remote: Fix indentation in remote_new_objfile.
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2021 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "displaced-stepping.h"
23 #include "infrun.h"
24 #include <ctype.h>
25 #include "symtab.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "breakpoint.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "target-connection.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include "inf-loop.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "observable.h"
41 #include "language.h"
42 #include "solib.h"
43 #include "main.h"
44 #include "block.h"
45 #include "mi/mi-common.h"
46 #include "event-top.h"
47 #include "record.h"
48 #include "record-full.h"
49 #include "inline-frame.h"
50 #include "jit.h"
51 #include "tracepoint.h"
52 #include "skip.h"
53 #include "probe.h"
54 #include "objfiles.h"
55 #include "completer.h"
56 #include "target-descriptions.h"
57 #include "target-dcache.h"
58 #include "terminal.h"
59 #include "solist.h"
60 #include "gdbsupport/event-loop.h"
61 #include "thread-fsm.h"
62 #include "gdbsupport/enum-flags.h"
63 #include "progspace-and-thread.h"
64 #include "gdbsupport/gdb_optional.h"
65 #include "arch-utils.h"
66 #include "gdbsupport/scope-exit.h"
67 #include "gdbsupport/forward-scope-exit.h"
68 #include "gdbsupport/gdb_select.h"
69 #include <unordered_map>
70 #include "async-event.h"
71 #include "gdbsupport/selftest.h"
72 #include "scoped-mock-context.h"
73 #include "test-target.h"
74 #include "gdbsupport/common-debug.h"
75
76 /* Prototypes for local functions */
77
78 static void sig_print_info (enum gdb_signal);
79
80 static void sig_print_header (void);
81
82 static void follow_inferior_reset_breakpoints (void);
83
84 static bool currently_stepping (struct thread_info *tp);
85
86 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
87
88 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
89
90 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
91
92 static bool maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
93
94 static void resume (gdb_signal sig);
95
96 static void wait_for_inferior (inferior *inf);
97
98 /* Asynchronous signal handler registered as event loop source for
99 when we have pending events ready to be passed to the core. */
100 static struct async_event_handler *infrun_async_inferior_event_token;
101
102 /* Stores whether infrun_async was previously enabled or disabled.
103 Starts off as -1, indicating "never enabled/disabled". */
104 static int infrun_is_async = -1;
105
106 /* See infrun.h. */
107
108 void
109 infrun_async (int enable)
110 {
111 if (infrun_is_async != enable)
112 {
113 infrun_is_async = enable;
114
115 infrun_debug_printf ("enable=%d", enable);
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122 }
123
124 /* See infrun.h. */
125
126 void
127 mark_infrun_async_event_handler (void)
128 {
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 }
131
132 /* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
135 bool step_stop_if_no_debug = false;
136 static void
137 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139 {
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141 }
142
143 /* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
146
147 static ptid_t previous_inferior_ptid;
148
149 /* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
154 static bool detach_fork = true;
155
156 bool debug_infrun = false;
157 static void
158 show_debug_infrun (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160 {
161 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
162 }
163
164 /* Support for disabling address space randomization. */
165
166 bool disable_randomization = true;
167
168 static void
169 show_disable_randomization (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 if (target_supports_disable_randomization ())
173 fprintf_filtered (file,
174 _("Disabling randomization of debuggee's "
175 "virtual address space is %s.\n"),
176 value);
177 else
178 fputs_filtered (_("Disabling randomization of debuggee's "
179 "virtual address space is unsupported on\n"
180 "this platform.\n"), file);
181 }
182
183 static void
184 set_disable_randomization (const char *args, int from_tty,
185 struct cmd_list_element *c)
186 {
187 if (!target_supports_disable_randomization ())
188 error (_("Disabling randomization of debuggee's "
189 "virtual address space is unsupported on\n"
190 "this platform."));
191 }
192
193 /* User interface for non-stop mode. */
194
195 bool non_stop = false;
196 static bool non_stop_1 = false;
197
198 static void
199 set_non_stop (const char *args, int from_tty,
200 struct cmd_list_element *c)
201 {
202 if (target_has_execution ())
203 {
204 non_stop_1 = non_stop;
205 error (_("Cannot change this setting while the inferior is running."));
206 }
207
208 non_stop = non_stop_1;
209 }
210
211 static void
212 show_non_stop (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214 {
215 fprintf_filtered (file,
216 _("Controlling the inferior in non-stop mode is %s.\n"),
217 value);
218 }
219
220 /* "Observer mode" is somewhat like a more extreme version of
221 non-stop, in which all GDB operations that might affect the
222 target's execution have been disabled. */
223
224 static bool observer_mode = false;
225 static bool observer_mode_1 = false;
226
227 static void
228 set_observer_mode (const char *args, int from_tty,
229 struct cmd_list_element *c)
230 {
231 if (target_has_execution ())
232 {
233 observer_mode_1 = observer_mode;
234 error (_("Cannot change this setting while the inferior is running."));
235 }
236
237 observer_mode = observer_mode_1;
238
239 may_write_registers = !observer_mode;
240 may_write_memory = !observer_mode;
241 may_insert_breakpoints = !observer_mode;
242 may_insert_tracepoints = !observer_mode;
243 /* We can insert fast tracepoints in or out of observer mode,
244 but enable them if we're going into this mode. */
245 if (observer_mode)
246 may_insert_fast_tracepoints = true;
247 may_stop = !observer_mode;
248 update_target_permissions ();
249
250 /* Going *into* observer mode we must force non-stop, then
251 going out we leave it that way. */
252 if (observer_mode)
253 {
254 pagination_enabled = 0;
255 non_stop = non_stop_1 = true;
256 }
257
258 if (from_tty)
259 printf_filtered (_("Observer mode is now %s.\n"),
260 (observer_mode ? "on" : "off"));
261 }
262
263 static void
264 show_observer_mode (struct ui_file *file, int from_tty,
265 struct cmd_list_element *c, const char *value)
266 {
267 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
268 }
269
270 /* This updates the value of observer mode based on changes in
271 permissions. Note that we are deliberately ignoring the values of
272 may-write-registers and may-write-memory, since the user may have
273 reason to enable these during a session, for instance to turn on a
274 debugging-related global. */
275
276 void
277 update_observer_mode (void)
278 {
279 bool newval = (!may_insert_breakpoints
280 && !may_insert_tracepoints
281 && may_insert_fast_tracepoints
282 && !may_stop
283 && non_stop);
284
285 /* Let the user know if things change. */
286 if (newval != observer_mode)
287 printf_filtered (_("Observer mode is now %s.\n"),
288 (newval ? "on" : "off"));
289
290 observer_mode = observer_mode_1 = newval;
291 }
292
293 /* Tables of how to react to signals; the user sets them. */
294
295 static unsigned char signal_stop[GDB_SIGNAL_LAST];
296 static unsigned char signal_print[GDB_SIGNAL_LAST];
297 static unsigned char signal_program[GDB_SIGNAL_LAST];
298
299 /* Table of signals that are registered with "catch signal". A
300 non-zero entry indicates that the signal is caught by some "catch
301 signal" command. */
302 static unsigned char signal_catch[GDB_SIGNAL_LAST];
303
304 /* Table of signals that the target may silently handle.
305 This is automatically determined from the flags above,
306 and simply cached here. */
307 static unsigned char signal_pass[GDB_SIGNAL_LAST];
308
309 #define SET_SIGS(nsigs,sigs,flags) \
310 do { \
311 int signum = (nsigs); \
312 while (signum-- > 0) \
313 if ((sigs)[signum]) \
314 (flags)[signum] = 1; \
315 } while (0)
316
317 #define UNSET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 0; \
323 } while (0)
324
325 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
326 this function is to avoid exporting `signal_program'. */
327
328 void
329 update_signals_program_target (void)
330 {
331 target_program_signals (signal_program);
332 }
333
334 /* Value to pass to target_resume() to cause all threads to resume. */
335
336 #define RESUME_ALL minus_one_ptid
337
338 /* Command list pointer for the "stop" placeholder. */
339
340 static struct cmd_list_element *stop_command;
341
342 /* Nonzero if we want to give control to the user when we're notified
343 of shared library events by the dynamic linker. */
344 int stop_on_solib_events;
345
346 /* Enable or disable optional shared library event breakpoints
347 as appropriate when the above flag is changed. */
348
349 static void
350 set_stop_on_solib_events (const char *args,
351 int from_tty, struct cmd_list_element *c)
352 {
353 update_solib_breakpoints ();
354 }
355
356 static void
357 show_stop_on_solib_events (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c, const char *value)
359 {
360 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
361 value);
362 }
363
364 /* True after stop if current stack frame should be printed. */
365
366 static bool stop_print_frame;
367
368 /* This is a cached copy of the target/ptid/waitstatus of the last
369 event returned by target_wait()/deprecated_target_wait_hook().
370 This information is returned by get_last_target_status(). */
371 static process_stratum_target *target_last_proc_target;
372 static ptid_t target_last_wait_ptid;
373 static struct target_waitstatus target_last_waitstatus;
374
375 void init_thread_stepping_state (struct thread_info *tss);
376
377 static const char follow_fork_mode_child[] = "child";
378 static const char follow_fork_mode_parent[] = "parent";
379
380 static const char *const follow_fork_mode_kind_names[] = {
381 follow_fork_mode_child,
382 follow_fork_mode_parent,
383 NULL
384 };
385
386 static const char *follow_fork_mode_string = follow_fork_mode_parent;
387 static void
388 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
389 struct cmd_list_element *c, const char *value)
390 {
391 fprintf_filtered (file,
392 _("Debugger response to a program "
393 "call of fork or vfork is \"%s\".\n"),
394 value);
395 }
396 \f
397
398 /* Handle changes to the inferior list based on the type of fork,
399 which process is being followed, and whether the other process
400 should be detached. On entry inferior_ptid must be the ptid of
401 the fork parent. At return inferior_ptid is the ptid of the
402 followed inferior. */
403
404 static bool
405 follow_fork_inferior (bool follow_child, bool detach_fork)
406 {
407 int has_vforked;
408 ptid_t parent_ptid, child_ptid;
409
410 has_vforked = (inferior_thread ()->pending_follow.kind
411 == TARGET_WAITKIND_VFORKED);
412 parent_ptid = inferior_ptid;
413 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
414
415 if (has_vforked
416 && !non_stop /* Non-stop always resumes both branches. */
417 && current_ui->prompt_state == PROMPT_BLOCKED
418 && !(follow_child || detach_fork || sched_multi))
419 {
420 /* The parent stays blocked inside the vfork syscall until the
421 child execs or exits. If we don't let the child run, then
422 the parent stays blocked. If we're telling the parent to run
423 in the foreground, the user will not be able to ctrl-c to get
424 back the terminal, effectively hanging the debug session. */
425 fprintf_filtered (gdb_stderr, _("\
426 Can not resume the parent process over vfork in the foreground while\n\
427 holding the child stopped. Try \"set detach-on-fork\" or \
428 \"set schedule-multiple\".\n"));
429 return true;
430 }
431
432 if (!follow_child)
433 {
434 /* Detach new forked process? */
435 if (detach_fork)
436 {
437 /* Before detaching from the child, remove all breakpoints
438 from it. If we forked, then this has already been taken
439 care of by infrun.c. If we vforked however, any
440 breakpoint inserted in the parent is visible in the
441 child, even those added while stopped in a vfork
442 catchpoint. This will remove the breakpoints from the
443 parent also, but they'll be reinserted below. */
444 if (has_vforked)
445 {
446 /* Keep breakpoints list in sync. */
447 remove_breakpoints_inf (current_inferior ());
448 }
449
450 if (print_inferior_events)
451 {
452 /* Ensure that we have a process ptid. */
453 ptid_t process_ptid = ptid_t (child_ptid.pid ());
454
455 target_terminal::ours_for_output ();
456 fprintf_filtered (gdb_stdlog,
457 _("[Detaching after %s from child %s]\n"),
458 has_vforked ? "vfork" : "fork",
459 target_pid_to_str (process_ptid).c_str ());
460 }
461 }
462 else
463 {
464 struct inferior *parent_inf, *child_inf;
465
466 /* Add process to GDB's tables. */
467 child_inf = add_inferior (child_ptid.pid ());
468
469 parent_inf = current_inferior ();
470 child_inf->attach_flag = parent_inf->attach_flag;
471 copy_terminal_info (child_inf, parent_inf);
472 child_inf->gdbarch = parent_inf->gdbarch;
473 copy_inferior_target_desc_info (child_inf, parent_inf);
474
475 scoped_restore_current_pspace_and_thread restore_pspace_thread;
476
477 set_current_inferior (child_inf);
478 switch_to_no_thread ();
479 child_inf->symfile_flags = SYMFILE_NO_READ;
480 child_inf->push_target (parent_inf->process_target ());
481 thread_info *child_thr
482 = add_thread_silent (child_inf->process_target (), child_ptid);
483
484 /* If this is a vfork child, then the address-space is
485 shared with the parent. */
486 if (has_vforked)
487 {
488 child_inf->pspace = parent_inf->pspace;
489 child_inf->aspace = parent_inf->aspace;
490
491 exec_on_vfork ();
492
493 /* The parent will be frozen until the child is done
494 with the shared region. Keep track of the
495 parent. */
496 child_inf->vfork_parent = parent_inf;
497 child_inf->pending_detach = 0;
498 parent_inf->vfork_child = child_inf;
499 parent_inf->pending_detach = 0;
500
501 /* Now that the inferiors and program spaces are all
502 wired up, we can switch to the child thread (which
503 switches inferior and program space too). */
504 switch_to_thread (child_thr);
505 }
506 else
507 {
508 child_inf->aspace = new_address_space ();
509 child_inf->pspace = new program_space (child_inf->aspace);
510 child_inf->removable = 1;
511 set_current_program_space (child_inf->pspace);
512 clone_program_space (child_inf->pspace, parent_inf->pspace);
513
514 /* solib_create_inferior_hook relies on the current
515 thread. */
516 switch_to_thread (child_thr);
517
518 /* Let the shared library layer (e.g., solib-svr4) learn
519 about this new process, relocate the cloned exec, pull
520 in shared libraries, and install the solib event
521 breakpoint. If a "cloned-VM" event was propagated
522 better throughout the core, this wouldn't be
523 required. */
524 scoped_restore restore_in_initial_library_scan
525 = make_scoped_restore (&child_inf->in_initial_library_scan,
526 true);
527 solib_create_inferior_hook (0);
528 }
529 }
530
531 if (has_vforked)
532 {
533 struct inferior *parent_inf;
534
535 parent_inf = current_inferior ();
536
537 /* If we detached from the child, then we have to be careful
538 to not insert breakpoints in the parent until the child
539 is done with the shared memory region. However, if we're
540 staying attached to the child, then we can and should
541 insert breakpoints, so that we can debug it. A
542 subsequent child exec or exit is enough to know when does
543 the child stops using the parent's address space. */
544 parent_inf->waiting_for_vfork_done = detach_fork;
545 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
546 }
547 }
548 else
549 {
550 /* Follow the child. */
551 struct inferior *parent_inf, *child_inf;
552 struct program_space *parent_pspace;
553
554 if (print_inferior_events)
555 {
556 std::string parent_pid = target_pid_to_str (parent_ptid);
557 std::string child_pid = target_pid_to_str (child_ptid);
558
559 target_terminal::ours_for_output ();
560 fprintf_filtered (gdb_stdlog,
561 _("[Attaching after %s %s to child %s]\n"),
562 parent_pid.c_str (),
563 has_vforked ? "vfork" : "fork",
564 child_pid.c_str ());
565 }
566
567 /* Add the new inferior first, so that the target_detach below
568 doesn't unpush the target. */
569
570 child_inf = add_inferior (child_ptid.pid ());
571
572 parent_inf = current_inferior ();
573 child_inf->attach_flag = parent_inf->attach_flag;
574 copy_terminal_info (child_inf, parent_inf);
575 child_inf->gdbarch = parent_inf->gdbarch;
576 copy_inferior_target_desc_info (child_inf, parent_inf);
577
578 parent_pspace = parent_inf->pspace;
579
580 process_stratum_target *target = parent_inf->process_target ();
581
582 {
583 /* Hold a strong reference to the target while (maybe)
584 detaching the parent. Otherwise detaching could close the
585 target. */
586 auto target_ref = target_ops_ref::new_reference (target);
587
588 /* If we're vforking, we want to hold on to the parent until
589 the child exits or execs. At child exec or exit time we
590 can remove the old breakpoints from the parent and detach
591 or resume debugging it. Otherwise, detach the parent now;
592 we'll want to reuse it's program/address spaces, but we
593 can't set them to the child before removing breakpoints
594 from the parent, otherwise, the breakpoints module could
595 decide to remove breakpoints from the wrong process (since
596 they'd be assigned to the same address space). */
597
598 if (has_vforked)
599 {
600 gdb_assert (child_inf->vfork_parent == NULL);
601 gdb_assert (parent_inf->vfork_child == NULL);
602 child_inf->vfork_parent = parent_inf;
603 child_inf->pending_detach = 0;
604 parent_inf->vfork_child = child_inf;
605 parent_inf->pending_detach = detach_fork;
606 parent_inf->waiting_for_vfork_done = 0;
607 }
608 else if (detach_fork)
609 {
610 if (print_inferior_events)
611 {
612 /* Ensure that we have a process ptid. */
613 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
614
615 target_terminal::ours_for_output ();
616 fprintf_filtered (gdb_stdlog,
617 _("[Detaching after fork from "
618 "parent %s]\n"),
619 target_pid_to_str (process_ptid).c_str ());
620 }
621
622 target_detach (parent_inf, 0);
623 parent_inf = NULL;
624 }
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch
629 to this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
632 set_current_inferior (child_inf);
633 child_inf->push_target (target);
634 }
635
636 thread_info *child_thr = add_thread_silent (target, child_ptid);
637
638 /* If this is a vfork child, then the address-space is shared
639 with the parent. If we detached from the parent, then we can
640 reuse the parent's program/address spaces. */
641 if (has_vforked || detach_fork)
642 {
643 child_inf->pspace = parent_pspace;
644 child_inf->aspace = child_inf->pspace->aspace;
645
646 exec_on_vfork ();
647 }
648 else
649 {
650 child_inf->aspace = new_address_space ();
651 child_inf->pspace = new program_space (child_inf->aspace);
652 child_inf->removable = 1;
653 child_inf->symfile_flags = SYMFILE_NO_READ;
654 set_current_program_space (child_inf->pspace);
655 clone_program_space (child_inf->pspace, parent_pspace);
656
657 /* Let the shared library layer (e.g., solib-svr4) learn
658 about this new process, relocate the cloned exec, pull in
659 shared libraries, and install the solib event breakpoint.
660 If a "cloned-VM" event was propagated better throughout
661 the core, this wouldn't be required. */
662 scoped_restore restore_in_initial_library_scan
663 = make_scoped_restore (&child_inf->in_initial_library_scan, true);
664 solib_create_inferior_hook (0);
665 }
666
667 switch_to_thread (child_thr);
668 }
669
670 target_follow_fork (follow_child, detach_fork);
671
672 return false;
673 }
674
675 /* Tell the target to follow the fork we're stopped at. Returns true
676 if the inferior should be resumed; false, if the target for some
677 reason decided it's best not to resume. */
678
679 static bool
680 follow_fork ()
681 {
682 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
683 bool should_resume = true;
684 struct thread_info *tp;
685
686 /* Copy user stepping state to the new inferior thread. FIXME: the
687 followed fork child thread should have a copy of most of the
688 parent thread structure's run control related fields, not just these.
689 Initialized to avoid "may be used uninitialized" warnings from gcc. */
690 struct breakpoint *step_resume_breakpoint = NULL;
691 struct breakpoint *exception_resume_breakpoint = NULL;
692 CORE_ADDR step_range_start = 0;
693 CORE_ADDR step_range_end = 0;
694 int current_line = 0;
695 symtab *current_symtab = NULL;
696 struct frame_id step_frame_id = { 0 };
697 struct thread_fsm *thread_fsm = NULL;
698
699 if (!non_stop)
700 {
701 process_stratum_target *wait_target;
702 ptid_t wait_ptid;
703 struct target_waitstatus wait_status;
704
705 /* Get the last target status returned by target_wait(). */
706 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
707
708 /* If not stopped at a fork event, then there's nothing else to
709 do. */
710 if (wait_status.kind != TARGET_WAITKIND_FORKED
711 && wait_status.kind != TARGET_WAITKIND_VFORKED)
712 return 1;
713
714 /* Check if we switched over from WAIT_PTID, since the event was
715 reported. */
716 if (wait_ptid != minus_one_ptid
717 && (current_inferior ()->process_target () != wait_target
718 || inferior_ptid != wait_ptid))
719 {
720 /* We did. Switch back to WAIT_PTID thread, to tell the
721 target to follow it (in either direction). We'll
722 afterwards refuse to resume, and inform the user what
723 happened. */
724 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
725 switch_to_thread (wait_thread);
726 should_resume = false;
727 }
728 }
729
730 tp = inferior_thread ();
731
732 /* If there were any forks/vforks that were caught and are now to be
733 followed, then do so now. */
734 switch (tp->pending_follow.kind)
735 {
736 case TARGET_WAITKIND_FORKED:
737 case TARGET_WAITKIND_VFORKED:
738 {
739 ptid_t parent, child;
740
741 /* If the user did a next/step, etc, over a fork call,
742 preserve the stepping state in the fork child. */
743 if (follow_child && should_resume)
744 {
745 step_resume_breakpoint = clone_momentary_breakpoint
746 (tp->control.step_resume_breakpoint);
747 step_range_start = tp->control.step_range_start;
748 step_range_end = tp->control.step_range_end;
749 current_line = tp->current_line;
750 current_symtab = tp->current_symtab;
751 step_frame_id = tp->control.step_frame_id;
752 exception_resume_breakpoint
753 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
754 thread_fsm = tp->thread_fsm;
755
756 /* For now, delete the parent's sr breakpoint, otherwise,
757 parent/child sr breakpoints are considered duplicates,
758 and the child version will not be installed. Remove
759 this when the breakpoints module becomes aware of
760 inferiors and address spaces. */
761 delete_step_resume_breakpoint (tp);
762 tp->control.step_range_start = 0;
763 tp->control.step_range_end = 0;
764 tp->control.step_frame_id = null_frame_id;
765 delete_exception_resume_breakpoint (tp);
766 tp->thread_fsm = NULL;
767 }
768
769 parent = inferior_ptid;
770 child = tp->pending_follow.value.related_pid;
771
772 process_stratum_target *parent_targ = tp->inf->process_target ();
773 /* Set up inferior(s) as specified by the caller, and tell the
774 target to do whatever is necessary to follow either parent
775 or child. */
776 if (follow_fork_inferior (follow_child, detach_fork))
777 {
778 /* Target refused to follow, or there's some other reason
779 we shouldn't resume. */
780 should_resume = 0;
781 }
782 else
783 {
784 /* This pending follow fork event is now handled, one way
785 or another. The previous selected thread may be gone
786 from the lists by now, but if it is still around, need
787 to clear the pending follow request. */
788 tp = find_thread_ptid (parent_targ, parent);
789 if (tp)
790 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
791
792 /* This makes sure we don't try to apply the "Switched
793 over from WAIT_PID" logic above. */
794 nullify_last_target_wait_ptid ();
795
796 /* If we followed the child, switch to it... */
797 if (follow_child)
798 {
799 thread_info *child_thr = find_thread_ptid (parent_targ, child);
800 switch_to_thread (child_thr);
801
802 /* ... and preserve the stepping state, in case the
803 user was stepping over the fork call. */
804 if (should_resume)
805 {
806 tp = inferior_thread ();
807 tp->control.step_resume_breakpoint
808 = step_resume_breakpoint;
809 tp->control.step_range_start = step_range_start;
810 tp->control.step_range_end = step_range_end;
811 tp->current_line = current_line;
812 tp->current_symtab = current_symtab;
813 tp->control.step_frame_id = step_frame_id;
814 tp->control.exception_resume_breakpoint
815 = exception_resume_breakpoint;
816 tp->thread_fsm = thread_fsm;
817 }
818 else
819 {
820 /* If we get here, it was because we're trying to
821 resume from a fork catchpoint, but, the user
822 has switched threads away from the thread that
823 forked. In that case, the resume command
824 issued is most likely not applicable to the
825 child, so just warn, and refuse to resume. */
826 warning (_("Not resuming: switched threads "
827 "before following fork child."));
828 }
829
830 /* Reset breakpoints in the child as appropriate. */
831 follow_inferior_reset_breakpoints ();
832 }
833 }
834 }
835 break;
836 case TARGET_WAITKIND_SPURIOUS:
837 /* Nothing to follow. */
838 break;
839 default:
840 internal_error (__FILE__, __LINE__,
841 "Unexpected pending_follow.kind %d\n",
842 tp->pending_follow.kind);
843 break;
844 }
845
846 return should_resume;
847 }
848
849 static void
850 follow_inferior_reset_breakpoints (void)
851 {
852 struct thread_info *tp = inferior_thread ();
853
854 /* Was there a step_resume breakpoint? (There was if the user
855 did a "next" at the fork() call.) If so, explicitly reset its
856 thread number. Cloned step_resume breakpoints are disabled on
857 creation, so enable it here now that it is associated with the
858 correct thread.
859
860 step_resumes are a form of bp that are made to be per-thread.
861 Since we created the step_resume bp when the parent process
862 was being debugged, and now are switching to the child process,
863 from the breakpoint package's viewpoint, that's a switch of
864 "threads". We must update the bp's notion of which thread
865 it is for, or it'll be ignored when it triggers. */
866
867 if (tp->control.step_resume_breakpoint)
868 {
869 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
870 tp->control.step_resume_breakpoint->loc->enabled = 1;
871 }
872
873 /* Treat exception_resume breakpoints like step_resume breakpoints. */
874 if (tp->control.exception_resume_breakpoint)
875 {
876 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
877 tp->control.exception_resume_breakpoint->loc->enabled = 1;
878 }
879
880 /* Reinsert all breakpoints in the child. The user may have set
881 breakpoints after catching the fork, in which case those
882 were never set in the child, but only in the parent. This makes
883 sure the inserted breakpoints match the breakpoint list. */
884
885 breakpoint_re_set ();
886 insert_breakpoints ();
887 }
888
889 /* The child has exited or execed: resume threads of the parent the
890 user wanted to be executing. */
891
892 static int
893 proceed_after_vfork_done (struct thread_info *thread,
894 void *arg)
895 {
896 int pid = * (int *) arg;
897
898 if (thread->ptid.pid () == pid
899 && thread->state == THREAD_RUNNING
900 && !thread->executing
901 && !thread->stop_requested
902 && thread->suspend.stop_signal == GDB_SIGNAL_0)
903 {
904 infrun_debug_printf ("resuming vfork parent thread %s",
905 target_pid_to_str (thread->ptid).c_str ());
906
907 switch_to_thread (thread);
908 clear_proceed_status (0);
909 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
910 }
911
912 return 0;
913 }
914
915 /* Called whenever we notice an exec or exit event, to handle
916 detaching or resuming a vfork parent. */
917
918 static void
919 handle_vfork_child_exec_or_exit (int exec)
920 {
921 struct inferior *inf = current_inferior ();
922
923 if (inf->vfork_parent)
924 {
925 int resume_parent = -1;
926
927 /* This exec or exit marks the end of the shared memory region
928 between the parent and the child. Break the bonds. */
929 inferior *vfork_parent = inf->vfork_parent;
930 inf->vfork_parent->vfork_child = NULL;
931 inf->vfork_parent = NULL;
932
933 /* If the user wanted to detach from the parent, now is the
934 time. */
935 if (vfork_parent->pending_detach)
936 {
937 struct program_space *pspace;
938 struct address_space *aspace;
939
940 /* follow-fork child, detach-on-fork on. */
941
942 vfork_parent->pending_detach = 0;
943
944 scoped_restore_current_pspace_and_thread restore_thread;
945
946 /* We're letting loose of the parent. */
947 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
948 switch_to_thread (tp);
949
950 /* We're about to detach from the parent, which implicitly
951 removes breakpoints from its address space. There's a
952 catch here: we want to reuse the spaces for the child,
953 but, parent/child are still sharing the pspace at this
954 point, although the exec in reality makes the kernel give
955 the child a fresh set of new pages. The problem here is
956 that the breakpoints module being unaware of this, would
957 likely chose the child process to write to the parent
958 address space. Swapping the child temporarily away from
959 the spaces has the desired effect. Yes, this is "sort
960 of" a hack. */
961
962 pspace = inf->pspace;
963 aspace = inf->aspace;
964 inf->aspace = NULL;
965 inf->pspace = NULL;
966
967 if (print_inferior_events)
968 {
969 std::string pidstr
970 = target_pid_to_str (ptid_t (vfork_parent->pid));
971
972 target_terminal::ours_for_output ();
973
974 if (exec)
975 {
976 fprintf_filtered (gdb_stdlog,
977 _("[Detaching vfork parent %s "
978 "after child exec]\n"), pidstr.c_str ());
979 }
980 else
981 {
982 fprintf_filtered (gdb_stdlog,
983 _("[Detaching vfork parent %s "
984 "after child exit]\n"), pidstr.c_str ());
985 }
986 }
987
988 target_detach (vfork_parent, 0);
989
990 /* Put it back. */
991 inf->pspace = pspace;
992 inf->aspace = aspace;
993 }
994 else if (exec)
995 {
996 /* We're staying attached to the parent, so, really give the
997 child a new address space. */
998 inf->pspace = new program_space (maybe_new_address_space ());
999 inf->aspace = inf->pspace->aspace;
1000 inf->removable = 1;
1001 set_current_program_space (inf->pspace);
1002
1003 resume_parent = vfork_parent->pid;
1004 }
1005 else
1006 {
1007 /* If this is a vfork child exiting, then the pspace and
1008 aspaces were shared with the parent. Since we're
1009 reporting the process exit, we'll be mourning all that is
1010 found in the address space, and switching to null_ptid,
1011 preparing to start a new inferior. But, since we don't
1012 want to clobber the parent's address/program spaces, we
1013 go ahead and create a new one for this exiting
1014 inferior. */
1015
1016 /* Switch to no-thread while running clone_program_space, so
1017 that clone_program_space doesn't want to read the
1018 selected frame of a dead process. */
1019 scoped_restore_current_thread restore_thread;
1020 switch_to_no_thread ();
1021
1022 inf->pspace = new program_space (maybe_new_address_space ());
1023 inf->aspace = inf->pspace->aspace;
1024 set_current_program_space (inf->pspace);
1025 inf->removable = 1;
1026 inf->symfile_flags = SYMFILE_NO_READ;
1027 clone_program_space (inf->pspace, vfork_parent->pspace);
1028
1029 resume_parent = vfork_parent->pid;
1030 }
1031
1032 gdb_assert (current_program_space == inf->pspace);
1033
1034 if (non_stop && resume_parent != -1)
1035 {
1036 /* If the user wanted the parent to be running, let it go
1037 free now. */
1038 scoped_restore_current_thread restore_thread;
1039
1040 infrun_debug_printf ("resuming vfork parent process %d",
1041 resume_parent);
1042
1043 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1044 }
1045 }
1046 }
1047
1048 /* Enum strings for "set|show follow-exec-mode". */
1049
1050 static const char follow_exec_mode_new[] = "new";
1051 static const char follow_exec_mode_same[] = "same";
1052 static const char *const follow_exec_mode_names[] =
1053 {
1054 follow_exec_mode_new,
1055 follow_exec_mode_same,
1056 NULL,
1057 };
1058
1059 static const char *follow_exec_mode_string = follow_exec_mode_same;
1060 static void
1061 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1062 struct cmd_list_element *c, const char *value)
1063 {
1064 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1065 }
1066
1067 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1068
1069 static void
1070 follow_exec (ptid_t ptid, const char *exec_file_target)
1071 {
1072 int pid = ptid.pid ();
1073 ptid_t process_ptid;
1074
1075 /* Switch terminal for any messages produced e.g. by
1076 breakpoint_re_set. */
1077 target_terminal::ours_for_output ();
1078
1079 /* This is an exec event that we actually wish to pay attention to.
1080 Refresh our symbol table to the newly exec'd program, remove any
1081 momentary bp's, etc.
1082
1083 If there are breakpoints, they aren't really inserted now,
1084 since the exec() transformed our inferior into a fresh set
1085 of instructions.
1086
1087 We want to preserve symbolic breakpoints on the list, since
1088 we have hopes that they can be reset after the new a.out's
1089 symbol table is read.
1090
1091 However, any "raw" breakpoints must be removed from the list
1092 (e.g., the solib bp's), since their address is probably invalid
1093 now.
1094
1095 And, we DON'T want to call delete_breakpoints() here, since
1096 that may write the bp's "shadow contents" (the instruction
1097 value that was overwritten with a TRAP instruction). Since
1098 we now have a new a.out, those shadow contents aren't valid. */
1099
1100 mark_breakpoints_out ();
1101
1102 /* The target reports the exec event to the main thread, even if
1103 some other thread does the exec, and even if the main thread was
1104 stopped or already gone. We may still have non-leader threads of
1105 the process on our list. E.g., on targets that don't have thread
1106 exit events (like remote); or on native Linux in non-stop mode if
1107 there were only two threads in the inferior and the non-leader
1108 one is the one that execs (and nothing forces an update of the
1109 thread list up to here). When debugging remotely, it's best to
1110 avoid extra traffic, when possible, so avoid syncing the thread
1111 list with the target, and instead go ahead and delete all threads
1112 of the process but one that reported the event. Note this must
1113 be done before calling update_breakpoints_after_exec, as
1114 otherwise clearing the threads' resources would reference stale
1115 thread breakpoints -- it may have been one of these threads that
1116 stepped across the exec. We could just clear their stepping
1117 states, but as long as we're iterating, might as well delete
1118 them. Deleting them now rather than at the next user-visible
1119 stop provides a nicer sequence of events for user and MI
1120 notifications. */
1121 for (thread_info *th : all_threads_safe ())
1122 if (th->ptid.pid () == pid && th->ptid != ptid)
1123 delete_thread (th);
1124
1125 /* We also need to clear any left over stale state for the
1126 leader/event thread. E.g., if there was any step-resume
1127 breakpoint or similar, it's gone now. We cannot truly
1128 step-to-next statement through an exec(). */
1129 thread_info *th = inferior_thread ();
1130 th->control.step_resume_breakpoint = NULL;
1131 th->control.exception_resume_breakpoint = NULL;
1132 th->control.single_step_breakpoints = NULL;
1133 th->control.step_range_start = 0;
1134 th->control.step_range_end = 0;
1135
1136 /* The user may have had the main thread held stopped in the
1137 previous image (e.g., schedlock on, or non-stop). Release
1138 it now. */
1139 th->stop_requested = 0;
1140
1141 update_breakpoints_after_exec ();
1142
1143 /* What is this a.out's name? */
1144 process_ptid = ptid_t (pid);
1145 printf_unfiltered (_("%s is executing new program: %s\n"),
1146 target_pid_to_str (process_ptid).c_str (),
1147 exec_file_target);
1148
1149 /* We've followed the inferior through an exec. Therefore, the
1150 inferior has essentially been killed & reborn. */
1151
1152 breakpoint_init_inferior (inf_execd);
1153
1154 gdb::unique_xmalloc_ptr<char> exec_file_host
1155 = exec_file_find (exec_file_target, NULL);
1156
1157 /* If we were unable to map the executable target pathname onto a host
1158 pathname, tell the user that. Otherwise GDB's subsequent behavior
1159 is confusing. Maybe it would even be better to stop at this point
1160 so that the user can specify a file manually before continuing. */
1161 if (exec_file_host == NULL)
1162 warning (_("Could not load symbols for executable %s.\n"
1163 "Do you need \"set sysroot\"?"),
1164 exec_file_target);
1165
1166 /* Reset the shared library package. This ensures that we get a
1167 shlib event when the child reaches "_start", at which point the
1168 dld will have had a chance to initialize the child. */
1169 /* Also, loading a symbol file below may trigger symbol lookups, and
1170 we don't want those to be satisfied by the libraries of the
1171 previous incarnation of this process. */
1172 no_shared_libraries (NULL, 0);
1173
1174 struct inferior *inf = current_inferior ();
1175
1176 if (follow_exec_mode_string == follow_exec_mode_new)
1177 {
1178 /* The user wants to keep the old inferior and program spaces
1179 around. Create a new fresh one, and switch to it. */
1180
1181 /* Do exit processing for the original inferior before setting the new
1182 inferior's pid. Having two inferiors with the same pid would confuse
1183 find_inferior_p(t)id. Transfer the terminal state and info from the
1184 old to the new inferior. */
1185 inferior *new_inferior = add_inferior_with_spaces ();
1186
1187 swap_terminal_info (new_inferior, inf);
1188 exit_inferior_silent (inf);
1189
1190 new_inferior->pid = pid;
1191 target_follow_exec (new_inferior, ptid, exec_file_target);
1192
1193 /* We continue with the new inferior. */
1194 inf = new_inferior;
1195 }
1196 else
1197 {
1198 /* The old description may no longer be fit for the new image.
1199 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1200 old description; we'll read a new one below. No need to do
1201 this on "follow-exec-mode new", as the old inferior stays
1202 around (its description is later cleared/refetched on
1203 restart). */
1204 target_clear_description ();
1205 target_follow_exec (inf, ptid, exec_file_target);
1206 }
1207
1208 gdb_assert (current_inferior () == inf);
1209 gdb_assert (current_program_space == inf->pspace);
1210
1211 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1212 because the proper displacement for a PIE (Position Independent
1213 Executable) main symbol file will only be computed by
1214 solib_create_inferior_hook below. breakpoint_re_set would fail
1215 to insert the breakpoints with the zero displacement. */
1216 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1217
1218 /* If the target can specify a description, read it. Must do this
1219 after flipping to the new executable (because the target supplied
1220 description must be compatible with the executable's
1221 architecture, and the old executable may e.g., be 32-bit, while
1222 the new one 64-bit), and before anything involving memory or
1223 registers. */
1224 target_find_description ();
1225
1226 gdb::observers::inferior_execd.notify (inf);
1227
1228 breakpoint_re_set ();
1229
1230 /* Reinsert all breakpoints. (Those which were symbolic have
1231 been reset to the proper address in the new a.out, thanks
1232 to symbol_file_command...). */
1233 insert_breakpoints ();
1234
1235 /* The next resume of this inferior should bring it to the shlib
1236 startup breakpoints. (If the user had also set bp's on
1237 "main" from the old (parent) process, then they'll auto-
1238 matically get reset there in the new process.). */
1239 }
1240
1241 /* The chain of threads that need to do a step-over operation to get
1242 past e.g., a breakpoint. What technique is used to step over the
1243 breakpoint/watchpoint does not matter -- all threads end up in the
1244 same queue, to maintain rough temporal order of execution, in order
1245 to avoid starvation, otherwise, we could e.g., find ourselves
1246 constantly stepping the same couple threads past their breakpoints
1247 over and over, if the single-step finish fast enough. */
1248 struct thread_info *global_thread_step_over_chain_head;
1249
1250 /* Bit flags indicating what the thread needs to step over. */
1251
1252 enum step_over_what_flag
1253 {
1254 /* Step over a breakpoint. */
1255 STEP_OVER_BREAKPOINT = 1,
1256
1257 /* Step past a non-continuable watchpoint, in order to let the
1258 instruction execute so we can evaluate the watchpoint
1259 expression. */
1260 STEP_OVER_WATCHPOINT = 2
1261 };
1262 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1263
1264 /* Info about an instruction that is being stepped over. */
1265
1266 struct step_over_info
1267 {
1268 /* If we're stepping past a breakpoint, this is the address space
1269 and address of the instruction the breakpoint is set at. We'll
1270 skip inserting all breakpoints here. Valid iff ASPACE is
1271 non-NULL. */
1272 const address_space *aspace = nullptr;
1273 CORE_ADDR address = 0;
1274
1275 /* The instruction being stepped over triggers a nonsteppable
1276 watchpoint. If true, we'll skip inserting watchpoints. */
1277 int nonsteppable_watchpoint_p = 0;
1278
1279 /* The thread's global number. */
1280 int thread = -1;
1281 };
1282
1283 /* The step-over info of the location that is being stepped over.
