* gdb.texinfo (Remote Protocol): Don't mention vCont;T.
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54
55 /* Prototypes for local functions */
56
57 static void signals_info (char *, int);
58
59 static void handle_command (char *, int);
60
61 static void sig_print_info (enum target_signal);
62
63 static void sig_print_header (void);
64
65 static void resume_cleanups (void *);
66
67 static int hook_stop_stub (void *);
68
69 static int restore_selected_frame (void *);
70
71 static void build_infrun (void);
72
73 static int follow_fork (void);
74
75 static void set_schedlock_func (char *args, int from_tty,
76 struct cmd_list_element *c);
77
78 static int currently_stepping (struct thread_info *tp);
79
80 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
81 void *data);
82
83 static void xdb_handle_command (char *args, int from_tty);
84
85 static int prepare_to_proceed (int);
86
87 void _initialize_infrun (void);
88
89 void nullify_last_target_wait_ptid (void);
90
91 /* When set, stop the 'step' command if we enter a function which has
92 no line number information. The normal behavior is that we step
93 over such function. */
94 int step_stop_if_no_debug = 0;
95 static void
96 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98 {
99 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
100 }
101
102 /* In asynchronous mode, but simulating synchronous execution. */
103
104 int sync_execution = 0;
105
106 /* wait_for_inferior and normal_stop use this to notify the user
107 when the inferior stopped in a different thread than it had been
108 running in. */
109
110 static ptid_t previous_inferior_ptid;
111
112 int debug_displaced = 0;
113 static void
114 show_debug_displaced (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116 {
117 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
118 }
119
120 static int debug_infrun = 0;
121 static void
122 show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124 {
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126 }
127
128 /* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
147
148 in_solib_dynsym_resolve_code() says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 in_solib_dynsym_resolve_code() can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179
180 /* Convert the #defines into values. This is temporary until wfi control
181 flow is completely sorted out. */
182
183 #ifndef CANNOT_STEP_HW_WATCHPOINTS
184 #define CANNOT_STEP_HW_WATCHPOINTS 0
185 #else
186 #undef CANNOT_STEP_HW_WATCHPOINTS
187 #define CANNOT_STEP_HW_WATCHPOINTS 1
188 #endif
189
190 /* Tables of how to react to signals; the user sets them. */
191
192 static unsigned char *signal_stop;
193 static unsigned char *signal_print;
194 static unsigned char *signal_program;
195
196 #define SET_SIGS(nsigs,sigs,flags) \
197 do { \
198 int signum = (nsigs); \
199 while (signum-- > 0) \
200 if ((sigs)[signum]) \
201 (flags)[signum] = 1; \
202 } while (0)
203
204 #define UNSET_SIGS(nsigs,sigs,flags) \
205 do { \
206 int signum = (nsigs); \
207 while (signum-- > 0) \
208 if ((sigs)[signum]) \
209 (flags)[signum] = 0; \
210 } while (0)
211
212 /* Value to pass to target_resume() to cause all threads to resume */
213
214 #define RESUME_ALL minus_one_ptid
215
216 /* Command list pointer for the "stop" placeholder. */
217
218 static struct cmd_list_element *stop_command;
219
220 /* Function inferior was in as of last step command. */
221
222 static struct symbol *step_start_function;
223
224 /* Nonzero if we want to give control to the user when we're notified
225 of shared library events by the dynamic linker. */
226 static int stop_on_solib_events;
227 static void
228 show_stop_on_solib_events (struct ui_file *file, int from_tty,
229 struct cmd_list_element *c, const char *value)
230 {
231 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
232 value);
233 }
234
235 /* Nonzero means expecting a trace trap
236 and should stop the inferior and return silently when it happens. */
237
238 int stop_after_trap;
239
240 /* Save register contents here when executing a "finish" command or are
241 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
242 Thus this contains the return value from the called function (assuming
243 values are returned in a register). */
244
245 struct regcache *stop_registers;
246
247 /* Nonzero after stop if current stack frame should be printed. */
248
249 static int stop_print_frame;
250
251 /* This is a cached copy of the pid/waitstatus of the last event
252 returned by target_wait()/deprecated_target_wait_hook(). This
253 information is returned by get_last_target_status(). */
254 static ptid_t target_last_wait_ptid;
255 static struct target_waitstatus target_last_waitstatus;
256
257 static void context_switch (ptid_t ptid);
258
259 void init_thread_stepping_state (struct thread_info *tss);
260
261 void init_infwait_state (void);
262
263 static const char follow_fork_mode_child[] = "child";
264 static const char follow_fork_mode_parent[] = "parent";
265
266 static const char *follow_fork_mode_kind_names[] = {
267 follow_fork_mode_child,
268 follow_fork_mode_parent,
269 NULL
270 };
271
272 static const char *follow_fork_mode_string = follow_fork_mode_parent;
273 static void
274 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
275 struct cmd_list_element *c, const char *value)
276 {
277 fprintf_filtered (file, _("\
278 Debugger response to a program call of fork or vfork is \"%s\".\n"),
279 value);
280 }
281 \f
282
283 /* Tell the target to follow the fork we're stopped at. Returns true
284 if the inferior should be resumed; false, if the target for some
285 reason decided it's best not to resume. */
286
287 static int
288 follow_fork (void)
289 {
290 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
291 int should_resume = 1;
292 struct thread_info *tp;
293
294 /* Copy user stepping state to the new inferior thread. FIXME: the
295 followed fork child thread should have a copy of most of the
296 parent thread structure's run control related fields, not just these.
297 Initialized to avoid "may be used uninitialized" warnings from gcc. */
298 struct breakpoint *step_resume_breakpoint = NULL;
299 CORE_ADDR step_range_start = 0;
300 CORE_ADDR step_range_end = 0;
301 struct frame_id step_frame_id = { 0 };
302
303 if (!non_stop)
304 {
305 ptid_t wait_ptid;
306 struct target_waitstatus wait_status;
307
308 /* Get the last target status returned by target_wait(). */
309 get_last_target_status (&wait_ptid, &wait_status);
310
311 /* If not stopped at a fork event, then there's nothing else to
312 do. */
313 if (wait_status.kind != TARGET_WAITKIND_FORKED
314 && wait_status.kind != TARGET_WAITKIND_VFORKED)
315 return 1;
316
317 /* Check if we switched over from WAIT_PTID, since the event was
318 reported. */
319 if (!ptid_equal (wait_ptid, minus_one_ptid)
320 && !ptid_equal (inferior_ptid, wait_ptid))
321 {
322 /* We did. Switch back to WAIT_PTID thread, to tell the
323 target to follow it (in either direction). We'll
324 afterwards refuse to resume, and inform the user what
325 happened. */
326 switch_to_thread (wait_ptid);
327 should_resume = 0;
328 }
329 }
330
331 tp = inferior_thread ();
332
333 /* If there were any forks/vforks that were caught and are now to be
334 followed, then do so now. */
335 switch (tp->pending_follow.kind)
336 {
337 case TARGET_WAITKIND_FORKED:
338 case TARGET_WAITKIND_VFORKED:
339 {
340 ptid_t parent, child;
341
342 /* If the user did a next/step, etc, over a fork call,
343 preserve the stepping state in the fork child. */
344 if (follow_child && should_resume)
345 {
346 step_resume_breakpoint
347 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
348 step_range_start = tp->step_range_start;
349 step_range_end = tp->step_range_end;
350 step_frame_id = tp->step_frame_id;
351
352 /* For now, delete the parent's sr breakpoint, otherwise,
353 parent/child sr breakpoints are considered duplicates,
354 and the child version will not be installed. Remove
355 this when the breakpoints module becomes aware of
356 inferiors and address spaces. */
357 delete_step_resume_breakpoint (tp);
358 tp->step_range_start = 0;
359 tp->step_range_end = 0;
360 tp->step_frame_id = null_frame_id;
361 }
362
363 parent = inferior_ptid;
364 child = tp->pending_follow.value.related_pid;
365
366 /* Tell the target to do whatever is necessary to follow
367 either parent or child. */
368 if (target_follow_fork (follow_child))
369 {
370 /* Target refused to follow, or there's some other reason
371 we shouldn't resume. */
372 should_resume = 0;
373 }
374 else
375 {
376 /* This pending follow fork event is now handled, one way
377 or another. The previous selected thread may be gone
378 from the lists by now, but if it is still around, need
379 to clear the pending follow request. */
380 tp = find_thread_ptid (parent);
381 if (tp)
382 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
383
384 /* This makes sure we don't try to apply the "Switched
385 over from WAIT_PID" logic above. */
386 nullify_last_target_wait_ptid ();
387
388 /* If we followed the child, switch to it... */
389 if (follow_child)
390 {
391 switch_to_thread (child);
392
393 /* ... and preserve the stepping state, in case the
394 user was stepping over the fork call. */
395 if (should_resume)
396 {
397 tp = inferior_thread ();
398 tp->step_resume_breakpoint = step_resume_breakpoint;
399 tp->step_range_start = step_range_start;
400 tp->step_range_end = step_range_end;
401 tp->step_frame_id = step_frame_id;
402 }
403 else
404 {
405 /* If we get here, it was because we're trying to
406 resume from a fork catchpoint, but, the user
407 has switched threads away from the thread that
408 forked. In that case, the resume command
409 issued is most likely not applicable to the
410 child, so just warn, and refuse to resume. */
411 warning (_("\
412 Not resuming: switched threads before following fork child.\n"));
413 }
414
415 /* Reset breakpoints in the child as appropriate. */
416 follow_inferior_reset_breakpoints ();
417 }
418 else
419 switch_to_thread (parent);
420 }
421 }
422 break;
423 case TARGET_WAITKIND_SPURIOUS:
424 /* Nothing to follow. */
425 break;
426 default:
427 internal_error (__FILE__, __LINE__,
428 "Unexpected pending_follow.kind %d\n",
429 tp->pending_follow.kind);
430 break;
431 }
432
433 return should_resume;
434 }
435
436 void
437 follow_inferior_reset_breakpoints (void)
438 {
439 struct thread_info *tp = inferior_thread ();
440
441 /* Was there a step_resume breakpoint? (There was if the user
442 did a "next" at the fork() call.) If so, explicitly reset its
443 thread number.
444
445 step_resumes are a form of bp that are made to be per-thread.
446 Since we created the step_resume bp when the parent process
447 was being debugged, and now are switching to the child process,
448 from the breakpoint package's viewpoint, that's a switch of
449 "threads". We must update the bp's notion of which thread
450 it is for, or it'll be ignored when it triggers. */
451
452 if (tp->step_resume_breakpoint)
453 breakpoint_re_set_thread (tp->step_resume_breakpoint);
454
455 /* Reinsert all breakpoints in the child. The user may have set
456 breakpoints after catching the fork, in which case those
457 were never set in the child, but only in the parent. This makes
458 sure the inserted breakpoints match the breakpoint list. */
459
460 breakpoint_re_set ();
461 insert_breakpoints ();
462 }
463
464 /* EXECD_PATHNAME is assumed to be non-NULL. */
465
466 static void
467 follow_exec (ptid_t pid, char *execd_pathname)
468 {
469 struct target_ops *tgt;
470 struct thread_info *th = inferior_thread ();
471
472 /* This is an exec event that we actually wish to pay attention to.
473 Refresh our symbol table to the newly exec'd program, remove any
474 momentary bp's, etc.
475
476 If there are breakpoints, they aren't really inserted now,
477 since the exec() transformed our inferior into a fresh set
478 of instructions.
479
480 We want to preserve symbolic breakpoints on the list, since
481 we have hopes that they can be reset after the new a.out's
482 symbol table is read.
483
484 However, any "raw" breakpoints must be removed from the list
485 (e.g., the solib bp's), since their address is probably invalid
486 now.
487
488 And, we DON'T want to call delete_breakpoints() here, since
489 that may write the bp's "shadow contents" (the instruction
490 value that was overwritten witha TRAP instruction). Since
491 we now have a new a.out, those shadow contents aren't valid. */
492 update_breakpoints_after_exec ();
493
494 /* If there was one, it's gone now. We cannot truly step-to-next
495 statement through an exec(). */
496 th->step_resume_breakpoint = NULL;
497 th->step_range_start = 0;
498 th->step_range_end = 0;
499
500 /* The target reports the exec event to the main thread, even if
501 some other thread does the exec, and even if the main thread was
502 already stopped --- if debugging in non-stop mode, it's possible
503 the user had the main thread held stopped in the previous image
504 --- release it now. This is the same behavior as step-over-exec
505 with scheduler-locking on in all-stop mode. */
506 th->stop_requested = 0;
507
508 /* What is this a.out's name? */
509 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
510
511 /* We've followed the inferior through an exec. Therefore, the
512 inferior has essentially been killed & reborn. */
513
514 gdb_flush (gdb_stdout);
515
516 breakpoint_init_inferior (inf_execd);
517
518 if (gdb_sysroot && *gdb_sysroot)
519 {
520 char *name = alloca (strlen (gdb_sysroot)
521 + strlen (execd_pathname)
522 + 1);
523 strcpy (name, gdb_sysroot);
524 strcat (name, execd_pathname);
525 execd_pathname = name;
526 }
527
528 /* That a.out is now the one to use. */
529 exec_file_attach (execd_pathname, 0);
530
531 /* Reset the shared library package. This ensures that we get a
532 shlib event when the child reaches "_start", at which point the
533 dld will have had a chance to initialize the child. */
534 /* Also, loading a symbol file below may trigger symbol lookups, and
535 we don't want those to be satisfied by the libraries of the
536 previous incarnation of this process. */
537 no_shared_libraries (NULL, 0);
538
539 /* Load the main file's symbols. */
540 symbol_file_add_main (execd_pathname, 0);
541
542 #ifdef SOLIB_CREATE_INFERIOR_HOOK
543 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
544 #else
545 solib_create_inferior_hook ();
546 #endif
547
548 jit_inferior_created_hook ();
549
550 /* Reinsert all breakpoints. (Those which were symbolic have
551 been reset to the proper address in the new a.out, thanks
552 to symbol_file_command...) */
553 insert_breakpoints ();
554
555 /* The next resume of this inferior should bring it to the shlib
556 startup breakpoints. (If the user had also set bp's on
557 "main" from the old (parent) process, then they'll auto-
558 matically get reset there in the new process.) */
559 }
560
561 /* Non-zero if we just simulating a single-step. This is needed
562 because we cannot remove the breakpoints in the inferior process
563 until after the `wait' in `wait_for_inferior'. */
564 static int singlestep_breakpoints_inserted_p = 0;
565
566 /* The thread we inserted single-step breakpoints for. */
567 static ptid_t singlestep_ptid;
568
569 /* PC when we started this single-step. */
570 static CORE_ADDR singlestep_pc;
571
572 /* If another thread hit the singlestep breakpoint, we save the original
573 thread here so that we can resume single-stepping it later. */
574 static ptid_t saved_singlestep_ptid;
575 static int stepping_past_singlestep_breakpoint;
576
577 /* If not equal to null_ptid, this means that after stepping over breakpoint
578 is finished, we need to switch to deferred_step_ptid, and step it.
579
580 The use case is when one thread has hit a breakpoint, and then the user
581 has switched to another thread and issued 'step'. We need to step over
582 breakpoint in the thread which hit the breakpoint, but then continue
583 stepping the thread user has selected. */
584 static ptid_t deferred_step_ptid;
585 \f
586 /* Displaced stepping. */
587
588 /* In non-stop debugging mode, we must take special care to manage
589 breakpoints properly; in particular, the traditional strategy for
590 stepping a thread past a breakpoint it has hit is unsuitable.
591 'Displaced stepping' is a tactic for stepping one thread past a
592 breakpoint it has hit while ensuring that other threads running
593 concurrently will hit the breakpoint as they should.
594
595 The traditional way to step a thread T off a breakpoint in a
596 multi-threaded program in all-stop mode is as follows:
597
598 a0) Initially, all threads are stopped, and breakpoints are not
599 inserted.
600 a1) We single-step T, leaving breakpoints uninserted.
601 a2) We insert breakpoints, and resume all threads.
602
603 In non-stop debugging, however, this strategy is unsuitable: we
604 don't want to have to stop all threads in the system in order to
605 continue or step T past a breakpoint. Instead, we use displaced
606 stepping:
607
608 n0) Initially, T is stopped, other threads are running, and
609 breakpoints are inserted.
610 n1) We copy the instruction "under" the breakpoint to a separate
611 location, outside the main code stream, making any adjustments
612 to the instruction, register, and memory state as directed by
613 T's architecture.
614 n2) We single-step T over the instruction at its new location.
615 n3) We adjust the resulting register and memory state as directed
616 by T's architecture. This includes resetting T's PC to point
617 back into the main instruction stream.
618 n4) We resume T.
619
620 This approach depends on the following gdbarch methods:
621
622 - gdbarch_max_insn_length and gdbarch_displaced_step_location
623 indicate where to copy the instruction, and how much space must
624 be reserved there. We use these in step n1.
625
626 - gdbarch_displaced_step_copy_insn copies a instruction to a new
627 address, and makes any necessary adjustments to the instruction,
628 register contents, and memory. We use this in step n1.
629
630 - gdbarch_displaced_step_fixup adjusts registers and memory after
631 we have successfuly single-stepped the instruction, to yield the
632 same effect the instruction would have had if we had executed it
633 at its original address. We use this in step n3.
634
635 - gdbarch_displaced_step_free_closure provides cleanup.
636
637 The gdbarch_displaced_step_copy_insn and
638 gdbarch_displaced_step_fixup functions must be written so that
639 copying an instruction with gdbarch_displaced_step_copy_insn,
640 single-stepping across the copied instruction, and then applying
641 gdbarch_displaced_insn_fixup should have the same effects on the
642 thread's memory and registers as stepping the instruction in place
643 would have. Exactly which responsibilities fall to the copy and
644 which fall to the fixup is up to the author of those functions.
645
646 See the comments in gdbarch.sh for details.
647
648 Note that displaced stepping and software single-step cannot
649 currently be used in combination, although with some care I think
650 they could be made to. Software single-step works by placing
651 breakpoints on all possible subsequent instructions; if the
652 displaced instruction is a PC-relative jump, those breakpoints
653 could fall in very strange places --- on pages that aren't
654 executable, or at addresses that are not proper instruction
655 boundaries. (We do generally let other threads run while we wait
656 to hit the software single-step breakpoint, and they might
657 encounter such a corrupted instruction.) One way to work around
658 this would be to have gdbarch_displaced_step_copy_insn fully
659 simulate the effect of PC-relative instructions (and return NULL)
660 on architectures that use software single-stepping.
661
662 In non-stop mode, we can have independent and simultaneous step
663 requests, so more than one thread may need to simultaneously step
664 over a breakpoint. The current implementation assumes there is
665 only one scratch space per process. In this case, we have to
666 serialize access to the scratch space. If thread A wants to step
667 over a breakpoint, but we are currently waiting for some other
668 thread to complete a displaced step, we leave thread A stopped and
669 place it in the displaced_step_request_queue. Whenever a displaced
670 step finishes, we pick the next thread in the queue and start a new
671 displaced step operation on it. See displaced_step_prepare and
672 displaced_step_fixup for details. */
673
674 /* If this is not null_ptid, this is the thread carrying out a
675 displaced single-step. This thread's state will require fixing up
676 once it has completed its step. */
677 static ptid_t displaced_step_ptid;
678
679 struct displaced_step_request
680 {
681 ptid_t ptid;
682 struct displaced_step_request *next;
683 };
684
685 /* A queue of pending displaced stepping requests. */
686 struct displaced_step_request *displaced_step_request_queue;
687
688 /* The architecture the thread had when we stepped it. */
689 static struct gdbarch *displaced_step_gdbarch;
690
691 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
692 for post-step cleanup. */
693 static struct displaced_step_closure *displaced_step_closure;
694
695 /* The address of the original instruction, and the copy we made. */
696 static CORE_ADDR displaced_step_original, displaced_step_copy;
697
698 /* Saved contents of copy area. */
699 static gdb_byte *displaced_step_saved_copy;
700
701 /* Enum strings for "set|show displaced-stepping". */
702
703 static const char can_use_displaced_stepping_auto[] = "auto";
704 static const char can_use_displaced_stepping_on[] = "on";
705 static const char can_use_displaced_stepping_off[] = "off";
706 static const char *can_use_displaced_stepping_enum[] =
707 {
708 can_use_displaced_stepping_auto,
709 can_use_displaced_stepping_on,
710 can_use_displaced_stepping_off,
711 NULL,
712 };
713
714 /* If ON, and the architecture supports it, GDB will use displaced
715 stepping to step over breakpoints. If OFF, or if the architecture
716 doesn't support it, GDB will instead use the traditional
717 hold-and-step approach. If AUTO (which is the default), GDB will
718 decide which technique to use to step over breakpoints depending on
719 which of all-stop or non-stop mode is active --- displaced stepping
720 in non-stop mode; hold-and-step in all-stop mode. */
721
722 static const char *can_use_displaced_stepping =
723 can_use_displaced_stepping_auto;
724
725 static void
726 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
727 struct cmd_list_element *c,
728 const char *value)
729 {
730 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
731 fprintf_filtered (file, _("\
732 Debugger's willingness to use displaced stepping to step over \
733 breakpoints is %s (currently %s).\n"),
734 value, non_stop ? "on" : "off");
735 else
736 fprintf_filtered (file, _("\
737 Debugger's willingness to use displaced stepping to step over \
738 breakpoints is %s.\n"), value);
739 }
740
741 /* Return non-zero if displaced stepping can/should be used to step
742 over breakpoints. */
743
744 static int
745 use_displaced_stepping (struct gdbarch *gdbarch)
746 {
747 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
748 && non_stop)
749 || can_use_displaced_stepping == can_use_displaced_stepping_on)
750 && gdbarch_displaced_step_copy_insn_p (gdbarch)
751 && !RECORD_IS_USED);
752 }
753
754 /* Clean out any stray displaced stepping state. */
755 static void
756 displaced_step_clear (void)
757 {
758 /* Indicate that there is no cleanup pending. */
759 displaced_step_ptid = null_ptid;
760
761 if (displaced_step_closure)
762 {
763 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
764 displaced_step_closure);
765 displaced_step_closure = NULL;
766 }
767 }
768
769 static void
770 displaced_step_clear_cleanup (void *ignore)
771 {
772 displaced_step_clear ();
773 }
774
775 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
776 void
777 displaced_step_dump_bytes (struct ui_file *file,
778 const gdb_byte *buf,
779 size_t len)
780 {
781 int i;
782
783 for (i = 0; i < len; i++)
784 fprintf_unfiltered (file, "%02x ", buf[i]);
785 fputs_unfiltered ("\n", file);
786 }
787
788 /* Prepare to single-step, using displaced stepping.
789
790 Note that we cannot use displaced stepping when we have a signal to
791 deliver. If we have a signal to deliver and an instruction to step
792 over, then after the step, there will be no indication from the
793 target whether the thread entered a signal handler or ignored the
794 signal and stepped over the instruction successfully --- both cases
795 result in a simple SIGTRAP. In the first case we mustn't do a
796 fixup, and in the second case we must --- but we can't tell which.
797 Comments in the code for 'random signals' in handle_inferior_event
798 explain how we handle this case instead.
