409a768cf0dcd629909f95ed14360d256f72f6cb
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior process.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1992, 1993
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Notes on the algorithm used in wait_for_inferior to determine if we
22 just did a subroutine call when stepping. We have the following
23 information at that point:
24
25 Current and previous (just before this step) pc.
26 Current and previous sp.
27 Current and previous start of current function.
28
29 If the starts of the functions don't match, then
30
31 a) We did a subroutine call.
32
33 In this case, the pc will be at the beginning of a function.
34
35 b) We did a subroutine return.
36
37 Otherwise.
38
39 c) We did a longjmp.
40
41 If we did a longjump, we were doing "nexti", since a next would
42 have attempted to skip over the assembly language routine in which
43 the longjmp is coded and would have simply been the equivalent of a
44 continue. I consider this ok behaivior. We'd like one of two
45 things to happen if we are doing a nexti through the longjmp()
46 routine: 1) It behaves as a stepi, or 2) It acts like a continue as
47 above. Given that this is a special case, and that anybody who
48 thinks that the concept of sub calls is meaningful in the context
49 of a longjmp, I'll take either one. Let's see what happens.
50
51 Acts like a subroutine return. I can handle that with no problem
52 at all.
53
54 -->So: If the current and previous beginnings of the current
55 function don't match, *and* the pc is at the start of a function,
56 we've done a subroutine call. If the pc is not at the start of a
57 function, we *didn't* do a subroutine call.
58
59 -->If the beginnings of the current and previous function do match,
60 either:
61
62 a) We just did a recursive call.
63
64 In this case, we would be at the very beginning of a
65 function and 1) it will have a prologue (don't jump to
66 before prologue, or 2) (we assume here that it doesn't have
67 a prologue) there will have been a change in the stack
68 pointer over the last instruction. (Ie. it's got to put
69 the saved pc somewhere. The stack is the usual place. In
70 a recursive call a register is only an option if there's a
71 prologue to do something with it. This is even true on
72 register window machines; the prologue sets up the new
73 window. It might not be true on a register window machine
74 where the call instruction moved the register window
75 itself. Hmmm. One would hope that the stack pointer would
76 also change. If it doesn't, somebody send me a note, and
77 I'll work out a more general theory.
78 bug-gdb@prep.ai.mit.edu). This is true (albeit slipperly
79 so) on all machines I'm aware of:
80
81 m68k: Call changes stack pointer. Regular jumps don't.
82
83 sparc: Recursive calls must have frames and therefor,
84 prologues.
85
86 vax: All calls have frames and hence change the
87 stack pointer.
88
89 b) We did a return from a recursive call. I don't see that we
90 have either the ability or the need to distinguish this
91 from an ordinary jump. The stack frame will be printed
92 when and if the frame pointer changes; if we are in a
93 function without a frame pointer, it's the users own
94 lookout.
95
96 c) We did a jump within a function. We assume that this is
97 true if we didn't do a recursive call.
98
99 d) We are in no-man's land ("I see no symbols here"). We
100 don't worry about this; it will make calls look like simple
101 jumps (and the stack frames will be printed when the frame
102 pointer moves), which is a reasonably non-violent response.
103 */
104
105 #include "defs.h"
106 #include <string.h>
107 #include <ctype.h>
108 #include "symtab.h"
109 #include "frame.h"
110 #include "inferior.h"
111 #include "breakpoint.h"
112 #include "wait.h"
113 #include "gdbcore.h"
114 #include "gdbcmd.h"
115 #include "target.h"
116
117 #include <signal.h>
118
119 /* unistd.h is needed to #define X_OK */
120 #ifdef USG
121 #include <unistd.h>
122 #else
123 #include <sys/file.h>
124 #endif
125
126 /* Prototypes for local functions */
127
128 static void
129 signals_info PARAMS ((char *, int));
130
131 static void
132 handle_command PARAMS ((char *, int));
133
134 static void
135 sig_print_info PARAMS ((int));
136
137 static void
138 sig_print_header PARAMS ((void));
139
140 static void
141 resume_cleanups PARAMS ((int));
142
143 static int
144 hook_stop_stub PARAMS ((char *));
145
146 /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
147 program. It needs to examine the jmp_buf argument and extract the PC
148 from it. The return value is non-zero on success, zero otherwise. */
149 #ifndef GET_LONGJMP_TARGET
150 #define GET_LONGJMP_TARGET(PC_ADDR) 0
151 #endif
152
153
154 /* Some machines have trampoline code that sits between function callers
155 and the actual functions themselves. If this machine doesn't have
156 such things, disable their processing. */
157 #ifndef SKIP_TRAMPOLINE_CODE
158 #define SKIP_TRAMPOLINE_CODE(pc) 0
159 #endif
160
161 /* For SVR4 shared libraries, each call goes through a small piece of
162 trampoline code in the ".init" section. IN_SOLIB_TRAMPOLINE evaluates
163 to nonzero if we are current stopped in one of these. */
164 #ifndef IN_SOLIB_TRAMPOLINE
165 #define IN_SOLIB_TRAMPOLINE(pc,name) 0
166 #endif
167
168 /* On some systems, the PC may be left pointing at an instruction that won't
169 actually be executed. This is usually indicated by a bit in the PSW. If
170 we find ourselves in such a state, then we step the target beyond the
171 nullified instruction before returning control to the user so as to avoid
172 confusion. */
173
174 #ifndef INSTRUCTION_NULLIFIED
175 #define INSTRUCTION_NULLIFIED 0
176 #endif
177
178 /* Tables of how to react to signals; the user sets them. */
179
180 static unsigned char *signal_stop;
181 static unsigned char *signal_print;
182 static unsigned char *signal_program;
183
184 #define SET_SIGS(nsigs,sigs,flags) \
185 do { \
186 int signum = (nsigs); \
187 while (signum-- > 0) \
188 if ((sigs)[signum]) \
189 (flags)[signum] = 1; \
190 } while (0)
191
192 #define UNSET_SIGS(nsigs,sigs,flags) \
193 do { \
194 int signum = (nsigs); \
195 while (signum-- > 0) \
196 if ((sigs)[signum]) \
197 (flags)[signum] = 0; \
198 } while (0)
199
200
201 /* Command list pointer for the "stop" placeholder. */
202
203 static struct cmd_list_element *stop_command;
204
205 /* Nonzero if breakpoints are now inserted in the inferior. */
206
207 static int breakpoints_inserted;
208
209 /* Function inferior was in as of last step command. */
210
211 static struct symbol *step_start_function;
212
213 /* Nonzero if we are expecting a trace trap and should proceed from it. */
214
215 static int trap_expected;
216
217 /* Nonzero if the next time we try to continue the inferior, it will
218 step one instruction and generate a spurious trace trap.
219 This is used to compensate for a bug in HP-UX. */
220
221 static int trap_expected_after_continue;
222
223 /* Nonzero means expecting a trace trap
224 and should stop the inferior and return silently when it happens. */
225
226 int stop_after_trap;
227
228 /* Nonzero means expecting a trap and caller will handle it themselves.
229 It is used after attach, due to attaching to a process;
230 when running in the shell before the child program has been exec'd;
231 and when running some kinds of remote stuff (FIXME?). */
232
233 int stop_soon_quietly;
234
235 /* Nonzero if proceed is being used for a "finish" command or a similar
236 situation when stop_registers should be saved. */
237
238 int proceed_to_finish;
239
240 /* Save register contents here when about to pop a stack dummy frame,
241 if-and-only-if proceed_to_finish is set.
