4dd49f6f909ae06d3a856ec613739e91119a9399
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 struct execution_control_state;
76
77 static int currently_stepping (struct execution_control_state *ecs);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 int inferior_ignoring_leading_exec_events = 0;
86
87 /* When set, stop the 'step' command if we enter a function which has
88 no line number information. The normal behavior is that we step
89 over such function. */
90 int step_stop_if_no_debug = 0;
91 static void
92 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94 {
95 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
96 }
97
98 /* In asynchronous mode, but simulating synchronous execution. */
99
100 int sync_execution = 0;
101
102 /* wait_for_inferior and normal_stop use this to notify the user
103 when the inferior stopped in a different thread than it had been
104 running in. */
105
106 static ptid_t previous_inferior_ptid;
107
108 /* This is true for configurations that may follow through execl() and
109 similar functions. At present this is only true for HP-UX native. */
110
111 #ifndef MAY_FOLLOW_EXEC
112 #define MAY_FOLLOW_EXEC (0)
113 #endif
114
115 static int may_follow_exec = MAY_FOLLOW_EXEC;
116
117 static int debug_infrun = 0;
118 static void
119 show_debug_infrun (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
123 }
124
125 /* If the program uses ELF-style shared libraries, then calls to
126 functions in shared libraries go through stubs, which live in a
127 table called the PLT (Procedure Linkage Table). The first time the
128 function is called, the stub sends control to the dynamic linker,
129 which looks up the function's real address, patches the stub so
130 that future calls will go directly to the function, and then passes
131 control to the function.
132
133 If we are stepping at the source level, we don't want to see any of
134 this --- we just want to skip over the stub and the dynamic linker.
135 The simple approach is to single-step until control leaves the
136 dynamic linker.
137
138 However, on some systems (e.g., Red Hat's 5.2 distribution) the
139 dynamic linker calls functions in the shared C library, so you
140 can't tell from the PC alone whether the dynamic linker is still
141 running. In this case, we use a step-resume breakpoint to get us
142 past the dynamic linker, as if we were using "next" to step over a
143 function call.
144
145 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
146 linker code or not. Normally, this means we single-step. However,
147 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
148 address where we can place a step-resume breakpoint to get past the
149 linker's symbol resolution function.
150
151 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
152 pretty portable way, by comparing the PC against the address ranges
153 of the dynamic linker's sections.
154
155 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
156 it depends on internal details of the dynamic linker. It's usually
157 not too hard to figure out where to put a breakpoint, but it
158 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
159 sanity checking. If it can't figure things out, returning zero and
160 getting the (possibly confusing) stepping behavior is better than
161 signalling an error, which will obscure the change in the
162 inferior's state. */
163
164 /* This function returns TRUE if pc is the address of an instruction
165 that lies within the dynamic linker (such as the event hook, or the
166 dld itself).
167
168 This function must be used only when a dynamic linker event has
169 been caught, and the inferior is being stepped out of the hook, or
170 undefined results are guaranteed. */
171
172 #ifndef SOLIB_IN_DYNAMIC_LINKER
173 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
174 #endif
175
176
177 /* Convert the #defines into values. This is temporary until wfi control
178 flow is completely sorted out. */
179
180 #ifndef CANNOT_STEP_HW_WATCHPOINTS
181 #define CANNOT_STEP_HW_WATCHPOINTS 0
182 #else
183 #undef CANNOT_STEP_HW_WATCHPOINTS
184 #define CANNOT_STEP_HW_WATCHPOINTS 1
185 #endif
186
187 /* Tables of how to react to signals; the user sets them. */
188
189 static unsigned char *signal_stop;
190 static unsigned char *signal_print;
191 static unsigned char *signal_program;
192
193 #define SET_SIGS(nsigs,sigs,flags) \
194 do { \
195 int signum = (nsigs); \
196 while (signum-- > 0) \
197 if ((sigs)[signum]) \
198 (flags)[signum] = 1; \
199 } while (0)
200
201 #define UNSET_SIGS(nsigs,sigs,flags) \
202 do { \
203 int signum = (nsigs); \
204 while (signum-- > 0) \
205 if ((sigs)[signum]) \
206 (flags)[signum] = 0; \
207 } while (0)
208
209 /* Value to pass to target_resume() to cause all threads to resume */
210
211 #define RESUME_ALL (pid_to_ptid (-1))
212
213 /* Command list pointer for the "stop" placeholder. */
214
215 static struct cmd_list_element *stop_command;
216
217 /* Function inferior was in as of last step command. */
218
219 static struct symbol *step_start_function;
220
221 /* Nonzero if we are presently stepping over a breakpoint.
222
223 If we hit a breakpoint or watchpoint, and then continue,
224 we need to single step the current thread with breakpoints
225 disabled, to avoid hitting the same breakpoint or
226 watchpoint again. And we should step just a single
227 thread and keep other threads stopped, so that
228 other threads don't miss breakpoints while they are removed.
229
230 So, this variable simultaneously means that we need to single
231 step the current thread, keep other threads stopped, and that
232 breakpoints should be removed while we step.
233
234 This variable is set either:
235 - in proceed, when we resume inferior on user's explicit request
236 - in keep_going, if handle_inferior_event decides we need to
237 step over breakpoint.
238
239 The variable is cleared in clear_proceed_status, called every
240 time before we call proceed. The proceed calls wait_for_inferior,
241 which calls handle_inferior_event in a loop, and until
242 wait_for_inferior exits, this variable is changed only by keep_going. */
243
244 static int stepping_over_breakpoint;
245
246 /* Nonzero if we want to give control to the user when we're notified
247 of shared library events by the dynamic linker. */
248 static int stop_on_solib_events;
249 static void
250 show_stop_on_solib_events (struct ui_file *file, int from_tty,
251 struct cmd_list_element *c, const char *value)
252 {
253 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
254 value);
255 }
256
257 /* Nonzero means expecting a trace trap
258 and should stop the inferior and return silently when it happens. */
259
260 int stop_after_trap;
261
262 /* Nonzero means expecting a trap and caller will handle it themselves.
263 It is used after attach, due to attaching to a process;
264 when running in the shell before the child program has been exec'd;
265 and when running some kinds of remote stuff (FIXME?). */
266
267 enum stop_kind stop_soon;
268
269 /* Nonzero if proceed is being used for a "finish" command or a similar
270 situation when stop_registers should be saved. */
271
272 int proceed_to_finish;
273
274 /* Save register contents here when about to pop a stack dummy frame,
275 if-and-only-if proceed_to_finish is set.
