBuf;
3485 int bufLen;
3486
3487 bufLen = strlen (argv[0]) + 20;
3488 argBuf = (char *) xmalloc (bufLen);
3489 if (argBuf)
3490 {
3491 int validFlag = 1;
3492 enum target_signal oursig;
3493
3494 oursig = target_signal_from_name (argv[0]);
3495 memset (argBuf, 0, bufLen);
3496 if (strcmp (argv[1], "Q") == 0)
3497 sprintf (argBuf, "%s %s", argv[0], "noprint");
3498 else
3499 {
3500 if (strcmp (argv[1], "s") == 0)
3501 {
3502 if (!signal_stop[oursig])
3503 sprintf (argBuf, "%s %s", argv[0], "stop");
3504 else
3505 sprintf (argBuf, "%s %s", argv[0], "nostop");
3506 }
3507 else if (strcmp (argv[1], "i") == 0)
3508 {
3509 if (!signal_program[oursig])
3510 sprintf (argBuf, "%s %s", argv[0], "pass");
3511 else
3512 sprintf (argBuf, "%s %s", argv[0], "nopass");
3513 }
3514 else if (strcmp (argv[1], "r") == 0)
3515 {
3516 if (!signal_print[oursig])
3517 sprintf (argBuf, "%s %s", argv[0], "print");
3518 else
3519 sprintf (argBuf, "%s %s", argv[0], "noprint");
3520 }
3521 else
3522 validFlag = 0;
3523 }
3524 if (validFlag)
3525 handle_command (argBuf, from_tty);
3526 else
3527 printf_filtered (_("Invalid signal handling flag.\n"));
3528 if (argBuf)
3529 xfree (argBuf);
3530 }
3531 }
3532 do_cleanups (old_chain);
3533 }
3534
3535 /* Print current contents of the tables set by the handle command.
3536 It is possible we should just be printing signals actually used
3537 by the current target (but for things to work right when switching
3538 targets, all signals should be in the signal tables). */
3539
3540 static void
3541 signals_info (char *signum_exp, int from_tty)
3542 {
3543 enum target_signal oursig;
3544 sig_print_header ();
3545
3546 if (signum_exp)
3547 {
3548 /* First see if this is a symbol name. */
3549 oursig = target_signal_from_name (signum_exp);
3550 if (oursig == TARGET_SIGNAL_UNKNOWN)
3551 {
3552 /* No, try numeric. */
3553 oursig =
3554 target_signal_from_command (parse_and_eval_long (signum_exp));
3555 }
3556 sig_print_info (oursig);
3557 return;
3558 }
3559
3560 printf_filtered ("\n");
3561 /* These ugly casts brought to you by the native VAX compiler. */
3562 for (oursig = TARGET_SIGNAL_FIRST;
3563 (int) oursig < (int) TARGET_SIGNAL_LAST;
3564 oursig = (enum target_signal) ((int) oursig + 1))
3565 {
3566 QUIT;
3567
3568 if (oursig != TARGET_SIGNAL_UNKNOWN
3569 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3570 sig_print_info (oursig);
3571 }
3572
3573 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3574 }
3575 \f
3576 struct inferior_status
3577 {
3578 enum target_signal stop_signal;
3579 CORE_ADDR stop_pc;
3580 bpstat stop_bpstat;
3581 int stop_step;
3582 int stop_stack_dummy;
3583 int stopped_by_random_signal;
3584 int trap_expected;
3585 CORE_ADDR step_range_start;
3586 CORE_ADDR step_range_end;
3587 struct frame_id step_frame_id;
3588 enum step_over_calls_kind step_over_calls;
3589 CORE_ADDR step_resume_break_address;
3590 int stop_after_trap;
3591 int stop_soon;
3592 struct regcache *stop_registers;
3593
3594 /* These are here because if call_function_by_hand has written some
3595 registers and then decides to call error(), we better not have changed
3596 any registers. */
3597 struct regcache *registers;
3598
3599 /* A frame unique identifier. */
3600 struct frame_id selected_frame_id;
3601
3602 int breakpoint_proceeded;
3603 int restore_stack_info;
3604 int proceed_to_finish;
3605 };
3606
3607 void
3608 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3609 LONGEST val)
3610 {
3611 int size = register_size (current_gdbarch, regno);
3612 void *buf = alloca (size);
3613 store_signed_integer (buf, size, val);
3614 regcache_raw_write (inf_status->registers, regno, buf);
3615 }
3616
3617 /* Save all of the information associated with the inferior<==>gdb
3618 connection. INF_STATUS is a pointer to a "struct inferior_status"
3619 (defined in inferior.h). */
3620
3621 struct inferior_status *
3622 save_inferior_status (int restore_stack_info)