242 Thus this contains the return value from the called function (assuming
243 values are returned in a register). */
244
245 char stop_registers[REGISTER_BYTES];
246
247 /* Nonzero if program stopped due to error trying to insert breakpoints. */
248
249 static int breakpoints_failed;
250
251 /* Nonzero after stop if current stack frame should be printed. */
252
253 static int stop_print_frame;
254
255 #ifdef NO_SINGLE_STEP
256 extern int one_stepped; /* From machine dependent code */
257 extern void single_step (); /* Same. */
258 #endif /* NO_SINGLE_STEP */
259
260 \f
261 /* Things to clean up if we QUIT out of resume (). */
262 /* ARGSUSED */
263 static void
264 resume_cleanups (arg)
265 int arg;
266 {
267 normal_stop ();
268 }
269
270 /* Resume the inferior, but allow a QUIT. This is useful if the user
271 wants to interrupt some lengthy single-stepping operation
272 (for child processes, the SIGINT goes to the inferior, and so
273 we get a SIGINT random_signal, but for remote debugging and perhaps
274 other targets, that's not true).
275
276 STEP nonzero if we should step (zero to continue instead).
277 SIG is the signal to give the inferior (zero for none). */
278 void
279 resume (step, sig)
280 int step;
281 int sig;
282 {
283 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
284 QUIT;
285
286 #ifdef CANNOT_STEP_BREAKPOINT
287 /* Most targets can step a breakpoint instruction, thus executing it
288 normally. But if this one cannot, just continue and we will hit
289 it anyway. */
290 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
291 step = 0;
292 #endif
293
294 #ifdef NO_SINGLE_STEP
295 if (step) {
296 single_step(sig); /* Do it the hard way, w/temp breakpoints */
297 step = 0; /* ...and don't ask hardware to do it. */
298 }
299 #endif
300
301 /* Handle any optimized stores to the inferior NOW... */
302 #ifdef DO_DEFERRED_STORES
303 DO_DEFERRED_STORES;
304 #endif
305
306 target_resume (inferior_pid, step, sig);
307 discard_cleanups (old_cleanups);
308 }
309
310 \f
311 /* Clear out all variables saying what to do when inferior is continued.
312 First do this, then set the ones you want, then call `proceed'. */
313
314 void
315 clear_proceed_status ()
316 {
317 trap_expected = 0;
318 step_range_start = 0;
319 step_range_end = 0;
320 step_frame_address = 0;
321 step_over_calls = -1;
322 stop_after_trap = 0;
323 stop_soon_quietly = 0;
324 proceed_to_finish = 0;
325 breakpoint_proceeded = 1; /* We're about to proceed... */
326
327 /* Discard any remaining commands or status from previous stop. */
328 bpstat_clear (&stop_bpstat);
329 }
330
331 /* Basic routine for continuing the program in various fashions.
332
333 ADDR is the address to resume at, or -1 for resume where stopped.
334 SIGGNAL is the signal to give it, or 0 for none,
335 or -1 for act according to how it stopped.
336 STEP is nonzero if should trap after one instruction.
337 -1 means return after that and print nothing.
338 You should probably set various step_... variables
339 before calling here, if you are stepping.
340
341 You should call clear_proceed_status before calling proceed. */
342
343 void
344 proceed (addr, siggnal, step)
345 CORE_ADDR addr;
346 int siggnal;
347 int step;
348 {
349 int oneproc = 0;
350
351 if (step > 0)
352 step_start_function = find_pc_function (read_pc ());
353 if (step < 0)
354 stop_after_trap = 1;
355
356 if (addr == (CORE_ADDR)-1)
357 {
358 /* If there is a breakpoint at the address we will resume at,
359 step one instruction before inserting breakpoints
360 so that we do not stop right away. */
361
362 if (breakpoint_here_p (read_pc ()))
363 oneproc = 1;
364 }
365 else
366 write_pc (addr);
367
368 if (trap_expected_after_continue)
369 {
370 /* If (step == 0), a trap will be automatically generated after
371 the first instruction is executed. Force step one
372 instruction to clear this condition. This should not occur
373 if step is nonzero, but it is harmless in that case. */
374 oneproc = 1;
375 trap_expected_after_continue = 0;
376 }
377
378 if (oneproc)
379 /* We will get a trace trap after one instruction.
380 Continue it automatically and insert breakpoints then. */
381 trap_expected = 1;
382 else
383 {
384 int temp = insert_breakpoints ();
385 if (temp)
386 {
387 print_sys_errmsg ("ptrace", temp);
388 error ("Cannot insert breakpoints.\n\
389 The same program may be running in another process.");
390 }
391 breakpoints_inserted = 1;
392 }
393
394 /* Install inferior's terminal modes. */
395 target_terminal_inferior ();
396
397 if (siggnal >= 0)
398 stop_signal = siggnal;
399 /* If this signal should not be seen by program,
400 give it zero. Used for debugging signals. */
401 else if (stop_signal < NSIG && !signal_program[stop_signal])
402 stop_signal= 0;
403
404 /* Resume inferior. */
405 resume (oneproc || step || bpstat_should_step (), stop_signal);
406
407 /* Wait for it to stop (if not standalone)
408 and in any case decode why it stopped, and act accordingly. */
409
410 wait_for_inferior ();
411 normal_stop ();
412 }
413
414 /* Record the pc and sp of the program the last time it stopped.
415 These are just used internally by wait_for_inferior, but need
416 to be preserved over calls to it and cleared when the inferior
417 is started. */
418 static CORE_ADDR prev_pc;
419 static CORE_ADDR prev_sp;
420 static CORE_ADDR prev_func_start;
421 static char *prev_func_name;
422
423 \f
424 /* Start remote-debugging of a machine over a serial link. */
425
426 void
427 start_remote ()
428 {
429 init_wait_for_inferior ();
430 clear_proceed_status ();
431 stop_soon_quietly = 1;
432 trap_expected = 0;
433 wait_for_inferior ();
434 normal_stop ();
435 }
436
437 /* Initialize static vars when a new inferior begins. */
438
439 void
440 init_wait_for_inferior ()
441 {
442 /* These are meaningless until the first time through wait_for_inferior. */
443 prev_pc = 0;
444 prev_sp = 0;
445 prev_func_start = 0;
446 prev_func_name = NULL;
447
448 trap_expected_after_continue = 0;
449 breakpoints_inserted = 0;
450 mark_breakpoints_out ();
451 stop_signal = 0; /* Don't confuse first call to proceed(). */
452 }
453
454 static void
455 delete_breakpoint_current_contents (arg)
456 PTR arg;
457 {
458 struct breakpoint **breakpointp = (struct breakpoint **)arg;
459 if (*breakpointp != NULL)
460 delete_breakpoint (*breakpointp);
461 }
462 \f
463 /* Wait for control to return from inferior to debugger.
464 If inferior gets a signal, we may decide to start it up again
465 instead of returning. That is why there is a loop in this function.
466 When this function actually returns it means the inferior
467 should be left stopped and GDB should read more commands. */
468
469 void
470 wait_for_inferior ()
471 {
472 struct cleanup *old_cleanups;
473 WAITTYPE w;
474 int another_trap;
475 int random_signal;
476 CORE_ADDR stop_sp = 0;
477 CORE_ADDR stop_func_start;
478 char *stop_func_name;
479 CORE_ADDR prologue_pc = 0, tmp;
480 struct symtab_and_line sal;
481 int remove_breakpoints_on_following_step = 0;
482 int current_line;
483 int handling_longjmp = 0; /* FIXME */
484 struct breakpoint *step_resume_breakpoint = NULL;
485 int pid;
486
487 old_cleanups = make_cleanup (delete_breakpoint_current_contents,
488 &step_resume_breakpoint);
489 sal = find_pc_line(prev_pc, 0);
490 current_line = sal.line;
491
492 /* Are we stepping? */
493 #define CURRENTLY_STEPPING() ((step_resume_breakpoint == NULL \
494 && !handling_longjmp \
495 && (step_range_end \
496 || trap_expected)) \
497 || bpstat_should_step ())
498
499 while (1)
500 {
501 /* Clean up saved state that will become invalid. */
502 flush_cached_frames ();
503 registers_changed ();
504
505 pid = target_wait (&w);
506
507 #ifdef SIGTRAP_STOP_AFTER_LOAD
508
509 /* Somebody called load(2), and it gave us a "trap signal after load".