276 Thus this contains the return value from the called function (assuming
277 values are returned in a register). */
278
279 struct regcache *stop_registers;
280
281 /* Nonzero after stop if current stack frame should be printed. */
282
283 static int stop_print_frame;
284
285 static struct breakpoint *step_resume_breakpoint = NULL;
286
287 /* This is a cached copy of the pid/waitstatus of the last event
288 returned by target_wait()/deprecated_target_wait_hook(). This
289 information is returned by get_last_target_status(). */
290 static ptid_t target_last_wait_ptid;
291 static struct target_waitstatus target_last_waitstatus;
292
293 /* This is used to remember when a fork, vfork or exec event
294 was caught by a catchpoint, and thus the event is to be
295 followed at the next resume of the inferior, and not
296 immediately. */
297 static struct
298 {
299 enum target_waitkind kind;
300 struct
301 {
302 int parent_pid;
303 int child_pid;
304 }
305 fork_event;
306 char *execd_pathname;
307 }
308 pending_follow;
309
310 static const char follow_fork_mode_child[] = "child";
311 static const char follow_fork_mode_parent[] = "parent";
312
313 static const char *follow_fork_mode_kind_names[] = {
314 follow_fork_mode_child,
315 follow_fork_mode_parent,
316 NULL
317 };
318
319 static const char *follow_fork_mode_string = follow_fork_mode_parent;
320 static void
321 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
322 struct cmd_list_element *c, const char *value)
323 {
324 fprintf_filtered (file, _("\
325 Debugger response to a program call of fork or vfork is \"%s\".\n"),
326 value);
327 }
328 \f
329
330 static int
331 follow_fork (void)
332 {
333 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
334
335 return target_follow_fork (follow_child);
336 }
337
338 void
339 follow_inferior_reset_breakpoints (void)
340 {
341 /* Was there a step_resume breakpoint? (There was if the user
342 did a "next" at the fork() call.) If so, explicitly reset its
343 thread number.
344
345 step_resumes are a form of bp that are made to be per-thread.
346 Since we created the step_resume bp when the parent process
347 was being debugged, and now are switching to the child process,
348 from the breakpoint package's viewpoint, that's a switch of
349 "threads". We must update the bp's notion of which thread
350 it is for, or it'll be ignored when it triggers. */
351
352 if (step_resume_breakpoint)
353 breakpoint_re_set_thread (step_resume_breakpoint);
354
355 /* Reinsert all breakpoints in the child. The user may have set
356 breakpoints after catching the fork, in which case those
357 were never set in the child, but only in the parent. This makes
358 sure the inserted breakpoints match the breakpoint list. */
359
360 breakpoint_re_set ();
361 insert_breakpoints ();
362 }
363
364 /* EXECD_PATHNAME is assumed to be non-NULL. */
365
366 static void
367 follow_exec (int pid, char *execd_pathname)
368 {
369 int saved_pid = pid;
370 struct target_ops *tgt;
371
372 if (!may_follow_exec)
373 return;
374
375 /* This is an exec event that we actually wish to pay attention to.
376 Refresh our symbol table to the newly exec'd program, remove any
377 momentary bp's, etc.
378
379 If there are breakpoints, they aren't really inserted now,
380 since the exec() transformed our inferior into a fresh set
381 of instructions.
382
383 We want to preserve symbolic breakpoints on the list, since
384 we have hopes that they can be reset after the new a.out's
385 symbol table is read.
386
387 However, any "raw" breakpoints must be removed from the list
388 (e.g., the solib bp's), since their address is probably invalid
389 now.
390
391 And, we DON'T want to call delete_breakpoints() here, since
392 that may write the bp's "shadow contents" (the instruction
393 value that was overwritten witha TRAP instruction). Since
394 we now have a new a.out, those shadow contents aren't valid. */
395 update_breakpoints_after_exec ();
396
397 /* If there was one, it's gone now. We cannot truly step-to-next
398 statement through an exec(). */
399 step_resume_breakpoint = NULL;
400 step_range_start = 0;
401 step_range_end = 0;
402
403 /* What is this a.out's name? */
404 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
405
406 /* We've followed the inferior through an exec. Therefore, the
407 inferior has essentially been killed & reborn. */
408
409 /* First collect the run target in effect. */
410 tgt = find_run_target ();
411 /* If we can't find one, things are in a very strange state... */
412 if (tgt == NULL)
413 error (_("Could find run target to save before following exec"));
414
415 gdb_flush (gdb_stdout);
416 target_mourn_inferior ();
417 inferior_ptid = pid_to_ptid (saved_pid);
418 /* Because mourn_inferior resets inferior_ptid. */
419 push_target (tgt);
420
421 /* That a.out is now the one to use. */
422 exec_file_attach (execd_pathname, 0);
423
424 /* And also is where symbols can be found. */
425 symbol_file_add_main (execd_pathname, 0);
426
427 /* Reset the shared library package. This ensures that we get
428 a shlib event when the child reaches "_start", at which point
429 the dld will have had a chance to initialize the child. */
430 #if defined(SOLIB_RESTART)
431 SOLIB_RESTART ();
432 #endif
433 #ifdef SOLIB_CREATE_INFERIOR_HOOK
434 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
435 #else
436 solib_create_inferior_hook ();
437 #endif
438
439 /* Reinsert all breakpoints. (Those which were symbolic have
440 been reset to the proper address in the new a.out, thanks
441 to symbol_file_command...) */
442 insert_breakpoints ();
443
444 /* The next resume of this inferior should bring it to the shlib
445 startup breakpoints. (If the user had also set bp's on
446 "main" from the old (parent) process, then they'll auto-
447 matically get reset there in the new process.) */
448 }
449
450 /* Non-zero if we just simulating a single-step. This is needed
451 because we cannot remove the breakpoints in the inferior process
452 until after the `wait' in `wait_for_inferior'. */
453 static int singlestep_breakpoints_inserted_p = 0;
454
455 /* The thread we inserted single-step breakpoints for. */
456 static ptid_t singlestep_ptid;
457
458 /* PC when we started this single-step. */
459 static CORE_ADDR singlestep_pc;
460
461 /* If another thread hit the singlestep breakpoint, we save the original
462 thread here so that we can resume single-stepping it later. */
463 static ptid_t saved_singlestep_ptid;
464 static int stepping_past_singlestep_breakpoint;
465
466 /* If not equal to null_ptid, this means that after stepping over breakpoint
467 is finished, we need to switch to deferred_step_ptid, and step it.
468
469 The use case is when one thread has hit a breakpoint, and then the user
470 has switched to another thread and issued 'step'. We need to step over
471 breakpoint in the thread which hit the breakpoint, but then continue
472 stepping the thread user has selected. */
473 static ptid_t deferred_step_ptid;
474 \f
475
476 /* Things to clean up if we QUIT out of resume (). */
477 static void
478 resume_cleanups (void *ignore)
479 {
480 normal_stop ();
481 }
482
483 static const char schedlock_off[] = "off";
484 static const char schedlock_on[] = "on";
485 static const char schedlock_step[] = "step";
486 static const char *scheduler_enums[] = {
487 schedlock_off,
488 schedlock_on,
489 schedlock_step,
490 NULL
491 };
492 static const char *scheduler_mode = schedlock_off;
493 static void
494 show_scheduler_mode (struct ui_file *file, int from_tty,
495 struct cmd_list_element *c, const char *value)
496 {
497 fprintf_filtered (file, _("\
498 Mode for locking scheduler during execution is \"%s\".\n"),
499 value);
500 }
501
502 static void
503 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
504 {
505 if (!target_can_lock_scheduler)
506 {
507 scheduler_mode = schedlock_off;
508 error (_("Target '%s' cannot support this command."), target_shortname);
509 }
510 }
511
512
513 /* Resume the inferior, but allow a QUIT. This is useful if the user
514 wants to interrupt some lengthy single-stepping operation
515 (for child processes, the SIGINT goes to the inferior, and so
516 we get a SIGINT random_signal, but for remote debugging and perhaps
517 other targets, that's not true).
518
519 STEP nonzero if we should step (zero to continue instead).
520 SIG is the signal to give the inferior (zero for none). */
521 void
522 resume (int step, enum target_signal sig)
523 {
524 int should_resume = 1;
525 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
526 QUIT;
527
528 if (debug_infrun)
529 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
530 step, sig);
531
532 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
533
534
535 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
536 over an instruction that causes a page fault without triggering
537 a hardware watchpoint. The kernel properly notices that it shouldn't
538 stop, because the hardware watchpoint is not triggered, but it forgets
539 the step request and continues the program normally.