1284
1285 Note that with async/breakpoint always-inserted mode, a user might
1286 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1287 being stepped over. As setting a new breakpoint inserts all
1288 breakpoints, we need to make sure the breakpoint being stepped over
1289 isn't inserted then. We do that by only clearing the step-over
1290 info when the step-over is actually finished (or aborted).
1291
1292 Presently GDB can only step over one breakpoint at any given time.
1293 Given threads that can't run code in the same address space as the
1294 breakpoint's can't really miss the breakpoint, GDB could be taught
1295 to step-over at most one breakpoint per address space (so this info
1296 could move to the address space object if/when GDB is extended).
1297 The set of breakpoints being stepped over will normally be much
1298 smaller than the set of all breakpoints, so a flag in the
1299 breakpoint location structure would be wasteful. A separate list
1300 also saves complexity and run-time, as otherwise we'd have to go
1301 through all breakpoint locations clearing their flag whenever we
1302 start a new sequence. Similar considerations weigh against storing
1303 this info in the thread object. Plus, not all step overs actually
1304 have breakpoint locations -- e.g., stepping past a single-step
1305 breakpoint, or stepping to complete a non-continuable
1306 watchpoint. */
1307 static struct step_over_info step_over_info;
1308
1309 /* Record the address of the breakpoint/instruction we're currently
1310 stepping over.
1311 N.B. We record the aspace and address now, instead of say just the thread,
1312 because when we need the info later the thread may be running. */
1313
1314 static void
1315 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1316 int nonsteppable_watchpoint_p,
1317 int thread)
1318 {
1319 step_over_info.aspace = aspace;
1320 step_over_info.address = address;
1321 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1322 step_over_info.thread = thread;
1323 }
1324
1325 /* Called when we're not longer stepping over a breakpoint / an
1326 instruction, so all breakpoints are free to be (re)inserted. */
1327
1328 static void
1329 clear_step_over_info (void)
1330 {
1331 infrun_debug_printf ("clearing step over info");
1332 step_over_info.aspace = NULL;
1333 step_over_info.address = 0;
1334 step_over_info.nonsteppable_watchpoint_p = 0;
1335 step_over_info.thread = -1;
1336 }
1337
1338 /* See infrun.h. */
1339
1340 int
1341 stepping_past_instruction_at (struct address_space *aspace,
1342 CORE_ADDR address)
1343 {
1344 return (step_over_info.aspace != NULL
1345 && breakpoint_address_match (aspace, address,
1346 step_over_info.aspace,
1347 step_over_info.address));
1348 }
1349
1350 /* See infrun.h. */
1351
1352 int
1353 thread_is_stepping_over_breakpoint (int thread)
1354 {
1355 return (step_over_info.thread != -1
1356 && thread == step_over_info.thread);
1357 }
1358
1359 /* See infrun.h. */
1360
1361 int
1362 stepping_past_nonsteppable_watchpoint (void)
1363 {
1364 return step_over_info.nonsteppable_watchpoint_p;
1365 }
1366
1367 /* Returns true if step-over info is valid. */
1368
1369 static bool
1370 step_over_info_valid_p (void)
1371 {
1372 return (step_over_info.aspace != NULL
1373 || stepping_past_nonsteppable_watchpoint ());
1374 }
1375
1376 \f
1377 /* Displaced stepping. */
1378
1379 /* In non-stop debugging mode, we must take special care to manage
1380 breakpoints properly; in particular, the traditional strategy for
1381 stepping a thread past a breakpoint it has hit is unsuitable.
1382 'Displaced stepping' is a tactic for stepping one thread past a
1383 breakpoint it has hit while ensuring that other threads running
1384 concurrently will hit the breakpoint as they should.
1385
1386 The traditional way to step a thread T off a breakpoint in a
1387 multi-threaded program in all-stop mode is as follows:
1388
1389 a0) Initially, all threads are stopped, and breakpoints are not
1390 inserted.
1391 a1) We single-step T, leaving breakpoints uninserted.
1392 a2) We insert breakpoints, and resume all threads.
1393
1394 In non-stop debugging, however, this strategy is unsuitable: we
1395 don't want to have to stop all threads in the system in order to
1396 continue or step T past a breakpoint. Instead, we use displaced
1397 stepping:
1398
1399 n0) Initially, T is stopped, other threads are running, and
1400 breakpoints are inserted.
1401 n1) We copy the instruction "under" the breakpoint to a separate
1402 location, outside the main code stream, making any adjustments
1403 to the instruction, register, and memory state as directed by
1404 T's architecture.
1405 n2) We single-step T over the instruction at its new location.
1406 n3) We adjust the resulting register and memory state as directed
1407 by T's architecture. This includes resetting T's PC to point
1408 back into the main instruction stream.
1409 n4) We resume T.
1410
1411 This approach depends on the following gdbarch methods:
1412
1413 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1414 indicate where to copy the instruction, and how much space must
1415 be reserved there. We use these in step n1.
1416
1417 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1418 address, and makes any necessary adjustments to the instruction,
1419 register contents, and memory. We use this in step n1.
1420
1421 - gdbarch_displaced_step_fixup adjusts registers and memory after
1422 we have successfully single-stepped the instruction, to yield the
1423 same effect the instruction would have had if we had executed it
1424 at its original address. We use this in step n3.
1425
1426 The gdbarch_displaced_step_copy_insn and
1427 gdbarch_displaced_step_fixup functions must be written so that
1428 copying an instruction with gdbarch_displaced_step_copy_insn,
1429 single-stepping across the copied instruction, and then applying
1430 gdbarch_displaced_insn_fixup should have the same effects on the
1431 thread's memory and registers as stepping the instruction in place
1432 would have. Exactly which responsibilities fall to the copy and
1433 which fall to the fixup is up to the author of those functions.
1434
1435 See the comments in gdbarch.sh for details.
1436
1437 Note that displaced stepping and software single-step cannot
1438 currently be used in combination, although with some care I think
1439 they could be made to. Software single-step works by placing
1440 breakpoints on all possible subsequent instructions; if the
1441 displaced instruction is a PC-relative jump, those breakpoints
1442 could fall in very strange places --- on pages that aren't
1443 executable, or at addresses that are not proper instruction
1444 boundaries. (We do generally let other threads run while we wait
1445 to hit the software single-step breakpoint, and they might
1446 encounter such a corrupted instruction.) One way to work around
1447 this would be to have gdbarch_displaced_step_copy_insn fully
1448 simulate the effect of PC-relative instructions (and return NULL)
1449 on architectures that use software single-stepping.
1450
1451 In non-stop mode, we can have independent and simultaneous step
1452 requests, so more than one thread may need to simultaneously step
1453 over a breakpoint. The current implementation assumes there is
1454 only one scratch space per process. In this case, we have to
1455 serialize access to the scratch space. If thread A wants to step
1456 over a breakpoint, but we are currently waiting for some other
1457 thread to complete a displaced step, we leave thread A stopped and
1458 place it in the displaced_step_request_queue. Whenever a displaced
1459 step finishes, we pick the next thread in the queue and start a new
1460 displaced step operation on it. See displaced_step_prepare and
1461 displaced_step_finish for details. */
1462
1463 /* Return true if THREAD is doing a displaced step. */
1464
1465 static bool
1466 displaced_step_in_progress_thread (thread_info *thread)
1467 {
1468 gdb_assert (thread != NULL);
1469
1470 return thread->displaced_step_state.in_progress ();
1471 }
1472
1473 /* Return true if INF has a thread doing a displaced step. */
1474
1475 static bool
1476 displaced_step_in_progress (inferior *inf)
1477 {
1478 return inf->displaced_step_state.in_progress_count > 0;
1479 }
1480
1481 /* Return true if any thread is doing a displaced step. */
1482
1483 static bool
1484 displaced_step_in_progress_any_thread ()
1485 {
1486 for (inferior *inf : all_non_exited_inferiors ())
1487 {
1488 if (displaced_step_in_progress (inf))
1489 return true;
1490 }
1491
1492 return false;
1493 }
1494
1495 static void
1496 infrun_inferior_exit (struct inferior *inf)
1497 {
1498 inf->displaced_step_state.reset ();
1499 }
1500
1501 static void
1502 infrun_inferior_execd (inferior *inf)
1503 {
1504 /* If some threads where was doing a displaced step in this inferior at the
1505 moment of the exec, they no longer exist. Even if the exec'ing thread
1506 doing a displaced step, we don't want to to any fixup nor restore displaced
1507 stepping buffer bytes. */
1508 inf->displaced_step_state.reset ();
1509
1510 for (thread_info *thread : inf->threads ())
1511 thread->displaced_step_state.reset ();
1512
1513 /* Since an in-line step is done with everything else stopped, if there was
1514 one in progress at the time of the exec, it must have been the exec'ing
1515 thread. */
1516 clear_step_over_info ();
1517 }
1518
1519 /* If ON, and the architecture supports it, GDB will use displaced
1520 stepping to step over breakpoints. If OFF, or if the architecture
1521 doesn't support it, GDB will instead use the traditional
1522 hold-and-step approach. If AUTO (which is the default), GDB will
1523 decide which technique to use to step over breakpoints depending on
1524 whether the target works in a non-stop way (see use_displaced_stepping). */
1525
1526 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1527
1528 static void
1529 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1530 struct cmd_list_element *c,
1531 const char *value)
1532 {
1533 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1534 fprintf_filtered (file,
1535 _("Debugger's willingness to use displaced stepping "
1536 "to step over breakpoints is %s (currently %s).\n"),
1537 value, target_is_non_stop_p () ? "on" : "off");
1538 else
1539 fprintf_filtered (file,
1540 _("Debugger's willingness to use displaced stepping "
1541 "to step over breakpoints is %s.\n"), value);
1542 }
1543
1544 /* Return true if the gdbarch implements the required methods to use
1545 displaced stepping. */
1546
1547 static bool
1548 gdbarch_supports_displaced_stepping (gdbarch *arch)
1549 {
1550 /* Only check for the presence of `prepare`. The gdbarch verification ensures
1551 that if `prepare` is provided, so is `finish`. */
1552 return gdbarch_displaced_step_prepare_p (arch);
1553 }
1554
1555 /* Return non-zero if displaced stepping can/should be used to step
1556 over breakpoints of thread TP. */
1557
1558 static bool
1559 use_displaced_stepping (thread_info *tp)
1560 {
1561 /* If the user disabled it explicitly, don't use displaced stepping. */
1562 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1563 return false;
1564
1565 /* If "auto", only use displaced stepping if the target operates in a non-stop
1566 way. */
1567 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1568 && !target_is_non_stop_p ())
1569 return false;
1570
1571 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1572
1573 /* If the architecture doesn't implement displaced stepping, don't use
1574 it. */
1575 if (!gdbarch_supports_displaced_stepping (gdbarch))
1576 return false;
1577
1578 /* If recording, don't use displaced stepping. */
1579 if (find_record_target () != nullptr)
1580 return false;
1581
1582 /* If displaced stepping failed before for this inferior, don't bother trying
1583 again. */
1584 if (tp->inf->displaced_step_state.failed_before)
1585 return false;
1586
1587 return true;
1588 }
1589
1590 /* Simple function wrapper around displaced_step_thread_state::reset. */
1591
1592 static void
1593 displaced_step_reset (displaced_step_thread_state *displaced)
1594 {
1595 displaced->reset ();
1596 }
1597
1598 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1599 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1600
1601 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1602
1603 /* See infrun.h. */
1604
1605 std::string
1606 displaced_step_dump_bytes (const gdb_byte *buf, size_t len)
1607 {
1608 std::string ret;
1609
1610 for (size_t i = 0; i < len; i++)
1611 {
1612 if (i == 0)
1613 ret += string_printf ("%02x", buf[i]);
1614 else
1615 ret += string_printf (" %02x", buf[i]);
1616 }
1617
1618 return ret;
1619 }
1620
1621 /* Prepare to single-step, using displaced stepping.
1622
1623 Note that we cannot use displaced stepping when we have a signal to
1624 deliver. If we have a signal to deliver and an instruction to step
1625 over, then after the step, there will be no indication from the
1626 target whether the thread entered a signal handler or ignored the
1627 signal and stepped over the instruction successfully --- both cases
1628 result in a simple SIGTRAP. In the first case we mustn't do a
1629 fixup, and in the second case we must --- but we can't tell which.
1630 Comments in the code for 'random signals' in handle_inferior_event
1631 explain how we handle this case instead.
1632
1633 Returns DISPLACED_STEP_PREPARE_STATUS_OK if preparing was successful -- this
1634 thread is going to be stepped now; DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE
1635 if displaced stepping this thread got queued; or
1636 DISPLACED_STEP_PREPARE_STATUS_CANT if this instruction can't be displaced
1637 stepped. */
1638
1639 static displaced_step_prepare_status
1640 displaced_step_prepare_throw (thread_info *tp)
1641 {
1642 regcache *regcache = get_thread_regcache (tp);
1643 struct gdbarch *gdbarch = regcache->arch ();
1644 displaced_step_thread_state &disp_step_thread_state
1645 = tp->displaced_step_state;
1646
1647 /* We should never reach this function if the architecture does not
1648 support displaced stepping. */
1649 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1650
1651 /* Nor if the thread isn't meant to step over a breakpoint. */
1652 gdb_assert (tp->control.trap_expected);
1653
1654 /* Disable range stepping while executing in the scratch pad. We
1655 want a single-step even if executing the displaced instruction in
1656 the scratch buffer lands within the stepping range (e.g., a
1657 jump/branch). */
1658 tp->control.may_range_step = 0;
1659
1660 /* We are about to start a displaced step for this thread. If one is already
1661 in progress, something's wrong. */
1662 gdb_assert (!disp_step_thread_state.in_progress ());
1663
1664 if (tp->inf->displaced_step_state.unavailable)
1665 {
1666 /* The gdbarch tells us it's not worth asking to try a prepare because
1667 it is likely that it will return unavailable, so don't bother asking. */
1668
1669 displaced_debug_printf ("deferring step of %s",
1670 target_pid_to_str (tp->ptid).c_str ());
1671
1672 global_thread_step_over_chain_enqueue (tp);
1673 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1674 }
1675
1676 displaced_debug_printf ("displaced-stepping %s now",
1677 target_pid_to_str (tp->ptid).c_str ());
1678
1679 scoped_restore_current_thread restore_thread;
1680
1681 switch_to_thread (tp);
1682
1683 CORE_ADDR original_pc = regcache_read_pc (regcache);
1684 CORE_ADDR displaced_pc;
1685
1686 displaced_step_prepare_status status
1687 = gdbarch_displaced_step_prepare (gdbarch, tp, displaced_pc);
1688
1689 if (status == DISPLACED_STEP_PREPARE_STATUS_CANT)
1690 {
1691 displaced_debug_printf ("failed to prepare (%s)",
1692 target_pid_to_str (tp->ptid).c_str ());
1693
1694 return DISPLACED_STEP_PREPARE_STATUS_CANT;
1695 }
1696 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
1697 {
1698 /* Not enough displaced stepping resources available, defer this
1699 request by placing it the queue. */
1700
1701 displaced_debug_printf ("not enough resources available, "
1702 "deferring step of %s",
1703 target_pid_to_str (tp->ptid).c_str ());
1704
1705 global_thread_step_over_chain_enqueue (tp);
1706
1707 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1708 }
1709
1710 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1711
1712 /* Save the information we need to fix things up if the step
1713 succeeds. */
1714 disp_step_thread_state.set (gdbarch);
1715
1716 tp->inf->displaced_step_state.in_progress_count++;
1717
1718 displaced_debug_printf ("prepared successfully thread=%s, "
1719 "original_pc=%s, displaced_pc=%s",
1720 target_pid_to_str (tp->ptid).c_str (),
1721 paddress (gdbarch, original_pc),
1722 paddress (gdbarch, displaced_pc));
1723
1724 return DISPLACED_STEP_PREPARE_STATUS_OK;
1725 }
1726
1727 /* Wrapper for displaced_step_prepare_throw that disabled further
1728 attempts at displaced stepping if we get a memory error. */
1729
1730 static displaced_step_prepare_status
1731 displaced_step_prepare (thread_info *thread)
1732 {
1733 displaced_step_prepare_status status
1734 = DISPLACED_STEP_PREPARE_STATUS_CANT;
1735
1736 try
1737 {
1738 status = displaced_step_prepare_throw (thread);
1739 }
1740 catch (const gdb_exception_error &ex)
1741 {
1742 if (ex.error != MEMORY_ERROR
1743 && ex.error != NOT_SUPPORTED_ERROR)
1744 throw;
1745
1746 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1747 ex.what ());
1748
1749 /* Be verbose if "set displaced-stepping" is "on", silent if
1750 "auto". */
1751 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1752 {
1753 warning (_("disabling displaced stepping: %s"),
1754 ex.what ());
1755 }
1756
1757 /* Disable further displaced stepping attempts. */
1758 thread->inf->displaced_step_state.failed_before = 1;
1759 }
1760
1761 return status;
1762 }
1763
1764 /* If we displaced stepped an instruction successfully, adjust registers and
1765 memory to yield the same effect the instruction would have had if we had
1766 executed it at its original address, and return
1767 DISPLACED_STEP_FINISH_STATUS_OK. If the instruction didn't complete,
1768 relocate the PC and return DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED.
1769
1770 If the thread wasn't displaced stepping, return
1771 DISPLACED_STEP_FINISH_STATUS_OK as well. */
1772
1773 static displaced_step_finish_status
1774 displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
1775 {
1776 displaced_step_thread_state *displaced = &event_thread->displaced_step_state;
1777
1778 /* Was this thread performing a displaced step? */
1779 if (!displaced->in_progress ())
1780 return DISPLACED_STEP_FINISH_STATUS_OK;
1781
1782 gdb_assert (event_thread->inf->displaced_step_state.in_progress_count > 0);
1783 event_thread->inf->displaced_step_state.in_progress_count--;
1784
1785 /* Fixup may need to read memory/registers. Switch to the thread
1786 that we're fixing up. Also, target_stopped_by_watchpoint checks
1787 the current thread, and displaced_step_restore performs ptid-dependent
1788 memory accesses using current_inferior(). */
1789 switch_to_thread (event_thread);
1790
1791 displaced_step_reset_cleanup cleanup (displaced);
1792
1793 /* Do the fixup, and release the resources acquired to do the displaced
1794 step. */
1795 return gdbarch_displaced_step_finish (displaced->get_original_gdbarch (),
1796 event_thread, signal);
1797 }
1798
1799 /* Data to be passed around while handling an event. This data is
1800 discarded between events. */
1801 struct execution_control_state
1802 {
1803 process_stratum_target *target;
1804 ptid_t ptid;
1805 /* The thread that got the event, if this was a thread event; NULL
1806 otherwise. */
1807 struct thread_info *event_thread;
1808
1809 struct target_waitstatus ws;
1810 int stop_func_filled_in;
1811 CORE_ADDR stop_func_start;
1812 CORE_ADDR stop_func_end;
1813 const char *stop_func_name;
1814 int wait_some_more;
1815
1816 /* True if the event thread hit the single-step breakpoint of
1817 another thread. Thus the event doesn't cause a stop, the thread
1818 needs to be single-stepped past the single-step breakpoint before
1819 we can switch back to the original stepping thread. */
1820 int hit_singlestep_breakpoint;
1821 };
1822
1823 /* Clear ECS and set it to point at TP. */
1824
1825 static void
1826 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1827 {
1828 memset (ecs, 0, sizeof (*ecs));
1829 ecs->event_thread = tp;
1830 ecs->ptid = tp->ptid;
1831 }
1832
1833 static void keep_going_pass_signal (struct execution_control_state *ecs);
1834 static void prepare_to_wait (struct execution_control_state *ecs);
1835 static bool keep_going_stepped_thread (struct thread_info *tp);
1836 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1837
1838 /* Are there any pending step-over requests? If so, run all we can
1839 now and return true. Otherwise, return false. */
1840
1841 static bool
1842 start_step_over (void)
1843 {
1844 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
1845
1846 thread_info *next;
1847
1848 /* Don't start a new step-over if we already have an in-line
1849 step-over operation ongoing. */
1850 if (step_over_info_valid_p ())
1851 return false;
1852
1853 /* Steal the global thread step over chain. As we try to initiate displaced
1854 steps, threads will be enqueued in the global chain if no buffers are
1855 available. If we iterated on the global chain directly, we might iterate
1856 indefinitely. */
1857 thread_info *threads_to_step = global_thread_step_over_chain_head;
1858 global_thread_step_over_chain_head = NULL;
1859
1860 infrun_debug_printf ("stealing global queue of threads to step, length = %d",
1861 thread_step_over_chain_length (threads_to_step));
1862
1863 bool started = false;
1864
1865 /* On scope exit (whatever the reason, return or exception), if there are
1866 threads left in the THREADS_TO_STEP chain, put back these threads in the
1867 global list. */
1868 SCOPE_EXIT
1869 {
1870 if (threads_to_step == nullptr)
1871 infrun_debug_printf ("step-over queue now empty");
1872 else
1873 {
1874 infrun_debug_printf ("putting back %d threads to step in global queue",
1875 thread_step_over_chain_length (threads_to_step));
1876
1877 global_thread_step_over_chain_enqueue_chain (threads_to_step);
1878 }
1879 };
1880
1881 for (thread_info *tp = threads_to_step; tp != NULL; tp = next)
1882 {
1883 struct execution_control_state ecss;
1884 struct execution_control_state *ecs = &ecss;
1885 step_over_what step_what;
1886 int must_be_in_line;
1887
1888 gdb_assert (!tp->stop_requested);
1889
1890 next = thread_step_over_chain_next (threads_to_step, tp);
1891
1892 if (tp->inf->displaced_step_state.unavailable)
1893 {
1894 /* The arch told us to not even try preparing another displaced step
1895 for this inferior. Just leave the thread in THREADS_TO_STEP, it
1896 will get moved to the global chain on scope exit. */
1897 continue;
1898 }
1899
1900 /* Remove thread from the THREADS_TO_STEP chain. If anything goes wrong
1901 while we try to prepare the displaced step, we don't add it back to
1902 the global step over chain. This is to avoid a thread staying in the
1903 step over chain indefinitely if something goes wrong when resuming it
1904 If the error is intermittent and it still needs a step over, it will
1905 get enqueued again when we try to resume it normally. */
1906 thread_step_over_chain_remove (&threads_to_step, tp);
1907
1908 step_what = thread_still_needs_step_over (tp);
1909 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1910 || ((step_what & STEP_OVER_BREAKPOINT)
1911 && !use_displaced_stepping (tp)));
1912
1913 /* We currently stop all threads of all processes to step-over
1914 in-line. If we need to start a new in-line step-over, let
1915 any pending displaced steps finish first. */
1916 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1917 {
1918 global_thread_step_over_chain_enqueue (tp);
1919 continue;
1920 }
1921
1922 if (tp->control.trap_expected
1923 || tp->resumed
1924 || tp->executing)
1925 {
1926 internal_error (__FILE__, __LINE__,
1927 "[%s] has inconsistent state: "
1928 "trap_expected=%d, resumed=%d, executing=%d\n",
1929 target_pid_to_str (tp->ptid).c_str (),
1930 tp->control.trap_expected,
1931 tp->resumed,
1932 tp->executing);
1933 }
1934
1935 infrun_debug_printf ("resuming [%s] for step-over",
1936 target_pid_to_str (tp->ptid).c_str ());
1937
1938 /* keep_going_pass_signal skips the step-over if the breakpoint
1939 is no longer inserted. In all-stop, we want to keep looking
1940 for a thread that needs a step-over instead of resuming TP,
1941 because we wouldn't be able to resume anything else until the
1942 target stops again. In non-stop, the resume always resumes
1943 only TP, so it's OK to let the thread resume freely. */
1944 if (!target_is_non_stop_p () && !step_what)
1945 continue;
1946
1947 switch_to_thread (tp);
1948 reset_ecs (ecs, tp);
1949 keep_going_pass_signal (ecs);
1950
1951 if (!ecs->wait_some_more)
1952 error (_("Command aborted."));
1953
1954 /* If the thread's step over could not be initiated because no buffers
1955 were available, it was re-added to the global step over chain. */
1956 if (tp->resumed)
1957 {
1958 infrun_debug_printf ("[%s] was resumed.",
1959 target_pid_to_str (tp->ptid).c_str ());
1960 gdb_assert (!thread_is_in_step_over_chain (tp));
1961 }
1962 else
1963 {
1964 infrun_debug_printf ("[%s] was NOT resumed.",
1965 target_pid_to_str (tp->ptid).c_str ());
1966 gdb_assert (thread_is_in_step_over_chain (tp));
1967 }
1968
1969 /* If we started a new in-line step-over, we're done. */
1970 if (step_over_info_valid_p ())
1971 {
1972 gdb_assert (tp->control.trap_expected);
1973 started = true;
1974 break;
1975 }
1976
1977 if (!target_is_non_stop_p ())
1978 {
1979 /* On all-stop, shouldn't have resumed unless we needed a
1980 step over. */
1981 gdb_assert (tp->control.trap_expected
1982 || tp->step_after_step_resume_breakpoint);
1983
1984 /* With remote targets (at least), in all-stop, we can't
1985 issue any further remote commands until the program stops
1986 again. */
1987 started = true;
1988 break;
1989 }
1990
1991 /* Either the thread no longer needed a step-over, or a new
1992 displaced stepping sequence started. Even in the latter
1993 case, continue looking. Maybe we can also start another
1994 displaced step on a thread of other process. */
1995 }
1996
1997 return started;
1998 }
1999
2000 /* Update global variables holding ptids to hold NEW_PTID if they were
2001 holding OLD_PTID. */
2002 static void
2003 infrun_thread_ptid_changed (process_stratum_target *target,
2004 ptid_t old_ptid, ptid_t new_ptid)
2005 {
2006 if (inferior_ptid == old_ptid
2007 && current_inferior ()->process_target () == target)
2008 inferior_ptid = new_ptid;
2009 }
2010
2011 \f
2012
2013 static const char schedlock_off[] = "off";
2014 static const char schedlock_on[] = "on";
2015 static const char schedlock_step[] = "step";
2016 static const char schedlock_replay[] = "replay";
2017 static const char *const scheduler_enums[] = {
2018 schedlock_off,
2019 schedlock_on,
2020 schedlock_step,
2021 schedlock_replay,
2022 NULL
2023 };
2024 static const char *scheduler_mode = schedlock_replay;
2025 static void
2026 show_scheduler_mode (struct ui_file *file, int from_tty,
2027 struct cmd_list_element *c, const char *value)
2028 {
2029 fprintf_filtered (file,
2030 _("Mode for locking scheduler "
2031 "during execution is \"%s\".\n"),
2032 value);
2033 }
2034
2035 static void
2036 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2037 {
2038 if (!target_can_lock_scheduler ())
2039 {
2040 scheduler_mode = schedlock_off;
2041 error (_("Target '%s' cannot support this command."),
2042 target_shortname ());
2043 }
2044 }
2045
2046 /* True if execution commands resume all threads of all processes by
2047 default; otherwise, resume only threads of the current inferior
2048 process. */
2049 bool sched_multi = false;
2050
2051 /* Try to setup for software single stepping over the specified location.
2052 Return true if target_resume() should use hardware single step.
2053
2054 GDBARCH the current gdbarch.
2055 PC the location to step over. */
2056
2057 static bool
2058 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2059 {
2060 bool hw_step = true;
2061
2062 if (execution_direction == EXEC_FORWARD
2063 && gdbarch_software_single_step_p (gdbarch))
2064 hw_step = !insert_single_step_breakpoints (gdbarch);
2065
2066 return hw_step;
2067 }
2068
2069 /* See infrun.h. */
2070
2071 ptid_t
2072 user_visible_resume_ptid (int step)
2073 {
2074 ptid_t resume_ptid;
2075
2076 if (non_stop)
2077 {
2078 /* With non-stop mode on, threads are always handled
2079 individually. */
2080 resume_ptid = inferior_ptid;
2081 }
2082 else if ((scheduler_mode == schedlock_on)
2083 || (scheduler_mode == schedlock_step && step))
2084 {
2085 /* User-settable 'scheduler' mode requires solo thread
2086 resume. */
2087 resume_ptid = inferior_ptid;
2088 }
2089 else if ((scheduler_mode == schedlock_replay)
2090 && target_record_will_replay (minus_one_ptid, execution_direction))
2091 {
2092 /* User-settable 'scheduler' mode requires solo thread resume in replay
2093 mode. */
2094 resume_ptid = inferior_ptid;
2095 }
2096 else if (!sched_multi && target_supports_multi_process ())
2097 {
2098 /* Resume all threads of the current process (and none of other
2099 processes). */
2100 resume_ptid = ptid_t (inferior_ptid.pid ());
2101 }
2102 else
2103 {
2104 /* Resume all threads of all processes. */
2105 resume_ptid = RESUME_ALL;
2106 }
2107
2108 return resume_ptid;
2109 }
2110
2111 /* See infrun.h. */
2112
2113 process_stratum_target *
2114 user_visible_resume_target (ptid_t resume_ptid)
2115 {
2116 return (resume_ptid == minus_one_ptid && sched_multi
2117 ? NULL
2118 : current_inferior ()->process_target ());
2119 }
2120
2121 /* Return a ptid representing the set of threads that we will resume,
2122 in the perspective of the target, assuming run control handling
2123 does not require leaving some threads stopped (e.g., stepping past
2124 breakpoint). USER_STEP indicates whether we're about to start the
2125 target for a stepping command. */
2126
2127 static ptid_t
2128 internal_resume_ptid (int user_step)
2129 {
2130 /* In non-stop, we always control threads individually. Note that
2131 the target may always work in non-stop mode even with "set
2132 non-stop off", in which case user_visible_resume_ptid could
2133 return a wildcard ptid. */
2134 if (target_is_non_stop_p ())
2135 return inferior_ptid;
2136 else
2137 return user_visible_resume_ptid (user_step);
2138 }
2139
2140 /* Wrapper for target_resume, that handles infrun-specific
2141 bookkeeping. */
2142
2143 static void
2144 do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
2145 {
2146 struct thread_info *tp = inferior_thread ();
2147
2148 gdb_assert (!tp->stop_requested);
2149
2150 /* Install inferior's terminal modes. */
2151 target_terminal::inferior ();
2152
2153 /* Avoid confusing the next resume, if the next stop/resume
2154 happens to apply to another thread. */
2155 tp->suspend.stop_signal = GDB_SIGNAL_0;
2156
2157 /* Advise target which signals may be handled silently.
2158
2159 If we have removed breakpoints because we are stepping over one
2160 in-line (in any thread), we need to receive all signals to avoid
2161 accidentally skipping a breakpoint during execution of a signal
2162 handler.
2163
2164 Likewise if we're displaced stepping, otherwise a trap for a
2165 breakpoint in a signal handler might be confused with the
2166 displaced step finishing. We don't make the displaced_step_finish
2167 step distinguish the cases instead, because:
2168
2169 - a backtrace while stopped in the signal handler would show the
2170 scratch pad as frame older than the signal handler, instead of
2171 the real mainline code.
2172
2173 - when the thread is later resumed, the signal handler would
2174 return to the scratch pad area, which would no longer be
2175 valid. */
2176 if (step_over_info_valid_p ()
2177 || displaced_step_in_progress (tp->inf))
2178 target_pass_signals ({});
2179 else
2180 target_pass_signals (signal_pass);
2181
2182 target_resume (resume_ptid, step, sig);
2183
2184 if (target_can_async_p ())
2185 target_async (1);
2186 }
2187
2188 /* Resume the inferior. SIG is the signal to give the inferior
2189 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2190 call 'resume', which handles exceptions. */
2191
2192 static void
2193 resume_1 (enum gdb_signal sig)
2194 {
2195 struct regcache *regcache = get_current_regcache ();
2196 struct gdbarch *gdbarch = regcache->arch ();
2197 struct thread_info *tp = inferior_thread ();
2198 const address_space *aspace = regcache->aspace ();
2199 ptid_t resume_ptid;
2200 /* This represents the user's step vs continue request. When
2201 deciding whether "set scheduler-locking step" applies, it's the
2202 user's intention that counts. */
2203 const int user_step = tp->control.stepping_command;
2204 /* This represents what we'll actually request the target to do.
2205 This can decay from a step to a continue, if e.g., we need to
2206 implement single-stepping with breakpoints (software
2207 single-step). */
2208 bool step;
2209
2210 gdb_assert (!tp->stop_requested);
2211 gdb_assert (!thread_is_in_step_over_chain (tp));
2212
2213 if (tp->suspend.waitstatus_pending_p)
2214 {
2215 infrun_debug_printf
2216 ("thread %s has pending wait "
2217 "status %s (currently_stepping=%d).",
2218 target_pid_to_str (tp->ptid).c_str (),
2219 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2220 currently_stepping (tp));
2221
2222 tp->inf->process_target ()->threads_executing = true;
2223 tp->resumed = true;
2224
2225 /* FIXME: What should we do if we are supposed to resume this
2226 thread with a signal? Maybe we should maintain a queue of
2227 pending signals to deliver. */
2228 if (sig != GDB_SIGNAL_0)
2229 {
2230 warning (_("Couldn't deliver signal %s to %s."),
2231 gdb_signal_to_name (sig),
2232 target_pid_to_str (tp->ptid).c_str ());
2233 }
2234
2235 tp->suspend.stop_signal = GDB_SIGNAL_0;
2236
2237 if (target_can_async_p ())
2238 {
2239 target_async (1);
2240 /* Tell the event loop we have an event to process. */
2241 mark_async_event_handler (infrun_async_inferior_event_token);
2242 }
2243 return;
2244 }
2245
2246 tp->stepped_breakpoint = 0;
2247
2248 /* Depends on stepped_breakpoint. */
2249 step = currently_stepping (tp);
2250
2251 if (current_inferior ()->waiting_for_vfork_done)
2252 {
2253 /* Don't try to single-step a vfork parent that is waiting for
2254 the child to get out of the shared memory region (by exec'ing
2255 or exiting). This is particularly important on software
2256 single-step archs, as the child process would trip on the
2257 software single step breakpoint inserted for the parent
2258 process. Since the parent will not actually execute any
2259 instruction until the child is out of the shared region (such
2260 are vfork's semantics), it is safe to simply continue it.
2261 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2262 the parent, and tell it to `keep_going', which automatically
2263 re-sets it stepping. */
2264 infrun_debug_printf ("resume : clear step");
2265 step = false;
2266 }
2267
2268 CORE_ADDR pc = regcache_read_pc (regcache);
2269
2270 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2271 "current thread [%s] at %s",
2272 step, gdb_signal_to_symbol_string (sig),
2273 tp->control.trap_expected,
2274 target_pid_to_str (inferior_ptid).c_str (),
2275 paddress (gdbarch, pc));
2276
2277 /* Normally, by the time we reach `resume', the breakpoints are either
2278 removed or inserted, as appropriate. The exception is if we're sitting
2279 at a permanent breakpoint; we need to step over it, but permanent
2280 breakpoints can't be removed. So we have to test for it here. */
2281 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2282 {
2283 if (sig != GDB_SIGNAL_0)
2284 {
2285 /* We have a signal to pass to the inferior. The resume
2286 may, or may not take us to the signal handler. If this
2287 is a step, we'll need to stop in the signal handler, if
2288 there's one, (if the target supports stepping into
2289 handlers), or in the next mainline instruction, if
2290 there's no handler. If this is a continue, we need to be
2291 sure to run the handler with all breakpoints inserted.
2292 In all cases, set a breakpoint at the current address
2293 (where the handler returns to), and once that breakpoint
2294 is hit, resume skipping the permanent breakpoint. If
2295 that breakpoint isn't hit, then we've stepped into the
2296 signal handler (or hit some other event). We'll delete
2297 the step-resume breakpoint then. */
2298
2299 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2300 "deliver signal first");
2301
2302 clear_step_over_info ();
2303 tp->control.trap_expected = 0;
2304
2305 if (tp->control.step_resume_breakpoint == NULL)
2306 {
2307 /* Set a "high-priority" step-resume, as we don't want
2308 user breakpoints at PC to trigger (again) when this
2309 hits. */
2310 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2311 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2312
2313 tp->step_after_step_resume_breakpoint = step;
2314 }
2315
2316 insert_breakpoints ();
2317 }
2318 else
2319 {
2320 /* There's no signal to pass, we can go ahead and skip the
2321 permanent breakpoint manually. */
2322 infrun_debug_printf ("skipping permanent breakpoint");
2323 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2324 /* Update pc to reflect the new address from which we will
2325 execute instructions. */
2326 pc = regcache_read_pc (regcache);
2327
2328 if (step)
2329 {
2330 /* We've already advanced the PC, so the stepping part
2331 is done. Now we need to arrange for a trap to be
2332 reported to handle_inferior_event. Set a breakpoint
2333 at the current PC, and run to it. Don't update
2334 prev_pc, because if we end in
2335 switch_back_to_stepped_thread, we want the "expected
2336 thread advanced also" branch to be taken. IOW, we
2337 don't want this thread to step further from PC
2338 (overstep). */
2339 gdb_assert (!step_over_info_valid_p ());
2340 insert_single_step_breakpoint (gdbarch, aspace, pc);
2341 insert_breakpoints ();
2342
2343 resume_ptid = internal_resume_ptid (user_step);
2344 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2345 tp->resumed = true;
2346 return;
2347 }
2348 }
2349 }
2350
2351 /* If we have a breakpoint to step over, make sure to do a single
2352 step only. Same if we have software watchpoints. */
2353 if (tp->control.trap_expected || bpstat_should_step ())
2354 tp->control.may_range_step = 0;
2355
2356 /* If displaced stepping is enabled, step over breakpoints by executing a
2357 copy of the instruction at a different address.
2358
2359 We can't use displaced stepping when we have a signal to deliver;
2360 the comments for displaced_step_prepare explain why. The
2361 comments in the handle_inferior event for dealing with 'random
2362 signals' explain what we do instead.
2363
2364 We can't use displaced stepping when we are waiting for vfork_done
2365 event, displaced stepping breaks the vfork child similarly as single
2366 step software breakpoint. */
2367 if (tp->control.trap_expected
2368 && use_displaced_stepping (tp)
2369 && !step_over_info_valid_p ()
2370 && sig == GDB_SIGNAL_0
2371 && !current_inferior ()->waiting_for_vfork_done)
2372 {
2373 displaced_step_prepare_status prepare_status
2374 = displaced_step_prepare (tp);
2375
2376 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
2377 {
2378 infrun_debug_printf ("Got placed in step-over queue");
2379
2380 tp->control.trap_expected = 0;
2381 return;
2382 }
2383 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_CANT)
2384 {
2385 /* Fallback to stepping over the breakpoint in-line. */
2386
2387 if (target_is_non_stop_p ())
2388 stop_all_threads ();
2389
2390 set_step_over_info (regcache->aspace (),
2391 regcache_read_pc (regcache), 0, tp->global_num);
2392
2393 step = maybe_software_singlestep (gdbarch, pc);
2394
2395 insert_breakpoints ();
2396 }
2397 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
2398 {
2399 /* Update pc to reflect the new address from which we will
2400 execute instructions due to displaced stepping. */
2401 pc = regcache_read_pc (get_thread_regcache (tp));
2402
2403 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
2404 }
2405 else
2406 gdb_assert_not_reached (_("Invalid displaced_step_prepare_status "
2407 "value."));
2408 }
2409
2410 /* Do we need to do it the hard way, w/temp breakpoints? */
2411 else if (step)
2412 step = maybe_software_singlestep (gdbarch, pc);
2413
2414 /* Currently, our software single-step implementation leads to different
2415 results than hardware single-stepping in one situation: when stepping
2416 into delivering a signal which has an associated signal handler,
2417 hardware single-step will stop at the first instruction of the handler,
2418 while software single-step will simply skip execution of the handler.