510 Ignore it gracefully. */
511
512 SIGTRAP_STOP_AFTER_LOAD (w);
513 #endif
514
515 /* See if the process still exists; clean up if it doesn't. */
516 if (WIFEXITED (w))
517 {
518 target_terminal_ours (); /* Must do this before mourn anyway */
519 if (WEXITSTATUS (w))
520 printf_filtered ("\nProgram exited with code 0%o.\n",
521 (unsigned int)WEXITSTATUS (w));
522 else
523 if (!batch_mode())
524 printf_filtered ("\nProgram exited normally.\n");
525 fflush (stdout);
526 target_mourn_inferior ();
527 #ifdef NO_SINGLE_STEP
528 one_stepped = 0;
529 #endif
530 stop_print_frame = 0;
531 break;
532 }
533 else if (!WIFSTOPPED (w))
534 {
535 char *signame;
536
537 stop_print_frame = 0;
538 stop_signal = WTERMSIG (w);
539 target_terminal_ours (); /* Must do this before mourn anyway */
540 target_kill (); /* kill mourns as well */
541 #ifdef PRINT_RANDOM_SIGNAL
542 printf_filtered ("\nProgram terminated: ");
543 PRINT_RANDOM_SIGNAL (stop_signal);
544 #else
545 printf_filtered ("\nProgram terminated with signal ");
546 signame = strsigno (stop_signal);
547 if (signame == NULL)
548 printf_filtered ("%d", stop_signal);
549 else
550 /* Do we need to print the number in addition to the name? */
551 printf_filtered ("%s (%d)", signame, stop_signal);
552 printf_filtered (", %s\n", safe_strsignal (stop_signal));
553 #endif
554 printf_filtered ("The program no longer exists.\n");
555 fflush (stdout);
556 #ifdef NO_SINGLE_STEP
557 one_stepped = 0;
558 #endif
559 break;
560 }
561
562 if (pid != inferior_pid)
563 {
564 int printed = 0;
565
566 if (!in_thread_list (pid))
567 {
568 fprintf (stderr, "[New %s]\n", target_pid_to_str (pid));
569 add_thread (pid);
570
571 target_resume (pid, 0, 0);
572 continue;
573 }
574 else
575 {
576 stop_signal = WSTOPSIG (w);
577
578 if (stop_signal >= NSIG || signal_print[stop_signal])
579 {
580 char *signame;
581
582 printed = 1;
583 target_terminal_ours_for_output ();
584 printf_filtered ("\nProgram received signal ");
585 signame = strsigno (stop_signal);
586 if (signame == NULL)
587 printf_filtered ("%d", stop_signal);
588 else
589 printf_filtered ("%s (%d)", signame, stop_signal);
590 printf_filtered (", %s\n", safe_strsignal (stop_signal));
591
592 fflush (stdout);
593 }
594
595 if (stop_signal >= NSIG || signal_stop[stop_signal])
596 {
597 inferior_pid = pid;
598 printf_filtered ("[Switching to %s]\n", target_pid_to_str (pid));
599
600 flush_cached_frames ();
601 registers_changed ();
602 trap_expected = 0;
603 if (step_resume_breakpoint)
604 {
605 delete_breakpoint (step_resume_breakpoint);
606 step_resume_breakpoint = NULL;
607 }
608 prev_pc = 0;
609 prev_sp = 0;
610 prev_func_name = NULL;
611 step_range_start = 0;
612 step_range_end = 0;
613 step_frame_address = 0;
614 handling_longjmp = 0;
615 another_trap = 0;
616 }
617 else
618 {
619 if (printed)
620 target_terminal_inferior ();
621
622 /* Clear the signal if it should not be passed. */
623 if (signal_program[stop_signal] == 0)
624 stop_signal = 0;
625
626 target_resume (pid, 0, stop_signal);
627 continue;
628 }
629 }
630 }
631
632 #ifdef NO_SINGLE_STEP
633 if (one_stepped)
634 single_step (0); /* This actually cleans up the ss */
635 #endif /* NO_SINGLE_STEP */
636
637 /* If PC is pointing at a nullified instruction, then step beyond it so that
638 the user won't be confused when GDB appears to be ready to execute it. */
639
640 if (INSTRUCTION_NULLIFIED)
641 {
642 resume (1, 0);
643 continue;
644 }
645
646 stop_pc = read_pc ();
647 set_current_frame ( create_new_frame (read_fp (), stop_pc));
648
649 stop_frame_address = FRAME_FP (get_current_frame ());
650 stop_sp = read_sp ();
651 stop_func_start = 0;
652 stop_func_name = 0;
653 /* Don't care about return value; stop_func_start and stop_func_name
654 will both be 0 if it doesn't work. */
655 find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start,
656 (CORE_ADDR *)NULL);
657 stop_func_start += FUNCTION_START_OFFSET;
658 another_trap = 0;
659 bpstat_clear (&stop_bpstat);
660 stop_step = 0;
661 stop_stack_dummy = 0;
662 stop_print_frame = 1;
663 random_signal = 0;
664 stopped_by_random_signal = 0;
665 breakpoints_failed = 0;
666
667 /* Look at the cause of the stop, and decide what to do.
668 The alternatives are:
669 1) break; to really stop and return to the debugger,
670 2) drop through to start up again
671 (set another_trap to 1 to single step once)
672 3) set random_signal to 1, and the decision between 1 and 2
673 will be made according to the signal handling tables. */
674
675 stop_signal = WSTOPSIG (w);
676
677 /* First, distinguish signals caused by the debugger from signals
678 that have to do with the program's own actions.
679 Note that breakpoint insns may cause SIGTRAP or SIGILL
680 or SIGEMT, depending on the operating system version.
681 Here we detect when a SIGILL or SIGEMT is really a breakpoint
682 and change it to SIGTRAP. */
683
684 if (stop_signal == SIGTRAP
685 || (breakpoints_inserted &&
686 (stop_signal == SIGILL
687 #ifdef SIGEMT
688 || stop_signal == SIGEMT
689 #endif
690 ))
691 || stop_soon_quietly)
692 {
693 if (stop_signal == SIGTRAP && stop_after_trap)
694 {
695 stop_print_frame = 0;
696 break;
697 }
698 if (stop_soon_quietly)
699 break;
700
701 /* Don't even think about breakpoints
702 if just proceeded over a breakpoint.
703
704 However, if we are trying to proceed over a breakpoint
705 and end up in sigtramp, then step_resume_breakpoint
706 will be set and we should check whether we've hit the
707 step breakpoint. */
708 if (stop_signal == SIGTRAP && trap_expected
709 && step_resume_breakpoint == NULL)
710 bpstat_clear (&stop_bpstat);
711 else
712 {
713 /* See if there is a breakpoint at the current PC. */
714 stop_bpstat = bpstat_stop_status
715 (&stop_pc, stop_frame_address,
716 #if DECR_PC_AFTER_BREAK
717 /* Notice the case of stepping through a jump
718 that lands just after a breakpoint.