799
800 Returns 1 if preparing was successful -- this thread is going to be
801 stepped now; or 0 if displaced stepping this thread got queued. */
802 static int
803 displaced_step_prepare (ptid_t ptid)
804 {
805 struct cleanup *old_cleanups, *ignore_cleanups;
806 struct regcache *regcache = get_thread_regcache (ptid);
807 struct gdbarch *gdbarch = get_regcache_arch (regcache);
808 CORE_ADDR original, copy;
809 ULONGEST len;
810 struct displaced_step_closure *closure;
811
812 /* We should never reach this function if the architecture does not
813 support displaced stepping. */
814 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
815
816 /* For the first cut, we're displaced stepping one thread at a
817 time. */
818
819 if (!ptid_equal (displaced_step_ptid, null_ptid))
820 {
821 /* Already waiting for a displaced step to finish. Defer this
822 request and place in queue. */
823 struct displaced_step_request *req, *new_req;
824
825 if (debug_displaced)
826 fprintf_unfiltered (gdb_stdlog,
827 "displaced: defering step of %s\n",
828 target_pid_to_str (ptid));
829
830 new_req = xmalloc (sizeof (*new_req));
831 new_req->ptid = ptid;
832 new_req->next = NULL;
833
834 if (displaced_step_request_queue)
835 {
836 for (req = displaced_step_request_queue;
837 req && req->next;
838 req = req->next)
839 ;
840 req->next = new_req;
841 }
842 else
843 displaced_step_request_queue = new_req;
844
845 return 0;
846 }
847 else
848 {
849 if (debug_displaced)
850 fprintf_unfiltered (gdb_stdlog,
851 "displaced: stepping %s now\n",
852 target_pid_to_str (ptid));
853 }
854
855 displaced_step_clear ();
856
857 old_cleanups = save_inferior_ptid ();
858 inferior_ptid = ptid;
859
860 original = regcache_read_pc (regcache);
861
862 copy = gdbarch_displaced_step_location (gdbarch);
863 len = gdbarch_max_insn_length (gdbarch);
864
865 /* Save the original contents of the copy area. */
866 displaced_step_saved_copy = xmalloc (len);
867 ignore_cleanups = make_cleanup (free_current_contents,
868 &displaced_step_saved_copy);
869 read_memory (copy, displaced_step_saved_copy, len);
870 if (debug_displaced)
871 {
872 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
873 paddress (gdbarch, copy));
874 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
875 };
876
877 closure = gdbarch_displaced_step_copy_insn (gdbarch,
878 original, copy, regcache);
879
880 /* We don't support the fully-simulated case at present. */
881 gdb_assert (closure);
882
883 /* Save the information we need to fix things up if the step
884 succeeds. */
885 displaced_step_ptid = ptid;
886 displaced_step_gdbarch = gdbarch;
887 displaced_step_closure = closure;
888 displaced_step_original = original;
889 displaced_step_copy = copy;
890
891 make_cleanup (displaced_step_clear_cleanup, 0);
892
893 /* Resume execution at the copy. */
894 regcache_write_pc (regcache, copy);
895
896 discard_cleanups (ignore_cleanups);
897
898 do_cleanups (old_cleanups);
899
900 if (debug_displaced)
901 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
902 paddress (gdbarch, copy));
903
904 return 1;
905 }
906
907 static void
908 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
909 {
910 struct cleanup *ptid_cleanup = save_inferior_ptid ();
911 inferior_ptid = ptid;
912 write_memory (memaddr, myaddr, len);
913 do_cleanups (ptid_cleanup);
914 }
915
916 static void
917 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
918 {
919 struct cleanup *old_cleanups;
920
921 /* Was this event for the pid we displaced? */
922 if (ptid_equal (displaced_step_ptid, null_ptid)
923 || ! ptid_equal (displaced_step_ptid, event_ptid))
924 return;
925
926 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
927
928 /* Restore the contents of the copy area. */
929 {
930 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
931 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
932 displaced_step_saved_copy, len);
933 if (debug_displaced)
934 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
935 paddress (displaced_step_gdbarch,
936 displaced_step_copy));
937 }
938
939 /* Did the instruction complete successfully? */
940 if (signal == TARGET_SIGNAL_TRAP)
941 {
942 /* Fix up the resulting state. */
943 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
944 displaced_step_closure,
945 displaced_step_original,
946 displaced_step_copy,
947 get_thread_regcache (displaced_step_ptid));
948 }
949 else
950 {
951 /* Since the instruction didn't complete, all we can do is
952 relocate the PC. */
953 struct regcache *regcache = get_thread_regcache (event_ptid);
954 CORE_ADDR pc = regcache_read_pc (regcache);
955 pc = displaced_step_original + (pc - displaced_step_copy);
956 regcache_write_pc (regcache, pc);
957 }
958
959 do_cleanups (old_cleanups);
960
961 displaced_step_ptid = null_ptid;
962
963 /* Are there any pending displaced stepping requests? If so, run
964 one now. */
965 while (displaced_step_request_queue)
966 {
967 struct displaced_step_request *head;
968 ptid_t ptid;
969 struct regcache *regcache;
970 struct gdbarch *gdbarch;
971 CORE_ADDR actual_pc;
972
973 head = displaced_step_request_queue;
974 ptid = head->ptid;
975 displaced_step_request_queue = head->next;
976 xfree (head);
977
978 context_switch (ptid);
979
980 regcache = get_thread_regcache (ptid);
981 actual_pc = regcache_read_pc (regcache);
982
983 if (breakpoint_here_p (actual_pc))
984 {
985 if (debug_displaced)
986 fprintf_unfiltered (gdb_stdlog,
987 "displaced: stepping queued %s now\n",
988 target_pid_to_str (ptid));
989
990 displaced_step_prepare (ptid);
991
992 gdbarch = get_regcache_arch (regcache);
993
994 if (debug_displaced)
995 {
996 CORE_ADDR actual_pc = regcache_read_pc (regcache);
997 gdb_byte buf[4];
998
999 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1000 paddress (gdbarch, actual_pc));
1001 read_memory (actual_pc, buf, sizeof (buf));
1002 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1003 }
1004
1005 if (gdbarch_displaced_step_hw_singlestep
1006 (gdbarch, displaced_step_closure))
1007 target_resume (ptid, 1, TARGET_SIGNAL_0);
1008 else
1009 target_resume (ptid, 0, TARGET_SIGNAL_0);
1010
1011 /* Done, we're stepping a thread. */
1012 break;
1013 }
1014 else
1015 {
1016 int step;
1017 struct thread_info *tp = inferior_thread ();
1018
1019 /* The breakpoint we were sitting under has since been
1020 removed. */
1021 tp->trap_expected = 0;
1022
1023 /* Go back to what we were trying to do. */
1024 step = currently_stepping (tp);
1025
1026 if (debug_displaced)
1027 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1028 target_pid_to_str (tp->ptid), step);
1029
1030 target_resume (ptid, step, TARGET_SIGNAL_0);
1031 tp->stop_signal = TARGET_SIGNAL_0;
1032
1033 /* This request was discarded. See if there's any other
1034 thread waiting for its turn. */
1035 }
1036 }
1037 }
1038
1039 /* Update global variables holding ptids to hold NEW_PTID if they were
1040 holding OLD_PTID. */
1041 static void
1042 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1043 {
1044 struct displaced_step_request *it;
1045
1046 if (ptid_equal (inferior_ptid, old_ptid))
1047 inferior_ptid = new_ptid;
1048
1049 if (ptid_equal (singlestep_ptid, old_ptid))
1050 singlestep_ptid = new_ptid;
1051
1052 if (ptid_equal (displaced_step_ptid, old_ptid))
1053 displaced_step_ptid = new_ptid;
1054
1055 if (ptid_equal (deferred_step_ptid, old_ptid))
1056 deferred_step_ptid = new_ptid;
1057
1058 for (it = displaced_step_request_queue; it; it = it->next)
1059 if (ptid_equal (it->ptid, old_ptid))
1060 it->ptid = new_ptid;
1061 }
1062
1063 \f
1064 /* Resuming. */
1065
1066 /* Things to clean up if we QUIT out of resume (). */
1067 static void
1068 resume_cleanups (void *ignore)
1069 {
1070 normal_stop ();
1071 }
1072
1073 static const char schedlock_off[] = "off";
1074 static const char schedlock_on[] = "on";
1075 static const char schedlock_step[] = "step";
1076 static const char *scheduler_enums[] = {
1077 schedlock_off,
1078 schedlock_on,
1079 schedlock_step,
1080 NULL
1081 };
1082 static const char *scheduler_mode = schedlock_off;
1083 static void
1084 show_scheduler_mode (struct ui_file *file, int from_tty,
1085 struct cmd_list_element *c, const char *value)
1086 {
1087 fprintf_filtered (file, _("\
1088 Mode for locking scheduler during execution is \"%s\".\n"),
1089 value);
1090 }
1091
1092 static void
1093 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1094 {
1095 if (!target_can_lock_scheduler)
1096 {
1097 scheduler_mode = schedlock_off;
1098 error (_("Target '%s' cannot support this command."), target_shortname);
1099 }
1100 }
1101
1102 /* True if execution commands resume all threads of all processes by
1103 default; otherwise, resume only threads of the current inferior
1104 process. */
1105 int sched_multi = 0;
1106
1107 /* Try to setup for software single stepping over the specified location.
1108 Return 1 if target_resume() should use hardware single step.
1109
1110 GDBARCH the current gdbarch.
1111 PC the location to step over. */
1112
1113 static int
1114 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1115 {
1116 int hw_step = 1;
1117
1118 if (gdbarch_software_single_step_p (gdbarch)
1119 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1120 {
1121 hw_step = 0;
1122 /* Do not pull these breakpoints until after a `wait' in
1123 `wait_for_inferior' */
1124 singlestep_breakpoints_inserted_p = 1;
1125 singlestep_ptid = inferior_ptid;
1126 singlestep_pc = pc;
1127 }
1128 return hw_step;
1129 }
1130
1131 /* Resume the inferior, but allow a QUIT. This is useful if the user
1132 wants to interrupt some lengthy single-stepping operation
1133 (for child processes, the SIGINT goes to the inferior, and so
1134 we get a SIGINT random_signal, but for remote debugging and perhaps
1135 other targets, that's not true).
1136
1137 STEP nonzero if we should step (zero to continue instead).
1138 SIG is the signal to give the inferior (zero for none). */
1139 void
1140 resume (int step, enum target_signal sig)
1141 {
1142 int should_resume = 1;
1143 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1144 struct regcache *regcache = get_current_regcache ();
1145 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1146 struct thread_info *tp = inferior_thread ();
1147 CORE_ADDR pc = regcache_read_pc (regcache);
1148
1149 QUIT;
1150
1151 if (debug_infrun)
1152 fprintf_unfiltered (gdb_stdlog,
1153 "infrun: resume (step=%d, signal=%d), "
1154 "trap_expected=%d\n",
1155 step, sig, tp->trap_expected);
1156
1157 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1158 over an instruction that causes a page fault without triggering
1159 a hardware watchpoint. The kernel properly notices that it shouldn't
1160 stop, because the hardware watchpoint is not triggered, but it forgets
1161 the step request and continues the program normally.
1162 Work around the problem by removing hardware watchpoints if a step is
1163 requested, GDB will check for a hardware watchpoint trigger after the
1164 step anyway. */
1165 if (CANNOT_STEP_HW_WATCHPOINTS && step)
1166 remove_hw_watchpoints ();
1167
1168
1169 /* Normally, by the time we reach `resume', the breakpoints are either
1170 removed or inserted, as appropriate. The exception is if we're sitting
1171 at a permanent breakpoint; we need to step over it, but permanent
1172 breakpoints can't be removed. So we have to test for it here. */
1173 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
1174 {
1175 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1176 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1177 else
1178 error (_("\
1179 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1180 how to step past a permanent breakpoint on this architecture. Try using\n\
1181 a command like `return' or `jump' to continue execution."));
1182 }
1183
1184 /* If enabled, step over breakpoints by executing a copy of the
1185 instruction at a different address.
1186
1187 We can't use displaced stepping when we have a signal to deliver;
1188 the comments for displaced_step_prepare explain why. The
1189 comments in the handle_inferior event for dealing with 'random
1190 signals' explain what we do instead. */
1191 if (use_displaced_stepping (gdbarch)
1192 && (tp->trap_expected
1193 || (step && gdbarch_software_single_step_p (gdbarch)))
1194 && sig == TARGET_SIGNAL_0)
1195 {
1196 if (!displaced_step_prepare (inferior_ptid))
1197 {
1198 /* Got placed in displaced stepping queue. Will be resumed
1199 later when all the currently queued displaced stepping
1200 requests finish. The thread is not executing at this point,
1201 and the call to set_executing will be made later. But we
1202 need to call set_running here, since from frontend point of view,
1203 the thread is running. */
1204 set_running (inferior_ptid, 1);
1205 discard_cleanups (old_cleanups);
1206 return;
1207 }
1208
1209 step = gdbarch_displaced_step_hw_singlestep
1210 (gdbarch, displaced_step_closure);
1211 }
1212
1213 /* Do we need to do it the hard way, w/temp breakpoints? */
1214 else if (step)
1215 step = maybe_software_singlestep (gdbarch, pc);
1216
1217 if (should_resume)
1218 {
1219 ptid_t resume_ptid;
1220
1221 /* If STEP is set, it's a request to use hardware stepping
1222 facilities. But in that case, we should never
1223 use singlestep breakpoint. */
1224 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1225
1226 /* Decide the set of threads to ask the target to resume. Start
1227 by assuming everything will be resumed, than narrow the set
1228 by applying increasingly restricting conditions. */
1229
1230 /* By default, resume all threads of all processes. */
1231 resume_ptid = RESUME_ALL;
1232
1233 /* Maybe resume only all threads of the current process. */
1234 if (!sched_multi && target_supports_multi_process ())
1235 {
1236 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1237 }
1238
1239 /* Maybe resume a single thread after all. */
1240 if (singlestep_breakpoints_inserted_p
1241 && stepping_past_singlestep_breakpoint)
1242 {
1243 /* The situation here is as follows. In thread T1 we wanted to
1244 single-step. Lacking hardware single-stepping we've
1245 set breakpoint at the PC of the next instruction -- call it
1246 P. After resuming, we've hit that breakpoint in thread T2.
1247 Now we've removed original breakpoint, inserted breakpoint
1248 at P+1, and try to step to advance T2 past breakpoint.
1249 We need to step only T2, as if T1 is allowed to freely run,
1250 it can run past P, and if other threads are allowed to run,
1251 they can hit breakpoint at P+1, and nested hits of single-step
1252 breakpoints is not something we'd want -- that's complicated
1253 to support, and has no value. */
1254 resume_ptid = inferior_ptid;
1255 }
1256 else if ((step || singlestep_breakpoints_inserted_p)
1257 && tp->trap_expected)
1258 {
1259 /* We're allowing a thread to run past a breakpoint it has
1260 hit, by single-stepping the thread with the breakpoint
1261 removed. In which case, we need to single-step only this
1262 thread, and keep others stopped, as they can miss this
1263 breakpoint if allowed to run.
1264
1265 The current code actually removes all breakpoints when
1266 doing this, not just the one being stepped over, so if we
1267 let other threads run, we can actually miss any
1268 breakpoint, not just the one at PC. */
1269 resume_ptid = inferior_ptid;
1270 }
1271 else if (non_stop)
1272 {
1273 /* With non-stop mode on, threads are always handled
1274 individually. */
1275 resume_ptid = inferior_ptid;
1276 }
1277 else if ((scheduler_mode == schedlock_on)
1278 || (scheduler_mode == schedlock_step
1279 && (step || singlestep_breakpoints_inserted_p)))
1280 {
1281 /* User-settable 'scheduler' mode requires solo thread resume. */
1282 resume_ptid = inferior_ptid;
1283 }
1284
1285 if (gdbarch_cannot_step_breakpoint (gdbarch))
1286 {
1287 /* Most targets can step a breakpoint instruction, thus
1288 executing it normally. But if this one cannot, just
1289 continue and we will hit it anyway. */
1290 if (step && breakpoint_inserted_here_p (pc))
1291 step = 0;
1292 }
1293
1294 if (debug_displaced
1295 && use_displaced_stepping (gdbarch)
1296 && tp->trap_expected)
1297 {
1298 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1299 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1300 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1301 gdb_byte buf[4];
1302
1303 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1304 paddress (resume_gdbarch, actual_pc));
1305 read_memory (actual_pc, buf, sizeof (buf));
1306 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1307 }
1308
1309 /* Install inferior's terminal modes. */
1310 target_terminal_inferior ();
1311
1312 /* Avoid confusing the next resume, if the next stop/resume
1313 happens to apply to another thread. */
1314 tp->stop_signal = TARGET_SIGNAL_0;
1315
1316 target_resume (resume_ptid, step, sig);
1317 }
1318
1319 discard_cleanups (old_cleanups);
1320 }
1321 \f
1322 /* Proceeding. */
1323
1324 /* Clear out all variables saying what to do when inferior is continued.
1325 First do this, then set the ones you want, then call `proceed'. */
1326
1327 static void
1328 clear_proceed_status_thread (struct thread_info *tp)
1329 {
1330 if (debug_infrun)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "infrun: clear_proceed_status_thread (%s)\n",
1333 target_pid_to_str (tp->ptid));
1334
1335 tp->trap_expected = 0;
1336 tp->step_range_start = 0;
1337 tp->step_range_end = 0;
1338 tp->step_frame_id = null_frame_id;
1339 tp->step_stack_frame_id = null_frame_id;
1340 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1341 tp->stop_requested = 0;
1342
1343 tp->stop_step = 0;
1344
1345 tp->proceed_to_finish = 0;
1346
1347 /* Discard any remaining commands or status from previous stop. */
1348 bpstat_clear (&tp->stop_bpstat);
1349 }
1350
1351 static int
1352 clear_proceed_status_callback (struct thread_info *tp, void *data)
1353 {
1354 if (is_exited (tp->ptid))
1355 return 0;
1356
1357 clear_proceed_status_thread (tp);
1358 return 0;
1359 }
1360
1361 void
1362 clear_proceed_status (void)
1363 {
1364 if (!ptid_equal (inferior_ptid, null_ptid))
1365 {
1366 struct inferior *inferior;
1367
1368 if (non_stop)
1369 {
1370 /* If in non-stop mode, only delete the per-thread status
1371 of the current thread. */
1372 clear_proceed_status_thread (inferior_thread ());
1373 }
1374 else
1375 {
1376 /* In all-stop mode, delete the per-thread status of
1377 *all* threads. */
1378 iterate_over_threads (clear_proceed_status_callback, NULL);
1379 }
1380
1381 inferior = current_inferior ();
1382 inferior->stop_soon = NO_STOP_QUIETLY;
1383 }
1384
1385 stop_after_trap = 0;
1386
1387 observer_notify_about_to_proceed ();
1388
1389 if (stop_registers)
1390 {
1391 regcache_xfree (stop_registers);
1392 stop_registers = NULL;
1393 }
1394 }
1395
1396 /* Check the current thread against the thread that reported the most recent
1397 event. If a step-over is required return TRUE and set the current thread
1398 to the old thread. Otherwise return FALSE.
1399
1400 This should be suitable for any targets that support threads. */
1401
1402 static int
1403 prepare_to_proceed (int step)
1404 {
1405 ptid_t wait_ptid;
1406 struct target_waitstatus wait_status;
1407 int schedlock_enabled;
1408
1409 /* With non-stop mode on, threads are always handled individually. */
1410 gdb_assert (! non_stop);
1411
1412 /* Get the last target status returned by target_wait(). */
1413 get_last_target_status (&wait_ptid, &wait_status);
1414
1415 /* Make sure we were stopped at a breakpoint. */
1416 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1417 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1418 {
1419 return 0;
1420 }
1421
1422 schedlock_enabled = (scheduler_mode == schedlock_on
1423 || (scheduler_mode == schedlock_step
1424 && step));
1425
1426 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1427 if (schedlock_enabled)
1428 return 0;
1429
1430 /* Don't switch over if we're about to resume some other process
1431 other than WAIT_PTID's, and schedule-multiple is off. */
1432 if (!sched_multi
1433 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1434 return 0;
1435
1436 /* Switched over from WAIT_PID. */
1437 if (!ptid_equal (wait_ptid, minus_one_ptid)
1438 && !ptid_equal (inferior_ptid, wait_ptid))
1439 {
1440 struct regcache *regcache = get_thread_regcache (wait_ptid);
1441
1442 if (breakpoint_here_p (regcache_read_pc (regcache)))
1443 {
1444 /* If stepping, remember current thread to switch back to. */
1445 if (step)
1446 deferred_step_ptid = inferior_ptid;
1447
1448 /* Switch back to WAIT_PID thread. */
1449 switch_to_thread (wait_ptid);
1450
1451 /* We return 1 to indicate that there is a breakpoint here,
1452 so we need to step over it before continuing to avoid
1453 hitting it straight away. */
1454 return 1;
1455 }
1456 }
1457
1458 return 0;
1459 }
1460
1461 /* Basic routine for continuing the program in various fashions.
1462
1463 ADDR is the address to resume at, or -1 for resume where stopped.
1464 SIGGNAL is the signal to give it, or 0 for none,
1465 or -1 for act according to how it stopped.
1466 STEP is nonzero if should trap after one instruction.
1467 -1 means return after that and print nothing.
1468 You should probably set various step_... variables
1469 before calling here, if you are stepping.
1470
1471 You should call clear_proceed_status before calling proceed. */
1472
1473 void
1474 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1475 {
1476 struct regcache *regcache;
1477 struct gdbarch *gdbarch;
1478 struct thread_info *tp;
1479 CORE_ADDR pc;
1480 int oneproc = 0;
1481
1482 /* If we're stopped at a fork/vfork, follow the branch set by the
1483 "set follow-fork-mode" command; otherwise, we'll just proceed
1484 resuming the current thread. */
1485 if (!follow_fork ())
1486 {
1487 /* The target for some reason decided not to resume. */
1488 normal_stop ();
1489 return;
1490 }
1491
1492 regcache = get_current_regcache ();
1493 gdbarch = get_regcache_arch (regcache);
1494 pc = regcache_read_pc (regcache);
1495
1496 if (step > 0)
1497 step_start_function = find_pc_function (pc);
1498 if (step < 0)
1499 stop_after_trap = 1;
1500
1501 if (addr == (CORE_ADDR) -1)
1502 {
1503 if (pc == stop_pc && breakpoint_here_p (pc)
1504 && execution_direction != EXEC_REVERSE)
1505 /* There is a breakpoint at the address we will resume at,
1506 step one instruction before inserting breakpoints so that
1507 we do not stop right away (and report a second hit at this
1508 breakpoint).
1509
1510 Note, we don't do this in reverse, because we won't
1511 actually be executing the breakpoint insn anyway.
1512 We'll be (un-)executing the previous instruction. */
1513
1514 oneproc = 1;
1515 else if (gdbarch_single_step_through_delay_p (gdbarch)
1516 && gdbarch_single_step_through_delay (gdbarch,
1517 get_current_frame ()))
1518 /* We stepped onto an instruction that needs to be stepped
1519 again before re-inserting the breakpoint, do so. */
1520 oneproc = 1;
1521 }
1522 else
1523 {
1524 regcache_write_pc (regcache, addr);
1525 }
1526
1527 if (debug_infrun)
1528 fprintf_unfiltered (gdb_stdlog,
1529 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1530 paddress (gdbarch, addr), siggnal, step);
1531
1532 if (non_stop)
1533 /* In non-stop, each thread is handled individually. The context
1534 must already be set to the right thread here. */
1535 ;
1536 else
1537 {
1538 /* In a multi-threaded task we may select another thread and
1539 then continue or step.
1540
1541 But if the old thread was stopped at a breakpoint, it will
1542 immediately cause another breakpoint stop without any
1543 execution (i.e. it will report a breakpoint hit incorrectly).
1544 So we must step over it first.
1545
1546 prepare_to_proceed checks the current thread against the
1547 thread that reported the most recent event. If a step-over
1548 is required it returns TRUE and sets the current thread to
1549 the old thread. */
1550 if (prepare_to_proceed (step))
1551 oneproc = 1;
1552 }
1553
1554 /* prepare_to_proceed may change the current thread. */
1555 tp = inferior_thread ();
1556
1557 if (oneproc)
1558 {
1559 tp->trap_expected = 1;
1560 /* If displaced stepping is enabled, we can step over the
1561 breakpoint without hitting it, so leave all breakpoints
1562 inserted. Otherwise we need to disable all breakpoints, step
1563 one instruction, and then re-add them when that step is
1564 finished. */
1565 if (!use_displaced_stepping (gdbarch))
1566 remove_breakpoints ();
1567 }
1568
1569 /* We can insert breakpoints if we're not trying to step over one,
1570 or if we are stepping over one but we're using displaced stepping
1571 to do so. */
1572 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1573 insert_breakpoints ();
1574
1575 if (!non_stop)
1576 {
1577 /* Pass the last stop signal to the thread we're resuming,
1578 irrespective of whether the current thread is the thread that
1579 got the last event or not. This was historically GDB's
1580 behaviour before keeping a stop_signal per thread. */
1581
1582 struct thread_info *last_thread;
1583 ptid_t last_ptid;
1584 struct target_waitstatus last_status;
1585
1586 get_last_target_status (&last_ptid, &last_status);
1587 if (!ptid_equal (inferior_ptid, last_ptid)
1588 && !ptid_equal (last_ptid, null_ptid)
1589 && !ptid_equal (last_ptid, minus_one_ptid))
1590 {
1591 last_thread = find_thread_ptid (last_ptid);
1592 if (last_thread)
1593 {
1594 tp->stop_signal = last_thread->stop_signal;
1595 last_thread->stop_signal = TARGET_SIGNAL_0;
1596 }
1597 }
1598 }
1599
1600 if (siggnal != TARGET_SIGNAL_DEFAULT)
1601 tp->stop_signal = siggnal;
1602 /* If this signal should not be seen by program,
1603 give it zero. Used for debugging signals. */
1604 else if (!signal_program[tp->stop_signal])
1605 tp->stop_signal = TARGET_SIGNAL_0;
1606
1607 annotate_starting ();
1608
1609 /* Make sure that output from GDB appears before output from the
1610 inferior. */
1611 gdb_flush (gdb_stdout);
1612
1613 /* Refresh prev_pc value just prior to resuming. This used to be
1614 done in stop_stepping, however, setting prev_pc there did not handle
1615 scenarios such as inferior function calls or returning from
1616 a function via the return command. In those cases, the prev_pc
1617 value was not set properly for subsequent commands. The prev_pc value
1618 is used to initialize the starting line number in the ecs. With an
1619 invalid value, the gdb next command ends up stopping at the position
1620 represented by the next line table entry past our start position.