2419
2420 For now, this difference in behavior is accepted since there is no
2421 easy way to actually implement single-stepping into a signal handler
2422 without kernel support.
2423
2424 However, there is one scenario where this difference leads to follow-on
2425 problems: if we're stepping off a breakpoint by removing all breakpoints
2426 and then single-stepping. In this case, the software single-step
2427 behavior means that even if there is a *breakpoint* in the signal
2428 handler, GDB still would not stop.
2429
2430 Fortunately, we can at least fix this particular issue. We detect
2431 here the case where we are about to deliver a signal while software
2432 single-stepping with breakpoints removed. In this situation, we
2433 revert the decisions to remove all breakpoints and insert single-
2434 step breakpoints, and instead we install a step-resume breakpoint
2435 at the current address, deliver the signal without stepping, and
2436 once we arrive back at the step-resume breakpoint, actually step
2437 over the breakpoint we originally wanted to step over. */
2438 if (thread_has_single_step_breakpoints_set (tp)
2439 && sig != GDB_SIGNAL_0
2440 && step_over_info_valid_p ())
2441 {
2442 /* If we have nested signals or a pending signal is delivered
2443 immediately after a handler returns, might already have
2444 a step-resume breakpoint set on the earlier handler. We cannot
2445 set another step-resume breakpoint; just continue on until the
2446 original breakpoint is hit. */
2447 if (tp->control.step_resume_breakpoint == NULL)
2448 {
2449 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2450 tp->step_after_step_resume_breakpoint = 1;
2451 }
2452
2453 delete_single_step_breakpoints (tp);
2454
2455 clear_step_over_info ();
2456 tp->control.trap_expected = 0;
2457
2458 insert_breakpoints ();
2459 }
2460
2461 /* If STEP is set, it's a request to use hardware stepping
2462 facilities. But in that case, we should never
2463 use singlestep breakpoint. */
2464 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2465
2466 /* Decide the set of threads to ask the target to resume. */
2467 if (tp->control.trap_expected)
2468 {
2469 /* We're allowing a thread to run past a breakpoint it has
2470 hit, either by single-stepping the thread with the breakpoint
2471 removed, or by displaced stepping, with the breakpoint inserted.
2472 In the former case, we need to single-step only this thread,
2473 and keep others stopped, as they can miss this breakpoint if
2474 allowed to run. That's not really a problem for displaced
2475 stepping, but, we still keep other threads stopped, in case
2476 another thread is also stopped for a breakpoint waiting for
2477 its turn in the displaced stepping queue. */
2478 resume_ptid = inferior_ptid;
2479 }
2480 else
2481 resume_ptid = internal_resume_ptid (user_step);
2482
2483 if (execution_direction != EXEC_REVERSE
2484 && step && breakpoint_inserted_here_p (aspace, pc))
2485 {
2486 /* There are two cases where we currently need to step a
2487 breakpoint instruction when we have a signal to deliver:
2488
2489 - See handle_signal_stop where we handle random signals that
2490 could take out us out of the stepping range. Normally, in
2491 that case we end up continuing (instead of stepping) over the
2492 signal handler with a breakpoint at PC, but there are cases
2493 where we should _always_ single-step, even if we have a
2494 step-resume breakpoint, like when a software watchpoint is
2495 set. Assuming single-stepping and delivering a signal at the
2496 same time would takes us to the signal handler, then we could
2497 have removed the breakpoint at PC to step over it. However,
2498 some hardware step targets (like e.g., Mac OS) can't step
2499 into signal handlers, and for those, we need to leave the
2500 breakpoint at PC inserted, as otherwise if the handler
2501 recurses and executes PC again, it'll miss the breakpoint.
2502 So we leave the breakpoint inserted anyway, but we need to
2503 record that we tried to step a breakpoint instruction, so
2504 that adjust_pc_after_break doesn't end up confused.
2505
2506 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2507 in one thread after another thread that was stepping had been
2508 momentarily paused for a step-over. When we re-resume the
2509 stepping thread, it may be resumed from that address with a
2510 breakpoint that hasn't trapped yet. Seen with
2511 gdb.threads/non-stop-fair-events.exp, on targets that don't
2512 do displaced stepping. */
2513
2514 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2515 target_pid_to_str (tp->ptid).c_str ());
2516
2517 tp->stepped_breakpoint = 1;
2518
2519 /* Most targets can step a breakpoint instruction, thus
2520 executing it normally. But if this one cannot, just
2521 continue and we will hit it anyway. */
2522 if (gdbarch_cannot_step_breakpoint (gdbarch))
2523 step = false;
2524 }
2525
2526 if (debug_displaced
2527 && tp->control.trap_expected
2528 && use_displaced_stepping (tp)
2529 && !step_over_info_valid_p ())
2530 {
2531 struct regcache *resume_regcache = get_thread_regcache (tp);
2532 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2533 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2534 gdb_byte buf[4];
2535
2536 read_memory (actual_pc, buf, sizeof (buf));
2537 displaced_debug_printf ("run %s: %s",
2538 paddress (resume_gdbarch, actual_pc),
2539 displaced_step_dump_bytes
2540 (buf, sizeof (buf)).c_str ());
2541 }
2542
2543 if (tp->control.may_range_step)
2544 {
2545 /* If we're resuming a thread with the PC out of the step
2546 range, then we're doing some nested/finer run control
2547 operation, like stepping the thread out of the dynamic
2548 linker or the displaced stepping scratch pad. We
2549 shouldn't have allowed a range step then. */
2550 gdb_assert (pc_in_thread_step_range (pc, tp));
2551 }
2552
2553 do_target_resume (resume_ptid, step, sig);
2554 tp->resumed = true;
2555 }
2556
2557 /* Resume the inferior. SIG is the signal to give the inferior
2558 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2559 rolls back state on error. */
2560
2561 static void
2562 resume (gdb_signal sig)
2563 {
2564 try
2565 {
2566 resume_1 (sig);
2567 }
2568 catch (const gdb_exception &ex)
2569 {
2570 /* If resuming is being aborted for any reason, delete any
2571 single-step breakpoint resume_1 may have created, to avoid
2572 confusing the following resumption, and to avoid leaving
2573 single-step breakpoints perturbing other threads, in case
2574 we're running in non-stop mode. */
2575 if (inferior_ptid != null_ptid)
2576 delete_single_step_breakpoints (inferior_thread ());
2577 throw;
2578 }
2579 }
2580
2581 \f
2582 /* Proceeding. */
2583
2584 /* See infrun.h. */
2585
2586 /* Counter that tracks number of user visible stops. This can be used
2587 to tell whether a command has proceeded the inferior past the
2588 current location. This allows e.g., inferior function calls in
2589 breakpoint commands to not interrupt the command list. When the
2590 call finishes successfully, the inferior is standing at the same
2591 breakpoint as if nothing happened (and so we don't call
2592 normal_stop). */
2593 static ULONGEST current_stop_id;
2594
2595 /* See infrun.h. */
2596
2597 ULONGEST
2598 get_stop_id (void)
2599 {
2600 return current_stop_id;
2601 }
2602
2603 /* Called when we report a user visible stop. */
2604
2605 static void
2606 new_stop_id (void)
2607 {
2608 current_stop_id++;
2609 }
2610
2611 /* Clear out all variables saying what to do when inferior is continued.
2612 First do this, then set the ones you want, then call `proceed'. */
2613
2614 static void
2615 clear_proceed_status_thread (struct thread_info *tp)
2616 {
2617 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
2618
2619 /* If we're starting a new sequence, then the previous finished
2620 single-step is no longer relevant. */
2621 if (tp->suspend.waitstatus_pending_p)
2622 {
2623 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2624 {
2625 infrun_debug_printf ("pending event of %s was a finished step. "
2626 "Discarding.",
2627 target_pid_to_str (tp->ptid).c_str ());
2628
2629 tp->suspend.waitstatus_pending_p = 0;
2630 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2631 }
2632 else
2633 {
2634 infrun_debug_printf
2635 ("thread %s has pending wait status %s (currently_stepping=%d).",
2636 target_pid_to_str (tp->ptid).c_str (),
2637 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2638 currently_stepping (tp));
2639 }
2640 }
2641
2642 /* If this signal should not be seen by program, give it zero.
2643 Used for debugging signals. */
2644 if (!signal_pass_state (tp->suspend.stop_signal))
2645 tp->suspend.stop_signal = GDB_SIGNAL_0;
2646
2647 delete tp->thread_fsm;
2648 tp->thread_fsm = NULL;
2649
2650 tp->control.trap_expected = 0;
2651 tp->control.step_range_start = 0;
2652 tp->control.step_range_end = 0;
2653 tp->control.may_range_step = 0;
2654 tp->control.step_frame_id = null_frame_id;
2655 tp->control.step_stack_frame_id = null_frame_id;
2656 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2657 tp->control.step_start_function = NULL;
2658 tp->stop_requested = 0;
2659
2660 tp->control.stop_step = 0;
2661
2662 tp->control.proceed_to_finish = 0;
2663
2664 tp->control.stepping_command = 0;
2665
2666 /* Discard any remaining commands or status from previous stop. */
2667 bpstat_clear (&tp->control.stop_bpstat);
2668 }
2669
2670 void
2671 clear_proceed_status (int step)
2672 {
2673 /* With scheduler-locking replay, stop replaying other threads if we're
2674 not replaying the user-visible resume ptid.
2675
2676 This is a convenience feature to not require the user to explicitly
2677 stop replaying the other threads. We're assuming that the user's
2678 intent is to resume tracing the recorded process. */
2679 if (!non_stop && scheduler_mode == schedlock_replay
2680 && target_record_is_replaying (minus_one_ptid)
2681 && !target_record_will_replay (user_visible_resume_ptid (step),
2682 execution_direction))
2683 target_record_stop_replaying ();
2684
2685 if (!non_stop && inferior_ptid != null_ptid)
2686 {
2687 ptid_t resume_ptid = user_visible_resume_ptid (step);
2688 process_stratum_target *resume_target
2689 = user_visible_resume_target (resume_ptid);
2690
2691 /* In all-stop mode, delete the per-thread status of all threads
2692 we're about to resume, implicitly and explicitly. */
2693 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2694 clear_proceed_status_thread (tp);
2695 }
2696
2697 if (inferior_ptid != null_ptid)
2698 {
2699 struct inferior *inferior;
2700
2701 if (non_stop)
2702 {
2703 /* If in non-stop mode, only delete the per-thread status of
2704 the current thread. */
2705 clear_proceed_status_thread (inferior_thread ());
2706 }
2707
2708 inferior = current_inferior ();
2709 inferior->control.stop_soon = NO_STOP_QUIETLY;
2710 }
2711
2712 gdb::observers::about_to_proceed.notify ();
2713 }
2714
2715 /* Returns true if TP is still stopped at a breakpoint that needs
2716 stepping-over in order to make progress. If the breakpoint is gone
2717 meanwhile, we can skip the whole step-over dance. */
2718
2719 static bool
2720 thread_still_needs_step_over_bp (struct thread_info *tp)
2721 {
2722 if (tp->stepping_over_breakpoint)
2723 {
2724 struct regcache *regcache = get_thread_regcache (tp);
2725
2726 if (breakpoint_here_p (regcache->aspace (),
2727 regcache_read_pc (regcache))
2728 == ordinary_breakpoint_here)
2729 return true;
2730
2731 tp->stepping_over_breakpoint = 0;
2732 }
2733
2734 return false;
2735 }
2736
2737 /* Check whether thread TP still needs to start a step-over in order
2738 to make progress when resumed. Returns an bitwise or of enum
2739 step_over_what bits, indicating what needs to be stepped over. */
2740
2741 static step_over_what
2742 thread_still_needs_step_over (struct thread_info *tp)
2743 {
2744 step_over_what what = 0;
2745
2746 if (thread_still_needs_step_over_bp (tp))
2747 what |= STEP_OVER_BREAKPOINT;
2748
2749 if (tp->stepping_over_watchpoint
2750 && !target_have_steppable_watchpoint ())
2751 what |= STEP_OVER_WATCHPOINT;
2752
2753 return what;
2754 }
2755
2756 /* Returns true if scheduler locking applies. STEP indicates whether
2757 we're about to do a step/next-like command to a thread. */
2758
2759 static bool
2760 schedlock_applies (struct thread_info *tp)
2761 {
2762 return (scheduler_mode == schedlock_on
2763 || (scheduler_mode == schedlock_step
2764 && tp->control.stepping_command)
2765 || (scheduler_mode == schedlock_replay
2766 && target_record_will_replay (minus_one_ptid,
2767 execution_direction)));
2768 }
2769
2770 /* Set process_stratum_target::COMMIT_RESUMED_STATE in all target
2771 stacks that have threads executing and don't have threads with
2772 pending events. */
2773
2774 static void
2775 maybe_set_commit_resumed_all_targets ()
2776 {
2777 scoped_restore_current_thread restore_thread;
2778
2779 for (inferior *inf : all_non_exited_inferiors ())
2780 {
2781 process_stratum_target *proc_target = inf->process_target ();
2782
2783 if (proc_target->commit_resumed_state)
2784 {
2785 /* We already set this in a previous iteration, via another
2786 inferior sharing the process_stratum target. */
2787 continue;
2788 }
2789
2790 /* If the target has no resumed threads, it would be useless to
2791 ask it to commit the resumed threads. */
2792 if (!proc_target->threads_executing)
2793 {
2794 infrun_debug_printf ("not requesting commit-resumed for target "
2795 "%s, no resumed threads",
2796 proc_target->shortname ());
2797 continue;
2798 }
2799
2800 /* As an optimization, if a thread from this target has some
2801 status to report, handle it before requiring the target to
2802 commit its resumed threads: handling the status might lead to
2803 resuming more threads. */
2804 bool has_thread_with_pending_status = false;
2805 for (thread_info *thread : all_non_exited_threads (proc_target))
2806 if (thread->resumed && thread->suspend.waitstatus_pending_p)
2807 {
2808 has_thread_with_pending_status = true;
2809 break;
2810 }
2811
2812 if (has_thread_with_pending_status)
2813 {
2814 infrun_debug_printf ("not requesting commit-resumed for target %s, a"
2815 " thread has a pending waitstatus",
2816 proc_target->shortname ());
2817 continue;
2818 }
2819
2820 switch_to_inferior_no_thread (inf);
2821
2822 if (target_has_pending_events ())
2823 {
2824 infrun_debug_printf ("not requesting commit-resumed for target %s, "
2825 "target has pending events",
2826 proc_target->shortname ());
2827 continue;
2828 }
2829
2830 infrun_debug_printf ("enabling commit-resumed for target %s",
2831 proc_target->shortname ());
2832
2833 proc_target->commit_resumed_state = true;
2834 }
2835 }
2836
2837 /* See infrun.h. */
2838
2839 void
2840 maybe_call_commit_resumed_all_targets ()
2841 {
2842 scoped_restore_current_thread restore_thread;
2843
2844 for (inferior *inf : all_non_exited_inferiors ())
2845 {
2846 process_stratum_target *proc_target = inf->process_target ();
2847
2848 if (!proc_target->commit_resumed_state)
2849 continue;
2850
2851 switch_to_inferior_no_thread (inf);
2852
2853 infrun_debug_printf ("calling commit_resumed for target %s",
2854 proc_target->shortname());
2855
2856 target_commit_resumed ();
2857 }
2858 }
2859
2860 /* To track nesting of scoped_disable_commit_resumed objects, ensuring
2861 that only the outermost one attempts to re-enable
2862 commit-resumed. */
2863 static bool enable_commit_resumed = true;
2864
2865 /* See infrun.h. */
2866
2867 scoped_disable_commit_resumed::scoped_disable_commit_resumed
2868 (const char *reason)
2869 : m_reason (reason),
2870 m_prev_enable_commit_resumed (enable_commit_resumed)
2871 {
2872 infrun_debug_printf ("reason=%s", m_reason);
2873
2874 enable_commit_resumed = false;
2875
2876 for (inferior *inf : all_non_exited_inferiors ())
2877 {
2878 process_stratum_target *proc_target = inf->process_target ();
2879
2880 if (m_prev_enable_commit_resumed)
2881 {
2882 /* This is the outermost instance: force all
2883 COMMIT_RESUMED_STATE to false. */
2884 proc_target->commit_resumed_state = false;
2885 }
2886 else
2887 {
2888 /* This is not the outermost instance, we expect
2889 COMMIT_RESUMED_STATE to have been cleared by the
2890 outermost instance. */
2891 gdb_assert (!proc_target->commit_resumed_state);
2892 }
2893 }
2894 }
2895
2896 /* See infrun.h. */
2897
2898 void
2899 scoped_disable_commit_resumed::reset ()
2900 {
2901 if (m_reset)
2902 return;
2903 m_reset = true;
2904
2905 infrun_debug_printf ("reason=%s", m_reason);
2906
2907 gdb_assert (!enable_commit_resumed);
2908
2909 enable_commit_resumed = m_prev_enable_commit_resumed;
2910
2911 if (m_prev_enable_commit_resumed)
2912 {
2913 /* This is the outermost instance, re-enable
2914 COMMIT_RESUMED_STATE on the targets where it's possible. */
2915 maybe_set_commit_resumed_all_targets ();
2916 }
2917 else
2918 {
2919 /* This is not the outermost instance, we expect
2920 COMMIT_RESUMED_STATE to still be false. */
2921 for (inferior *inf : all_non_exited_inferiors ())
2922 {
2923 process_stratum_target *proc_target = inf->process_target ();
2924 gdb_assert (!proc_target->commit_resumed_state);
2925 }
2926 }
2927 }
2928
2929 /* See infrun.h. */
2930
2931 scoped_disable_commit_resumed::~scoped_disable_commit_resumed ()
2932 {
2933 reset ();
2934 }
2935
2936 /* See infrun.h. */
2937
2938 void
2939 scoped_disable_commit_resumed::reset_and_commit ()
2940 {
2941 reset ();
2942 maybe_call_commit_resumed_all_targets ();
2943 }
2944
2945 /* See infrun.h. */
2946
2947 scoped_enable_commit_resumed::scoped_enable_commit_resumed
2948 (const char *reason)
2949 : m_reason (reason),
2950 m_prev_enable_commit_resumed (enable_commit_resumed)
2951 {
2952 infrun_debug_printf ("reason=%s", m_reason);
2953
2954 if (!enable_commit_resumed)
2955 {
2956 enable_commit_resumed = true;
2957
2958 /* Re-enable COMMIT_RESUMED_STATE on the targets where it's
2959 possible. */
2960 maybe_set_commit_resumed_all_targets ();
2961
2962 maybe_call_commit_resumed_all_targets ();
2963 }
2964 }
2965
2966 /* See infrun.h. */
2967
2968 scoped_enable_commit_resumed::~scoped_enable_commit_resumed ()
2969 {
2970 infrun_debug_printf ("reason=%s", m_reason);
2971
2972 gdb_assert (enable_commit_resumed);
2973
2974 enable_commit_resumed = m_prev_enable_commit_resumed;
2975
2976 if (!enable_commit_resumed)
2977 {
2978 /* Force all COMMIT_RESUMED_STATE back to false. */
2979 for (inferior *inf : all_non_exited_inferiors ())
2980 {
2981 process_stratum_target *proc_target = inf->process_target ();
2982 proc_target->commit_resumed_state = false;
2983 }
2984 }
2985 }
2986
2987 /* Check that all the targets we're about to resume are in non-stop
2988 mode. Ideally, we'd only care whether all targets support
2989 target-async, but we're not there yet. E.g., stop_all_threads
2990 doesn't know how to handle all-stop targets. Also, the remote
2991 protocol in all-stop mode is synchronous, irrespective of
2992 target-async, which means that things like a breakpoint re-set
2993 triggered by one target would try to read memory from all targets
2994 and fail. */
2995
2996 static void
2997 check_multi_target_resumption (process_stratum_target *resume_target)
2998 {
2999 if (!non_stop && resume_target == nullptr)
3000 {
3001 scoped_restore_current_thread restore_thread;
3002
3003 /* This is used to track whether we're resuming more than one
3004 target. */
3005 process_stratum_target *first_connection = nullptr;
3006
3007 /* The first inferior we see with a target that does not work in
3008 always-non-stop mode. */
3009 inferior *first_not_non_stop = nullptr;
3010
3011 for (inferior *inf : all_non_exited_inferiors ())
3012 {
3013 switch_to_inferior_no_thread (inf);
3014
3015 if (!target_has_execution ())
3016 continue;
3017
3018 process_stratum_target *proc_target
3019 = current_inferior ()->process_target();
3020
3021 if (!target_is_non_stop_p ())
3022 first_not_non_stop = inf;
3023
3024 if (first_connection == nullptr)
3025 first_connection = proc_target;
3026 else if (first_connection != proc_target
3027 && first_not_non_stop != nullptr)
3028 {
3029 switch_to_inferior_no_thread (first_not_non_stop);
3030
3031 proc_target = current_inferior ()->process_target();
3032
3033 error (_("Connection %d (%s) does not support "
3034 "multi-target resumption."),
3035 proc_target->connection_number,
3036 make_target_connection_string (proc_target).c_str ());
3037 }
3038 }
3039 }
3040 }
3041
3042 /* Basic routine for continuing the program in various fashions.
3043
3044 ADDR is the address to resume at, or -1 for resume where stopped.
3045 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
3046 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
3047
3048 You should call clear_proceed_status before calling proceed. */
3049
3050 void
3051 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
3052 {
3053 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
3054
3055 struct regcache *regcache;
3056 struct gdbarch *gdbarch;
3057 CORE_ADDR pc;
3058 struct execution_control_state ecss;
3059 struct execution_control_state *ecs = &ecss;
3060 bool started;
3061
3062 /* If we're stopped at a fork/vfork, follow the branch set by the
3063 "set follow-fork-mode" command; otherwise, we'll just proceed
3064 resuming the current thread. */
3065 if (!follow_fork ())
3066 {
3067 /* The target for some reason decided not to resume. */
3068 normal_stop ();
3069 if (target_can_async_p ())
3070 inferior_event_handler (INF_EXEC_COMPLETE);
3071 return;
3072 }
3073
3074 /* We'll update this if & when we switch to a new thread. */
3075 previous_inferior_ptid = inferior_ptid;
3076
3077 regcache = get_current_regcache ();
3078 gdbarch = regcache->arch ();
3079 const address_space *aspace = regcache->aspace ();
3080
3081 pc = regcache_read_pc_protected (regcache);
3082
3083 thread_info *cur_thr = inferior_thread ();
3084
3085 /* Fill in with reasonable starting values. */
3086 init_thread_stepping_state (cur_thr);
3087
3088 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
3089
3090 ptid_t resume_ptid
3091 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3092 process_stratum_target *resume_target
3093 = user_visible_resume_target (resume_ptid);
3094
3095 check_multi_target_resumption (resume_target);
3096
3097 if (addr == (CORE_ADDR) -1)
3098 {
3099 if (pc == cur_thr->suspend.stop_pc
3100 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3101 && execution_direction != EXEC_REVERSE)
3102 /* There is a breakpoint at the address we will resume at,
3103 step one instruction before inserting breakpoints so that
3104 we do not stop right away (and report a second hit at this
3105 breakpoint).
3106
3107 Note, we don't do this in reverse, because we won't
3108 actually be executing the breakpoint insn anyway.
3109 We'll be (un-)executing the previous instruction. */
3110 cur_thr->stepping_over_breakpoint = 1;
3111 else if (gdbarch_single_step_through_delay_p (gdbarch)
3112 && gdbarch_single_step_through_delay (gdbarch,
3113 get_current_frame ()))
3114 /* We stepped onto an instruction that needs to be stepped
3115 again before re-inserting the breakpoint, do so. */
3116 cur_thr->stepping_over_breakpoint = 1;
3117 }
3118 else
3119 {
3120 regcache_write_pc (regcache, addr);
3121 }
3122
3123 if (siggnal != GDB_SIGNAL_DEFAULT)
3124 cur_thr->suspend.stop_signal = siggnal;
3125
3126 /* If an exception is thrown from this point on, make sure to
3127 propagate GDB's knowledge of the executing state to the
3128 frontend/user running state. */
3129 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3130
3131 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3132 threads (e.g., we might need to set threads stepping over
3133 breakpoints first), from the user/frontend's point of view, all
3134 threads in RESUME_PTID are now running. Unless we're calling an
3135 inferior function, as in that case we pretend the inferior
3136 doesn't run at all. */
3137 if (!cur_thr->control.in_infcall)
3138 set_running (resume_target, resume_ptid, true);
3139
3140 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
3141 gdb_signal_to_symbol_string (siggnal));
3142
3143 annotate_starting ();
3144
3145 /* Make sure that output from GDB appears before output from the
3146 inferior. */
3147 gdb_flush (gdb_stdout);
3148
3149 /* Since we've marked the inferior running, give it the terminal. A
3150 QUIT/Ctrl-C from here on is forwarded to the target (which can
3151 still detect attempts to unblock a stuck connection with repeated
3152 Ctrl-C from within target_pass_ctrlc). */
3153 target_terminal::inferior ();
3154
3155 /* In a multi-threaded task we may select another thread and
3156 then continue or step.
3157
3158 But if a thread that we're resuming had stopped at a breakpoint,
3159 it will immediately cause another breakpoint stop without any
3160 execution (i.e. it will report a breakpoint hit incorrectly). So
3161 we must step over it first.
3162
3163 Look for threads other than the current (TP) that reported a
3164 breakpoint hit and haven't been resumed yet since. */
3165
3166 /* If scheduler locking applies, we can avoid iterating over all
3167 threads. */
3168 if (!non_stop && !schedlock_applies (cur_thr))
3169 {
3170 for (thread_info *tp : all_non_exited_threads (resume_target,
3171 resume_ptid))
3172 {
3173 switch_to_thread_no_regs (tp);
3174
3175 /* Ignore the current thread here. It's handled
3176 afterwards. */
3177 if (tp == cur_thr)
3178 continue;
3179
3180 if (!thread_still_needs_step_over (tp))
3181 continue;
3182
3183 gdb_assert (!thread_is_in_step_over_chain (tp));
3184
3185 infrun_debug_printf ("need to step-over [%s] first",
3186 target_pid_to_str (tp->ptid).c_str ());
3187
3188 global_thread_step_over_chain_enqueue (tp);
3189 }
3190
3191 switch_to_thread (cur_thr);
3192 }
3193
3194 /* Enqueue the current thread last, so that we move all other
3195 threads over their breakpoints first. */
3196 if (cur_thr->stepping_over_breakpoint)
3197 global_thread_step_over_chain_enqueue (cur_thr);
3198
3199 /* If the thread isn't started, we'll still need to set its prev_pc,
3200 so that switch_back_to_stepped_thread knows the thread hasn't
3201 advanced. Must do this before resuming any thread, as in
3202 all-stop/remote, once we resume we can't send any other packet
3203 until the target stops again. */
3204 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3205
3206 {
3207 scoped_disable_commit_resumed disable_commit_resumed ("proceeding");
3208
3209 started = start_step_over ();
3210
3211 if (step_over_info_valid_p ())
3212 {
3213 /* Either this thread started a new in-line step over, or some
3214 other thread was already doing one. In either case, don't
3215 resume anything else until the step-over is finished. */
3216 }
3217 else if (started && !target_is_non_stop_p ())
3218 {
3219 /* A new displaced stepping sequence was started. In all-stop,
3220 we can't talk to the target anymore until it next stops. */
3221 }
3222 else if (!non_stop && target_is_non_stop_p ())
3223 {
3224 INFRUN_SCOPED_DEBUG_START_END
3225 ("resuming threads, all-stop-on-top-of-non-stop");
3226
3227 /* In all-stop, but the target is always in non-stop mode.
3228 Start all other threads that are implicitly resumed too. */
3229 for (thread_info *tp : all_non_exited_threads (resume_target,
3230 resume_ptid))
3231 {
3232 switch_to_thread_no_regs (tp);
3233
3234 if (!tp->inf->has_execution ())
3235 {
3236 infrun_debug_printf ("[%s] target has no execution",
3237 target_pid_to_str (tp->ptid).c_str ());
3238 continue;
3239 }
3240
3241 if (tp->resumed)
3242 {
3243 infrun_debug_printf ("[%s] resumed",
3244 target_pid_to_str (tp->ptid).c_str ());
3245 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3246 continue;
3247 }
3248
3249 if (thread_is_in_step_over_chain (tp))
3250 {
3251 infrun_debug_printf ("[%s] needs step-over",
3252 target_pid_to_str (tp->ptid).c_str ());
3253 continue;
3254 }
3255
3256 infrun_debug_printf ("resuming %s",
3257 target_pid_to_str (tp->ptid).c_str ());
3258
3259 reset_ecs (ecs, tp);
3260 switch_to_thread (tp);
3261 keep_going_pass_signal (ecs);
3262 if (!ecs->wait_some_more)
3263 error (_("Command aborted."));
3264 }
3265 }
3266 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3267 {
3268 /* The thread wasn't started, and isn't queued, run it now. */
3269 reset_ecs (ecs, cur_thr);
3270 switch_to_thread (cur_thr);
3271 keep_going_pass_signal (ecs);
3272 if (!ecs->wait_some_more)
3273 error (_("Command aborted."));
3274 }
3275
3276 disable_commit_resumed.reset_and_commit ();
3277 }
3278
3279 finish_state.release ();
3280
3281 /* If we've switched threads above, switch back to the previously
3282 current thread. We don't want the user to see a different
3283 selected thread. */
3284 switch_to_thread (cur_thr);
3285
3286 /* Tell the event loop to wait for it to stop. If the target
3287 supports asynchronous execution, it'll do this from within
3288 target_resume. */
3289 if (!target_can_async_p ())
3290 mark_async_event_handler (infrun_async_inferior_event_token);
3291 }
3292 \f
3293
3294 /* Start remote-debugging of a machine over a serial link. */
3295
3296 void
3297 start_remote (int from_tty)
3298 {
3299 inferior *inf = current_inferior ();
3300 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3301
3302 /* Always go on waiting for the target, regardless of the mode. */
3303 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3304 indicate to wait_for_inferior that a target should timeout if
3305 nothing is returned (instead of just blocking). Because of this,
3306 targets expecting an immediate response need to, internally, set
3307 things up so that the target_wait() is forced to eventually
3308 timeout. */
3309 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3310 differentiate to its caller what the state of the target is after
3311 the initial open has been performed. Here we're assuming that
3312 the target has stopped. It should be possible to eventually have
3313 target_open() return to the caller an indication that the target
3314 is currently running and GDB state should be set to the same as
3315 for an async run. */
3316 wait_for_inferior (inf);
3317
3318 /* Now that the inferior has stopped, do any bookkeeping like
3319 loading shared libraries. We want to do this before normal_stop,
3320 so that the displayed frame is up to date. */
3321 post_create_inferior (from_tty);
3322
3323 normal_stop ();
3324 }
3325
3326 /* Initialize static vars when a new inferior begins. */
3327
3328 void
3329 init_wait_for_inferior (void)
3330 {
3331 /* These are meaningless until the first time through wait_for_inferior. */
3332
3333 breakpoint_init_inferior (inf_starting);
3334
3335 clear_proceed_status (0);
3336
3337 nullify_last_target_wait_ptid ();
3338
3339 previous_inferior_ptid = inferior_ptid;
3340 }
3341
3342 \f
3343
3344 static void handle_inferior_event (struct execution_control_state *ecs);
3345
3346 static void handle_step_into_function (struct gdbarch *gdbarch,
3347 struct execution_control_state *ecs);
3348 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3349 struct execution_control_state *ecs);
3350 static void handle_signal_stop (struct execution_control_state *ecs);
3351 static void check_exception_resume (struct execution_control_state *,
3352 struct frame_info *);
3353
3354 static void end_stepping_range (struct execution_control_state *ecs);
3355 static void stop_waiting (struct execution_control_state *ecs);
3356 static void keep_going (struct execution_control_state *ecs);
3357 static void process_event_stop_test (struct execution_control_state *ecs);
3358 static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
3359
3360 /* This function is attached as a "thread_stop_requested" observer.