719 Don't confuse that with hitting the breakpoint.
720 What we check for is that 1) stepping is going on
721 and 2) the pc before the last insn does not match
722 the address of the breakpoint before the current pc. */
723 (prev_pc != stop_pc - DECR_PC_AFTER_BREAK
724 && CURRENTLY_STEPPING ())
725 #else /* DECR_PC_AFTER_BREAK zero */
726 0
727 #endif /* DECR_PC_AFTER_BREAK zero */
728 );
729 /* Following in case break condition called a
730 function. */
731 stop_print_frame = 1;
732 }
733
734 if (stop_signal == SIGTRAP)
735 random_signal
736 = !(bpstat_explains_signal (stop_bpstat)
737 || trap_expected
738 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
739 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
740 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
741 || (step_range_end && step_resume_breakpoint == NULL));
742 else
743 {
744 random_signal
745 = !(bpstat_explains_signal (stop_bpstat)
746 /* End of a stack dummy. Some systems (e.g. Sony
747 news) give another signal besides SIGTRAP,
748 so check here as well as above. */
749 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
750 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
751 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
752 );
753 if (!random_signal)
754 stop_signal = SIGTRAP;
755 }
756 }
757 else
758 random_signal = 1;
759
760 /* For the program's own signals, act according to
761 the signal handling tables. */
762
763 if (random_signal)
764 {
765 /* Signal not for debugging purposes. */
766 int printed = 0;
767
768 stopped_by_random_signal = 1;
769
770 if (stop_signal >= NSIG
771 || signal_print[stop_signal])
772 {
773 char *signame;
774 printed = 1;
775 target_terminal_ours_for_output ();
776 #ifdef PRINT_RANDOM_SIGNAL
777 PRINT_RANDOM_SIGNAL (stop_signal);
778 #else
779 printf_filtered ("\nProgram received signal ");
780 signame = strsigno (stop_signal);
781 if (signame == NULL)
782 printf_filtered ("%d", stop_signal);
783 else
784 /* Do we need to print the number as well as the name? */
785 printf_filtered ("%s (%d)", signame, stop_signal);
786 printf_filtered (", %s\n", safe_strsignal (stop_signal));
787 #endif /* PRINT_RANDOM_SIGNAL */
788 fflush (stdout);
789 }
790 if (stop_signal >= NSIG
791 || signal_stop[stop_signal])
792 break;
793 /* If not going to stop, give terminal back
794 if we took it away. */
795 else if (printed)
796 target_terminal_inferior ();
797
798 /* Clear the signal if it should not be passed. */
799 if (signal_program[stop_signal] == 0)
800 stop_signal = 0;
801
802 /* I'm not sure whether this needs to be check_sigtramp2 or
803 whether it could/should be keep_going. */
804 goto check_sigtramp2;
805 }
806
807 /* Handle cases caused by hitting a breakpoint. */
808 {
809 CORE_ADDR jmp_buf_pc;
810 struct bpstat_what what;
811
812 what = bpstat_what (stop_bpstat);
813
814 if (what.call_dummy)
815 {
816 stop_stack_dummy = 1;
817 #ifdef HP_OS_BUG
818 trap_expected_after_continue = 1;
819 #endif
820 }
821
822 switch (what.main_action)
823 {
824 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
825 /* If we hit the breakpoint at longjmp, disable it for the
826 duration of this command. Then, install a temporary
827 breakpoint at the target of the jmp_buf. */
828 disable_longjmp_breakpoint();
829 remove_breakpoints ();
830 breakpoints_inserted = 0;
831 if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
832
833 /* Need to blow away step-resume breakpoint, as it
834 interferes with us */
835 if (step_resume_breakpoint != NULL)
836 {
837 delete_breakpoint (step_resume_breakpoint);
838 step_resume_breakpoint = NULL;
839 what.step_resume = 0;
840 }
841
842 #if 0
843 /* FIXME - Need to implement nested temporary breakpoints */
844 if (step_over_calls > 0)
845 set_longjmp_resume_breakpoint(jmp_buf_pc,
846 get_current_frame());
847 else
848 #endif /* 0 */
849 set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
850 handling_longjmp = 1; /* FIXME */
851 goto keep_going;
852
853 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
854 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
855 remove_breakpoints ();
856 breakpoints_inserted = 0;
857 #if 0
858 /* FIXME - Need to implement nested temporary breakpoints */
859 if (step_over_calls
860 && (stop_frame_address
861 INNER_THAN step_frame_address))
862 {
863 another_trap = 1;
864 goto keep_going;
865 }
866 #endif /* 0 */
867 disable_longjmp_breakpoint();
868 handling_longjmp = 0; /* FIXME */
869 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
870 break;
871 /* else fallthrough */
872
873 case BPSTAT_WHAT_SINGLE:
874 if (breakpoints_inserted)
875 remove_breakpoints ();
876 breakpoints_inserted = 0;
877 another_trap = 1;
878 /* Still need to check other stuff, at least the case
879 where we are stepping and step out of the right range. */
880 break;
881
882 case BPSTAT_WHAT_STOP_NOISY:
883 stop_print_frame = 1;
884 /* We are about to nuke the step_resume_breakpoint via the
885 cleanup chain, so no need to worry about it here. */
886 goto stop_stepping;
887
888 case BPSTAT_WHAT_STOP_SILENT:
889 stop_print_frame = 0;
890 /* We are about to nuke the step_resume_breakpoint via the
891 cleanup chain, so no need to worry about it here. */
892 goto stop_stepping;
893
894 case BPSTAT_WHAT_KEEP_CHECKING:
895 break;
896 }
897
898 if (what.step_resume)
899 {
900 delete_breakpoint (step_resume_breakpoint);
901 step_resume_breakpoint = NULL;
902
903 /* If were waiting for a trap, hitting the step_resume_break
904 doesn't count as getting it. */
905 if (trap_expected)
906 another_trap = 1;
907 }
908 }
909
910 /* We come here if we hit a breakpoint but should not
911 stop for it. Possibly we also were stepping
912 and should stop for that. So fall through and
913 test for stepping. But, if not stepping,
914 do not stop. */
915
916 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
917 /* This is the old way of detecting the end of the stack dummy.
