* stabsread.c (get_substring): Declare second arg as int.
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior process.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34
35 #include <signal.h>
36
37 /* unistd.h is needed to #define X_OK */
38 #ifdef USG
39 #include <unistd.h>
40 #else
41 #include <sys/file.h>
42 #endif
43
44 /* Prototypes for local functions */
45
46 static void signals_info PARAMS ((char *, int));
47
48 static void handle_command PARAMS ((char *, int));
49
50 static void sig_print_info PARAMS ((enum target_signal));
51
52 static void sig_print_header PARAMS ((void));
53
54 static void resume_cleanups PARAMS ((int));
55
56 static int hook_stop_stub PARAMS ((char *));
57
58 static void delete_breakpoint_current_contents PARAMS ((PTR));
59
60 /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
61 program. It needs to examine the jmp_buf argument and extract the PC
62 from it. The return value is non-zero on success, zero otherwise. */
63
64 #ifndef GET_LONGJMP_TARGET
65 #define GET_LONGJMP_TARGET(PC_ADDR) 0
66 #endif
67
68
69 /* Some machines have trampoline code that sits between function callers
70 and the actual functions themselves. If this machine doesn't have
71 such things, disable their processing. */
72
73 #ifndef SKIP_TRAMPOLINE_CODE
74 #define SKIP_TRAMPOLINE_CODE(pc) 0
75 #endif
76
77 /* Dynamic function trampolines are similar to solib trampolines in that they
78 are between the caller and the callee. The difference is that when you
79 enter a dynamic trampoline, you can't determine the callee's address. Some
80 (usually complex) code needs to run in the dynamic trampoline to figure out
81 the callee's address. This macro is usually called twice. First, when we
82 enter the trampoline (looks like a normal function call at that point). It
83 should return the PC of a point within the trampoline where the callee's
84 address is known. Second, when we hit the breakpoint, this routine returns
85 the callee's address. At that point, things proceed as per a step resume
86 breakpoint. */
87
88 #ifndef DYNAMIC_TRAMPOLINE_NEXTPC
89 #define DYNAMIC_TRAMPOLINE_NEXTPC(pc) 0
90 #endif
91
92 /* For SVR4 shared libraries, each call goes through a small piece of
93 trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
94 to nonzero if we are current stopped in one of these. */
95
96 #ifndef IN_SOLIB_CALL_TRAMPOLINE
97 #define IN_SOLIB_CALL_TRAMPOLINE(pc,name) 0
98 #endif
99
100 /* In some shared library schemes, the return path from a shared library
101 call may need to go through a trampoline too. */
102
103 #ifndef IN_SOLIB_RETURN_TRAMPOLINE
104 #define IN_SOLIB_RETURN_TRAMPOLINE(pc,name) 0
105 #endif
106
107 /* On some systems, the PC may be left pointing at an instruction that won't
108 actually be executed. This is usually indicated by a bit in the PSW. If
109 we find ourselves in such a state, then we step the target beyond the
110 nullified instruction before returning control to the user so as to avoid
111 confusion. */
112
113 #ifndef INSTRUCTION_NULLIFIED
114 #define INSTRUCTION_NULLIFIED 0
115 #endif
116
117 /* Tables of how to react to signals; the user sets them. */
118
119 static unsigned char *signal_stop;
120 static unsigned char *signal_print;
121 static unsigned char *signal_program;
122
123 #define SET_SIGS(nsigs,sigs,flags) \
124 do { \
125 int signum = (nsigs); \
126 while (signum-- > 0) \
127 if ((sigs)[signum]) \
128 (flags)[signum] = 1; \
129 } while (0)
130
131 #define UNSET_SIGS(nsigs,sigs,flags) \
132 do { \
133 int signum = (nsigs); \
134 while (signum-- > 0) \
135 if ((sigs)[signum]) \
136 (flags)[signum] = 0; \
137 } while (0)
138
139
140 /* Command list pointer for the "stop" placeholder. */
141
142 static struct cmd_list_element *stop_command;
143
144 /* Nonzero if breakpoints are now inserted in the inferior. */
145
146 static int breakpoints_inserted;
147
148 /* Function inferior was in as of last step command. */
149
150 static struct symbol *step_start_function;
151
152 /* Nonzero if we are expecting a trace trap and should proceed from it. */
153
154 static int trap_expected;
155
156 #ifdef SOLIB_ADD
157 /* Nonzero if we want to give control to the user when we're notified
158 of shared library events by the dynamic linker. */
159 static int stop_on_solib_events;
160 #endif
161
162 #ifdef HP_OS_BUG
163 /* Nonzero if the next time we try to continue the inferior, it will
164 step one instruction and generate a spurious trace trap.
165 This is used to compensate for a bug in HP-UX. */
166
167 static int trap_expected_after_continue;
168 #endif
169
170 /* Nonzero means expecting a trace trap
171 and should stop the inferior and return silently when it happens. */
172
173 int stop_after_trap;
174
175 /* Nonzero means expecting a trap and caller will handle it themselves.
176 It is used after attach, due to attaching to a process;
177 when running in the shell before the child program has been exec'd;
178 and when running some kinds of remote stuff (FIXME?). */
179
180 int stop_soon_quietly;
181
182 /* Nonzero if proceed is being used for a "finish" command or a similar
183 situation when stop_registers should be saved. */
184
185 int proceed_to_finish;
186
187 /* Save register contents here when about to pop a stack dummy frame,
188 if-and-only-if proceed_to_finish is set.
189 Thus this contains the return value from the called function (assuming
190 values are returned in a register). */
191
192 char stop_registers[REGISTER_BYTES];
193
194 /* Nonzero if program stopped due to error trying to insert breakpoints. */
195
196 static int breakpoints_failed;
197
198 /* Nonzero after stop if current stack frame should be printed. */
199
200 static int stop_print_frame;
201
202 \f
203 /* Things to clean up if we QUIT out of resume (). */
204 /* ARGSUSED */
205 static void
206 resume_cleanups (arg)
207 int arg;
208 {
209 normal_stop ();
210 }
211
212 /* Resume the inferior, but allow a QUIT. This is useful if the user
213 wants to interrupt some lengthy single-stepping operation
214 (for child processes, the SIGINT goes to the inferior, and so
215 we get a SIGINT random_signal, but for remote debugging and perhaps
216 other targets, that's not true).
217
218 STEP nonzero if we should step (zero to continue instead).
219 SIG is the signal to give the inferior (zero for none). */
220 void
221 resume (step, sig)
222 int step;
223 enum target_signal sig;
224 {
225 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
226 QUIT;
227
228 #ifdef CANNOT_STEP_BREAKPOINT
229 /* Most targets can step a breakpoint instruction, thus executing it
230 normally. But if this one cannot, just continue and we will hit
231 it anyway. */
232 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
233 step = 0;
234 #endif
235
236 #ifdef NO_SINGLE_STEP
237 if (step) {
238 single_step(sig); /* Do it the hard way, w/temp breakpoints */
239 step = 0; /* ...and don't ask hardware to do it. */
240 }
241 #endif
242
243 /* Handle any optimized stores to the inferior NOW... */
244 #ifdef DO_DEFERRED_STORES
245 DO_DEFERRED_STORES;
246 #endif
247
248 /* Install inferior's terminal modes. */
249 target_terminal_inferior ();
250
251 target_resume (-1, step, sig);
252 discard_cleanups (old_cleanups);
253 }
254
255 \f
256 /* Clear out all variables saying what to do when inferior is continued.
257 First do this, then set the ones you want, then call `proceed'. */
258
259 void
260 clear_proceed_status ()
261 {
262 trap_expected = 0;
263 step_range_start = 0;
264 step_range_end = 0;
265 step_frame_address = 0;
266 step_over_calls = -1;
267 stop_after_trap = 0;
268 stop_soon_quietly = 0;
269 proceed_to_finish = 0;
270 breakpoint_proceeded = 1; /* We're about to proceed... */
271
272 /* Discard any remaining commands or status from previous stop. */
273 bpstat_clear (&stop_bpstat);
274 }
275
276 /* Basic routine for continuing the program in various fashions.
277
278 ADDR is the address to resume at, or -1 for resume where stopped.
279 SIGGNAL is the signal to give it, or 0 for none,
280 or -1 for act according to how it stopped.
281 STEP is nonzero if should trap after one instruction.
282 -1 means return after that and print nothing.
283 You should probably set various step_... variables
284 before calling here, if you are stepping.
285
286 You should call clear_proceed_status before calling proceed. */
287
288 void
289 proceed (addr, siggnal, step)
290 CORE_ADDR addr;
291 enum target_signal siggnal;
292 int step;
293 {
294 int oneproc = 0;
295
296 if (step > 0)
297 step_start_function = find_pc_function (read_pc ());
298 if (step < 0)
299 stop_after_trap = 1;
300
301 if (addr == (CORE_ADDR)-1)
302 {
303 /* If there is a breakpoint at the address we will resume at,
304 step one instruction before inserting breakpoints
305 so that we do not stop right away. */
306
307 if (breakpoint_here_p (read_pc ()))
308 oneproc = 1;
309
310 #ifdef STEP_SKIPS_DELAY
311 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
312 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
313 is slow (it needs to read memory from the target). */
314 if (breakpoint_here_p (read_pc () + 4)
315 && STEP_SKIPS_DELAY (read_pc ()))
316 oneproc = 1;
317 #endif /* STEP_SKIPS_DELAY */
318 }
319 else
320 write_pc (addr);
321
322 #ifdef PREPARE_TO_PROCEED
323 /* In a multi-threaded task we may select another thread and then continue.