3361 Cleanup local state that assumed the PTID was to be resumed, and
3362 report the stop to the frontend. */
3363
3364 static void
3365 infrun_thread_stop_requested (ptid_t ptid)
3366 {
3367 process_stratum_target *curr_target = current_inferior ()->process_target ();
3368
3369 /* PTID was requested to stop. If the thread was already stopped,
3370 but the user/frontend doesn't know about that yet (e.g., the
3371 thread had been temporarily paused for some step-over), set up
3372 for reporting the stop now. */
3373 for (thread_info *tp : all_threads (curr_target, ptid))
3374 {
3375 if (tp->state != THREAD_RUNNING)
3376 continue;
3377 if (tp->executing)
3378 continue;
3379
3380 /* Remove matching threads from the step-over queue, so
3381 start_step_over doesn't try to resume them
3382 automatically. */
3383 if (thread_is_in_step_over_chain (tp))
3384 global_thread_step_over_chain_remove (tp);
3385
3386 /* If the thread is stopped, but the user/frontend doesn't
3387 know about that yet, queue a pending event, as if the
3388 thread had just stopped now. Unless the thread already had
3389 a pending event. */
3390 if (!tp->suspend.waitstatus_pending_p)
3391 {
3392 tp->suspend.waitstatus_pending_p = 1;
3393 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3394 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3395 }
3396
3397 /* Clear the inline-frame state, since we're re-processing the
3398 stop. */
3399 clear_inline_frame_state (tp);
3400
3401 /* If this thread was paused because some other thread was
3402 doing an inline-step over, let that finish first. Once
3403 that happens, we'll restart all threads and consume pending
3404 stop events then. */
3405 if (step_over_info_valid_p ())
3406 continue;
3407
3408 /* Otherwise we can process the (new) pending event now. Set
3409 it so this pending event is considered by
3410 do_target_wait. */
3411 tp->resumed = true;
3412 }
3413 }
3414
3415 static void
3416 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3417 {
3418 if (target_last_proc_target == tp->inf->process_target ()
3419 && target_last_wait_ptid == tp->ptid)
3420 nullify_last_target_wait_ptid ();
3421 }
3422
3423 /* Delete the step resume, single-step and longjmp/exception resume
3424 breakpoints of TP. */
3425
3426 static void
3427 delete_thread_infrun_breakpoints (struct thread_info *tp)
3428 {
3429 delete_step_resume_breakpoint (tp);
3430 delete_exception_resume_breakpoint (tp);
3431 delete_single_step_breakpoints (tp);
3432 }
3433
3434 /* If the target still has execution, call FUNC for each thread that
3435 just stopped. In all-stop, that's all the non-exited threads; in
3436 non-stop, that's the current thread, only. */
3437
3438 typedef void (*for_each_just_stopped_thread_callback_func)
3439 (struct thread_info *tp);
3440
3441 static void
3442 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3443 {
3444 if (!target_has_execution () || inferior_ptid == null_ptid)
3445 return;
3446
3447 if (target_is_non_stop_p ())
3448 {
3449 /* If in non-stop mode, only the current thread stopped. */
3450 func (inferior_thread ());
3451 }
3452 else
3453 {
3454 /* In all-stop mode, all threads have stopped. */
3455 for (thread_info *tp : all_non_exited_threads ())
3456 func (tp);
3457 }
3458 }
3459
3460 /* Delete the step resume and longjmp/exception resume breakpoints of
3461 the threads that just stopped. */
3462
3463 static void
3464 delete_just_stopped_threads_infrun_breakpoints (void)
3465 {
3466 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3467 }
3468
3469 /* Delete the single-step breakpoints of the threads that just
3470 stopped. */
3471
3472 static void
3473 delete_just_stopped_threads_single_step_breakpoints (void)
3474 {
3475 for_each_just_stopped_thread (delete_single_step_breakpoints);
3476 }
3477
3478 /* See infrun.h. */
3479
3480 void
3481 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3482 const struct target_waitstatus *ws)
3483 {
3484 infrun_debug_printf ("target_wait (%d.%ld.%ld [%s], status) =",
3485 waiton_ptid.pid (),
3486 waiton_ptid.lwp (),
3487 waiton_ptid.tid (),
3488 target_pid_to_str (waiton_ptid).c_str ());
3489 infrun_debug_printf (" %d.%ld.%ld [%s],",
3490 result_ptid.pid (),
3491 result_ptid.lwp (),
3492 result_ptid.tid (),
3493 target_pid_to_str (result_ptid).c_str ());
3494 infrun_debug_printf (" %s", target_waitstatus_to_string (ws).c_str ());
3495 }
3496
3497 /* Select a thread at random, out of those which are resumed and have
3498 had events. */
3499
3500 static struct thread_info *
3501 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3502 {
3503 int num_events = 0;
3504
3505 auto has_event = [&] (thread_info *tp)
3506 {
3507 return (tp->ptid.matches (waiton_ptid)
3508 && tp->resumed
3509 && tp->suspend.waitstatus_pending_p);
3510 };
3511
3512 /* First see how many events we have. Count only resumed threads
3513 that have an event pending. */
3514 for (thread_info *tp : inf->non_exited_threads ())
3515 if (has_event (tp))
3516 num_events++;
3517
3518 if (num_events == 0)
3519 return NULL;
3520
3521 /* Now randomly pick a thread out of those that have had events. */
3522 int random_selector = (int) ((num_events * (double) rand ())
3523 / (RAND_MAX + 1.0));
3524
3525 if (num_events > 1)
3526 infrun_debug_printf ("Found %d events, selecting #%d",
3527 num_events, random_selector);
3528
3529 /* Select the Nth thread that has had an event. */
3530 for (thread_info *tp : inf->non_exited_threads ())
3531 if (has_event (tp))
3532 if (random_selector-- == 0)
3533 return tp;
3534
3535 gdb_assert_not_reached ("event thread not found");
3536 }
3537
3538 /* Wrapper for target_wait that first checks whether threads have
3539 pending statuses to report before actually asking the target for
3540 more events. INF is the inferior we're using to call target_wait
3541 on. */
3542
3543 static ptid_t
3544 do_target_wait_1 (inferior *inf, ptid_t ptid,
3545 target_waitstatus *status, target_wait_flags options)
3546 {
3547 ptid_t event_ptid;
3548 struct thread_info *tp;
3549
3550 /* We know that we are looking for an event in the target of inferior
3551 INF, but we don't know which thread the event might come from. As
3552 such we want to make sure that INFERIOR_PTID is reset so that none of
3553 the wait code relies on it - doing so is always a mistake. */
3554 switch_to_inferior_no_thread (inf);
3555
3556 /* First check if there is a resumed thread with a wait status
3557 pending. */
3558 if (ptid == minus_one_ptid || ptid.is_pid ())
3559 {
3560 tp = random_pending_event_thread (inf, ptid);
3561 }
3562 else
3563 {
3564 infrun_debug_printf ("Waiting for specific thread %s.",
3565 target_pid_to_str (ptid).c_str ());
3566
3567 /* We have a specific thread to check. */
3568 tp = find_thread_ptid (inf, ptid);
3569 gdb_assert (tp != NULL);
3570 if (!tp->suspend.waitstatus_pending_p)
3571 tp = NULL;
3572 }
3573
3574 if (tp != NULL
3575 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3576 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3577 {
3578 struct regcache *regcache = get_thread_regcache (tp);
3579 struct gdbarch *gdbarch = regcache->arch ();
3580 CORE_ADDR pc;
3581 int discard = 0;
3582
3583 pc = regcache_read_pc (regcache);
3584
3585 if (pc != tp->suspend.stop_pc)
3586 {
3587 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3588 target_pid_to_str (tp->ptid).c_str (),
3589 paddress (gdbarch, tp->suspend.stop_pc),
3590 paddress (gdbarch, pc));
3591 discard = 1;
3592 }
3593 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3594 {
3595 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3596 target_pid_to_str (tp->ptid).c_str (),
3597 paddress (gdbarch, pc));
3598
3599 discard = 1;
3600 }
3601
3602 if (discard)
3603 {
3604 infrun_debug_printf ("pending event of %s cancelled.",
3605 target_pid_to_str (tp->ptid).c_str ());
3606
3607 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3608 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3609 }
3610 }
3611
3612 if (tp != NULL)
3613 {
3614 infrun_debug_printf ("Using pending wait status %s for %s.",
3615 target_waitstatus_to_string
3616 (&tp->suspend.waitstatus).c_str (),
3617 target_pid_to_str (tp->ptid).c_str ());
3618
3619 /* Now that we've selected our final event LWP, un-adjust its PC
3620 if it was a software breakpoint (and the target doesn't
3621 always adjust the PC itself). */
3622 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3623 && !target_supports_stopped_by_sw_breakpoint ())
3624 {
3625 struct regcache *regcache;
3626 struct gdbarch *gdbarch;
3627 int decr_pc;
3628
3629 regcache = get_thread_regcache (tp);
3630 gdbarch = regcache->arch ();
3631
3632 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3633 if (decr_pc != 0)
3634 {
3635 CORE_ADDR pc;
3636
3637 pc = regcache_read_pc (regcache);
3638 regcache_write_pc (regcache, pc + decr_pc);
3639 }
3640 }
3641
3642 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3643 *status = tp->suspend.waitstatus;
3644 tp->suspend.waitstatus_pending_p = 0;
3645
3646 /* Wake up the event loop again, until all pending events are
3647 processed. */
3648 if (target_is_async_p ())
3649 mark_async_event_handler (infrun_async_inferior_event_token);
3650 return tp->ptid;
3651 }
3652
3653 /* But if we don't find one, we'll have to wait. */
3654
3655 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3656 a blocking wait. */
3657 if (!target_can_async_p ())
3658 options &= ~TARGET_WNOHANG;
3659
3660 if (deprecated_target_wait_hook)
3661 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3662 else
3663 event_ptid = target_wait (ptid, status, options);
3664
3665 return event_ptid;
3666 }
3667
3668 /* Wrapper for target_wait that first checks whether threads have
3669 pending statuses to report before actually asking the target for
3670 more events. Polls for events from all inferiors/targets. */
3671
3672 static bool
3673 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs,
3674 target_wait_flags options)
3675 {
3676 int num_inferiors = 0;
3677 int random_selector;
3678
3679 /* For fairness, we pick the first inferior/target to poll at random
3680 out of all inferiors that may report events, and then continue
3681 polling the rest of the inferior list starting from that one in a
3682 circular fashion until the whole list is polled once. */
3683
3684 auto inferior_matches = [&wait_ptid] (inferior *inf)
3685 {
3686 return (inf->process_target () != NULL
3687 && ptid_t (inf->pid).matches (wait_ptid));
3688 };
3689
3690 /* First see how many matching inferiors we have. */
3691 for (inferior *inf : all_inferiors ())
3692 if (inferior_matches (inf))
3693 num_inferiors++;
3694
3695 if (num_inferiors == 0)
3696 {
3697 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3698 return false;
3699 }
3700
3701 /* Now randomly pick an inferior out of those that matched. */
3702 random_selector = (int)
3703 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3704
3705 if (num_inferiors > 1)
3706 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3707 num_inferiors, random_selector);
3708
3709 /* Select the Nth inferior that matched. */
3710
3711 inferior *selected = nullptr;
3712
3713 for (inferior *inf : all_inferiors ())
3714 if (inferior_matches (inf))
3715 if (random_selector-- == 0)
3716 {
3717 selected = inf;
3718 break;
3719 }
3720
3721 /* Now poll for events out of each of the matching inferior's
3722 targets, starting from the selected one. */
3723
3724 auto do_wait = [&] (inferior *inf)
3725 {
3726 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3727 ecs->target = inf->process_target ();
3728 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3729 };
3730
3731 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3732 here spuriously after the target is all stopped and we've already
3733 reported the stop to the user, polling for events. */
3734 scoped_restore_current_thread restore_thread;
3735
3736 int inf_num = selected->num;
3737 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3738 if (inferior_matches (inf))
3739 if (do_wait (inf))
3740 return true;
3741
3742 for (inferior *inf = inferior_list;
3743 inf != NULL && inf->num < inf_num;
3744 inf = inf->next)
3745 if (inferior_matches (inf))
3746 if (do_wait (inf))
3747 return true;
3748
3749 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3750 return false;
3751 }
3752
3753 /* An event reported by wait_one. */
3754
3755 struct wait_one_event
3756 {
3757 /* The target the event came out of. */
3758 process_stratum_target *target;
3759
3760 /* The PTID the event was for. */
3761 ptid_t ptid;
3762
3763 /* The waitstatus. */
3764 target_waitstatus ws;
3765 };
3766
3767 static bool handle_one (const wait_one_event &event);
3768 static void restart_threads (struct thread_info *event_thread);
3769
3770 /* Prepare and stabilize the inferior for detaching it. E.g.,
3771 detaching while a thread is displaced stepping is a recipe for
3772 crashing it, as nothing would readjust the PC out of the scratch
3773 pad. */
3774
3775 void
3776 prepare_for_detach (void)
3777 {
3778 struct inferior *inf = current_inferior ();
3779 ptid_t pid_ptid = ptid_t (inf->pid);
3780 scoped_restore_current_thread restore_thread;
3781
3782 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3783
3784 /* Remove all threads of INF from the global step-over chain. We
3785 want to stop any ongoing step-over, not start any new one. */
3786 thread_info *next;
3787 for (thread_info *tp = global_thread_step_over_chain_head;
3788 tp != nullptr;
3789 tp = next)
3790 {
3791 next = global_thread_step_over_chain_next (tp);
3792 if (tp->inf == inf)
3793 global_thread_step_over_chain_remove (tp);
3794 }
3795
3796 /* If we were already in the middle of an inline step-over, and the
3797 thread stepping belongs to the inferior we're detaching, we need
3798 to restart the threads of other inferiors. */
3799 if (step_over_info.thread != -1)
3800 {
3801 infrun_debug_printf ("inline step-over in-process while detaching");
3802
3803 thread_info *thr = find_thread_global_id (step_over_info.thread);
3804 if (thr->inf == inf)
3805 {
3806 /* Since we removed threads of INF from the step-over chain,
3807 we know this won't start a step-over for INF. */
3808 clear_step_over_info ();
3809
3810 if (target_is_non_stop_p ())
3811 {
3812 /* Start a new step-over in another thread if there's
3813 one that needs it. */
3814 start_step_over ();
3815
3816 /* Restart all other threads (except the
3817 previously-stepping thread, since that one is still
3818 running). */
3819 if (!step_over_info_valid_p ())
3820 restart_threads (thr);
3821 }
3822 }
3823 }
3824
3825 if (displaced_step_in_progress (inf))
3826 {
3827 infrun_debug_printf ("displaced-stepping in-process while detaching");
3828
3829 /* Stop threads currently displaced stepping, aborting it. */
3830
3831 for (thread_info *thr : inf->non_exited_threads ())
3832 {
3833 if (thr->displaced_step_state.in_progress ())
3834 {
3835 if (thr->executing)
3836 {
3837 if (!thr->stop_requested)
3838 {
3839 target_stop (thr->ptid);
3840 thr->stop_requested = true;
3841 }
3842 }
3843 else
3844 thr->resumed = false;
3845 }
3846 }
3847
3848 while (displaced_step_in_progress (inf))
3849 {
3850 wait_one_event event;
3851
3852 event.target = inf->process_target ();
3853 event.ptid = do_target_wait_1 (inf, pid_ptid, &event.ws, 0);
3854
3855 if (debug_infrun)
3856 print_target_wait_results (pid_ptid, event.ptid, &event.ws);
3857
3858 handle_one (event);
3859 }
3860
3861 /* It's OK to leave some of the threads of INF stopped, since
3862 they'll be detached shortly. */
3863 }
3864 }
3865
3866 /* Wait for control to return from inferior to debugger.
3867
3868 If inferior gets a signal, we may decide to start it up again
3869 instead of returning. That is why there is a loop in this function.
3870 When this function actually returns it means the inferior
3871 should be left stopped and GDB should read more commands. */
3872
3873 static void
3874 wait_for_inferior (inferior *inf)
3875 {
3876 infrun_debug_printf ("wait_for_inferior ()");
3877
3878 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3879
3880 /* If an error happens while handling the event, propagate GDB's
3881 knowledge of the executing state to the frontend/user running
3882 state. */
3883 scoped_finish_thread_state finish_state
3884 (inf->process_target (), minus_one_ptid);
3885
3886 while (1)
3887 {
3888 struct execution_control_state ecss;
3889 struct execution_control_state *ecs = &ecss;
3890
3891 memset (ecs, 0, sizeof (*ecs));
3892
3893 overlay_cache_invalid = 1;
3894
3895 /* Flush target cache before starting to handle each event.
3896 Target was running and cache could be stale. This is just a
3897 heuristic. Running threads may modify target memory, but we
3898 don't get any event. */
3899 target_dcache_invalidate ();
3900
3901 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3902 ecs->target = inf->process_target ();
3903
3904 if (debug_infrun)
3905 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3906
3907 /* Now figure out what to do with the result of the result. */
3908 handle_inferior_event (ecs);
3909
3910 if (!ecs->wait_some_more)
3911 break;
3912 }
3913
3914 /* No error, don't finish the state yet. */
3915 finish_state.release ();
3916 }
3917
3918 /* Cleanup that reinstalls the readline callback handler, if the
3919 target is running in the background. If while handling the target
3920 event something triggered a secondary prompt, like e.g., a
3921 pagination prompt, we'll have removed the callback handler (see
3922 gdb_readline_wrapper_line). Need to do this as we go back to the
3923 event loop, ready to process further input. Note this has no
3924 effect if the handler hasn't actually been removed, because calling
3925 rl_callback_handler_install resets the line buffer, thus losing
3926 input. */
3927
3928 static void
3929 reinstall_readline_callback_handler_cleanup ()
3930 {
3931 struct ui *ui = current_ui;
3932
3933 if (!ui->async)
3934 {
3935 /* We're not going back to the top level event loop yet. Don't
3936 install the readline callback, as it'd prep the terminal,
3937 readline-style (raw, noecho) (e.g., --batch). We'll install
3938 it the next time the prompt is displayed, when we're ready
3939 for input. */
3940 return;
3941 }
3942
3943 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3944 gdb_rl_callback_handler_reinstall ();
3945 }
3946
3947 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3948 that's just the event thread. In all-stop, that's all threads. */
3949
3950 static void
3951 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3952 {
3953 if (ecs->event_thread != NULL
3954 && ecs->event_thread->thread_fsm != NULL)
3955 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3956
3957 if (!non_stop)
3958 {
3959 for (thread_info *thr : all_non_exited_threads ())
3960 {
3961 if (thr->thread_fsm == NULL)
3962 continue;
3963 if (thr == ecs->event_thread)
3964 continue;
3965
3966 switch_to_thread (thr);
3967 thr->thread_fsm->clean_up (thr);
3968 }
3969
3970 if (ecs->event_thread != NULL)
3971 switch_to_thread (ecs->event_thread);
3972 }
3973 }
3974
3975 /* Helper for all_uis_check_sync_execution_done that works on the
3976 current UI. */
3977
3978 static void
3979 check_curr_ui_sync_execution_done (void)
3980 {
3981 struct ui *ui = current_ui;
3982
3983 if (ui->prompt_state == PROMPT_NEEDED
3984 && ui->async
3985 && !gdb_in_secondary_prompt_p (ui))
3986 {
3987 target_terminal::ours ();
3988 gdb::observers::sync_execution_done.notify ();
3989 ui_register_input_event_handler (ui);
3990 }
3991 }
3992
3993 /* See infrun.h. */
3994
3995 void
3996 all_uis_check_sync_execution_done (void)
3997 {
3998 SWITCH_THRU_ALL_UIS ()
3999 {
4000 check_curr_ui_sync_execution_done ();
4001 }
4002 }
4003
4004 /* See infrun.h. */
4005
4006 void
4007 all_uis_on_sync_execution_starting (void)
4008 {
4009 SWITCH_THRU_ALL_UIS ()
4010 {
4011 if (current_ui->prompt_state == PROMPT_NEEDED)
4012 async_disable_stdin ();
4013 }
4014 }
4015
4016 /* Asynchronous version of wait_for_inferior. It is called by the
4017 event loop whenever a change of state is detected on the file
4018 descriptor corresponding to the target. It can be called more than
4019 once to complete a single execution command. In such cases we need
4020 to keep the state in a global variable ECSS. If it is the last time
4021 that this function is called for a single execution command, then
4022 report to the user that the inferior has stopped, and do the
4023 necessary cleanups. */
4024
4025 void
4026 fetch_inferior_event ()
4027 {
4028 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
4029
4030 struct execution_control_state ecss;
4031 struct execution_control_state *ecs = &ecss;
4032 int cmd_done = 0;
4033
4034 memset (ecs, 0, sizeof (*ecs));
4035
4036 /* Events are always processed with the main UI as current UI. This
4037 way, warnings, debug output, etc. are always consistently sent to
4038 the main console. */
4039 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
4040
4041 /* Temporarily disable pagination. Otherwise, the user would be
4042 given an option to press 'q' to quit, which would cause an early
4043 exit and could leave GDB in a half-baked state. */
4044 scoped_restore save_pagination
4045 = make_scoped_restore (&pagination_enabled, false);
4046
4047 /* End up with readline processing input, if necessary. */
4048 {
4049 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
4050
4051 /* We're handling a live event, so make sure we're doing live
4052 debugging. If we're looking at traceframes while the target is
4053 running, we're going to need to get back to that mode after
4054 handling the event. */
4055 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
4056 if (non_stop)
4057 {
4058 maybe_restore_traceframe.emplace ();
4059 set_current_traceframe (-1);
4060 }
4061
4062 /* The user/frontend should not notice a thread switch due to
4063 internal events. Make sure we revert to the user selected
4064 thread and frame after handling the event and running any
4065 breakpoint commands. */
4066 scoped_restore_current_thread restore_thread;
4067
4068 overlay_cache_invalid = 1;
4069 /* Flush target cache before starting to handle each event. Target
4070 was running and cache could be stale. This is just a heuristic.
4071 Running threads may modify target memory, but we don't get any
4072 event. */
4073 target_dcache_invalidate ();
4074
4075 scoped_restore save_exec_dir
4076 = make_scoped_restore (&execution_direction,
4077 target_execution_direction ());
4078
4079 /* Allow targets to pause their resumed threads while we handle
4080 the event. */
4081 scoped_disable_commit_resumed disable_commit_resumed ("handling event");
4082
4083 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
4084 {
4085 infrun_debug_printf ("do_target_wait returned no event");
4086 disable_commit_resumed.reset_and_commit ();
4087 return;
4088 }
4089
4090 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
4091
4092 /* Switch to the target that generated the event, so we can do
4093 target calls. */
4094 switch_to_target_no_thread (ecs->target);
4095
4096 if (debug_infrun)
4097 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
4098
4099 /* If an error happens while handling the event, propagate GDB's
4100 knowledge of the executing state to the frontend/user running
4101 state. */
4102 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
4103 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
4104
4105 /* Get executed before scoped_restore_current_thread above to apply
4106 still for the thread which has thrown the exception. */
4107 auto defer_bpstat_clear
4108 = make_scope_exit (bpstat_clear_actions);
4109 auto defer_delete_threads
4110 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4111
4112 /* Now figure out what to do with the result of the result. */
4113 handle_inferior_event (ecs);
4114
4115 if (!ecs->wait_some_more)
4116 {
4117 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4118 bool should_stop = true;
4119 struct thread_info *thr = ecs->event_thread;
4120
4121 delete_just_stopped_threads_infrun_breakpoints ();
4122
4123 if (thr != NULL)
4124 {
4125 struct thread_fsm *thread_fsm = thr->thread_fsm;
4126
4127 if (thread_fsm != NULL)
4128 should_stop = thread_fsm->should_stop (thr);
4129 }
4130
4131 if (!should_stop)
4132 {
4133 keep_going (ecs);
4134 }
4135 else
4136 {
4137 bool should_notify_stop = true;
4138 int proceeded = 0;
4139
4140 clean_up_just_stopped_threads_fsms (ecs);
4141
4142 if (thr != NULL && thr->thread_fsm != NULL)
4143 should_notify_stop = thr->thread_fsm->should_notify_stop ();
4144
4145 if (should_notify_stop)
4146 {
4147 /* We may not find an inferior if this was a process exit. */
4148 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4149 proceeded = normal_stop ();
4150 }
4151
4152 if (!proceeded)
4153 {
4154 inferior_event_handler (INF_EXEC_COMPLETE);
4155 cmd_done = 1;
4156 }
4157
4158 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4159 previously selected thread is gone. We have two
4160 choices - switch to no thread selected, or restore the
4161 previously selected thread (now exited). We chose the
4162 later, just because that's what GDB used to do. After
4163 this, "info threads" says "The current thread <Thread
4164 ID 2> has terminated." instead of "No thread
4165 selected.". */
4166 if (!non_stop
4167 && cmd_done
4168 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4169 restore_thread.dont_restore ();
4170 }
4171 }
4172
4173 defer_delete_threads.release ();
4174 defer_bpstat_clear.release ();
4175
4176 /* No error, don't finish the thread states yet. */
4177 finish_state.release ();
4178
4179 disable_commit_resumed.reset_and_commit ();
4180
4181 /* This scope is used to ensure that readline callbacks are
4182 reinstalled here. */
4183 }
4184
4185 /* If a UI was in sync execution mode, and now isn't, restore its
4186 prompt (a synchronous execution command has finished, and we're
4187 ready for input). */
4188 all_uis_check_sync_execution_done ();
4189
4190 if (cmd_done
4191 && exec_done_display_p
4192 && (inferior_ptid == null_ptid
4193 || inferior_thread ()->state != THREAD_RUNNING))
4194 printf_unfiltered (_("completed.\n"));
4195 }
4196
4197 /* See infrun.h. */
4198
4199 void
4200 set_step_info (thread_info *tp, struct frame_info *frame,
4201 struct symtab_and_line sal)
4202 {
4203 /* This can be removed once this function no longer implicitly relies on the
4204 inferior_ptid value. */
4205 gdb_assert (inferior_ptid == tp->ptid);
4206
4207 tp->control.step_frame_id = get_frame_id (frame);
4208 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4209
4210 tp->current_symtab = sal.symtab;
4211 tp->current_line = sal.line;
4212 }
4213
4214 /* Clear context switchable stepping state. */
4215
4216 void
4217 init_thread_stepping_state (struct thread_info *tss)
4218 {
4219 tss->stepped_breakpoint = 0;
4220 tss->stepping_over_breakpoint = 0;
4221 tss->stepping_over_watchpoint = 0;
4222 tss->step_after_step_resume_breakpoint = 0;
4223 }
4224
4225 /* See infrun.h. */
4226
4227 void
4228 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4229 target_waitstatus status)
4230 {
4231 target_last_proc_target = target;
4232 target_last_wait_ptid = ptid;
4233 target_last_waitstatus = status;
4234 }
4235
4236 /* See infrun.h. */
4237
4238 void
4239 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4240 target_waitstatus *status)
4241 {
4242 if (target != nullptr)
4243 *target = target_last_proc_target;
4244 if (ptid != nullptr)
4245 *ptid = target_last_wait_ptid;
4246 if (status != nullptr)
4247 *status = target_last_waitstatus;
4248 }
4249
4250 /* See infrun.h. */
4251
4252 void
4253 nullify_last_target_wait_ptid (void)
4254 {
4255 target_last_proc_target = nullptr;
4256 target_last_wait_ptid = minus_one_ptid;
4257 target_last_waitstatus = {};
4258 }
4259
4260 /* Switch thread contexts. */
4261
4262 static void
4263 context_switch (execution_control_state *ecs)
4264 {
4265 if (ecs->ptid != inferior_ptid
4266 && (inferior_ptid == null_ptid
4267 || ecs->event_thread != inferior_thread ()))
4268 {
4269 infrun_debug_printf ("Switching context from %s to %s",
4270 target_pid_to_str (inferior_ptid).c_str (),
4271 target_pid_to_str (ecs->ptid).c_str ());
4272 }
4273
4274 switch_to_thread (ecs->event_thread);
4275 }
4276
4277 /* If the target can't tell whether we've hit breakpoints
4278 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4279 check whether that could have been caused by a breakpoint. If so,
4280 adjust the PC, per gdbarch_decr_pc_after_break. */
4281
4282 static void
4283 adjust_pc_after_break (struct thread_info *thread,
4284 struct target_waitstatus *ws)
4285 {
4286 struct regcache *regcache;
4287 struct gdbarch *gdbarch;
4288 CORE_ADDR breakpoint_pc, decr_pc;
4289
4290 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4291 we aren't, just return.
4292
4293 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4294 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4295 implemented by software breakpoints should be handled through the normal
4296 breakpoint layer.
4297
4298 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4299 different signals (SIGILL or SIGEMT for instance), but it is less
4300 clear where the PC is pointing afterwards. It may not match
4301 gdbarch_decr_pc_after_break. I don't know any specific target that
4302 generates these signals at breakpoints (the code has been in GDB since at
4303 least 1992) so I can not guess how to handle them here.
4304
4305 In earlier versions of GDB, a target with
4306 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4307 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4308 target with both of these set in GDB history, and it seems unlikely to be
4309 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4310
4311 if (ws->kind != TARGET_WAITKIND_STOPPED)
4312 return;
4313
4314 if (ws->value.sig != GDB_SIGNAL_TRAP)
4315 return;
4316
4317 /* In reverse execution, when a breakpoint is hit, the instruction
4318 under it has already been de-executed. The reported PC always
4319 points at the breakpoint address, so adjusting it further would
4320 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4321 architecture:
4322
4323 B1 0x08000000 : INSN1
4324 B2 0x08000001 : INSN2
4325 0x08000002 : INSN3
4326 PC -> 0x08000003 : INSN4
4327
4328 Say you're stopped at 0x08000003 as above. Reverse continuing
4329 from that point should hit B2 as below. Reading the PC when the
4330 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4331 been de-executed already.
4332
4333 B1 0x08000000 : INSN1
4334 B2 PC -> 0x08000001 : INSN2
4335 0x08000002 : INSN3
4336 0x08000003 : INSN4
4337
4338 We can't apply the same logic as for forward execution, because
4339 we would wrongly adjust the PC to 0x08000000, since there's a
4340 breakpoint at PC - 1. We'd then report a hit on B1, although
4341 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4342 behaviour. */
4343 if (execution_direction == EXEC_REVERSE)
4344 return;
4345
4346 /* If the target can tell whether the thread hit a SW breakpoint,
4347 trust it. Targets that can tell also adjust the PC
4348 themselves. */
4349 if (target_supports_stopped_by_sw_breakpoint ())
4350 return;
4351
4352 /* Note that relying on whether a breakpoint is planted in memory to
4353 determine this can fail. E.g,. the breakpoint could have been
4354 removed since. Or the thread could have been told to step an
4355 instruction the size of a breakpoint instruction, and only
4356 _after_ was a breakpoint inserted at its address. */
4357
4358 /* If this target does not decrement the PC after breakpoints, then
4359 we have nothing to do. */
4360 regcache = get_thread_regcache (thread);
4361 gdbarch = regcache->arch ();
4362
4363 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4364 if (decr_pc == 0)
4365 return;
4366
4367 const address_space *aspace = regcache->aspace ();
4368
4369 /* Find the location where (if we've hit a breakpoint) the
4370 breakpoint would be. */
4371 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4372
4373 /* If the target can't tell whether a software breakpoint triggered,
4374 fallback to figuring it out based on breakpoints we think were
4375 inserted in the target, and on whether the thread was stepped or
4376 continued. */
4377
4378 /* Check whether there actually is a software breakpoint inserted at
4379 that location.
4380
4381 If in non-stop mode, a race condition is possible where we've
4382 removed a breakpoint, but stop events for that breakpoint were
4383 already queued and arrive later. To suppress those spurious
4384 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4385 and retire them after a number of stop events are reported. Note
4386 this is an heuristic and can thus get confused. The real fix is
4387 to get the "stopped by SW BP and needs adjustment" info out of
4388 the target/kernel (and thus never reach here; see above). */
4389 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4390 || (target_is_non_stop_p ()
4391 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4392 {
4393 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4394
4395 if (record_full_is_used ())
4396 restore_operation_disable.emplace
4397 (record_full_gdb_operation_disable_set ());
4398
4399 /* When using hardware single-step, a SIGTRAP is reported for both
4400 a completed single-step and a software breakpoint. Need to
4401 differentiate between the two, as the latter needs adjusting
4402 but the former does not.
4403
4404 The SIGTRAP can be due to a completed hardware single-step only if
4405 - we didn't insert software single-step breakpoints
4406 - this thread is currently being stepped
4407
4408 If any of these events did not occur, we must have stopped due
4409 to hitting a software breakpoint, and have to back up to the
4410 breakpoint address.
4411
4412 As a special case, we could have hardware single-stepped a
4413 software breakpoint. In this case (prev_pc == breakpoint_pc),
4414 we also need to back up to the breakpoint address. */
4415
4416 if (thread_has_single_step_breakpoints_set (thread)
4417 || !currently_stepping (thread)
4418 || (thread->stepped_breakpoint
4419 && thread->prev_pc == breakpoint_pc))
4420 regcache_write_pc (regcache, breakpoint_pc);
4421 }
4422 }
4423
4424 static bool
4425 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4426 {
4427 for (frame = get_prev_frame (frame);
4428 frame != NULL;
4429 frame = get_prev_frame (frame))
4430 {
4431 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4432 return true;
4433
4434 if (get_frame_type (frame) != INLINE_FRAME)
4435 break;
4436 }
4437
4438 return false;
4439 }
4440
4441 /* Look for an inline frame that is marked for skip.
4442 If PREV_FRAME is TRUE start at the previous frame,
4443 otherwise start at the current frame. Stop at the
4444 first non-inline frame, or at the frame where the
4445 step started. */
4446
4447 static bool
4448 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4449 {
4450 struct frame_info *frame = get_current_frame ();
4451
4452 if (prev_frame)
4453 frame = get_prev_frame (frame);
4454
4455 for (; frame != NULL; frame = get_prev_frame (frame))
4456 {
4457 const char *fn = NULL;
4458 symtab_and_line sal;
4459 struct symbol *sym;
4460
4461 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4462 break;
4463 if (get_frame_type (frame) != INLINE_FRAME)
4464 break;
4465
4466 sal = find_frame_sal (frame);
4467 sym = get_frame_function (frame);
4468
4469 if (sym != NULL)
4470 fn = sym->print_name ();
4471
4472 if (sal.line != 0
4473 && function_name_is_marked_for_skip (fn, sal))
4474 return true;
4475 }
4476
4477 return false;
4478 }
4479
4480 /* If the event thread has the stop requested flag set, pretend it
4481 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4482 target_stop). */
4483
4484 static bool
4485 handle_stop_requested (struct execution_control_state *ecs)
4486 {
4487 if (ecs->event_thread->stop_requested)
4488 {
4489 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4490 ecs->ws.value.sig = GDB_SIGNAL_0;
4491 handle_signal_stop (ecs);
4492 return true;
4493 }
4494 return false;
4495 }
4496
4497 /* Auxiliary function that handles syscall entry/return events.
4498 It returns true if the inferior should keep going (and GDB
4499 should ignore the event), or false if the event deserves to be
4500 processed. */
4501
4502 static bool
4503 handle_syscall_event (struct execution_control_state *ecs)
4504 {
4505 struct regcache *regcache;
4506 int syscall_number;
4507
4508 context_switch (ecs);
4509
4510 regcache = get_thread_regcache (ecs->event_thread);
4511 syscall_number = ecs->ws.value.syscall_number;
4512 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4513
4514 if (catch_syscall_enabled () > 0
4515 && catching_syscall_number (syscall_number) > 0)
4516 {
4517 infrun_debug_printf ("syscall number=%d", syscall_number);
4518
4519 ecs->event_thread->control.stop_bpstat
4520 = bpstat_stop_status (regcache->aspace (),
4521 ecs->event_thread->suspend.stop_pc,
4522 ecs->event_thread, &ecs->ws);
4523
4524 if (handle_stop_requested (ecs))
4525 return false;
4526
4527 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4528 {
4529 /* Catchpoint hit. */
4530 return false;
4531 }
4532 }
4533
4534 if (handle_stop_requested (ecs))
4535 return false;
4536
4537 /* If no catchpoint triggered for this, then keep going. */
4538 keep_going (ecs);
4539
4540 return true;
4541 }
4542
4543 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4544
4545 static void
4546 fill_in_stop_func (struct gdbarch *gdbarch,
4547 struct execution_control_state *ecs)
4548 {
4549 if (!ecs->stop_func_filled_in)
4550 {
4551 const block *block;
4552 const general_symbol_info *gsi;
4553
4554 /* Don't care about return value; stop_func_start and stop_func_name
4555 will both be 0 if it doesn't work. */
4556 find_pc_partial_function_sym (ecs->event_thread->suspend.stop_pc,
4557 &gsi,
4558 &ecs->stop_func_start,
4559 &ecs->stop_func_end,
4560 &block);
4561 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
4562
4563 /* The call to find_pc_partial_function, above, will set
4564 stop_func_start and stop_func_end to the start and end
4565 of the range containing the stop pc. If this range
4566 contains the entry pc for the block (which is always the
4567 case for contiguous blocks), advance stop_func_start past
4568 the function's start offset and entrypoint. Note that
4569 stop_func_start is NOT advanced when in a range of a
4570 non-contiguous block that does not contain the entry pc. */
4571 if (block != nullptr
4572 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4573 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4574 {
4575 ecs->stop_func_start
4576 += gdbarch_deprecated_function_start_offset (gdbarch);
4577
4578 if (gdbarch_skip_entrypoint_p (gdbarch))
4579 ecs->stop_func_start
4580 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4581 }
4582
4583 ecs->stop_func_filled_in = 1;
4584 }
4585 }
4586
4587
4588 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4589
4590 static enum stop_kind
4591 get_inferior_stop_soon (execution_control_state *ecs)
4592 {
4593 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4594
4595 gdb_assert (inf != NULL);
4596 return inf->control.stop_soon;
4597 }
4598
4599 /* Poll for one event out of the current target. Store the resulting
4600 waitstatus in WS, and return the event ptid. Does not block. */
4601
4602 static ptid_t
4603 poll_one_curr_target (struct target_waitstatus *ws)
4604 {
4605 ptid_t event_ptid;
4606
4607 overlay_cache_invalid = 1;
4608
4609 /* Flush target cache before starting to handle each event.
4610 Target was running and cache could be stale. This is just a
4611 heuristic. Running threads may modify target memory, but we
4612 don't get any event. */
4613 target_dcache_invalidate ();
4614
4615 if (deprecated_target_wait_hook)
4616 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4617 else
4618 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4619
4620 if (debug_infrun)
4621 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4622
4623 return event_ptid;
4624 }
4625
4626 /* Wait for one event out of any target. */
4627
4628 static wait_one_event
4629 wait_one ()
4630 {
4631 while (1)
4632 {
4633 for (inferior *inf : all_inferiors ())
4634 {
4635 process_stratum_target *target = inf->process_target ();
4636 if (target == NULL
4637 || !target->is_async_p ()
4638 || !target->threads_executing)
4639 continue;
4640
4641 switch_to_inferior_no_thread (inf);
4642
4643 wait_one_event event;
4644 event.target = target;
4645 event.ptid = poll_one_curr_target (&event.ws);
4646
4647 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4648 {
4649 /* If nothing is resumed, remove the target from the
4650 event loop. */
4651 target_async (0);
4652 }
4653 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4654 return event;
4655 }
4656
4657 /* Block waiting for some event. */
4658
4659 fd_set readfds;
4660 int nfds = 0;
4661
4662 FD_ZERO (&readfds);
4663
4664 for (inferior *inf : all_inferiors ())
4665 {
4666 process_stratum_target *target = inf->process_target ();
4667 if (target == NULL
4668 || !target->is_async_p ()
4669 || !target->threads_executing)
4670 continue;
4671
4672 int fd = target->async_wait_fd ();
4673 FD_SET (fd, &readfds);
4674 if (nfds <= fd)
4675 nfds = fd + 1;
4676 }
4677
4678 if (nfds == 0)
4679 {
4680 /* No waitable targets left. All must be stopped. */
4681 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4682 }
4683
4684 QUIT;
4685
4686 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4687 if (numfds < 0)
4688 {
4689 if (errno == EINTR)
4690 continue;
4691 else
4692 perror_with_name ("interruptible_select");
4693 }
4694 }
4695 }
4696
4697 /* Save the thread's event and stop reason to process it later. */
4698
4699 static void
4700 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4701 {
4702 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4703 target_waitstatus_to_string (ws).c_str (),
4704 tp->ptid.pid (),
4705 tp->ptid.lwp (),
4706 tp->ptid.tid ());
4707
4708 /* Record for later. */
4709 tp->suspend.waitstatus = *ws;
4710 tp->suspend.waitstatus_pending_p = 1;
4711
4712 if (ws->kind == TARGET_WAITKIND_STOPPED
4713 && ws->value.sig == GDB_SIGNAL_TRAP)
4714 {
4715 struct regcache *regcache = get_thread_regcache (tp);
4716 const address_space *aspace = regcache->aspace ();
4717 CORE_ADDR pc = regcache_read_pc (regcache);
4718
4719 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4720
4721 scoped_restore_current_thread restore_thread;
4722 switch_to_thread (tp);
4723
4724 if (target_stopped_by_watchpoint ())
4725 {
4726 tp->suspend.stop_reason
4727 = TARGET_STOPPED_BY_WATCHPOINT;
4728 }
4729 else if (target_supports_stopped_by_sw_breakpoint ()
4730 && target_stopped_by_sw_breakpoint ())
4731 {
4732 tp->suspend.stop_reason
4733 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4734 }
4735 else if (target_supports_stopped_by_hw_breakpoint ()
4736 && target_stopped_by_hw_breakpoint ())
4737 {
4738 tp->suspend.stop_reason
4739 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4740 }
4741 else if (!target_supports_stopped_by_hw_breakpoint ()
4742 && hardware_breakpoint_inserted_here_p (aspace,
4743 pc))
4744 {
4745 tp->suspend.stop_reason
4746 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4747 }
4748 else if (!target_supports_stopped_by_sw_breakpoint ()
4749 && software_breakpoint_inserted_here_p (aspace,
4750 pc))
4751 {
4752 tp->suspend.stop_reason
4753 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4754 }
4755 else if (!thread_has_single_step_breakpoints_set (tp)
4756 && currently_stepping (tp))
4757 {
4758 tp->suspend.stop_reason
4759 = TARGET_STOPPED_BY_SINGLE_STEP;
4760 }
4761 }
4762 }
4763
4764 /* Mark the non-executing threads accordingly. In all-stop, all
4765 threads of all processes are stopped when we get any event
4766 reported. In non-stop mode, only the event thread stops. */
4767
4768 static void
4769 mark_non_executing_threads (process_stratum_target *target,
4770 ptid_t event_ptid,
4771 struct target_waitstatus ws)
4772 {
4773 ptid_t mark_ptid;
4774
4775 if (!target_is_non_stop_p ())
4776 mark_ptid = minus_one_ptid;
4777 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4778 || ws.kind == TARGET_WAITKIND_EXITED)
4779 {
4780 /* If we're handling a process exit in non-stop mode, even
4781 though threads haven't been deleted yet, one would think
4782 that there is nothing to do, as threads of the dead process
4783 will be soon deleted, and threads of any other process were
4784 left running. However, on some targets, threads survive a
4785 process exit event. E.g., for the "checkpoint" command,
4786 when the current checkpoint/fork exits, linux-fork.c
4787 automatically switches to another fork from within
4788 target_mourn_inferior, by associating the same
4789 inferior/thread to another fork. We haven't mourned yet at
4790 this point, but we must mark any threads left in the
4791 process as not-executing so that finish_thread_state marks
4792 them stopped (in the user's perspective) if/when we present
4793 the stop to the user. */
4794 mark_ptid = ptid_t (event_ptid.pid ());
4795 }
4796 else
4797 mark_ptid = event_ptid;
4798
4799 set_executing (target, mark_ptid, false);
4800
4801 /* Likewise the resumed flag. */
4802 set_resumed (target, mark_ptid, false);
4803 }
4804
4805 /* Handle one event after stopping threads. If the eventing thread
4806 reports back any interesting event, we leave it pending. If the
4807 eventing thread was in the middle of a displaced step, we
4808 cancel/finish it, and unless the thread's inferior is being
4809 detached, put the thread back in the step-over chain. Returns true
4810 if there are no resumed threads left in the target (thus there's no
4811 point in waiting further), false otherwise. */
4812
4813 static bool
4814 handle_one (const wait_one_event &event)
4815 {
4816 infrun_debug_printf
4817 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4818 target_pid_to_str (event.ptid).c_str ());
4819
4820 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4821 {
4822 /* All resumed threads exited. */
4823 return true;
4824 }
4825 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4826 || event.ws.kind == TARGET_WAITKIND_EXITED
4827 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4828 {
4829 /* One thread/process exited/signalled. */
4830
4831 thread_info *t = nullptr;
4832
4833 /* The target may have reported just a pid. If so, try
4834 the first non-exited thread. */
4835 if (event.ptid.is_pid ())
4836 {
4837 int pid = event.ptid.pid ();
4838 inferior *inf = find_inferior_pid (event.target, pid);
4839 for (thread_info *tp : inf->non_exited_threads ())
4840 {
4841 t = tp;
4842 break;
4843 }
4844
4845 /* If there is no available thread, the event would
4846 have to be appended to a per-inferior event list,
4847 which does not exist (and if it did, we'd have
4848 to adjust run control command to be able to
4849 resume such an inferior). We assert here instead
4850 of going into an infinite loop. */
4851 gdb_assert (t != nullptr);
4852
4853 infrun_debug_printf
4854 ("using %s", target_pid_to_str (t->ptid).c_str ());
4855 }
4856 else
4857 {
4858 t = find_thread_ptid (event.target, event.ptid);
4859 /* Check if this is the first time we see this thread.