1621 On platforms that generate one line table entry per line, this
1622 is not a problem. However, on the ia64, the compiler generates
1623 extraneous line table entries that do not increase the line number.
1624 When we issue the gdb next command on the ia64 after an inferior call
1625 or a return command, we often end up a few instructions forward, still
1626 within the original line we started.
1627
1628 An attempt was made to have init_execution_control_state () refresh
1629 the prev_pc value before calculating the line number. This approach
1630 did not work because on platforms that use ptrace, the pc register
1631 cannot be read unless the inferior is stopped. At that point, we
1632 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1633 call can fail. Setting the prev_pc value here ensures the value is
1634 updated correctly when the inferior is stopped. */
1635 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1636
1637 /* Fill in with reasonable starting values. */
1638 init_thread_stepping_state (tp);
1639
1640 /* Reset to normal state. */
1641 init_infwait_state ();
1642
1643 /* Resume inferior. */
1644 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1645
1646 /* Wait for it to stop (if not standalone)
1647 and in any case decode why it stopped, and act accordingly. */
1648 /* Do this only if we are not using the event loop, or if the target
1649 does not support asynchronous execution. */
1650 if (!target_can_async_p ())
1651 {
1652 wait_for_inferior (0);
1653 normal_stop ();
1654 }
1655 }
1656 \f
1657
1658 /* Start remote-debugging of a machine over a serial link. */
1659
1660 void
1661 start_remote (int from_tty)
1662 {
1663 struct inferior *inferior;
1664 init_wait_for_inferior ();
1665
1666 inferior = current_inferior ();
1667 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1668
1669 /* Always go on waiting for the target, regardless of the mode. */
1670 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1671 indicate to wait_for_inferior that a target should timeout if
1672 nothing is returned (instead of just blocking). Because of this,
1673 targets expecting an immediate response need to, internally, set
1674 things up so that the target_wait() is forced to eventually
1675 timeout. */
1676 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1677 differentiate to its caller what the state of the target is after
1678 the initial open has been performed. Here we're assuming that
1679 the target has stopped. It should be possible to eventually have
1680 target_open() return to the caller an indication that the target
1681 is currently running and GDB state should be set to the same as
1682 for an async run. */
1683 wait_for_inferior (0);
1684
1685 /* Now that the inferior has stopped, do any bookkeeping like
1686 loading shared libraries. We want to do this before normal_stop,
1687 so that the displayed frame is up to date. */
1688 post_create_inferior (&current_target, from_tty);
1689
1690 normal_stop ();
1691 }
1692
1693 /* Initialize static vars when a new inferior begins. */
1694
1695 void
1696 init_wait_for_inferior (void)
1697 {
1698 /* These are meaningless until the first time through wait_for_inferior. */
1699
1700 breakpoint_init_inferior (inf_starting);
1701
1702 clear_proceed_status ();
1703
1704 stepping_past_singlestep_breakpoint = 0;
1705 deferred_step_ptid = null_ptid;
1706
1707 target_last_wait_ptid = minus_one_ptid;
1708
1709 previous_inferior_ptid = null_ptid;
1710 init_infwait_state ();
1711
1712 displaced_step_clear ();
1713
1714 /* Discard any skipped inlined frames. */
1715 clear_inline_frame_state (minus_one_ptid);
1716 }
1717
1718 \f
1719 /* This enum encodes possible reasons for doing a target_wait, so that
1720 wfi can call target_wait in one place. (Ultimately the call will be
1721 moved out of the infinite loop entirely.) */
1722
1723 enum infwait_states
1724 {
1725 infwait_normal_state,
1726 infwait_thread_hop_state,
1727 infwait_step_watch_state,
1728 infwait_nonstep_watch_state
1729 };
1730
1731 /* Why did the inferior stop? Used to print the appropriate messages
1732 to the interface from within handle_inferior_event(). */
1733 enum inferior_stop_reason
1734 {
1735 /* Step, next, nexti, stepi finished. */
1736 END_STEPPING_RANGE,
1737 /* Inferior terminated by signal. */
1738 SIGNAL_EXITED,
1739 /* Inferior exited. */
1740 EXITED,
1741 /* Inferior received signal, and user asked to be notified. */
1742 SIGNAL_RECEIVED,
1743 /* Reverse execution -- target ran out of history info. */
1744 NO_HISTORY
1745 };
1746
1747 /* The PTID we'll do a target_wait on.*/
1748 ptid_t waiton_ptid;
1749
1750 /* Current inferior wait state. */
1751 enum infwait_states infwait_state;
1752
1753 /* Data to be passed around while handling an event. This data is
1754 discarded between events. */
1755 struct execution_control_state
1756 {
1757 ptid_t ptid;
1758 /* The thread that got the event, if this was a thread event; NULL
1759 otherwise. */
1760 struct thread_info *event_thread;
1761
1762 struct target_waitstatus ws;
1763 int random_signal;
1764 CORE_ADDR stop_func_start;
1765 CORE_ADDR stop_func_end;
1766 char *stop_func_name;
1767 int new_thread_event;
1768 int wait_some_more;
1769 };
1770
1771 static void init_execution_control_state (struct execution_control_state *ecs);
1772
1773 static void handle_inferior_event (struct execution_control_state *ecs);
1774
1775 static void handle_step_into_function (struct gdbarch *gdbarch,
1776 struct execution_control_state *ecs);
1777 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
1778 struct execution_control_state *ecs);
1779 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1780 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1781 static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
1782 struct symtab_and_line sr_sal,
1783 struct frame_id sr_id);
1784 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
1785
1786 static void stop_stepping (struct execution_control_state *ecs);
1787 static void prepare_to_wait (struct execution_control_state *ecs);
1788 static void keep_going (struct execution_control_state *ecs);
1789 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1790 int stop_info);
1791
1792 /* Callback for iterate over threads. If the thread is stopped, but
1793 the user/frontend doesn't know about that yet, go through
1794 normal_stop, as if the thread had just stopped now. ARG points at
1795 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1796 ptid_is_pid(PTID) is true, applies to all threads of the process
1797 pointed at by PTID. Otherwise, apply only to the thread pointed by
1798 PTID. */
1799
1800 static int
1801 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1802 {
1803 ptid_t ptid = * (ptid_t *) arg;
1804
1805 if ((ptid_equal (info->ptid, ptid)
1806 || ptid_equal (minus_one_ptid, ptid)
1807 || (ptid_is_pid (ptid)
1808 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1809 && is_running (info->ptid)
1810 && !is_executing (info->ptid))
1811 {
1812 struct cleanup *old_chain;
1813 struct execution_control_state ecss;
1814 struct execution_control_state *ecs = &ecss;
1815
1816 memset (ecs, 0, sizeof (*ecs));
1817
1818 old_chain = make_cleanup_restore_current_thread ();
1819
1820 switch_to_thread (info->ptid);
1821
1822 /* Go through handle_inferior_event/normal_stop, so we always
1823 have consistent output as if the stop event had been
1824 reported. */
1825 ecs->ptid = info->ptid;
1826 ecs->event_thread = find_thread_ptid (info->ptid);
1827 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1828 ecs->ws.value.sig = TARGET_SIGNAL_0;
1829
1830 handle_inferior_event (ecs);
1831
1832 if (!ecs->wait_some_more)
1833 {
1834 struct thread_info *tp;
1835
1836 normal_stop ();
1837
1838 /* Finish off the continuations. The continations
1839 themselves are responsible for realising the thread
1840 didn't finish what it was supposed to do. */
1841 tp = inferior_thread ();
1842 do_all_intermediate_continuations_thread (tp);
1843 do_all_continuations_thread (tp);
1844 }
1845
1846 do_cleanups (old_chain);
1847 }
1848
1849 return 0;
1850 }
1851
1852 /* This function is attached as a "thread_stop_requested" observer.
1853 Cleanup local state that assumed the PTID was to be resumed, and
1854 report the stop to the frontend. */
1855
1856 static void
1857 infrun_thread_stop_requested (ptid_t ptid)
1858 {
1859 struct displaced_step_request *it, *next, *prev = NULL;
1860
1861 /* PTID was requested to stop. Remove it from the displaced
1862 stepping queue, so we don't try to resume it automatically. */
1863 for (it = displaced_step_request_queue; it; it = next)
1864 {
1865 next = it->next;
1866
1867 if (ptid_equal (it->ptid, ptid)
1868 || ptid_equal (minus_one_ptid, ptid)
1869 || (ptid_is_pid (ptid)
1870 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1871 {
1872 if (displaced_step_request_queue == it)
1873 displaced_step_request_queue = it->next;
1874 else
1875 prev->next = it->next;
1876
1877 xfree (it);
1878 }
1879 else
1880 prev = it;
1881 }
1882
1883 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1884 }
1885
1886 static void
1887 infrun_thread_thread_exit (struct thread_info *tp, int silent)
1888 {
1889 if (ptid_equal (target_last_wait_ptid, tp->ptid))
1890 nullify_last_target_wait_ptid ();
1891 }
1892
1893 /* Callback for iterate_over_threads. */
1894
1895 static int
1896 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1897 {
1898 if (is_exited (info->ptid))
1899 return 0;
1900
1901 delete_step_resume_breakpoint (info);
1902 return 0;
1903 }
1904
1905 /* In all-stop, delete the step resume breakpoint of any thread that
1906 had one. In non-stop, delete the step resume breakpoint of the
1907 thread that just stopped. */
1908
1909 static void
1910 delete_step_thread_step_resume_breakpoint (void)
1911 {
1912 if (!target_has_execution
1913 || ptid_equal (inferior_ptid, null_ptid))
1914 /* If the inferior has exited, we have already deleted the step
1915 resume breakpoints out of GDB's lists. */
1916 return;
1917
1918 if (non_stop)
1919 {
1920 /* If in non-stop mode, only delete the step-resume or
1921 longjmp-resume breakpoint of the thread that just stopped
1922 stepping. */
1923 struct thread_info *tp = inferior_thread ();
1924 delete_step_resume_breakpoint (tp);
1925 }
1926 else
1927 /* In all-stop mode, delete all step-resume and longjmp-resume
1928 breakpoints of any thread that had them. */
1929 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1930 }
1931
1932 /* A cleanup wrapper. */
1933
1934 static void
1935 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1936 {
1937 delete_step_thread_step_resume_breakpoint ();
1938 }
1939
1940 /* Pretty print the results of target_wait, for debugging purposes. */
1941
1942 static void
1943 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
1944 const struct target_waitstatus *ws)
1945 {
1946 char *status_string = target_waitstatus_to_string (ws);
1947 struct ui_file *tmp_stream = mem_fileopen ();
1948 char *text;
1949
1950 /* The text is split over several lines because it was getting too long.
1951 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
1952 output as a unit; we want only one timestamp printed if debug_timestamp
1953 is set. */
1954
1955 fprintf_unfiltered (tmp_stream,
1956 "infrun: target_wait (%d", PIDGET (waiton_ptid));
1957 if (PIDGET (waiton_ptid) != -1)
1958 fprintf_unfiltered (tmp_stream,
1959 " [%s]", target_pid_to_str (waiton_ptid));
1960 fprintf_unfiltered (tmp_stream, ", status) =\n");
1961 fprintf_unfiltered (tmp_stream,
1962 "infrun: %d [%s],\n",
1963 PIDGET (result_ptid), target_pid_to_str (result_ptid));
1964 fprintf_unfiltered (tmp_stream,
1965 "infrun: %s\n",
1966 status_string);
1967
1968 text = ui_file_xstrdup (tmp_stream, NULL);
1969
1970 /* This uses %s in part to handle %'s in the text, but also to avoid
1971 a gcc error: the format attribute requires a string literal. */
1972 fprintf_unfiltered (gdb_stdlog, "%s", text);
1973
1974 xfree (status_string);
1975 xfree (text);
1976 ui_file_delete (tmp_stream);
1977 }
1978
1979 /* Wait for control to return from inferior to debugger.
1980
1981 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1982 as if they were SIGTRAP signals. This can be useful during
1983 the startup sequence on some targets such as HP/UX, where
1984 we receive an EXEC event instead of the expected SIGTRAP.
1985
1986 If inferior gets a signal, we may decide to start it up again
1987 instead of returning. That is why there is a loop in this function.
1988 When this function actually returns it means the inferior
1989 should be left stopped and GDB should read more commands. */
1990
1991 void
1992 wait_for_inferior (int treat_exec_as_sigtrap)
1993 {
1994 struct cleanup *old_cleanups;
1995 struct execution_control_state ecss;
1996 struct execution_control_state *ecs;
1997
1998 if (debug_infrun)
1999 fprintf_unfiltered
2000 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2001 treat_exec_as_sigtrap);
2002
2003 old_cleanups =
2004 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2005
2006 ecs = &ecss;
2007 memset (ecs, 0, sizeof (*ecs));
2008
2009 /* We'll update this if & when we switch to a new thread. */
2010 previous_inferior_ptid = inferior_ptid;
2011
2012 while (1)
2013 {
2014 struct cleanup *old_chain;
2015
2016 /* We have to invalidate the registers BEFORE calling target_wait
2017 because they can be loaded from the target while in target_wait.
2018 This makes remote debugging a bit more efficient for those
2019 targets that provide critical registers as part of their normal
2020 status mechanism. */
2021
2022 overlay_cache_invalid = 1;
2023 registers_changed ();
2024
2025 if (deprecated_target_wait_hook)
2026 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2027 else
2028 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2029
2030 if (debug_infrun)
2031 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2032
2033 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2034 {
2035 xfree (ecs->ws.value.execd_pathname);
2036 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2037 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2038 }
2039
2040 /* If an error happens while handling the event, propagate GDB's
2041 knowledge of the executing state to the frontend/user running
2042 state. */
2043 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2044
2045 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2046 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2047 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2048
2049 /* Now figure out what to do with the result of the result. */
2050 handle_inferior_event (ecs);
2051
2052 /* No error, don't finish the state yet. */
2053 discard_cleanups (old_chain);
2054
2055 if (!ecs->wait_some_more)
2056 break;
2057 }
2058
2059 do_cleanups (old_cleanups);
2060 }
2061
2062 /* Asynchronous version of wait_for_inferior. It is called by the
2063 event loop whenever a change of state is detected on the file
2064 descriptor corresponding to the target. It can be called more than
2065 once to complete a single execution command. In such cases we need
2066 to keep the state in a global variable ECSS. If it is the last time
2067 that this function is called for a single execution command, then
2068 report to the user that the inferior has stopped, and do the
2069 necessary cleanups. */
2070
2071 void
2072 fetch_inferior_event (void *client_data)
2073 {
2074 struct execution_control_state ecss;
2075 struct execution_control_state *ecs = &ecss;
2076 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2077 struct cleanup *ts_old_chain;
2078 int was_sync = sync_execution;
2079
2080 memset (ecs, 0, sizeof (*ecs));
2081
2082 /* We'll update this if & when we switch to a new thread. */
2083 previous_inferior_ptid = inferior_ptid;
2084
2085 if (non_stop)
2086 /* In non-stop mode, the user/frontend should not notice a thread
2087 switch due to internal events. Make sure we reverse to the
2088 user selected thread and frame after handling the event and
2089 running any breakpoint commands. */
2090 make_cleanup_restore_current_thread ();
2091
2092 /* We have to invalidate the registers BEFORE calling target_wait
2093 because they can be loaded from the target while in target_wait.
2094 This makes remote debugging a bit more efficient for those
2095 targets that provide critical registers as part of their normal
2096 status mechanism. */
2097
2098 overlay_cache_invalid = 1;
2099 registers_changed ();
2100
2101 if (deprecated_target_wait_hook)
2102 ecs->ptid =
2103 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2104 else
2105 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2106
2107 if (debug_infrun)
2108 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2109
2110 if (non_stop
2111 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2112 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2113 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2114 /* In non-stop mode, each thread is handled individually. Switch
2115 early, so the global state is set correctly for this
2116 thread. */
2117 context_switch (ecs->ptid);
2118
2119 /* If an error happens while handling the event, propagate GDB's
2120 knowledge of the executing state to the frontend/user running
2121 state. */
2122 if (!non_stop)
2123 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2124 else
2125 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2126
2127 /* Now figure out what to do with the result of the result. */
2128 handle_inferior_event (ecs);
2129
2130 if (!ecs->wait_some_more)
2131 {
2132 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2133
2134 delete_step_thread_step_resume_breakpoint ();
2135
2136 /* We may not find an inferior if this was a process exit. */
2137 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
2138 normal_stop ();
2139
2140 if (target_has_execution
2141 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2142 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2143 && ecs->event_thread->step_multi
2144 && ecs->event_thread->stop_step)
2145 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2146 else
2147 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2148 }
2149
2150 /* No error, don't finish the thread states yet. */
2151 discard_cleanups (ts_old_chain);
2152
2153 /* Revert thread and frame. */
2154 do_cleanups (old_chain);
2155
2156 /* If the inferior was in sync execution mode, and now isn't,
2157 restore the prompt. */
2158 if (was_sync && !sync_execution)
2159 display_gdb_prompt (0);
2160 }
2161
2162 /* Record the frame and location we're currently stepping through. */
2163 void
2164 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2165 {
2166 struct thread_info *tp = inferior_thread ();
2167
2168 tp->step_frame_id = get_frame_id (frame);
2169 tp->step_stack_frame_id = get_stack_frame_id (frame);
2170
2171 tp->current_symtab = sal.symtab;
2172 tp->current_line = sal.line;
2173 }
2174
2175 /* Prepare an execution control state for looping through a
2176 wait_for_inferior-type loop. */
2177
2178 static void
2179 init_execution_control_state (struct execution_control_state *ecs)
2180 {
2181 ecs->random_signal = 0;
2182 }
2183
2184 /* Clear context switchable stepping state. */
2185
2186 void
2187 init_thread_stepping_state (struct thread_info *tss)
2188 {
2189 tss->stepping_over_breakpoint = 0;
2190 tss->step_after_step_resume_breakpoint = 0;
2191 tss->stepping_through_solib_after_catch = 0;
2192 tss->stepping_through_solib_catchpoints = NULL;
2193 }
2194
2195 /* Return the cached copy of the last pid/waitstatus returned by
2196 target_wait()/deprecated_target_wait_hook(). The data is actually
2197 cached by handle_inferior_event(), which gets called immediately
2198 after target_wait()/deprecated_target_wait_hook(). */
2199
2200 void
2201 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2202 {
2203 *ptidp = target_last_wait_ptid;
2204 *status = target_last_waitstatus;
2205 }
2206
2207 void
2208 nullify_last_target_wait_ptid (void)
2209 {
2210 target_last_wait_ptid = minus_one_ptid;
2211 }
2212
2213 /* Switch thread contexts. */
2214
2215 static void
2216 context_switch (ptid_t ptid)
2217 {
2218 if (debug_infrun)
2219 {
2220 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2221 target_pid_to_str (inferior_ptid));
2222 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2223 target_pid_to_str (ptid));
2224 }
2225
2226 switch_to_thread (ptid);
2227 }
2228
2229 static void
2230 adjust_pc_after_break (struct execution_control_state *ecs)
2231 {
2232 struct regcache *regcache;
2233 struct gdbarch *gdbarch;
2234 CORE_ADDR breakpoint_pc;
2235
2236 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2237 we aren't, just return.
2238
2239 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2240 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2241 implemented by software breakpoints should be handled through the normal
2242 breakpoint layer.
2243
2244 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2245 different signals (SIGILL or SIGEMT for instance), but it is less
2246 clear where the PC is pointing afterwards. It may not match
2247 gdbarch_decr_pc_after_break. I don't know any specific target that
2248 generates these signals at breakpoints (the code has been in GDB since at
2249 least 1992) so I can not guess how to handle them here.
2250
2251 In earlier versions of GDB, a target with
2252 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2253 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2254 target with both of these set in GDB history, and it seems unlikely to be
2255 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2256
2257 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2258 return;
2259
2260 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2261 return;
2262
2263 /* In reverse execution, when a breakpoint is hit, the instruction
2264 under it has already been de-executed. The reported PC always
2265 points at the breakpoint address, so adjusting it further would
2266 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2267 architecture:
2268
2269 B1 0x08000000 : INSN1
2270 B2 0x08000001 : INSN2
2271 0x08000002 : INSN3
2272 PC -> 0x08000003 : INSN4
2273
2274 Say you're stopped at 0x08000003 as above. Reverse continuing
2275 from that point should hit B2 as below. Reading the PC when the
2276 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2277 been de-executed already.
2278
2279 B1 0x08000000 : INSN1
2280 B2 PC -> 0x08000001 : INSN2
2281 0x08000002 : INSN3
2282 0x08000003 : INSN4
2283
2284 We can't apply the same logic as for forward execution, because
2285 we would wrongly adjust the PC to 0x08000000, since there's a
2286 breakpoint at PC - 1. We'd then report a hit on B1, although
2287 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2288 behaviour. */
2289 if (execution_direction == EXEC_REVERSE)
2290 return;
2291
2292 /* If this target does not decrement the PC after breakpoints, then
2293 we have nothing to do. */
2294 regcache = get_thread_regcache (ecs->ptid);
2295 gdbarch = get_regcache_arch (regcache);
2296 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2297 return;
2298
2299 /* Find the location where (if we've hit a breakpoint) the
2300 breakpoint would be. */
2301 breakpoint_pc = regcache_read_pc (regcache)
2302 - gdbarch_decr_pc_after_break (gdbarch);
2303
2304 /* Check whether there actually is a software breakpoint inserted at
2305 that location.
2306
2307 If in non-stop mode, a race condition is possible where we've
2308 removed a breakpoint, but stop events for that breakpoint were
2309 already queued and arrive later. To suppress those spurious
2310 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2311 and retire them after a number of stop events are reported. */
2312 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2313 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
2314 {
2315 struct cleanup *old_cleanups = NULL;
2316 if (RECORD_IS_USED)
2317 old_cleanups = record_gdb_operation_disable_set ();
2318
2319 /* When using hardware single-step, a SIGTRAP is reported for both
2320 a completed single-step and a software breakpoint. Need to
2321 differentiate between the two, as the latter needs adjusting
2322 but the former does not.
2323
2324 The SIGTRAP can be due to a completed hardware single-step only if
2325 - we didn't insert software single-step breakpoints
2326 - the thread to be examined is still the current thread
2327 - this thread is currently being stepped
2328
2329 If any of these events did not occur, we must have stopped due
2330 to hitting a software breakpoint, and have to back up to the
2331 breakpoint address.
2332
2333 As a special case, we could have hardware single-stepped a
2334 software breakpoint. In this case (prev_pc == breakpoint_pc),
2335 we also need to back up to the breakpoint address. */
2336
2337 if (singlestep_breakpoints_inserted_p
2338 || !ptid_equal (ecs->ptid, inferior_ptid)
2339 || !currently_stepping (ecs->event_thread)
2340 || ecs->event_thread->prev_pc == breakpoint_pc)
2341 regcache_write_pc (regcache, breakpoint_pc);
2342
2343 if (RECORD_IS_USED)
2344 do_cleanups (old_cleanups);
2345 }
2346 }
2347
2348 void
2349 init_infwait_state (void)
2350 {
2351 waiton_ptid = pid_to_ptid (-1);
2352 infwait_state = infwait_normal_state;
2353 }
2354
2355 void
2356 error_is_running (void)
2357 {
2358 error (_("\
2359 Cannot execute this command while the selected thread is running."));
2360 }
2361
2362 void
2363 ensure_not_running (void)
2364 {
2365 if (is_running (inferior_ptid))
2366 error_is_running ();
2367 }
2368
2369 static int
2370 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2371 {
2372 for (frame = get_prev_frame (frame);
2373 frame != NULL;
2374 frame = get_prev_frame (frame))
2375 {
2376 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2377 return 1;
2378 if (get_frame_type (frame) != INLINE_FRAME)
2379 break;
2380 }
2381
2382 return 0;
2383 }
2384
2385 /* Auxiliary function that handles syscall entry/return events.