3623 {
3624 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3625
3626 inf_status->stop_signal = stop_signal;
3627 inf_status->stop_pc = stop_pc;
3628 inf_status->stop_step = stop_step;
3629 inf_status->stop_stack_dummy = stop_stack_dummy;
3630 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3631 inf_status->trap_expected = trap_expected;
3632 inf_status->step_range_start = step_range_start;
3633 inf_status->step_range_end = step_range_end;
3634 inf_status->step_frame_id = step_frame_id;
3635 inf_status->step_over_calls = step_over_calls;
3636 inf_status->stop_after_trap = stop_after_trap;
3637 inf_status->stop_soon = stop_soon;
3638 /* Save original bpstat chain here; replace it with copy of chain.
3639 If caller's caller is walking the chain, they'll be happier if we
3640 hand them back the original chain when restore_inferior_status is
3641 called. */
3642 inf_status->stop_bpstat = stop_bpstat;
3643 stop_bpstat = bpstat_copy (stop_bpstat);
3644 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3645 inf_status->restore_stack_info = restore_stack_info;
3646 inf_status->proceed_to_finish = proceed_to_finish;
3647
3648 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3649
3650 inf_status->registers = regcache_dup (current_regcache);
3651
3652 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3653 return inf_status;
3654 }
3655
3656 static int
3657 restore_selected_frame (void *args)
3658 {
3659 struct frame_id *fid = (struct frame_id *) args;
3660 struct frame_info *frame;
3661
3662 frame = frame_find_by_id (*fid);
3663
3664 /* If inf_status->selected_frame_id is NULL, there was no previously
3665 selected frame. */
3666 if (frame == NULL)
3667 {
3668 warning (_("Unable to restore previously selected frame."));
3669 return 0;
3670 }
3671
3672 select_frame (frame);
3673
3674 return (1);
3675 }
3676
3677 void
3678 restore_inferior_status (struct inferior_status *inf_status)
3679 {
3680 stop_signal = inf_status->stop_signal;
3681 stop_pc = inf_status->stop_pc;
3682 stop_step = inf_status->stop_step;
3683 stop_stack_dummy = inf_status->stop_stack_dummy;
3684 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3685 trap_expected = inf_status->trap_expected;
3686 step_range_start = inf_status->step_range_start;
3687 step_range_end = inf_status->step_range_end;
3688 step_frame_id = inf_status->step_frame_id;
3689 step_over_calls = inf_status->step_over_calls;
3690 stop_after_trap = inf_status->stop_after_trap;
3691 stop_soon = inf_status->stop_soon;
3692 bpstat_clear (&stop_bpstat);
3693 stop_bpstat = inf_status->stop_bpstat;
3694 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3695 proceed_to_finish = inf_status->proceed_to_finish;
3696
3697 /* FIXME: Is the restore of stop_registers always needed. */
3698 regcache_xfree (stop_registers);
3699 stop_registers = inf_status->stop_registers;
3700
3701 /* The inferior can be gone if the user types "print exit(0)"
3702 (and perhaps other times). */
3703 if (target_has_execution)
3704 /* NB: The register write goes through to the target. */
3705 regcache_cpy (current_regcache, inf_status->registers);
3706 regcache_xfree (inf_status->registers);
3707
3708 /* FIXME: If we are being called after stopping in a function which
3709 is called from gdb, we should not be trying to restore the
3710 selected frame; it just prints a spurious error message (The
3711 message is useful, however, in detecting bugs in gdb (like if gdb
3712 clobbers the stack)). In fact, should we be restoring the
3713 inferior status at all in that case? . */
3714
3715 if (target_has_stack && inf_status->restore_stack_info)
3716 {
3717 /* The point of catch_errors is that if the stack is clobbered,
3718 walking the stack might encounter a garbage pointer and
3719 error() trying to dereference it. */
3720 if (catch_errors
3721 (restore_selected_frame, &inf_status->selected_frame_id,