4860 Don't bother adding if it individually exited. */
4861 if (t == nullptr
4862 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4863 t = add_thread (event.target, event.ptid);
4864 }
4865
4866 if (t != nullptr)
4867 {
4868 /* Set the threads as non-executing to avoid
4869 another stop attempt on them. */
4870 switch_to_thread_no_regs (t);
4871 mark_non_executing_threads (event.target, event.ptid,
4872 event.ws);
4873 save_waitstatus (t, &event.ws);
4874 t->stop_requested = false;
4875 }
4876 }
4877 else
4878 {
4879 thread_info *t = find_thread_ptid (event.target, event.ptid);
4880 if (t == NULL)
4881 t = add_thread (event.target, event.ptid);
4882
4883 t->stop_requested = 0;
4884 t->executing = 0;
4885 t->resumed = false;
4886 t->control.may_range_step = 0;
4887
4888 /* This may be the first time we see the inferior report
4889 a stop. */
4890 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4891 if (inf->needs_setup)
4892 {
4893 switch_to_thread_no_regs (t);
4894 setup_inferior (0);
4895 }
4896
4897 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4898 && event.ws.value.sig == GDB_SIGNAL_0)
4899 {
4900 /* We caught the event that we intended to catch, so
4901 there's no event pending. */
4902 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4903 t->suspend.waitstatus_pending_p = 0;
4904
4905 if (displaced_step_finish (t, GDB_SIGNAL_0)
4906 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4907 {
4908 /* Add it back to the step-over queue. */
4909 infrun_debug_printf
4910 ("displaced-step of %s canceled",
4911 target_pid_to_str (t->ptid).c_str ());
4912
4913 t->control.trap_expected = 0;
4914 if (!t->inf->detaching)
4915 global_thread_step_over_chain_enqueue (t);
4916 }
4917 }
4918 else
4919 {
4920 enum gdb_signal sig;
4921 struct regcache *regcache;
4922
4923 infrun_debug_printf
4924 ("target_wait %s, saving status for %d.%ld.%ld",
4925 target_waitstatus_to_string (&event.ws).c_str (),
4926 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
4927
4928 /* Record for later. */
4929 save_waitstatus (t, &event.ws);
4930
4931 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4932 ? event.ws.value.sig : GDB_SIGNAL_0);
4933
4934 if (displaced_step_finish (t, sig)
4935 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4936 {
4937 /* Add it back to the step-over queue. */
4938 t->control.trap_expected = 0;
4939 if (!t->inf->detaching)
4940 global_thread_step_over_chain_enqueue (t);
4941 }
4942
4943 regcache = get_thread_regcache (t);
4944 t->suspend.stop_pc = regcache_read_pc (regcache);
4945
4946 infrun_debug_printf ("saved stop_pc=%s for %s "
4947 "(currently_stepping=%d)",
4948 paddress (target_gdbarch (),
4949 t->suspend.stop_pc),
4950 target_pid_to_str (t->ptid).c_str (),
4951 currently_stepping (t));
4952 }
4953 }
4954
4955 return false;
4956 }
4957
4958 /* See infrun.h. */
4959
4960 void
4961 stop_all_threads (void)
4962 {
4963 /* We may need multiple passes to discover all threads. */
4964 int pass;
4965 int iterations = 0;
4966
4967 gdb_assert (exists_non_stop_target ());
4968
4969 infrun_debug_printf ("starting");
4970
4971 scoped_restore_current_thread restore_thread;
4972
4973 /* Enable thread events of all targets. */
4974 for (auto *target : all_non_exited_process_targets ())
4975 {
4976 switch_to_target_no_thread (target);
4977 target_thread_events (true);
4978 }
4979
4980 SCOPE_EXIT
4981 {
4982 /* Disable thread events of all targets. */
4983 for (auto *target : all_non_exited_process_targets ())
4984 {
4985 switch_to_target_no_thread (target);
4986 target_thread_events (false);
4987 }
4988
4989 /* Use debug_prefixed_printf directly to get a meaningful function
4990 name. */
4991 if (debug_infrun)
4992 debug_prefixed_printf ("infrun", "stop_all_threads", "done");
4993 };
4994
4995 /* Request threads to stop, and then wait for the stops. Because
4996 threads we already know about can spawn more threads while we're
4997 trying to stop them, and we only learn about new threads when we
4998 update the thread list, do this in a loop, and keep iterating
4999 until two passes find no threads that need to be stopped. */
5000 for (pass = 0; pass < 2; pass++, iterations++)
5001 {
5002 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
5003 while (1)
5004 {
5005 int waits_needed = 0;
5006
5007 for (auto *target : all_non_exited_process_targets ())
5008 {
5009 switch_to_target_no_thread (target);
5010 update_thread_list ();
5011 }
5012
5013 /* Go through all threads looking for threads that we need
5014 to tell the target to stop. */
5015 for (thread_info *t : all_non_exited_threads ())
5016 {
5017 /* For a single-target setting with an all-stop target,
5018 we would not even arrive here. For a multi-target
5019 setting, until GDB is able to handle a mixture of
5020 all-stop and non-stop targets, simply skip all-stop
5021 targets' threads. This should be fine due to the
5022 protection of 'check_multi_target_resumption'. */
5023
5024 switch_to_thread_no_regs (t);
5025 if (!target_is_non_stop_p ())
5026 continue;
5027
5028 if (t->executing)
5029 {
5030 /* If already stopping, don't request a stop again.
5031 We just haven't seen the notification yet. */
5032 if (!t->stop_requested)
5033 {
5034 infrun_debug_printf (" %s executing, need stop",
5035 target_pid_to_str (t->ptid).c_str ());
5036 target_stop (t->ptid);
5037 t->stop_requested = 1;
5038 }
5039 else
5040 {
5041 infrun_debug_printf (" %s executing, already stopping",
5042 target_pid_to_str (t->ptid).c_str ());
5043 }
5044
5045 if (t->stop_requested)
5046 waits_needed++;
5047 }
5048 else
5049 {
5050 infrun_debug_printf (" %s not executing",
5051 target_pid_to_str (t->ptid).c_str ());
5052
5053 /* The thread may be not executing, but still be
5054 resumed with a pending status to process. */
5055 t->resumed = false;
5056 }
5057 }
5058
5059 if (waits_needed == 0)
5060 break;
5061
5062 /* If we find new threads on the second iteration, restart
5063 over. We want to see two iterations in a row with all
5064 threads stopped. */
5065 if (pass > 0)
5066 pass = -1;
5067
5068 for (int i = 0; i < waits_needed; i++)
5069 {
5070 wait_one_event event = wait_one ();
5071 if (handle_one (event))
5072 break;
5073 }
5074 }
5075 }
5076 }
5077
5078 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
5079
5080 static bool
5081 handle_no_resumed (struct execution_control_state *ecs)
5082 {
5083 if (target_can_async_p ())
5084 {
5085 bool any_sync = false;
5086
5087 for (ui *ui : all_uis ())
5088 {
5089 if (ui->prompt_state == PROMPT_BLOCKED)
5090 {
5091 any_sync = true;
5092 break;
5093 }
5094 }
5095 if (!any_sync)
5096 {
5097 /* There were no unwaited-for children left in the target, but,
5098 we're not synchronously waiting for events either. Just
5099 ignore. */
5100
5101 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
5102 prepare_to_wait (ecs);
5103 return true;
5104 }
5105 }
5106
5107 /* Otherwise, if we were running a synchronous execution command, we
5108 may need to cancel it and give the user back the terminal.
5109
5110 In non-stop mode, the target can't tell whether we've already
5111 consumed previous stop events, so it can end up sending us a
5112 no-resumed event like so:
5113
5114 #0 - thread 1 is left stopped
5115
5116 #1 - thread 2 is resumed and hits breakpoint
5117 -> TARGET_WAITKIND_STOPPED
5118
5119 #2 - thread 3 is resumed and exits
5120 this is the last resumed thread, so
5121 -> TARGET_WAITKIND_NO_RESUMED
5122
5123 #3 - gdb processes stop for thread 2 and decides to re-resume
5124 it.
5125
5126 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
5127 thread 2 is now resumed, so the event should be ignored.
5128
5129 IOW, if the stop for thread 2 doesn't end a foreground command,
5130 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5131 event. But it could be that the event meant that thread 2 itself
5132 (or whatever other thread was the last resumed thread) exited.
5133
5134 To address this we refresh the thread list and check whether we
5135 have resumed threads _now_. In the example above, this removes
5136 thread 3 from the thread list. If thread 2 was re-resumed, we
5137 ignore this event. If we find no thread resumed, then we cancel
5138 the synchronous command and show "no unwaited-for " to the
5139 user. */
5140
5141 inferior *curr_inf = current_inferior ();
5142
5143 scoped_restore_current_thread restore_thread;
5144
5145 for (auto *target : all_non_exited_process_targets ())
5146 {
5147 switch_to_target_no_thread (target);
5148 update_thread_list ();
5149 }
5150
5151 /* If:
5152
5153 - the current target has no thread executing, and
5154 - the current inferior is native, and
5155 - the current inferior is the one which has the terminal, and
5156 - we did nothing,
5157
5158 then a Ctrl-C from this point on would remain stuck in the
5159 kernel, until a thread resumes and dequeues it. That would
5160 result in the GDB CLI not reacting to Ctrl-C, not able to
5161 interrupt the program. To address this, if the current inferior
5162 no longer has any thread executing, we give the terminal to some
5163 other inferior that has at least one thread executing. */
5164 bool swap_terminal = true;
5165
5166 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
5167 whether to report it to the user. */
5168 bool ignore_event = false;
5169
5170 for (thread_info *thread : all_non_exited_threads ())
5171 {
5172 if (swap_terminal && thread->executing)
5173 {
5174 if (thread->inf != curr_inf)
5175 {
5176 target_terminal::ours ();
5177
5178 switch_to_thread (thread);
5179 target_terminal::inferior ();
5180 }
5181 swap_terminal = false;
5182 }
5183
5184 if (!ignore_event
5185 && (thread->executing
5186 || thread->suspend.waitstatus_pending_p))
5187 {
5188 /* Either there were no unwaited-for children left in the
5189 target at some point, but there are now, or some target
5190 other than the eventing one has unwaited-for children
5191 left. Just ignore. */
5192 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
5193 "(ignoring: found resumed)");
5194
5195 ignore_event = true;
5196 }
5197
5198 if (ignore_event && !swap_terminal)
5199 break;
5200 }
5201
5202 if (ignore_event)
5203 {
5204 switch_to_inferior_no_thread (curr_inf);
5205 prepare_to_wait (ecs);
5206 return true;
5207 }
5208
5209 /* Go ahead and report the event. */
5210 return false;
5211 }
5212
5213 /* Given an execution control state that has been freshly filled in by
5214 an event from the inferior, figure out what it means and take
5215 appropriate action.
5216
5217 The alternatives are:
5218
5219 1) stop_waiting and return; to really stop and return to the
5220 debugger.
5221
5222 2) keep_going and return; to wait for the next event (set
5223 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5224 once). */
5225
5226 static void
5227 handle_inferior_event (struct execution_control_state *ecs)
5228 {
5229 /* Make sure that all temporary struct value objects that were
5230 created during the handling of the event get deleted at the
5231 end. */
5232 scoped_value_mark free_values;
5233
5234 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5235
5236 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5237 {
5238 /* We had an event in the inferior, but we are not interested in
5239 handling it at this level. The lower layers have already
5240 done what needs to be done, if anything.
5241
5242 One of the possible circumstances for this is when the
5243 inferior produces output for the console. The inferior has
5244 not stopped, and we are ignoring the event. Another possible
5245 circumstance is any event which the lower level knows will be
5246 reported multiple times without an intervening resume. */
5247 prepare_to_wait (ecs);
5248 return;
5249 }
5250
5251 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5252 {
5253 prepare_to_wait (ecs);
5254 return;
5255 }
5256
5257 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5258 && handle_no_resumed (ecs))
5259 return;
5260
5261 /* Cache the last target/ptid/waitstatus. */
5262 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5263
5264 /* Always clear state belonging to the previous time we stopped. */
5265 stop_stack_dummy = STOP_NONE;
5266
5267 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5268 {
5269 /* No unwaited-for children left. IOW, all resumed children
5270 have exited. */
5271 stop_print_frame = false;
5272 stop_waiting (ecs);
5273 return;
5274 }
5275
5276 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5277 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5278 {
5279 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5280 /* If it's a new thread, add it to the thread database. */
5281 if (ecs->event_thread == NULL)
5282 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5283
5284 /* Disable range stepping. If the next step request could use a
5285 range, this will be end up re-enabled then. */
5286 ecs->event_thread->control.may_range_step = 0;
5287 }
5288
5289 /* Dependent on valid ECS->EVENT_THREAD. */
5290 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5291
5292 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5293 reinit_frame_cache ();
5294
5295 breakpoint_retire_moribund ();
5296
5297 /* First, distinguish signals caused by the debugger from signals
5298 that have to do with the program's own actions. Note that
5299 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5300 on the operating system version. Here we detect when a SIGILL or
5301 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5302 something similar for SIGSEGV, since a SIGSEGV will be generated
5303 when we're trying to execute a breakpoint instruction on a
5304 non-executable stack. This happens for call dummy breakpoints
5305 for architectures like SPARC that place call dummies on the
5306 stack. */
5307 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5308 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5309 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5310 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5311 {
5312 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5313
5314 if (breakpoint_inserted_here_p (regcache->aspace (),
5315 regcache_read_pc (regcache)))
5316 {
5317 infrun_debug_printf ("Treating signal as SIGTRAP");
5318 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5319 }
5320 }
5321
5322 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5323
5324 switch (ecs->ws.kind)
5325 {
5326 case TARGET_WAITKIND_LOADED:
5327 {
5328 context_switch (ecs);
5329 /* Ignore gracefully during startup of the inferior, as it might
5330 be the shell which has just loaded some objects, otherwise
5331 add the symbols for the newly loaded objects. Also ignore at
5332 the beginning of an attach or remote session; we will query
5333 the full list of libraries once the connection is
5334 established. */
5335
5336 stop_kind stop_soon = get_inferior_stop_soon (ecs);
5337 if (stop_soon == NO_STOP_QUIETLY)
5338 {
5339 struct regcache *regcache;
5340
5341 regcache = get_thread_regcache (ecs->event_thread);
5342
5343 handle_solib_event ();
5344
5345 ecs->event_thread->control.stop_bpstat
5346 = bpstat_stop_status (regcache->aspace (),
5347 ecs->event_thread->suspend.stop_pc,
5348 ecs->event_thread, &ecs->ws);
5349
5350 if (handle_stop_requested (ecs))
5351 return;
5352
5353 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5354 {
5355 /* A catchpoint triggered. */
5356 process_event_stop_test (ecs);
5357 return;
5358 }
5359
5360 /* If requested, stop when the dynamic linker notifies
5361 gdb of events. This allows the user to get control
5362 and place breakpoints in initializer routines for
5363 dynamically loaded objects (among other things). */
5364 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5365 if (stop_on_solib_events)
5366 {
5367 /* Make sure we print "Stopped due to solib-event" in
5368 normal_stop. */
5369 stop_print_frame = true;
5370
5371 stop_waiting (ecs);
5372 return;
5373 }
5374 }
5375
5376 /* If we are skipping through a shell, or through shared library
5377 loading that we aren't interested in, resume the program. If
5378 we're running the program normally, also resume. */
5379 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5380 {
5381 /* Loading of shared libraries might have changed breakpoint
5382 addresses. Make sure new breakpoints are inserted. */
5383 if (stop_soon == NO_STOP_QUIETLY)
5384 insert_breakpoints ();
5385 resume (GDB_SIGNAL_0);
5386 prepare_to_wait (ecs);
5387 return;
5388 }
5389
5390 /* But stop if we're attaching or setting up a remote
5391 connection. */
5392 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5393 || stop_soon == STOP_QUIETLY_REMOTE)
5394 {
5395 infrun_debug_printf ("quietly stopped");
5396 stop_waiting (ecs);
5397 return;
5398 }
5399
5400 internal_error (__FILE__, __LINE__,
5401 _("unhandled stop_soon: %d"), (int) stop_soon);
5402 }
5403
5404 case TARGET_WAITKIND_SPURIOUS:
5405 if (handle_stop_requested (ecs))
5406 return;
5407 context_switch (ecs);
5408 resume (GDB_SIGNAL_0);
5409 prepare_to_wait (ecs);
5410 return;
5411
5412 case TARGET_WAITKIND_THREAD_CREATED:
5413 if (handle_stop_requested (ecs))
5414 return;
5415 context_switch (ecs);
5416 if (!switch_back_to_stepped_thread (ecs))
5417 keep_going (ecs);
5418 return;
5419
5420 case TARGET_WAITKIND_EXITED:
5421 case TARGET_WAITKIND_SIGNALLED:
5422 {
5423 /* Depending on the system, ecs->ptid may point to a thread or
5424 to a process. On some targets, target_mourn_inferior may
5425 need to have access to the just-exited thread. That is the
5426 case of GNU/Linux's "checkpoint" support, for example.
5427 Call the switch_to_xxx routine as appropriate. */
5428 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5429 if (thr != nullptr)
5430 switch_to_thread (thr);
5431 else
5432 {
5433 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5434 switch_to_inferior_no_thread (inf);
5435 }
5436 }
5437 handle_vfork_child_exec_or_exit (0);
5438 target_terminal::ours (); /* Must do this before mourn anyway. */
5439
5440 /* Clearing any previous state of convenience variables. */
5441 clear_exit_convenience_vars ();
5442
5443 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5444 {
5445 /* Record the exit code in the convenience variable $_exitcode, so
5446 that the user can inspect this again later. */
5447 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5448 (LONGEST) ecs->ws.value.integer);
5449
5450 /* Also record this in the inferior itself. */
5451 current_inferior ()->has_exit_code = 1;
5452 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5453
5454 /* Support the --return-child-result option. */
5455 return_child_result_value = ecs->ws.value.integer;
5456
5457 gdb::observers::exited.notify (ecs->ws.value.integer);
5458 }
5459 else
5460 {
5461 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5462
5463 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5464 {
5465 /* Set the value of the internal variable $_exitsignal,
5466 which holds the signal uncaught by the inferior. */
5467 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5468 gdbarch_gdb_signal_to_target (gdbarch,
5469 ecs->ws.value.sig));
5470 }
5471 else
5472 {
5473 /* We don't have access to the target's method used for
5474 converting between signal numbers (GDB's internal
5475 representation <-> target's representation).
5476 Therefore, we cannot do a good job at displaying this
5477 information to the user. It's better to just warn
5478 her about it (if infrun debugging is enabled), and
5479 give up. */
5480 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5481 "signal number.");
5482 }
5483
5484 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5485 }
5486
5487 gdb_flush (gdb_stdout);
5488 target_mourn_inferior (inferior_ptid);
5489 stop_print_frame = false;
5490 stop_waiting (ecs);
5491 return;
5492
5493 case TARGET_WAITKIND_FORKED:
5494 case TARGET_WAITKIND_VFORKED:
5495 /* Check whether the inferior is displaced stepping. */
5496 {
5497 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5498 struct gdbarch *gdbarch = regcache->arch ();
5499 inferior *parent_inf = find_inferior_ptid (ecs->target, ecs->ptid);
5500
5501 /* If this is a fork (child gets its own address space copy)
5502 and some displaced step buffers were in use at the time of
5503 the fork, restore the displaced step buffer bytes in the
5504 child process.
5505
5506 Architectures which support displaced stepping and fork
5507 events must supply an implementation of
5508 gdbarch_displaced_step_restore_all_in_ptid. This is not
5509 enforced during gdbarch validation to support architectures
5510 which support displaced stepping but not forks. */
5511 if (ecs->ws.kind == TARGET_WAITKIND_FORKED
5512 && gdbarch_supports_displaced_stepping (gdbarch))
5513 gdbarch_displaced_step_restore_all_in_ptid
5514 (gdbarch, parent_inf, ecs->ws.value.related_pid);
5515
5516 /* If displaced stepping is supported, and thread ecs->ptid is
5517 displaced stepping. */
5518 if (displaced_step_in_progress_thread (ecs->event_thread))
5519 {
5520 struct regcache *child_regcache;
5521 CORE_ADDR parent_pc;
5522
5523 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5524 indicating that the displaced stepping of syscall instruction
5525 has been done. Perform cleanup for parent process here. Note
5526 that this operation also cleans up the child process for vfork,
5527 because their pages are shared. */
5528 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
5529 /* Start a new step-over in another thread if there's one
5530 that needs it. */
5531 start_step_over ();
5532
5533 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5534 the child's PC is also within the scratchpad. Set the child's PC
5535 to the parent's PC value, which has already been fixed up.
5536 FIXME: we use the parent's aspace here, although we're touching
5537 the child, because the child hasn't been added to the inferior
5538 list yet at this point. */
5539
5540 child_regcache
5541 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5542 ecs->ws.value.related_pid,
5543 gdbarch,
5544 parent_inf->aspace);
5545 /* Read PC value of parent process. */
5546 parent_pc = regcache_read_pc (regcache);
5547
5548 displaced_debug_printf ("write child pc from %s to %s",
5549 paddress (gdbarch,
5550 regcache_read_pc (child_regcache)),
5551 paddress (gdbarch, parent_pc));
5552
5553 regcache_write_pc (child_regcache, parent_pc);
5554 }
5555 }
5556
5557 context_switch (ecs);
5558
5559 /* Immediately detach breakpoints from the child before there's
5560 any chance of letting the user delete breakpoints from the
5561 breakpoint lists. If we don't do this early, it's easy to
5562 leave left over traps in the child, vis: "break foo; catch
5563 fork; c; <fork>; del; c; <child calls foo>". We only follow
5564 the fork on the last `continue', and by that time the
5565 breakpoint at "foo" is long gone from the breakpoint table.
5566 If we vforked, then we don't need to unpatch here, since both
5567 parent and child are sharing the same memory pages; we'll
5568 need to unpatch at follow/detach time instead to be certain
5569 that new breakpoints added between catchpoint hit time and
5570 vfork follow are detached. */
5571 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5572 {
5573 /* This won't actually modify the breakpoint list, but will
5574 physically remove the breakpoints from the child. */
5575 detach_breakpoints (ecs->ws.value.related_pid);
5576 }
5577
5578 delete_just_stopped_threads_single_step_breakpoints ();
5579
5580 /* In case the event is caught by a catchpoint, remember that
5581 the event is to be followed at the next resume of the thread,
5582 and not immediately. */
5583 ecs->event_thread->pending_follow = ecs->ws;
5584
5585 ecs->event_thread->suspend.stop_pc
5586 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5587
5588 ecs->event_thread->control.stop_bpstat
5589 = bpstat_stop_status (get_current_regcache ()->aspace (),
5590 ecs->event_thread->suspend.stop_pc,
5591 ecs->event_thread, &ecs->ws);
5592
5593 if (handle_stop_requested (ecs))
5594 return;
5595
5596 /* If no catchpoint triggered for this, then keep going. Note
5597 that we're interested in knowing the bpstat actually causes a
5598 stop, not just if it may explain the signal. Software
5599 watchpoints, for example, always appear in the bpstat. */
5600 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5601 {
5602 bool follow_child
5603 = (follow_fork_mode_string == follow_fork_mode_child);
5604
5605 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5606
5607 process_stratum_target *targ
5608 = ecs->event_thread->inf->process_target ();
5609
5610 bool should_resume = follow_fork ();
5611
5612 /* Note that one of these may be an invalid pointer,
5613 depending on detach_fork. */
5614 thread_info *parent = ecs->event_thread;
5615 thread_info *child
5616 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5617
5618 /* At this point, the parent is marked running, and the
5619 child is marked stopped. */
5620
5621 /* If not resuming the parent, mark it stopped. */
5622 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5623 parent->set_running (false);
5624
5625 /* If resuming the child, mark it running. */
5626 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5627 child->set_running (true);
5628
5629 /* In non-stop mode, also resume the other branch. */
5630 if (!detach_fork && (non_stop
5631 || (sched_multi && target_is_non_stop_p ())))
5632 {
5633 if (follow_child)
5634 switch_to_thread (parent);
5635 else
5636 switch_to_thread (child);
5637
5638 ecs->event_thread = inferior_thread ();
5639 ecs->ptid = inferior_ptid;
5640 keep_going (ecs);
5641 }
5642
5643 if (follow_child)
5644 switch_to_thread (child);
5645 else
5646 switch_to_thread (parent);
5647
5648 ecs->event_thread = inferior_thread ();
5649 ecs->ptid = inferior_ptid;
5650
5651 if (should_resume)
5652 keep_going (ecs);
5653 else
5654 stop_waiting (ecs);
5655 return;
5656 }
5657 process_event_stop_test (ecs);
5658 return;
5659
5660 case TARGET_WAITKIND_VFORK_DONE:
5661 /* Done with the shared memory region. Re-insert breakpoints in
5662 the parent, and keep going. */
5663
5664 context_switch (ecs);
5665
5666 current_inferior ()->waiting_for_vfork_done = 0;
5667 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5668
5669 if (handle_stop_requested (ecs))
5670 return;
5671
5672 /* This also takes care of reinserting breakpoints in the
5673 previously locked inferior. */
5674 keep_going (ecs);
5675 return;
5676
5677 case TARGET_WAITKIND_EXECD:
5678
5679 /* Note we can't read registers yet (the stop_pc), because we
5680 don't yet know the inferior's post-exec architecture.
5681 'stop_pc' is explicitly read below instead. */
5682 switch_to_thread_no_regs (ecs->event_thread);
5683
5684 /* Do whatever is necessary to the parent branch of the vfork. */
5685 handle_vfork_child_exec_or_exit (1);
5686
5687 /* This causes the eventpoints and symbol table to be reset.
5688 Must do this now, before trying to determine whether to
5689 stop. */
5690 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5691
5692 /* In follow_exec we may have deleted the original thread and
5693 created a new one. Make sure that the event thread is the
5694 execd thread for that case (this is a nop otherwise). */
5695 ecs->event_thread = inferior_thread ();
5696
5697 ecs->event_thread->suspend.stop_pc
5698 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5699
5700 ecs->event_thread->control.stop_bpstat
5701 = bpstat_stop_status (get_current_regcache ()->aspace (),
5702 ecs->event_thread->suspend.stop_pc,
5703 ecs->event_thread, &ecs->ws);
5704
5705 /* Note that this may be referenced from inside
5706 bpstat_stop_status above, through inferior_has_execd. */
5707 xfree (ecs->ws.value.execd_pathname);
5708 ecs->ws.value.execd_pathname = NULL;
5709
5710 if (handle_stop_requested (ecs))
5711 return;
5712
5713 /* If no catchpoint triggered for this, then keep going. */
5714 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5715 {
5716 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5717 keep_going (ecs);
5718 return;
5719 }
5720 process_event_stop_test (ecs);
5721 return;
5722
5723 /* Be careful not to try to gather much state about a thread
5724 that's in a syscall. It's frequently a losing proposition. */
5725 case TARGET_WAITKIND_SYSCALL_ENTRY:
5726 /* Getting the current syscall number. */
5727 if (handle_syscall_event (ecs) == 0)
5728 process_event_stop_test (ecs);
5729 return;
5730
5731 /* Before examining the threads further, step this thread to
5732 get it entirely out of the syscall. (We get notice of the
5733 event when the thread is just on the verge of exiting a
5734 syscall. Stepping one instruction seems to get it back
5735 into user code.) */
5736 case TARGET_WAITKIND_SYSCALL_RETURN:
5737 if (handle_syscall_event (ecs) == 0)
5738 process_event_stop_test (ecs);
5739 return;
5740
5741 case TARGET_WAITKIND_STOPPED:
5742 handle_signal_stop (ecs);
5743 return;
5744
5745 case TARGET_WAITKIND_NO_HISTORY:
5746 /* Reverse execution: target ran out of history info. */
5747
5748 /* Switch to the stopped thread. */
5749 context_switch (ecs);
5750 infrun_debug_printf ("stopped");
5751
5752 delete_just_stopped_threads_single_step_breakpoints ();
5753 ecs->event_thread->suspend.stop_pc
5754 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5755
5756 if (handle_stop_requested (ecs))
5757 return;
5758
5759 gdb::observers::no_history.notify ();
5760 stop_waiting (ecs);
5761 return;
5762 }
5763 }
5764
5765 /* Restart threads back to what they were trying to do back when we
5766 paused them for an in-line step-over. The EVENT_THREAD thread is
5767 ignored. */
5768
5769 static void
5770 restart_threads (struct thread_info *event_thread)
5771 {
5772 /* In case the instruction just stepped spawned a new thread. */
5773 update_thread_list ();
5774
5775 for (thread_info *tp : all_non_exited_threads ())
5776 {
5777 if (tp->inf->detaching)
5778 {
5779 infrun_debug_printf ("restart threads: [%s] inferior detaching",
5780 target_pid_to_str (tp->ptid).c_str ());
5781 continue;
5782 }
5783
5784 switch_to_thread_no_regs (tp);
5785
5786 if (tp == event_thread)
5787 {
5788 infrun_debug_printf ("restart threads: [%s] is event thread",
5789 target_pid_to_str (tp->ptid).c_str ());
5790 continue;
5791 }
5792
5793 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5794 {
5795 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5796 target_pid_to_str (tp->ptid).c_str ());
5797 continue;
5798 }
5799
5800 if (tp->resumed)
5801 {
5802 infrun_debug_printf ("restart threads: [%s] resumed",
5803 target_pid_to_str (tp->ptid).c_str ());
5804 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5805 continue;
5806 }
5807
5808 if (thread_is_in_step_over_chain (tp))
5809 {
5810 infrun_debug_printf ("restart threads: [%s] needs step-over",
5811 target_pid_to_str (tp->ptid).c_str ());
5812 gdb_assert (!tp->resumed);
5813 continue;
5814 }
5815
5816
5817 if (tp->suspend.waitstatus_pending_p)
5818 {
5819 infrun_debug_printf ("restart threads: [%s] has pending status",
5820 target_pid_to_str (tp->ptid).c_str ());
5821 tp->resumed = true;
5822 continue;
5823 }
5824
5825 gdb_assert (!tp->stop_requested);
5826
5827 /* If some thread needs to start a step-over at this point, it
5828 should still be in the step-over queue, and thus skipped
5829 above. */
5830 if (thread_still_needs_step_over (tp))
5831 {
5832 internal_error (__FILE__, __LINE__,
5833 "thread [%s] needs a step-over, but not in "
5834 "step-over queue\n",
5835 target_pid_to_str (tp->ptid).c_str ());
5836 }
5837
5838 if (currently_stepping (tp))
5839 {
5840 infrun_debug_printf ("restart threads: [%s] was stepping",
5841 target_pid_to_str (tp->ptid).c_str ());
5842 keep_going_stepped_thread (tp);
5843 }
5844 else
5845 {
5846 struct execution_control_state ecss;
5847 struct execution_control_state *ecs = &ecss;
5848
5849 infrun_debug_printf ("restart threads: [%s] continuing",
5850 target_pid_to_str (tp->ptid).c_str ());
5851 reset_ecs (ecs, tp);
5852 switch_to_thread (tp);
5853 keep_going_pass_signal (ecs);
5854 }
5855 }
5856 }
5857
5858 /* Callback for iterate_over_threads. Find a resumed thread that has
5859 a pending waitstatus. */
5860
5861 static int
5862 resumed_thread_with_pending_status (struct thread_info *tp,
5863 void *arg)
5864 {
5865 return (tp->resumed
5866 && tp->suspend.waitstatus_pending_p);
5867 }
5868
5869 /* Called when we get an event that may finish an in-line or
5870 out-of-line (displaced stepping) step-over started previously.
5871 Return true if the event is processed and we should go back to the
5872 event loop; false if the caller should continue processing the
5873 event. */
5874
5875 static int
5876 finish_step_over (struct execution_control_state *ecs)
5877 {
5878 displaced_step_finish (ecs->event_thread,
5879 ecs->event_thread->suspend.stop_signal);
5880
5881 bool had_step_over_info = step_over_info_valid_p ();
5882
5883 if (had_step_over_info)
5884 {
5885 /* If we're stepping over a breakpoint with all threads locked,
5886 then only the thread that was stepped should be reporting
5887 back an event. */
5888 gdb_assert (ecs->event_thread->control.trap_expected);
5889
5890 clear_step_over_info ();
5891 }
5892
5893 if (!target_is_non_stop_p ())
5894 return 0;
5895
5896 /* Start a new step-over in another thread if there's one that
5897 needs it. */
5898 start_step_over ();
5899
5900 /* If we were stepping over a breakpoint before, and haven't started
5901 a new in-line step-over sequence, then restart all other threads
5902 (except the event thread). We can't do this in all-stop, as then
5903 e.g., we wouldn't be able to issue any other remote packet until
5904 these other threads stop. */
5905 if (had_step_over_info && !step_over_info_valid_p ())
5906 {
5907 struct thread_info *pending;
5908
5909 /* If we only have threads with pending statuses, the restart
5910 below won't restart any thread and so nothing re-inserts the
5911 breakpoint we just stepped over. But we need it inserted
5912 when we later process the pending events, otherwise if
5913 another thread has a pending event for this breakpoint too,
5914 we'd discard its event (because the breakpoint that
5915 originally caused the event was no longer inserted). */
5916 context_switch (ecs);
5917 insert_breakpoints ();
5918
5919 restart_threads (ecs->event_thread);
5920
5921 /* If we have events pending, go through handle_inferior_event
5922 again, picking up a pending event at random. This avoids
5923 thread starvation. */
5924
5925 /* But not if we just stepped over a watchpoint in order to let
5926 the instruction execute so we can evaluate its expression.
5927 The set of watchpoints that triggered is recorded in the
5928 breakpoint objects themselves (see bp->watchpoint_triggered).
5929 If we processed another event first, that other event could
5930 clobber this info. */
5931 if (ecs->event_thread->stepping_over_watchpoint)
5932 return 0;
5933
5934 pending = iterate_over_threads (resumed_thread_with_pending_status,
5935 NULL);
5936 if (pending != NULL)
5937 {
5938 struct thread_info *tp = ecs->event_thread;
5939 struct regcache *regcache;
5940
5941 infrun_debug_printf ("found resumed threads with "
5942 "pending events, saving status");
5943
5944 gdb_assert (pending != tp);
5945
5946 /* Record the event thread's event for later. */
5947 save_waitstatus (tp, &ecs->ws);
5948 /* This was cleared early, by handle_inferior_event. Set it
5949 so this pending event is considered by
5950 do_target_wait. */
5951 tp->resumed = true;
5952
5953 gdb_assert (!tp->executing);
5954
5955 regcache = get_thread_regcache (tp);
5956 tp->suspend.stop_pc = regcache_read_pc (regcache);
5957
5958 infrun_debug_printf ("saved stop_pc=%s for %s "
5959 "(currently_stepping=%d)",
5960 paddress (target_gdbarch (),
5961 tp->suspend.stop_pc),
5962 target_pid_to_str (tp->ptid).c_str (),
5963 currently_stepping (tp));
5964
5965 /* This in-line step-over finished; clear this so we won't
5966 start a new one. This is what handle_signal_stop would
5967 do, if we returned false. */
5968 tp->stepping_over_breakpoint = 0;
5969
5970 /* Wake up the event loop again. */
5971 mark_async_event_handler (infrun_async_inferior_event_token);
5972
5973 prepare_to_wait (ecs);
5974 return 1;
5975 }
5976 }
5977
5978 return 0;
5979 }
5980
5981 /* Come here when the program has stopped with a signal. */
5982
5983 static void
5984 handle_signal_stop (struct execution_control_state *ecs)
5985 {
5986 struct frame_info *frame;
5987 struct gdbarch *gdbarch;
5988 int stopped_by_watchpoint;
5989 enum stop_kind stop_soon;
5990 int random_signal;
5991
5992 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5993
5994 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5995
5996 /* Do we need to clean up the state of a thread that has
5997 completed a displaced single-step? (Doing so usually affects
5998 the PC, so do it here, before we set stop_pc.) */
5999 if (finish_step_over (ecs))
6000 return;
6001
6002 /* If we either finished a single-step or hit a breakpoint, but
6003 the user wanted this thread to be stopped, pretend we got a
6004 SIG0 (generic unsignaled stop). */
6005 if (ecs->event_thread->stop_requested
6006 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6007 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6008
6009 ecs->event_thread->suspend.stop_pc
6010 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
6011
6012 context_switch (ecs);
6013
6014 if (deprecated_context_hook)
6015 deprecated_context_hook (ecs->event_thread->global_num);
6016
6017 if (debug_infrun)
6018 {
6019 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
6020 struct gdbarch *reg_gdbarch = regcache->arch ();
6021
6022 infrun_debug_printf ("stop_pc=%s",
6023 paddress (reg_gdbarch,
6024 ecs->event_thread->suspend.stop_pc));
6025 if (target_stopped_by_watchpoint ())
6026 {
6027 CORE_ADDR addr;
6028
6029 infrun_debug_printf ("stopped by watchpoint");
6030
6031 if (target_stopped_data_address (current_inferior ()->top_target (),
6032 &addr))
6033 infrun_debug_printf ("stopped data address=%s",
6034 paddress (reg_gdbarch, addr));
6035 else
6036 infrun_debug_printf ("(no data address available)");
6037 }
6038 }
6039
6040 /* This is originated from start_remote(), start_inferior() and
6041 shared libraries hook functions. */
6042 stop_soon = get_inferior_stop_soon (ecs);
6043 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
6044 {
6045 infrun_debug_printf ("quietly stopped");
6046 stop_print_frame = true;
6047 stop_waiting (ecs);
6048 return;
6049 }
6050
6051 /* This originates from attach_command(). We need to overwrite
6052 the stop_signal here, because some kernels don't ignore a
6053 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
6054 See more comments in inferior.h. On the other hand, if we
6055 get a non-SIGSTOP, report it to the user - assume the backend
6056 will handle the SIGSTOP if it should show up later.
6057
6058 Also consider that the attach is complete when we see a
6059 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
6060 target extended-remote report it instead of a SIGSTOP
6061 (e.g. gdbserver). We already rely on SIGTRAP being our
6062 signal, so this is no exception.
6063
6064 Also consider that the attach is complete when we see a
6065 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
6066 the target to stop all threads of the inferior, in case the
6067 low level attach operation doesn't stop them implicitly. If
6068 they weren't stopped implicitly, then the stub will report a
6069 GDB_SIGNAL_0, meaning: stopped for no particular reason
6070 other than GDB's request. */
6071 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
6072 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
6073 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6074 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
6075 {
6076 stop_print_frame = true;
6077 stop_waiting (ecs);
6078 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6079 return;
6080 }
6081
6082 /* At this point, get hold of the now-current thread's frame. */
6083 frame = get_current_frame ();
6084 gdbarch = get_frame_arch (frame);
6085
6086 /* Pull the single step breakpoints out of the target. */
6087 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6088 {
6089 struct regcache *regcache;
6090 CORE_ADDR pc;
6091
6092 regcache = get_thread_regcache (ecs->event_thread);
6093 const address_space *aspace = regcache->aspace ();
6094
6095 pc = regcache_read_pc (regcache);
6096
6097 /* However, before doing so, if this single-step breakpoint was
6098 actually for another thread, set this thread up for moving
6099 past it. */
6100 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
6101 aspace, pc))
6102 {
6103 if (single_step_breakpoint_inserted_here_p (aspace, pc))
6104 {
6105 infrun_debug_printf ("[%s] hit another thread's single-step "
6106 "breakpoint",
6107 target_pid_to_str (ecs->ptid).c_str ());
6108 ecs->hit_singlestep_breakpoint = 1;
6109 }
6110 }
6111 else
6112 {
6113 infrun_debug_printf ("[%s] hit its single-step breakpoint",
6114 target_pid_to_str (ecs->ptid).c_str ());
6115 }
6116 }
6117 delete_just_stopped_threads_single_step_breakpoints ();
6118
6119 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6120 && ecs->event_thread->control.trap_expected
6121 && ecs->event_thread->stepping_over_watchpoint)
6122 stopped_by_watchpoint = 0;
6123 else
6124 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6125
6126 /* If necessary, step over this watchpoint. We'll be back to display
6127 it in a moment. */
6128 if (stopped_by_watchpoint
6129 && (target_have_steppable_watchpoint ()
6130 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
6131 {
6132 /* At this point, we are stopped at an instruction which has
6133 attempted to write to a piece of memory under control of
6134 a watchpoint. The instruction hasn't actually executed
6135 yet. If we were to evaluate the watchpoint expression
6136 now, we would get the old value, and therefore no change
6137 would seem to have occurred.
6138
6139 In order to make watchpoints work `right', we really need
6140 to complete the memory write, and then evaluate the
6141 watchpoint expression. We do this by single-stepping the
6142 target.
6143
6144 It may not be necessary to disable the watchpoint to step over
6145 it. For example, the PA can (with some kernel cooperation)
6146 single step over a watchpoint without disabling the watchpoint.