2386 It returns 1 if the inferior should keep going (and GDB
2387 should ignore the event), or 0 if the event deserves to be
2388 processed. */
2389
2390 static int
2391 handle_syscall_event (struct execution_control_state *ecs)
2392 {
2393 struct regcache *regcache;
2394 struct gdbarch *gdbarch;
2395 int syscall_number;
2396
2397 if (!ptid_equal (ecs->ptid, inferior_ptid))
2398 context_switch (ecs->ptid);
2399
2400 regcache = get_thread_regcache (ecs->ptid);
2401 gdbarch = get_regcache_arch (regcache);
2402 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
2403 stop_pc = regcache_read_pc (regcache);
2404
2405 target_last_waitstatus.value.syscall_number = syscall_number;
2406
2407 if (catch_syscall_enabled () > 0
2408 && catching_syscall_number (syscall_number) > 0)
2409 {
2410 if (debug_infrun)
2411 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
2412 syscall_number);
2413
2414 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2415 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2416
2417 if (!ecs->random_signal)
2418 {
2419 /* Catchpoint hit. */
2420 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2421 return 0;
2422 }
2423 }
2424
2425 /* If no catchpoint triggered for this, then keep going. */
2426 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2427 keep_going (ecs);
2428 return 1;
2429 }
2430
2431 /* Given an execution control state that has been freshly filled in
2432 by an event from the inferior, figure out what it means and take
2433 appropriate action. */
2434
2435 static void
2436 handle_inferior_event (struct execution_control_state *ecs)
2437 {
2438 struct frame_info *frame;
2439 struct gdbarch *gdbarch;
2440 int sw_single_step_trap_p = 0;
2441 int stopped_by_watchpoint;
2442 int stepped_after_stopped_by_watchpoint = 0;
2443 struct symtab_and_line stop_pc_sal;
2444 enum stop_kind stop_soon;
2445
2446 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2447 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2448 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2449 {
2450 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2451 gdb_assert (inf);
2452 stop_soon = inf->stop_soon;
2453 }
2454 else
2455 stop_soon = NO_STOP_QUIETLY;
2456
2457 /* Cache the last pid/waitstatus. */
2458 target_last_wait_ptid = ecs->ptid;
2459 target_last_waitstatus = ecs->ws;
2460
2461 /* Always clear state belonging to the previous time we stopped. */
2462 stop_stack_dummy = 0;
2463
2464 /* If it's a new process, add it to the thread database */
2465
2466 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2467 && !ptid_equal (ecs->ptid, minus_one_ptid)
2468 && !in_thread_list (ecs->ptid));
2469
2470 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2471 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2472 add_thread (ecs->ptid);
2473
2474 ecs->event_thread = find_thread_ptid (ecs->ptid);
2475
2476 /* Dependent on valid ECS->EVENT_THREAD. */
2477 adjust_pc_after_break (ecs);
2478
2479 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2480 reinit_frame_cache ();
2481
2482 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2483 {
2484 breakpoint_retire_moribund ();
2485
2486 /* Mark the non-executing threads accordingly. In all-stop, all
2487 threads of all processes are stopped when we get any event
2488 reported. In non-stop mode, only the event thread stops. If
2489 we're handling a process exit in non-stop mode, there's
2490 nothing to do, as threads of the dead process are gone, and
2491 threads of any other process were left running. */
2492 if (!non_stop)
2493 set_executing (minus_one_ptid, 0);
2494 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2495 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2496 set_executing (inferior_ptid, 0);
2497 }
2498
2499 switch (infwait_state)
2500 {
2501 case infwait_thread_hop_state:
2502 if (debug_infrun)
2503 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
2504 break;
2505
2506 case infwait_normal_state:
2507 if (debug_infrun)
2508 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2509 break;
2510
2511 case infwait_step_watch_state:
2512 if (debug_infrun)
2513 fprintf_unfiltered (gdb_stdlog,
2514 "infrun: infwait_step_watch_state\n");
2515
2516 stepped_after_stopped_by_watchpoint = 1;
2517 break;
2518
2519 case infwait_nonstep_watch_state:
2520 if (debug_infrun)
2521 fprintf_unfiltered (gdb_stdlog,
2522 "infrun: infwait_nonstep_watch_state\n");
2523 insert_breakpoints ();
2524
2525 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2526 handle things like signals arriving and other things happening
2527 in combination correctly? */
2528 stepped_after_stopped_by_watchpoint = 1;
2529 break;
2530
2531 default:
2532 internal_error (__FILE__, __LINE__, _("bad switch"));
2533 }
2534
2535 infwait_state = infwait_normal_state;
2536 waiton_ptid = pid_to_ptid (-1);
2537
2538 switch (ecs->ws.kind)
2539 {
2540 case TARGET_WAITKIND_LOADED:
2541 if (debug_infrun)
2542 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2543 /* Ignore gracefully during startup of the inferior, as it might
2544 be the shell which has just loaded some objects, otherwise
2545 add the symbols for the newly loaded objects. Also ignore at
2546 the beginning of an attach or remote session; we will query
2547 the full list of libraries once the connection is
2548 established. */
2549 if (stop_soon == NO_STOP_QUIETLY)
2550 {
2551 /* Check for any newly added shared libraries if we're
2552 supposed to be adding them automatically. Switch
2553 terminal for any messages produced by
2554 breakpoint_re_set. */
2555 target_terminal_ours_for_output ();
2556 /* NOTE: cagney/2003-11-25: Make certain that the target
2557 stack's section table is kept up-to-date. Architectures,
2558 (e.g., PPC64), use the section table to perform
2559 operations such as address => section name and hence
2560 require the table to contain all sections (including
2561 those found in shared libraries). */
2562 #ifdef SOLIB_ADD
2563 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2564 #else
2565 solib_add (NULL, 0, &current_target, auto_solib_add);
2566 #endif
2567 target_terminal_inferior ();
2568
2569 /* If requested, stop when the dynamic linker notifies
2570 gdb of events. This allows the user to get control
2571 and place breakpoints in initializer routines for
2572 dynamically loaded objects (among other things). */
2573 if (stop_on_solib_events)
2574 {
2575 stop_stepping (ecs);
2576 return;
2577 }
2578
2579 /* NOTE drow/2007-05-11: This might be a good place to check
2580 for "catch load". */
2581 }
2582
2583 /* If we are skipping through a shell, or through shared library
2584 loading that we aren't interested in, resume the program. If
2585 we're running the program normally, also resume. But stop if
2586 we're attaching or setting up a remote connection. */
2587 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2588 {
2589 /* Loading of shared libraries might have changed breakpoint
2590 addresses. Make sure new breakpoints are inserted. */
2591 if (stop_soon == NO_STOP_QUIETLY
2592 && !breakpoints_always_inserted_mode ())
2593 insert_breakpoints ();
2594 resume (0, TARGET_SIGNAL_0);
2595 prepare_to_wait (ecs);
2596 return;
2597 }
2598
2599 break;
2600
2601 case TARGET_WAITKIND_SPURIOUS:
2602 if (debug_infrun)
2603 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2604 resume (0, TARGET_SIGNAL_0);
2605 prepare_to_wait (ecs);
2606 return;
2607
2608 case TARGET_WAITKIND_EXITED:
2609 if (debug_infrun)
2610 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2611 inferior_ptid = ecs->ptid;
2612 target_terminal_ours (); /* Must do this before mourn anyway */
2613 print_stop_reason (EXITED, ecs->ws.value.integer);
2614
2615 /* Record the exit code in the convenience variable $_exitcode, so
2616 that the user can inspect this again later. */
2617 set_internalvar_integer (lookup_internalvar ("_exitcode"),
2618 (LONGEST) ecs->ws.value.integer);
2619 gdb_flush (gdb_stdout);
2620 target_mourn_inferior ();
2621 singlestep_breakpoints_inserted_p = 0;
2622 stop_print_frame = 0;
2623 stop_stepping (ecs);
2624 return;
2625
2626 case TARGET_WAITKIND_SIGNALLED:
2627 if (debug_infrun)
2628 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2629 inferior_ptid = ecs->ptid;
2630 stop_print_frame = 0;
2631 target_terminal_ours (); /* Must do this before mourn anyway */
2632
2633 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2634 reach here unless the inferior is dead. However, for years
2635 target_kill() was called here, which hints that fatal signals aren't
2636 really fatal on some systems. If that's true, then some changes
2637 may be needed. */
2638 target_mourn_inferior ();
2639
2640 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2641 singlestep_breakpoints_inserted_p = 0;
2642 stop_stepping (ecs);
2643 return;
2644
2645 /* The following are the only cases in which we keep going;
2646 the above cases end in a continue or goto. */
2647 case TARGET_WAITKIND_FORKED:
2648 case TARGET_WAITKIND_VFORKED:
2649 if (debug_infrun)
2650 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2651
2652 if (!ptid_equal (ecs->ptid, inferior_ptid))
2653 {
2654 context_switch (ecs->ptid);
2655 reinit_frame_cache ();
2656 }
2657
2658 /* Immediately detach breakpoints from the child before there's
2659 any chance of letting the user delete breakpoints from the
2660 breakpoint lists. If we don't do this early, it's easy to
2661 leave left over traps in the child, vis: "break foo; catch
2662 fork; c; <fork>; del; c; <child calls foo>". We only follow
2663 the fork on the last `continue', and by that time the
2664 breakpoint at "foo" is long gone from the breakpoint table.
2665 If we vforked, then we don't need to unpatch here, since both
2666 parent and child are sharing the same memory pages; we'll
2667 need to unpatch at follow/detach time instead to be certain
2668 that new breakpoints added between catchpoint hit time and
2669 vfork follow are detached. */
2670 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2671 {
2672 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2673
2674 /* This won't actually modify the breakpoint list, but will
2675 physically remove the breakpoints from the child. */
2676 detach_breakpoints (child_pid);
2677 }
2678
2679 /* In case the event is caught by a catchpoint, remember that
2680 the event is to be followed at the next resume of the thread,
2681 and not immediately. */
2682 ecs->event_thread->pending_follow = ecs->ws;
2683
2684 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2685
2686 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2687
2688 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2689
2690 /* If no catchpoint triggered for this, then keep going. */
2691 if (ecs->random_signal)
2692 {
2693 int should_resume;
2694
2695 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2696
2697 should_resume = follow_fork ();
2698
2699 ecs->event_thread = inferior_thread ();
2700 ecs->ptid = inferior_ptid;
2701
2702 if (should_resume)
2703 keep_going (ecs);
2704 else
2705 stop_stepping (ecs);
2706 return;
2707 }
2708 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2709 goto process_event_stop_test;
2710
2711 case TARGET_WAITKIND_EXECD:
2712 if (debug_infrun)
2713 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2714
2715 if (!ptid_equal (ecs->ptid, inferior_ptid))
2716 {
2717 context_switch (ecs->ptid);
2718 reinit_frame_cache ();
2719 }
2720
2721 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2722
2723 /* This causes the eventpoints and symbol table to be reset.
2724 Must do this now, before trying to determine whether to
2725 stop. */
2726 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
2727
2728 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2729 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2730
2731 /* Note that this may be referenced from inside
2732 bpstat_stop_status above, through inferior_has_execd. */
2733 xfree (ecs->ws.value.execd_pathname);
2734 ecs->ws.value.execd_pathname = NULL;
2735
2736 /* If no catchpoint triggered for this, then keep going. */
2737 if (ecs->random_signal)
2738 {
2739 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2740 keep_going (ecs);
2741 return;
2742 }
2743 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2744 goto process_event_stop_test;
2745
2746 /* Be careful not to try to gather much state about a thread
2747 that's in a syscall. It's frequently a losing proposition. */
2748 case TARGET_WAITKIND_SYSCALL_ENTRY:
2749 if (debug_infrun)
2750 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2751 /* Getting the current syscall number */
2752 if (handle_syscall_event (ecs) != 0)
2753 return;
2754 goto process_event_stop_test;
2755
2756 /* Before examining the threads further, step this thread to
2757 get it entirely out of the syscall. (We get notice of the
2758 event when the thread is just on the verge of exiting a
2759 syscall. Stepping one instruction seems to get it back
2760 into user code.) */
2761 case TARGET_WAITKIND_SYSCALL_RETURN:
2762 if (debug_infrun)
2763 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2764 if (handle_syscall_event (ecs) != 0)
2765 return;
2766 goto process_event_stop_test;
2767
2768 case TARGET_WAITKIND_STOPPED:
2769 if (debug_infrun)
2770 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2771 ecs->event_thread->stop_signal = ecs->ws.value.sig;
2772 break;
2773
2774 case TARGET_WAITKIND_NO_HISTORY:
2775 /* Reverse execution: target ran out of history info. */
2776 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2777 print_stop_reason (NO_HISTORY, 0);
2778 stop_stepping (ecs);
2779 return;
2780
2781 /* We had an event in the inferior, but we are not interested
2782 in handling it at this level. The lower layers have already
2783 done what needs to be done, if anything.
2784
2785 One of the possible circumstances for this is when the
2786 inferior produces output for the console. The inferior has
2787 not stopped, and we are ignoring the event. Another possible
2788 circumstance is any event which the lower level knows will be
2789 reported multiple times without an intervening resume. */
2790 case TARGET_WAITKIND_IGNORE:
2791 if (debug_infrun)
2792 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2793 prepare_to_wait (ecs);
2794 return;
2795 }
2796
2797 if (ecs->new_thread_event)
2798 {
2799 if (non_stop)
2800 /* Non-stop assumes that the target handles adding new threads
2801 to the thread list. */
2802 internal_error (__FILE__, __LINE__, "\
2803 targets should add new threads to the thread list themselves in non-stop mode.");
2804
2805 /* We may want to consider not doing a resume here in order to
2806 give the user a chance to play with the new thread. It might
2807 be good to make that a user-settable option. */
2808
2809 /* At this point, all threads are stopped (happens automatically
2810 in either the OS or the native code). Therefore we need to
2811 continue all threads in order to make progress. */
2812
2813 if (!ptid_equal (ecs->ptid, inferior_ptid))
2814 context_switch (ecs->ptid);
2815 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2816 prepare_to_wait (ecs);
2817 return;
2818 }
2819
2820 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2821 {
2822 /* Do we need to clean up the state of a thread that has
2823 completed a displaced single-step? (Doing so usually affects
2824 the PC, so do it here, before we set stop_pc.) */
2825 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2826
2827 /* If we either finished a single-step or hit a breakpoint, but
2828 the user wanted this thread to be stopped, pretend we got a
2829 SIG0 (generic unsignaled stop). */
2830
2831 if (ecs->event_thread->stop_requested
2832 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2833 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2834 }
2835
2836 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2837
2838 if (debug_infrun)
2839 {
2840 struct regcache *regcache = get_thread_regcache (ecs->ptid);
2841 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2842
2843 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
2844 paddress (gdbarch, stop_pc));
2845 if (target_stopped_by_watchpoint ())
2846 {
2847 CORE_ADDR addr;
2848 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2849
2850 if (target_stopped_data_address (&current_target, &addr))
2851 fprintf_unfiltered (gdb_stdlog,
2852 "infrun: stopped data address = %s\n",
2853 paddress (gdbarch, addr));
2854 else
2855 fprintf_unfiltered (gdb_stdlog,
2856 "infrun: (no data address available)\n");
2857 }
2858 }
2859
2860 if (stepping_past_singlestep_breakpoint)
2861 {
2862 gdb_assert (singlestep_breakpoints_inserted_p);
2863 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2864 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2865
2866 stepping_past_singlestep_breakpoint = 0;
2867
2868 /* We've either finished single-stepping past the single-step
2869 breakpoint, or stopped for some other reason. It would be nice if
2870 we could tell, but we can't reliably. */
2871 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2872 {
2873 if (debug_infrun)
2874 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2875 /* Pull the single step breakpoints out of the target. */
2876 remove_single_step_breakpoints ();
2877 singlestep_breakpoints_inserted_p = 0;
2878
2879 ecs->random_signal = 0;
2880 ecs->event_thread->trap_expected = 0;
2881
2882 context_switch (saved_singlestep_ptid);
2883 if (deprecated_context_hook)
2884 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2885
2886 resume (1, TARGET_SIGNAL_0);
2887 prepare_to_wait (ecs);
2888 return;
2889 }
2890 }
2891
2892 if (!ptid_equal (deferred_step_ptid, null_ptid))
2893 {
2894 /* In non-stop mode, there's never a deferred_step_ptid set. */
2895 gdb_assert (!non_stop);
2896
2897 /* If we stopped for some other reason than single-stepping, ignore
2898 the fact that we were supposed to switch back. */
2899 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2900 {
2901 if (debug_infrun)
2902 fprintf_unfiltered (gdb_stdlog,
2903 "infrun: handling deferred step\n");
2904
2905 /* Pull the single step breakpoints out of the target. */
2906 if (singlestep_breakpoints_inserted_p)
2907 {
2908 remove_single_step_breakpoints ();
2909 singlestep_breakpoints_inserted_p = 0;
2910 }
2911
2912 /* Note: We do not call context_switch at this point, as the
2913 context is already set up for stepping the original thread. */
2914 switch_to_thread (deferred_step_ptid);
2915 deferred_step_ptid = null_ptid;
2916 /* Suppress spurious "Switching to ..." message. */
2917 previous_inferior_ptid = inferior_ptid;
2918
2919 resume (1, TARGET_SIGNAL_0);
2920 prepare_to_wait (ecs);
2921 return;
2922 }
2923
2924 deferred_step_ptid = null_ptid;
2925 }
2926
2927 /* See if a thread hit a thread-specific breakpoint that was meant for
2928 another thread. If so, then step that thread past the breakpoint,
2929 and continue it. */
2930
2931 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2932 {
2933 int thread_hop_needed = 0;
2934
2935 /* Check if a regular breakpoint has been hit before checking
2936 for a potential single step breakpoint. Otherwise, GDB will
2937 not see this breakpoint hit when stepping onto breakpoints. */
2938 if (regular_breakpoint_inserted_here_p (stop_pc))
2939 {
2940 ecs->random_signal = 0;
2941 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2942 thread_hop_needed = 1;
2943 }
2944 else if (singlestep_breakpoints_inserted_p)
2945 {
2946 /* We have not context switched yet, so this should be true
2947 no matter which thread hit the singlestep breakpoint. */
2948 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2949 if (debug_infrun)
2950 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2951 "trap for %s\n",
2952 target_pid_to_str (ecs->ptid));
2953
2954 ecs->random_signal = 0;
2955 /* The call to in_thread_list is necessary because PTIDs sometimes
2956 change when we go from single-threaded to multi-threaded. If
2957 the singlestep_ptid is still in the list, assume that it is
2958 really different from ecs->ptid. */
2959 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2960 && in_thread_list (singlestep_ptid))
2961 {
2962 /* If the PC of the thread we were trying to single-step
2963 has changed, discard this event (which we were going
2964 to ignore anyway), and pretend we saw that thread
2965 trap. This prevents us continuously moving the
2966 single-step breakpoint forward, one instruction at a
2967 time. If the PC has changed, then the thread we were
2968 trying to single-step has trapped or been signalled,
2969 but the event has not been reported to GDB yet.
2970
2971 There might be some cases where this loses signal
2972 information, if a signal has arrived at exactly the
2973 same time that the PC changed, but this is the best
2974 we can do with the information available. Perhaps we
2975 should arrange to report all events for all threads
2976 when they stop, or to re-poll the remote looking for
2977 this particular thread (i.e. temporarily enable
2978 schedlock). */
2979
2980 CORE_ADDR new_singlestep_pc
2981 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2982
2983 if (new_singlestep_pc != singlestep_pc)
2984 {
2985 enum target_signal stop_signal;
2986
2987 if (debug_infrun)
2988 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2989 " but expected thread advanced also\n");
2990
2991 /* The current context still belongs to
2992 singlestep_ptid. Don't swap here, since that's
2993 the context we want to use. Just fudge our
2994 state and continue. */
2995 stop_signal = ecs->event_thread->stop_signal;
2996 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2997 ecs->ptid = singlestep_ptid;
2998 ecs->event_thread = find_thread_ptid (ecs->ptid);
2999 ecs->event_thread->stop_signal = stop_signal;
3000 stop_pc = new_singlestep_pc;
3001 }
3002 else
3003 {
3004 if (debug_infrun)
3005 fprintf_unfiltered (gdb_stdlog,
3006 "infrun: unexpected thread\n");
3007
3008 thread_hop_needed = 1;
3009 stepping_past_singlestep_breakpoint = 1;
3010 saved_singlestep_ptid = singlestep_ptid;
3011 }
3012 }
3013 }
3014
3015 if (thread_hop_needed)
3016 {
3017 struct regcache *thread_regcache;
3018 int remove_status = 0;
3019
3020 if (debug_infrun)
3021 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3022
3023 /* Switch context before touching inferior memory, the
3024 previous thread may have exited. */
3025 if (!ptid_equal (inferior_ptid, ecs->ptid))
3026 context_switch (ecs->ptid);
3027
3028 /* Saw a breakpoint, but it was hit by the wrong thread.
3029 Just continue. */
3030
3031 if (singlestep_breakpoints_inserted_p)
3032 {
3033 /* Pull the single step breakpoints out of the target. */
3034 remove_single_step_breakpoints ();
3035 singlestep_breakpoints_inserted_p = 0;
3036 }
3037
3038 /* If the arch can displace step, don't remove the
3039 breakpoints. */
3040 thread_regcache = get_thread_regcache (ecs->ptid);
3041 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3042 remove_status = remove_breakpoints ();
3043
3044 /* Did we fail to remove breakpoints? If so, try
3045 to set the PC past the bp. (There's at least
3046 one situation in which we can fail to remove
3047 the bp's: On HP-UX's that use ttrace, we can't
3048 change the address space of a vforking child
3049 process until the child exits (well, okay, not
3050 then either :-) or execs. */
3051 if (remove_status != 0)
3052 error (_("Cannot step over breakpoint hit in wrong thread"));
3053 else
3054 { /* Single step */
3055 if (!non_stop)
3056 {
3057 /* Only need to require the next event from this
3058 thread in all-stop mode. */
3059 waiton_ptid = ecs->ptid;
3060 infwait_state = infwait_thread_hop_state;
3061 }
3062
3063 ecs->event_thread->stepping_over_breakpoint = 1;
3064 keep_going (ecs);
3065 return;
3066 }
3067 }
3068 else if (singlestep_breakpoints_inserted_p)
3069 {
3070 sw_single_step_trap_p = 1;
3071 ecs->random_signal = 0;
3072 }
3073 }
3074 else
3075 ecs->random_signal = 1;
3076
3077 /* See if something interesting happened to the non-current thread. If
3078 so, then switch to that thread. */
3079 if (!ptid_equal (ecs->ptid, inferior_ptid))
3080 {
3081 if (debug_infrun)
3082 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3083
3084 context_switch (ecs->ptid);
3085
3086 if (deprecated_context_hook)
3087 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3088 }
3089
3090 /* At this point, get hold of the now-current thread's frame. */
3091 frame = get_current_frame ();
3092 gdbarch = get_frame_arch (frame);
3093
3094 if (singlestep_breakpoints_inserted_p)
3095 {
3096 /* Pull the single step breakpoints out of the target. */
3097 remove_single_step_breakpoints ();
3098 singlestep_breakpoints_inserted_p = 0;
3099 }
3100
3101 if (stepped_after_stopped_by_watchpoint)
3102 stopped_by_watchpoint = 0;
3103 else
3104 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3105
3106 /* If necessary, step over this watchpoint. We'll be back to display
3107 it in a moment. */
3108 if (stopped_by_watchpoint
3109 && (target_have_steppable_watchpoint
3110 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3111 {
3112 /* At this point, we are stopped at an instruction which has
3113 attempted to write to a piece of memory under control of
3114 a watchpoint. The instruction hasn't actually executed
3115 yet. If we were to evaluate the watchpoint expression
3116 now, we would get the old value, and therefore no change
3117 would seem to have occurred.
3118
3119 In order to make watchpoints work `right', we really need
3120 to complete the memory write, and then evaluate the
3121 watchpoint expression. We do this by single-stepping the
3122 target.
3123
3124 It may not be necessary to disable the watchpoint to stop over
3125 it. For example, the PA can (with some kernel cooperation)
3126 single step over a watchpoint without disabling the watchpoint.
3127
3128 It is far more common to need to disable a watchpoint to step
3129 the inferior over it. If we have non-steppable watchpoints,
3130 we must disable the current watchpoint; it's simplest to
3131 disable all watchpoints and breakpoints. */
3132 int hw_step = 1;
3133
3134 if (!target_have_steppable_watchpoint)
3135 remove_breakpoints ();
3136 /* Single step */
3137 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
3138 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3139 waiton_ptid = ecs->ptid;
3140 if (target_have_steppable_watchpoint)
3141 infwait_state = infwait_step_watch_state;
3142 else
3143 infwait_state = infwait_nonstep_watch_state;
3144 prepare_to_wait (ecs);
3145 return;
3146 }
3147
3148 ecs->stop_func_start = 0;
3149 ecs->stop_func_end = 0;
3150 ecs->stop_func_name = 0;
3151 /* Don't care about return value; stop_func_start and stop_func_name
3152 will both be 0 if it doesn't work. */
3153 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3154 &ecs->stop_func_start, &ecs->stop_func_end);
3155 ecs->stop_func_start
3156 += gdbarch_deprecated_function_start_offset (gdbarch);
3157 ecs->event_thread->stepping_over_breakpoint = 0;
3158 bpstat_clear (&ecs->event_thread->stop_bpstat);
3159 ecs->event_thread->stop_step = 0;
3160 stop_print_frame = 1;
3161 ecs->random_signal = 0;
3162 stopped_by_random_signal = 0;
3163
3164 /* Hide inlined functions starting here, unless we just performed stepi or
3165 nexti. After stepi and nexti, always show the innermost frame (not any
3166 inline function call sites). */
3167 if (ecs->event_thread->step_range_end != 1)
3168 skip_inline_frames (ecs->ptid);
3169
3170 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3171 && ecs->event_thread->trap_expected
3172 && gdbarch_single_step_through_delay_p (gdbarch)
3173 && currently_stepping (ecs->event_thread))
3174 {
3175 /* We're trying to step off a breakpoint. Turns out that we're
3176 also on an instruction that needs to be stepped multiple
3177 times before it's been fully executing. E.g., architectures
3178 with a delay slot. It needs to be stepped twice, once for
3179 the instruction and once for the delay slot. */
3180 int step_through_delay
3181 = gdbarch_single_step_through_delay (gdbarch, frame);
3182 if (debug_infrun && step_through_delay)
3183 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3184 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3185 {
3186 /* The user issued a continue when stopped at a breakpoint.