3722 "Unable to restore previously selected frame:\n",
3723 RETURN_MASK_ERROR) == 0)
3724 /* Error in restoring the selected frame. Select the innermost
3725 frame. */
3726 select_frame (get_current_frame ());
3727
3728 }
3729
3730 xfree (inf_status);
3731 }
3732
3733 static void
3734 do_restore_inferior_status_cleanup (void *sts)
3735 {
3736 restore_inferior_status (sts);
3737 }
3738
3739 struct cleanup *
3740 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3741 {
3742 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3743 }
3744
3745 void
3746 discard_inferior_status (struct inferior_status *inf_status)
3747 {
3748 /* See save_inferior_status for info on stop_bpstat. */
3749 bpstat_clear (&inf_status->stop_bpstat);
3750 regcache_xfree (inf_status->registers);
3751 regcache_xfree (inf_status->stop_registers);
3752 xfree (inf_status);
3753 }
3754
3755 int
3756 inferior_has_forked (int pid, int *child_pid)
3757 {
3758 struct target_waitstatus last;
3759 ptid_t last_ptid;
3760
3761 get_last_target_status (&last_ptid, &last);
3762
3763 if (last.kind != TARGET_WAITKIND_FORKED)
3764 return 0;
3765
3766 if (ptid_get_pid (last_ptid) != pid)
3767 return 0;
3768
3769 *child_pid = last.value.related_pid;
3770 return 1;
3771 }
3772
3773 int
3774 inferior_has_vforked (int pid, int *child_pid)
3775 {
3776 struct target_waitstatus last;
3777 ptid_t last_ptid;
3778
3779 get_last_target_status (&last_ptid, &last);
3780
3781 if (last.kind != TARGET_WAITKIND_VFORKED)
3782 return 0;
3783
3784 if (ptid_get_pid (last_ptid) != pid)
3785 return 0;
3786
3787 *child_pid = last.value.related_pid;
3788 return 1;
3789 }
3790
3791 int
3792 inferior_has_execd (int pid, char **execd_pathname)
3793 {
3794 struct target_waitstatus last;
3795 ptid_t last_ptid;
3796
3797 get_last_target_status (&last_ptid, &last);
3798
3799 if (last.kind != TARGET_WAITKIND_EXECD)
3800 return 0;
3801
3802 if (ptid_get_pid (last_ptid) != pid)
3803 return 0;
3804
3805 *execd_pathname = xstrdup (last.value.execd_pathname);
3806 return 1;
3807 }
3808
3809 /* Oft used ptids */
3810 ptid_t null_ptid;
3811 ptid_t minus_one_ptid;
3812
3813 /* Create a ptid given the necessary PID, LWP, and TID components. */
3814
3815 ptid_t
3816 ptid_build (int pid, long lwp, long tid)
3817 {
3818 ptid_t ptid;
3819
3820 ptid.pid = pid;
3821 ptid.lwp = lwp;
3822 ptid.tid = tid;
3823 return ptid;
3824 }
3825
3826 /* Create a ptid from just a pid. */
3827
3828 ptid_t
3829 pid_to_ptid (int pid)
3830 {
3831 return ptid_build (pid, 0, 0);
3832 }
3833
3834 /* Fetch the pid (process id) component from a ptid. */
3835
3836 int
3837 ptid_get_pid (ptid_t ptid)
3838 {
3839 return ptid.pid;
3840 }
3841
3842 /* Fetch the lwp (lightweight process) component from a ptid. */
3843
3844 long
3845 ptid_get_lwp (ptid_t ptid)
3846 {
3847 return ptid.lwp;
3848 }
3849
3850 /* Fetch the tid (thread id) component from a ptid. */
3851
3852 long
3853 ptid_get_tid (ptid_t ptid)
3854 {
3855 return ptid.tid;
3856 }
3857
3858 /* ptid_equal() is used to test equality of two ptids. */
3859
3860 int
3861 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3862 {
3863 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3864 && ptid1.tid == ptid2.tid);
3865 }
3866
3867 /* restore_inferior_ptid() will be used by the cleanup machinery
3868 to restore the inferior_ptid value saved in a call to
3869 save_inferior_ptid(). */
3870
3871 static void
3872 restore_inferior_ptid (void *arg)
3873 {
3874 ptid_t *saved_ptid_ptr = arg;
3875 inferior_ptid = *saved_ptid_ptr;
3876 xfree (arg);
3877 }
3878
3879 /* Save the value of inferior_ptid so that it may be restored by a
3880 later call to do_cleanups(). Returns the struct cleanup pointer
3881 needed for later doing the cleanup. */
3882
3883 struct cleanup *
3884 save_inferior_ptid (void)
3885 {
3886 ptid_t *saved_ptid_ptr;
3887
3888 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3889 *saved_ptid_ptr = inferior_ptid;