6147
6148 It is far more common to need to disable a watchpoint to step
6149 the inferior over it. If we have non-steppable watchpoints,
6150 we must disable the current watchpoint; it's simplest to
6151 disable all watchpoints.
6152
6153 Any breakpoint at PC must also be stepped over -- if there's
6154 one, it will have already triggered before the watchpoint
6155 triggered, and we either already reported it to the user, or
6156 it didn't cause a stop and we called keep_going. In either
6157 case, if there was a breakpoint at PC, we must be trying to
6158 step past it. */
6159 ecs->event_thread->stepping_over_watchpoint = 1;
6160 keep_going (ecs);
6161 return;
6162 }
6163
6164 ecs->event_thread->stepping_over_breakpoint = 0;
6165 ecs->event_thread->stepping_over_watchpoint = 0;
6166 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6167 ecs->event_thread->control.stop_step = 0;
6168 stop_print_frame = true;
6169 stopped_by_random_signal = 0;
6170 bpstat stop_chain = NULL;
6171
6172 /* Hide inlined functions starting here, unless we just performed stepi or
6173 nexti. After stepi and nexti, always show the innermost frame (not any
6174 inline function call sites). */
6175 if (ecs->event_thread->control.step_range_end != 1)
6176 {
6177 const address_space *aspace
6178 = get_thread_regcache (ecs->event_thread)->aspace ();
6179
6180 /* skip_inline_frames is expensive, so we avoid it if we can
6181 determine that the address is one where functions cannot have
6182 been inlined. This improves performance with inferiors that
6183 load a lot of shared libraries, because the solib event
6184 breakpoint is defined as the address of a function (i.e. not
6185 inline). Note that we have to check the previous PC as well
6186 as the current one to catch cases when we have just
6187 single-stepped off a breakpoint prior to reinstating it.
6188 Note that we're assuming that the code we single-step to is
6189 not inline, but that's not definitive: there's nothing
6190 preventing the event breakpoint function from containing
6191 inlined code, and the single-step ending up there. If the
6192 user had set a breakpoint on that inlined code, the missing
6193 skip_inline_frames call would break things. Fortunately
6194 that's an extremely unlikely scenario. */
6195 if (!pc_at_non_inline_function (aspace,
6196 ecs->event_thread->suspend.stop_pc,
6197 &ecs->ws)
6198 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6199 && ecs->event_thread->control.trap_expected
6200 && pc_at_non_inline_function (aspace,
6201 ecs->event_thread->prev_pc,
6202 &ecs->ws)))
6203 {
6204 stop_chain = build_bpstat_chain (aspace,
6205 ecs->event_thread->suspend.stop_pc,
6206 &ecs->ws);
6207 skip_inline_frames (ecs->event_thread, stop_chain);
6208
6209 /* Re-fetch current thread's frame in case that invalidated
6210 the frame cache. */
6211 frame = get_current_frame ();
6212 gdbarch = get_frame_arch (frame);
6213 }
6214 }
6215
6216 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6217 && ecs->event_thread->control.trap_expected
6218 && gdbarch_single_step_through_delay_p (gdbarch)
6219 && currently_stepping (ecs->event_thread))
6220 {
6221 /* We're trying to step off a breakpoint. Turns out that we're
6222 also on an instruction that needs to be stepped multiple
6223 times before it's been fully executing. E.g., architectures
6224 with a delay slot. It needs to be stepped twice, once for
6225 the instruction and once for the delay slot. */
6226 int step_through_delay
6227 = gdbarch_single_step_through_delay (gdbarch, frame);
6228
6229 if (step_through_delay)
6230 infrun_debug_printf ("step through delay");
6231
6232 if (ecs->event_thread->control.step_range_end == 0
6233 && step_through_delay)
6234 {
6235 /* The user issued a continue when stopped at a breakpoint.
6236 Set up for another trap and get out of here. */
6237 ecs->event_thread->stepping_over_breakpoint = 1;
6238 keep_going (ecs);
6239 return;
6240 }
6241 else if (step_through_delay)
6242 {
6243 /* The user issued a step when stopped at a breakpoint.
6244 Maybe we should stop, maybe we should not - the delay
6245 slot *might* correspond to a line of source. In any
6246 case, don't decide that here, just set
6247 ecs->stepping_over_breakpoint, making sure we
6248 single-step again before breakpoints are re-inserted. */
6249 ecs->event_thread->stepping_over_breakpoint = 1;
6250 }
6251 }
6252
6253 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6254 handles this event. */
6255 ecs->event_thread->control.stop_bpstat
6256 = bpstat_stop_status (get_current_regcache ()->aspace (),
6257 ecs->event_thread->suspend.stop_pc,
6258 ecs->event_thread, &ecs->ws, stop_chain);
6259
6260 /* Following in case break condition called a
6261 function. */
6262 stop_print_frame = true;
6263
6264 /* This is where we handle "moribund" watchpoints. Unlike
6265 software breakpoints traps, hardware watchpoint traps are
6266 always distinguishable from random traps. If no high-level
6267 watchpoint is associated with the reported stop data address
6268 anymore, then the bpstat does not explain the signal ---
6269 simply make sure to ignore it if `stopped_by_watchpoint' is
6270 set. */
6271
6272 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6273 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6274 GDB_SIGNAL_TRAP)
6275 && stopped_by_watchpoint)
6276 {
6277 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6278 "ignoring");
6279 }
6280
6281 /* NOTE: cagney/2003-03-29: These checks for a random signal
6282 at one stage in the past included checks for an inferior
6283 function call's call dummy's return breakpoint. The original
6284 comment, that went with the test, read:
6285
6286 ``End of a stack dummy. Some systems (e.g. Sony news) give
6287 another signal besides SIGTRAP, so check here as well as
6288 above.''
6289
6290 If someone ever tries to get call dummys on a
6291 non-executable stack to work (where the target would stop
6292 with something like a SIGSEGV), then those tests might need
6293 to be re-instated. Given, however, that the tests were only
6294 enabled when momentary breakpoints were not being used, I
6295 suspect that it won't be the case.
6296
6297 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6298 be necessary for call dummies on a non-executable stack on
6299 SPARC. */
6300
6301 /* See if the breakpoints module can explain the signal. */
6302 random_signal
6303 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6304 ecs->event_thread->suspend.stop_signal);
6305
6306 /* Maybe this was a trap for a software breakpoint that has since
6307 been removed. */
6308 if (random_signal && target_stopped_by_sw_breakpoint ())
6309 {
6310 if (gdbarch_program_breakpoint_here_p (gdbarch,
6311 ecs->event_thread->suspend.stop_pc))
6312 {
6313 struct regcache *regcache;
6314 int decr_pc;
6315
6316 /* Re-adjust PC to what the program would see if GDB was not
6317 debugging it. */
6318 regcache = get_thread_regcache (ecs->event_thread);
6319 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6320 if (decr_pc != 0)
6321 {
6322 gdb::optional<scoped_restore_tmpl<int>>
6323 restore_operation_disable;
6324
6325 if (record_full_is_used ())
6326 restore_operation_disable.emplace
6327 (record_full_gdb_operation_disable_set ());
6328
6329 regcache_write_pc (regcache,
6330 ecs->event_thread->suspend.stop_pc + decr_pc);
6331 }
6332 }
6333 else
6334 {
6335 /* A delayed software breakpoint event. Ignore the trap. */
6336 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
6337 random_signal = 0;
6338 }
6339 }
6340
6341 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6342 has since been removed. */
6343 if (random_signal && target_stopped_by_hw_breakpoint ())
6344 {
6345 /* A delayed hardware breakpoint event. Ignore the trap. */
6346 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6347 "trap, ignoring");
6348 random_signal = 0;
6349 }
6350
6351 /* If not, perhaps stepping/nexting can. */
6352 if (random_signal)
6353 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6354 && currently_stepping (ecs->event_thread));
6355
6356 /* Perhaps the thread hit a single-step breakpoint of _another_
6357 thread. Single-step breakpoints are transparent to the
6358 breakpoints module. */
6359 if (random_signal)
6360 random_signal = !ecs->hit_singlestep_breakpoint;
6361
6362 /* No? Perhaps we got a moribund watchpoint. */
6363 if (random_signal)
6364 random_signal = !stopped_by_watchpoint;
6365
6366 /* Always stop if the user explicitly requested this thread to
6367 remain stopped. */
6368 if (ecs->event_thread->stop_requested)
6369 {
6370 random_signal = 1;
6371 infrun_debug_printf ("user-requested stop");
6372 }
6373
6374 /* For the program's own signals, act according to
6375 the signal handling tables. */
6376
6377 if (random_signal)
6378 {
6379 /* Signal not for debugging purposes. */
6380 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6381
6382 infrun_debug_printf ("random signal (%s)",
6383 gdb_signal_to_symbol_string (stop_signal));
6384
6385 stopped_by_random_signal = 1;
6386
6387 /* Always stop on signals if we're either just gaining control
6388 of the program, or the user explicitly requested this thread
6389 to remain stopped. */
6390 if (stop_soon != NO_STOP_QUIETLY
6391 || ecs->event_thread->stop_requested
6392 || signal_stop_state (ecs->event_thread->suspend.stop_signal))
6393 {
6394 stop_waiting (ecs);
6395 return;
6396 }
6397
6398 /* Notify observers the signal has "handle print" set. Note we
6399 returned early above if stopping; normal_stop handles the
6400 printing in that case. */
6401 if (signal_print[ecs->event_thread->suspend.stop_signal])
6402 {
6403 /* The signal table tells us to print about this signal. */
6404 target_terminal::ours_for_output ();
6405 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6406 target_terminal::inferior ();
6407 }
6408
6409 /* Clear the signal if it should not be passed. */
6410 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6411 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6412
6413 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6414 && ecs->event_thread->control.trap_expected
6415 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6416 {
6417 /* We were just starting a new sequence, attempting to
6418 single-step off of a breakpoint and expecting a SIGTRAP.
6419 Instead this signal arrives. This signal will take us out
6420 of the stepping range so GDB needs to remember to, when
6421 the signal handler returns, resume stepping off that
6422 breakpoint. */
6423 /* To simplify things, "continue" is forced to use the same
6424 code paths as single-step - set a breakpoint at the
6425 signal return address and then, once hit, step off that
6426 breakpoint. */
6427 infrun_debug_printf ("signal arrived while stepping over breakpoint");
6428
6429 insert_hp_step_resume_breakpoint_at_frame (frame);
6430 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6431 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6432 ecs->event_thread->control.trap_expected = 0;
6433
6434 /* If we were nexting/stepping some other thread, switch to
6435 it, so that we don't continue it, losing control. */
6436 if (!switch_back_to_stepped_thread (ecs))
6437 keep_going (ecs);
6438 return;
6439 }
6440
6441 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6442 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6443 ecs->event_thread)
6444 || ecs->event_thread->control.step_range_end == 1)
6445 && frame_id_eq (get_stack_frame_id (frame),
6446 ecs->event_thread->control.step_stack_frame_id)
6447 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6448 {
6449 /* The inferior is about to take a signal that will take it
6450 out of the single step range. Set a breakpoint at the
6451 current PC (which is presumably where the signal handler
6452 will eventually return) and then allow the inferior to
6453 run free.
6454
6455 Note that this is only needed for a signal delivered
6456 while in the single-step range. Nested signals aren't a
6457 problem as they eventually all return. */
6458 infrun_debug_printf ("signal may take us out of single-step range");
6459
6460 clear_step_over_info ();
6461 insert_hp_step_resume_breakpoint_at_frame (frame);
6462 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6463 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6464 ecs->event_thread->control.trap_expected = 0;
6465 keep_going (ecs);
6466 return;
6467 }
6468
6469 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6470 when either there's a nested signal, or when there's a
6471 pending signal enabled just as the signal handler returns
6472 (leaving the inferior at the step-resume-breakpoint without
6473 actually executing it). Either way continue until the
6474 breakpoint is really hit. */
6475
6476 if (!switch_back_to_stepped_thread (ecs))
6477 {
6478 infrun_debug_printf ("random signal, keep going");
6479
6480 keep_going (ecs);
6481 }
6482 return;
6483 }
6484
6485 process_event_stop_test (ecs);
6486 }
6487
6488 /* Come here when we've got some debug event / signal we can explain
6489 (IOW, not a random signal), and test whether it should cause a
6490 stop, or whether we should resume the inferior (transparently).
6491 E.g., could be a breakpoint whose condition evaluates false; we
6492 could be still stepping within the line; etc. */
6493
6494 static void
6495 process_event_stop_test (struct execution_control_state *ecs)
6496 {
6497 struct symtab_and_line stop_pc_sal;
6498 struct frame_info *frame;
6499 struct gdbarch *gdbarch;
6500 CORE_ADDR jmp_buf_pc;
6501 struct bpstat_what what;
6502
6503 /* Handle cases caused by hitting a breakpoint. */
6504
6505 frame = get_current_frame ();
6506 gdbarch = get_frame_arch (frame);
6507
6508 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6509
6510 if (what.call_dummy)
6511 {
6512 stop_stack_dummy = what.call_dummy;
6513 }
6514
6515 /* A few breakpoint types have callbacks associated (e.g.,
6516 bp_jit_event). Run them now. */
6517 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6518
6519 /* If we hit an internal event that triggers symbol changes, the
6520 current frame will be invalidated within bpstat_what (e.g., if we
6521 hit an internal solib event). Re-fetch it. */
6522 frame = get_current_frame ();
6523 gdbarch = get_frame_arch (frame);
6524
6525 switch (what.main_action)
6526 {
6527 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6528 /* If we hit the breakpoint at longjmp while stepping, we
6529 install a momentary breakpoint at the target of the
6530 jmp_buf. */
6531
6532 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6533
6534 ecs->event_thread->stepping_over_breakpoint = 1;
6535
6536 if (what.is_longjmp)
6537 {
6538 struct value *arg_value;
6539
6540 /* If we set the longjmp breakpoint via a SystemTap probe,
6541 then use it to extract the arguments. The destination PC
6542 is the third argument to the probe. */
6543 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6544 if (arg_value)
6545 {
6546 jmp_buf_pc = value_as_address (arg_value);
6547 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6548 }
6549 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6550 || !gdbarch_get_longjmp_target (gdbarch,
6551 frame, &jmp_buf_pc))
6552 {
6553 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6554 "(!gdbarch_get_longjmp_target)");
6555 keep_going (ecs);
6556 return;
6557 }
6558
6559 /* Insert a breakpoint at resume address. */
6560 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6561 }
6562 else
6563 check_exception_resume (ecs, frame);
6564 keep_going (ecs);
6565 return;
6566
6567 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6568 {
6569 struct frame_info *init_frame;
6570
6571 /* There are several cases to consider.
6572
6573 1. The initiating frame no longer exists. In this case we
6574 must stop, because the exception or longjmp has gone too
6575 far.
6576
6577 2. The initiating frame exists, and is the same as the
6578 current frame. We stop, because the exception or longjmp
6579 has been caught.
6580
6581 3. The initiating frame exists and is different from the
6582 current frame. This means the exception or longjmp has
6583 been caught beneath the initiating frame, so keep going.
6584
6585 4. longjmp breakpoint has been placed just to protect
6586 against stale dummy frames and user is not interested in
6587 stopping around longjmps. */
6588
6589 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6590
6591 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6592 != NULL);
6593 delete_exception_resume_breakpoint (ecs->event_thread);
6594
6595 if (what.is_longjmp)
6596 {
6597 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6598
6599 if (!frame_id_p (ecs->event_thread->initiating_frame))
6600 {
6601 /* Case 4. */
6602 keep_going (ecs);
6603 return;
6604 }
6605 }
6606
6607 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6608
6609 if (init_frame)
6610 {
6611 struct frame_id current_id
6612 = get_frame_id (get_current_frame ());
6613 if (frame_id_eq (current_id,
6614 ecs->event_thread->initiating_frame))
6615 {
6616 /* Case 2. Fall through. */
6617 }
6618 else
6619 {
6620 /* Case 3. */
6621 keep_going (ecs);
6622 return;
6623 }
6624 }
6625
6626 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6627 exists. */
6628 delete_step_resume_breakpoint (ecs->event_thread);
6629
6630 end_stepping_range (ecs);
6631 }
6632 return;
6633
6634 case BPSTAT_WHAT_SINGLE:
6635 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
6636 ecs->event_thread->stepping_over_breakpoint = 1;
6637 /* Still need to check other stuff, at least the case where we
6638 are stepping and step out of the right range. */
6639 break;
6640
6641 case BPSTAT_WHAT_STEP_RESUME:
6642 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
6643
6644 delete_step_resume_breakpoint (ecs->event_thread);
6645 if (ecs->event_thread->control.proceed_to_finish
6646 && execution_direction == EXEC_REVERSE)
6647 {
6648 struct thread_info *tp = ecs->event_thread;
6649
6650 /* We are finishing a function in reverse, and just hit the
6651 step-resume breakpoint at the start address of the
6652 function, and we're almost there -- just need to back up
6653 by one more single-step, which should take us back to the
6654 function call. */
6655 tp->control.step_range_start = tp->control.step_range_end = 1;
6656 keep_going (ecs);
6657 return;
6658 }
6659 fill_in_stop_func (gdbarch, ecs);
6660 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6661 && execution_direction == EXEC_REVERSE)
6662 {
6663 /* We are stepping over a function call in reverse, and just
6664 hit the step-resume breakpoint at the start address of
6665 the function. Go back to single-stepping, which should
6666 take us back to the function call. */
6667 ecs->event_thread->stepping_over_breakpoint = 1;
6668 keep_going (ecs);
6669 return;
6670 }
6671 break;
6672
6673 case BPSTAT_WHAT_STOP_NOISY:
6674 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
6675 stop_print_frame = true;
6676
6677 /* Assume the thread stopped for a breakpoint. We'll still check
6678 whether a/the breakpoint is there when the thread is next
6679 resumed. */
6680 ecs->event_thread->stepping_over_breakpoint = 1;
6681
6682 stop_waiting (ecs);
6683 return;
6684
6685 case BPSTAT_WHAT_STOP_SILENT:
6686 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
6687 stop_print_frame = false;
6688
6689 /* Assume the thread stopped for a breakpoint. We'll still check
6690 whether a/the breakpoint is there when the thread is next
6691 resumed. */
6692 ecs->event_thread->stepping_over_breakpoint = 1;
6693 stop_waiting (ecs);
6694 return;
6695
6696 case BPSTAT_WHAT_HP_STEP_RESUME:
6697 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
6698
6699 delete_step_resume_breakpoint (ecs->event_thread);
6700 if (ecs->event_thread->step_after_step_resume_breakpoint)
6701 {
6702 /* Back when the step-resume breakpoint was inserted, we
6703 were trying to single-step off a breakpoint. Go back to
6704 doing that. */
6705 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6706 ecs->event_thread->stepping_over_breakpoint = 1;
6707 keep_going (ecs);
6708 return;
6709 }
6710 break;
6711
6712 case BPSTAT_WHAT_KEEP_CHECKING:
6713 break;
6714 }
6715
6716 /* If we stepped a permanent breakpoint and we had a high priority
6717 step-resume breakpoint for the address we stepped, but we didn't
6718 hit it, then we must have stepped into the signal handler. The
6719 step-resume was only necessary to catch the case of _not_
6720 stepping into the handler, so delete it, and fall through to
6721 checking whether the step finished. */
6722 if (ecs->event_thread->stepped_breakpoint)
6723 {
6724 struct breakpoint *sr_bp
6725 = ecs->event_thread->control.step_resume_breakpoint;
6726
6727 if (sr_bp != NULL
6728 && sr_bp->loc->permanent
6729 && sr_bp->type == bp_hp_step_resume
6730 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6731 {
6732 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
6733 delete_step_resume_breakpoint (ecs->event_thread);
6734 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6735 }
6736 }
6737
6738 /* We come here if we hit a breakpoint but should not stop for it.
6739 Possibly we also were stepping and should stop for that. So fall
6740 through and test for stepping. But, if not stepping, do not
6741 stop. */
6742
6743 /* In all-stop mode, if we're currently stepping but have stopped in
6744 some other thread, we need to switch back to the stepped thread. */
6745 if (switch_back_to_stepped_thread (ecs))
6746 return;
6747
6748 if (ecs->event_thread->control.step_resume_breakpoint)
6749 {
6750 infrun_debug_printf ("step-resume breakpoint is inserted");
6751
6752 /* Having a step-resume breakpoint overrides anything
6753 else having to do with stepping commands until
6754 that breakpoint is reached. */
6755 keep_going (ecs);
6756 return;
6757 }
6758
6759 if (ecs->event_thread->control.step_range_end == 0)
6760 {
6761 infrun_debug_printf ("no stepping, continue");
6762 /* Likewise if we aren't even stepping. */
6763 keep_going (ecs);
6764 return;
6765 }
6766
6767 /* Re-fetch current thread's frame in case the code above caused
6768 the frame cache to be re-initialized, making our FRAME variable
6769 a dangling pointer. */
6770 frame = get_current_frame ();
6771 gdbarch = get_frame_arch (frame);
6772 fill_in_stop_func (gdbarch, ecs);
6773
6774 /* If stepping through a line, keep going if still within it.
6775
6776 Note that step_range_end is the address of the first instruction
6777 beyond the step range, and NOT the address of the last instruction
6778 within it!
6779
6780 Note also that during reverse execution, we may be stepping
6781 through a function epilogue and therefore must detect when
6782 the current-frame changes in the middle of a line. */
6783
6784 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6785 ecs->event_thread)
6786 && (execution_direction != EXEC_REVERSE
6787 || frame_id_eq (get_frame_id (frame),
6788 ecs->event_thread->control.step_frame_id)))
6789 {
6790 infrun_debug_printf
6791 ("stepping inside range [%s-%s]",
6792 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6793 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6794
6795 /* Tentatively re-enable range stepping; `resume' disables it if
6796 necessary (e.g., if we're stepping over a breakpoint or we
6797 have software watchpoints). */
6798 ecs->event_thread->control.may_range_step = 1;
6799
6800 /* When stepping backward, stop at beginning of line range
6801 (unless it's the function entry point, in which case
6802 keep going back to the call point). */
6803 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6804 if (stop_pc == ecs->event_thread->control.step_range_start
6805 && stop_pc != ecs->stop_func_start
6806 && execution_direction == EXEC_REVERSE)
6807 end_stepping_range (ecs);
6808 else
6809 keep_going (ecs);
6810
6811 return;
6812 }
6813
6814 /* We stepped out of the stepping range. */
6815
6816 /* If we are stepping at the source level and entered the runtime
6817 loader dynamic symbol resolution code...
6818
6819 EXEC_FORWARD: we keep on single stepping until we exit the run
6820 time loader code and reach the callee's address.
6821
6822 EXEC_REVERSE: we've already executed the callee (backward), and
6823 the runtime loader code is handled just like any other
6824 undebuggable function call. Now we need only keep stepping
6825 backward through the trampoline code, and that's handled further
6826 down, so there is nothing for us to do here. */
6827
6828 if (execution_direction != EXEC_REVERSE
6829 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6830 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6831 {
6832 CORE_ADDR pc_after_resolver =
6833 gdbarch_skip_solib_resolver (gdbarch,
6834 ecs->event_thread->suspend.stop_pc);
6835
6836 infrun_debug_printf ("stepped into dynsym resolve code");
6837
6838 if (pc_after_resolver)
6839 {
6840 /* Set up a step-resume breakpoint at the address
6841 indicated by SKIP_SOLIB_RESOLVER. */
6842 symtab_and_line sr_sal;
6843 sr_sal.pc = pc_after_resolver;
6844 sr_sal.pspace = get_frame_program_space (frame);
6845
6846 insert_step_resume_breakpoint_at_sal (gdbarch,
6847 sr_sal, null_frame_id);
6848 }
6849
6850 keep_going (ecs);
6851 return;
6852 }
6853
6854 /* Step through an indirect branch thunk. */
6855 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6856 && gdbarch_in_indirect_branch_thunk (gdbarch,
6857 ecs->event_thread->suspend.stop_pc))
6858 {
6859 infrun_debug_printf ("stepped into indirect branch thunk");
6860 keep_going (ecs);
6861 return;
6862 }
6863
6864 if (ecs->event_thread->control.step_range_end != 1
6865 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6866 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6867 && get_frame_type (frame) == SIGTRAMP_FRAME)
6868 {
6869 infrun_debug_printf ("stepped into signal trampoline");
6870 /* The inferior, while doing a "step" or "next", has ended up in
6871 a signal trampoline (either by a signal being delivered or by
6872 the signal handler returning). Just single-step until the
6873 inferior leaves the trampoline (either by calling the handler
6874 or returning). */
6875 keep_going (ecs);
6876 return;
6877 }
6878
6879 /* If we're in the return path from a shared library trampoline,
6880 we want to proceed through the trampoline when stepping. */
6881 /* macro/2012-04-25: This needs to come before the subroutine
6882 call check below as on some targets return trampolines look
6883 like subroutine calls (MIPS16 return thunks). */
6884 if (gdbarch_in_solib_return_trampoline (gdbarch,
6885 ecs->event_thread->suspend.stop_pc,
6886 ecs->stop_func_name)
6887 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6888 {
6889 /* Determine where this trampoline returns. */
6890 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6891 CORE_ADDR real_stop_pc
6892 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6893
6894 infrun_debug_printf ("stepped into solib return tramp");
6895
6896 /* Only proceed through if we know where it's going. */
6897 if (real_stop_pc)
6898 {
6899 /* And put the step-breakpoint there and go until there. */
6900 symtab_and_line sr_sal;
6901 sr_sal.pc = real_stop_pc;
6902 sr_sal.section = find_pc_overlay (sr_sal.pc);
6903 sr_sal.pspace = get_frame_program_space (frame);
6904
6905 /* Do not specify what the fp should be when we stop since
6906 on some machines the prologue is where the new fp value
6907 is established. */
6908 insert_step_resume_breakpoint_at_sal (gdbarch,
6909 sr_sal, null_frame_id);
6910
6911 /* Restart without fiddling with the step ranges or
6912 other state. */
6913 keep_going (ecs);
6914 return;
6915 }
6916 }
6917
6918 /* Check for subroutine calls. The check for the current frame
6919 equalling the step ID is not necessary - the check of the
6920 previous frame's ID is sufficient - but it is a common case and
6921 cheaper than checking the previous frame's ID.
6922
6923 NOTE: frame_id_eq will never report two invalid frame IDs as
6924 being equal, so to get into this block, both the current and
6925 previous frame must have valid frame IDs. */
6926 /* The outer_frame_id check is a heuristic to detect stepping
6927 through startup code. If we step over an instruction which
6928 sets the stack pointer from an invalid value to a valid value,
6929 we may detect that as a subroutine call from the mythical
6930 "outermost" function. This could be fixed by marking
6931 outermost frames as !stack_p,code_p,special_p. Then the
6932 initial outermost frame, before sp was valid, would
6933 have code_addr == &_start. See the comment in frame_id_eq
6934 for more. */
6935 if (!frame_id_eq (get_stack_frame_id (frame),
6936 ecs->event_thread->control.step_stack_frame_id)
6937 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6938 ecs->event_thread->control.step_stack_frame_id)
6939 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6940 outer_frame_id)
6941 || (ecs->event_thread->control.step_start_function
6942 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6943 {
6944 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6945 CORE_ADDR real_stop_pc;
6946
6947 infrun_debug_printf ("stepped into subroutine");
6948
6949 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6950 {
6951 /* I presume that step_over_calls is only 0 when we're
6952 supposed to be stepping at the assembly language level
6953 ("stepi"). Just stop. */
6954 /* And this works the same backward as frontward. MVS */
6955 end_stepping_range (ecs);
6956 return;
6957 }
6958
6959 /* Reverse stepping through solib trampolines. */
6960
6961 if (execution_direction == EXEC_REVERSE
6962 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6963 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6964 || (ecs->stop_func_start == 0
6965 && in_solib_dynsym_resolve_code (stop_pc))))
6966 {
6967 /* Any solib trampoline code can be handled in reverse
6968 by simply continuing to single-step. We have already
6969 executed the solib function (backwards), and a few
6970 steps will take us back through the trampoline to the
6971 caller. */
6972 keep_going (ecs);
6973 return;
6974 }
6975
6976 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6977 {
6978 /* We're doing a "next".
6979
6980 Normal (forward) execution: set a breakpoint at the
6981 callee's return address (the address at which the caller
6982 will resume).
6983
6984 Reverse (backward) execution. set the step-resume
6985 breakpoint at the start of the function that we just
6986 stepped into (backwards), and continue to there. When we
6987 get there, we'll need to single-step back to the caller. */
6988
6989 if (execution_direction == EXEC_REVERSE)
6990 {
6991 /* If we're already at the start of the function, we've either
6992 just stepped backward into a single instruction function,
6993 or stepped back out of a signal handler to the first instruction
6994 of the function. Just keep going, which will single-step back
6995 to the caller. */
6996 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6997 {
6998 /* Normal function call return (static or dynamic). */
6999 symtab_and_line sr_sal;
7000 sr_sal.pc = ecs->stop_func_start;
7001 sr_sal.pspace = get_frame_program_space (frame);
7002 insert_step_resume_breakpoint_at_sal (gdbarch,
7003 sr_sal, null_frame_id);
7004 }
7005 }
7006 else
7007 insert_step_resume_breakpoint_at_caller (frame);
7008
7009 keep_going (ecs);
7010 return;
7011 }
7012
7013 /* If we are in a function call trampoline (a stub between the
7014 calling routine and the real function), locate the real
7015 function. That's what tells us (a) whether we want to step
7016 into it at all, and (b) what prologue we want to run to the
7017 end of, if we do step into it. */
7018 real_stop_pc = skip_language_trampoline (frame, stop_pc);
7019 if (real_stop_pc == 0)
7020 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
7021 if (real_stop_pc != 0)
7022 ecs->stop_func_start = real_stop_pc;
7023
7024 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
7025 {
7026 symtab_and_line sr_sal;
7027 sr_sal.pc = ecs->stop_func_start;
7028 sr_sal.pspace = get_frame_program_space (frame);
7029
7030 insert_step_resume_breakpoint_at_sal (gdbarch,
7031 sr_sal, null_frame_id);
7032 keep_going (ecs);
7033 return;
7034 }
7035
7036 /* If we have line number information for the function we are
7037 thinking of stepping into and the function isn't on the skip
7038 list, step into it.
7039
7040 If there are several symtabs at that PC (e.g. with include
7041 files), just want to know whether *any* of them have line
7042 numbers. find_pc_line handles this. */
7043 {
7044 struct symtab_and_line tmp_sal;
7045
7046 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
7047 if (tmp_sal.line != 0
7048 && !function_name_is_marked_for_skip (ecs->stop_func_name,
7049 tmp_sal)
7050 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
7051 {
7052 if (execution_direction == EXEC_REVERSE)
7053 handle_step_into_function_backward (gdbarch, ecs);
7054 else
7055 handle_step_into_function (gdbarch, ecs);
7056 return;
7057 }
7058 }
7059
7060 /* If we have no line number and the step-stop-if-no-debug is
7061 set, we stop the step so that the user has a chance to switch
7062 in assembly mode. */
7063 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7064 && step_stop_if_no_debug)
7065 {
7066 end_stepping_range (ecs);
7067 return;
7068 }
7069
7070 if (execution_direction == EXEC_REVERSE)
7071 {
7072 /* If we're already at the start of the function, we've either just
7073 stepped backward into a single instruction function without line
7074 number info, or stepped back out of a signal handler to the first
7075 instruction of the function without line number info. Just keep
7076 going, which will single-step back to the caller. */
7077 if (ecs->stop_func_start != stop_pc)
7078 {
7079 /* Set a breakpoint at callee's start address.
7080 From there we can step once and be back in the caller. */
7081 symtab_and_line sr_sal;
7082 sr_sal.pc = ecs->stop_func_start;
7083 sr_sal.pspace = get_frame_program_space (frame);
7084 insert_step_resume_breakpoint_at_sal (gdbarch,
7085 sr_sal, null_frame_id);
7086 }
7087 }
7088 else
7089 /* Set a breakpoint at callee's return address (the address
7090 at which the caller will resume). */
7091 insert_step_resume_breakpoint_at_caller (frame);
7092
7093 keep_going (ecs);
7094 return;
7095 }
7096
7097 /* Reverse stepping through solib trampolines. */
7098
7099 if (execution_direction == EXEC_REVERSE
7100 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
7101 {
7102 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7103
7104 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7105 || (ecs->stop_func_start == 0
7106 && in_solib_dynsym_resolve_code (stop_pc)))
7107 {
7108 /* Any solib trampoline code can be handled in reverse
7109 by simply continuing to single-step. We have already
7110 executed the solib function (backwards), and a few
7111 steps will take us back through the trampoline to the
7112 caller. */
7113 keep_going (ecs);
7114 return;
7115 }
7116 else if (in_solib_dynsym_resolve_code (stop_pc))
7117 {
7118 /* Stepped backward into the solib dynsym resolver.
7119 Set a breakpoint at its start and continue, then
7120 one more step will take us out. */
7121 symtab_and_line sr_sal;
7122 sr_sal.pc = ecs->stop_func_start;
7123 sr_sal.pspace = get_frame_program_space (frame);
7124 insert_step_resume_breakpoint_at_sal (gdbarch,
7125 sr_sal, null_frame_id);
7126 keep_going (ecs);
7127 return;
7128 }
7129 }
7130
7131 /* This always returns the sal for the inner-most frame when we are in a
7132 stack of inlined frames, even if GDB actually believes that it is in a
7133 more outer frame. This is checked for below by calls to
7134 inline_skipped_frames. */
7135 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7136
7137 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7138 the trampoline processing logic, however, there are some trampolines
7139 that have no names, so we should do trampoline handling first. */
7140 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7141 && ecs->stop_func_name == NULL
7142 && stop_pc_sal.line == 0)
7143 {
7144 infrun_debug_printf ("stepped into undebuggable function");
7145
7146 /* The inferior just stepped into, or returned to, an
7147 undebuggable function (where there is no debugging information
7148 and no line number corresponding to the address where the
7149 inferior stopped). Since we want to skip this kind of code,
7150 we keep going until the inferior returns from this
7151 function - unless the user has asked us not to (via
7152 set step-mode) or we no longer know how to get back
7153 to the call site. */
7154 if (step_stop_if_no_debug
7155 || !frame_id_p (frame_unwind_caller_id (frame)))
7156 {
7157 /* If we have no line number and the step-stop-if-no-debug
7158 is set, we stop the step so that the user has a chance to
7159 switch in assembly mode. */
7160 end_stepping_range (ecs);
7161 return;
7162 }
7163 else
7164 {
7165 /* Set a breakpoint at callee's return address (the address
7166 at which the caller will resume). */
7167 insert_step_resume_breakpoint_at_caller (frame);
7168 keep_going (ecs);
7169 return;
7170 }
7171 }
7172
7173 if (ecs->event_thread->control.step_range_end == 1)
7174 {
7175 /* It is stepi or nexti. We always want to stop stepping after
7176 one instruction. */
7177 infrun_debug_printf ("stepi/nexti");
7178 end_stepping_range (ecs);
7179 return;
7180 }
7181
7182 if (stop_pc_sal.line == 0)
7183 {
7184 /* We have no line number information. That means to stop
7185 stepping (does this always happen right after one instruction,
7186 when we do "s" in a function with no line numbers,
7187 or can this happen as a result of a return or longjmp?). */
7188 infrun_debug_printf ("line number info");
7189 end_stepping_range (ecs);
7190 return;
7191 }
7192
7193 /* Look for "calls" to inlined functions, part one. If the inline
7194 frame machinery detected some skipped call sites, we have entered
7195 a new inline function. */
7196
7197 if (frame_id_eq (get_frame_id (get_current_frame ()),
7198 ecs->event_thread->control.step_frame_id)
7199 && inline_skipped_frames (ecs->event_thread))
7200 {
7201 infrun_debug_printf ("stepped into inlined function");
7202
7203 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7204
7205 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7206 {
7207 /* For "step", we're going to stop. But if the call site
7208 for this inlined function is on the same source line as
7209 we were previously stepping, go down into the function
7210 first. Otherwise stop at the call site. */
7211
7212 if (call_sal.line == ecs->event_thread->current_line
7213 && call_sal.symtab == ecs->event_thread->current_symtab)
7214 {
7215 step_into_inline_frame (ecs->event_thread);
7216 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7217 {
7218 keep_going (ecs);
7219 return;
7220 }
7221 }
7222
7223 end_stepping_range (ecs);
7224 return;
7225 }
7226 else
7227 {
7228 /* For "next", we should stop at the call site if it is on a
7229 different source line. Otherwise continue through the
7230 inlined function. */
7231 if (call_sal.line == ecs->event_thread->current_line
7232 && call_sal.symtab == ecs->event_thread->current_symtab)
7233 keep_going (ecs);
7234 else
7235 end_stepping_range (ecs);
7236 return;
7237 }
7238 }
7239
7240 /* Look for "calls" to inlined functions, part two. If we are still
7241 in the same real function we were stepping through, but we have
7242 to go further up to find the exact frame ID, we are stepping
7243 through a more inlined call beyond its call site. */
7244
7245 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7246 && !frame_id_eq (get_frame_id (get_current_frame ()),
7247 ecs->event_thread->control.step_frame_id)
7248 && stepped_in_from (get_current_frame (),
7249 ecs->event_thread->control.step_frame_id))
7250 {
7251 infrun_debug_printf ("stepping through inlined function");
7252
7253 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7254 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7255 keep_going (ecs);
7256 else
7257 end_stepping_range (ecs);
7258 return;
7259 }
7260
7261 bool refresh_step_info = true;
7262 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7263 && (ecs->event_thread->current_line != stop_pc_sal.line
7264 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7265 {
7266 /* We are at a different line. */
7267
7268 if (stop_pc_sal.is_stmt)
7269 {
7270 /* We are at the start of a statement.
7271
7272 So stop. Note that we don't stop if we step into the middle of a
7273 statement. That is said to make things like for (;;) statements
7274 work better. */
7275 infrun_debug_printf ("stepped to a different line");
7276 end_stepping_range (ecs);
7277 return;
7278 }
7279 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7280 ecs->event_thread->control.step_frame_id))
7281 {
7282 /* We are not at the start of a statement, and we have not changed
7283 frame.
7284
7285 We ignore this line table entry, and continue stepping forward,
7286 looking for a better place to stop. */
7287 refresh_step_info = false;
7288 infrun_debug_printf ("stepped to a different line, but "
7289 "it's not the start of a statement");
7290 }
7291 else
7292 {
7293 /* We are not the start of a statement, and we have changed frame.
7294
7295 We ignore this line table entry, and continue stepping forward,
7296 looking for a better place to stop. Keep refresh_step_info at
7297 true to note that the frame has changed, but ignore the line
7298 number to make sure we don't ignore a subsequent entry with the
7299 same line number. */
7300 stop_pc_sal.line = 0;
7301 infrun_debug_printf ("stepped to a different frame, but "
7302 "it's not the start of a statement");
7303 }
7304 }
7305
7306 /* We aren't done stepping.
7307
7308 Optimize by setting the stepping range to the line.
7309 (We might not be in the original line, but if we entered a
7310 new line in mid-statement, we continue stepping. This makes
7311 things like for(;;) statements work better.)
7312
7313 If we entered a SAL that indicates a non-statement line table entry,
7314 then we update the stepping range, but we don't update the step info,
7315 which includes things like the line number we are stepping away from.