3187 Set up for another trap and get out of here. */
3188 ecs->event_thread->stepping_over_breakpoint = 1;
3189 keep_going (ecs);
3190 return;
3191 }
3192 else if (step_through_delay)
3193 {
3194 /* The user issued a step when stopped at a breakpoint.
3195 Maybe we should stop, maybe we should not - the delay
3196 slot *might* correspond to a line of source. In any
3197 case, don't decide that here, just set
3198 ecs->stepping_over_breakpoint, making sure we
3199 single-step again before breakpoints are re-inserted. */
3200 ecs->event_thread->stepping_over_breakpoint = 1;
3201 }
3202 }
3203
3204 /* Look at the cause of the stop, and decide what to do.
3205 The alternatives are:
3206 1) stop_stepping and return; to really stop and return to the debugger,
3207 2) keep_going and return to start up again
3208 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
3209 3) set ecs->random_signal to 1, and the decision between 1 and 2
3210 will be made according to the signal handling tables. */
3211
3212 /* First, distinguish signals caused by the debugger from signals
3213 that have to do with the program's own actions. Note that
3214 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3215 on the operating system version. Here we detect when a SIGILL or
3216 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3217 something similar for SIGSEGV, since a SIGSEGV will be generated
3218 when we're trying to execute a breakpoint instruction on a
3219 non-executable stack. This happens for call dummy breakpoints
3220 for architectures like SPARC that place call dummies on the
3221 stack.
3222
3223 If we're doing a displaced step past a breakpoint, then the
3224 breakpoint is always inserted at the original instruction;
3225 non-standard signals can't be explained by the breakpoint. */
3226 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3227 || (! ecs->event_thread->trap_expected
3228 && breakpoint_inserted_here_p (stop_pc)
3229 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
3230 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
3231 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
3232 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3233 || stop_soon == STOP_QUIETLY_REMOTE)
3234 {
3235 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
3236 {
3237 if (debug_infrun)
3238 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3239 stop_print_frame = 0;
3240 stop_stepping (ecs);
3241 return;
3242 }
3243
3244 /* This is originated from start_remote(), start_inferior() and
3245 shared libraries hook functions. */
3246 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3247 {
3248 if (debug_infrun)
3249 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3250 stop_stepping (ecs);
3251 return;
3252 }
3253
3254 /* This originates from attach_command(). We need to overwrite
3255 the stop_signal here, because some kernels don't ignore a
3256 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3257 See more comments in inferior.h. On the other hand, if we
3258 get a non-SIGSTOP, report it to the user - assume the backend
3259 will handle the SIGSTOP if it should show up later.
3260
3261 Also consider that the attach is complete when we see a
3262 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3263 target extended-remote report it instead of a SIGSTOP
3264 (e.g. gdbserver). We already rely on SIGTRAP being our
3265 signal, so this is no exception.
3266
3267 Also consider that the attach is complete when we see a
3268 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3269 the target to stop all threads of the inferior, in case the
3270 low level attach operation doesn't stop them implicitly. If
3271 they weren't stopped implicitly, then the stub will report a
3272 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3273 other than GDB's request. */
3274 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3275 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
3276 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3277 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
3278 {
3279 stop_stepping (ecs);
3280 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3281 return;
3282 }
3283
3284 /* See if there is a breakpoint at the current PC. */
3285 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
3286
3287 /* Following in case break condition called a
3288 function. */
3289 stop_print_frame = 1;
3290
3291 /* NOTE: cagney/2003-03-29: These two checks for a random signal
3292 at one stage in the past included checks for an inferior
3293 function call's call dummy's return breakpoint. The original
3294 comment, that went with the test, read:
3295
3296 ``End of a stack dummy. Some systems (e.g. Sony news) give
3297 another signal besides SIGTRAP, so check here as well as
3298 above.''
3299
3300 If someone ever tries to get call dummys on a
3301 non-executable stack to work (where the target would stop
3302 with something like a SIGSEGV), then those tests might need
3303 to be re-instated. Given, however, that the tests were only
3304 enabled when momentary breakpoints were not being used, I
3305 suspect that it won't be the case.
3306
3307 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3308 be necessary for call dummies on a non-executable stack on
3309 SPARC. */
3310
3311 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3312 ecs->random_signal
3313 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
3314 || ecs->event_thread->trap_expected
3315 || (ecs->event_thread->step_range_end
3316 && ecs->event_thread->step_resume_breakpoint == NULL));
3317 else
3318 {
3319 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3320 if (!ecs->random_signal)
3321 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
3322 }
3323 }
3324
3325 /* When we reach this point, we've pretty much decided
3326 that the reason for stopping must've been a random
3327 (unexpected) signal. */
3328
3329 else
3330 ecs->random_signal = 1;
3331
3332 process_event_stop_test:
3333
3334 /* Re-fetch current thread's frame in case we did a
3335 "goto process_event_stop_test" above. */
3336 frame = get_current_frame ();
3337 gdbarch = get_frame_arch (frame);
3338
3339 /* For the program's own signals, act according to
3340 the signal handling tables. */
3341
3342 if (ecs->random_signal)
3343 {
3344 /* Signal not for debugging purposes. */
3345 int printed = 0;
3346
3347 if (debug_infrun)
3348 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3349 ecs->event_thread->stop_signal);
3350
3351 stopped_by_random_signal = 1;
3352
3353 if (signal_print[ecs->event_thread->stop_signal])
3354 {
3355 printed = 1;
3356 target_terminal_ours_for_output ();
3357 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
3358 }
3359 /* Always stop on signals if we're either just gaining control
3360 of the program, or the user explicitly requested this thread
3361 to remain stopped. */
3362 if (stop_soon != NO_STOP_QUIETLY
3363 || ecs->event_thread->stop_requested
3364 || signal_stop_state (ecs->event_thread->stop_signal))
3365 {
3366 stop_stepping (ecs);
3367 return;
3368 }
3369 /* If not going to stop, give terminal back
3370 if we took it away. */
3371 else if (printed)
3372 target_terminal_inferior ();
3373
3374 /* Clear the signal if it should not be passed. */
3375 if (signal_program[ecs->event_thread->stop_signal] == 0)
3376 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3377
3378 if (ecs->event_thread->prev_pc == stop_pc
3379 && ecs->event_thread->trap_expected
3380 && ecs->event_thread->step_resume_breakpoint == NULL)
3381 {
3382 /* We were just starting a new sequence, attempting to
3383 single-step off of a breakpoint and expecting a SIGTRAP.
3384 Instead this signal arrives. This signal will take us out
3385 of the stepping range so GDB needs to remember to, when
3386 the signal handler returns, resume stepping off that
3387 breakpoint. */
3388 /* To simplify things, "continue" is forced to use the same
3389 code paths as single-step - set a breakpoint at the
3390 signal return address and then, once hit, step off that
3391 breakpoint. */
3392 if (debug_infrun)
3393 fprintf_unfiltered (gdb_stdlog,
3394 "infrun: signal arrived while stepping over "
3395 "breakpoint\n");
3396
3397 insert_step_resume_breakpoint_at_frame (frame);
3398 ecs->event_thread->step_after_step_resume_breakpoint = 1;
3399 keep_going (ecs);
3400 return;
3401 }
3402
3403 if (ecs->event_thread->step_range_end != 0
3404 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
3405 && (ecs->event_thread->step_range_start <= stop_pc
3406 && stop_pc < ecs->event_thread->step_range_end)
3407 && frame_id_eq (get_stack_frame_id (frame),
3408 ecs->event_thread->step_stack_frame_id)
3409 && ecs->event_thread->step_resume_breakpoint == NULL)
3410 {
3411 /* The inferior is about to take a signal that will take it
3412 out of the single step range. Set a breakpoint at the
3413 current PC (which is presumably where the signal handler
3414 will eventually return) and then allow the inferior to
3415 run free.
3416
3417 Note that this is only needed for a signal delivered
3418 while in the single-step range. Nested signals aren't a
3419 problem as they eventually all return. */
3420 if (debug_infrun)
3421 fprintf_unfiltered (gdb_stdlog,
3422 "infrun: signal may take us out of "
3423 "single-step range\n");
3424
3425 insert_step_resume_breakpoint_at_frame (frame);
3426 keep_going (ecs);
3427 return;
3428 }
3429
3430 /* Note: step_resume_breakpoint may be non-NULL. This occures
3431 when either there's a nested signal, or when there's a
3432 pending signal enabled just as the signal handler returns
3433 (leaving the inferior at the step-resume-breakpoint without
3434 actually executing it). Either way continue until the
3435 breakpoint is really hit. */
3436 keep_going (ecs);
3437 return;
3438 }
3439
3440 /* Handle cases caused by hitting a breakpoint. */
3441 {
3442 CORE_ADDR jmp_buf_pc;
3443 struct bpstat_what what;
3444
3445 what = bpstat_what (ecs->event_thread->stop_bpstat);
3446
3447 if (what.call_dummy)
3448 {
3449 stop_stack_dummy = 1;
3450 }
3451
3452 switch (what.main_action)
3453 {
3454 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
3455 /* If we hit the breakpoint at longjmp while stepping, we
3456 install a momentary breakpoint at the target of the
3457 jmp_buf. */
3458
3459 if (debug_infrun)
3460 fprintf_unfiltered (gdb_stdlog,
3461 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3462
3463 ecs->event_thread->stepping_over_breakpoint = 1;
3464
3465 if (!gdbarch_get_longjmp_target_p (gdbarch)
3466 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
3467 {
3468 if (debug_infrun)
3469 fprintf_unfiltered (gdb_stdlog, "\
3470 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
3471 keep_going (ecs);
3472 return;
3473 }
3474
3475 /* We're going to replace the current step-resume breakpoint
3476 with a longjmp-resume breakpoint. */
3477 delete_step_resume_breakpoint (ecs->event_thread);
3478
3479 /* Insert a breakpoint at resume address. */
3480 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
3481
3482 keep_going (ecs);
3483 return;
3484
3485 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
3486 if (debug_infrun)
3487 fprintf_unfiltered (gdb_stdlog,
3488 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3489
3490 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3491 delete_step_resume_breakpoint (ecs->event_thread);
3492
3493 ecs->event_thread->stop_step = 1;
3494 print_stop_reason (END_STEPPING_RANGE, 0);
3495 stop_stepping (ecs);
3496 return;
3497
3498 case BPSTAT_WHAT_SINGLE:
3499 if (debug_infrun)
3500 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
3501 ecs->event_thread->stepping_over_breakpoint = 1;
3502 /* Still need to check other stuff, at least the case
3503 where we are stepping and step out of the right range. */
3504 break;
3505
3506 case BPSTAT_WHAT_STOP_NOISY:
3507 if (debug_infrun)
3508 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
3509 stop_print_frame = 1;
3510
3511 /* We are about to nuke the step_resume_breakpointt via the
3512 cleanup chain, so no need to worry about it here. */
3513
3514 stop_stepping (ecs);
3515 return;
3516
3517 case BPSTAT_WHAT_STOP_SILENT:
3518 if (debug_infrun)
3519 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
3520 stop_print_frame = 0;
3521
3522 /* We are about to nuke the step_resume_breakpoin via the
3523 cleanup chain, so no need to worry about it here. */
3524
3525 stop_stepping (ecs);
3526 return;
3527
3528 case BPSTAT_WHAT_STEP_RESUME:
3529 if (debug_infrun)
3530 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
3531
3532 delete_step_resume_breakpoint (ecs->event_thread);
3533 if (ecs->event_thread->step_after_step_resume_breakpoint)
3534 {
3535 /* Back when the step-resume breakpoint was inserted, we
3536 were trying to single-step off a breakpoint. Go back
3537 to doing that. */
3538 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3539 ecs->event_thread->stepping_over_breakpoint = 1;
3540 keep_going (ecs);
3541 return;
3542 }
3543 if (stop_pc == ecs->stop_func_start
3544 && execution_direction == EXEC_REVERSE)
3545 {
3546 /* We are stepping over a function call in reverse, and
3547 just hit the step-resume breakpoint at the start
3548 address of the function. Go back to single-stepping,
3549 which should take us back to the function call. */
3550 ecs->event_thread->stepping_over_breakpoint = 1;
3551 keep_going (ecs);
3552 return;
3553 }
3554 break;
3555
3556 case BPSTAT_WHAT_CHECK_SHLIBS:
3557 {
3558 if (debug_infrun)
3559 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
3560
3561 /* Check for any newly added shared libraries if we're
3562 supposed to be adding them automatically. Switch
3563 terminal for any messages produced by
3564 breakpoint_re_set. */
3565 target_terminal_ours_for_output ();
3566 /* NOTE: cagney/2003-11-25: Make certain that the target
3567 stack's section table is kept up-to-date. Architectures,
3568 (e.g., PPC64), use the section table to perform
3569 operations such as address => section name and hence
3570 require the table to contain all sections (including
3571 those found in shared libraries). */
3572 #ifdef SOLIB_ADD
3573 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3574 #else
3575 solib_add (NULL, 0, &current_target, auto_solib_add);
3576 #endif
3577 target_terminal_inferior ();
3578
3579 /* If requested, stop when the dynamic linker notifies
3580 gdb of events. This allows the user to get control
3581 and place breakpoints in initializer routines for
3582 dynamically loaded objects (among other things). */
3583 if (stop_on_solib_events || stop_stack_dummy)
3584 {
3585 stop_stepping (ecs);
3586 return;
3587 }
3588 else
3589 {
3590 /* We want to step over this breakpoint, then keep going. */
3591 ecs->event_thread->stepping_over_breakpoint = 1;
3592 break;
3593 }
3594 }
3595 break;
3596
3597 case BPSTAT_WHAT_CHECK_JIT:
3598 if (debug_infrun)
3599 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_JIT\n");
3600
3601 /* Switch terminal for any messages produced by breakpoint_re_set. */
3602 target_terminal_ours_for_output ();
3603
3604 jit_event_handler (gdbarch);
3605
3606 target_terminal_inferior ();
3607
3608 /* We want to step over this breakpoint, then keep going. */
3609 ecs->event_thread->stepping_over_breakpoint = 1;
3610
3611 break;
3612
3613 case BPSTAT_WHAT_LAST:
3614 /* Not a real code, but listed here to shut up gcc -Wall. */
3615
3616 case BPSTAT_WHAT_KEEP_CHECKING:
3617 break;
3618 }
3619 }
3620
3621 /* We come here if we hit a breakpoint but should not
3622 stop for it. Possibly we also were stepping
3623 and should stop for that. So fall through and
3624 test for stepping. But, if not stepping,
3625 do not stop. */
3626
3627 /* In all-stop mode, if we're currently stepping but have stopped in
3628 some other thread, we need to switch back to the stepped thread. */
3629 if (!non_stop)
3630 {
3631 struct thread_info *tp;
3632 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
3633 ecs->event_thread);
3634 if (tp)
3635 {
3636 /* However, if the current thread is blocked on some internal
3637 breakpoint, and we simply need to step over that breakpoint
3638 to get it going again, do that first. */
3639 if ((ecs->event_thread->trap_expected
3640 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3641 || ecs->event_thread->stepping_over_breakpoint)
3642 {
3643 keep_going (ecs);
3644 return;
3645 }
3646
3647 /* If the stepping thread exited, then don't try to switch
3648 back and resume it, which could fail in several different
3649 ways depending on the target. Instead, just keep going.
3650
3651 We can find a stepping dead thread in the thread list in
3652 two cases:
3653
3654 - The target supports thread exit events, and when the
3655 target tries to delete the thread from the thread list,
3656 inferior_ptid pointed at the exiting thread. In such
3657 case, calling delete_thread does not really remove the
3658 thread from the list; instead, the thread is left listed,
3659 with 'exited' state.
3660
3661 - The target's debug interface does not support thread
3662 exit events, and so we have no idea whatsoever if the
3663 previously stepping thread is still alive. For that
3664 reason, we need to synchronously query the target
3665 now. */
3666 if (is_exited (tp->ptid)
3667 || !target_thread_alive (tp->ptid))
3668 {
3669 if (debug_infrun)
3670 fprintf_unfiltered (gdb_stdlog, "\
3671 infrun: not switching back to stepped thread, it has vanished\n");
3672
3673 delete_thread (tp->ptid);
3674 keep_going (ecs);
3675 return;
3676 }
3677
3678 /* Otherwise, we no longer expect a trap in the current thread.
3679 Clear the trap_expected flag before switching back -- this is
3680 what keep_going would do as well, if we called it. */
3681 ecs->event_thread->trap_expected = 0;
3682
3683 if (debug_infrun)
3684 fprintf_unfiltered (gdb_stdlog,
3685 "infrun: switching back to stepped thread\n");
3686
3687 ecs->event_thread = tp;
3688 ecs->ptid = tp->ptid;
3689 context_switch (ecs->ptid);
3690 keep_going (ecs);
3691 return;
3692 }
3693 }
3694
3695 /* Are we stepping to get the inferior out of the dynamic linker's
3696 hook (and possibly the dld itself) after catching a shlib
3697 event? */
3698 if (ecs->event_thread->stepping_through_solib_after_catch)
3699 {
3700 #if defined(SOLIB_ADD)
3701 /* Have we reached our destination? If not, keep going. */
3702 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3703 {
3704 if (debug_infrun)
3705 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
3706 ecs->event_thread->stepping_over_breakpoint = 1;
3707 keep_going (ecs);
3708 return;
3709 }
3710 #endif
3711 if (debug_infrun)
3712 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
3713 /* Else, stop and report the catchpoint(s) whose triggering
3714 caused us to begin stepping. */
3715 ecs->event_thread->stepping_through_solib_after_catch = 0;
3716 bpstat_clear (&ecs->event_thread->stop_bpstat);
3717 ecs->event_thread->stop_bpstat
3718 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
3719 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
3720 stop_print_frame = 1;
3721 stop_stepping (ecs);
3722 return;
3723 }
3724
3725 if (ecs->event_thread->step_resume_breakpoint)
3726 {
3727 if (debug_infrun)
3728 fprintf_unfiltered (gdb_stdlog,
3729 "infrun: step-resume breakpoint is inserted\n");
3730
3731 /* Having a step-resume breakpoint overrides anything
3732 else having to do with stepping commands until
3733 that breakpoint is reached. */
3734 keep_going (ecs);
3735 return;
3736 }
3737
3738 if (ecs->event_thread->step_range_end == 0)
3739 {
3740 if (debug_infrun)
3741 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3742 /* Likewise if we aren't even stepping. */
3743 keep_going (ecs);
3744 return;
3745 }
3746
3747 /* If stepping through a line, keep going if still within it.
3748
3749 Note that step_range_end is the address of the first instruction
3750 beyond the step range, and NOT the address of the last instruction
3751 within it!
3752
3753 Note also that during reverse execution, we may be stepping
3754 through a function epilogue and therefore must detect when
3755 the current-frame changes in the middle of a line. */
3756
3757 if (stop_pc >= ecs->event_thread->step_range_start
3758 && stop_pc < ecs->event_thread->step_range_end
3759 && (execution_direction != EXEC_REVERSE
3760 || frame_id_eq (get_frame_id (frame),
3761 ecs->event_thread->step_frame_id)))
3762 {
3763 if (debug_infrun)
3764 fprintf_unfiltered
3765 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
3766 paddress (gdbarch, ecs->event_thread->step_range_start),
3767 paddress (gdbarch, ecs->event_thread->step_range_end));
3768
3769 /* When stepping backward, stop at beginning of line range
3770 (unless it's the function entry point, in which case
3771 keep going back to the call point). */
3772 if (stop_pc == ecs->event_thread->step_range_start
3773 && stop_pc != ecs->stop_func_start
3774 && execution_direction == EXEC_REVERSE)
3775 {
3776 ecs->event_thread->stop_step = 1;
3777 print_stop_reason (END_STEPPING_RANGE, 0);
3778 stop_stepping (ecs);
3779 }
3780 else
3781 keep_going (ecs);
3782
3783 return;
3784 }
3785
3786 /* We stepped out of the stepping range. */
3787
3788 /* If we are stepping at the source level and entered the runtime
3789 loader dynamic symbol resolution code...
3790
3791 EXEC_FORWARD: we keep on single stepping until we exit the run
3792 time loader code and reach the callee's address.
3793
3794 EXEC_REVERSE: we've already executed the callee (backward), and
3795 the runtime loader code is handled just like any other
3796 undebuggable function call. Now we need only keep stepping
3797 backward through the trampoline code, and that's handled further
3798 down, so there is nothing for us to do here. */
3799
3800 if (execution_direction != EXEC_REVERSE
3801 && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3802 && in_solib_dynsym_resolve_code (stop_pc))
3803 {
3804 CORE_ADDR pc_after_resolver =
3805 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
3806
3807 if (debug_infrun)
3808 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3809
3810 if (pc_after_resolver)
3811 {
3812 /* Set up a step-resume breakpoint at the address
3813 indicated by SKIP_SOLIB_RESOLVER. */
3814 struct symtab_and_line sr_sal;
3815 init_sal (&sr_sal);
3816 sr_sal.pc = pc_after_resolver;
3817
3818 insert_step_resume_breakpoint_at_sal (gdbarch,
3819 sr_sal, null_frame_id);
3820 }
3821
3822 keep_going (ecs);
3823 return;
3824 }
3825
3826 if (ecs->event_thread->step_range_end != 1
3827 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3828 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3829 && get_frame_type (frame) == SIGTRAMP_FRAME)
3830 {
3831 if (debug_infrun)
3832 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3833 /* The inferior, while doing a "step" or "next", has ended up in
3834 a signal trampoline (either by a signal being delivered or by
3835 the signal handler returning). Just single-step until the
3836 inferior leaves the trampoline (either by calling the handler
3837 or returning). */
3838 keep_going (ecs);
3839 return;
3840 }
3841
3842 /* Check for subroutine calls. The check for the current frame
3843 equalling the step ID is not necessary - the check of the
3844 previous frame's ID is sufficient - but it is a common case and
3845 cheaper than checking the previous frame's ID.
3846
3847 NOTE: frame_id_eq will never report two invalid frame IDs as
3848 being equal, so to get into this block, both the current and
3849 previous frame must have valid frame IDs. */
3850 /* The outer_frame_id check is a heuristic to detect stepping
3851 through startup code. If we step over an instruction which
3852 sets the stack pointer from an invalid value to a valid value,
3853 we may detect that as a subroutine call from the mythical
3854 "outermost" function. This could be fixed by marking
3855 outermost frames as !stack_p,code_p,special_p. Then the
3856 initial outermost frame, before sp was valid, would
3857 have code_addr == &_start. See the commend in frame_id_eq
3858 for more. */
3859 if (!frame_id_eq (get_stack_frame_id (frame),
3860 ecs->event_thread->step_stack_frame_id)
3861 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
3862 ecs->event_thread->step_stack_frame_id)
3863 && (!frame_id_eq (ecs->event_thread->step_stack_frame_id,
3864 outer_frame_id)
3865 || step_start_function != find_pc_function (stop_pc))))
3866 {
3867 CORE_ADDR real_stop_pc;
3868
3869 if (debug_infrun)
3870 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3871
3872 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3873 || ((ecs->event_thread->step_range_end == 1)
3874 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
3875 ecs->stop_func_start)))
3876 {
3877 /* I presume that step_over_calls is only 0 when we're
3878 supposed to be stepping at the assembly language level
3879 ("stepi"). Just stop. */
3880 /* Also, maybe we just did a "nexti" inside a prolog, so we
3881 thought it was a subroutine call but it was not. Stop as
3882 well. FENN */
3883 /* And this works the same backward as frontward. MVS */
3884 ecs->event_thread->stop_step = 1;
3885 print_stop_reason (END_STEPPING_RANGE, 0);
3886 stop_stepping (ecs);
3887 return;
3888 }
3889
3890 /* Reverse stepping through solib trampolines. */
3891
3892 if (execution_direction == EXEC_REVERSE
3893 && ecs->event_thread->step_over_calls != STEP_OVER_NONE
3894 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
3895 || (ecs->stop_func_start == 0
3896 && in_solib_dynsym_resolve_code (stop_pc))))
3897 {
3898 /* Any solib trampoline code can be handled in reverse
3899 by simply continuing to single-step. We have already
3900 executed the solib function (backwards), and a few
3901 steps will take us back through the trampoline to the
3902 caller. */
3903 keep_going (ecs);
3904 return;
3905 }
3906
3907 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3908 {
3909 /* We're doing a "next".