540 Work around the problem by removing hardware watchpoints if a step is
541 requested, GDB will check for a hardware watchpoint trigger after the
542 step anyway. */
543 if (CANNOT_STEP_HW_WATCHPOINTS && step)
544 remove_hw_watchpoints ();
545
546
547 /* Normally, by the time we reach `resume', the breakpoints are either
548 removed or inserted, as appropriate. The exception is if we're sitting
549 at a permanent breakpoint; we need to step over it, but permanent
550 breakpoints can't be removed. So we have to test for it here. */
551 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
552 {
553 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
554 gdbarch_skip_permanent_breakpoint (current_gdbarch,
555 get_current_regcache ());
556 else
557 error (_("\
558 The program is stopped at a permanent breakpoint, but GDB does not know\n\
559 how to step past a permanent breakpoint on this architecture. Try using\n\
560 a command like `return' or `jump' to continue execution."));
561 }
562
563 if (step && gdbarch_software_single_step_p (current_gdbarch))
564 {
565 /* Do it the hard way, w/temp breakpoints */
566 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
567 {
568 /* ...and don't ask hardware to do it. */
569 step = 0;
570 /* and do not pull these breakpoints until after a `wait' in
571 `wait_for_inferior' */
572 singlestep_breakpoints_inserted_p = 1;
573 singlestep_ptid = inferior_ptid;
574 singlestep_pc = read_pc ();
575 }
576 }
577
578 /* If there were any forks/vforks/execs that were caught and are
579 now to be followed, then do so. */
580 switch (pending_follow.kind)
581 {
582 case TARGET_WAITKIND_FORKED:
583 case TARGET_WAITKIND_VFORKED:
584 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
585 if (follow_fork ())
586 should_resume = 0;
587 break;
588
589 case TARGET_WAITKIND_EXECD:
590 /* follow_exec is called as soon as the exec event is seen. */
591 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
592 break;
593
594 default:
595 break;
596 }
597
598 /* Install inferior's terminal modes. */
599 target_terminal_inferior ();
600
601 if (should_resume)
602 {
603 ptid_t resume_ptid;
604
605 resume_ptid = RESUME_ALL; /* Default */
606
607 /* If STEP is set, it's a request to use hardware stepping
608 facilities. But in that case, we should never
609 use singlestep breakpoint. */
610 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
611
612 if (singlestep_breakpoints_inserted_p
613 && stepping_past_singlestep_breakpoint)
614 {
615 /* The situation here is as follows. In thread T1 we wanted to
616 single-step. Lacking hardware single-stepping we've
617 set breakpoint at the PC of the next instruction -- call it
618 P. After resuming, we've hit that breakpoint in thread T2.
619 Now we've removed original breakpoint, inserted breakpoint
620 at P+1, and try to step to advance T2 past breakpoint.
621 We need to step only T2, as if T1 is allowed to freely run,
622 it can run past P, and if other threads are allowed to run,
623 they can hit breakpoint at P+1, and nested hits of single-step
624 breakpoints is not something we'd want -- that's complicated
625 to support, and has no value. */
626 resume_ptid = inferior_ptid;
627 }
628
629 if ((step || singlestep_breakpoints_inserted_p)
630 && breakpoint_here_p (read_pc ())
631 && !breakpoint_inserted_here_p (read_pc ()))
632 {
633 /* We're stepping, have breakpoint at PC, and it's
634 not inserted. Most likely, proceed has noticed that
635 we have breakpoint and tries to single-step over it,
636 so that it's not hit. In which case, we need to
637 single-step only this thread, and keep others stopped,
638 as they can miss this breakpoint if allowed to run.
639
640 The current code either has all breakpoints inserted,
641 or all removed, so if we let other threads run,
642 we can actually miss any breakpoint, not the one at PC. */
643 resume_ptid = inferior_ptid;
644 }
645
646 if ((scheduler_mode == schedlock_on)
647 || (scheduler_mode == schedlock_step
648 && (step || singlestep_breakpoints_inserted_p)))
649 {
650 /* User-settable 'scheduler' mode requires solo thread resume. */
651 resume_ptid = inferior_ptid;
652 }
653
654 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
655 {
656 /* Most targets can step a breakpoint instruction, thus
657 executing it normally. But if this one cannot, just
658 continue and we will hit it anyway. */
659 if (step && breakpoint_inserted_here_p (read_pc ()))
660 step = 0;
661 }
662 target_resume (resume_ptid, step, sig);
663 }
664
665 discard_cleanups (old_cleanups);
666 }
667 \f
668
669 /* Clear out all variables saying what to do when inferior is continued.
670 First do this, then set the ones you want, then call `proceed'. */
671
672 void
673 clear_proceed_status (void)
674 {
675 stepping_over_breakpoint = 0;
676 step_range_start = 0;
677 step_range_end = 0;
678 step_frame_id = null_frame_id;
679 step_over_calls = STEP_OVER_UNDEBUGGABLE;
680 stop_after_trap = 0;
681 stop_soon = NO_STOP_QUIETLY;
682 proceed_to_finish = 0;
683 breakpoint_proceeded = 1; /* We're about to proceed... */
684
685 if (stop_registers)
686 {
687 regcache_xfree (stop_registers);
688 stop_registers = NULL;
689 }
690
691 /* Discard any remaining commands or status from previous stop. */
692 bpstat_clear (&stop_bpstat);
693 }
694
695 /* This should be suitable for any targets that support threads. */
696
697 static int
698 prepare_to_proceed (int step)
699 {
700 ptid_t wait_ptid;
701 struct target_waitstatus wait_status;
702
703 /* Get the last target status returned by target_wait(). */
704 get_last_target_status (&wait_ptid, &wait_status);
705
706 /* Make sure we were stopped at a breakpoint. */
707 if (wait_status.kind != TARGET_WAITKIND_STOPPED
708 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
709 {
710 return 0;
711 }
712
713 /* Switched over from WAIT_PID. */
714 if (!ptid_equal (wait_ptid, minus_one_ptid)
715 && !ptid_equal (inferior_ptid, wait_ptid)
716 && breakpoint_here_p (read_pc_pid (wait_ptid)))
717 {
718 /* If stepping, remember current thread to switch back to. */
719 if (step)
720 {
721 deferred_step_ptid = inferior_ptid;
722 }
723
724 /* Switch back to WAIT_PID thread. */
725 switch_to_thread (wait_ptid);
726
727 /* We return 1 to indicate that there is a breakpoint here,
728 so we need to step over it before continuing to avoid
729 hitting it straight away. */
730 return 1;
731 }
732
733 return 0;
734 }
735
736 /* Record the pc of the program the last time it stopped. This is
737 just used internally by wait_for_inferior, but need to be preserved
738 over calls to it and cleared when the inferior is started. */
739 static CORE_ADDR prev_pc;
740
741 /* Basic routine for continuing the program in various fashions.
742
743 ADDR is the address to resume at, or -1 for resume where stopped.
744 SIGGNAL is the signal to give it, or 0 for none,
745 or -1 for act according to how it stopped.
746 STEP is nonzero if should trap after one instruction.
747 -1 means return after that and print nothing.
748 You should probably set various step_... variables
749 before calling here, if you are stepping.