7316 This means we will stop when we find a line table entry that is marked
7317 as is-statement, even if it matches the non-statement one we just
7318 stepped into. */
7319
7320 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7321 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7322 ecs->event_thread->control.may_range_step = 1;
7323 if (refresh_step_info)
7324 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7325
7326 infrun_debug_printf ("keep going");
7327 keep_going (ecs);
7328 }
7329
7330 static bool restart_stepped_thread (process_stratum_target *resume_target,
7331 ptid_t resume_ptid);
7332
7333 /* In all-stop mode, if we're currently stepping but have stopped in
7334 some other thread, we may need to switch back to the stepped
7335 thread. Returns true we set the inferior running, false if we left
7336 it stopped (and the event needs further processing). */
7337
7338 static bool
7339 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7340 {
7341 if (!target_is_non_stop_p ())
7342 {
7343 /* If any thread is blocked on some internal breakpoint, and we
7344 simply need to step over that breakpoint to get it going
7345 again, do that first. */
7346
7347 /* However, if we see an event for the stepping thread, then we
7348 know all other threads have been moved past their breakpoints
7349 already. Let the caller check whether the step is finished,
7350 etc., before deciding to move it past a breakpoint. */
7351 if (ecs->event_thread->control.step_range_end != 0)
7352 return false;
7353
7354 /* Check if the current thread is blocked on an incomplete
7355 step-over, interrupted by a random signal. */
7356 if (ecs->event_thread->control.trap_expected
7357 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7358 {
7359 infrun_debug_printf
7360 ("need to finish step-over of [%s]",
7361 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7362 keep_going (ecs);
7363 return true;
7364 }
7365
7366 /* Check if the current thread is blocked by a single-step
7367 breakpoint of another thread. */
7368 if (ecs->hit_singlestep_breakpoint)
7369 {
7370 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7371 target_pid_to_str (ecs->ptid).c_str ());
7372 keep_going (ecs);
7373 return true;
7374 }
7375
7376 /* If this thread needs yet another step-over (e.g., stepping
7377 through a delay slot), do it first before moving on to
7378 another thread. */
7379 if (thread_still_needs_step_over (ecs->event_thread))
7380 {
7381 infrun_debug_printf
7382 ("thread [%s] still needs step-over",
7383 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7384 keep_going (ecs);
7385 return true;
7386 }
7387
7388 /* If scheduler locking applies even if not stepping, there's no
7389 need to walk over threads. Above we've checked whether the
7390 current thread is stepping. If some other thread not the
7391 event thread is stepping, then it must be that scheduler
7392 locking is not in effect. */
7393 if (schedlock_applies (ecs->event_thread))
7394 return false;
7395
7396 /* Otherwise, we no longer expect a trap in the current thread.
7397 Clear the trap_expected flag before switching back -- this is
7398 what keep_going does as well, if we call it. */
7399 ecs->event_thread->control.trap_expected = 0;
7400
7401 /* Likewise, clear the signal if it should not be passed. */
7402 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7403 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7404
7405 if (restart_stepped_thread (ecs->target, ecs->ptid))
7406 {
7407 prepare_to_wait (ecs);
7408 return true;
7409 }
7410
7411 switch_to_thread (ecs->event_thread);
7412 }
7413
7414 return false;
7415 }
7416
7417 /* Look for the thread that was stepping, and resume it.
7418 RESUME_TARGET / RESUME_PTID indicate the set of threads the caller
7419 is resuming. Return true if a thread was started, false
7420 otherwise. */
7421
7422 static bool
7423 restart_stepped_thread (process_stratum_target *resume_target,
7424 ptid_t resume_ptid)
7425 {
7426 /* Do all pending step-overs before actually proceeding with
7427 step/next/etc. */
7428 if (start_step_over ())
7429 return true;
7430
7431 for (thread_info *tp : all_threads_safe ())
7432 {
7433 if (tp->state == THREAD_EXITED)
7434 continue;
7435
7436 if (tp->suspend.waitstatus_pending_p)
7437 continue;
7438
7439 /* Ignore threads of processes the caller is not
7440 resuming. */
7441 if (!sched_multi
7442 && (tp->inf->process_target () != resume_target
7443 || tp->inf->pid != resume_ptid.pid ()))
7444 continue;
7445
7446 if (tp->control.trap_expected)
7447 {
7448 infrun_debug_printf ("switching back to stepped thread (step-over)");
7449
7450 if (keep_going_stepped_thread (tp))
7451 return true;
7452 }
7453 }
7454
7455 for (thread_info *tp : all_threads_safe ())
7456 {
7457 if (tp->state == THREAD_EXITED)
7458 continue;
7459
7460 if (tp->suspend.waitstatus_pending_p)
7461 continue;
7462
7463 /* Ignore threads of processes the caller is not
7464 resuming. */
7465 if (!sched_multi
7466 && (tp->inf->process_target () != resume_target
7467 || tp->inf->pid != resume_ptid.pid ()))
7468 continue;
7469
7470 /* Did we find the stepping thread? */
7471 if (tp->control.step_range_end)
7472 {
7473 infrun_debug_printf ("switching back to stepped thread (stepping)");
7474
7475 if (keep_going_stepped_thread (tp))
7476 return true;
7477 }
7478 }
7479
7480 return false;
7481 }
7482
7483 /* See infrun.h. */
7484
7485 void
7486 restart_after_all_stop_detach (process_stratum_target *proc_target)
7487 {
7488 /* Note we don't check target_is_non_stop_p() here, because the
7489 current inferior may no longer have a process_stratum target
7490 pushed, as we just detached. */
7491
7492 /* See if we have a THREAD_RUNNING thread that need to be
7493 re-resumed. If we have any thread that is already executing,
7494 then we don't need to resume the target -- it is already been
7495 resumed. With the remote target (in all-stop), it's even
7496 impossible to issue another resumption if the target is already
7497 resumed, until the target reports a stop. */
7498 for (thread_info *thr : all_threads (proc_target))
7499 {
7500 if (thr->state != THREAD_RUNNING)
7501 continue;
7502
7503 /* If we have any thread that is already executing, then we
7504 don't need to resume the target -- it is already been
7505 resumed. */
7506 if (thr->executing)
7507 return;
7508
7509 /* If we have a pending event to process, skip resuming the
7510 target and go straight to processing it. */
7511 if (thr->resumed && thr->suspend.waitstatus_pending_p)
7512 return;
7513 }
7514
7515 /* Alright, we need to re-resume the target. If a thread was
7516 stepping, we need to restart it stepping. */
7517 if (restart_stepped_thread (proc_target, minus_one_ptid))
7518 return;
7519
7520 /* Otherwise, find the first THREAD_RUNNING thread and resume
7521 it. */
7522 for (thread_info *thr : all_threads (proc_target))
7523 {
7524 if (thr->state != THREAD_RUNNING)
7525 continue;
7526
7527 execution_control_state ecs;
7528 reset_ecs (&ecs, thr);
7529 switch_to_thread (thr);
7530 keep_going (&ecs);
7531 return;
7532 }
7533 }
7534
7535 /* Set a previously stepped thread back to stepping. Returns true on
7536 success, false if the resume is not possible (e.g., the thread
7537 vanished). */
7538
7539 static bool
7540 keep_going_stepped_thread (struct thread_info *tp)
7541 {
7542 struct frame_info *frame;
7543 struct execution_control_state ecss;
7544 struct execution_control_state *ecs = &ecss;
7545
7546 /* If the stepping thread exited, then don't try to switch back and
7547 resume it, which could fail in several different ways depending
7548 on the target. Instead, just keep going.
7549
7550 We can find a stepping dead thread in the thread list in two
7551 cases:
7552
7553 - The target supports thread exit events, and when the target
7554 tries to delete the thread from the thread list, inferior_ptid
7555 pointed at the exiting thread. In such case, calling
7556 delete_thread does not really remove the thread from the list;
7557 instead, the thread is left listed, with 'exited' state.
7558
7559 - The target's debug interface does not support thread exit
7560 events, and so we have no idea whatsoever if the previously
7561 stepping thread is still alive. For that reason, we need to
7562 synchronously query the target now. */
7563
7564 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7565 {
7566 infrun_debug_printf ("not resuming previously stepped thread, it has "
7567 "vanished");
7568
7569 delete_thread (tp);
7570 return false;
7571 }
7572
7573 infrun_debug_printf ("resuming previously stepped thread");
7574
7575 reset_ecs (ecs, tp);
7576 switch_to_thread (tp);
7577
7578 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7579 frame = get_current_frame ();
7580
7581 /* If the PC of the thread we were trying to single-step has
7582 changed, then that thread has trapped or been signaled, but the
7583 event has not been reported to GDB yet. Re-poll the target
7584 looking for this particular thread's event (i.e. temporarily
7585 enable schedlock) by:
7586
7587 - setting a break at the current PC
7588 - resuming that particular thread, only (by setting trap
7589 expected)
7590
7591 This prevents us continuously moving the single-step breakpoint
7592 forward, one instruction at a time, overstepping. */
7593
7594 if (tp->suspend.stop_pc != tp->prev_pc)
7595 {
7596 ptid_t resume_ptid;
7597
7598 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7599 paddress (target_gdbarch (), tp->prev_pc),
7600 paddress (target_gdbarch (), tp->suspend.stop_pc));
7601
7602 /* Clear the info of the previous step-over, as it's no longer
7603 valid (if the thread was trying to step over a breakpoint, it
7604 has already succeeded). It's what keep_going would do too,
7605 if we called it. Do this before trying to insert the sss
7606 breakpoint, otherwise if we were previously trying to step
7607 over this exact address in another thread, the breakpoint is
7608 skipped. */
7609 clear_step_over_info ();
7610 tp->control.trap_expected = 0;
7611
7612 insert_single_step_breakpoint (get_frame_arch (frame),
7613 get_frame_address_space (frame),
7614 tp->suspend.stop_pc);
7615
7616 tp->resumed = true;
7617 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7618 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
7619 }
7620 else
7621 {
7622 infrun_debug_printf ("expected thread still hasn't advanced");
7623
7624 keep_going_pass_signal (ecs);
7625 }
7626
7627 return true;
7628 }
7629
7630 /* Is thread TP in the middle of (software or hardware)
7631 single-stepping? (Note the result of this function must never be
7632 passed directly as target_resume's STEP parameter.) */
7633
7634 static bool
7635 currently_stepping (struct thread_info *tp)
7636 {
7637 return ((tp->control.step_range_end
7638 && tp->control.step_resume_breakpoint == NULL)
7639 || tp->control.trap_expected
7640 || tp->stepped_breakpoint
7641 || bpstat_should_step ());
7642 }
7643
7644 /* Inferior has stepped into a subroutine call with source code that
7645 we should not step over. Do step to the first line of code in
7646 it. */
7647
7648 static void
7649 handle_step_into_function (struct gdbarch *gdbarch,
7650 struct execution_control_state *ecs)
7651 {
7652 fill_in_stop_func (gdbarch, ecs);
7653
7654 compunit_symtab *cust
7655 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7656 if (cust != NULL && compunit_language (cust) != language_asm)
7657 ecs->stop_func_start
7658 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7659
7660 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7661 /* Use the step_resume_break to step until the end of the prologue,
7662 even if that involves jumps (as it seems to on the vax under
7663 4.2). */
7664 /* If the prologue ends in the middle of a source line, continue to
7665 the end of that source line (if it is still within the function).
7666 Otherwise, just go to end of prologue. */
7667 if (stop_func_sal.end
7668 && stop_func_sal.pc != ecs->stop_func_start
7669 && stop_func_sal.end < ecs->stop_func_end)
7670 ecs->stop_func_start = stop_func_sal.end;
7671
7672 /* Architectures which require breakpoint adjustment might not be able
7673 to place a breakpoint at the computed address. If so, the test
7674 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7675 ecs->stop_func_start to an address at which a breakpoint may be
7676 legitimately placed.
7677
7678 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7679 made, GDB will enter an infinite loop when stepping through
7680 optimized code consisting of VLIW instructions which contain
7681 subinstructions corresponding to different source lines. On
7682 FR-V, it's not permitted to place a breakpoint on any but the
7683 first subinstruction of a VLIW instruction. When a breakpoint is
7684 set, GDB will adjust the breakpoint address to the beginning of
7685 the VLIW instruction. Thus, we need to make the corresponding
7686 adjustment here when computing the stop address. */
7687
7688 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7689 {
7690 ecs->stop_func_start
7691 = gdbarch_adjust_breakpoint_address (gdbarch,
7692 ecs->stop_func_start);
7693 }
7694
7695 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7696 {
7697 /* We are already there: stop now. */
7698 end_stepping_range (ecs);
7699 return;
7700 }
7701 else
7702 {
7703 /* Put the step-breakpoint there and go until there. */
7704 symtab_and_line sr_sal;
7705 sr_sal.pc = ecs->stop_func_start;
7706 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7707 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7708
7709 /* Do not specify what the fp should be when we stop since on
7710 some machines the prologue is where the new fp value is
7711 established. */
7712 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7713
7714 /* And make sure stepping stops right away then. */
7715 ecs->event_thread->control.step_range_end
7716 = ecs->event_thread->control.step_range_start;
7717 }
7718 keep_going (ecs);
7719 }
7720
7721 /* Inferior has stepped backward into a subroutine call with source
7722 code that we should not step over. Do step to the beginning of the
7723 last line of code in it. */
7724
7725 static void
7726 handle_step_into_function_backward (struct gdbarch *gdbarch,
7727 struct execution_control_state *ecs)
7728 {
7729 struct compunit_symtab *cust;
7730 struct symtab_and_line stop_func_sal;
7731
7732 fill_in_stop_func (gdbarch, ecs);
7733
7734 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7735 if (cust != NULL && compunit_language (cust) != language_asm)
7736 ecs->stop_func_start
7737 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7738
7739 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7740
7741 /* OK, we're just going to keep stepping here. */
7742 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7743 {
7744 /* We're there already. Just stop stepping now. */
7745 end_stepping_range (ecs);
7746 }
7747 else
7748 {
7749 /* Else just reset the step range and keep going.
7750 No step-resume breakpoint, they don't work for
7751 epilogues, which can have multiple entry paths. */
7752 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7753 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7754 keep_going (ecs);
7755 }
7756 return;
7757 }
7758
7759 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7760 This is used to both functions and to skip over code. */
7761
7762 static void
7763 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7764 struct symtab_and_line sr_sal,
7765 struct frame_id sr_id,
7766 enum bptype sr_type)
7767 {
7768 /* There should never be more than one step-resume or longjmp-resume
7769 breakpoint per thread, so we should never be setting a new
7770 step_resume_breakpoint when one is already active. */
7771 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7772 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7773
7774 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7775 paddress (gdbarch, sr_sal.pc));
7776
7777 inferior_thread ()->control.step_resume_breakpoint
7778 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7779 }
7780
7781 void
7782 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7783 struct symtab_and_line sr_sal,
7784 struct frame_id sr_id)
7785 {
7786 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7787 sr_sal, sr_id,
7788 bp_step_resume);
7789 }
7790
7791 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7792 This is used to skip a potential signal handler.
7793
7794 This is called with the interrupted function's frame. The signal
7795 handler, when it returns, will resume the interrupted function at
7796 RETURN_FRAME.pc. */
7797
7798 static void
7799 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7800 {
7801 gdb_assert (return_frame != NULL);
7802
7803 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7804
7805 symtab_and_line sr_sal;
7806 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7807 sr_sal.section = find_pc_overlay (sr_sal.pc);
7808 sr_sal.pspace = get_frame_program_space (return_frame);
7809
7810 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7811 get_stack_frame_id (return_frame),
7812 bp_hp_step_resume);
7813 }
7814
7815 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7816 is used to skip a function after stepping into it (for "next" or if
7817 the called function has no debugging information).
7818
7819 The current function has almost always been reached by single
7820 stepping a call or return instruction. NEXT_FRAME belongs to the
7821 current function, and the breakpoint will be set at the caller's
7822 resume address.
7823
7824 This is a separate function rather than reusing
7825 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7826 get_prev_frame, which may stop prematurely (see the implementation
7827 of frame_unwind_caller_id for an example). */
7828
7829 static void
7830 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7831 {
7832 /* We shouldn't have gotten here if we don't know where the call site
7833 is. */
7834 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7835
7836 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7837
7838 symtab_and_line sr_sal;
7839 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7840 frame_unwind_caller_pc (next_frame));
7841 sr_sal.section = find_pc_overlay (sr_sal.pc);
7842 sr_sal.pspace = frame_unwind_program_space (next_frame);
7843
7844 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7845 frame_unwind_caller_id (next_frame));
7846 }
7847
7848 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7849 new breakpoint at the target of a jmp_buf. The handling of
7850 longjmp-resume uses the same mechanisms used for handling
7851 "step-resume" breakpoints. */
7852
7853 static void
7854 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7855 {
7856 /* There should never be more than one longjmp-resume breakpoint per
7857 thread, so we should never be setting a new
7858 longjmp_resume_breakpoint when one is already active. */
7859 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7860
7861 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7862 paddress (gdbarch, pc));
7863
7864 inferior_thread ()->control.exception_resume_breakpoint =
7865 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7866 }
7867
7868 /* Insert an exception resume breakpoint. TP is the thread throwing
7869 the exception. The block B is the block of the unwinder debug hook
7870 function. FRAME is the frame corresponding to the call to this
7871 function. SYM is the symbol of the function argument holding the
7872 target PC of the exception. */
7873
7874 static void
7875 insert_exception_resume_breakpoint (struct thread_info *tp,
7876 const struct block *b,
7877 struct frame_info *frame,
7878 struct symbol *sym)
7879 {
7880 try
7881 {
7882 struct block_symbol vsym;
7883 struct value *value;
7884 CORE_ADDR handler;
7885 struct breakpoint *bp;
7886
7887 vsym = lookup_symbol_search_name (sym->search_name (),
7888 b, VAR_DOMAIN);
7889 value = read_var_value (vsym.symbol, vsym.block, frame);
7890 /* If the value was optimized out, revert to the old behavior. */
7891 if (! value_optimized_out (value))
7892 {
7893 handler = value_as_address (value);
7894
7895 infrun_debug_printf ("exception resume at %lx",
7896 (unsigned long) handler);
7897
7898 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7899 handler,
7900 bp_exception_resume).release ();
7901
7902 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7903 frame = NULL;
7904
7905 bp->thread = tp->global_num;
7906 inferior_thread ()->control.exception_resume_breakpoint = bp;
7907 }
7908 }
7909 catch (const gdb_exception_error &e)
7910 {
7911 /* We want to ignore errors here. */
7912 }
7913 }
7914
7915 /* A helper for check_exception_resume that sets an
7916 exception-breakpoint based on a SystemTap probe. */
7917
7918 static void
7919 insert_exception_resume_from_probe (struct thread_info *tp,
7920 const struct bound_probe *probe,
7921 struct frame_info *frame)
7922 {
7923 struct value *arg_value;
7924 CORE_ADDR handler;
7925 struct breakpoint *bp;
7926
7927 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7928 if (!arg_value)
7929 return;
7930
7931 handler = value_as_address (arg_value);
7932
7933 infrun_debug_printf ("exception resume at %s",
7934 paddress (probe->objfile->arch (), handler));
7935
7936 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7937 handler, bp_exception_resume).release ();
7938 bp->thread = tp->global_num;
7939 inferior_thread ()->control.exception_resume_breakpoint = bp;
7940 }
7941
7942 /* This is called when an exception has been intercepted. Check to
7943 see whether the exception's destination is of interest, and if so,
7944 set an exception resume breakpoint there. */
7945
7946 static void
7947 check_exception_resume (struct execution_control_state *ecs,
7948 struct frame_info *frame)
7949 {
7950 struct bound_probe probe;
7951 struct symbol *func;
7952
7953 /* First see if this exception unwinding breakpoint was set via a
7954 SystemTap probe point. If so, the probe has two arguments: the
7955 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7956 set a breakpoint there. */
7957 probe = find_probe_by_pc (get_frame_pc (frame));
7958 if (probe.prob)
7959 {
7960 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7961 return;
7962 }
7963
7964 func = get_frame_function (frame);
7965 if (!func)
7966 return;
7967
7968 try
7969 {
7970 const struct block *b;
7971 struct block_iterator iter;
7972 struct symbol *sym;
7973 int argno = 0;
7974
7975 /* The exception breakpoint is a thread-specific breakpoint on
7976 the unwinder's debug hook, declared as:
7977
7978 void _Unwind_DebugHook (void *cfa, void *handler);
7979
7980 The CFA argument indicates the frame to which control is
7981 about to be transferred. HANDLER is the destination PC.
7982
7983 We ignore the CFA and set a temporary breakpoint at HANDLER.
7984 This is not extremely efficient but it avoids issues in gdb
7985 with computing the DWARF CFA, and it also works even in weird
7986 cases such as throwing an exception from inside a signal
7987 handler. */
7988
7989 b = SYMBOL_BLOCK_VALUE (func);
7990 ALL_BLOCK_SYMBOLS (b, iter, sym)
7991 {
7992 if (!SYMBOL_IS_ARGUMENT (sym))
7993 continue;
7994
7995 if (argno == 0)
7996 ++argno;
7997 else
7998 {
7999 insert_exception_resume_breakpoint (ecs->event_thread,
8000 b, frame, sym);
8001 break;
8002 }
8003 }
8004 }
8005 catch (const gdb_exception_error &e)
8006 {
8007 }
8008 }
8009
8010 static void
8011 stop_waiting (struct execution_control_state *ecs)
8012 {
8013 infrun_debug_printf ("stop_waiting");
8014
8015 /* Let callers know we don't want to wait for the inferior anymore. */
8016 ecs->wait_some_more = 0;
8017
8018 /* If all-stop, but there exists a non-stop target, stop all
8019 threads now that we're presenting the stop to the user. */
8020 if (!non_stop && exists_non_stop_target ())
8021 stop_all_threads ();
8022 }
8023
8024 /* Like keep_going, but passes the signal to the inferior, even if the
8025 signal is set to nopass. */
8026
8027 static void
8028 keep_going_pass_signal (struct execution_control_state *ecs)
8029 {
8030 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
8031 gdb_assert (!ecs->event_thread->resumed);
8032
8033 /* Save the pc before execution, to compare with pc after stop. */
8034 ecs->event_thread->prev_pc
8035 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
8036
8037 if (ecs->event_thread->control.trap_expected)
8038 {
8039 struct thread_info *tp = ecs->event_thread;
8040
8041 infrun_debug_printf ("%s has trap_expected set, "
8042 "resuming to collect trap",
8043 target_pid_to_str (tp->ptid).c_str ());
8044
8045 /* We haven't yet gotten our trap, and either: intercepted a
8046 non-signal event (e.g., a fork); or took a signal which we
8047 are supposed to pass through to the inferior. Simply
8048 continue. */
8049 resume (ecs->event_thread->suspend.stop_signal);
8050 }
8051 else if (step_over_info_valid_p ())
8052 {
8053 /* Another thread is stepping over a breakpoint in-line. If
8054 this thread needs a step-over too, queue the request. In
8055 either case, this resume must be deferred for later. */
8056 struct thread_info *tp = ecs->event_thread;
8057
8058 if (ecs->hit_singlestep_breakpoint
8059 || thread_still_needs_step_over (tp))
8060 {
8061 infrun_debug_printf ("step-over already in progress: "
8062 "step-over for %s deferred",
8063 target_pid_to_str (tp->ptid).c_str ());
8064 global_thread_step_over_chain_enqueue (tp);
8065 }
8066 else
8067 {
8068 infrun_debug_printf ("step-over in progress: resume of %s deferred",
8069 target_pid_to_str (tp->ptid).c_str ());
8070 }
8071 }
8072 else
8073 {
8074 struct regcache *regcache = get_current_regcache ();
8075 int remove_bp;
8076 int remove_wps;
8077 step_over_what step_what;
8078
8079 /* Either the trap was not expected, but we are continuing
8080 anyway (if we got a signal, the user asked it be passed to
8081 the child)
8082 -- or --
8083 We got our expected trap, but decided we should resume from
8084 it.
8085
8086 We're going to run this baby now!
8087
8088 Note that insert_breakpoints won't try to re-insert
8089 already inserted breakpoints. Therefore, we don't
8090 care if breakpoints were already inserted, or not. */
8091
8092 /* If we need to step over a breakpoint, and we're not using
8093 displaced stepping to do so, insert all breakpoints
8094 (watchpoints, etc.) but the one we're stepping over, step one
8095 instruction, and then re-insert the breakpoint when that step
8096 is finished. */
8097
8098 step_what = thread_still_needs_step_over (ecs->event_thread);
8099
8100 remove_bp = (ecs->hit_singlestep_breakpoint
8101 || (step_what & STEP_OVER_BREAKPOINT));
8102 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
8103
8104 /* We can't use displaced stepping if we need to step past a
8105 watchpoint. The instruction copied to the scratch pad would
8106 still trigger the watchpoint. */
8107 if (remove_bp
8108 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
8109 {
8110 set_step_over_info (regcache->aspace (),
8111 regcache_read_pc (regcache), remove_wps,
8112 ecs->event_thread->global_num);
8113 }
8114 else if (remove_wps)
8115 set_step_over_info (NULL, 0, remove_wps, -1);
8116
8117 /* If we now need to do an in-line step-over, we need to stop
8118 all other threads. Note this must be done before
8119 insert_breakpoints below, because that removes the breakpoint
8120 we're about to step over, otherwise other threads could miss
8121 it. */
8122 if (step_over_info_valid_p () && target_is_non_stop_p ())
8123 stop_all_threads ();
8124
8125 /* Stop stepping if inserting breakpoints fails. */
8126 try
8127 {
8128 insert_breakpoints ();
8129 }
8130 catch (const gdb_exception_error &e)
8131 {
8132 exception_print (gdb_stderr, e);
8133 stop_waiting (ecs);
8134 clear_step_over_info ();
8135 return;
8136 }
8137
8138 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
8139
8140 resume (ecs->event_thread->suspend.stop_signal);
8141 }
8142
8143 prepare_to_wait (ecs);
8144 }
8145
8146 /* Called when we should continue running the inferior, because the
8147 current event doesn't cause a user visible stop. This does the
8148 resuming part; waiting for the next event is done elsewhere. */
8149
8150 static void
8151 keep_going (struct execution_control_state *ecs)
8152 {
8153 if (ecs->event_thread->control.trap_expected
8154 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8155 ecs->event_thread->control.trap_expected = 0;
8156
8157 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8158 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8159 keep_going_pass_signal (ecs);
8160 }
8161
8162 /* This function normally comes after a resume, before
8163 handle_inferior_event exits. It takes care of any last bits of
8164 housekeeping, and sets the all-important wait_some_more flag. */
8165
8166 static void
8167 prepare_to_wait (struct execution_control_state *ecs)
8168 {
8169 infrun_debug_printf ("prepare_to_wait");
8170
8171 ecs->wait_some_more = 1;
8172
8173 /* If the target can't async, emulate it by marking the infrun event
8174 handler such that as soon as we get back to the event-loop, we
8175 immediately end up in fetch_inferior_event again calling
8176 target_wait. */
8177 if (!target_can_async_p ())
8178 mark_infrun_async_event_handler ();
8179 }
8180
8181 /* We are done with the step range of a step/next/si/ni command.
8182 Called once for each n of a "step n" operation. */
8183
8184 static void
8185 end_stepping_range (struct execution_control_state *ecs)
8186 {
8187 ecs->event_thread->control.stop_step = 1;
8188 stop_waiting (ecs);
8189 }
8190
8191 /* Several print_*_reason functions to print why the inferior has stopped.
8192 We always print something when the inferior exits, or receives a signal.
8193 The rest of the cases are dealt with later on in normal_stop and
8194 print_it_typical. Ideally there should be a call to one of these
8195 print_*_reason functions functions from handle_inferior_event each time
8196 stop_waiting is called.
8197
8198 Note that we don't call these directly, instead we delegate that to
8199 the interpreters, through observers. Interpreters then call these
8200 with whatever uiout is right. */
8201
8202 void
8203 print_end_stepping_range_reason (struct ui_out *uiout)
8204 {
8205 /* For CLI-like interpreters, print nothing. */
8206
8207 if (uiout->is_mi_like_p ())
8208 {
8209 uiout->field_string ("reason",
8210 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8211 }
8212 }
8213
8214 void
8215 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8216 {
8217 annotate_signalled ();
8218 if (uiout->is_mi_like_p ())
8219 uiout->field_string
8220 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8221 uiout->text ("\nProgram terminated with signal ");
8222 annotate_signal_name ();
8223 uiout->field_string ("signal-name",
8224 gdb_signal_to_name (siggnal));
8225 annotate_signal_name_end ();
8226 uiout->text (", ");
8227 annotate_signal_string ();
8228 uiout->field_string ("signal-meaning",
8229 gdb_signal_to_string (siggnal));
8230 annotate_signal_string_end ();
8231 uiout->text (".\n");
8232 uiout->text ("The program no longer exists.\n");
8233 }
8234
8235 void
8236 print_exited_reason (struct ui_out *uiout, int exitstatus)
8237 {
8238 struct inferior *inf = current_inferior ();
8239 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8240
8241 annotate_exited (exitstatus);
8242 if (exitstatus)
8243 {
8244 if (uiout->is_mi_like_p ())
8245 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8246 std::string exit_code_str
8247 = string_printf ("0%o", (unsigned int) exitstatus);
8248 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8249 plongest (inf->num), pidstr.c_str (),
8250 string_field ("exit-code", exit_code_str.c_str ()));
8251 }
8252 else
8253 {
8254 if (uiout->is_mi_like_p ())
8255 uiout->field_string
8256 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8257 uiout->message ("[Inferior %s (%s) exited normally]\n",
8258 plongest (inf->num), pidstr.c_str ());
8259 }
8260 }
8261
8262 void
8263 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8264 {
8265 struct thread_info *thr = inferior_thread ();
8266
8267 annotate_signal ();
8268
8269 if (uiout->is_mi_like_p ())
8270 ;
8271 else if (show_thread_that_caused_stop ())
8272 {
8273 const char *name;
8274
8275 uiout->text ("\nThread ");
8276 uiout->field_string ("thread-id", print_thread_id (thr));
8277
8278 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8279 if (name != NULL)
8280 {
8281 uiout->text (" \"");
8282 uiout->field_string ("name", name);
8283 uiout->text ("\"");
8284 }
8285 }
8286 else
8287 uiout->text ("\nProgram");
8288
8289 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8290 uiout->text (" stopped");
8291 else
8292 {
8293 uiout->text (" received signal ");
8294 annotate_signal_name ();
8295 if (uiout->is_mi_like_p ())
8296 uiout->field_string
8297 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8298 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8299 annotate_signal_name_end ();
8300 uiout->text (", ");
8301 annotate_signal_string ();
8302 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8303
8304 struct regcache *regcache = get_current_regcache ();
8305 struct gdbarch *gdbarch = regcache->arch ();
8306 if (gdbarch_report_signal_info_p (gdbarch))
8307 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8308
8309 annotate_signal_string_end ();
8310 }
8311 uiout->text (".\n");
8312 }
8313
8314 void
8315 print_no_history_reason (struct ui_out *uiout)
8316 {
8317 uiout->text ("\nNo more reverse-execution history.\n");
8318 }
8319
8320 /* Print current location without a level number, if we have changed
8321 functions or hit a breakpoint. Print source line if we have one.
8322 bpstat_print contains the logic deciding in detail what to print,
8323 based on the event(s) that just occurred. */
8324
8325 static void
8326 print_stop_location (struct target_waitstatus *ws)
8327 {
8328 int bpstat_ret;
8329 enum print_what source_flag;
8330 int do_frame_printing = 1;
8331 struct thread_info *tp = inferior_thread ();
8332
8333 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8334 switch (bpstat_ret)
8335 {
8336 case PRINT_UNKNOWN:
8337 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8338 should) carry around the function and does (or should) use
8339 that when doing a frame comparison. */
8340 if (tp->control.stop_step
8341 && frame_id_eq (tp->control.step_frame_id,
8342 get_frame_id (get_current_frame ()))
8343 && (tp->control.step_start_function
8344 == find_pc_function (tp->suspend.stop_pc)))
8345 {
8346 /* Finished step, just print source line. */
8347 source_flag = SRC_LINE;
8348 }
8349 else
8350 {
8351 /* Print location and source line. */
8352 source_flag = SRC_AND_LOC;
8353 }
8354 break;
8355 case PRINT_SRC_AND_LOC:
8356 /* Print location and source line. */
8357 source_flag = SRC_AND_LOC;
8358 break;
8359 case PRINT_SRC_ONLY:
8360 source_flag = SRC_LINE;
8361 break;
8362 case PRINT_NOTHING:
8363 /* Something bogus. */
8364 source_flag = SRC_LINE;
8365 do_frame_printing = 0;
8366 break;
8367 default:
8368 internal_error (__FILE__, __LINE__, _("Unknown value."));
8369 }
8370
8371 /* The behavior of this routine with respect to the source
8372 flag is:
8373 SRC_LINE: Print only source line
8374 LOCATION: Print only location
8375 SRC_AND_LOC: Print location and source line. */
8376 if (do_frame_printing)
8377 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8378 }
8379
8380 /* See infrun.h. */
8381
8382 void
8383 print_stop_event (struct ui_out *uiout, bool displays)
8384 {
8385 struct target_waitstatus last;
8386 struct thread_info *tp;
8387
8388 get_last_target_status (nullptr, nullptr, &last);
8389
8390 {
8391 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8392
8393 print_stop_location (&last);
8394
8395 /* Display the auto-display expressions. */
8396 if (displays)
8397 do_displays ();
8398 }
8399
8400 tp = inferior_thread ();
8401 if (tp->thread_fsm != NULL
8402 && tp->thread_fsm->finished_p ())
8403 {
8404 struct return_value_info *rv;
8405
8406 rv = tp->thread_fsm->return_value ();
8407 if (rv != NULL)
8408 print_return_value (uiout, rv);
8409 }
8410 }
8411
8412 /* See infrun.h. */
8413
8414 void
8415 maybe_remove_breakpoints (void)
8416 {
8417 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
8418 {
8419 if (remove_breakpoints ())
8420 {
8421 target_terminal::ours_for_output ();
8422 printf_filtered (_("Cannot remove breakpoints because "
8423 "program is no longer writable.\nFurther "
8424 "execution is probably impossible.\n"));
8425 }
8426 }
8427 }
8428
8429 /* The execution context that just caused a normal stop. */
8430
8431 struct stop_context
8432 {
8433 stop_context ();
8434
8435 DISABLE_COPY_AND_ASSIGN (stop_context);
8436
8437 bool changed () const;
8438
8439 /* The stop ID. */
8440 ULONGEST stop_id;
8441
8442 /* The event PTID. */
8443
8444 ptid_t ptid;
8445
8446 /* If stopp for a thread event, this is the thread that caused the
8447 stop. */
8448 thread_info_ref thread;
8449
8450 /* The inferior that caused the stop. */
8451 int inf_num;
8452 };
8453
8454 /* Initializes a new stop context. If stopped for a thread event, this
8455 takes a strong reference to the thread. */
8456
8457 stop_context::stop_context ()
8458 {
8459 stop_id = get_stop_id ();
8460 ptid = inferior_ptid;
8461 inf_num = current_inferior ()->num;
8462
8463 if (inferior_ptid != null_ptid)
8464 {
8465 /* Take a strong reference so that the thread can't be deleted
8466 yet. */
8467 thread = thread_info_ref::new_reference (inferior_thread ());
8468 }
8469 }
8470
8471 /* Return true if the current context no longer matches the saved stop
8472 context. */
8473
8474 bool
8475 stop_context::changed () const
8476 {
8477 if (ptid != inferior_ptid)
8478 return true;
8479 if (inf_num != current_inferior ()->num)
8480 return true;
8481 if (thread != NULL && thread->state != THREAD_STOPPED)
8482 return true;
8483 if (get_stop_id () != stop_id)
8484 return true;
8485 return false;
8486 }
8487
8488 /* See infrun.h. */
8489
8490 int
8491 normal_stop (void)
8492 {
8493 struct target_waitstatus last;
8494
8495 get_last_target_status (nullptr, nullptr, &last);
8496
8497 new_stop_id ();
8498
8499 /* If an exception is thrown from this point on, make sure to
8500 propagate GDB's knowledge of the executing state to the
8501 frontend/user running state. A QUIT is an easy exception to see
8502 here, so do this before any filtered output. */
8503
8504 ptid_t finish_ptid = null_ptid;
8505
8506 if (!non_stop)
8507 finish_ptid = minus_one_ptid;
8508 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8509 || last.kind == TARGET_WAITKIND_EXITED)
8510 {
8511 /* On some targets, we may still have live threads in the
8512 inferior when we get a process exit event. E.g., for
8513 "checkpoint", when the current checkpoint/fork exits,
8514 linux-fork.c automatically switches to another fork from
8515 within target_mourn_inferior. */
8516 if (inferior_ptid != null_ptid)
8517 finish_ptid = ptid_t (inferior_ptid.pid ());
8518 }
8519 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8520 finish_ptid = inferior_ptid;
8521
8522 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8523 if (finish_ptid != null_ptid)
8524 {
8525 maybe_finish_thread_state.emplace
8526 (user_visible_resume_target (finish_ptid), finish_ptid);
8527 }
8528
8529 /* As we're presenting a stop, and potentially removing breakpoints,
8530 update the thread list so we can tell whether there are threads
8531 running on the target. With target remote, for example, we can
8532 only learn about new threads when we explicitly update the thread
8533 list. Do this before notifying the interpreters about signal
8534 stops, end of stepping ranges, etc., so that the "new thread"
8535 output is emitted before e.g., "Program received signal FOO",
8536 instead of after. */
8537 update_thread_list ();
8538
8539 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8540 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8541
8542 /* As with the notification of thread events, we want to delay
8543 notifying the user that we've switched thread context until
8544 the inferior actually stops.
8545
8546 There's no point in saying anything if the inferior has exited.
8547 Note that SIGNALLED here means "exited with a signal", not
8548 "received a signal".