3910
3911 Normal (forward) execution: set a breakpoint at the
3912 callee's return address (the address at which the caller
3913 will resume).
3914
3915 Reverse (backward) execution. set the step-resume
3916 breakpoint at the start of the function that we just
3917 stepped into (backwards), and continue to there. When we
3918 get there, we'll need to single-step back to the caller. */
3919
3920 if (execution_direction == EXEC_REVERSE)
3921 {
3922 struct symtab_and_line sr_sal;
3923
3924 /* Normal function call return (static or dynamic). */
3925 init_sal (&sr_sal);
3926 sr_sal.pc = ecs->stop_func_start;
3927 insert_step_resume_breakpoint_at_sal (gdbarch,
3928 sr_sal, null_frame_id);
3929 }
3930 else
3931 insert_step_resume_breakpoint_at_caller (frame);
3932
3933 keep_going (ecs);
3934 return;
3935 }
3936
3937 /* If we are in a function call trampoline (a stub between the
3938 calling routine and the real function), locate the real
3939 function. That's what tells us (a) whether we want to step
3940 into it at all, and (b) what prologue we want to run to the
3941 end of, if we do step into it. */
3942 real_stop_pc = skip_language_trampoline (frame, stop_pc);
3943 if (real_stop_pc == 0)
3944 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
3945 if (real_stop_pc != 0)
3946 ecs->stop_func_start = real_stop_pc;
3947
3948 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
3949 {
3950 struct symtab_and_line sr_sal;
3951 init_sal (&sr_sal);
3952 sr_sal.pc = ecs->stop_func_start;
3953
3954 insert_step_resume_breakpoint_at_sal (gdbarch,
3955 sr_sal, null_frame_id);
3956 keep_going (ecs);
3957 return;
3958 }
3959
3960 /* If we have line number information for the function we are
3961 thinking of stepping into, step into it.
3962
3963 If there are several symtabs at that PC (e.g. with include
3964 files), just want to know whether *any* of them have line
3965 numbers. find_pc_line handles this. */
3966 {
3967 struct symtab_and_line tmp_sal;
3968
3969 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3970 if (tmp_sal.line != 0)
3971 {
3972 if (execution_direction == EXEC_REVERSE)
3973 handle_step_into_function_backward (gdbarch, ecs);
3974 else
3975 handle_step_into_function (gdbarch, ecs);
3976 return;
3977 }
3978 }
3979
3980 /* If we have no line number and the step-stop-if-no-debug is
3981 set, we stop the step so that the user has a chance to switch
3982 in assembly mode. */
3983 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3984 && step_stop_if_no_debug)
3985 {
3986 ecs->event_thread->stop_step = 1;
3987 print_stop_reason (END_STEPPING_RANGE, 0);
3988 stop_stepping (ecs);
3989 return;
3990 }
3991
3992 if (execution_direction == EXEC_REVERSE)
3993 {
3994 /* Set a breakpoint at callee's start address.
3995 From there we can step once and be back in the caller. */
3996 struct symtab_and_line sr_sal;
3997 init_sal (&sr_sal);
3998 sr_sal.pc = ecs->stop_func_start;
3999 insert_step_resume_breakpoint_at_sal (gdbarch,
4000 sr_sal, null_frame_id);
4001 }
4002 else
4003 /* Set a breakpoint at callee's return address (the address
4004 at which the caller will resume). */
4005 insert_step_resume_breakpoint_at_caller (frame);
4006
4007 keep_going (ecs);
4008 return;
4009 }
4010
4011 /* Reverse stepping through solib trampolines. */
4012
4013 if (execution_direction == EXEC_REVERSE
4014 && ecs->event_thread->step_over_calls != STEP_OVER_NONE)
4015 {
4016 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4017 || (ecs->stop_func_start == 0
4018 && in_solib_dynsym_resolve_code (stop_pc)))
4019 {
4020 /* Any solib trampoline code can be handled in reverse
4021 by simply continuing to single-step. We have already
4022 executed the solib function (backwards), and a few
4023 steps will take us back through the trampoline to the
4024 caller. */
4025 keep_going (ecs);
4026 return;
4027 }
4028 else if (in_solib_dynsym_resolve_code (stop_pc))
4029 {
4030 /* Stepped backward into the solib dynsym resolver.
4031 Set a breakpoint at its start and continue, then
4032 one more step will take us out. */
4033 struct symtab_and_line sr_sal;
4034 init_sal (&sr_sal);
4035 sr_sal.pc = ecs->stop_func_start;
4036 insert_step_resume_breakpoint_at_sal (gdbarch,
4037 sr_sal, null_frame_id);
4038 keep_going (ecs);
4039 return;
4040 }
4041 }
4042
4043 /* If we're in the return path from a shared library trampoline,
4044 we want to proceed through the trampoline when stepping. */
4045 if (gdbarch_in_solib_return_trampoline (gdbarch,
4046 stop_pc, ecs->stop_func_name))
4047 {
4048 /* Determine where this trampoline returns. */
4049 CORE_ADDR real_stop_pc;
4050 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4051
4052 if (debug_infrun)
4053 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
4054
4055 /* Only proceed through if we know where it's going. */
4056 if (real_stop_pc)
4057 {
4058 /* And put the step-breakpoint there and go until there. */
4059 struct symtab_and_line sr_sal;
4060
4061 init_sal (&sr_sal); /* initialize to zeroes */
4062 sr_sal.pc = real_stop_pc;
4063 sr_sal.section = find_pc_overlay (sr_sal.pc);
4064
4065 /* Do not specify what the fp should be when we stop since
4066 on some machines the prologue is where the new fp value
4067 is established. */
4068 insert_step_resume_breakpoint_at_sal (gdbarch,
4069 sr_sal, null_frame_id);
4070
4071 /* Restart without fiddling with the step ranges or
4072 other state. */
4073 keep_going (ecs);
4074 return;
4075 }
4076 }
4077
4078 stop_pc_sal = find_pc_line (stop_pc, 0);
4079
4080 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4081 the trampoline processing logic, however, there are some trampolines
4082 that have no names, so we should do trampoline handling first. */
4083 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4084 && ecs->stop_func_name == NULL
4085 && stop_pc_sal.line == 0)
4086 {
4087 if (debug_infrun)
4088 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
4089
4090 /* The inferior just stepped into, or returned to, an
4091 undebuggable function (where there is no debugging information
4092 and no line number corresponding to the address where the
4093 inferior stopped). Since we want to skip this kind of code,
4094 we keep going until the inferior returns from this
4095 function - unless the user has asked us not to (via
4096 set step-mode) or we no longer know how to get back
4097 to the call site. */
4098 if (step_stop_if_no_debug
4099 || !frame_id_p (frame_unwind_caller_id (frame)))
4100 {
4101 /* If we have no line number and the step-stop-if-no-debug
4102 is set, we stop the step so that the user has a chance to
4103 switch in assembly mode. */
4104 ecs->event_thread->stop_step = 1;
4105 print_stop_reason (END_STEPPING_RANGE, 0);
4106 stop_stepping (ecs);
4107 return;
4108 }
4109 else
4110 {
4111 /* Set a breakpoint at callee's return address (the address
4112 at which the caller will resume). */
4113 insert_step_resume_breakpoint_at_caller (frame);
4114 keep_going (ecs);
4115 return;
4116 }
4117 }
4118
4119 if (ecs->event_thread->step_range_end == 1)
4120 {
4121 /* It is stepi or nexti. We always want to stop stepping after
4122 one instruction. */
4123 if (debug_infrun)
4124 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
4125 ecs->event_thread->stop_step = 1;
4126 print_stop_reason (END_STEPPING_RANGE, 0);
4127 stop_stepping (ecs);
4128 return;
4129 }
4130
4131 if (stop_pc_sal.line == 0)
4132 {
4133 /* We have no line number information. That means to stop
4134 stepping (does this always happen right after one instruction,
4135 when we do "s" in a function with no line numbers,
4136 or can this happen as a result of a return or longjmp?). */
4137 if (debug_infrun)
4138 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
4139 ecs->event_thread->stop_step = 1;
4140 print_stop_reason (END_STEPPING_RANGE, 0);
4141 stop_stepping (ecs);
4142 return;
4143 }
4144
4145 /* Look for "calls" to inlined functions, part one. If the inline
4146 frame machinery detected some skipped call sites, we have entered
4147 a new inline function. */
4148
4149 if (frame_id_eq (get_frame_id (get_current_frame ()),
4150 ecs->event_thread->step_frame_id)
4151 && inline_skipped_frames (ecs->ptid))
4152 {
4153 struct symtab_and_line call_sal;
4154
4155 if (debug_infrun)
4156 fprintf_unfiltered (gdb_stdlog,
4157 "infrun: stepped into inlined function\n");
4158
4159 find_frame_sal (get_current_frame (), &call_sal);
4160
4161 if (ecs->event_thread->step_over_calls != STEP_OVER_ALL)
4162 {
4163 /* For "step", we're going to stop. But if the call site
4164 for this inlined function is on the same source line as
4165 we were previously stepping, go down into the function
4166 first. Otherwise stop at the call site. */
4167
4168 if (call_sal.line == ecs->event_thread->current_line
4169 && call_sal.symtab == ecs->event_thread->current_symtab)
4170 step_into_inline_frame (ecs->ptid);
4171
4172 ecs->event_thread->stop_step = 1;
4173 print_stop_reason (END_STEPPING_RANGE, 0);
4174 stop_stepping (ecs);
4175 return;
4176 }
4177 else
4178 {
4179 /* For "next", we should stop at the call site if it is on a
4180 different source line. Otherwise continue through the
4181 inlined function. */
4182 if (call_sal.line == ecs->event_thread->current_line
4183 && call_sal.symtab == ecs->event_thread->current_symtab)
4184 keep_going (ecs);
4185 else
4186 {
4187 ecs->event_thread->stop_step = 1;
4188 print_stop_reason (END_STEPPING_RANGE, 0);
4189 stop_stepping (ecs);
4190 }
4191 return;
4192 }
4193 }
4194
4195 /* Look for "calls" to inlined functions, part two. If we are still
4196 in the same real function we were stepping through, but we have
4197 to go further up to find the exact frame ID, we are stepping
4198 through a more inlined call beyond its call site. */
4199
4200 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4201 && !frame_id_eq (get_frame_id (get_current_frame ()),
4202 ecs->event_thread->step_frame_id)
4203 && stepped_in_from (get_current_frame (),
4204 ecs->event_thread->step_frame_id))
4205 {
4206 if (debug_infrun)
4207 fprintf_unfiltered (gdb_stdlog,
4208 "infrun: stepping through inlined function\n");
4209
4210 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4211 keep_going (ecs);
4212 else
4213 {
4214 ecs->event_thread->stop_step = 1;
4215 print_stop_reason (END_STEPPING_RANGE, 0);
4216 stop_stepping (ecs);
4217 }
4218 return;
4219 }
4220
4221 if ((stop_pc == stop_pc_sal.pc)
4222 && (ecs->event_thread->current_line != stop_pc_sal.line
4223 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
4224 {
4225 /* We are at the start of a different line. So stop. Note that
4226 we don't stop if we step into the middle of a different line.
4227 That is said to make things like for (;;) statements work
4228 better. */
4229 if (debug_infrun)
4230 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
4231 ecs->event_thread->stop_step = 1;
4232 print_stop_reason (END_STEPPING_RANGE, 0);
4233 stop_stepping (ecs);
4234 return;
4235 }
4236
4237 /* We aren't done stepping.
4238
4239 Optimize by setting the stepping range to the line.
4240 (We might not be in the original line, but if we entered a
4241 new line in mid-statement, we continue stepping. This makes
4242 things like for(;;) statements work better.) */
4243
4244 ecs->event_thread->step_range_start = stop_pc_sal.pc;
4245 ecs->event_thread->step_range_end = stop_pc_sal.end;
4246 set_step_info (frame, stop_pc_sal);
4247
4248 if (debug_infrun)
4249 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
4250 keep_going (ecs);
4251 }
4252
4253 /* Is thread TP in the middle of single-stepping? */
4254
4255 static int
4256 currently_stepping (struct thread_info *tp)
4257 {
4258 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4259 || tp->trap_expected
4260 || tp->stepping_through_solib_after_catch
4261 || bpstat_should_step ());
4262 }
4263
4264 /* Returns true if any thread *but* the one passed in "data" is in the
4265 middle of stepping or of handling a "next". */
4266
4267 static int
4268 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
4269 {
4270 if (tp == data)
4271 return 0;
4272
4273 return (tp->step_range_end
4274 || tp->trap_expected
4275 || tp->stepping_through_solib_after_catch);
4276 }
4277
4278 /* Inferior has stepped into a subroutine call with source code that
4279 we should not step over. Do step to the first line of code in
4280 it. */
4281
4282 static void
4283 handle_step_into_function (struct gdbarch *gdbarch,
4284 struct execution_control_state *ecs)
4285 {
4286 struct symtab *s;
4287 struct symtab_and_line stop_func_sal, sr_sal;
4288
4289 s = find_pc_symtab (stop_pc);
4290 if (s && s->language != language_asm)
4291 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
4292 ecs->stop_func_start);
4293
4294 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
4295 /* Use the step_resume_break to step until the end of the prologue,
4296 even if that involves jumps (as it seems to on the vax under
4297 4.2). */
4298 /* If the prologue ends in the middle of a source line, continue to
4299 the end of that source line (if it is still within the function).
4300 Otherwise, just go to end of prologue. */
4301 if (stop_func_sal.end
4302 && stop_func_sal.pc != ecs->stop_func_start
4303 && stop_func_sal.end < ecs->stop_func_end)
4304 ecs->stop_func_start = stop_func_sal.end;
4305
4306 /* Architectures which require breakpoint adjustment might not be able
4307 to place a breakpoint at the computed address. If so, the test
4308 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4309 ecs->stop_func_start to an address at which a breakpoint may be
4310 legitimately placed.
4311
4312 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4313 made, GDB will enter an infinite loop when stepping through
4314 optimized code consisting of VLIW instructions which contain
4315 subinstructions corresponding to different source lines. On
4316 FR-V, it's not permitted to place a breakpoint on any but the
4317 first subinstruction of a VLIW instruction. When a breakpoint is
4318 set, GDB will adjust the breakpoint address to the beginning of
4319 the VLIW instruction. Thus, we need to make the corresponding
4320 adjustment here when computing the stop address. */
4321
4322 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
4323 {
4324 ecs->stop_func_start
4325 = gdbarch_adjust_breakpoint_address (gdbarch,
4326 ecs->stop_func_start);
4327 }
4328
4329 if (ecs->stop_func_start == stop_pc)
4330 {
4331 /* We are already there: stop now. */
4332 ecs->event_thread->stop_step = 1;
4333 print_stop_reason (END_STEPPING_RANGE, 0);
4334 stop_stepping (ecs);
4335 return;
4336 }
4337 else
4338 {
4339 /* Put the step-breakpoint there and go until there. */
4340 init_sal (&sr_sal); /* initialize to zeroes */
4341 sr_sal.pc = ecs->stop_func_start;
4342 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
4343
4344 /* Do not specify what the fp should be when we stop since on
4345 some machines the prologue is where the new fp value is
4346 established. */
4347 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
4348
4349 /* And make sure stepping stops right away then. */
4350 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
4351 }
4352 keep_going (ecs);
4353 }
4354
4355 /* Inferior has stepped backward into a subroutine call with source
4356 code that we should not step over. Do step to the beginning of the
4357 last line of code in it. */
4358
4359 static void
4360 handle_step_into_function_backward (struct gdbarch *gdbarch,
4361 struct execution_control_state *ecs)
4362 {
4363 struct symtab *s;
4364 struct symtab_and_line stop_func_sal, sr_sal;
4365
4366 s = find_pc_symtab (stop_pc);
4367 if (s && s->language != language_asm)
4368 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
4369 ecs->stop_func_start);
4370
4371 stop_func_sal = find_pc_line (stop_pc, 0);
4372
4373 /* OK, we're just going to keep stepping here. */
4374 if (stop_func_sal.pc == stop_pc)
4375 {
4376 /* We're there already. Just stop stepping now. */
4377 ecs->event_thread->stop_step = 1;
4378 print_stop_reason (END_STEPPING_RANGE, 0);
4379 stop_stepping (ecs);
4380 }
4381 else
4382 {
4383 /* Else just reset the step range and keep going.
4384 No step-resume breakpoint, they don't work for
4385 epilogues, which can have multiple entry paths. */
4386 ecs->event_thread->step_range_start = stop_func_sal.pc;
4387 ecs->event_thread->step_range_end = stop_func_sal.end;
4388 keep_going (ecs);
4389 }
4390 return;
4391 }
4392
4393 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
4394 This is used to both functions and to skip over code. */
4395
4396 static void
4397 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
4398 struct symtab_and_line sr_sal,
4399 struct frame_id sr_id)
4400 {
4401 /* There should never be more than one step-resume or longjmp-resume
4402 breakpoint per thread, so we should never be setting a new
4403 step_resume_breakpoint when one is already active. */
4404 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4405
4406 if (debug_infrun)
4407 fprintf_unfiltered (gdb_stdlog,
4408 "infrun: inserting step-resume breakpoint at %s\n",
4409 paddress (gdbarch, sr_sal.pc));
4410
4411 inferior_thread ()->step_resume_breakpoint
4412 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
4413 }
4414
4415 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
4416 to skip a potential signal handler.
4417
4418 This is called with the interrupted function's frame. The signal
4419 handler, when it returns, will resume the interrupted function at
4420 RETURN_FRAME.pc. */
4421
4422 static void
4423 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
4424 {
4425 struct symtab_and_line sr_sal;
4426 struct gdbarch *gdbarch;
4427
4428 gdb_assert (return_frame != NULL);
4429 init_sal (&sr_sal); /* initialize to zeros */
4430
4431 gdbarch = get_frame_arch (return_frame);
4432 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
4433 sr_sal.section = find_pc_overlay (sr_sal.pc);
4434
4435 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4436 get_stack_frame_id (return_frame));
4437 }
4438
4439 /* Similar to insert_step_resume_breakpoint_at_frame, except
4440 but a breakpoint at the previous frame's PC. This is used to
4441 skip a function after stepping into it (for "next" or if the called
4442 function has no debugging information).
4443
4444 The current function has almost always been reached by single
4445 stepping a call or return instruction. NEXT_FRAME belongs to the
4446 current function, and the breakpoint will be set at the caller's
4447 resume address.
4448
4449 This is a separate function rather than reusing
4450 insert_step_resume_breakpoint_at_frame in order to avoid
4451 get_prev_frame, which may stop prematurely (see the implementation
4452 of frame_unwind_caller_id for an example). */
4453
4454 static void
4455 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4456 {
4457 struct symtab_and_line sr_sal;
4458 struct gdbarch *gdbarch;
4459
4460 /* We shouldn't have gotten here if we don't know where the call site
4461 is. */
4462 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
4463
4464 init_sal (&sr_sal); /* initialize to zeros */
4465
4466 gdbarch = frame_unwind_caller_arch (next_frame);
4467 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
4468 frame_unwind_caller_pc (next_frame));
4469 sr_sal.section = find_pc_overlay (sr_sal.pc);
4470
4471 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4472 frame_unwind_caller_id (next_frame));
4473 }
4474
4475 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4476 new breakpoint at the target of a jmp_buf. The handling of
4477 longjmp-resume uses the same mechanisms used for handling
4478 "step-resume" breakpoints. */
4479
4480 static void
4481 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
4482 {
4483 /* There should never be more than one step-resume or longjmp-resume
4484 breakpoint per thread, so we should never be setting a new
4485 longjmp_resume_breakpoint when one is already active. */
4486 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4487
4488 if (debug_infrun)
4489 fprintf_unfiltered (gdb_stdlog,
4490 "infrun: inserting longjmp-resume breakpoint at %s\n",
4491 paddress (gdbarch, pc));
4492
4493 inferior_thread ()->step_resume_breakpoint =
4494 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
4495 }
4496
4497 static void
4498 stop_stepping (struct execution_control_state *ecs)
4499 {
4500 if (debug_infrun)
4501 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
4502
4503 /* Let callers know we don't want to wait for the inferior anymore. */
4504 ecs->wait_some_more = 0;
4505 }
4506
4507 /* This function handles various cases where we need to continue
4508 waiting for the inferior. */
4509 /* (Used to be the keep_going: label in the old wait_for_inferior) */
4510
4511 static void
4512 keep_going (struct execution_control_state *ecs)
4513 {
4514 /* Save the pc before execution, to compare with pc after stop. */
4515 ecs->event_thread->prev_pc
4516 = regcache_read_pc (get_thread_regcache (ecs->ptid));
4517
4518 /* If we did not do break;, it means we should keep running the
4519 inferior and not return to debugger. */
4520
4521 if (ecs->event_thread->trap_expected
4522 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
4523 {
4524 /* We took a signal (which we are supposed to pass through to
4525 the inferior, else we'd not get here) and we haven't yet
4526 gotten our trap. Simply continue. */
4527 resume (currently_stepping (ecs->event_thread),
4528 ecs->event_thread->stop_signal);
4529 }
4530 else
4531 {
4532 /* Either the trap was not expected, but we are continuing
4533 anyway (the user asked that this signal be passed to the
4534 child)
4535 -- or --
4536 The signal was SIGTRAP, e.g. it was our signal, but we
4537 decided we should resume from it.
4538
4539 We're going to run this baby now!
4540
4541 Note that insert_breakpoints won't try to re-insert
4542 already inserted breakpoints. Therefore, we don't
4543 care if breakpoints were already inserted, or not. */
4544
4545 if (ecs->event_thread->stepping_over_breakpoint)
4546 {
4547 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
4548 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
4549 /* Since we can't do a displaced step, we have to remove
4550 the breakpoint while we step it. To keep things
4551 simple, we remove them all. */
4552 remove_breakpoints ();
4553 }
4554 else
4555 {
4556 struct gdb_exception e;
4557 /* Stop stepping when inserting breakpoints
4558 has failed. */
4559 TRY_CATCH (e, RETURN_MASK_ERROR)
4560 {
4561 insert_breakpoints ();
4562 }
4563 if (e.reason < 0)
4564 {
4565 stop_stepping (ecs);
4566 return;
4567 }
4568 }
4569
4570 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
4571
4572 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
4573 specifies that such a signal should be delivered to the
4574 target program).