750
751 You should call clear_proceed_status before calling proceed. */
752
753 void
754 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
755 {
756 int oneproc = 0;
757
758 if (step > 0)
759 step_start_function = find_pc_function (read_pc ());
760 if (step < 0)
761 stop_after_trap = 1;
762
763 if (addr == (CORE_ADDR) -1)
764 {
765 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
766 /* There is a breakpoint at the address we will resume at,
767 step one instruction before inserting breakpoints so that
768 we do not stop right away (and report a second hit at this
769 breakpoint). */
770 oneproc = 1;
771 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
772 && gdbarch_single_step_through_delay (current_gdbarch,
773 get_current_frame ()))
774 /* We stepped onto an instruction that needs to be stepped
775 again before re-inserting the breakpoint, do so. */
776 oneproc = 1;
777 }
778 else
779 {
780 write_pc (addr);
781 }
782
783 if (debug_infrun)
784 fprintf_unfiltered (gdb_stdlog,
785 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
786 paddr_nz (addr), siggnal, step);
787
788 /* In a multi-threaded task we may select another thread
789 and then continue or step.
790
791 But if the old thread was stopped at a breakpoint, it
792 will immediately cause another breakpoint stop without
793 any execution (i.e. it will report a breakpoint hit
794 incorrectly). So we must step over it first.
795
796 prepare_to_proceed checks the current thread against the thread
797 that reported the most recent event. If a step-over is required
798 it returns TRUE and sets the current thread to the old thread. */
799 if (prepare_to_proceed (step))
800 oneproc = 1;
801
802 if (oneproc)
803 /* We will get a trace trap after one instruction.
804 Continue it automatically and insert breakpoints then. */
805 stepping_over_breakpoint = 1;
806 else
807 insert_breakpoints ();
808
809 if (siggnal != TARGET_SIGNAL_DEFAULT)
810 stop_signal = siggnal;
811 /* If this signal should not be seen by program,
812 give it zero. Used for debugging signals. */
813 else if (!signal_program[stop_signal])
814 stop_signal = TARGET_SIGNAL_0;
815
816 annotate_starting ();
817
818 /* Make sure that output from GDB appears before output from the
819 inferior. */
820 gdb_flush (gdb_stdout);
821
822 /* Refresh prev_pc value just prior to resuming. This used to be
823 done in stop_stepping, however, setting prev_pc there did not handle
824 scenarios such as inferior function calls or returning from
825 a function via the return command. In those cases, the prev_pc
826 value was not set properly for subsequent commands. The prev_pc value
827 is used to initialize the starting line number in the ecs. With an
828 invalid value, the gdb next command ends up stopping at the position
829 represented by the next line table entry past our start position.
830 On platforms that generate one line table entry per line, this
831 is not a problem. However, on the ia64, the compiler generates
832 extraneous line table entries that do not increase the line number.
833 When we issue the gdb next command on the ia64 after an inferior call
834 or a return command, we often end up a few instructions forward, still
835 within the original line we started.
836
837 An attempt was made to have init_execution_control_state () refresh
838 the prev_pc value before calculating the line number. This approach
839 did not work because on platforms that use ptrace, the pc register
840 cannot be read unless the inferior is stopped. At that point, we
841 are not guaranteed the inferior is stopped and so the read_pc ()
842 call can fail. Setting the prev_pc value here ensures the value is
843 updated correctly when the inferior is stopped. */
844 prev_pc = read_pc ();
845
846 /* Resume inferior. */
847 resume (oneproc || step || bpstat_should_step (), stop_signal);
848
849 /* Wait for it to stop (if not standalone)
850 and in any case decode why it stopped, and act accordingly. */
851 /* Do this only if we are not using the event loop, or if the target
852 does not support asynchronous execution. */
853 if (!target_can_async_p ())
854 {
855 wait_for_inferior ();
856 normal_stop ();
857 }
858 }
859 \f
860
861 /* Start remote-debugging of a machine over a serial link. */
862
863 void
864 start_remote (int from_tty)
865 {
866 init_thread_list ();
867 init_wait_for_inferior ();
868 stop_soon = STOP_QUIETLY_REMOTE;
869 stepping_over_breakpoint = 0;
870
871 /* Always go on waiting for the target, regardless of the mode. */
872 /* FIXME: cagney/1999-09-23: At present it isn't possible to
873 indicate to wait_for_inferior that a target should timeout if
874 nothing is returned (instead of just blocking). Because of this,
875 targets expecting an immediate response need to, internally, set
876 things up so that the target_wait() is forced to eventually
877 timeout. */
878 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
879 differentiate to its caller what the state of the target is after
880 the initial open has been performed. Here we're assuming that
881 the target has stopped. It should be possible to eventually have
882 target_open() return to the caller an indication that the target
883 is currently running and GDB state should be set to the same as
884 for an async run. */
885 wait_for_inferior ();
886
887 /* Now that the inferior has stopped, do any bookkeeping like
888 loading shared libraries. We want to do this before normal_stop,
889 so that the displayed frame is up to date. */
890 post_create_inferior (&current_target, from_tty);
891
892 normal_stop ();
893 }
894
895 /* Initialize static vars when a new inferior begins. */
896
897 void
898 init_wait_for_inferior (void)
899 {
900 /* These are meaningless until the first time through wait_for_inferior. */
901 prev_pc = 0;
902
903 breakpoint_init_inferior (inf_starting);
904
905 /* Don't confuse first call to proceed(). */
906 stop_signal = TARGET_SIGNAL_0;
907
908 /* The first resume is not following a fork/vfork/exec. */
909 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
910
911 clear_proceed_status ();
912
913 stepping_past_singlestep_breakpoint = 0;
914 deferred_step_ptid = null_ptid;
915
916 target_last_wait_ptid = minus_one_ptid;
917 }
918 \f
919 /* This enum encodes possible reasons for doing a target_wait, so that
920 wfi can call target_wait in one place. (Ultimately the call will be
921 moved out of the infinite loop entirely.) */
922
923 enum infwait_states
924 {
925 infwait_normal_state,
926 infwait_thread_hop_state,
927 infwait_step_watch_state,
928 infwait_nonstep_watch_state
929 };
930
931 /* Why did the inferior stop? Used to print the appropriate messages
932 to the interface from within handle_inferior_event(). */
933 enum inferior_stop_reason
934 {
935 /* Step, next, nexti, stepi finished. */
936 END_STEPPING_RANGE,
937 /* Inferior terminated by signal. */
938 SIGNAL_EXITED,
939 /* Inferior exited. */
940 EXITED,
941 /* Inferior received signal, and user asked to be notified. */
942 SIGNAL_RECEIVED
943 };
944
945 /* This structure contains what used to be local variables in
946 wait_for_inferior. Probably many of them can return to being
947 locals in handle_inferior_event. */
948
949 struct execution_control_state
950 {
951 struct target_waitstatus ws;
952 struct target_waitstatus *wp;
953 /* Should we step over breakpoint next time keep_going
954 is called? */
955 int stepping_over_breakpoint;
956 int random_signal;
957 CORE_ADDR stop_func_start;
958 CORE_ADDR stop_func_end;
959 char *stop_func_name;
960 struct symtab_and_line sal;
961 int current_line;
962 struct symtab *current_symtab;
963 int handling_longjmp; /* FIXME */
964 ptid_t ptid;
965 ptid_t saved_inferior_ptid;
966 int step_after_step_resume_breakpoint;
967 int stepping_through_solib_after_catch;
968 bpstat stepping_through_solib_catchpoints;
969 int new_thread_event;
970 struct target_waitstatus tmpstatus;
971 enum infwait_states infwait_state;
972 ptid_t waiton_ptid;
973 int wait_some_more;
974 };
975
976 void init_execution_control_state (struct execution_control_state *ecs);
977
978 void handle_inferior_event (struct execution_control_state *ecs);
979
980 static void step_into_function (struct execution_control_state *ecs);
981 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
982 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
983 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
984 struct frame_id sr_id);
985 static void stop_stepping (struct execution_control_state *ecs);
986 static void prepare_to_wait (struct execution_control_state *ecs);
987 static void keep_going (struct execution_control_state *ecs);
988 static void print_stop_reason (enum inferior_stop_reason stop_reason,
989 int stop_info);
990
991 /* Wait for control to return from inferior to debugger.