324
325 In this case the thread that stopped at a breakpoint will immediately
326 cause another stop, if it is not stepped over first. On the other hand,
327 if (ADDR != -1) we only want to single step over the breakpoint if we did
328 switch to another thread.
329
330 If we are single stepping, don't do any of the above.
331 (Note that in the current implementation single stepping another
332 thread after a breakpoint and then continuing will cause the original
333 breakpoint to be hit again, but you can always continue, so it's not
334 a big deal.) */
335
336 if (! step && PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
337 oneproc = 1;
338 #endif /* PREPARE_TO_PROCEED */
339
340 #ifdef HP_OS_BUG
341 if (trap_expected_after_continue)
342 {
343 /* If (step == 0), a trap will be automatically generated after
344 the first instruction is executed. Force step one
345 instruction to clear this condition. This should not occur
346 if step is nonzero, but it is harmless in that case. */
347 oneproc = 1;
348 trap_expected_after_continue = 0;
349 }
350 #endif /* HP_OS_BUG */
351
352 if (oneproc)
353 /* We will get a trace trap after one instruction.
354 Continue it automatically and insert breakpoints then. */
355 trap_expected = 1;
356 else
357 {
358 int temp = insert_breakpoints ();
359 if (temp)
360 {
361 print_sys_errmsg ("ptrace", temp);
362 error ("Cannot insert breakpoints.\n\
363 The same program may be running in another process.");
364 }
365 breakpoints_inserted = 1;
366 }
367
368 if (siggnal != TARGET_SIGNAL_DEFAULT)
369 stop_signal = siggnal;
370 /* If this signal should not be seen by program,
371 give it zero. Used for debugging signals. */
372 else if (!signal_program[stop_signal])
373 stop_signal = TARGET_SIGNAL_0;
374
375 annotate_starting ();
376
377 /* Make sure that output from GDB appears before output from the
378 inferior. */
379 gdb_flush (gdb_stdout);
380
381 /* Resume inferior. */
382 resume (oneproc || step || bpstat_should_step (), stop_signal);
383
384 /* Wait for it to stop (if not standalone)
385 and in any case decode why it stopped, and act accordingly. */
386
387 wait_for_inferior ();
388 normal_stop ();
389 }
390
391 /* Record the pc and sp of the program the last time it stopped.
392 These are just used internally by wait_for_inferior, but need
393 to be preserved over calls to it and cleared when the inferior
394 is started. */
395 static CORE_ADDR prev_pc;
396 static CORE_ADDR prev_func_start;
397 static char *prev_func_name;
398
399 \f
400 /* Start remote-debugging of a machine over a serial link. */
401
402 void
403 start_remote ()
404 {
405 init_thread_list ();
406 init_wait_for_inferior ();
407 clear_proceed_status ();
408 stop_soon_quietly = 1;
409 trap_expected = 0;
410 wait_for_inferior ();
411 normal_stop ();
412 }
413
414 /* Initialize static vars when a new inferior begins. */
415
416 void
417 init_wait_for_inferior ()
418 {
419 /* These are meaningless until the first time through wait_for_inferior. */
420 prev_pc = 0;
421 prev_func_start = 0;
422 prev_func_name = NULL;
423
424 #ifdef HP_OS_BUG
425 trap_expected_after_continue = 0;
426 #endif
427 breakpoints_inserted = 0;
428 breakpoint_init_inferior ();
429
430 /* Don't confuse first call to proceed(). */
431 stop_signal = TARGET_SIGNAL_0;
432 }
433
434 static void
435 delete_breakpoint_current_contents (arg)
436 PTR arg;
437 {
438 struct breakpoint **breakpointp = (struct breakpoint **)arg;
439 if (*breakpointp != NULL)
440 delete_breakpoint (*breakpointp);
441 }
442 \f
443 /* Wait for control to return from inferior to debugger.
444 If inferior gets a signal, we may decide to start it up again
445 instead of returning. That is why there is a loop in this function.
446 When this function actually returns it means the inferior
447 should be left stopped and GDB should read more commands. */
448
449 void
450 wait_for_inferior ()
451 {
452 struct cleanup *old_cleanups;
453 struct target_waitstatus w;
454 int another_trap;
455 int random_signal = 0;
456 CORE_ADDR stop_func_start;
457 CORE_ADDR stop_func_end;
458 char *stop_func_name;
459 #if 0
460 CORE_ADDR prologue_pc = 0;
461 #endif
462 CORE_ADDR tmp;
463 struct symtab_and_line sal;
464 int remove_breakpoints_on_following_step = 0;
465 int current_line;
466 struct symtab *current_symtab;
467 int handling_longjmp = 0; /* FIXME */
468 struct breakpoint *step_resume_breakpoint = NULL;
469 struct breakpoint *through_sigtramp_breakpoint = NULL;
470 int pid;
471 int update_step_sp = 0;
472
473 old_cleanups = make_cleanup (delete_breakpoint_current_contents,
474 &step_resume_breakpoint);
475 make_cleanup (delete_breakpoint_current_contents,
476 &through_sigtramp_breakpoint);
477 sal = find_pc_line(prev_pc, 0);
478 current_line = sal.line;
479 current_symtab = sal.symtab;
480
481 /* Are we stepping? */
482 #define CURRENTLY_STEPPING() \
483 ((through_sigtramp_breakpoint == NULL \
484 && !handling_longjmp \
485 && ((step_range_end && step_resume_breakpoint == NULL) \
486 || trap_expected)) \
487 || bpstat_should_step ())
488
489 while (1)
490 {
491 /* We have to invalidate the registers BEFORE calling target_wait because
492 they can be loaded from the target while in target_wait. This makes
493 remote debugging a bit more efficient for those targets that provide
494 critical registers as part of their normal status mechanism. */
495
496 registers_changed ();
497
498 if (target_wait_hook)
499 pid = target_wait_hook (-1, &w);
500 else
501 pid = target_wait (-1, &w);
502
503 /* Gross.
504
505 We goto this label from elsewhere in wait_for_inferior when we want
506 to continue the main loop without calling "wait" and trashing the
507 waitstatus contained in W. */
508 have_waited:
509
510 flush_cached_frames ();
511
512 /* If it's a new process, add it to the thread database */
513
514 if (pid != inferior_pid
515 && !in_thread_list (pid))
516 {
517 fprintf_unfiltered (gdb_stderr, "[New %s]\n", target_pid_to_str (pid));
518 add_thread (pid);
519
520 /* We may want to consider not doing a resume here in order to give
521 the user a chance to play with the new thread. It might be good
522 to make that a user-settable option. */
523
524 /* At this point, all threads are stopped (happens automatically in
525 either the OS or the native code). Therefore we need to continue
526 all threads in order to make progress. */
527
528 target_resume (-1, 0, TARGET_SIGNAL_0);
529 continue;
530 }
531
532 switch (w.kind)
533 {
534 case TARGET_WAITKIND_LOADED:
535 /* Ignore it gracefully. */
536 if (breakpoints_inserted)
537 {
538 mark_breakpoints_out ();
539 insert_breakpoints ();
540 }
541 resume (0, TARGET_SIGNAL_0);
542 continue;
543
544 case TARGET_WAITKIND_SPURIOUS:
545 resume (0, TARGET_SIGNAL_0);
546 continue;
547
548 case TARGET_WAITKIND_EXITED:
549 target_terminal_ours (); /* Must do this before mourn anyway */
550 annotate_exited (w.value.integer);
551 if (w.value.integer)
552 printf_filtered ("\nProgram exited with code 0%o.\n",
553 (unsigned int)w.value.integer);
554 else
555 printf_filtered ("\nProgram exited normally.\n");
556
557 /* Record the exit code in the convenience variable $_exitcode, so
558 that the user can inspect this again later. */
559 set_internalvar (lookup_internalvar ("_exitcode"),
560 value_from_longest (builtin_type_int,
561 (LONGEST) w.value.integer));
562 gdb_flush (gdb_stdout);
563 target_mourn_inferior ();
564 #ifdef NO_SINGLE_STEP
565 one_stepped = 0;
566 #endif
567 stop_print_frame = 0;
568 goto stop_stepping;
569
570 case TARGET_WAITKIND_SIGNALLED:
571 stop_print_frame = 0;
572 stop_signal = w.value.sig;
573 target_terminal_ours (); /* Must do this before mourn anyway */
574 annotate_signalled ();
575
576 /* This looks pretty bogus to me. Doesn't TARGET_WAITKIND_SIGNALLED
577 mean it is already dead? This has been here since GDB 2.8, so
578 perhaps it means rms didn't understand unix waitstatuses?