4575
4576 Typically, this would occure when a user is debugging a
4577 target monitor on a simulator: the target monitor sets a
4578 breakpoint; the simulator encounters this break-point and
4579 halts the simulation handing control to GDB; GDB, noteing
4580 that the break-point isn't valid, returns control back to the
4581 simulator; the simulator then delivers the hardware
4582 equivalent of a SIGNAL_TRAP to the program being debugged. */
4583
4584 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4585 && !signal_program[ecs->event_thread->stop_signal])
4586 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
4587
4588 resume (currently_stepping (ecs->event_thread),
4589 ecs->event_thread->stop_signal);
4590 }
4591
4592 prepare_to_wait (ecs);
4593 }
4594
4595 /* This function normally comes after a resume, before
4596 handle_inferior_event exits. It takes care of any last bits of
4597 housekeeping, and sets the all-important wait_some_more flag. */
4598
4599 static void
4600 prepare_to_wait (struct execution_control_state *ecs)
4601 {
4602 if (debug_infrun)
4603 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
4604
4605 /* This is the old end of the while loop. Let everybody know we
4606 want to wait for the inferior some more and get called again
4607 soon. */
4608 ecs->wait_some_more = 1;
4609 }
4610
4611 /* Print why the inferior has stopped. We always print something when
4612 the inferior exits, or receives a signal. The rest of the cases are
4613 dealt with later on in normal_stop() and print_it_typical(). Ideally
4614 there should be a call to this function from handle_inferior_event()
4615 each time stop_stepping() is called.*/
4616 static void
4617 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4618 {
4619 switch (stop_reason)
4620 {
4621 case END_STEPPING_RANGE:
4622 /* We are done with a step/next/si/ni command. */
4623 /* For now print nothing. */
4624 /* Print a message only if not in the middle of doing a "step n"
4625 operation for n > 1 */
4626 if (!inferior_thread ()->step_multi
4627 || !inferior_thread ()->stop_step)
4628 if (ui_out_is_mi_like_p (uiout))
4629 ui_out_field_string
4630 (uiout, "reason",
4631 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
4632 break;
4633 case SIGNAL_EXITED:
4634 /* The inferior was terminated by a signal. */
4635 annotate_signalled ();
4636 if (ui_out_is_mi_like_p (uiout))
4637 ui_out_field_string
4638 (uiout, "reason",
4639 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
4640 ui_out_text (uiout, "\nProgram terminated with signal ");
4641 annotate_signal_name ();
4642 ui_out_field_string (uiout, "signal-name",
4643 target_signal_to_name (stop_info));
4644 annotate_signal_name_end ();
4645 ui_out_text (uiout, ", ");
4646 annotate_signal_string ();
4647 ui_out_field_string (uiout, "signal-meaning",
4648 target_signal_to_string (stop_info));
4649 annotate_signal_string_end ();
4650 ui_out_text (uiout, ".\n");
4651 ui_out_text (uiout, "The program no longer exists.\n");
4652 break;
4653 case EXITED:
4654 /* The inferior program is finished. */
4655 annotate_exited (stop_info);
4656 if (stop_info)
4657 {
4658 if (ui_out_is_mi_like_p (uiout))
4659 ui_out_field_string (uiout, "reason",
4660 async_reason_lookup (EXEC_ASYNC_EXITED));
4661 ui_out_text (uiout, "\nProgram exited with code ");
4662 ui_out_field_fmt (uiout, "exit-code", "0%o",
4663 (unsigned int) stop_info);
4664 ui_out_text (uiout, ".\n");
4665 }
4666 else
4667 {
4668 if (ui_out_is_mi_like_p (uiout))
4669 ui_out_field_string
4670 (uiout, "reason",
4671 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
4672 ui_out_text (uiout, "\nProgram exited normally.\n");
4673 }
4674 /* Support the --return-child-result option. */
4675 return_child_result_value = stop_info;
4676 break;
4677 case SIGNAL_RECEIVED:
4678 /* Signal received. The signal table tells us to print about
4679 it. */
4680 annotate_signal ();
4681
4682 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4683 {
4684 struct thread_info *t = inferior_thread ();
4685
4686 ui_out_text (uiout, "\n[");
4687 ui_out_field_string (uiout, "thread-name",
4688 target_pid_to_str (t->ptid));
4689 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4690 ui_out_text (uiout, " stopped");
4691 }
4692 else
4693 {
4694 ui_out_text (uiout, "\nProgram received signal ");
4695 annotate_signal_name ();
4696 if (ui_out_is_mi_like_p (uiout))
4697 ui_out_field_string
4698 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4699 ui_out_field_string (uiout, "signal-name",
4700 target_signal_to_name (stop_info));
4701 annotate_signal_name_end ();
4702 ui_out_text (uiout, ", ");
4703 annotate_signal_string ();
4704 ui_out_field_string (uiout, "signal-meaning",
4705 target_signal_to_string (stop_info));
4706 annotate_signal_string_end ();
4707 }
4708 ui_out_text (uiout, ".\n");
4709 break;
4710 case NO_HISTORY:
4711 /* Reverse execution: target ran out of history info. */
4712 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4713 break;
4714 default:
4715 internal_error (__FILE__, __LINE__,
4716 _("print_stop_reason: unrecognized enum value"));
4717 break;
4718 }
4719 }
4720 \f
4721
4722 /* Here to return control to GDB when the inferior stops for real.
4723 Print appropriate messages, remove breakpoints, give terminal our modes.
4724
4725 STOP_PRINT_FRAME nonzero means print the executing frame
4726 (pc, function, args, file, line number and line text).
4727 BREAKPOINTS_FAILED nonzero means stop was due to error
4728 attempting to insert breakpoints. */
4729
4730 void
4731 normal_stop (void)
4732 {
4733 struct target_waitstatus last;
4734 ptid_t last_ptid;
4735 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4736
4737 get_last_target_status (&last_ptid, &last);
4738
4739 /* If an exception is thrown from this point on, make sure to
4740 propagate GDB's knowledge of the executing state to the
4741 frontend/user running state. A QUIT is an easy exception to see
4742 here, so do this before any filtered output. */
4743 if (!non_stop)
4744 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
4745 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4746 && last.kind != TARGET_WAITKIND_EXITED)
4747 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
4748
4749 /* In non-stop mode, we don't want GDB to switch threads behind the
4750 user's back, to avoid races where the user is typing a command to
4751 apply to thread x, but GDB switches to thread y before the user
4752 finishes entering the command. */
4753
4754 /* As with the notification of thread events, we want to delay
4755 notifying the user that we've switched thread context until
4756 the inferior actually stops.
4757
4758 There's no point in saying anything if the inferior has exited.
4759 Note that SIGNALLED here means "exited with a signal", not
4760 "received a signal". */
4761 if (!non_stop
4762 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
4763 && target_has_execution
4764 && last.kind != TARGET_WAITKIND_SIGNALLED
4765 && last.kind != TARGET_WAITKIND_EXITED)
4766 {
4767 target_terminal_ours_for_output ();
4768 printf_filtered (_("[Switching to %s]\n"),
4769 target_pid_to_str (inferior_ptid));
4770 annotate_thread_changed ();
4771 previous_inferior_ptid = inferior_ptid;
4772 }
4773
4774 if (!breakpoints_always_inserted_mode () && target_has_execution)
4775 {
4776 if (remove_breakpoints ())
4777 {
4778 target_terminal_ours_for_output ();
4779 printf_filtered (_("\
4780 Cannot remove breakpoints because program is no longer writable.\n\
4781 Further execution is probably impossible.\n"));
4782 }
4783 }
4784
4785 /* If an auto-display called a function and that got a signal,
4786 delete that auto-display to avoid an infinite recursion. */
4787
4788 if (stopped_by_random_signal)
4789 disable_current_display ();
4790
4791 /* Don't print a message if in the middle of doing a "step n"
4792 operation for n > 1 */
4793 if (target_has_execution
4794 && last.kind != TARGET_WAITKIND_SIGNALLED
4795 && last.kind != TARGET_WAITKIND_EXITED
4796 && inferior_thread ()->step_multi
4797 && inferior_thread ()->stop_step)
4798 goto done;
4799
4800 target_terminal_ours ();
4801
4802 /* Set the current source location. This will also happen if we
4803 display the frame below, but the current SAL will be incorrect
4804 during a user hook-stop function. */
4805 if (has_stack_frames () && !stop_stack_dummy)
4806 set_current_sal_from_frame (get_current_frame (), 1);
4807
4808 /* Let the user/frontend see the threads as stopped. */
4809 do_cleanups (old_chain);
4810
4811 /* Look up the hook_stop and run it (CLI internally handles problem
4812 of stop_command's pre-hook not existing). */
4813 if (stop_command)
4814 catch_errors (hook_stop_stub, stop_command,
4815 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4816
4817 if (!has_stack_frames ())
4818 goto done;
4819
4820 if (last.kind == TARGET_WAITKIND_SIGNALLED
4821 || last.kind == TARGET_WAITKIND_EXITED)
4822 goto done;
4823
4824 /* Select innermost stack frame - i.e., current frame is frame 0,
4825 and current location is based on that.
4826 Don't do this on return from a stack dummy routine,
4827 or if the program has exited. */
4828
4829 if (!stop_stack_dummy)
4830 {
4831 select_frame (get_current_frame ());
4832
4833 /* Print current location without a level number, if
4834 we have changed functions or hit a breakpoint.
4835 Print source line if we have one.
4836 bpstat_print() contains the logic deciding in detail
4837 what to print, based on the event(s) that just occurred. */
4838
4839 /* If --batch-silent is enabled then there's no need to print the current
4840 source location, and to try risks causing an error message about
4841 missing source files. */
4842 if (stop_print_frame && !batch_silent)
4843 {
4844 int bpstat_ret;
4845 int source_flag;
4846 int do_frame_printing = 1;
4847 struct thread_info *tp = inferior_thread ();
4848
4849 bpstat_ret = bpstat_print (tp->stop_bpstat);
4850 switch (bpstat_ret)
4851 {
4852 case PRINT_UNKNOWN:
4853 /* If we had hit a shared library event breakpoint,
4854 bpstat_print would print out this message. If we hit
4855 an OS-level shared library event, do the same
4856 thing. */
4857 if (last.kind == TARGET_WAITKIND_LOADED)
4858 {
4859 printf_filtered (_("Stopped due to shared library event\n"));
4860 source_flag = SRC_LINE; /* something bogus */
4861 do_frame_printing = 0;
4862 break;
4863 }
4864
4865 /* FIXME: cagney/2002-12-01: Given that a frame ID does
4866 (or should) carry around the function and does (or
4867 should) use that when doing a frame comparison. */
4868 if (tp->stop_step
4869 && frame_id_eq (tp->step_frame_id,
4870 get_frame_id (get_current_frame ()))
4871 && step_start_function == find_pc_function (stop_pc))
4872 source_flag = SRC_LINE; /* finished step, just print source line */
4873 else
4874 source_flag = SRC_AND_LOC; /* print location and source line */
4875 break;
4876 case PRINT_SRC_AND_LOC:
4877 source_flag = SRC_AND_LOC; /* print location and source line */
4878 break;
4879 case PRINT_SRC_ONLY:
4880 source_flag = SRC_LINE;
4881 break;
4882 case PRINT_NOTHING:
4883 source_flag = SRC_LINE; /* something bogus */
4884 do_frame_printing = 0;
4885 break;
4886 default:
4887 internal_error (__FILE__, __LINE__, _("Unknown value."));
4888 }
4889
4890 /* The behavior of this routine with respect to the source
4891 flag is:
4892 SRC_LINE: Print only source line
4893 LOCATION: Print only location
4894 SRC_AND_LOC: Print location and source line */
4895 if (do_frame_printing)
4896 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
4897
4898 /* Display the auto-display expressions. */
4899 do_displays ();
4900 }
4901 }
4902
4903 /* Save the function value return registers, if we care.
4904 We might be about to restore their previous contents. */
4905 if (inferior_thread ()->proceed_to_finish)
4906 {
4907 /* This should not be necessary. */
4908 if (stop_registers)
4909 regcache_xfree (stop_registers);
4910
4911 /* NB: The copy goes through to the target picking up the value of
4912 all the registers. */
4913 stop_registers = regcache_dup (get_current_regcache ());
4914 }
4915
4916 if (stop_stack_dummy)
4917 {
4918 /* Pop the empty frame that contains the stack dummy.
4919 This also restores inferior state prior to the call
4920 (struct inferior_thread_state). */
4921 struct frame_info *frame = get_current_frame ();
4922 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4923 frame_pop (frame);
4924 /* frame_pop() calls reinit_frame_cache as the last thing it does
4925 which means there's currently no selected frame. We don't need
4926 to re-establish a selected frame if the dummy call returns normally,
4927 that will be done by restore_inferior_status. However, we do have
4928 to handle the case where the dummy call is returning after being
4929 stopped (e.g. the dummy call previously hit a breakpoint). We
4930 can't know which case we have so just always re-establish a
4931 selected frame here. */
4932 select_frame (get_current_frame ());
4933 }
4934
4935 done:
4936 annotate_stopped ();
4937
4938 /* Suppress the stop observer if we're in the middle of:
4939
4940 - a step n (n > 1), as there still more steps to be done.
4941
4942 - a "finish" command, as the observer will be called in
4943 finish_command_continuation, so it can include the inferior
4944 function's return value.
4945
4946 - calling an inferior function, as we pretend we inferior didn't
4947 run at all. The return value of the call is handled by the
4948 expression evaluator, through call_function_by_hand. */
4949
4950 if (!target_has_execution
4951 || last.kind == TARGET_WAITKIND_SIGNALLED
4952 || last.kind == TARGET_WAITKIND_EXITED
4953 || (!inferior_thread ()->step_multi
4954 && !(inferior_thread ()->stop_bpstat
4955 && inferior_thread ()->proceed_to_finish)
4956 && !inferior_thread ()->in_infcall))
4957 {
4958 if (!ptid_equal (inferior_ptid, null_ptid))
4959 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
4960 stop_print_frame);
4961 else
4962 observer_notify_normal_stop (NULL, stop_print_frame);
4963 }
4964
4965 if (target_has_execution)
4966 {
4967 if (last.kind != TARGET_WAITKIND_SIGNALLED
4968 && last.kind != TARGET_WAITKIND_EXITED)
4969 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4970 Delete any breakpoint that is to be deleted at the next stop. */
4971 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4972 }
4973 }
4974
4975 static int
4976 hook_stop_stub (void *cmd)
4977 {
4978 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
4979 return (0);
4980 }
4981 \f
4982 int
4983 signal_stop_state (int signo)
4984 {
4985 return signal_stop[signo];
4986 }
4987
4988 int
4989 signal_print_state (int signo)
4990 {
4991 return signal_print[signo];
4992 }
4993
4994 int
4995 signal_pass_state (int signo)
4996 {
4997 return signal_program[signo];
4998 }
4999
5000 int
5001 signal_stop_update (int signo, int state)
5002 {
5003 int ret = signal_stop[signo];
5004 signal_stop[signo] = state;
5005 return ret;
5006 }
5007
5008 int
5009 signal_print_update (int signo, int state)
5010 {
5011 int ret = signal_print[signo];
5012 signal_print[signo] = state;
5013 return ret;
5014 }
5015
5016 int
5017 signal_pass_update (int signo, int state)
5018 {
5019 int ret = signal_program[signo];
5020 signal_program[signo] = state;
5021 return ret;
5022 }
5023
5024 static void
5025 sig_print_header (void)
5026 {
5027 printf_filtered (_("\
5028 Signal Stop\tPrint\tPass to program\tDescription\n"));
5029 }
5030
5031 static void
5032 sig_print_info (enum target_signal oursig)
5033 {
5034 const char *name = target_signal_to_name (oursig);
5035 int name_padding = 13 - strlen (name);
5036
5037 if (name_padding <= 0)
5038 name_padding = 0;
5039
5040 printf_filtered ("%s", name);
5041 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
5042 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5043 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5044 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5045 printf_filtered ("%s\n", target_signal_to_string (oursig));
5046 }
5047
5048 /* Specify how various signals in the inferior should be handled. */
5049
5050 static void
5051 handle_command (char *args, int from_tty)
5052 {
5053 char **argv;
5054 int digits, wordlen;
5055 int sigfirst, signum, siglast;
5056 enum target_signal oursig;
5057 int allsigs;
5058 int nsigs;
5059 unsigned char *sigs;
5060 struct cleanup *old_chain;
5061
5062 if (args == NULL)
5063 {
5064 error_no_arg (_("signal to handle"));
5065 }
5066
5067 /* Allocate and zero an array of flags for which signals to handle. */
5068
5069 nsigs = (int) TARGET_SIGNAL_LAST;
5070 sigs = (unsigned char *) alloca (nsigs);
5071 memset (sigs, 0, nsigs);
5072
5073 /* Break the command line up into args. */
5074
5075 argv = gdb_buildargv (args);
5076 old_chain = make_cleanup_freeargv (argv);
5077
5078 /* Walk through the args, looking for signal oursigs, signal names, and
5079 actions. Signal numbers and signal names may be interspersed with
5080 actions, with the actions being performed for all signals cumulatively
5081 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
5082
5083 while (*argv != NULL)
5084 {
5085 wordlen = strlen (*argv);
5086 for (digits = 0; isdigit ((*argv)[digits]); digits++)
5087 {;
5088 }
5089 allsigs = 0;
5090 sigfirst = siglast = -1;
5091
5092 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5093 {
5094 /* Apply action to all signals except those used by the
5095 debugger. Silently skip those. */
5096 allsigs = 1;
5097 sigfirst = 0;
5098 siglast = nsigs - 1;
5099 }
5100 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5101 {
5102 SET_SIGS (nsigs, sigs, signal_stop);
5103 SET_SIGS (nsigs, sigs, signal_print);
5104 }
5105 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5106 {
5107 UNSET_SIGS (nsigs, sigs, signal_program);
5108 }
5109 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5110 {
5111 SET_SIGS (nsigs, sigs, signal_print);
5112 }
5113 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5114 {
5115 SET_SIGS (nsigs, sigs, signal_program);
5116 }
5117 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5118 {
5119 UNSET_SIGS (nsigs, sigs, signal_stop);
5120 }
5121 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5122 {
5123 SET_SIGS (nsigs, sigs, signal_program);
5124 }
5125 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5126 {
5127 UNSET_SIGS (nsigs, sigs, signal_print);
5128 UNSET_SIGS (nsigs, sigs, signal_stop);
5129 }
5130 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5131 {
5132 UNSET_SIGS (nsigs, sigs, signal_program);
5133 }
5134 else if (digits > 0)
5135 {
5136 /* It is numeric. The numeric signal refers to our own
5137 internal signal numbering from target.h, not to host/target
5138 signal number. This is a feature; users really should be
5139 using symbolic names anyway, and the common ones like
5140 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5141
5142 sigfirst = siglast = (int)
5143 target_signal_from_command (atoi (*argv));
5144 if ((*argv)[digits] == '-')
5145 {
5146 siglast = (int)
5147 target_signal_from_command (atoi ((*argv) + digits + 1));
5148 }
5149 if (sigfirst > siglast)
5150 {
5151 /* Bet he didn't figure we'd think of this case... */
5152 signum = sigfirst;
5153 sigfirst = siglast;
5154 siglast = signum;
5155 }
5156 }
5157 else
5158 {
5159 oursig = target_signal_from_name (*argv);
5160 if (oursig != TARGET_SIGNAL_UNKNOWN)
5161 {
5162 sigfirst = siglast = (int) oursig;
5163 }
5164 else
5165 {
5166 /* Not a number and not a recognized flag word => complain. */
5167 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
5168 }
5169 }
5170
5171 /* If any signal numbers or symbol names were found, set flags for
5172 which signals to apply actions to. */
5173
5174 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5175 {
5176 switch ((enum target_signal) signum)
5177 {
5178 case TARGET_SIGNAL_TRAP:
5179 case TARGET_SIGNAL_INT:
5180 if (!allsigs && !sigs[signum])
5181 {
5182 if (query (_("%s is used by the debugger.\n\
5183 Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
5184 {
5185 sigs[signum] = 1;
5186 }
5187 else
5188 {
5189 printf_unfiltered (_("Not confirmed, unchanged.\n"));
5190 gdb_flush (gdb_stdout);
5191 }
5192 }
5193 break;
5194 case TARGET_SIGNAL_0:
5195 case TARGET_SIGNAL_DEFAULT:
5196 case TARGET_SIGNAL_UNKNOWN:
5197 /* Make sure that "all" doesn't print these. */
5198 break;
5199 default:
5200 sigs[signum] = 1;
5201 break;
5202 }
5203 }
5204
5205 argv++;
5206 }
5207
5208 for (signum = 0; signum < nsigs; signum++)
5209 if (sigs[signum])
5210 {
5211 target_notice_signals (inferior_ptid);
5212
5213 if (from_tty)
5214 {
5215 /* Show the results. */
5216 sig_print_header ();
5217 for (; signum < nsigs; signum++)
5218 if (sigs[signum])
5219 sig_print_info (signum);
5220 }
5221
5222 break;
5223 }
5224
5225 do_cleanups (old_chain);
5226 }
5227
5228 static void
5229 xdb_handle_command (char *args, int from_tty)
5230 {
5231 char **argv;
5232 struct cleanup *old_chain;
5233
5234 if (args == NULL)
5235 error_no_arg (_("xdb command"));
5236
5237 /* Break the command line up into args. */
5238
5239 argv = gdb_buildargv (args);
5240 old_chain = make_cleanup_freeargv (argv);
5241 if (argv[1] != (char *) NULL)
5242 {
5243 char *argBuf;
5244 int bufLen;
5245
5246 bufLen = strlen (argv[0]) + 20;
5247 argBuf = (char *) xmalloc (bufLen);
5248 if (argBuf)
5249 {
5250 int validFlag = 1;
5251 enum target_signal oursig;
5252
5253 oursig = target_signal_from_name (argv[0]);
5254 memset (argBuf, 0, bufLen);
5255 if (strcmp (argv[1], "Q") == 0)
5256 sprintf (argBuf, "%s %s", argv[0], "noprint");
5257 else
5258 {
5259 if (strcmp (argv[1], "s") == 0)
5260 {
5261 if (!signal_stop[oursig])
5262 sprintf (argBuf, "%s %s", argv[0], "stop");
5263 else
5264 sprintf (argBuf, "%s %s", argv[0], "nostop");
5265 }
5266 else if (strcmp (argv[1], "i") == 0)
5267 {
5268 if (!signal_program[oursig])
5269 sprintf (argBuf, "%s %s", argv[0], "pass");
5270 else
5271 sprintf (argBuf, "%s %s", argv[0], "nopass");
5272 }
5273 else if (strcmp (argv[1], "r") == 0)
5274 {
5275 if (!signal_print[oursig])
5276 sprintf (argBuf, "%s %s", argv[0], "print");
5277 else
5278 sprintf (argBuf, "%s %s", argv[0], "noprint");
5279 }
5280 else
5281 validFlag = 0;
5282 }
5283 if (validFlag)
5284 handle_command (argBuf, from_tty);
5285 else
5286 printf_filtered (_("Invalid signal handling flag.\n"));
5287 if (argBuf)
5288 xfree (argBuf);
5289 }
5290 }
5291 do_cleanups (old_chain);
5292 }
5293
5294 /* Print current contents of the tables set by the handle command.
5295 It is possible we should just be printing signals actually used
5296 by the current target (but for things to work right when switching
5297 targets, all signals should be in the signal tables). */
5298
5299 static void
5300 signals_info (char *signum_exp, int from_tty)
5301 {
5302 enum target_signal oursig;
5303 sig_print_header ();
5304
5305 if (signum_exp)
5306 {
5307 /* First see if this is a symbol name. */
5308 oursig = target_signal_from_name (signum_exp);
5309 if (oursig == TARGET_SIGNAL_UNKNOWN)
5310 {
5311 /* No, try numeric. */
5312 oursig =
5313 target_signal_from_command (parse_and_eval_long (signum_exp));
5314 }
5315 sig_print_info (oursig);
5316 return;
5317 }
5318
5319 printf_filtered ("\n");
5320 /* These ugly casts brought to you by the native VAX compiler. */
5321 for (oursig = TARGET_SIGNAL_FIRST;
5322 (int) oursig < (int) TARGET_SIGNAL_LAST;
5323 oursig = (enum target_signal) ((int) oursig + 1))
5324 {
5325 QUIT;
5326
5327 if (oursig != TARGET_SIGNAL_UNKNOWN
5328 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
5329 sig_print_info (oursig);
5330 }
5331
5332 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
5333 }
5334
5335 /* The $_siginfo convenience variable is a bit special. We don't know
5336 for sure the type of the value until we actually have a chance to
5337 fetch the data. The type can change depending on gdbarch, so it it
5338 also dependent on which thread you have selected.
5339
5340 1. making $_siginfo be an internalvar that creates a new value on
5341 access.
5342
5343 2. making the value of $_siginfo be an lval_computed value. */
5344
5345 /* This function implements the lval_computed support for reading a
5346 $_siginfo value. */
5347
5348 static void
5349 siginfo_value_read (struct value *v)
5350 {
5351 LONGEST transferred;
5352
5353 transferred =
5354 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5355 NULL,
5356 value_contents_all_raw (v),
5357 value_offset (v),
5358 TYPE_LENGTH (value_type (v)));
5359
5360 if (transferred != TYPE_LENGTH (value_type (v)))
5361 error (_("Unable to read siginfo"));
5362 }
5363
5364 /* This function implements the lval_computed support for writing a
5365 $_siginfo value. */
5366
5367 static void
5368 siginfo_value_write (struct value *v, struct value *fromval)
5369 {
5370 LONGEST transferred;
5371
5372 transferred = target_write (&current_target,
5373 TARGET_OBJECT_SIGNAL_INFO,
5374 NULL,
5375 value_contents_all_raw (fromval),
5376 value_offset (v),
5377 TYPE_LENGTH (value_type (fromval)));
5378
5379 if (transferred != TYPE_LENGTH (value_type (fromval)))
5380 error (_("Unable to write siginfo"));
5381 }
5382
5383 static struct lval_funcs siginfo_value_funcs =
5384 {
5385 siginfo_value_read,
5386 siginfo_value_write
5387 };
5388
5389 /* Return a new value with the correct type for the siginfo object of
5390 the current thread using architecture GDBARCH. Return a void value
5391 if there's no object available. */
5392
5393 static struct value *
5394 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
5395 {
5396 if (target_has_stack
5397 && !ptid_equal (inferior_ptid, null_ptid)
5398 && gdbarch_get_siginfo_type_p (gdbarch))
5399 {
5400 struct type *type = gdbarch_get_siginfo_type (gdbarch);
5401 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
5402 }
5403
5404 return allocate_value (builtin_type (gdbarch)->builtin_void);
5405 }
5406
5407 \f
5408 /* Inferior thread state.