992 If inferior gets a signal, we may decide to start it up again
993 instead of returning. That is why there is a loop in this function.
994 When this function actually returns it means the inferior
995 should be left stopped and GDB should read more commands. */
996
997 void
998 wait_for_inferior (void)
999 {
1000 struct cleanup *old_cleanups;
1001 struct execution_control_state ecss;
1002 struct execution_control_state *ecs;
1003
1004 if (debug_infrun)
1005 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
1006
1007 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1008 &step_resume_breakpoint);
1009
1010 /* wfi still stays in a loop, so it's OK just to take the address of
1011 a local to get the ecs pointer. */
1012 ecs = &ecss;
1013
1014 /* Fill in with reasonable starting values. */
1015 init_execution_control_state (ecs);
1016
1017 /* We'll update this if & when we switch to a new thread. */
1018 previous_inferior_ptid = inferior_ptid;
1019
1020 overlay_cache_invalid = 1;
1021
1022 /* We have to invalidate the registers BEFORE calling target_wait
1023 because they can be loaded from the target while in target_wait.
1024 This makes remote debugging a bit more efficient for those
1025 targets that provide critical registers as part of their normal
1026 status mechanism. */
1027
1028 registers_changed ();
1029
1030 while (1)
1031 {
1032 if (deprecated_target_wait_hook)
1033 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1034 else
1035 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1036
1037 /* Now figure out what to do with the result of the result. */
1038 handle_inferior_event (ecs);
1039
1040 if (!ecs->wait_some_more)
1041 break;
1042 }
1043 do_cleanups (old_cleanups);
1044 }
1045
1046 /* Asynchronous version of wait_for_inferior. It is called by the
1047 event loop whenever a change of state is detected on the file
1048 descriptor corresponding to the target. It can be called more than
1049 once to complete a single execution command. In such cases we need
1050 to keep the state in a global variable ASYNC_ECSS. If it is the
1051 last time that this function is called for a single execution
1052 command, then report to the user that the inferior has stopped, and
1053 do the necessary cleanups. */
1054
1055 struct execution_control_state async_ecss;
1056 struct execution_control_state *async_ecs;
1057
1058 void
1059 fetch_inferior_event (void *client_data)
1060 {
1061 static struct cleanup *old_cleanups;
1062
1063 async_ecs = &async_ecss;
1064
1065 if (!async_ecs->wait_some_more)
1066 {
1067 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1068 &step_resume_breakpoint);
1069
1070 /* Fill in with reasonable starting values. */
1071 init_execution_control_state (async_ecs);
1072
1073 /* We'll update this if & when we switch to a new thread. */
1074 previous_inferior_ptid = inferior_ptid;
1075
1076 overlay_cache_invalid = 1;
1077
1078 /* We have to invalidate the registers BEFORE calling target_wait
1079 because they can be loaded from the target while in target_wait.
1080 This makes remote debugging a bit more efficient for those
1081 targets that provide critical registers as part of their normal
1082 status mechanism. */
1083
1084 registers_changed ();
1085 }
1086
1087 if (deprecated_target_wait_hook)
1088 async_ecs->ptid =
1089 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1090 else
1091 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1092
1093 /* Now figure out what to do with the result of the result. */
1094 handle_inferior_event (async_ecs);
1095
1096 if (!async_ecs->wait_some_more)
1097 {
1098 /* Do only the cleanups that have been added by this
1099 function. Let the continuations for the commands do the rest,
1100 if there are any. */
1101 do_exec_cleanups (old_cleanups);
1102 normal_stop ();
1103 if (step_multi && stop_step)
1104 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1105 else
1106 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1107 }
1108 }
1109
1110 /* Prepare an execution control state for looping through a
1111 wait_for_inferior-type loop. */
1112
1113 void
1114 init_execution_control_state (struct execution_control_state *ecs)
1115 {
1116 ecs->stepping_over_breakpoint = 0;
1117 ecs->random_signal = 0;
1118 ecs->step_after_step_resume_breakpoint = 0;
1119 ecs->handling_longjmp = 0; /* FIXME */
1120 ecs->stepping_through_solib_after_catch = 0;
1121 ecs->stepping_through_solib_catchpoints = NULL;
1122 ecs->sal = find_pc_line (prev_pc, 0);
1123 ecs->current_line = ecs->sal.line;
1124 ecs->current_symtab = ecs->sal.symtab;
1125 ecs->infwait_state = infwait_normal_state;
1126 ecs->waiton_ptid = pid_to_ptid (-1);
1127 ecs->wp = &(ecs->ws);
1128 }
1129
1130 /* Return the cached copy of the last pid/waitstatus returned by
1131 target_wait()/deprecated_target_wait_hook(). The data is actually
1132 cached by handle_inferior_event(), which gets called immediately
1133 after target_wait()/deprecated_target_wait_hook(). */
1134
1135 void
1136 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1137 {
1138 *ptidp = target_last_wait_ptid;
1139 *status = target_last_waitstatus;
1140 }
1141
1142 void
1143 nullify_last_target_wait_ptid (void)
1144 {
1145 target_last_wait_ptid = minus_one_ptid;
1146 }
1147
1148 /* Switch thread contexts, maintaining "infrun state". */
1149
1150 static void
1151 context_switch (struct execution_control_state *ecs)
1152 {
1153 /* Caution: it may happen that the new thread (or the old one!)
1154 is not in the thread list. In this case we must not attempt
1155 to "switch context", or we run the risk that our context may
1156 be lost. This may happen as a result of the target module
1157 mishandling thread creation. */
1158
1159 if (debug_infrun)
1160 {
1161 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1162 target_pid_to_str (inferior_ptid));
1163 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1164 target_pid_to_str (ecs->ptid));
1165 }
1166
1167 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1168 { /* Perform infrun state context switch: */
1169 /* Save infrun state for the old thread. */
1170 save_infrun_state (inferior_ptid, prev_pc,
1171 stepping_over_breakpoint, step_resume_breakpoint,
1172 step_range_start,
1173 step_range_end, &step_frame_id,
1174 ecs->handling_longjmp, ecs->stepping_over_breakpoint,
1175 ecs->stepping_through_solib_after_catch,
1176 ecs->stepping_through_solib_catchpoints,
1177 ecs->current_line, ecs->current_symtab);
1178
1179 /* Load infrun state for the new thread. */
1180 load_infrun_state (ecs->ptid, &prev_pc,
1181 &stepping_over_breakpoint, &step_resume_breakpoint,
1182 &step_range_start,
1183 &step_range_end, &step_frame_id,
1184 &ecs->handling_longjmp, &ecs->stepping_over_breakpoint,
1185 &ecs->stepping_through_solib_after_catch,
1186 &ecs->stepping_through_solib_catchpoints,
1187 &ecs->current_line, &ecs->current_symtab);
1188 }
1189
1190 switch_to_thread (ecs->ptid);
1191 }
1192
1193 static void
1194 adjust_pc_after_break (struct execution_control_state *ecs)
1195 {
1196 CORE_ADDR breakpoint_pc;
1197
1198 /* If this target does not decrement the PC after breakpoints, then
1199 we have nothing to do. */
1200 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1201 return;
1202
1203 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1204 we aren't, just return.