918 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
919 handled above. As soon as we can test it on all of them, all
920 architectures should define it. */
921
922 /* If this is the breakpoint at the end of a stack dummy,
923 just stop silently, unless the user was doing an si/ni, in which
924 case she'd better know what she's doing. */
925
926 if (PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
927 && !step_range_end)
928 {
929 stop_print_frame = 0;
930 stop_stack_dummy = 1;
931 #ifdef HP_OS_BUG
932 trap_expected_after_continue = 1;
933 #endif
934 break;
935 }
936 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
937
938 if (step_resume_breakpoint)
939 /* Having a step-resume breakpoint overrides anything
940 else having to do with stepping commands until
941 that breakpoint is reached. */
942 /* I suspect this could/should be keep_going, because if the
943 check_sigtramp2 check succeeds, then it will put in another
944 step_resume_breakpoint, and we aren't (yet) prepared to nest
945 them. */
946 goto check_sigtramp2;
947
948 if (step_range_end == 0)
949 /* Likewise if we aren't even stepping. */
950 /* I'm not sure whether this needs to be check_sigtramp2 or
951 whether it could/should be keep_going. */
952 goto check_sigtramp2;
953
954 /* If stepping through a line, keep going if still within it. */
955 if (stop_pc >= step_range_start
956 && stop_pc < step_range_end
957 /* The step range might include the start of the
958 function, so if we are at the start of the
959 step range and either the stack or frame pointers
960 just changed, we've stepped outside */
961 && !(stop_pc == step_range_start
962 && stop_frame_address
963 && (stop_sp INNER_THAN prev_sp
964 || stop_frame_address != step_frame_address)))
965 {
966 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
967 So definately need to check for sigtramp here. */
968 goto check_sigtramp2;
969 }
970
971 /* We stepped out of the stepping range. See if that was due
972 to a subroutine call that we should proceed to the end of. */
973
974 /* Did we just take a signal? */
975 if (IN_SIGTRAMP (stop_pc, stop_func_name)
976 && !IN_SIGTRAMP (prev_pc, prev_func_name))
977 {
978 /* This code is needed at least in the following case:
979 The user types "next" and then a signal arrives (before
980 the "next" is done). */
981 /* We've just taken a signal; go until we are back to
982 the point where we took it and one more. */
983 {
984 struct symtab_and_line sr_sal;
985
986 sr_sal.pc = prev_pc;
987 sr_sal.symtab = NULL;
988 sr_sal.line = 0;
989 step_resume_breakpoint =
990 set_momentary_breakpoint (sr_sal, get_current_frame (),
991 bp_step_resume);
992 if (breakpoints_inserted)
993 insert_breakpoints ();
994 }
995
996 /* If this is stepi or nexti, make sure that the stepping range
997 gets us past that instruction. */
998 if (step_range_end == 1)
999 /* FIXME: Does this run afoul of the code below which, if
1000 we step into the middle of a line, resets the stepping
1001 range? */
1002 step_range_end = (step_range_start = prev_pc) + 1;
1003
1004 remove_breakpoints_on_following_step = 1;
1005 goto keep_going;
1006 }
1007
1008 if (stop_func_start)
1009 {
1010 /* Do this after the IN_SIGTRAMP check; it might give
1011 an error. */
1012 prologue_pc = stop_func_start;
1013 SKIP_PROLOGUE (prologue_pc);
1014 }
1015
1016 /* ==> See comments at top of file on this algorithm. <==*/
1017
1018 if ((stop_pc == stop_func_start
1019 || IN_SOLIB_TRAMPOLINE (stop_pc, stop_func_name))
1020 && (stop_func_start != prev_func_start
1021 || prologue_pc != stop_func_start
1022 || stop_sp != prev_sp))
1023 {
1024 /* It's a subroutine call. */
1025
1026 if (step_over_calls == 0)
1027 {
1028 /* I presume that step_over_calls is only 0 when we're
1029 supposed to be stepping at the assembly language level
1030 ("stepi"). Just stop. */
1031 stop_step = 1;
1032 break;
1033 }
1034
1035 if (step_over_calls > 0)
1036 /* We're doing a "next". */
1037 goto step_over_function;
1038
1039 /* If we are in a function call trampoline (a stub between
1040 the calling routine and the real function), locate the real
1041 function. That's what tells us (a) whether we want to step
1042 into it at all, and (b) what prologue we want to run to
1043 the end of, if we do step into it. */
1044 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1045 if (tmp != 0)
1046 stop_func_start = tmp;
1047
1048 /* If we have line number information for the function we
1049 are thinking of stepping into, step into it.
1050
1051 If there are several symtabs at that PC (e.g. with include
1052 files), just want to know whether *any* of them have line
1053 numbers. find_pc_line handles this. */
1054 {
1055 struct symtab_and_line tmp_sal;
1056
1057 tmp_sal = find_pc_line (stop_func_start, 0);
1058 if (tmp_sal.line != 0)
1059 goto step_into_function;
1060 }
1061
1062 step_over_function:
1063 /* A subroutine call has happened. */
1064 {
1065 /* Set a special breakpoint after the return */
1066 struct symtab_and_line sr_sal;
1067 sr_sal.pc =
1068 ADDR_BITS_REMOVE
1069 (SAVED_PC_AFTER_CALL (get_current_frame ()));
1070 sr_sal.symtab = NULL;
1071 sr_sal.line = 0;
1072 step_resume_breakpoint =
1073 set_momentary_breakpoint (sr_sal, get_current_frame (),
1074 bp_step_resume);
1075 if (breakpoints_inserted)
1076 insert_breakpoints ();
1077 }
1078 goto keep_going;
1079
1080 step_into_function:
1081 /* Subroutine call with source code we should not step over.
1082 Do step to the first line of code in it. */
1083 SKIP_PROLOGUE (stop_func_start);
1084 sal = find_pc_line (stop_func_start, 0);
1085 /* Use the step_resume_break to step until
1086 the end of the prologue, even if that involves jumps
1087 (as it seems to on the vax under 4.2). */
1088 /* If the prologue ends in the middle of a source line,
1089 continue to the end of that source line.
1090 Otherwise, just go to end of prologue. */
1091 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
1092 /* no, don't either. It skips any code that's
1093 legitimately on the first line. */
1094 #else
1095 if (sal.end && sal.pc != stop_func_start)
1096 stop_func_start = sal.end;
1097 #endif
1098
1099 if (stop_func_start == stop_pc)
1100 {
1101 /* We are already there: stop now. */
1102 stop_step = 1;
1103 break;
1104 }
1105 else
1106 /* Put the step-breakpoint there and go until there. */
1107 {
1108 struct symtab_and_line sr_sal;
1109
1110 sr_sal.pc = stop_func_start;
1111 sr_sal.symtab = NULL;
1112 sr_sal.line = 0;
1113 /* Do not specify what the fp should be when we stop
1114 since on some machines the prologue
1115 is where the new fp value is established. */
1116 step_resume_breakpoint =
1117 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1118 if (breakpoints_inserted)
1119 insert_breakpoints ();
1120
1121 /* And make sure stepping stops right away then. */
1122 step_range_end = step_range_start;
1123 }
1124 goto keep_going;
1125 }
1126
1127 /* We've wandered out of the step range (but haven't done a
1128 subroutine call or return). (Is that true? I think we get
1129 here if we did a return and maybe a longjmp). */
1130
1131 sal = find_pc_line(stop_pc, 0);
1132
1133 if (step_range_end == 1)
1134 {
1135 /* It is stepi or nexti. We always want to stop stepping after
1136 one instruction. */
1137 stop_step = 1;
1138 break;
1139 }
1140
1141 if (sal.line == 0)
1142 {
1143 /* We have no line number information. That means to stop
1144 stepping (does this always happen right after one instruction,
1145 when we do "s" in a function with no line numbers,
1146 or can this happen as a result of a return or longjmp?). */
1147 stop_step = 1;
1148 break;
1149 }
1150
1151 if (stop_pc == sal.pc && current_line != sal.line)
1152 {
1153 /* We are at the start of a different line. So stop. Note that
1154 we don't stop if we step into the middle of a different line.
1155 That is said to make things like for (;;) statements work
1156 better. */
1157 stop_step = 1;
1158 break;
1159 }
1160
1161 /* We aren't done stepping.
1162
1163 Optimize by setting the stepping range to the line.
1164 (We might not be in the original line, but if we entered a
1165 new line in mid-statement, we continue stepping. This makes
1166 things like for(;;) statements work better.) */
1167 step_range_start = sal.pc;
1168 step_range_end = sal.end;
1169 goto keep_going;
1170
1171 check_sigtramp2:
1172 if (trap_expected
1173 && IN_SIGTRAMP (stop_pc, stop_func_name)
1174 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1175 {
1176 /* What has happened here is that we have just stepped the inferior
1177 with a signal (because it is a signal which shouldn't make
1178 us stop), thus stepping into sigtramp.
1179
1180 So we need to set a step_resume_break_address breakpoint
1181 and continue until we hit it, and then step. FIXME: This should
1182 be more enduring than a step_resume breakpoint; we should know
1183 that we will later need to keep going rather than re-hitting
1184 the breakpoint here (see testsuite/gdb.t06/signals.exp where
1185 it says "exceedingly difficult"). */
1186 struct symtab_and_line sr_sal;
1187
1188 sr_sal.pc = prev_pc;
1189 sr_sal.symtab = NULL;
1190 sr_sal.line = 0;
1191 step_resume_breakpoint =
1192 set_momentary_breakpoint (sr_sal, get_current_frame (),
1193 bp_step_resume);
1194 if (breakpoints_inserted)
1195 insert_breakpoints ();
1196
1197 remove_breakpoints_on_following_step = 1;
1198 another_trap = 1;
1199 }
1200
1201 keep_going:
1202 /* Come to this label when you need to resume the inferior.