8549
8550 Also skip saying anything in non-stop mode. In that mode, as we
8551 don't want GDB to switch threads behind the user's back, to avoid
8552 races where the user is typing a command to apply to thread x,
8553 but GDB switches to thread y before the user finishes entering
8554 the command, fetch_inferior_event installs a cleanup to restore
8555 the current thread back to the thread the user had selected right
8556 after this event is handled, so we're not really switching, only
8557 informing of a stop. */
8558 if (!non_stop
8559 && previous_inferior_ptid != inferior_ptid
8560 && target_has_execution ()
8561 && last.kind != TARGET_WAITKIND_SIGNALLED
8562 && last.kind != TARGET_WAITKIND_EXITED
8563 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8564 {
8565 SWITCH_THRU_ALL_UIS ()
8566 {
8567 target_terminal::ours_for_output ();
8568 printf_filtered (_("[Switching to %s]\n"),
8569 target_pid_to_str (inferior_ptid).c_str ());
8570 annotate_thread_changed ();
8571 }
8572 previous_inferior_ptid = inferior_ptid;
8573 }
8574
8575 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8576 {
8577 SWITCH_THRU_ALL_UIS ()
8578 if (current_ui->prompt_state == PROMPT_BLOCKED)
8579 {
8580 target_terminal::ours_for_output ();
8581 printf_filtered (_("No unwaited-for children left.\n"));
8582 }
8583 }
8584
8585 /* Note: this depends on the update_thread_list call above. */
8586 maybe_remove_breakpoints ();
8587
8588 /* If an auto-display called a function and that got a signal,
8589 delete that auto-display to avoid an infinite recursion. */
8590
8591 if (stopped_by_random_signal)
8592 disable_current_display ();
8593
8594 SWITCH_THRU_ALL_UIS ()
8595 {
8596 async_enable_stdin ();
8597 }
8598
8599 /* Let the user/frontend see the threads as stopped. */
8600 maybe_finish_thread_state.reset ();
8601
8602 /* Select innermost stack frame - i.e., current frame is frame 0,
8603 and current location is based on that. Handle the case where the
8604 dummy call is returning after being stopped. E.g. the dummy call
8605 previously hit a breakpoint. (If the dummy call returns
8606 normally, we won't reach here.) Do this before the stop hook is
8607 run, so that it doesn't get to see the temporary dummy frame,
8608 which is not where we'll present the stop. */
8609 if (has_stack_frames ())
8610 {
8611 if (stop_stack_dummy == STOP_STACK_DUMMY)
8612 {
8613 /* Pop the empty frame that contains the stack dummy. This
8614 also restores inferior state prior to the call (struct
8615 infcall_suspend_state). */
8616 struct frame_info *frame = get_current_frame ();
8617
8618 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8619 frame_pop (frame);
8620 /* frame_pop calls reinit_frame_cache as the last thing it
8621 does which means there's now no selected frame. */
8622 }
8623
8624 select_frame (get_current_frame ());
8625
8626 /* Set the current source location. */
8627 set_current_sal_from_frame (get_current_frame ());
8628 }
8629
8630 /* Look up the hook_stop and run it (CLI internally handles problem
8631 of stop_command's pre-hook not existing). */
8632 if (stop_command != NULL)
8633 {
8634 stop_context saved_context;
8635
8636 try
8637 {
8638 execute_cmd_pre_hook (stop_command);
8639 }
8640 catch (const gdb_exception &ex)
8641 {
8642 exception_fprintf (gdb_stderr, ex,
8643 "Error while running hook_stop:\n");
8644 }
8645
8646 /* If the stop hook resumes the target, then there's no point in
8647 trying to notify about the previous stop; its context is
8648 gone. Likewise if the command switches thread or inferior --
8649 the observers would print a stop for the wrong
8650 thread/inferior. */
8651 if (saved_context.changed ())
8652 return 1;
8653 }
8654
8655 /* Notify observers about the stop. This is where the interpreters
8656 print the stop event. */
8657 if (inferior_ptid != null_ptid)
8658 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8659 stop_print_frame);
8660 else
8661 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8662
8663 annotate_stopped ();
8664
8665 if (target_has_execution ())
8666 {
8667 if (last.kind != TARGET_WAITKIND_SIGNALLED
8668 && last.kind != TARGET_WAITKIND_EXITED
8669 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8670 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8671 Delete any breakpoint that is to be deleted at the next stop. */
8672 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8673 }
8674
8675 /* Try to get rid of automatically added inferiors that are no
8676 longer needed. Keeping those around slows down things linearly.
8677 Note that this never removes the current inferior. */
8678 prune_inferiors ();
8679
8680 return 0;
8681 }
8682 \f
8683 int
8684 signal_stop_state (int signo)
8685 {
8686 return signal_stop[signo];
8687 }
8688
8689 int
8690 signal_print_state (int signo)
8691 {
8692 return signal_print[signo];
8693 }
8694
8695 int
8696 signal_pass_state (int signo)
8697 {
8698 return signal_program[signo];
8699 }
8700
8701 static void
8702 signal_cache_update (int signo)
8703 {
8704 if (signo == -1)
8705 {
8706 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8707 signal_cache_update (signo);
8708
8709 return;
8710 }
8711
8712 signal_pass[signo] = (signal_stop[signo] == 0
8713 && signal_print[signo] == 0
8714 && signal_program[signo] == 1
8715 && signal_catch[signo] == 0);
8716 }
8717
8718 int
8719 signal_stop_update (int signo, int state)
8720 {
8721 int ret = signal_stop[signo];
8722
8723 signal_stop[signo] = state;
8724 signal_cache_update (signo);
8725 return ret;
8726 }
8727
8728 int
8729 signal_print_update (int signo, int state)
8730 {
8731 int ret = signal_print[signo];
8732
8733 signal_print[signo] = state;
8734 signal_cache_update (signo);
8735 return ret;
8736 }
8737
8738 int
8739 signal_pass_update (int signo, int state)
8740 {
8741 int ret = signal_program[signo];
8742
8743 signal_program[signo] = state;
8744 signal_cache_update (signo);
8745 return ret;
8746 }
8747
8748 /* Update the global 'signal_catch' from INFO and notify the
8749 target. */
8750
8751 void
8752 signal_catch_update (const unsigned int *info)
8753 {
8754 int i;
8755
8756 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8757 signal_catch[i] = info[i] > 0;
8758 signal_cache_update (-1);
8759 target_pass_signals (signal_pass);
8760 }
8761
8762 static void
8763 sig_print_header (void)
8764 {
8765 printf_filtered (_("Signal Stop\tPrint\tPass "
8766 "to program\tDescription\n"));
8767 }
8768
8769 static void
8770 sig_print_info (enum gdb_signal oursig)
8771 {
8772 const char *name = gdb_signal_to_name (oursig);
8773 int name_padding = 13 - strlen (name);
8774
8775 if (name_padding <= 0)
8776 name_padding = 0;
8777
8778 printf_filtered ("%s", name);
8779 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8780 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8781 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8782 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8783 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8784 }
8785
8786 /* Specify how various signals in the inferior should be handled. */
8787
8788 static void
8789 handle_command (const char *args, int from_tty)
8790 {
8791 int digits, wordlen;
8792 int sigfirst, siglast;
8793 enum gdb_signal oursig;
8794 int allsigs;
8795
8796 if (args == NULL)
8797 {
8798 error_no_arg (_("signal to handle"));
8799 }
8800
8801 /* Allocate and zero an array of flags for which signals to handle. */
8802
8803 const size_t nsigs = GDB_SIGNAL_LAST;
8804 unsigned char sigs[nsigs] {};
8805
8806 /* Break the command line up into args. */
8807
8808 gdb_argv built_argv (args);
8809
8810 /* Walk through the args, looking for signal oursigs, signal names, and
8811 actions. Signal numbers and signal names may be interspersed with
8812 actions, with the actions being performed for all signals cumulatively
8813 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8814
8815 for (char *arg : built_argv)
8816 {
8817 wordlen = strlen (arg);
8818 for (digits = 0; isdigit (arg[digits]); digits++)
8819 {;
8820 }
8821 allsigs = 0;
8822 sigfirst = siglast = -1;
8823
8824 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8825 {
8826 /* Apply action to all signals except those used by the
8827 debugger. Silently skip those. */
8828 allsigs = 1;
8829 sigfirst = 0;
8830 siglast = nsigs - 1;
8831 }
8832 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8833 {
8834 SET_SIGS (nsigs, sigs, signal_stop);
8835 SET_SIGS (nsigs, sigs, signal_print);
8836 }
8837 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8838 {
8839 UNSET_SIGS (nsigs, sigs, signal_program);
8840 }
8841 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8842 {
8843 SET_SIGS (nsigs, sigs, signal_print);
8844 }
8845 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8846 {
8847 SET_SIGS (nsigs, sigs, signal_program);
8848 }
8849 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8850 {
8851 UNSET_SIGS (nsigs, sigs, signal_stop);
8852 }
8853 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8854 {
8855 SET_SIGS (nsigs, sigs, signal_program);
8856 }
8857 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8858 {
8859 UNSET_SIGS (nsigs, sigs, signal_print);
8860 UNSET_SIGS (nsigs, sigs, signal_stop);
8861 }
8862 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8863 {
8864 UNSET_SIGS (nsigs, sigs, signal_program);
8865 }
8866 else if (digits > 0)
8867 {
8868 /* It is numeric. The numeric signal refers to our own
8869 internal signal numbering from target.h, not to host/target
8870 signal number. This is a feature; users really should be
8871 using symbolic names anyway, and the common ones like
8872 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8873
8874 sigfirst = siglast = (int)
8875 gdb_signal_from_command (atoi (arg));
8876 if (arg[digits] == '-')
8877 {
8878 siglast = (int)
8879 gdb_signal_from_command (atoi (arg + digits + 1));
8880 }
8881 if (sigfirst > siglast)
8882 {
8883 /* Bet he didn't figure we'd think of this case... */
8884 std::swap (sigfirst, siglast);
8885 }
8886 }
8887 else
8888 {
8889 oursig = gdb_signal_from_name (arg);
8890 if (oursig != GDB_SIGNAL_UNKNOWN)
8891 {
8892 sigfirst = siglast = (int) oursig;
8893 }
8894 else
8895 {
8896 /* Not a number and not a recognized flag word => complain. */
8897 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8898 }
8899 }
8900
8901 /* If any signal numbers or symbol names were found, set flags for
8902 which signals to apply actions to. */
8903
8904 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8905 {
8906 switch ((enum gdb_signal) signum)
8907 {
8908 case GDB_SIGNAL_TRAP:
8909 case GDB_SIGNAL_INT:
8910 if (!allsigs && !sigs[signum])
8911 {
8912 if (query (_("%s is used by the debugger.\n\
8913 Are you sure you want to change it? "),
8914 gdb_signal_to_name ((enum gdb_signal) signum)))
8915 {
8916 sigs[signum] = 1;
8917 }
8918 else
8919 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8920 }
8921 break;
8922 case GDB_SIGNAL_0:
8923 case GDB_SIGNAL_DEFAULT:
8924 case GDB_SIGNAL_UNKNOWN:
8925 /* Make sure that "all" doesn't print these. */
8926 break;
8927 default:
8928 sigs[signum] = 1;
8929 break;
8930 }
8931 }
8932 }
8933
8934 for (int signum = 0; signum < nsigs; signum++)
8935 if (sigs[signum])
8936 {
8937 signal_cache_update (-1);
8938 target_pass_signals (signal_pass);
8939 target_program_signals (signal_program);
8940
8941 if (from_tty)
8942 {
8943 /* Show the results. */
8944 sig_print_header ();
8945 for (; signum < nsigs; signum++)
8946 if (sigs[signum])
8947 sig_print_info ((enum gdb_signal) signum);
8948 }
8949
8950 break;
8951 }
8952 }
8953
8954 /* Complete the "handle" command. */
8955
8956 static void
8957 handle_completer (struct cmd_list_element *ignore,
8958 completion_tracker &tracker,
8959 const char *text, const char *word)
8960 {
8961 static const char * const keywords[] =
8962 {
8963 "all",
8964 "stop",
8965 "ignore",
8966 "print",
8967 "pass",
8968 "nostop",
8969 "noignore",
8970 "noprint",
8971 "nopass",
8972 NULL,
8973 };
8974
8975 signal_completer (ignore, tracker, text, word);
8976 complete_on_enum (tracker, keywords, word, word);
8977 }
8978
8979 enum gdb_signal
8980 gdb_signal_from_command (int num)
8981 {
8982 if (num >= 1 && num <= 15)
8983 return (enum gdb_signal) num;
8984 error (_("Only signals 1-15 are valid as numeric signals.\n\
8985 Use \"info signals\" for a list of symbolic signals."));
8986 }
8987
8988 /* Print current contents of the tables set by the handle command.
8989 It is possible we should just be printing signals actually used
8990 by the current target (but for things to work right when switching
8991 targets, all signals should be in the signal tables). */
8992
8993 static void
8994 info_signals_command (const char *signum_exp, int from_tty)
8995 {
8996 enum gdb_signal oursig;
8997
8998 sig_print_header ();
8999
9000 if (signum_exp)
9001 {
9002 /* First see if this is a symbol name. */
9003 oursig = gdb_signal_from_name (signum_exp);
9004 if (oursig == GDB_SIGNAL_UNKNOWN)
9005 {
9006 /* No, try numeric. */
9007 oursig =
9008 gdb_signal_from_command (parse_and_eval_long (signum_exp));
9009 }
9010 sig_print_info (oursig);
9011 return;
9012 }
9013
9014 printf_filtered ("\n");
9015 /* These ugly casts brought to you by the native VAX compiler. */
9016 for (oursig = GDB_SIGNAL_FIRST;
9017 (int) oursig < (int) GDB_SIGNAL_LAST;
9018 oursig = (enum gdb_signal) ((int) oursig + 1))
9019 {
9020 QUIT;
9021
9022 if (oursig != GDB_SIGNAL_UNKNOWN
9023 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
9024 sig_print_info (oursig);
9025 }
9026
9027 printf_filtered (_("\nUse the \"handle\" command "
9028 "to change these tables.\n"));
9029 }
9030
9031 /* The $_siginfo convenience variable is a bit special. We don't know
9032 for sure the type of the value until we actually have a chance to
9033 fetch the data. The type can change depending on gdbarch, so it is
9034 also dependent on which thread you have selected.
9035
9036 1. making $_siginfo be an internalvar that creates a new value on
9037 access.
9038
9039 2. making the value of $_siginfo be an lval_computed value. */
9040
9041 /* This function implements the lval_computed support for reading a
9042 $_siginfo value. */
9043
9044 static void
9045 siginfo_value_read (struct value *v)
9046 {
9047 LONGEST transferred;
9048
9049 /* If we can access registers, so can we access $_siginfo. Likewise
9050 vice versa. */
9051 validate_registers_access ();
9052
9053 transferred =
9054 target_read (current_inferior ()->top_target (),
9055 TARGET_OBJECT_SIGNAL_INFO,
9056 NULL,
9057 value_contents_all_raw (v),
9058 value_offset (v),
9059 TYPE_LENGTH (value_type (v)));
9060
9061 if (transferred != TYPE_LENGTH (value_type (v)))
9062 error (_("Unable to read siginfo"));
9063 }
9064
9065 /* This function implements the lval_computed support for writing a
9066 $_siginfo value. */
9067
9068 static void
9069 siginfo_value_write (struct value *v, struct value *fromval)
9070 {
9071 LONGEST transferred;
9072
9073 /* If we can access registers, so can we access $_siginfo. Likewise
9074 vice versa. */
9075 validate_registers_access ();
9076
9077 transferred = target_write (current_inferior ()->top_target (),
9078 TARGET_OBJECT_SIGNAL_INFO,
9079 NULL,
9080 value_contents_all_raw (fromval),
9081 value_offset (v),
9082 TYPE_LENGTH (value_type (fromval)));
9083
9084 if (transferred != TYPE_LENGTH (value_type (fromval)))
9085 error (_("Unable to write siginfo"));
9086 }
9087
9088 static const struct lval_funcs siginfo_value_funcs =
9089 {
9090 siginfo_value_read,
9091 siginfo_value_write
9092 };
9093
9094 /* Return a new value with the correct type for the siginfo object of
9095 the current thread using architecture GDBARCH. Return a void value
9096 if there's no object available. */
9097
9098 static struct value *
9099 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9100 void *ignore)
9101 {
9102 if (target_has_stack ()
9103 && inferior_ptid != null_ptid
9104 && gdbarch_get_siginfo_type_p (gdbarch))
9105 {
9106 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9107
9108 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
9109 }
9110
9111 return allocate_value (builtin_type (gdbarch)->builtin_void);
9112 }
9113
9114 \f
9115 /* infcall_suspend_state contains state about the program itself like its
9116 registers and any signal it received when it last stopped.
9117 This state must be restored regardless of how the inferior function call
9118 ends (either successfully, or after it hits a breakpoint or signal)
9119 if the program is to properly continue where it left off. */
9120
9121 class infcall_suspend_state
9122 {
9123 public:
9124 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9125 once the inferior function call has finished. */
9126 infcall_suspend_state (struct gdbarch *gdbarch,
9127 const struct thread_info *tp,
9128 struct regcache *regcache)
9129 : m_thread_suspend (tp->suspend),
9130 m_registers (new readonly_detached_regcache (*regcache))
9131 {
9132 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9133
9134 if (gdbarch_get_siginfo_type_p (gdbarch))
9135 {
9136 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9137 size_t len = TYPE_LENGTH (type);
9138
9139 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9140
9141 if (target_read (current_inferior ()->top_target (),
9142 TARGET_OBJECT_SIGNAL_INFO, NULL,
9143 siginfo_data.get (), 0, len) != len)
9144 {
9145 /* Errors ignored. */
9146 siginfo_data.reset (nullptr);
9147 }
9148 }
9149
9150 if (siginfo_data)
9151 {
9152 m_siginfo_gdbarch = gdbarch;
9153 m_siginfo_data = std::move (siginfo_data);
9154 }
9155 }
9156
9157 /* Return a pointer to the stored register state. */
9158
9159 readonly_detached_regcache *registers () const
9160 {
9161 return m_registers.get ();
9162 }
9163
9164 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9165
9166 void restore (struct gdbarch *gdbarch,
9167 struct thread_info *tp,
9168 struct regcache *regcache) const
9169 {
9170 tp->suspend = m_thread_suspend;
9171
9172 if (m_siginfo_gdbarch == gdbarch)
9173 {
9174 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9175
9176 /* Errors ignored. */
9177 target_write (current_inferior ()->top_target (),
9178 TARGET_OBJECT_SIGNAL_INFO, NULL,
9179 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9180 }
9181
9182 /* The inferior can be gone if the user types "print exit(0)"
9183 (and perhaps other times). */
9184 if (target_has_execution ())
9185 /* NB: The register write goes through to the target. */
9186 regcache->restore (registers ());
9187 }
9188
9189 private:
9190 /* How the current thread stopped before the inferior function call was
9191 executed. */
9192 struct thread_suspend_state m_thread_suspend;
9193
9194 /* The registers before the inferior function call was executed. */
9195 std::unique_ptr<readonly_detached_regcache> m_registers;
9196
9197 /* Format of SIGINFO_DATA or NULL if it is not present. */
9198 struct gdbarch *m_siginfo_gdbarch = nullptr;
9199
9200 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9201 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9202 content would be invalid. */
9203 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
9204 };
9205
9206 infcall_suspend_state_up
9207 save_infcall_suspend_state ()
9208 {
9209 struct thread_info *tp = inferior_thread ();
9210 struct regcache *regcache = get_current_regcache ();
9211 struct gdbarch *gdbarch = regcache->arch ();
9212
9213 infcall_suspend_state_up inf_state
9214 (new struct infcall_suspend_state (gdbarch, tp, regcache));
9215
9216 /* Having saved the current state, adjust the thread state, discarding
9217 any stop signal information. The stop signal is not useful when
9218 starting an inferior function call, and run_inferior_call will not use
9219 the signal due to its `proceed' call with GDB_SIGNAL_0. */
9220 tp->suspend.stop_signal = GDB_SIGNAL_0;
9221
9222 return inf_state;
9223 }
9224
9225 /* Restore inferior session state to INF_STATE. */
9226
9227 void
9228 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9229 {
9230 struct thread_info *tp = inferior_thread ();
9231 struct regcache *regcache = get_current_regcache ();
9232 struct gdbarch *gdbarch = regcache->arch ();
9233
9234 inf_state->restore (gdbarch, tp, regcache);
9235 discard_infcall_suspend_state (inf_state);
9236 }
9237
9238 void
9239 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9240 {
9241 delete inf_state;
9242 }
9243
9244 readonly_detached_regcache *
9245 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9246 {
9247 return inf_state->registers ();
9248 }
9249
9250 /* infcall_control_state contains state regarding gdb's control of the
9251 inferior itself like stepping control. It also contains session state like
9252 the user's currently selected frame. */
9253
9254 struct infcall_control_state
9255 {
9256 struct thread_control_state thread_control;
9257 struct inferior_control_state inferior_control;
9258
9259 /* Other fields: */
9260 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9261 int stopped_by_random_signal = 0;
9262
9263 /* ID and level of the selected frame when the inferior function
9264 call was made. */
9265 struct frame_id selected_frame_id {};
9266 int selected_frame_level = -1;
9267 };
9268
9269 /* Save all of the information associated with the inferior<==>gdb
9270 connection. */
9271
9272 infcall_control_state_up
9273 save_infcall_control_state ()
9274 {
9275 infcall_control_state_up inf_status (new struct infcall_control_state);
9276 struct thread_info *tp = inferior_thread ();
9277 struct inferior *inf = current_inferior ();
9278
9279 inf_status->thread_control = tp->control;
9280 inf_status->inferior_control = inf->control;
9281
9282 tp->control.step_resume_breakpoint = NULL;
9283 tp->control.exception_resume_breakpoint = NULL;
9284
9285 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9286 chain. If caller's caller is walking the chain, they'll be happier if we
9287 hand them back the original chain when restore_infcall_control_state is
9288 called. */
9289 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9290
9291 /* Other fields: */
9292 inf_status->stop_stack_dummy = stop_stack_dummy;
9293 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9294
9295 save_selected_frame (&inf_status->selected_frame_id,
9296 &inf_status->selected_frame_level);
9297
9298 return inf_status;
9299 }
9300
9301 /* Restore inferior session state to INF_STATUS. */
9302
9303 void
9304 restore_infcall_control_state (struct infcall_control_state *inf_status)
9305 {
9306 struct thread_info *tp = inferior_thread ();
9307 struct inferior *inf = current_inferior ();
9308
9309 if (tp->control.step_resume_breakpoint)
9310 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9311
9312 if (tp->control.exception_resume_breakpoint)
9313 tp->control.exception_resume_breakpoint->disposition
9314 = disp_del_at_next_stop;
9315
9316 /* Handle the bpstat_copy of the chain. */
9317 bpstat_clear (&tp->control.stop_bpstat);
9318
9319 tp->control = inf_status->thread_control;
9320 inf->control = inf_status->inferior_control;
9321
9322 /* Other fields: */
9323 stop_stack_dummy = inf_status->stop_stack_dummy;
9324 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9325
9326 if (target_has_stack ())
9327 {
9328 restore_selected_frame (inf_status->selected_frame_id,
9329 inf_status->selected_frame_level);
9330 }
9331
9332 delete inf_status;
9333 }
9334
9335 void
9336 discard_infcall_control_state (struct infcall_control_state *inf_status)
9337 {
9338 if (inf_status->thread_control.step_resume_breakpoint)
9339 inf_status->thread_control.step_resume_breakpoint->disposition
9340 = disp_del_at_next_stop;
9341
9342 if (inf_status->thread_control.exception_resume_breakpoint)
9343 inf_status->thread_control.exception_resume_breakpoint->disposition
9344 = disp_del_at_next_stop;
9345
9346 /* See save_infcall_control_state for info on stop_bpstat. */
9347 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9348
9349 delete inf_status;
9350 }
9351 \f
9352 /* See infrun.h. */
9353
9354 void
9355 clear_exit_convenience_vars (void)
9356 {
9357 clear_internalvar (lookup_internalvar ("_exitsignal"));
9358 clear_internalvar (lookup_internalvar ("_exitcode"));
9359 }
9360 \f
9361
9362 /* User interface for reverse debugging:
9363 Set exec-direction / show exec-direction commands
9364 (returns error unless target implements to_set_exec_direction method). */
9365
9366 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9367 static const char exec_forward[] = "forward";
9368 static const char exec_reverse[] = "reverse";
9369 static const char *exec_direction = exec_forward;
9370 static const char *const exec_direction_names[] = {
9371 exec_forward,
9372 exec_reverse,
9373 NULL
9374 };
9375
9376 static void
9377 set_exec_direction_func (const char *args, int from_tty,
9378 struct cmd_list_element *cmd)
9379 {
9380 if (target_can_execute_reverse ())
9381 {
9382 if (!strcmp (exec_direction, exec_forward))
9383 execution_direction = EXEC_FORWARD;
9384 else if (!strcmp (exec_direction, exec_reverse))
9385 execution_direction = EXEC_REVERSE;
9386 }
9387 else
9388 {
9389 exec_direction = exec_forward;
9390 error (_("Target does not support this operation."));
9391 }
9392 }
9393
9394 static void
9395 show_exec_direction_func (struct ui_file *out, int from_tty,
9396 struct cmd_list_element *cmd, const char *value)
9397 {
9398 switch (execution_direction) {
9399 case EXEC_FORWARD:
9400 fprintf_filtered (out, _("Forward.\n"));
9401 break;
9402 case EXEC_REVERSE:
9403 fprintf_filtered (out, _("Reverse.\n"));
9404 break;
9405 default:
9406 internal_error (__FILE__, __LINE__,
9407 _("bogus execution_direction value: %d"),
9408 (int) execution_direction);
9409 }
9410 }
9411
9412 static void
9413 show_schedule_multiple (struct ui_file *file, int from_tty,
9414 struct cmd_list_element *c, const char *value)
9415 {
9416 fprintf_filtered (file, _("Resuming the execution of threads "
9417 "of all processes is %s.\n"), value);
9418 }
9419
9420 /* Implementation of `siginfo' variable. */
9421
9422 static const struct internalvar_funcs siginfo_funcs =
9423 {
9424 siginfo_make_value,
9425 NULL,
9426 NULL
9427 };
9428
9429 /* Callback for infrun's target events source. This is marked when a
9430 thread has a pending status to process. */
9431
9432 static void
9433 infrun_async_inferior_event_handler (gdb_client_data data)
9434 {
9435 clear_async_event_handler (infrun_async_inferior_event_token);
9436 inferior_event_handler (INF_REG_EVENT);
9437 }
9438
9439 #if GDB_SELF_TEST
9440 namespace selftests
9441 {
9442
9443 /* Verify that when two threads with the same ptid exist (from two different
9444 targets) and one of them changes ptid, we only update inferior_ptid if
9445 it is appropriate. */
9446
9447 static void
9448 infrun_thread_ptid_changed ()
9449 {
9450 gdbarch *arch = current_inferior ()->gdbarch;
9451
9452 /* The thread which inferior_ptid represents changes ptid. */
9453 {
9454 scoped_restore_current_pspace_and_thread restore;
9455
9456 scoped_mock_context<test_target_ops> target1 (arch);
9457 scoped_mock_context<test_target_ops> target2 (arch);
9458 target2.mock_inferior.next = &target1.mock_inferior;
9459
9460 ptid_t old_ptid (111, 222);
9461 ptid_t new_ptid (111, 333);
9462
9463 target1.mock_inferior.pid = old_ptid.pid ();
9464 target1.mock_thread.ptid = old_ptid;
9465 target2.mock_inferior.pid = old_ptid.pid ();
9466 target2.mock_thread.ptid = old_ptid;
9467
9468 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9469 set_current_inferior (&target1.mock_inferior);
9470
9471 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9472
9473 gdb_assert (inferior_ptid == new_ptid);
9474 }
9475
9476 /* A thread with the same ptid as inferior_ptid, but from another target,
9477 changes ptid. */
9478 {
9479 scoped_restore_current_pspace_and_thread restore;
9480
9481 scoped_mock_context<test_target_ops> target1 (arch);
9482 scoped_mock_context<test_target_ops> target2 (arch);
9483 target2.mock_inferior.next = &target1.mock_inferior;
9484
9485 ptid_t old_ptid (111, 222);
9486 ptid_t new_ptid (111, 333);
9487
9488 target1.mock_inferior.pid = old_ptid.pid ();
9489 target1.mock_thread.ptid = old_ptid;
9490 target2.mock_inferior.pid = old_ptid.pid ();
9491 target2.mock_thread.ptid = old_ptid;
9492
9493 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9494 set_current_inferior (&target2.mock_inferior);
9495
9496 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9497
9498 gdb_assert (inferior_ptid == old_ptid);
9499 }
9500 }
9501
9502 } /* namespace selftests */
9503
9504 #endif /* GDB_SELF_TEST */
9505
9506 void _initialize_infrun ();
9507 void
9508 _initialize_infrun ()
9509 {
9510 struct cmd_list_element *c;
9511
9512 /* Register extra event sources in the event loop. */
9513 infrun_async_inferior_event_token
9514 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9515 "infrun");
9516
9517 cmd_list_element *info_signals_cmd
9518 = add_info ("signals", info_signals_command, _("\
9519 What debugger does when program gets various signals.\n\
9520 Specify a signal as argument to print info on that signal only."));
9521 add_info_alias ("handle", info_signals_cmd, 0);
9522
9523 c = add_com ("handle", class_run, handle_command, _("\
9524 Specify how to handle signals.\n\
9525 Usage: handle SIGNAL [ACTIONS]\n\
9526 Args are signals and actions to apply to those signals.\n\
9527 If no actions are specified, the current settings for the specified signals\n\
9528 will be displayed instead.\n\
9529 \n\
9530 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9531 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9532 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9533 The special arg \"all\" is recognized to mean all signals except those\n\
9534 used by the debugger, typically SIGTRAP and SIGINT.\n\
9535 \n\
9536 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9537 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9538 Stop means reenter debugger if this signal happens (implies print).\n\
9539 Print means print a message if this signal happens.\n\
9540 Pass means let program see this signal; otherwise program doesn't know.\n\
9541 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9542 Pass and Stop may be combined.\n\
9543 \n\
9544 Multiple signals may be specified. Signal numbers and signal names\n\
9545 may be interspersed with actions, with the actions being performed for\n\
9546 all signals cumulatively specified."));
9547 set_cmd_completer (c, handle_completer);
9548
9549 if (!dbx_commands)
9550 stop_command = add_cmd ("stop", class_obscure,
9551 not_just_help_class_command, _("\
9552 There is no `stop' command, but you can set a hook on `stop'.\n\
9553 This allows you to set a list of commands to be run each time execution\n\
9554 of the program stops."), &cmdlist);
9555
9556 add_setshow_boolean_cmd
9557 ("infrun", class_maintenance, &debug_infrun,
9558 _("Set inferior debugging."),
9559 _("Show inferior debugging."),
9560 _("When non-zero, inferior specific debugging is enabled."),
9561 NULL, show_debug_infrun, &setdebuglist, &showdebuglist);
9562
9563 add_setshow_boolean_cmd ("non-stop", no_class,
9564 &non_stop_1, _("\
9565 Set whether gdb controls the inferior in non-stop mode."), _("\
9566 Show whether gdb controls the inferior in non-stop mode."), _("\
9567 When debugging a multi-threaded program and this setting is\n\
9568 off (the default, also called all-stop mode), when one thread stops\n\
9569 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9570 all other threads in the program while you interact with the thread of\n\
9571 interest. When you continue or step a thread, you can allow the other\n\
9572 threads to run, or have them remain stopped, but while you inspect any\n\
9573 thread's state, all threads stop.\n\
9574 \n\
9575 In non-stop mode, when one thread stops, other threads can continue\n\
9576 to run freely. You'll be able to step each thread independently,\n\
9577 leave it stopped or free to run as needed."),
9578 set_non_stop,
9579 show_non_stop,
9580 &setlist,
9581 &showlist);
9582
9583 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9584 {
9585 signal_stop[i] = 1;
9586 signal_print[i] = 1;
9587 signal_program[i] = 1;
9588 signal_catch[i] = 0;
9589 }
9590
9591 /* Signals caused by debugger's own actions should not be given to
9592 the program afterwards.
9593
9594 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9595 explicitly specifies that it should be delivered to the target
9596 program. Typically, that would occur when a user is debugging a
9597 target monitor on a simulator: the target monitor sets a
9598 breakpoint; the simulator encounters this breakpoint and halts
9599 the simulation handing control to GDB; GDB, noting that the stop
9600 address doesn't map to any known breakpoint, returns control back
9601 to the simulator; the simulator then delivers the hardware
9602 equivalent of a GDB_SIGNAL_TRAP to the program being
9603 debugged. */
9604 signal_program[GDB_SIGNAL_TRAP] = 0;
9605 signal_program[GDB_SIGNAL_INT] = 0;
9606
9607 /* Signals that are not errors should not normally enter the debugger. */
9608 signal_stop[GDB_SIGNAL_ALRM] = 0;
9609 signal_print[GDB_SIGNAL_ALRM] = 0;
9610 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9611 signal_print[GDB_SIGNAL_VTALRM] = 0;
9612 signal_stop[GDB_SIGNAL_PROF] = 0;
9613 signal_print[GDB_SIGNAL_PROF] = 0;
9614 signal_stop[GDB_SIGNAL_CHLD] = 0;
9615 signal_print[GDB_SIGNAL_CHLD] = 0;
9616 signal_stop[GDB_SIGNAL_IO] = 0;
9617 signal_print[GDB_SIGNAL_IO] = 0;
9618 signal_stop[GDB_SIGNAL_POLL] = 0;
9619 signal_print[GDB_SIGNAL_POLL] = 0;
9620 signal_stop[GDB_SIGNAL_URG] = 0;
9621 signal_print[GDB_SIGNAL_URG] = 0;
9622 signal_stop[GDB_SIGNAL_WINCH] = 0;
9623 signal_print[GDB_SIGNAL_WINCH] = 0;
9624 signal_stop[GDB_SIGNAL_PRIO] = 0;
9625 signal_print[GDB_SIGNAL_PRIO] = 0;
9626
9627 /* These signals are used internally by user-level thread
9628 implementations. (See signal(5) on Solaris.) Like the above
9629 signals, a healthy program receives and handles them as part of
9630 its normal operation. */
9631 signal_stop[GDB_SIGNAL_LWP] = 0;
9632 signal_print[GDB_SIGNAL_LWP] = 0;
9633 signal_stop[GDB_SIGNAL_WAITING] = 0;
9634 signal_print[GDB_SIGNAL_WAITING] = 0;
9635 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9636 signal_print[GDB_SIGNAL_CANCEL] = 0;
9637 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9638 signal_print[GDB_SIGNAL_LIBRT] = 0;
9639
9640 /* Update cached state. */
9641 signal_cache_update (-1);
9642
9643 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9644 &stop_on_solib_events, _("\
9645 Set stopping for shared library events."), _("\
9646 Show stopping for shared library events."), _("\
9647 If nonzero, gdb will give control to the user when the dynamic linker\n\
9648 notifies gdb of shared library events. The most common event of interest\n\
9649 to the user would be loading/unloading of a new library."),
9650 set_stop_on_solib_events,
9651 show_stop_on_solib_events,
9652 &setlist, &showlist);
9653
9654 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9655 follow_fork_mode_kind_names,
9656 &follow_fork_mode_string, _("\
9657 Set debugger response to a program call of fork or vfork."), _("\
9658 Show debugger response to a program call of fork or vfork."), _("\
9659 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9660 parent - the original process is debugged after a fork\n\
9661 child - the new process is debugged after a fork\n\
9662 The unfollowed process will continue to run.\n\
9663 By default, the debugger will follow the parent process."),
9664 NULL,
9665 show_follow_fork_mode_string,
9666 &setlist, &showlist);
9667
9668 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9669 follow_exec_mode_names,
9670 &follow_exec_mode_string, _("\
9671 Set debugger response to a program call of exec."), _("\
9672 Show debugger response to a program call of exec."), _("\
9673 An exec call replaces the program image of a process.\n\
9674 \n\
9675 follow-exec-mode can be:\n\
9676 \n\
9677 new - the debugger creates a new inferior and rebinds the process\n\
9678 to this new inferior. The program the process was running before\n\
9679 the exec call can be restarted afterwards by restarting the original\n\
9680 inferior.\n\
9681 \n\
9682 same - the debugger keeps the process bound to the same inferior.\n\
9683 The new executable image replaces the previous executable loaded in\n\
9684 the inferior. Restarting the inferior after the exec call restarts\n\
9685 the executable the process was running after the exec call.\n\
9686 \n\
9687 By default, the debugger will use the same inferior."),
9688 NULL,
9689 show_follow_exec_mode_string,
9690 &setlist, &showlist);
9691
9692 add_setshow_enum_cmd ("scheduler-locking", class_run,
9693 scheduler_enums, &scheduler_mode, _("\
9694 Set mode for locking scheduler during execution."), _("\
9695 Show mode for locking scheduler during execution."), _("\
9696 off == no locking (threads may preempt at any time)\n\
9697 on == full locking (no thread except the current thread may run)\n\
9698 This applies to both normal execution and replay mode.\n\
9699 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9700 In this mode, other threads may run during other commands.\n\
9701 This applies to both normal execution and replay mode.\n\
9702 replay == scheduler locked in replay mode and unlocked during normal execution."),
9703 set_schedlock_func, /* traps on target vector */
9704 show_scheduler_mode,
9705 &setlist, &showlist);
9706
9707 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9708 Set mode for resuming threads of all processes."), _("\
9709 Show mode for resuming threads of all processes."), _("\
9710 When on, execution commands (such as 'continue' or 'next') resume all\n\
9711 threads of all processes. When off (which is the default), execution\n\
9712 commands only resume the threads of the current process. The set of\n\
9713 threads that are resumed is further refined by the scheduler-locking\n\
9714 mode (see help set scheduler-locking)."),
9715 NULL,
9716 show_schedule_multiple,
9717 &setlist, &showlist);
9718
9719 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9720 Set mode of the step operation."), _("\
9721 Show mode of the step operation."), _("\
9722 When set, doing a step over a function without debug line information\n\
9723 will stop at the first instruction of that function. Otherwise, the\n\
9724 function is skipped and the step command stops at a different source line."),
9725 NULL,
9726 show_step_stop_if_no_debug,
9727 &setlist, &showlist);
9728
9729 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9730 &can_use_displaced_stepping, _("\
9731 Set debugger's willingness to use displaced stepping."), _("\
9732 Show debugger's willingness to use displaced stepping."), _("\
9733 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9734 supported by the target architecture. If off, gdb will not use displaced\n\
9735 stepping to step over breakpoints, even if such is supported by the target\n\
9736 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9737 if the target architecture supports it and non-stop mode is active, but will not\n\
9738 use it in all-stop mode (see help set non-stop)."),
9739 NULL,
9740 show_can_use_displaced_stepping,
9741 &setlist, &showlist);
9742
9743 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9744 &exec_direction, _("Set direction of execution.\n\
9745 Options are 'forward' or 'reverse'."),
9746 _("Show direction of execution (forward/reverse)."),
9747 _("Tells gdb whether to execute forward or backward."),
9748 set_exec_direction_func, show_exec_direction_func,
9749 &setlist, &showlist);
9750
9751 /* Set/show detach-on-fork: user-settable mode. */
9752
9753 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9754 Set whether gdb will detach the child of a fork."), _("\
9755 Show whether gdb will detach the child of a fork."), _("\
9756 Tells gdb whether to detach the child of a fork."),
9757 NULL, NULL, &setlist, &showlist);
9758
9759 /* Set/show disable address space randomization mode. */
9760
9761 add_setshow_boolean_cmd ("disable-randomization", class_support,
9762 &disable_randomization, _("\
9763 Set disabling of debuggee's virtual address space randomization."), _("\
9764 Show disabling of debuggee's virtual address space randomization."), _("\
9765 When this mode is on (which is the default), randomization of the virtual\n\
9766 address space is disabled. Standalone programs run with the randomization\n\
9767 enabled by default on some platforms."),
9768 &set_disable_randomization,
9769 &show_disable_randomization,
9770 &setlist, &showlist);
9771
9772 /* ptid initializations */
9773 inferior_ptid = null_ptid;
9774 target_last_wait_ptid = minus_one_ptid;
9775
9776 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed,
9777 "infrun");
9778 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested,
9779 "infrun");
9780 gdb::observers::thread_exit.attach (infrun_thread_thread_exit, "infrun");
9781 gdb::observers::inferior_exit.attach (infrun_inferior_exit, "infrun");
9782 gdb::observers::inferior_execd.attach (infrun_inferior_execd, "infrun");
9783
9784 /* Explicitly create without lookup, since that tries to create a
9785 value with a void typed value, and when we get here, gdbarch
9786 isn't initialized yet. At this point, we're quite sure there
9787 isn't another convenience variable of the same name. */
9788 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9789
9790 add_setshow_boolean_cmd ("observer", no_class,
9791 &observer_mode_1, _("\
9792 Set whether gdb controls the inferior in observer mode."), _("\
9793 Show whether gdb controls the inferior in observer mode."), _("\
9794 In observer mode, GDB can get data from the inferior, but not\n\
9795 affect its execution. Registers and memory may not be changed,\n\
9796 breakpoints may not be set, and the program cannot be interrupted\n\
9797 or signalled."),
9798 set_observer_mode,
9799 show_observer_mode,
9800 &setlist,
9801 &showlist);
9802
9803 #if GDB_SELF_TEST
9804 selftests::register_test ("infrun_thread_ptid_changed",
9805 selftests::infrun_thread_ptid_changed);
9806 #endif
9807 }
This page took 0.24933 seconds and 4 git commands to generate.