1205
1206 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1207 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1208 implemented by software breakpoints should be handled through the normal
1209 breakpoint layer.
1210
1211 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1212 different signals (SIGILL or SIGEMT for instance), but it is less
1213 clear where the PC is pointing afterwards. It may not match
1214 gdbarch_decr_pc_after_break. I don't know any specific target that
1215 generates these signals at breakpoints (the code has been in GDB since at
1216 least 1992) so I can not guess how to handle them here.
1217
1218 In earlier versions of GDB, a target with
1219 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1220 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1221 target with both of these set in GDB history, and it seems unlikely to be
1222 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1223
1224 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1225 return;
1226
1227 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1228 return;
1229
1230 /* Find the location where (if we've hit a breakpoint) the
1231 breakpoint would be. */
1232 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1233 (current_gdbarch);
1234
1235 /* Check whether there actually is a software breakpoint inserted
1236 at that location. */
1237 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1238 {
1239 /* When using hardware single-step, a SIGTRAP is reported for both
1240 a completed single-step and a software breakpoint. Need to
1241 differentiate between the two, as the latter needs adjusting
1242 but the former does not.
1243
1244 The SIGTRAP can be due to a completed hardware single-step only if
1245 - we didn't insert software single-step breakpoints
1246 - the thread to be examined is still the current thread
1247 - this thread is currently being stepped
1248
1249 If any of these events did not occur, we must have stopped due
1250 to hitting a software breakpoint, and have to back up to the
1251 breakpoint address.
1252
1253 As a special case, we could have hardware single-stepped a
1254 software breakpoint. In this case (prev_pc == breakpoint_pc),
1255 we also need to back up to the breakpoint address. */
1256
1257 if (singlestep_breakpoints_inserted_p
1258 || !ptid_equal (ecs->ptid, inferior_ptid)
1259 || !currently_stepping (ecs)
1260 || prev_pc == breakpoint_pc)
1261 write_pc_pid (breakpoint_pc, ecs->ptid);
1262 }
1263 }
1264
1265 /* Given an execution control state that has been freshly filled in
1266 by an event from the inferior, figure out what it means and take
1267 appropriate action. */
1268
1269 void
1270 handle_inferior_event (struct execution_control_state *ecs)
1271 {
1272 int sw_single_step_trap_p = 0;
1273 int stopped_by_watchpoint;
1274 int stepped_after_stopped_by_watchpoint = 0;
1275
1276 /* Cache the last pid/waitstatus. */
1277 target_last_wait_ptid = ecs->ptid;
1278 target_last_waitstatus = *ecs->wp;
1279
1280 /* Always clear state belonging to the previous time we stopped. */
1281 stop_stack_dummy = 0;
1282
1283 adjust_pc_after_break (ecs);
1284
1285 switch (ecs->infwait_state)
1286 {
1287 case infwait_thread_hop_state:
1288 if (debug_infrun)
1289 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1290 /* Cancel the waiton_ptid. */
1291 ecs->waiton_ptid = pid_to_ptid (-1);
1292 break;
1293
1294 case infwait_normal_state:
1295 if (debug_infrun)
1296 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1297 break;
1298
1299 case infwait_step_watch_state:
1300 if (debug_infrun)
1301 fprintf_unfiltered (gdb_stdlog,
1302 "infrun: infwait_step_watch_state\n");
1303
1304 stepped_after_stopped_by_watchpoint = 1;
1305 break;
1306
1307 case infwait_nonstep_watch_state:
1308 if (debug_infrun)
1309 fprintf_unfiltered (gdb_stdlog,
1310 "infrun: infwait_nonstep_watch_state\n");
1311 insert_breakpoints ();
1312
1313 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1314 handle things like signals arriving and other things happening
1315 in combination correctly? */
1316 stepped_after_stopped_by_watchpoint = 1;
1317 break;
1318
1319 default:
1320 internal_error (__FILE__, __LINE__, _("bad switch"));
1321 }
1322 ecs->infwait_state = infwait_normal_state;
1323
1324 reinit_frame_cache ();
1325
1326 /* If it's a new process, add it to the thread database */
1327
1328 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1329 && !ptid_equal (ecs->ptid, minus_one_ptid)
1330 && !in_thread_list (ecs->ptid));
1331
1332 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1333 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1334 {
1335 add_thread (ecs->ptid);
1336
1337 ui_out_text (uiout, "[New ");
1338 ui_out_text (uiout, target_pid_to_str (ecs->ptid));
1339 ui_out_text (uiout, "]\n");
1340 }
1341
1342 switch (ecs->ws.kind)
1343 {
1344 case TARGET_WAITKIND_LOADED:
1345 if (debug_infrun)
1346 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1347 /* Ignore gracefully during startup of the inferior, as it might
1348 be the shell which has just loaded some objects, otherwise
1349 add the symbols for the newly loaded objects. Also ignore at
1350 the beginning of an attach or remote session; we will query
1351 the full list of libraries once the connection is
1352 established. */
1353 if (stop_soon == NO_STOP_QUIETLY)
1354 {
1355 /* Remove breakpoints, SOLIB_ADD might adjust
1356 breakpoint addresses via breakpoint_re_set. */
1357 remove_breakpoints ();
1358
1359 /* Check for any newly added shared libraries if we're
1360 supposed to be adding them automatically. Switch
1361 terminal for any messages produced by
1362 breakpoint_re_set. */
1363 target_terminal_ours_for_output ();
1364 /* NOTE: cagney/2003-11-25: Make certain that the target
1365 stack's section table is kept up-to-date. Architectures,
1366 (e.g., PPC64), use the section table to perform
1367 operations such as address => section name and hence
1368 require the table to contain all sections (including
1369 those found in shared libraries). */
1370 /* NOTE: cagney/2003-11-25: Pass current_target and not
1371 exec_ops to SOLIB_ADD. This is because current GDB is
1372 only tooled to propagate section_table changes out from
1373 the "current_target" (see target_resize_to_sections), and
1374 not up from the exec stratum. This, of course, isn't
1375 right. "infrun.c" should only interact with the
1376 exec/process stratum, instead relying on the target stack
1377 to propagate relevant changes (stop, section table
1378 changed, ...) up to other layers. */
1379 #ifdef SOLIB_ADD
1380 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1381 #else
1382 solib_add (NULL, 0, &current_target, auto_solib_add);