5409 These are details related to the inferior itself, and don't include
5410 things like what frame the user had selected or what gdb was doing
5411 with the target at the time.
5412 For inferior function calls these are things we want to restore
5413 regardless of whether the function call successfully completes
5414 or the dummy frame has to be manually popped. */
5415
5416 struct inferior_thread_state
5417 {
5418 enum target_signal stop_signal;
5419 CORE_ADDR stop_pc;
5420 struct regcache *registers;
5421 };
5422
5423 struct inferior_thread_state *
5424 save_inferior_thread_state (void)
5425 {
5426 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5427 struct thread_info *tp = inferior_thread ();
5428
5429 inf_state->stop_signal = tp->stop_signal;
5430 inf_state->stop_pc = stop_pc;
5431
5432 inf_state->registers = regcache_dup (get_current_regcache ());
5433
5434 return inf_state;
5435 }
5436
5437 /* Restore inferior session state to INF_STATE. */
5438
5439 void
5440 restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5441 {
5442 struct thread_info *tp = inferior_thread ();
5443
5444 tp->stop_signal = inf_state->stop_signal;
5445 stop_pc = inf_state->stop_pc;
5446
5447 /* The inferior can be gone if the user types "print exit(0)"
5448 (and perhaps other times). */
5449 if (target_has_execution)
5450 /* NB: The register write goes through to the target. */
5451 regcache_cpy (get_current_regcache (), inf_state->registers);
5452 regcache_xfree (inf_state->registers);
5453 xfree (inf_state);
5454 }
5455
5456 static void
5457 do_restore_inferior_thread_state_cleanup (void *state)
5458 {
5459 restore_inferior_thread_state (state);
5460 }
5461
5462 struct cleanup *
5463 make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5464 {
5465 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5466 }
5467
5468 void
5469 discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5470 {
5471 regcache_xfree (inf_state->registers);
5472 xfree (inf_state);
5473 }
5474
5475 struct regcache *
5476 get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5477 {
5478 return inf_state->registers;
5479 }
5480
5481 /* Session related state for inferior function calls.
5482 These are the additional bits of state that need to be restored
5483 when an inferior function call successfully completes. */
5484
5485 struct inferior_status
5486 {
5487 bpstat stop_bpstat;
5488 int stop_step;
5489 int stop_stack_dummy;
5490 int stopped_by_random_signal;
5491 int stepping_over_breakpoint;
5492 CORE_ADDR step_range_start;
5493 CORE_ADDR step_range_end;
5494 struct frame_id step_frame_id;
5495 struct frame_id step_stack_frame_id;
5496 enum step_over_calls_kind step_over_calls;
5497 CORE_ADDR step_resume_break_address;
5498 int stop_after_trap;
5499 int stop_soon;
5500
5501 /* ID if the selected frame when the inferior function call was made. */
5502 struct frame_id selected_frame_id;
5503
5504 int proceed_to_finish;
5505 int in_infcall;
5506 };
5507
5508 /* Save all of the information associated with the inferior<==>gdb
5509 connection. */
5510
5511 struct inferior_status *
5512 save_inferior_status (void)
5513 {
5514 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
5515 struct thread_info *tp = inferior_thread ();
5516 struct inferior *inf = current_inferior ();
5517
5518 inf_status->stop_step = tp->stop_step;
5519 inf_status->stop_stack_dummy = stop_stack_dummy;
5520 inf_status->stopped_by_random_signal = stopped_by_random_signal;
5521 inf_status->stepping_over_breakpoint = tp->trap_expected;
5522 inf_status->step_range_start = tp->step_range_start;
5523 inf_status->step_range_end = tp->step_range_end;
5524 inf_status->step_frame_id = tp->step_frame_id;
5525 inf_status->step_stack_frame_id = tp->step_stack_frame_id;
5526 inf_status->step_over_calls = tp->step_over_calls;
5527 inf_status->stop_after_trap = stop_after_trap;
5528 inf_status->stop_soon = inf->stop_soon;
5529 /* Save original bpstat chain here; replace it with copy of chain.
5530 If caller's caller is walking the chain, they'll be happier if we
5531 hand them back the original chain when restore_inferior_status is
5532 called. */
5533 inf_status->stop_bpstat = tp->stop_bpstat;
5534 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
5535 inf_status->proceed_to_finish = tp->proceed_to_finish;
5536 inf_status->in_infcall = tp->in_infcall;
5537
5538 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
5539
5540 return inf_status;
5541 }
5542
5543 static int
5544 restore_selected_frame (void *args)
5545 {
5546 struct frame_id *fid = (struct frame_id *) args;
5547 struct frame_info *frame;
5548
5549 frame = frame_find_by_id (*fid);
5550
5551 /* If inf_status->selected_frame_id is NULL, there was no previously
5552 selected frame. */
5553 if (frame == NULL)
5554 {
5555 warning (_("Unable to restore previously selected frame."));
5556 return 0;
5557 }
5558
5559 select_frame (frame);
5560
5561 return (1);
5562 }
5563
5564 /* Restore inferior session state to INF_STATUS. */
5565
5566 void
5567 restore_inferior_status (struct inferior_status *inf_status)
5568 {
5569 struct thread_info *tp = inferior_thread ();
5570 struct inferior *inf = current_inferior ();
5571
5572 tp->stop_step = inf_status->stop_step;
5573 stop_stack_dummy = inf_status->stop_stack_dummy;
5574 stopped_by_random_signal = inf_status->stopped_by_random_signal;
5575 tp->trap_expected = inf_status->stepping_over_breakpoint;
5576 tp->step_range_start = inf_status->step_range_start;
5577 tp->step_range_end = inf_status->step_range_end;
5578 tp->step_frame_id = inf_status->step_frame_id;
5579 tp->step_stack_frame_id = inf_status->step_stack_frame_id;
5580 tp->step_over_calls = inf_status->step_over_calls;
5581 stop_after_trap = inf_status->stop_after_trap;
5582 inf->stop_soon = inf_status->stop_soon;
5583 bpstat_clear (&tp->stop_bpstat);
5584 tp->stop_bpstat = inf_status->stop_bpstat;
5585 inf_status->stop_bpstat = NULL;
5586 tp->proceed_to_finish = inf_status->proceed_to_finish;
5587 tp->in_infcall = inf_status->in_infcall;
5588
5589 if (target_has_stack)
5590 {
5591 /* The point of catch_errors is that if the stack is clobbered,
5592 walking the stack might encounter a garbage pointer and
5593 error() trying to dereference it. */
5594 if (catch_errors
5595 (restore_selected_frame, &inf_status->selected_frame_id,
5596 "Unable to restore previously selected frame:\n",
5597 RETURN_MASK_ERROR) == 0)
5598 /* Error in restoring the selected frame. Select the innermost
5599 frame. */
5600 select_frame (get_current_frame ());
5601 }
5602
5603 xfree (inf_status);
5604 }
5605
5606 static void
5607 do_restore_inferior_status_cleanup (void *sts)
5608 {
5609 restore_inferior_status (sts);
5610 }
5611
5612 struct cleanup *
5613 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5614 {
5615 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5616 }
5617
5618 void
5619 discard_inferior_status (struct inferior_status *inf_status)
5620 {
5621 /* See save_inferior_status for info on stop_bpstat. */
5622 bpstat_clear (&inf_status->stop_bpstat);
5623 xfree (inf_status);
5624 }
5625 \f
5626 int
5627 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
5628 {
5629 struct target_waitstatus last;
5630 ptid_t last_ptid;
5631
5632 get_last_target_status (&last_ptid, &last);
5633
5634 if (last.kind != TARGET_WAITKIND_FORKED)
5635 return 0;
5636
5637 if (!ptid_equal (last_ptid, pid))
5638 return 0;
5639
5640 *child_pid = last.value.related_pid;
5641 return 1;
5642 }
5643
5644 int
5645 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
5646 {
5647 struct target_waitstatus last;
5648 ptid_t last_ptid;
5649
5650 get_last_target_status (&last_ptid, &last);
5651
5652 if (last.kind != TARGET_WAITKIND_VFORKED)
5653 return 0;
5654
5655 if (!ptid_equal (last_ptid, pid))
5656 return 0;
5657
5658 *child_pid = last.value.related_pid;
5659 return 1;
5660 }
5661
5662 int
5663 inferior_has_execd (ptid_t pid, char **execd_pathname)
5664 {
5665 struct target_waitstatus last;
5666 ptid_t last_ptid;
5667
5668 get_last_target_status (&last_ptid, &last);
5669
5670 if (last.kind != TARGET_WAITKIND_EXECD)
5671 return 0;
5672
5673 if (!ptid_equal (last_ptid, pid))
5674 return 0;
5675
5676 *execd_pathname = xstrdup (last.value.execd_pathname);
5677 return 1;
5678 }
5679
5680 int
5681 inferior_has_called_syscall (ptid_t pid, int *syscall_number)
5682 {
5683 struct target_waitstatus last;
5684 ptid_t last_ptid;
5685
5686 get_last_target_status (&last_ptid, &last);
5687
5688 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
5689 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
5690 return 0;
5691
5692 if (!ptid_equal (last_ptid, pid))
5693 return 0;
5694
5695 *syscall_number = last.value.syscall_number;
5696 return 1;
5697 }
5698
5699 /* Oft used ptids */
5700 ptid_t null_ptid;
5701 ptid_t minus_one_ptid;
5702
5703 /* Create a ptid given the necessary PID, LWP, and TID components. */
5704
5705 ptid_t
5706 ptid_build (int pid, long lwp, long tid)
5707 {
5708 ptid_t ptid;
5709
5710 ptid.pid = pid;
5711 ptid.lwp = lwp;
5712 ptid.tid = tid;
5713 return ptid;
5714 }
5715
5716 /* Create a ptid from just a pid. */
5717
5718 ptid_t
5719 pid_to_ptid (int pid)
5720 {
5721 return ptid_build (pid, 0, 0);
5722 }
5723
5724 /* Fetch the pid (process id) component from a ptid. */
5725
5726 int
5727 ptid_get_pid (ptid_t ptid)
5728 {
5729 return ptid.pid;
5730 }
5731
5732 /* Fetch the lwp (lightweight process) component from a ptid. */
5733
5734 long
5735 ptid_get_lwp (ptid_t ptid)
5736 {
5737 return ptid.lwp;
5738 }
5739
5740 /* Fetch the tid (thread id) component from a ptid. */
5741
5742 long
5743 ptid_get_tid (ptid_t ptid)
5744 {
5745 return ptid.tid;
5746 }
5747
5748 /* ptid_equal() is used to test equality of two ptids. */
5749
5750 int
5751 ptid_equal (ptid_t ptid1, ptid_t ptid2)
5752 {
5753 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
5754 && ptid1.tid == ptid2.tid);
5755 }
5756
5757 /* Returns true if PTID represents a process. */
5758
5759 int
5760 ptid_is_pid (ptid_t ptid)
5761 {
5762 if (ptid_equal (minus_one_ptid, ptid))
5763 return 0;
5764 if (ptid_equal (null_ptid, ptid))
5765 return 0;
5766
5767 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5768 }
5769
5770 /* restore_inferior_ptid() will be used by the cleanup machinery
5771 to restore the inferior_ptid value saved in a call to
5772 save_inferior_ptid(). */
5773
5774 static void
5775 restore_inferior_ptid (void *arg)
5776 {
5777 ptid_t *saved_ptid_ptr = arg;
5778 inferior_ptid = *saved_ptid_ptr;
5779 xfree (arg);
5780 }
5781
5782 /* Save the value of inferior_ptid so that it may be restored by a
5783 later call to do_cleanups(). Returns the struct cleanup pointer
5784 needed for later doing the cleanup. */
5785
5786 struct cleanup *
5787 save_inferior_ptid (void)
5788 {
5789 ptid_t *saved_ptid_ptr;
5790
5791 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5792 *saved_ptid_ptr = inferior_ptid;
5793 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5794 }
5795 \f
5796
5797 /* User interface for reverse debugging:
5798 Set exec-direction / show exec-direction commands
5799 (returns error unless target implements to_set_exec_direction method). */
5800
5801 enum exec_direction_kind execution_direction = EXEC_FORWARD;
5802 static const char exec_forward[] = "forward";
5803 static const char exec_reverse[] = "reverse";
5804 static const char *exec_direction = exec_forward;
5805 static const char *exec_direction_names[] = {
5806 exec_forward,
5807 exec_reverse,
5808 NULL
5809 };
5810
5811 static void
5812 set_exec_direction_func (char *args, int from_tty,
5813 struct cmd_list_element *cmd)
5814 {
5815 if (target_can_execute_reverse)
5816 {
5817 if (!strcmp (exec_direction, exec_forward))
5818 execution_direction = EXEC_FORWARD;
5819 else if (!strcmp (exec_direction, exec_reverse))
5820 execution_direction = EXEC_REVERSE;
5821 }
5822 }
5823
5824 static void
5825 show_exec_direction_func (struct ui_file *out, int from_tty,
5826 struct cmd_list_element *cmd, const char *value)
5827 {
5828 switch (execution_direction) {
5829 case EXEC_FORWARD:
5830 fprintf_filtered (out, _("Forward.\n"));
5831 break;
5832 case EXEC_REVERSE:
5833 fprintf_filtered (out, _("Reverse.\n"));
5834 break;
5835 case EXEC_ERROR:
5836 default:
5837 fprintf_filtered (out,
5838 _("Forward (target `%s' does not support exec-direction).\n"),
5839 target_shortname);
5840 break;
5841 }
5842 }
5843
5844 /* User interface for non-stop mode. */
5845
5846 int non_stop = 0;
5847 static int non_stop_1 = 0;
5848
5849 static void
5850 set_non_stop (char *args, int from_tty,
5851 struct cmd_list_element *c)
5852 {
5853 if (target_has_execution)
5854 {
5855 non_stop_1 = non_stop;
5856 error (_("Cannot change this setting while the inferior is running."));
5857 }
5858
5859 non_stop = non_stop_1;
5860 }
5861
5862 static void
5863 show_non_stop (struct ui_file *file, int from_tty,
5864 struct cmd_list_element *c, const char *value)
5865 {
5866 fprintf_filtered (file,
5867 _("Controlling the inferior in non-stop mode is %s.\n"),
5868 value);
5869 }
5870
5871 static void
5872 show_schedule_multiple (struct ui_file *file, int from_tty,
5873 struct cmd_list_element *c, const char *value)
5874 {
5875 fprintf_filtered (file, _("\
5876 Resuming the execution of threads of all processes is %s.\n"), value);
5877 }
5878
5879 void
5880 _initialize_infrun (void)
5881 {
5882 int i;
5883 int numsigs;
5884 struct cmd_list_element *c;
5885
5886 add_info ("signals", signals_info, _("\
5887 What debugger does when program gets various signals.\n\
5888 Specify a signal as argument to print info on that signal only."));
5889 add_info_alias ("handle", "signals", 0);
5890
5891 add_com ("handle", class_run, handle_command, _("\
5892 Specify how to handle a signal.\n\
5893 Args are signals and actions to apply to those signals.\n\
5894 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5895 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5896 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5897 The special arg \"all\" is recognized to mean all signals except those\n\
5898 used by the debugger, typically SIGTRAP and SIGINT.\n\
5899 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
5900 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5901 Stop means reenter debugger if this signal happens (implies print).\n\
5902 Print means print a message if this signal happens.\n\
5903 Pass means let program see this signal; otherwise program doesn't know.\n\
5904 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5905 Pass and Stop may be combined."));
5906 if (xdb_commands)
5907 {
5908 add_com ("lz", class_info, signals_info, _("\
5909 What debugger does when program gets various signals.\n\
5910 Specify a signal as argument to print info on that signal only."));
5911 add_com ("z", class_run, xdb_handle_command, _("\
5912 Specify how to handle a signal.\n\
5913 Args are signals and actions to apply to those signals.\n\
5914 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5915 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5916 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5917 The special arg \"all\" is recognized to mean all signals except those\n\
5918 used by the debugger, typically SIGTRAP and SIGINT.\n\
5919 Recognized actions include \"s\" (toggles between stop and nostop), \n\
5920 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5921 nopass), \"Q\" (noprint)\n\
5922 Stop means reenter debugger if this signal happens (implies print).\n\
5923 Print means print a message if this signal happens.\n\
5924 Pass means let program see this signal; otherwise program doesn't know.\n\
5925 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5926 Pass and Stop may be combined."));
5927 }
5928
5929 if (!dbx_commands)
5930 stop_command = add_cmd ("stop", class_obscure,
5931 not_just_help_class_command, _("\
5932 There is no `stop' command, but you can set a hook on `stop'.\n\
5933 This allows you to set a list of commands to be run each time execution\n\
5934 of the program stops."), &cmdlist);
5935
5936 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5937 Set inferior debugging."), _("\
5938 Show inferior debugging."), _("\
5939 When non-zero, inferior specific debugging is enabled."),
5940 NULL,
5941 show_debug_infrun,
5942 &setdebuglist, &showdebuglist);
5943
5944 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5945 Set displaced stepping debugging."), _("\
5946 Show displaced stepping debugging."), _("\
5947 When non-zero, displaced stepping specific debugging is enabled."),
5948 NULL,
5949 show_debug_displaced,
5950 &setdebuglist, &showdebuglist);
5951
5952 add_setshow_boolean_cmd ("non-stop", no_class,
5953 &non_stop_1, _("\
5954 Set whether gdb controls the inferior in non-stop mode."), _("\
5955 Show whether gdb controls the inferior in non-stop mode."), _("\
5956 When debugging a multi-threaded program and this setting is\n\
5957 off (the default, also called all-stop mode), when one thread stops\n\
5958 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5959 all other threads in the program while you interact with the thread of\n\
5960 interest. When you continue or step a thread, you can allow the other\n\
5961 threads to run, or have them remain stopped, but while you inspect any\n\
5962 thread's state, all threads stop.\n\
5963 \n\
5964 In non-stop mode, when one thread stops, other threads can continue\n\
5965 to run freely. You'll be able to step each thread independently,\n\
5966 leave it stopped or free to run as needed."),
5967 set_non_stop,
5968 show_non_stop,
5969 &setlist,
5970 &showlist);
5971
5972 numsigs = (int) TARGET_SIGNAL_LAST;
5973 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
5974 signal_print = (unsigned char *)
5975 xmalloc (sizeof (signal_print[0]) * numsigs);
5976 signal_program = (unsigned char *)
5977 xmalloc (sizeof (signal_program[0]) * numsigs);
5978 for (i = 0; i < numsigs; i++)
5979 {
5980 signal_stop[i] = 1;
5981 signal_print[i] = 1;
5982 signal_program[i] = 1;
5983 }
5984
5985 /* Signals caused by debugger's own actions
5986 should not be given to the program afterwards. */
5987 signal_program[TARGET_SIGNAL_TRAP] = 0;
5988 signal_program[TARGET_SIGNAL_INT] = 0;
5989
5990 /* Signals that are not errors should not normally enter the debugger. */
5991 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5992 signal_print[TARGET_SIGNAL_ALRM] = 0;
5993 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5994 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5995 signal_stop[TARGET_SIGNAL_PROF] = 0;
5996 signal_print[TARGET_SIGNAL_PROF] = 0;
5997 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5998 signal_print[TARGET_SIGNAL_CHLD] = 0;
5999 signal_stop[TARGET_SIGNAL_IO] = 0;
6000 signal_print[TARGET_SIGNAL_IO] = 0;
6001 signal_stop[TARGET_SIGNAL_POLL] = 0;
6002 signal_print[TARGET_SIGNAL_POLL] = 0;
6003 signal_stop[TARGET_SIGNAL_URG] = 0;
6004 signal_print[TARGET_SIGNAL_URG] = 0;
6005 signal_stop[TARGET_SIGNAL_WINCH] = 0;
6006 signal_print[TARGET_SIGNAL_WINCH] = 0;
6007
6008 /* These signals are used internally by user-level thread
6009 implementations. (See signal(5) on Solaris.) Like the above
6010 signals, a healthy program receives and handles them as part of
6011 its normal operation. */
6012 signal_stop[TARGET_SIGNAL_LWP] = 0;
6013 signal_print[TARGET_SIGNAL_LWP] = 0;
6014 signal_stop[TARGET_SIGNAL_WAITING] = 0;
6015 signal_print[TARGET_SIGNAL_WAITING] = 0;
6016 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
6017 signal_print[TARGET_SIGNAL_CANCEL] = 0;
6018
6019 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
6020 &stop_on_solib_events, _("\
6021 Set stopping for shared library events."), _("\
6022 Show stopping for shared library events."), _("\
6023 If nonzero, gdb will give control to the user when the dynamic linker\n\
6024 notifies gdb of shared library events. The most common event of interest\n\
6025 to the user would be loading/unloading of a new library."),
6026 NULL,
6027 show_stop_on_solib_events,
6028 &setlist, &showlist);
6029
6030 add_setshow_enum_cmd ("follow-fork-mode", class_run,
6031 follow_fork_mode_kind_names,
6032 &follow_fork_mode_string, _("\
6033 Set debugger response to a program call of fork or vfork."), _("\
6034 Show debugger response to a program call of fork or vfork."), _("\
6035 A fork or vfork creates a new process. follow-fork-mode can be:\n\
6036 parent - the original process is debugged after a fork\n\
6037 child - the new process is debugged after a fork\n\
6038 The unfollowed process will continue to run.\n\
6039 By default, the debugger will follow the parent process."),
6040 NULL,
6041 show_follow_fork_mode_string,
6042 &setlist, &showlist);
6043
6044 add_setshow_enum_cmd ("scheduler-locking", class_run,
6045 scheduler_enums, &scheduler_mode, _("\
6046 Set mode for locking scheduler during execution."), _("\
6047 Show mode for locking scheduler during execution."), _("\
6048 off == no locking (threads may preempt at any time)\n\
6049 on == full locking (no thread except the current thread may run)\n\
6050 step == scheduler locked during every single-step operation.\n\
6051 In this mode, no other thread may run during a step command.\n\
6052 Other threads may run while stepping over a function call ('next')."),
6053 set_schedlock_func, /* traps on target vector */
6054 show_scheduler_mode,
6055 &setlist, &showlist);
6056
6057 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
6058 Set mode for resuming threads of all processes."), _("\
6059 Show mode for resuming threads of all processes."), _("\
6060 When on, execution commands (such as 'continue' or 'next') resume all\n\
6061 threads of all processes. When off (which is the default), execution\n\
6062 commands only resume the threads of the current process. The set of\n\
6063 threads that are resumed is further refined by the scheduler-locking\n\
6064 mode (see help set scheduler-locking)."),
6065 NULL,
6066 show_schedule_multiple,
6067 &setlist, &showlist);
6068
6069 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
6070 Set mode of the step operation."), _("\
6071 Show mode of the step operation."), _("\
6072 When set, doing a step over a function without debug line information\n\
6073 will stop at the first instruction of that function. Otherwise, the\n\
6074 function is skipped and the step command stops at a different source line."),
6075 NULL,
6076 show_step_stop_if_no_debug,
6077 &setlist, &showlist);
6078
6079 add_setshow_enum_cmd ("displaced-stepping", class_run,
6080 can_use_displaced_stepping_enum,
6081 &can_use_displaced_stepping, _("\
6082 Set debugger's willingness to use displaced stepping."), _("\
6083 Show debugger's willingness to use displaced stepping."), _("\
6084 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
6085 supported by the target architecture. If off, gdb will not use displaced\n\
6086 stepping to step over breakpoints, even if such is supported by the target\n\
6087 architecture. If auto (which is the default), gdb will use displaced stepping\n\
6088 if the target architecture supports it and non-stop mode is active, but will not\n\
6089 use it in all-stop mode (see help set non-stop)."),
6090 NULL,
6091 show_can_use_displaced_stepping,
6092 &setlist, &showlist);
6093
6094 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
6095 &exec_direction, _("Set direction of execution.\n\
6096 Options are 'forward' or 'reverse'."),
6097 _("Show direction of execution (forward/reverse)."),
6098 _("Tells gdb whether to execute forward or backward."),
6099 set_exec_direction_func, show_exec_direction_func,
6100 &setlist, &showlist);
6101
6102 /* ptid initializations */
6103 null_ptid = ptid_build (0, 0, 0);
6104 minus_one_ptid = ptid_build (-1, 0, 0);
6105 inferior_ptid = null_ptid;
6106 target_last_wait_ptid = minus_one_ptid;
6107 displaced_step_ptid = null_ptid;
6108
6109 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
6110 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
6111 observer_attach_thread_exit (infrun_thread_thread_exit);
6112
6113 /* Explicitly create without lookup, since that tries to create a
6114 value with a void typed value, and when we get here, gdbarch
6115 isn't initialized yet. At this point, we're quite sure there
6116 isn't another convenience variable of the same name. */
6117 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
6118 }
This page took 0.161813 seconds and 4 git commands to generate.