3890 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3891 }
3892 \f
3893
3894 static void
3895 build_infrun (void)
3896 {
3897 stop_registers = regcache_xmalloc (current_gdbarch);
3898 }
3899
3900 void
3901 _initialize_infrun (void)
3902 {
3903 int i;
3904 int numsigs;
3905 struct cmd_list_element *c;
3906
3907 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3908 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3909
3910 add_info ("signals", signals_info, _("\
3911 What debugger does when program gets various signals.\n\
3912 Specify a signal as argument to print info on that signal only."));
3913 add_info_alias ("handle", "signals", 0);
3914
3915 add_com ("handle", class_run, handle_command, _("\
3916 Specify how to handle a signal.\n\
3917 Args are signals and actions to apply to those signals.\n\
3918 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3919 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3920 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3921 The special arg \"all\" is recognized to mean all signals except those\n\
3922 used by the debugger, typically SIGTRAP and SIGINT.\n\
3923 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3924 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3925 Stop means reenter debugger if this signal happens (implies print).\n\
3926 Print means print a message if this signal happens.\n\
3927 Pass means let program see this signal; otherwise program doesn't know.\n\
3928 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3929 Pass and Stop may be combined."));
3930 if (xdb_commands)
3931 {
3932 add_com ("lz", class_info, signals_info, _("\
3933 What debugger does when program gets various signals.\n\
3934 Specify a signal as argument to print info on that signal only."));
3935 add_com ("z", class_run, xdb_handle_command, _("\
3936 Specify how to handle a signal.\n\
3937 Args are signals and actions to apply to those signals.\n\
3938 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3939 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3940 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3941 The special arg \"all\" is recognized to mean all signals except those\n\
3942 used by the debugger, typically SIGTRAP and SIGINT.\n\
3943 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3944 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3945 nopass), \"Q\" (noprint)\n\
3946 Stop means reenter debugger if this signal happens (implies print).\n\
3947 Print means print a message if this signal happens.\n\
3948 Pass means let program see this signal; otherwise program doesn't know.\n\
3949 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3950 Pass and Stop may be combined."));
3951 }
3952
3953 if (!dbx_commands)
3954 stop_command = add_cmd ("stop", class_obscure,
3955 not_just_help_class_command, _("\
3956 There is no `stop' command, but you can set a hook on `stop'.\n\
3957 This allows you to set a list of commands to be run each time execution\n\
3958 of the program stops."), &cmdlist);
3959
3960 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3961 Set inferior debugging."), _("\
3962 Show inferior debugging."), _("\
3963 When non-zero, inferior specific debugging is enabled."),
3964 NULL,
3965 show_debug_infrun,
3966 &setdebuglist, &showdebuglist);
3967
3968 numsigs = (int) TARGET_SIGNAL_LAST;
3969 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3970 signal_print = (unsigned char *)
3971 xmalloc (sizeof (signal_print[0]) * numsigs);
3972 signal_program = (unsigned char *)
3973 xmalloc (sizeof (signal_program[0]) * numsigs);
3974 for (i = 0; i < numsigs; i++)
3975 {
3976 signal_stop[i] = 1;
3977 signal_print[i] = 1;
3978 signal_program[i] = 1;
3979 }
3980
3981 /* Signals caused by debugger's own actions
3982 should not be given to the program afterwards. */
3983 signal_program[TARGET_SIGNAL_TRAP] = 0;
3984 signal_program[TARGET_SIGNAL_INT] = 0;
3985