1383 #endif
1384 target_terminal_inferior ();
1385
1386 /* If requested, stop when the dynamic linker notifies
1387 gdb of events. This allows the user to get control
1388 and place breakpoints in initializer routines for
1389 dynamically loaded objects (among other things). */
1390 if (stop_on_solib_events)
1391 {
1392 stop_stepping (ecs);
1393 return;
1394 }
1395
1396 /* NOTE drow/2007-05-11: This might be a good place to check
1397 for "catch load". */
1398
1399 /* Reinsert breakpoints and continue. */
1400 insert_breakpoints ();
1401 }
1402
1403 /* If we are skipping through a shell, or through shared library
1404 loading that we aren't interested in, resume the program. If
1405 we're running the program normally, also resume. But stop if
1406 we're attaching or setting up a remote connection. */
1407 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1408 {
1409 resume (0, TARGET_SIGNAL_0);
1410 prepare_to_wait (ecs);
1411 return;
1412 }
1413
1414 break;
1415
1416 case TARGET_WAITKIND_SPURIOUS:
1417 if (debug_infrun)
1418 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1419 resume (0, TARGET_SIGNAL_0);
1420 prepare_to_wait (ecs);
1421 return;
1422
1423 case TARGET_WAITKIND_EXITED:
1424 if (debug_infrun)
1425 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1426 target_terminal_ours (); /* Must do this before mourn anyway */
1427 print_stop_reason (EXITED, ecs->ws.value.integer);
1428
1429 /* Record the exit code in the convenience variable $_exitcode, so
1430 that the user can inspect this again later. */
1431 set_internalvar (lookup_internalvar ("_exitcode"),
1432 value_from_longest (builtin_type_int,
1433 (LONGEST) ecs->ws.value.integer));
1434 gdb_flush (gdb_stdout);
1435 target_mourn_inferior ();
1436 singlestep_breakpoints_inserted_p = 0;
1437 stop_print_frame = 0;
1438 stop_stepping (ecs);
1439 return;
1440
1441 case TARGET_WAITKIND_SIGNALLED:
1442 if (debug_infrun)
1443 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1444 stop_print_frame = 0;
1445 stop_signal = ecs->ws.value.sig;
1446 target_terminal_ours (); /* Must do this before mourn anyway */
1447
1448 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1449 reach here unless the inferior is dead. However, for years
1450 target_kill() was called here, which hints that fatal signals aren't
1451 really fatal on some systems. If that's true, then some changes
1452 may be needed. */
1453 target_mourn_inferior ();
1454
1455 print_stop_reason (SIGNAL_EXITED, stop_signal);
1456 singlestep_breakpoints_inserted_p = 0;
1457 stop_stepping (ecs);
1458 return;
1459
1460 /* The following are the only cases in which we keep going;
1461 the above cases end in a continue or goto. */
1462 case TARGET_WAITKIND_FORKED:
1463 case TARGET_WAITKIND_VFORKED:
1464 if (debug_infrun)
1465 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1466 stop_signal = TARGET_SIGNAL_TRAP;
1467 pending_follow.kind = ecs->ws.kind;
1468
1469 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1470 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1471
1472 if (!ptid_equal (ecs->ptid, inferior_ptid))
1473 {
1474 context_switch (ecs);
1475 reinit_frame_cache ();
1476 }
1477
1478 stop_pc = read_pc ();
1479
1480 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1481
1482 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1483
1484 /* If no catchpoint triggered for this, then keep going. */
1485 if (ecs->random_signal)
1486 {
1487 stop_signal = TARGET_SIGNAL_0;
1488 keep_going (ecs);
1489 return;
1490 }
1491 goto process_event_stop_test;
1492
1493 case TARGET_WAITKIND_EXECD:
1494 if (debug_infrun)
1495 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1496 stop_signal = TARGET_SIGNAL_TRAP;
1497
1498 /* NOTE drow/2002-12-05: This code should be pushed down into the
1499 target_wait function. Until then following vfork on HP/UX 10.20
1500 is probably broken by this. Of course, it's broken anyway. */
1501 /* Is this a target which reports multiple exec events per actual
1502 call to exec()? (HP-UX using ptrace does, for example.) If so,
1503 ignore all but the last one. Just resume the exec'r, and wait
1504 for the next exec event. */
1505 if (inferior_ignoring_leading_exec_events)
1506 {
1507 inferior_ignoring_leading_exec_events--;
1508 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1509 prepare_to_wait (ecs);
1510 return;
1511 }
1512 inferior_ignoring_leading_exec_events =
1513 target_reported_exec_events_per_exec_call () - 1;
1514
1515 pending_follow.execd_pathname =
1516 savestring (ecs->ws.value.execd_pathname,
1517 strlen (ecs->ws.value.execd_pathname));
1518
1519 /* This causes the eventpoints and symbol table to be reset. Must
1520 do this now, before trying to determine whether to stop. */
1521 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1522 xfree (pending_follow.execd_pathname);
1523
1524 stop_pc = read_pc_pid (ecs->ptid);
1525 ecs->saved_inferior_ptid = inferior_ptid;
1526 inferior_ptid = ecs->ptid;
1527
1528 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1529
1530 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1531 inferior_ptid = ecs->saved_inferior_ptid;
1532
1533 if (!ptid_equal (ecs->ptid, inferior_ptid))
1534 {
1535 context_switch (ecs);
1536 reinit_frame_cache ();
1537 }
1538
1539 /* If no catchpoint triggered for this, then keep going. */
1540 if (ecs->random_signal)
1541 {
1542 stop_signal = TARGET_SIGNAL_0;
1543 keep_going (ecs);
1544 return;
1545 }
1546 goto process_event_stop_test;
1547
1548 /* Be careful not to try to gather much state about a thread
1549 that's in a syscall. It's frequently a losing proposition. */
1550 case TARGET_WAITKIND_SYSCALL_ENTRY:
1551 if (debug_infrun)
1552 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1553 resume (0, TARGET_SIGNAL_0);
1554 prepare_to_wait (ecs);
1555 return;
1556
1557 /* Before examining the threads further, step this thread to
1558 get it entirely out of the syscall. (We get notice of the
1559 event when the thread is just on the verge of exiting a
1560 syscall. Stepping one instruction seems to get it back
1561 into user code.) */
1562 case TARGET_WAITKIND_SYSCALL_RETURN:
1563 if (debug_infrun)
1564 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1565 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1566 prepare_to_wait (ecs);
1567 return;
1568
1569 case TARGET_WAITKIND_STOPPED:
1570 if (debug_infrun)
1571 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1572 stop_signal = ecs->ws.value.sig;
1573 break;
1574
1575 /* We had an event in the inferior, but we are not interested
1576 in handling it at this level. The lower layers have already
1577 done what needs to be done, if anything.