1203 It's really much cleaner to do a goto than a maze of if-else
1204 conditions. */
1205
1206 /* Save the pc before execution, to compare with pc after stop. */
1207 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1208 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1209 BREAK is defined, the
1210 original pc would not have
1211 been at the start of a
1212 function. */
1213 prev_func_name = stop_func_name;
1214 prev_sp = stop_sp;
1215
1216 /* If we did not do break;, it means we should keep
1217 running the inferior and not return to debugger. */
1218
1219 if (trap_expected && stop_signal != SIGTRAP)
1220 {
1221 /* We took a signal (which we are supposed to pass through to
1222 the inferior, else we'd have done a break above) and we
1223 haven't yet gotten our trap. Simply continue. */
1224 resume (CURRENTLY_STEPPING (), stop_signal);
1225 }
1226 else
1227 {
1228 /* Either the trap was not expected, but we are continuing
1229 anyway (the user asked that this signal be passed to the
1230 child)
1231 -- or --
1232 The signal was SIGTRAP, e.g. it was our signal, but we
1233 decided we should resume from it.
1234
1235 We're going to run this baby now!
1236
1237 Insert breakpoints now, unless we are trying
1238 to one-proceed past a breakpoint. */
1239 /* If we've just finished a special step resume and we don't
1240 want to hit a breakpoint, pull em out. */
1241 if (step_resume_breakpoint == NULL &&
1242 remove_breakpoints_on_following_step)
1243 {
1244 remove_breakpoints_on_following_step = 0;
1245 remove_breakpoints ();
1246 breakpoints_inserted = 0;
1247 }
1248 else if (!breakpoints_inserted &&
1249 (step_resume_breakpoint != NULL || !another_trap))
1250 {
1251 breakpoints_failed = insert_breakpoints ();
1252 if (breakpoints_failed)
1253 break;
1254 breakpoints_inserted = 1;
1255 }
1256
1257 trap_expected = another_trap;
1258
1259 if (stop_signal == SIGTRAP)
1260 stop_signal = 0;
1261
1262 #ifdef SHIFT_INST_REGS
1263 /* I'm not sure when this following segment applies. I do know, now,
1264 that we shouldn't rewrite the regs when we were stopped by a
1265 random signal from the inferior process. */
1266 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
1267 (this is only used on the 88k). */
1268
1269 if (!bpstat_explains_signal (stop_bpstat)
1270 && (stop_signal != SIGCLD)
1271 && !stopped_by_random_signal)
1272 SHIFT_INST_REGS();
1273 #endif /* SHIFT_INST_REGS */
1274
1275 resume (CURRENTLY_STEPPING (), stop_signal);
1276 }
1277 }
1278
1279 stop_stepping:
1280 if (target_has_execution)
1281 {
1282 /* Assuming the inferior still exists, set these up for next
1283 time, just like we did above if we didn't break out of the
1284 loop. */
1285 prev_pc = read_pc ();
1286 prev_func_start = stop_func_start;
1287 prev_func_name = stop_func_name;
1288 prev_sp = stop_sp;
1289 }
1290 do_cleanups (old_cleanups);
1291 }
1292 \f
1293 /* Here to return control to GDB when the inferior stops for real.
1294 Print appropriate messages, remove breakpoints, give terminal our modes.
1295
1296 STOP_PRINT_FRAME nonzero means print the executing frame
1297 (pc, function, args, file, line number and line text).
1298 BREAKPOINTS_FAILED nonzero means stop was due to error
1299 attempting to insert breakpoints. */
1300
1301 void
1302 normal_stop ()
1303 {
1304 /* Make sure that the current_frame's pc is correct. This
1305 is a correction for setting up the frame info before doing
1306 DECR_PC_AFTER_BREAK */
1307 if (target_has_execution)
1308 (get_current_frame ())->pc = read_pc ();
1309
1310 if (breakpoints_failed)
1311 {
1312 target_terminal_ours_for_output ();
1313 print_sys_errmsg ("ptrace", breakpoints_failed);
1314 printf_filtered ("Stopped; cannot insert breakpoints.\n\
1315 The same program may be running in another process.\n");
1316 }
1317
1318 if (target_has_execution && breakpoints_inserted)
1319 if (remove_breakpoints ())
1320 {
1321 target_terminal_ours_for_output ();
1322 printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
1323 It might be running in another process.\n\
1324 Further execution is probably impossible.\n");
1325 }
1326
1327 breakpoints_inserted = 0;
1328
1329 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1330 Delete any breakpoint that is to be deleted at the next stop. */
1331
1332 breakpoint_auto_delete (stop_bpstat);
1333
1334 /* If an auto-display called a function and that got a signal,
1335 delete that auto-display to avoid an infinite recursion. */
1336
1337 if (stopped_by_random_signal)
1338 disable_current_display ();
1339
1340 if (step_multi && stop_step)
1341 return;
1342
1343 target_terminal_ours ();
1344
1345 /* Look up the hook_stop and run it if it exists. */
1346
1347 if (stop_command->hook)
1348 {
1349 catch_errors (hook_stop_stub, (char *)stop_command->hook,
1350 "Error while running hook_stop:\n", RETURN_MASK_ALL);
1351 }
1352
1353 if (!target_has_stack)
1354 return;
1355
1356 /* Select innermost stack frame except on return from a stack dummy routine,
1357 or if the program has exited. Print it without a level number if
1358 we have changed functions or hit a breakpoint. Print source line
1359 if we have one. */
1360 if (!stop_stack_dummy)
1361 {
1362 select_frame (get_current_frame (), 0);
1363
1364 if (stop_print_frame)
1365 {
1366 int source_only;
1367
1368 source_only = bpstat_print (stop_bpstat);
1369 source_only = source_only ||
1370 ( stop_step
1371 && step_frame_address == stop_frame_address
1372 && step_start_function == find_pc_function (stop_pc));
1373
1374 print_stack_frame (selected_frame, -1, source_only? -1: 1);
1375
1376 /* Display the auto-display expressions. */
1377 do_displays ();
1378 }
1379 }
1380
1381 /* Save the function value return registers, if we care.
1382 We might be about to restore their previous contents. */
1383 if (proceed_to_finish)
1384 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1385
1386 if (stop_stack_dummy)
1387 {
1388 /* Pop the empty frame that contains the stack dummy.