579 For the moment I'm just kludging around this in remote.c
580 rather than trying to change it here --kingdon, 5 Dec 1994. */
581 target_kill (); /* kill mourns as well */
582
583 printf_filtered ("\nProgram terminated with signal ");
584 annotate_signal_name ();
585 printf_filtered ("%s", target_signal_to_name (stop_signal));
586 annotate_signal_name_end ();
587 printf_filtered (", ");
588 annotate_signal_string ();
589 printf_filtered ("%s", target_signal_to_string (stop_signal));
590 annotate_signal_string_end ();
591 printf_filtered (".\n");
592
593 printf_filtered ("The program no longer exists.\n");
594 gdb_flush (gdb_stdout);
595 #ifdef NO_SINGLE_STEP
596 one_stepped = 0;
597 #endif
598 goto stop_stepping;
599
600 case TARGET_WAITKIND_STOPPED:
601 /* This is the only case in which we keep going; the above cases
602 end in a continue or goto. */
603 break;
604 }
605
606 stop_signal = w.value.sig;
607
608 stop_pc = read_pc_pid (pid);
609
610 /* See if a thread hit a thread-specific breakpoint that was meant for
611 another thread. If so, then step that thread past the breakpoint,
612 and continue it. */
613
614 if (stop_signal == TARGET_SIGNAL_TRAP)
615 {
616 #ifdef NO_SINGLE_STEP
617 if (one_stepped)
618 random_signal = 0;
619 else
620 #endif
621 if (breakpoints_inserted
622 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
623 {
624 random_signal = 0;
625 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK, pid))
626 {
627 /* Saw a breakpoint, but it was hit by the wrong thread. Just continue. */
628 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, pid);
629
630 remove_breakpoints ();
631 target_resume (pid, 1, TARGET_SIGNAL_0); /* Single step */
632 /* FIXME: What if a signal arrives instead of the single-step
633 happening? */
634
635 if (target_wait_hook)
636 target_wait_hook (pid, &w);
637 else
638 target_wait (pid, &w);
639 insert_breakpoints ();
640
641 /* We need to restart all the threads now. */
642 target_resume (-1, 0, TARGET_SIGNAL_0);
643 continue;
644 }
645 }
646 }
647 else
648 random_signal = 1;
649
650 /* See if something interesting happened to the non-current thread. If
651 so, then switch to that thread, and eventually give control back to
652 the user. */
653
654 if (pid != inferior_pid)
655 {
656 int printed = 0;
657
658 /* If it's a random signal for a non-current thread, notify user
659 if he's expressed an interest. */
660
661 if (random_signal
662 && signal_print[stop_signal])
663 {
664 printed = 1;
665 target_terminal_ours_for_output ();
666 printf_filtered ("\nProgram received signal %s, %s.\n",
667 target_signal_to_name (stop_signal),
668 target_signal_to_string (stop_signal));
669 gdb_flush (gdb_stdout);
670 }
671
672 /* If it's not SIGTRAP and not a signal we want to stop for, then
673 continue the thread. */
674
675 if (stop_signal != TARGET_SIGNAL_TRAP
676 && !signal_stop[stop_signal])
677 {
678 if (printed)
679 target_terminal_inferior ();
680
681 /* Clear the signal if it should not be passed. */
682 if (signal_program[stop_signal] == 0)
683 stop_signal = TARGET_SIGNAL_0;
684
685 target_resume (pid, 0, stop_signal);
686 continue;
687 }
688
689 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
690 and fall into the rest of wait_for_inferior(). */
691
692 /* Save infrun state for the old thread. */
693 save_infrun_state (inferior_pid, prev_pc,
694 prev_func_start, prev_func_name,
695 trap_expected, step_resume_breakpoint,
696 through_sigtramp_breakpoint,
697 step_range_start, step_range_end,
698 step_frame_address, handling_longjmp,
699 another_trap);
700
701 inferior_pid = pid;
702
703 /* Load infrun state for the new thread. */
704 load_infrun_state (inferior_pid, &prev_pc,
705 &prev_func_start, &prev_func_name,
706 &trap_expected, &step_resume_breakpoint,
707 &through_sigtramp_breakpoint,
708 &step_range_start, &step_range_end,
709 &step_frame_address, &handling_longjmp,
710 &another_trap);
711 printf_filtered ("[Switching to %s]\n", target_pid_to_str (pid));
712
713 flush_cached_frames ();
714 }
715
716 #ifdef NO_SINGLE_STEP
717 if (one_stepped)
718 single_step (0); /* This actually cleans up the ss */
719 #endif /* NO_SINGLE_STEP */
720
721 /* If PC is pointing at a nullified instruction, then step beyond
722 it so that the user won't be confused when GDB appears to be ready
723 to execute it. */
724
725 if (INSTRUCTION_NULLIFIED)
726 {
727 struct target_waitstatus tmpstatus;
728
729 registers_changed ();
730 target_resume (pid, 1, TARGET_SIGNAL_0);
731
732 /* We may have received a signal that we want to pass to
733 the inferior; therefore, we must not clobber the waitstatus
734 in W. So we call wait ourselves, then continue the loop
735 at the "have_waited" label. */
736 if (target_wait_hook)
737 target_wait_hook (pid, &tmpstatus);
738 else
739 target_wait (pid, &tmpstatus);
740
741
742 goto have_waited;
743 }
744
745 #ifdef HAVE_STEPPABLE_WATCHPOINT
746 /* It may not be necessary to disable the watchpoint to stop over
747 it. For example, the PA can (with some kernel cooperation)
748 single step over a watchpoint without disabling the watchpoint. */
749 if (STOPPED_BY_WATCHPOINT (w))
750 {
751 resume (1, 0);
752 continue;
753 }
754 #endif
755
756 #ifdef HAVE_NONSTEPPABLE_WATCHPOINT
757 /* It is far more common to need to disable a watchpoint
758 to step the inferior over it. FIXME. What else might
759 a debug register or page protection watchpoint scheme need
760 here? */
761 if (STOPPED_BY_WATCHPOINT (w))
762 {
763 /* At this point, we are stopped at an instruction which has attempted to write
764 to a piece of memory under control of a watchpoint. The instruction hasn't
765 actually executed yet. If we were to evaluate the watchpoint expression
766 now, we would get the old value, and therefore no change would seem to have
767 occurred.
768
769 In order to make watchpoints work `right', we really need to complete the
770 memory write, and then evaluate the watchpoint expression. The following
771 code does that by removing the watchpoint (actually, all watchpoints and
772 breakpoints), single-stepping the target, re-inserting watchpoints, and then
773 falling through to let normal single-step processing handle proceed. Since
774 this includes evaluating watchpoints, things will come to a stop in the
775 correct manner. */
776
777 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
778
779 remove_breakpoints ();
780 target_resume (pid, 1, TARGET_SIGNAL_0); /* Single step */
781
782 if (target_wait_hook)
783 target_wait_hook (pid, &w);
784 else
785 target_wait (pid, &w);
786 insert_breakpoints ();
787 /* FIXME-maybe: is this cleaner than setting a flag? Does it
788 handle things like signals arriving and other things happening
789 in combination correctly? */
790 goto have_waited;
791 }
792 #endif
793
794 #ifdef HAVE_CONTINUABLE_WATCHPOINT
795 /* It may be possible to simply continue after a watchpoint. */
796 STOPPED_BY_WATCHPOINT (w);
797 #endif
798
799 stop_func_start = 0;
800 stop_func_name = 0;
801 /* Don't care about return value; stop_func_start and stop_func_name
802 will both be 0 if it doesn't work. */
803 find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start,
804 &stop_func_end);
805 stop_func_start += FUNCTION_START_OFFSET;
806 another_trap = 0;
807 bpstat_clear (&stop_bpstat);
808 stop_step = 0;
809 stop_stack_dummy = 0;
810 stop_print_frame = 1;
811 random_signal = 0;
812 stopped_by_random_signal = 0;
813 breakpoints_failed = 0;
814
815 /* Look at the cause of the stop, and decide what to do.
816 The alternatives are:
817 1) break; to really stop and return to the debugger,
818 2) drop through to start up again
819 (set another_trap to 1 to single step once)
820 3) set random_signal to 1, and the decision between 1 and 2
821 will be made according to the signal handling tables. */
822
823 /* First, distinguish signals caused by the debugger from signals
824 that have to do with the program's own actions.
825 Note that breakpoint insns may cause SIGTRAP or SIGILL
826 or SIGEMT, depending on the operating system version.
827 Here we detect when a SIGILL or SIGEMT is really a breakpoint
828 and change it to SIGTRAP. */
829
830 if (stop_signal == TARGET_SIGNAL_TRAP
831 || (breakpoints_inserted &&
832 (stop_signal == TARGET_SIGNAL_ILL
833 || stop_signal == TARGET_SIGNAL_EMT
834 ))
835 || stop_soon_quietly)
836 {
837 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
838 {
839 stop_print_frame = 0;
840 break;
841 }
842 if (stop_soon_quietly)
843 break;
844
845 /* Don't even think about breakpoints
846 if just proceeded over a breakpoint.
847
848 However, if we are trying to proceed over a breakpoint
849 and end up in sigtramp, then through_sigtramp_breakpoint
850 will be set and we should check whether we've hit the
851 step breakpoint. */
852 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
853 && through_sigtramp_breakpoint == NULL)
854 bpstat_clear (&stop_bpstat);
855 else
856 {
857 /* See if there is a breakpoint at the current PC. */
858 stop_bpstat = bpstat_stop_status
859 (&stop_pc,
860 #if DECR_PC_AFTER_BREAK
861 /* Notice the case of stepping through a jump
862 that lands just after a breakpoint.