3986 /* Signals that are not errors should not normally enter the debugger. */
3987 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3988 signal_print[TARGET_SIGNAL_ALRM] = 0;
3989 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3990 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3991 signal_stop[TARGET_SIGNAL_PROF] = 0;
3992 signal_print[TARGET_SIGNAL_PROF] = 0;
3993 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3994 signal_print[TARGET_SIGNAL_CHLD] = 0;
3995 signal_stop[TARGET_SIGNAL_IO] = 0;
3996 signal_print[TARGET_SIGNAL_IO] = 0;
3997 signal_stop[TARGET_SIGNAL_POLL] = 0;
3998 signal_print[TARGET_SIGNAL_POLL] = 0;
3999 signal_stop[TARGET_SIGNAL_URG] = 0;
4000 signal_print[TARGET_SIGNAL_URG] = 0;
4001 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4002 signal_print[TARGET_SIGNAL_WINCH] = 0;
4003
4004 /* These signals are used internally by user-level thread
4005 implementations. (See signal(5) on Solaris.) Like the above
4006 signals, a healthy program receives and handles them as part of
4007 its normal operation. */
4008 signal_stop[TARGET_SIGNAL_LWP] = 0;
4009 signal_print[TARGET_SIGNAL_LWP] = 0;
4010 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4011 signal_print[TARGET_SIGNAL_WAITING] = 0;
4012 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4013 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4014
4015 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4016 &stop_on_solib_events, _("\
4017 Set stopping for shared library events."), _("\
4018 Show stopping for shared library events."), _("\
4019 If nonzero, gdb will give control to the user when the dynamic linker\n\
4020 notifies gdb of shared library events. The most common event of interest\n\
4021 to the user would be loading/unloading of a new library."),
4022 NULL,
4023 show_stop_on_solib_events,
4024 &setlist, &showlist);
4025
4026 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4027 follow_fork_mode_kind_names,
4028 &follow_fork_mode_string, _("\
4029 Set debugger response to a program call of fork or vfork."), _("\
4030 Show debugger response to a program call of fork or vfork."), _("\
4031 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4032 parent - the original process is debugged after a fork\n\
4033 child - the new process is debugged after a fork\n\
4034 The unfollowed process will continue to run.\n\
4035 By default, the debugger will follow the parent process."),
4036 NULL,
4037 show_follow_fork_mode_string,
4038 &setlist, &showlist);
4039
4040 add_setshow_enum_cmd ("scheduler-locking", class_run,
4041 scheduler_enums, &scheduler_mode, _("\
4042 Set mode for locking scheduler during execution."), _("\
4043 Show mode for locking scheduler during execution."), _("\
4044 off == no locking (threads may preempt at any time)\n\
4045 on == full locking (no thread except the current thread may run)\n\
4046 step == scheduler locked during every single-step operation.\n\
4047 In this mode, no other thread may run during a step command.\n\
4048 Other threads may run while stepping over a function call ('next')."),
4049 set_schedlock_func, /* traps on target vector */
4050 show_scheduler_mode,
4051 &setlist, &showlist);
4052
4053 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4054 Set mode of the step operation."), _("\
4055 Show mode of the step operation."), _("\
4056 When set, doing a step over a function without debug line information\n\
4057 will stop at the first instruction of that function. Otherwise, the\n\
4058 function is skipped and the step command stops at a different source line."),
4059 NULL,
4060 show_step_stop_if_no_debug,
4061 &setlist, &showlist);
4062
4063 /* ptid initializations */
4064 null_ptid = ptid_build (0, 0, 0);
4065 minus_one_ptid = ptid_build (-1, 0, 0);
4066 inferior_ptid = null_ptid;
4067 target_last_wait_ptid = minus_one_ptid;
4068 }
This page took 0.119629 seconds and 4 git commands to generate.