1389 POP_FRAME ends with a setting of the current frame, so we
1390 can use that next. */
1391 POP_FRAME;
1392 select_frame (get_current_frame (), 0);
1393 }
1394 }
1395
1396 static int
1397 hook_stop_stub (cmd)
1398 char *cmd;
1399 {
1400 execute_user_command ((struct cmd_list_element *)cmd, 0);
1401 return (0);
1402 }
1403 \f
1404 int signal_stop_state (signo)
1405 int signo;
1406 {
1407 return ((signo >= 0 && signo < NSIG) ? signal_stop[signo] : 0);
1408 }
1409
1410 int signal_print_state (signo)
1411 int signo;
1412 {
1413 return ((signo >= 0 && signo < NSIG) ? signal_print[signo] : 0);
1414 }
1415
1416 int signal_pass_state (signo)
1417 int signo;
1418 {
1419 return ((signo >= 0 && signo < NSIG) ? signal_program[signo] : 0);
1420 }
1421
1422 static void
1423 sig_print_header ()
1424 {
1425 printf_filtered ("Signal\t\tStop\tPrint\tPass to program\tDescription\n");
1426 }
1427
1428 static void
1429 sig_print_info (number)
1430 int number;
1431 {
1432 char *name;
1433
1434 if ((name = strsigno (number)) == NULL)
1435 printf_filtered ("%d\t\t", number);
1436 else
1437 printf_filtered ("%s (%d)\t", name, number);
1438 printf_filtered ("%s\t", signal_stop[number] ? "Yes" : "No");
1439 printf_filtered ("%s\t", signal_print[number] ? "Yes" : "No");
1440 printf_filtered ("%s\t\t", signal_program[number] ? "Yes" : "No");
1441 printf_filtered ("%s\n", safe_strsignal (number));
1442 }
1443
1444 /* Specify how various signals in the inferior should be handled. */
1445
1446 static void
1447 handle_command (args, from_tty)
1448 char *args;
1449 int from_tty;
1450 {
1451 char **argv;
1452 int digits, wordlen;
1453 int sigfirst, signum, siglast;
1454 int allsigs;
1455 int nsigs;
1456 unsigned char *sigs;
1457 struct cleanup *old_chain;
1458
1459 if (args == NULL)
1460 {
1461 error_no_arg ("signal to handle");
1462 }
1463
1464 /* Allocate and zero an array of flags for which signals to handle. */
1465
1466 nsigs = signo_max () + 1;
1467 sigs = (unsigned char *) alloca (nsigs);
1468 memset (sigs, 0, nsigs);
1469
1470 /* Break the command line up into args. */
1471
1472 argv = buildargv (args);
1473 if (argv == NULL)
1474 {
1475 nomem (0);
1476 }
1477 old_chain = make_cleanup (freeargv, (char *) argv);
1478
1479 /* Walk through the args, looking for signal numbers, signal names, and
1480 actions. Signal numbers and signal names may be interspersed with
1481 actions, with the actions being performed for all signals cumulatively
1482 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
1483
1484 while (*argv != NULL)
1485 {
1486 wordlen = strlen (*argv);
1487 for (digits = 0; isdigit ((*argv)[digits]); digits++) {;}
1488 allsigs = 0;
1489 sigfirst = siglast = -1;
1490
1491 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
1492 {
1493 /* Apply action to all signals except those used by the
1494 debugger. Silently skip those. */
1495 allsigs = 1;
1496 sigfirst = 0;
1497 siglast = nsigs - 1;
1498 }
1499 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
1500 {
1501 SET_SIGS (nsigs, sigs, signal_stop);
1502 SET_SIGS (nsigs, sigs, signal_print);
1503 }
1504 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
1505 {
1506 UNSET_SIGS (nsigs, sigs, signal_program);
1507 }
1508 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
1509 {
1510 SET_SIGS (nsigs, sigs, signal_print);
1511 }
1512 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
1513 {
1514 SET_SIGS (nsigs, sigs, signal_program);
1515 }
1516 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
1517 {
1518 UNSET_SIGS (nsigs, sigs, signal_stop);
1519 }
1520 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
1521 {
1522 SET_SIGS (nsigs, sigs, signal_program);
1523 }
1524 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
1525 {
1526 UNSET_SIGS (nsigs, sigs, signal_print);
1527 UNSET_SIGS (nsigs, sigs, signal_stop);
1528 }
1529 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
1530 {
1531 UNSET_SIGS (nsigs, sigs, signal_program);
1532 }
1533 else if (digits > 0)
1534 {
1535 sigfirst = siglast = atoi (*argv);
1536 if ((*argv)[digits] == '-')
1537 {
1538 siglast = atoi ((*argv) + digits + 1);
1539 }
1540 if (sigfirst > siglast)
1541 {
1542 /* Bet he didn't figure we'd think of this case... */
1543 signum = sigfirst;
1544 sigfirst = siglast;
1545 siglast = signum;
1546 }
1547 if (sigfirst < 0 || sigfirst >= nsigs)
1548 {
1549 error ("Signal %d not in range 0-%d", sigfirst, nsigs - 1);
1550 }
1551 if (siglast < 0 || siglast >= nsigs)
1552 {
1553 error ("Signal %d not in range 0-%d", siglast, nsigs - 1);
1554 }
1555 }
1556 else if ((signum = strtosigno (*argv)) != 0)
1557 {
1558 sigfirst = siglast = signum;
1559 }
1560 else
1561 {
1562 /* Not a number and not a recognized flag word => complain. */
1563 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
1564 }
1565
1566 /* If any signal numbers or symbol names were found, set flags for
1567 which signals to apply actions to. */
1568
1569 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
1570 {
1571 switch (signum)
1572 {
1573 case SIGTRAP:
1574 case SIGINT:
1575 if (!allsigs && !sigs[signum])
1576 {
1577 if (query ("%s is used by the debugger.\nAre you sure you want to change it? ", strsigno (signum)))
1578 {
1579 sigs[signum] = 1;
1580 }
1581 else
1582 {
1583 printf ("Not confirmed, unchanged.\n");
1584 fflush (stdout);
1585 }
1586 }
1587 break;
1588 default:
1589 sigs[signum] = 1;
1590 break;
1591 }
1592 }
1593
1594 argv++;
1595 }
1596
1597 target_notice_signals();
1598
1599 if (from_tty)
1600 {
1601 /* Show the results. */
1602 sig_print_header ();
1603 for (signum = 0; signum < nsigs; signum++)
1604 {
1605 if (sigs[signum])
1606 {
1607 sig_print_info (signum);
1608 }
1609 }
1610 }
1611
1612 do_cleanups (old_chain);
1613 }
1614
1615 /* Print current contents of the tables set by the handle command. */
1616
1617 static void
1618 signals_info (signum_exp, from_tty)
1619 char *signum_exp;
1620 int from_tty;
1621 {
1622 register int i;
1623 sig_print_header ();
1624
1625 if (signum_exp)
1626 {
1627 /* First see if this is a symbol name. */
1628 i = strtosigno (signum_exp);
1629 if (i == 0)
1630 {
1631 /* Nope, maybe it's an address which evaluates to a signal
1632 number. */
1633 i = parse_and_eval_address (signum_exp);
1634 if (i >= NSIG || i < 0)
1635 error ("Signal number out of bounds.");
1636 }
1637 sig_print_info (i);
1638 return;
1639 }
1640
1641 printf_filtered ("\n");
1642 for (i = 0; i < NSIG; i++)
1643 {
1644 QUIT;
1645
1646 sig_print_info (i);
1647 }
1648
1649 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
1650 }
1651 \f
1652 /* Save all of the information associated with the inferior<==>gdb
1653 connection. INF_STATUS is a pointer to a "struct inferior_status"
1654 (defined in inferior.h). */
1655
1656 void
1657 save_inferior_status (inf_status, restore_stack_info)
1658 struct inferior_status *inf_status;
1659 int restore_stack_info;
1660 {
1661 inf_status->stop_signal = stop_signal;
1662 inf_status->stop_pc = stop_pc;
1663 inf_status->stop_frame_address = stop_frame_address;
1664 inf_status->stop_step = stop_step;
1665 inf_status->stop_stack_dummy = stop_stack_dummy;
1666 inf_status->stopped_by_random_signal = stopped_by_random_signal;
1667 inf_status->trap_expected = trap_expected;
1668 inf_status->step_range_start = step_range_start;
1669 inf_status->step_range_end = step_range_end;
1670 inf_status->step_frame_address = step_frame_address;
1671 inf_status->step_over_calls = step_over_calls;
1672 inf_status->stop_after_trap = stop_after_trap;
1673 inf_status->stop_soon_quietly = stop_soon_quietly;
1674 /* Save original bpstat chain here; replace it with copy of chain.