863 Don't confuse that with hitting the breakpoint.
864 What we check for is that 1) stepping is going on
865 and 2) the pc before the last insn does not match
866 the address of the breakpoint before the current pc. */
867 (prev_pc != stop_pc - DECR_PC_AFTER_BREAK
868 && CURRENTLY_STEPPING ())
869 #else /* DECR_PC_AFTER_BREAK zero */
870 0
871 #endif /* DECR_PC_AFTER_BREAK zero */
872 );
873 /* Following in case break condition called a
874 function. */
875 stop_print_frame = 1;
876 }
877
878 if (stop_signal == TARGET_SIGNAL_TRAP)
879 random_signal
880 = !(bpstat_explains_signal (stop_bpstat)
881 || trap_expected
882 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
883 || PC_IN_CALL_DUMMY (stop_pc, read_sp (),
884 FRAME_FP (get_current_frame ()))
885 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
886 || (step_range_end && step_resume_breakpoint == NULL));
887 else
888 {
889 random_signal
890 = !(bpstat_explains_signal (stop_bpstat)
891 /* End of a stack dummy. Some systems (e.g. Sony
892 news) give another signal besides SIGTRAP,
893 so check here as well as above. */
894 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
895 || PC_IN_CALL_DUMMY (stop_pc, read_sp (),
896 FRAME_FP (get_current_frame ()))
897 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
898 );
899 if (!random_signal)
900 stop_signal = TARGET_SIGNAL_TRAP;
901 }
902 }
903 else
904 random_signal = 1;
905
906 /* For the program's own signals, act according to
907 the signal handling tables. */
908
909 if (random_signal)
910 {
911 /* Signal not for debugging purposes. */
912 int printed = 0;
913
914 stopped_by_random_signal = 1;
915
916 if (signal_print[stop_signal])
917 {
918 printed = 1;
919 target_terminal_ours_for_output ();
920 annotate_signal ();
921 printf_filtered ("\nProgram received signal ");
922 annotate_signal_name ();
923 printf_filtered ("%s", target_signal_to_name (stop_signal));
924 annotate_signal_name_end ();
925 printf_filtered (", ");
926 annotate_signal_string ();
927 printf_filtered ("%s", target_signal_to_string (stop_signal));
928 annotate_signal_string_end ();
929 printf_filtered (".\n");
930 gdb_flush (gdb_stdout);
931 }
932 if (signal_stop[stop_signal])
933 break;
934 /* If not going to stop, give terminal back
935 if we took it away. */
936 else if (printed)
937 target_terminal_inferior ();
938
939 /* Clear the signal if it should not be passed. */
940 if (signal_program[stop_signal] == 0)
941 stop_signal = TARGET_SIGNAL_0;
942
943 /* I'm not sure whether this needs to be check_sigtramp2 or
944 whether it could/should be keep_going. */
945 goto check_sigtramp2;
946 }
947
948 /* Handle cases caused by hitting a breakpoint. */
949 {
950 CORE_ADDR jmp_buf_pc;
951 struct bpstat_what what;
952
953 what = bpstat_what (stop_bpstat);
954
955 if (what.call_dummy)
956 {
957 stop_stack_dummy = 1;
958 #ifdef HP_OS_BUG
959 trap_expected_after_continue = 1;
960 #endif
961 }
962
963 switch (what.main_action)
964 {
965 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
966 /* If we hit the breakpoint at longjmp, disable it for the
967 duration of this command. Then, install a temporary
968 breakpoint at the target of the jmp_buf. */
969 disable_longjmp_breakpoint();
970 remove_breakpoints ();
971 breakpoints_inserted = 0;
972 if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
973
974 /* Need to blow away step-resume breakpoint, as it
975 interferes with us */
976 if (step_resume_breakpoint != NULL)
977 {
978 delete_breakpoint (step_resume_breakpoint);
979 step_resume_breakpoint = NULL;
980 }
981 /* Not sure whether we need to blow this away too, but probably
982 it is like the step-resume breakpoint. */
983 if (through_sigtramp_breakpoint != NULL)
984 {
985 delete_breakpoint (through_sigtramp_breakpoint);
986 through_sigtramp_breakpoint = NULL;
987 }
988
989 #if 0
990 /* FIXME - Need to implement nested temporary breakpoints */
991 if (step_over_calls > 0)
992 set_longjmp_resume_breakpoint(jmp_buf_pc,
993 get_current_frame());
994 else
995 #endif /* 0 */
996 set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
997 handling_longjmp = 1; /* FIXME */
998 goto keep_going;
999
1000 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
1001 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
1002 remove_breakpoints ();
1003 breakpoints_inserted = 0;
1004 #if 0
1005 /* FIXME - Need to implement nested temporary breakpoints */
1006 if (step_over_calls
1007 && (FRAME_FP (get_current_frame ())
1008 INNER_THAN step_frame_address))
1009 {
1010 another_trap = 1;
1011 goto keep_going;
1012 }
1013 #endif /* 0 */
1014 disable_longjmp_breakpoint();
1015 handling_longjmp = 0; /* FIXME */
1016 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
1017 break;
1018 /* else fallthrough */
1019
1020 case BPSTAT_WHAT_SINGLE:
1021 if (breakpoints_inserted)
1022 remove_breakpoints ();
1023 breakpoints_inserted = 0;
1024 another_trap = 1;
1025 /* Still need to check other stuff, at least the case
1026 where we are stepping and step out of the right range. */
1027 break;
1028
1029 case BPSTAT_WHAT_STOP_NOISY:
1030 stop_print_frame = 1;
1031
1032 /* We are about to nuke the step_resume_breakpoint and
1033 through_sigtramp_breakpoint via the cleanup chain, so
1034 no need to worry about it here. */
1035
1036 goto stop_stepping;
1037
1038 case BPSTAT_WHAT_STOP_SILENT:
1039 stop_print_frame = 0;
1040
1041 /* We are about to nuke the step_resume_breakpoint and
1042 through_sigtramp_breakpoint via the cleanup chain, so
1043 no need to worry about it here. */
1044
1045 goto stop_stepping;
1046
1047 case BPSTAT_WHAT_STEP_RESUME:
1048 delete_breakpoint (step_resume_breakpoint);
1049 step_resume_breakpoint = NULL;
1050 break;
1051
1052 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
1053 if (through_sigtramp_breakpoint)
1054 delete_breakpoint (through_sigtramp_breakpoint);
1055 through_sigtramp_breakpoint = NULL;
1056
1057 /* If were waiting for a trap, hitting the step_resume_break
1058 doesn't count as getting it. */
1059 if (trap_expected)
1060 another_trap = 1;
1061 break;
1062
1063 case BPSTAT_WHAT_CHECK_SHLIBS:
1064 #ifdef SOLIB_ADD
1065 {
1066 extern int auto_solib_add;
1067
1068 /* Remove breakpoints, we eventually want to step over the
1069 shlib event breakpoint, and SOLIB_ADD might adjust
1070 breakpoint addresses via breakpoint_re_set. */
1071 if (breakpoints_inserted)
1072 remove_breakpoints ();
1073 breakpoints_inserted = 0;
1074
1075 /* Check for any newly added shared libraries if we're
1076 supposed to be adding them automatically. */
1077 if (auto_solib_add)
1078 {
1079 /* Switch terminal for any messages produced by
1080 breakpoint_re_set. */
1081 target_terminal_ours_for_output ();
1082 SOLIB_ADD (NULL, 0, NULL);
1083 re_enable_breakpoints_in_shlibs ();
1084 target_terminal_inferior ();
1085 }
1086
1087 /* If requested, stop when the dynamic linker notifies
1088 gdb of events. This allows the user to get control
1089 and place breakpoints in initializer routines for
1090 dynamically loaded objects (among other things). */
1091 if (stop_on_solib_events)
1092 {
1093 stop_print_frame = 0;
1094 goto stop_stepping;
1095 }
1096 else
1097 {
1098 /* We want to step over this breakpoint, then keep going. */
1099 another_trap = 1;
1100 break;
1101 }
1102 }
1103 #endif
1104 break;
1105
1106 case BPSTAT_WHAT_LAST:
1107 /* Not a real code, but listed here to shut up gcc -Wall. */
1108
1109 case BPSTAT_WHAT_KEEP_CHECKING:
1110 break;
1111 }
1112 }
1113
1114 /* We come here if we hit a breakpoint but should not
1115 stop for it. Possibly we also were stepping
1116 and should stop for that. So fall through and
1117 test for stepping. But, if not stepping,
1118 do not stop. */
1119
1120 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
1121 /* This is the old way of detecting the end of the stack dummy.
1122 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
1123 handled above. As soon as we can test it on all of them, all
1124 architectures should define it. */
1125
1126 /* If this is the breakpoint at the end of a stack dummy,
1127 just stop silently, unless the user was doing an si/ni, in which
1128 case she'd better know what she's doing. */
1129
1130 if (PC_IN_CALL_DUMMY (stop_pc, read_sp (), FRAME_FP (get_current_frame ()))
1131 && !step_range_end)
1132 {
1133 stop_print_frame = 0;
1134 stop_stack_dummy = 1;
1135 #ifdef HP_OS_BUG
1136 trap_expected_after_continue = 1;
1137 #endif
1138 break;
1139 }
1140 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
1141
1142 if (step_resume_breakpoint)
1143 /* Having a step-resume breakpoint overrides anything
1144 else having to do with stepping commands until
1145 that breakpoint is reached. */
1146 /* I'm not sure whether this needs to be check_sigtramp2 or
1147 whether it could/should be keep_going. */
1148 goto check_sigtramp2;
1149
1150 if (step_range_end == 0)
1151 /* Likewise if we aren't even stepping. */
1152 /* I'm not sure whether this needs to be check_sigtramp2 or
1153 whether it could/should be keep_going. */
1154 goto check_sigtramp2;
1155
1156 /* If stepping through a line, keep going if still within it. */
1157 if (stop_pc >= step_range_start
1158 && stop_pc < step_range_end
1159 #if 0
1160 /* I haven't a clue what might trigger this clause, and it seems wrong anyway,
1161 so I've disabled it until someone complains. -Stu 10/24/95 */
1162
1163 /* The step range might include the start of the
1164 function, so if we are at the start of the
1165 step range and either the stack or frame pointers
1166 just changed, we've stepped outside */
1167 && !(stop_pc == step_range_start
1168 && FRAME_FP (get_current_frame ())
1169 && (read_sp () INNER_THAN step_sp
1170 || FRAME_FP (get_current_frame ()) != step_frame_address))
1171 #endif
1172 )
1173 {
1174 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
1175 So definately need to check for sigtramp here. */
1176 goto check_sigtramp2;
1177 }
1178
1179 /* We stepped out of the stepping range. */
1180
1181 /* We can't update step_sp every time through the loop, because
1182 reading the stack pointer would slow down stepping too much.