1675 If caller's caller is walking the chain, they'll be happier if we
1676 hand them back the original chain when restore_i_s is called. */
1677 inf_status->stop_bpstat = stop_bpstat;
1678 stop_bpstat = bpstat_copy (stop_bpstat);
1679 inf_status->breakpoint_proceeded = breakpoint_proceeded;
1680 inf_status->restore_stack_info = restore_stack_info;
1681 inf_status->proceed_to_finish = proceed_to_finish;
1682
1683 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
1684
1685 read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1686
1687 record_selected_frame (&(inf_status->selected_frame_address),
1688 &(inf_status->selected_level));
1689 return;
1690 }
1691
1692 struct restore_selected_frame_args {
1693 FRAME_ADDR frame_address;
1694 int level;
1695 };
1696
1697 static int restore_selected_frame PARAMS ((char *));
1698
1699 /* Restore the selected frame. args is really a struct
1700 restore_selected_frame_args * (declared as char * for catch_errors)
1701 telling us what frame to restore. Returns 1 for success, or 0 for
1702 failure. An error message will have been printed on error. */
1703 static int
1704 restore_selected_frame (args)
1705 char *args;
1706 {
1707 struct restore_selected_frame_args *fr =
1708 (struct restore_selected_frame_args *) args;
1709 FRAME fid;
1710 int level = fr->level;
1711
1712 fid = find_relative_frame (get_current_frame (), &level);
1713
1714 /* If inf_status->selected_frame_address is NULL, there was no
1715 previously selected frame. */
1716 if (fid == 0 ||
1717 FRAME_FP (fid) != fr->frame_address ||
1718 level != 0)
1719 {
1720 warning ("Unable to restore previously selected frame.\n");
1721 return 0;
1722 }
1723 select_frame (fid, fr->level);
1724 return(1);
1725 }
1726
1727 void
1728 restore_inferior_status (inf_status)
1729 struct inferior_status *inf_status;
1730 {
1731 stop_signal = inf_status->stop_signal;
1732 stop_pc = inf_status->stop_pc;
1733 stop_frame_address = inf_status->stop_frame_address;
1734 stop_step = inf_status->stop_step;
1735 stop_stack_dummy = inf_status->stop_stack_dummy;
1736 stopped_by_random_signal = inf_status->stopped_by_random_signal;
1737 trap_expected = inf_status->trap_expected;
1738 step_range_start = inf_status->step_range_start;
1739 step_range_end = inf_status->step_range_end;
1740 step_frame_address = inf_status->step_frame_address;
1741 step_over_calls = inf_status->step_over_calls;
1742 stop_after_trap = inf_status->stop_after_trap;
1743 stop_soon_quietly = inf_status->stop_soon_quietly;
1744 bpstat_clear (&stop_bpstat);
1745 stop_bpstat = inf_status->stop_bpstat;
1746 breakpoint_proceeded = inf_status->breakpoint_proceeded;
1747 proceed_to_finish = inf_status->proceed_to_finish;
1748
1749 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
1750
1751 /* The inferior can be gone if the user types "print exit(0)"
1752 (and perhaps other times). */
1753 if (target_has_execution)
1754 write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1755
1756 /* The inferior can be gone if the user types "print exit(0)"
1757 (and perhaps other times). */
1758
1759 /* FIXME: If we are being called after stopping in a function which
1760 is called from gdb, we should not be trying to restore the
1761 selected frame; it just prints a spurious error message (The
1762 message is useful, however, in detecting bugs in gdb (like if gdb
1763 clobbers the stack)). In fact, should we be restoring the
1764 inferior status at all in that case? . */
1765
1766 if (target_has_stack && inf_status->restore_stack_info)
1767 {
1768 struct restore_selected_frame_args fr;
1769 fr.level = inf_status->selected_level;
1770 fr.frame_address = inf_status->selected_frame_address;
1771 /* The point of catch_errors is that if the stack is clobbered,
1772 walking the stack might encounter a garbage pointer and error()
1773 trying to dereference it. */
1774 if (catch_errors (restore_selected_frame, &fr,
1775 "Unable to restore previously selected frame:\n",
1776 RETURN_MASK_ERROR) == 0)
1777 /* Error in restoring the selected frame. Select the innermost
1778 frame. */
1779 select_frame (get_current_frame (), 0);
1780 }
1781 }
1782
1783 \f
1784 void
1785 _initialize_infrun ()
1786 {
1787 register int i;
1788 register int numsigs;
1789
1790 add_info ("signals", signals_info,
1791 "What debugger does when program gets various signals.\n\
1792 Specify a signal number as argument to print info on that signal only.");
1793 add_info_alias ("handle", "signals", 0);
1794
1795 add_com ("handle", class_run, handle_command,
1796 "Specify how to handle a signal.\n\
1797 Args are signal numbers and actions to apply to those signals.\n\
1798 Signal numbers may be numeric (ex. 11) or symbolic (ex. SIGSEGV).\n\
1799 Numeric ranges may be specified with the form LOW-HIGH (ex. 14-21).\n\
1800 The special arg \"all\" is recognized to mean all signals except those\n\
1801 used by the debugger, typically SIGTRAP and SIGINT.\n\
1802 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
1803 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
1804 Stop means reenter debugger if this signal happens (implies print).\n\
1805 Print means print a message if this signal happens.\n\
1806 Pass means let program see this signal; otherwise program doesn't know.\n\
1807 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1808 Pass and Stop may be combined.");
1809
1810 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
1811 "There is no `stop' command, but you can set a hook on `stop'.\n\
1812 This allows you to set a list of commands to be run each time execution\n\
1813 of the program stops.", &cmdlist);
1814
1815 numsigs = signo_max () + 1;
1816 signal_stop = (unsigned char *)
1817 xmalloc (sizeof (signal_stop[0]) * numsigs);
1818 signal_print = (unsigned char *)
1819 xmalloc (sizeof (signal_print[0]) * numsigs);
1820 signal_program = (unsigned char *)
1821 xmalloc (sizeof (signal_program[0]) * numsigs);
1822 for (i = 0; i < numsigs; i++)
1823 {
1824 signal_stop[i] = 1;
1825 signal_print[i] = 1;
1826 signal_program[i] = 1;
1827 }
1828
1829 /* Signals caused by debugger's own actions
1830 should not be given to the program afterwards. */
1831 signal_program[SIGTRAP] = 0;
1832 signal_program[SIGINT] = 0;
1833
1834 /* Signals that are not errors should not normally enter the debugger. */
1835 #ifdef SIGALRM
1836 signal_stop[SIGALRM] = 0;
1837 signal_print[SIGALRM] = 0;
1838 #endif /* SIGALRM */
1839 #ifdef SIGVTALRM
1840 signal_stop[SIGVTALRM] = 0;
1841 signal_print[SIGVTALRM] = 0;
1842 #endif /* SIGVTALRM */
1843 #ifdef SIGPROF
1844 signal_stop[SIGPROF] = 0;
1845 signal_print[SIGPROF] = 0;
1846 #endif /* SIGPROF */
1847 #ifdef SIGCHLD
1848 signal_stop[SIGCHLD] = 0;
1849 signal_print[SIGCHLD] = 0;
1850 #endif /* SIGCHLD */
1851 #ifdef SIGCLD
1852 signal_stop[SIGCLD] = 0;
1853 signal_print[SIGCLD] = 0;
1854 #endif /* SIGCLD */
1855 #ifdef SIGIO
1856 signal_stop[SIGIO] = 0;
1857 signal_print[SIGIO] = 0;
1858 #endif /* SIGIO */
1859 #ifdef SIGURG
1860 signal_stop[SIGURG] = 0;
1861 signal_print[SIGURG] = 0;
1862 #endif /* SIGURG */
1863 }
This page took 0.06834 seconds and 3 git commands to generate.