1183 But we can update it every time we leave the step range. */
1184 update_step_sp = 1;
1185
1186 /* Did we just take a signal? */
1187 if (IN_SIGTRAMP (stop_pc, stop_func_name)
1188 && !IN_SIGTRAMP (prev_pc, prev_func_name)
1189 && read_sp () INNER_THAN step_sp)
1190 {
1191 /* We've just taken a signal; go until we are back to
1192 the point where we took it and one more. */
1193
1194 /* This code is needed at least in the following case:
1195 The user types "next" and then a signal arrives (before
1196 the "next" is done). */
1197
1198 /* Note that if we are stopped at a breakpoint, then we need
1199 the step_resume breakpoint to override any breakpoints at
1200 the same location, so that we will still step over the
1201 breakpoint even though the signal happened. */
1202
1203 {
1204 struct symtab_and_line sr_sal;
1205
1206 sr_sal.pc = prev_pc;
1207 sr_sal.symtab = NULL;
1208 sr_sal.line = 0;
1209 /* We could probably be setting the frame to
1210 step_frame_address; I don't think anyone thought to try it. */
1211 step_resume_breakpoint =
1212 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1213 if (breakpoints_inserted)
1214 insert_breakpoints ();
1215 }
1216
1217 /* If this is stepi or nexti, make sure that the stepping range
1218 gets us past that instruction. */
1219 if (step_range_end == 1)
1220 /* FIXME: Does this run afoul of the code below which, if
1221 we step into the middle of a line, resets the stepping
1222 range? */
1223 step_range_end = (step_range_start = prev_pc) + 1;
1224
1225 remove_breakpoints_on_following_step = 1;
1226 goto keep_going;
1227 }
1228
1229 #if 0
1230 /* I disabled this test because it was too complicated and slow. The
1231 SKIP_PROLOGUE was especially slow, because it caused unnecessary
1232 prologue examination on various architectures. The code in the #else
1233 clause has been tested on the Sparc, Mips, PA, and Power
1234 architectures, so it's pretty likely to be correct. -Stu 10/24/95 */
1235
1236 /* See if we left the step range due to a subroutine call that
1237 we should proceed to the end of. */
1238
1239 if (stop_func_start)
1240 {
1241 struct symtab *s;
1242
1243 /* Do this after the IN_SIGTRAMP check; it might give
1244 an error. */
1245 prologue_pc = stop_func_start;
1246
1247 /* Don't skip the prologue if this is assembly source */
1248 s = find_pc_symtab (stop_pc);
1249 if (s && s->language != language_asm)
1250 SKIP_PROLOGUE (prologue_pc);
1251 }
1252
1253 if (!(step_sp INNER_THAN read_sp ()) /* don't mistake (sig)return as a call */
1254 && (/* Might be a non-recursive call. If the symbols are missing
1255 enough that stop_func_start == prev_func_start even though
1256 they are really two functions, we will treat some calls as
1257 jumps. */
1258 stop_func_start != prev_func_start
1259
1260 /* Might be a recursive call if either we have a prologue
1261 or the call instruction itself saves the PC on the stack. */
1262 || prologue_pc != stop_func_start
1263 || read_sp () != step_sp)
1264 && (/* PC is completely out of bounds of any known objfiles. Treat
1265 like a subroutine call. */
1266 ! stop_func_start
1267
1268 /* If we do a call, we will be at the start of a function... */
1269 || stop_pc == stop_func_start
1270
1271 /* ...except on the Alpha with -O (and also Irix 5 and
1272 perhaps others), in which we might call the address
1273 after the load of gp. Since prologues don't contain
1274 calls, we can't return to within one, and we don't
1275 jump back into them, so this check is OK. */
1276
1277 || stop_pc < prologue_pc
1278
1279 /* ...and if it is a leaf function, the prologue might
1280 consist of gp loading only, so the call transfers to
1281 the first instruction after the prologue. */
1282 || (stop_pc == prologue_pc
1283
1284 /* Distinguish this from the case where we jump back
1285 to the first instruction after the prologue,
1286 within a function. */
1287 && stop_func_start != prev_func_start)
1288
1289 /* If we end up in certain places, it means we did a subroutine
1290 call. I'm not completely sure this is necessary now that we
1291 have the above checks with stop_func_start (and now that
1292 find_pc_partial_function is pickier). */
1293 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, stop_func_name)
1294
1295 /* If none of the above apply, it is a jump within a function,
1296 or a return from a subroutine. The other case is longjmp,
1297 which can no longer happen here as long as the
1298 handling_longjmp stuff is working. */
1299 ))
1300 #else
1301 /* This test is a much more streamlined, (but hopefully correct)
1302 replacement for the code above. It's been tested on the Sparc,
1303 Mips, PA, and Power architectures with good results. */
1304
1305 if (stop_pc == stop_func_start /* Quick test */
1306 || in_prologue (stop_pc, stop_func_start)
1307 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, stop_func_name)
1308 || stop_func_start == 0)
1309 #endif
1310
1311 {
1312 /* It's a subroutine call. */
1313
1314 if (step_over_calls == 0)
1315 {
1316 /* I presume that step_over_calls is only 0 when we're
1317 supposed to be stepping at the assembly language level
1318 ("stepi"). Just stop. */
1319 stop_step = 1;
1320 break;
1321 }
1322
1323 if (step_over_calls > 0)
1324 /* We're doing a "next". */
1325 goto step_over_function;
1326
1327 /* If we are in a function call trampoline (a stub between
1328 the calling routine and the real function), locate the real
1329 function. That's what tells us (a) whether we want to step
1330 into it at all, and (b) what prologue we want to run to
1331 the end of, if we do step into it. */
1332 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1333 if (tmp != 0)
1334 stop_func_start = tmp;
1335 else
1336 {
1337 tmp = DYNAMIC_TRAMPOLINE_NEXTPC (stop_pc);
1338 if (tmp)
1339 {
1340 struct symtab_and_line xxx;
1341
1342 xxx.pc = tmp;
1343 xxx.symtab = NULL;
1344 xxx.line = 0;
1345 step_resume_breakpoint =
1346 set_momentary_breakpoint (xxx, NULL, bp_step_resume);
1347 insert_breakpoints ();
1348 goto keep_going;
1349 }
1350 }
1351
1352 /* If we have line number information for the function we
1353 are thinking of stepping into, step into it.
1354
1355 If there are several symtabs at that PC (e.g. with include
1356 files), just want to know whether *any* of them have line
1357 numbers. find_pc_line handles this. */
1358 {
1359 struct symtab_and_line tmp_sal;
1360
1361 tmp_sal = find_pc_line (stop_func_start, 0);
1362 if (tmp_sal.line != 0)
1363 goto step_into_function;
1364 }
1365
1366 step_over_function:
1367 /* A subroutine call has happened. */
1368 {
1369 /* Set a special breakpoint after the return */
1370 struct symtab_and_line sr_sal;
1371 sr_sal.pc =
1372 ADDR_BITS_REMOVE
1373 (SAVED_PC_AFTER_CALL (get_current_frame ()));
1374 sr_sal.symtab = NULL;
1375 sr_sal.line = 0;
1376 step_resume_breakpoint =
1377 set_momentary_breakpoint (sr_sal, get_current_frame (),
1378 bp_step_resume);
1379 step_resume_breakpoint->frame = step_frame_address;
1380 if (breakpoints_inserted)
1381 insert_breakpoints ();
1382 }
1383 goto keep_going;
1384
1385 step_into_function:
1386 /* Subroutine call with source code we should not step over.
1387 Do step to the first line of code in it. */
1388 {
1389 struct symtab *s;
1390
1391 s = find_pc_symtab (stop_pc);
1392 if (s && s->language != language_asm)
1393 SKIP_PROLOGUE (stop_func_start);
1394 }
1395 sal = find_pc_line (stop_func_start, 0);
1396 /* Use the step_resume_break to step until
1397 the end of the prologue, even if that involves jumps
1398 (as it seems to on the vax under 4.2). */
1399 /* If the prologue ends in the middle of a source line,
1400 continue to the end of that source line (if it is still
1401 within the function). Otherwise, just go to end of prologue. */
1402 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
1403 /* no, don't either. It skips any code that's
1404 legitimately on the first line. */
1405 #else
1406 if (sal.end && sal.pc != stop_func_start && sal.end < stop_func_end)
1407 stop_func_start = sal.end;
1408 #endif
1409
1410 if (stop_func_start == stop_pc)
1411 {
1412 /* We are already there: stop now. */
1413 stop_step = 1;
1414 break;
1415 }
1416 else
1417 /* Put the step-breakpoint there and go until there. */
1418 {
1419 struct symtab_and_line sr_sal;
1420
1421 sr_sal.pc = stop_func_start;
1422 sr_sal.symtab = NULL;
1423 sr_sal.line = 0;
1424 /* Do not specify what the fp should be when we stop
1425 since on some machines the prologue
1426 is where the new fp value is established. */
1427 step_resume_breakpoint =
1428 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1429 if (breakpoints_inserted)
1430 insert_breakpoints ();
1431
1432 /* And make sure stepping stops right away then. */
1433 step_range_end = step_range_start;
1434 }
1435 goto keep_going;
1436 }
1437
1438 /* We've wandered out of the step range. */
1439
1440 sal = find_pc_line(stop_pc, 0);
1441
1442 if (step_range_end == 1)
1443 {
1444 /* It is stepi or nexti. We always want to stop stepping after
1445 one instruction. */
1446 stop_step = 1;
1447 break;
1448 }
1449
1450 /* If we're in the return path from a shared library trampoline,
1451 we want to proceed through the trampoline when stepping. */
1452 if (IN_SOLIB_RETURN_TRAMPOLINE(stop_pc, stop_func_name))
1453 {
1454 CORE_ADDR tmp;
1455
1456 /* Determine where this trampoline returns. */
1457 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1458
1459 /* Only proceed through if we know where it's going. */
1460 if (tmp)
1461 {
1462 /* And put the step-breakpoint there and go until there. */
1463 struct symtab_and_line sr_sal;
1464
1465 sr_sal.pc = tmp;
1466 sr_sal.symtab = NULL;
1467 sr_sal.line = 0;
1468 /* Do not specify what the fp should be when we stop
1469 since on some machines the prologue
1470 is where the new fp value is established. */
1471 step_resume_breakpoint =
1472 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1473 if (breakpoints_inserted)
1474 insert_breakpoints ();
1475
1476 /* Restart without fiddling with the step ranges or
1477 other state. */
1478 goto keep_going;
1479 }
1480 }
1481
1482 if (sal.line == 0)
1483 {
1484 /* We have no line number information. That means to stop
1485 stepping (does this always happen right after one instruction,
1486 when we do "s" in a function with no line numbers,
1487 or can this happen as a result of a return or longjmp?). */
1488 stop_step = 1;
1489 break;
1490 }
1491
1492 if (stop_pc == sal.pc
1493 && (current_line != sal.line || current_symtab != sal.symtab))
1494 {
1495 /* We are at the start of a different line. So stop. Note that
1496 we don't stop if we step into the middle of a different line.
1497 That is said to make things like for (;;) statements work
1498 better. */
1499 stop_step = 1;
1500 break;
1501 }
1502
1503 /* We aren't done stepping.
1504
1505 Optimize by setting the stepping range to the line.
1506 (We might not be in the original line, but if we entered a
1507 new line in mid-statement, we continue stepping. This makes
1508 things like for(;;) statements work better.) */
1509
1510 if (stop_func_end && sal.end >= stop_func_end)
1511 {
1512 /* If this is the last line of the function, don't keep stepping
1513 (it would probably step us out of the function).
1514 This is particularly necessary for a one-line function,
1515 in which after skipping the prologue we better stop even though
1516 we will be in mid-line. */
1517 stop_step = 1;
1518 break;
1519 }
1520 step_range_start = sal.pc;
1521 step_range_end = sal.end;
1522 step_frame_address = FRAME_FP (get_current_frame ());
1523 goto keep_going;
1524
1525 check_sigtramp2:
1526 if (trap_expected
1527 && IN_SIGTRAMP (stop_pc, stop_func_name)
1528 && !IN_SIGTRAMP (prev_pc, prev_func_name)
1529 && read_sp () INNER_THAN step_sp)
1530 {
1531 /* What has happened here is that we have just stepped the inferior
1532 with a signal (because it is a signal which shouldn't make
1533 us stop), thus stepping into sigtramp.
1534
1535 So we need to set a step_resume_break_address breakpoint
1536 and continue until we hit it, and then step. FIXME: This should
1537 be more enduring than a step_resume breakpoint; we should know
1538 that we will later need to keep going rather than re-hitting
1539 the breakpoint here (see testsuite/gdb.t06/signals.exp where
1540 it says "exceedingly difficult"). */
1541 struct symtab_and_line sr_sal;
1542
1543 sr_sal.pc = prev_pc;
1544 sr_sal.symtab = NULL;
1545 sr_sal.line = 0;
1546 /* We perhaps could set the frame if we kept track of what
1547 the frame corresponding to prev_pc was. But we don't,
1548 so don't. */
1549 through_sigtramp_breakpoint =
1550 set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
1551 if (breakpoints_inserted)
1552 insert_breakpoints ();
1553
1554 remove_breakpoints_on_following_step = 1;
1555 another_trap = 1;
1556 }
1557
1558 keep_going:
1559 /* Come to this label when you need to resume the inferior.
1560 It's really much cleaner to do a goto than a maze of if-else
1561 conditions. */
1562
1563 /* Save the pc before execution, to compare with pc after stop. */
1564 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1565 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1566 BREAK is defined, the
1567 original pc would not have
1568 been at the start of a
1569 function. */
1570 prev_func_name = stop_func_name;
1571
1572 if (update_step_sp)
1573 step_sp = read_sp ();
1574 update_step_sp = 0;
1575
1576 /* If we did not do break;, it means we should keep
1577 running the inferior and not return to debugger. */
1578
1579 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
1580 {
1581 /* We took a signal (which we are supposed to pass through to
1582 the inferior, else we'd have done a break above) and we
1583 haven't yet gotten our trap. Simply continue. */
1584 resume (CURRENTLY_STEPPING (), stop_signal);
1585 }
1586 else
1587 {
1588 /* Either the trap was not expected, but we are continuing
1589 anyway (the user asked that this signal be passed to the
1590 child)
1591 -- or --
1592 The signal was SIGTRAP, e.g. it was our signal, but we
1593 decided we should resume from it.
1594
1595 We're going to run this baby now!
1596
1597 Insert breakpoints now, unless we are trying
1598 to one-proceed past a breakpoint. */
1599 /* If we've just finished a special step resume and we don't
1600 want to hit a breakpoint, pull em out. */
1601 if (step_resume_breakpoint == NULL
1602 && through_sigtramp_breakpoint == NULL
1603 && remove_breakpoints_on_following_step)
1604 {
1605 remove_breakpoints_on_following_step = 0;
1606 remove_breakpoints ();
1607 breakpoints_inserted = 0;
1608 }
1609 else if (!breakpoints_inserted &&
1610 (through_sigtramp_breakpoint != NULL || !another_trap))
1611 {
1612 breakpoints_failed = insert_breakpoints ();
1613 if (breakpoints_failed)
1614 break;
1615 breakpoints_inserted = 1;
1616 }
1617
1618 trap_expected = another_trap;
1619
1620 if (stop_signal == TARGET_SIGNAL_TRAP)
1621 stop_signal = TARGET_SIGNAL_0;
1622
1623 #ifdef SHIFT_INST_REGS
1624 /* I'm not sure when this following segment applies. I do know, now,
1625 that we shouldn't rewrite the regs when we were stopped by a
1626 random signal from the inferior process. */
1627 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
1628 (this is only used on the 88k). */
1629
1630 if (!bpstat_explains_signal (stop_bpstat)
1631 && (stop_signal != TARGET_SIGNAL_CHLD)
1632 && !stopped_by_random_signal)
1633 SHIFT_INST_REGS();
1634 #endif /* SHIFT_INST_REGS */
1635
1636 resume (CURRENTLY_STEPPING (), stop_signal);
1637 }
1638 }
1639
1640 stop_stepping:
1641 if (target_has_execution)
1642 {
1643 /* Assuming the inferior still exists, set these up for next
1644 time, just like we did above if we didn't break out of the
1645 loop. */
1646 prev_pc = read_pc ();
1647 prev_func_start = stop_func_start;
1648 prev_func_name = stop_func_name;
1649 }
1650 do_cleanups (old_cleanups);
1651 }
1652 \f
1653 /* Here to return control to GDB when the inferior stops for real.
1654 Print appropriate messages, remove breakpoints, give terminal our modes.
1655
1656 STOP_PRINT_FRAME nonzero means print the executing frame
1657 (pc, function, args, file, line number and line text).
1658 BREAKPOINTS_FAILED nonzero means stop was due to error
1659 attempting to insert breakpoints. */
1660
1661 void
1662 normal_stop ()
1663 {
1664 /* Make sure that the current_frame's pc is correct. This
1665 is a correction for setting up the frame info before doing
1666 DECR_PC_AFTER_BREAK */
1667 if (target_has_execution && get_current_frame())
1668 (get_current_frame ())->pc = read_pc ();
1669
1670 if (breakpoints_failed)
1671 {
1672 target_terminal_ours_for_output ();
1673 print_sys_errmsg ("ptrace", breakpoints_failed);
1674 printf_filtered ("Stopped; cannot insert breakpoints.\n\
1675 The same program may be running in another process.\n");
1676 }
1677
1678 if (target_has_execution && breakpoints_inserted)
1679 if (remove_breakpoints ())
1680 {
1681 target_terminal_ours_for_output ();
1682 printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
1683 It might be running in another process.\n\
1684 Further execution is probably impossible.\n");
1685 }
1686
1687 breakpoints_inserted = 0;
1688
1689 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1690 Delete any breakpoint that is to be deleted at the next stop. */
1691
1692 breakpoint_auto_delete (stop_bpstat);
1693
1694 /* If an auto-display called a function and that got a signal,
1695 delete that auto-display to avoid an infinite recursion. */
1696
1697 if (stopped_by_random_signal)
1698 disable_current_display ();
1699
1700 if (step_multi && stop_step)
1701 goto done;
1702
1703 target_terminal_ours ();
1704
1705 if (stop_bpstat
1706 && stop_bpstat->breakpoint_at
1707 && stop_bpstat->breakpoint_at->type == bp_shlib_event)
1708 printf_filtered ("Stopped due to shared library event\n");
1709
1710 /* Look up the hook_stop and run it if it exists. */
1711
1712 if (stop_command->hook)
1713 {
1714 catch_errors (hook_stop_stub, (char *)stop_command->hook,
1715 "Error while running hook_stop:\n", RETURN_MASK_ALL);
1716 }
1717
1718 if (!target_has_stack)
1719 goto done;
1720
1721 /* Select innermost stack frame except on return from a stack dummy routine,
1722 or if the program has exited. Print it without a level number if
1723 we have changed functions or hit a breakpoint. Print source line
1724 if we have one. */
1725 if (!stop_stack_dummy)
1726 {
1727 select_frame (get_current_frame (), 0);
1728
1729 if (stop_print_frame)
1730 {
1731 int source_only;
1732
1733 source_only = bpstat_print (stop_bpstat);
1734 source_only = source_only ||
1735 ( stop_step
1736 && step_frame_address == FRAME_FP (get_current_frame ())
1737 && step_start_function == find_pc_function (stop_pc));
1738
1739 print_stack_frame (selected_frame, -1, source_only? -1: 1);
1740
1741 /* Display the auto-display expressions. */
1742 do_displays ();
1743 }
1744 }
1745
1746 /* Save the function value return registers, if we care.
1747 We might be about to restore their previous contents. */
1748 if (proceed_to_finish)
1749 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1750
1751 if (stop_stack_dummy)
1752 {
1753 /* Pop the empty frame that contains the stack dummy.
1754 POP_FRAME ends with a setting of the current frame, so we
1755 can use that next. */
1756 POP_FRAME;
1757 /* Set stop_pc to what it was before we called the function. Can't rely
1758 on restore_inferior_status because that only gets called if we don't
1759 stop in the called function. */
1760 stop_pc = read_pc();
1761 select_frame (get_current_frame (), 0);
1762 }
1763 done:
1764 annotate_stopped ();
1765 }
1766
1767 static int
1768 hook_stop_stub (cmd)
1769 char *cmd;
1770 {
1771 execute_user_command ((struct cmd_list_element *)cmd, 0);
1772 return (0);
1773 }
1774 \f
1775 int signal_stop_state (signo)
1776 int signo;
1777 {
1778 return signal_stop[signo];
1779 }
1780
1781 int signal_print_state (signo)
1782 int signo;
1783 {
1784 return signal_print[signo];
1785 }
1786
1787 int signal_pass_state (signo)
1788 int signo;
1789 {
1790 return signal_program[signo];
1791 }
1792
1793 static void
1794 sig_print_header ()
1795 {
1796 printf_filtered ("\
1797 Signal Stop\tPrint\tPass to program\tDescription\n");
1798 }
1799
1800 static void
1801 sig_print_info (oursig)
1802 enum target_signal oursig;
1803 {
1804 char *name = target_signal_to_name (oursig);
1805 printf_filtered ("%s", name);
1806 printf_filtered ("%*.*s ", 13 - strlen (name), 13 - strlen (name),
1807 " ");
1808 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
1809 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
1810 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
1811 printf_filtered ("%s\n", target_signal_to_string (oursig));
1812 }
1813
1814 /* Specify how various signals in the inferior should be handled. */
1815
1816 static void
1817 handle_command (args, from_tty)
1818 char *args;
1819 int from_tty;
1820 {
1821 char **argv;
1822 int digits, wordlen;
1823 int sigfirst, signum, siglast;
1824 enum target_signal oursig;
1825 int allsigs;
1826 int nsigs;
1827 unsigned char *sigs;
1828 struct cleanup *old_chain;
1829
1830 if (args == NULL)
1831 {
1832 error_no_arg ("signal to handle");
1833 }
1834
1835 /* Allocate and zero an array of flags for which signals to handle. */
1836
1837 nsigs = (int)TARGET_SIGNAL_LAST;
1838 sigs = (unsigned char *) alloca (nsigs);
1839 memset (sigs, 0, nsigs);
1840
1841 /* Break the command line up into args. */
1842
1843 argv = buildargv (args);
1844 if (argv == NULL)
1845 {
1846 nomem (0);
1847 }
1848 old_chain = make_cleanup (freeargv, (char *) argv);
1849
1850 /* Walk through the args, looking for signal oursigs, signal names, and
1851 actions. Signal numbers and signal names may be interspersed with
1852 actions, with the actions being performed for all signals cumulatively
1853 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
1854
1855 while (*argv != NULL)
1856 {
1857 wordlen = strlen (*argv);
1858 for (digits = 0; isdigit ((*argv)[digits]); digits++) {;}
1859 allsigs = 0;
1860 sigfirst = siglast = -1;
1861
1862 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
1863 {
1864 /* Apply action to all signals except those used by the
1865 debugger. Silently skip those. */
1866 allsigs = 1;
1867 sigfirst = 0;
1868 siglast = nsigs - 1;
1869 }
1870 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
1871 {
1872 SET_SIGS (nsigs, sigs, signal_stop);
1873 SET_SIGS (nsigs, sigs, signal_print);
1874 }
1875 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
1876 {
1877 UNSET_SIGS (nsigs, sigs, signal_program);
1878 }
1879 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
1880 {
1881 SET_SIGS (nsigs, sigs, signal_print);
1882 }
1883 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
1884 {
1885 SET_SIGS (nsigs, sigs, signal_program);
1886 }
1887 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
1888 {
1889 UNSET_SIGS (nsigs, sigs, signal_stop);
1890 }
1891 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
1892 {
1893 SET_SIGS (nsigs, sigs, signal_program);
1894 }
1895 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
1896 {
1897 UNSET_SIGS (nsigs, sigs, signal_print);
1898 UNSET_SIGS (nsigs, sigs, signal_stop);
1899 }
1900 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
1901 {
1902 UNSET_SIGS (nsigs, sigs, signal_program);
1903 }
1904 else if (digits > 0)
1905 {
1906 /* It is numeric. The numeric signal refers to our own internal
1907 signal numbering from target.h, not to host/target signal number.
1908 This is a feature; users really should be using symbolic names
1909 anyway, and the common ones like SIGHUP, SIGINT, SIGALRM, etc.
1910 will work right anyway. */
1911
1912 sigfirst = siglast = (int) target_signal_from_command (atoi (*argv));
1913 if ((*argv)[digits] == '-')
1914 {
1915 siglast =
1916 (int) target_signal_from_command (atoi ((*argv) + digits + 1));
1917 }
1918 if (sigfirst > siglast)
1919 {
1920 /* Bet he didn't figure we'd think of this case... */
1921 signum = sigfirst;
1922 sigfirst = siglast;
1923 siglast = signum;
1924 }
1925 }
1926 else
1927 {
1928 oursig = target_signal_from_name (*argv);
1929 if (oursig != TARGET_SIGNAL_UNKNOWN)
1930 {
1931 sigfirst = siglast = (int)oursig;
1932 }
1933 else
1934 {
1935 /* Not a number and not a recognized flag word => complain. */
1936 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
1937 }
1938 }
1939
1940 /* If any signal numbers or symbol names were found, set flags for
1941 which signals to apply actions to. */
1942
1943 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
1944 {
1945 switch ((enum target_signal)signum)
1946 {
1947 case TARGET_SIGNAL_TRAP:
1948 case TARGET_SIGNAL_INT:
1949 if (!allsigs && !sigs[signum])
1950 {
1951 if (query ("%s is used by the debugger.\n\
1952 Are you sure you want to change it? ",
1953 target_signal_to_name
1954 ((enum target_signal)signum)))
1955 {
1956 sigs[signum] = 1;
1957 }
1958 else
1959 {
1960 printf_unfiltered ("Not confirmed, unchanged.\n");
1961 gdb_flush (gdb_stdout);
1962 }
1963 }
1964 break;
1965 case TARGET_SIGNAL_0:
1966 case TARGET_SIGNAL_DEFAULT:
1967 case TARGET_SIGNAL_UNKNOWN:
1968 /* Make sure that "all" doesn't print these. */
1969 break;
1970 default:
1971 sigs[signum] = 1;
1972 break;
1973 }
1974 }
1975
1976 argv++;
1977 }
1978
1979 target_notice_signals(inferior_pid);
1980
1981 if (from_tty)
1982 {
1983 /* Show the results. */
1984 sig_print_header ();
1985 for (signum = 0; signum < nsigs; signum++)
1986 {
1987 if (sigs[signum])
1988 {
1989 sig_print_info (signum);
1990 }
1991 }
1992 }
1993
1994 do_cleanups (old_chain);
1995 }
1996
1997 /* Print current contents of the tables set by the handle command.
1998 It is possible we should just be printing signals actually used
1999 by the current target (but for things to work right when switching
2000 targets, all signals should be in the signal tables). */
2001
2002 static void
2003 signals_info (signum_exp, from_tty)
2004 char *signum_exp;
2005 int from_tty;
2006 {
2007 enum target_signal oursig;
2008 sig_print_header ();
2009
2010 if (signum_exp)
2011 {
2012 /* First see if this is a symbol name. */
2013 oursig = target_signal_from_name (signum_exp);
2014 if (oursig == TARGET_SIGNAL_UNKNOWN)
2015 {
2016 /* No, try numeric. */
2017 oursig =
2018 target_signal_from_command (parse_and_eval_address (signum_exp));
2019 }
2020 sig_print_info (oursig);
2021 return;
2022 }
2023
2024 printf_filtered ("\n");
2025 /* These ugly casts brought to you by the native VAX compiler. */
2026 for (oursig = TARGET_SIGNAL_FIRST;
2027 (int)oursig < (int)TARGET_SIGNAL_LAST;
2028 oursig = (enum target_signal)((int)oursig + 1))
2029 {
2030 QUIT;
2031
2032 if (oursig != TARGET_SIGNAL_UNKNOWN
2033 && oursig != TARGET_SIGNAL_DEFAULT
2034 && oursig != TARGET_SIGNAL_0)
2035 sig_print_info (oursig);
2036 }
2037
2038 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
2039 }
2040 \f
2041 /* Save all of the information associated with the inferior<==>gdb
2042 connection. INF_STATUS is a pointer to a "struct inferior_status"
2043 (defined in inferior.h). */
2044
2045 void
2046 save_inferior_status (inf_status, restore_stack_info)
2047 struct inferior_status *inf_status;
2048 int restore_stack_info;
2049 {
2050 inf_status->stop_signal = stop_signal;
2051 inf_status->stop_pc = stop_pc;
2052 inf_status->stop_step = stop_step;
2053 inf_status->stop_stack_dummy = stop_stack_dummy;
2054 inf_status->stopped_by_random_signal = stopped_by_random_signal;
2055 inf_status->trap_expected = trap_expected;
2056 inf_status->step_range_start = step_range_start;
2057 inf_status->step_range_end = step_range_end;
2058 inf_status->step_frame_address = step_frame_address;
2059 inf_status->step_over_calls = step_over_calls;
2060 inf_status->stop_after_trap = stop_after_trap;
2061 inf_status->stop_soon_quietly = stop_soon_quietly;
2062 /* Save original bpstat chain here; replace it with copy of chain.
2063 If caller's caller is walking the chain, they'll be happier if we
2064 hand them back the original chain when restore_i_s is called. */
2065 inf_status->stop_bpstat = stop_bpstat;
2066 stop_bpstat = bpstat_copy (stop_bpstat);
2067 inf_status->breakpoint_proceeded = breakpoint_proceeded;
2068 inf_status->restore_stack_info = restore_stack_info;
2069 inf_status->proceed_to_finish = proceed_to_finish;
2070
2071 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
2072
2073 read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
2074
2075 record_selected_frame (&(inf_status->selected_frame_address),
2076 &(inf_status->selected_level));
2077 return;
2078 }
2079
2080 struct restore_selected_frame_args {
2081 CORE_ADDR frame_address;
2082 int level;
2083 };
2084
2085 static int restore_selected_frame PARAMS ((char *));
2086
2087 /* Restore the selected frame. args is really a struct
2088 restore_selected_frame_args * (declared as char * for catch_errors)
2089 telling us what frame to restore. Returns 1 for success, or 0 for
2090 failure. An error message will have been printed on error. */
2091
2092 static int
2093 restore_selected_frame (args)
2094 char *args;
2095 {
2096 struct restore_selected_frame_args *fr =
2097 (struct restore_selected_frame_args *) args;
2098 struct frame_info *frame;
2099 int level = fr->level;
2100
2101 frame = find_relative_frame (get_current_frame (), &level);
2102
2103 /* If inf_status->selected_frame_address is NULL, there was no
2104 previously selected frame. */
2105 if (frame == NULL ||
2106 FRAME_FP (frame) != fr->frame_address ||
2107 level != 0)
2108 {
2109 warning ("Unable to restore previously selected frame.\n");
2110 return 0;
2111 }
2112 select_frame (frame, fr->level);
2113 return(1);
2114 }
2115
2116 void
2117 restore_inferior_status (inf_status)
2118 struct inferior_status *inf_status;
2119 {
2120 stop_signal = inf_status->stop_signal;
2121 stop_pc = inf_status->stop_pc;
2122 stop_step = inf_status->stop_step;
2123 stop_stack_dummy = inf_status->stop_stack_dummy;
2124 stopped_by_random_signal = inf_status->stopped_by_random_signal;
2125 trap_expected = inf_status->trap_expected;
2126 step_range_start = inf_status->step_range_start;
2127 step_range_end = inf_status->step_range_end;
2128 step_frame_address = inf_status->step_frame_address;
2129 step_over_calls = inf_status->step_over_calls;
2130 stop_after_trap = inf_status->stop_after_trap;
2131 stop_soon_quietly = inf_status->stop_soon_quietly;
2132 bpstat_clear (&stop_bpstat);
2133 stop_bpstat = inf_status->stop_bpstat;
2134 breakpoint_proceeded = inf_status->breakpoint_proceeded;
2135 proceed_to_finish = inf_status->proceed_to_finish;
2136
2137 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
2138
2139 /* The inferior can be gone if the user types "print exit(0)"
2140 (and perhaps other times). */
2141 if (target_has_execution)
2142 write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
2143
2144 /* The inferior can be gone if the user types "print exit(0)"
2145 (and perhaps other times). */
2146
2147 /* FIXME: If we are being called after stopping in a function which
2148 is called from gdb, we should not be trying to restore the
2149 selected frame; it just prints a spurious error message (The
2150 message is useful, however, in detecting bugs in gdb (like if gdb
2151 clobbers the stack)). In fact, should we be restoring the
2152 inferior status at all in that case? . */
2153
2154 if (target_has_stack && inf_status->restore_stack_info)
2155 {
2156 struct restore_selected_frame_args fr;
2157 fr.level = inf_status->selected_level;
2158 fr.frame_address = inf_status->selected_frame_address;
2159 /* The point of catch_errors is that if the stack is clobbered,
2160 walking the stack might encounter a garbage pointer and error()
2161 trying to dereference it. */
2162 if (catch_errors (restore_selected_frame, &fr,
2163 "Unable to restore previously selected frame:\n",
2164 RETURN_MASK_ERROR) == 0)
2165 /* Error in restoring the selected frame. Select the innermost
2166 frame. */
2167 select_frame (get_current_frame (), 0);
2168 }
2169 }
2170
2171 \f
2172 void
2173 _initialize_infrun ()
2174 {
2175 register int i;
2176 register int numsigs;
2177
2178 add_info ("signals", signals_info,
2179 "What debugger does when program gets various signals.\n\
2180 Specify a signal as argument to print info on that signal only.");
2181 add_info_alias ("handle", "signals", 0);
2182
2183 add_com ("handle", class_run, handle_command,
2184 concat ("Specify how to handle a signal.\n\
2185 Args are signals and actions to apply to those signals.\n\
2186 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
2187 from 1-15 are allowed for compatibility with old versions of GDB.\n\
2188 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
2189 The special arg \"all\" is recognized to mean all signals except those\n\
2190 used by the debugger, typically SIGTRAP and SIGINT.\n",
2191 "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
2192 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
2193 Stop means reenter debugger if this signal happens (implies print).\n\
2194 Print means print a message if this signal happens.\n\
2195 Pass means let program see this signal; otherwise program doesn't know.\n\
2196 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
2197 Pass and Stop may be combined.", NULL));
2198
2199 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
2200 "There is no `stop' command, but you can set a hook on `stop'.\n\
2201 This allows you to set a list of commands to be run each time execution\n\
2202 of the program stops.", &cmdlist);
2203
2204 numsigs = (int)TARGET_SIGNAL_LAST;
2205 signal_stop = (unsigned char *)
2206 xmalloc (sizeof (signal_stop[0]) * numsigs);
2207 signal_print = (unsigned char *)
2208 xmalloc (sizeof (signal_print[0]) * numsigs);
2209 signal_program = (unsigned char *)
2210 xmalloc (sizeof (signal_program[0]) * numsigs);
2211 for (i = 0; i < numsigs; i++)
2212 {
2213 signal_stop[i] = 1;
2214 signal_print[i] = 1;
2215 signal_program[i] = 1;
2216 }
2217
2218 /* Signals caused by debugger's own actions
2219 should not be given to the program afterwards. */
2220 signal_program[TARGET_SIGNAL_TRAP] = 0;
2221 signal_program[TARGET_SIGNAL_INT] = 0;
2222
2223 /* Signals that are not errors should not normally enter the debugger. */
2224 signal_stop[TARGET_SIGNAL_ALRM] = 0;
2225 signal_print[TARGET_SIGNAL_ALRM] = 0;
2226 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
2227 signal_print[TARGET_SIGNAL_VTALRM] = 0;
2228 signal_stop[TARGET_SIGNAL_PROF] = 0;
2229 signal_print[TARGET_SIGNAL_PROF] = 0;
2230 signal_stop[TARGET_SIGNAL_CHLD] = 0;
2231 signal_print[TARGET_SIGNAL_CHLD] = 0;
2232 signal_stop[TARGET_SIGNAL_IO] = 0;
2233 signal_print[TARGET_SIGNAL_IO] = 0;
2234 signal_stop[TARGET_SIGNAL_POLL] = 0;
2235 signal_print[TARGET_SIGNAL_POLL] = 0;
2236 signal_stop[TARGET_SIGNAL_URG] = 0;
2237 signal_print[TARGET_SIGNAL_URG] = 0;
2238
2239 #ifdef SOLIB_ADD
2240 add_show_from_set
2241 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
2242 (char *) &stop_on_solib_events,
2243 "Set stopping for shared library events.\n\
2244 If nonzero, gdb will give control to the user when the dynamic linker\n\
2245 notifies gdb of shared library events. The most common event of interest\n\
2246 to the user would be loading/unloading of a new library.\n",
2247 &setlist),
2248 &showlist);
2249 #endif
2250 }
This page took 0.075381 seconds and 4 git commands to generate.