1578
1579 One of the possible circumstances for this is when the
1580 inferior produces output for the console. The inferior has
1581 not stopped, and we are ignoring the event. Another possible
1582 circumstance is any event which the lower level knows will be
1583 reported multiple times without an intervening resume. */
1584 case TARGET_WAITKIND_IGNORE:
1585 if (debug_infrun)
1586 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1587 prepare_to_wait (ecs);
1588 return;
1589 }
1590
1591 /* We may want to consider not doing a resume here in order to give
1592 the user a chance to play with the new thread. It might be good
1593 to make that a user-settable option. */
1594
1595 /* At this point, all threads are stopped (happens automatically in
1596 either the OS or the native code). Therefore we need to continue
1597 all threads in order to make progress. */
1598 if (ecs->new_thread_event)
1599 {
1600 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1601 prepare_to_wait (ecs);
1602 return;
1603 }
1604
1605 stop_pc = read_pc_pid (ecs->ptid);
1606
1607 if (debug_infrun)
1608 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1609
1610 if (stepping_past_singlestep_breakpoint)
1611 {
1612 gdb_assert (singlestep_breakpoints_inserted_p);
1613 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1614 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1615
1616 stepping_past_singlestep_breakpoint = 0;
1617
1618 /* We've either finished single-stepping past the single-step
1619 breakpoint, or stopped for some other reason. It would be nice if
1620 we could tell, but we can't reliably. */
1621 if (stop_signal == TARGET_SIGNAL_TRAP)
1622 {
1623 if (debug_infrun)
1624 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1625 /* Pull the single step breakpoints out of the target. */
1626 remove_single_step_breakpoints ();
1627 singlestep_breakpoints_inserted_p = 0;
1628
1629 ecs->random_signal = 0;
1630
1631 ecs->ptid = saved_singlestep_ptid;
1632 context_switch (ecs);
1633 if (deprecated_context_hook)
1634 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1635
1636 resume (1, TARGET_SIGNAL_0);
1637 prepare_to_wait (ecs);
1638 return;
1639 }
1640 }
1641
1642 stepping_past_singlestep_breakpoint = 0;
1643
1644 if (!ptid_equal (deferred_step_ptid, null_ptid))
1645 {
1646 /* If we stopped for some other reason than single-stepping, ignore
1647 the fact that we were supposed to switch back. */
1648 if (stop_signal == TARGET_SIGNAL_TRAP)
1649 {
1650 if (debug_infrun)
1651 fprintf_unfiltered (gdb_stdlog,
1652 "infrun: handling deferred step\n");
1653
1654 /* Pull the single step breakpoints out of the target. */
1655 if (singlestep_breakpoints_inserted_p)
1656 {
1657 remove_single_step_breakpoints ();
1658 singlestep_breakpoints_inserted_p = 0;
1659 }
1660
1661 /* Note: We do not call context_switch at this point, as the
1662 context is already set up for stepping the original thread. */
1663 switch_to_thread (deferred_step_ptid);
1664 deferred_step_ptid = null_ptid;
1665 /* Suppress spurious "Switching to ..." message. */
1666 previous_inferior_ptid = inferior_ptid;
1667
1668 resume (1, TARGET_SIGNAL_0);
1669 prepare_to_wait (ecs);
1670 return;
1671 }
1672
1673 deferred_step_ptid = null_ptid;
1674 }
1675
1676 /* See if a thread hit a thread-specific breakpoint that was meant for
1677 another thread. If so, then step that thread past the breakpoint,
1678 and continue it. */
1679
1680 if (stop_signal == TARGET_SIGNAL_TRAP)
1681 {
1682 int thread_hop_needed = 0;
1683
1684 /* Check if a regular breakpoint has been hit before checking
1685 for a potential single step breakpoint. Otherwise, GDB will
1686 not see this breakpoint hit when stepping onto breakpoints. */
1687 if (regular_breakpoint_inserted_here_p (stop_pc))
1688 {
1689 ecs->random_signal = 0;
1690 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1691 thread_hop_needed = 1;
1692 }
1693 else if (singlestep_breakpoints_inserted_p)
1694 {
1695 /* We have not context switched yet, so this should be true
1696 no matter which thread hit the singlestep breakpoint. */
1697 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1698 if (debug_infrun)
1699 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1700 "trap for %s\n",
1701 target_pid_to_str (ecs->ptid));
1702
1703 ecs->random_signal = 0;
1704 /* The call to in_thread_list is necessary because PTIDs sometimes
1705 change when we go from single-threaded to multi-threaded. If
1706 the singlestep_ptid is still in the list, assume that it is
1707 really different from ecs->ptid. */
1708 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1709 && in_thread_list (singlestep_ptid))
1710 {
1711 /* If the PC of the thread we were trying to single-step
1712 has changed, discard this event (which we were going
1713 to ignore anyway), and pretend we saw that thread
1714 trap. This prevents us continuously moving the
1715 single-step breakpoint forward, one instruction at a
1716 time. If the PC has changed, then the thread we were
1717 trying to single-step has trapped or been signalled,
1718 but the event has not been reported to GDB yet.
1719
1720 There might be some cases where this loses signal
1721 information, if a signal has arrived at exactly the
1722 same time that the PC changed, but this is the best
1723 we can do with the information available. Perhaps we
1724 should arrange to report all events for all threads
1725 when they stop, or to re-poll the remote looking for
1726 this particular thread (i.e. temporarily enable
1727 schedlock). */
1728 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1729 {
1730 if (debug_infrun)
1731 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1732 " but expected thread advanced also\n");
1733
1734 /* The current context still belongs to
1735 singlestep_ptid. Don't swap here, since that's
1736 the context we want to use. Just fudge our
1737 state and continue. */
1738 ecs->ptid = singlestep_ptid;
1739 stop_pc = read_pc_pid (ecs->ptid);
1740 }
1741 else
1742 {
1743 if (debug_infrun)
1744 fprintf_unfiltered (gdb_stdlog,
1745 "infrun: unexpected thread\n");
1746
1747 thread_hop_needed = 1;
1748 stepping_past_singlestep_breakpoint = 1;
1749 saved_singlestep_ptid = singlestep_ptid;
1750 }
1751 }
1752 }
1753
1754 if (thread_hop_needed)
1755 {
1756 int remove_status;
1757
1758 if (debug_infrun)
1759 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1760
1761 /* Saw a breakpoint, but it was hit by the wrong thread.
1762 Just continue. */
1763
1764 if (singlestep_breakpoints_inserted_p)
1765 {
1766 /* Pull the single step breakpoints out of the target. */
1767 remove_single_step_breakpoints ();
1768 singlestep_breakpoints_inserted_p = 0;
1769 }
1770
1771 remove_status = remove_breakpoints ();
1772 /* Did we fail to remove breakpoints? If so, try
1773 to set the PC past the bp. (There's at least
1774 one situation in which we can fail to remove
1775 the bp's: On HP-UX's that use ttrace, we can't
1776 change the address space of a vforking child
1777 process until the child exits (well, okay, not
1778 then either :-) or execs. */
1779 if (remove_status != 0)
1780 {
1781 /* FIXME! This is obviously non-portable! */
1782 write_pc_pid (stop_pc + 4, ecs->ptid);
1783 /* We need to restart all the threads now,
1784 * unles we're running in scheduler-locked mode.
1785 * Use currently_stepping to determine whether to
1786 * step or continue.
1787 */
1788 /* FIXME MVS: is there any reason not to call resume()? */
1789 if (scheduler_mode == schedlock_on)
1790 target_resume (ecs->ptid,
1791 currently_stepping (ecs), TARGET_SIGNAL_0);
1792 else
1793 target_resume (RESUME_ALL,
1794 currently_stepping (ecs), TARGET_SIGNAL_0);
1795 prepare_to_wait (ecs);
1796 return;
1797 }
1798 else
1799 { /* Single step */
1800 if (!ptid_equal (inferior_ptid, ecs->ptid))
1801 context_switch (ecs);
1802 ecs->waiton_ptid = ecs->ptid;
1803 ecs->wp = &(ecs->ws);
1804 ecs->stepping_over_breakpoint = 1;
1805
1806 ecs->infwait_state = infwait_thread_hop_state;
1807 keep_going (ecs);
1808 registers_changed ();
1809 return;
1810 }
1811 }
1812 else if (singlestep_breakpoints_inserted_p)
1813 {
1814 sw_single_step_trap_p = 1;
1815 ecs->random_signal = 0;
1816 }
1817 }
1818 else
1819 ecs->random_signal = 1;
1820
1821 /* See if something interesting happened to the non-current thread. If
1822 so, then switch to that thread. */
1823 if (!ptid_equal (ecs->ptid, inferior_ptid))
1824 {
1825 if (debug_infrun)
1826 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1827
1828 context_switch (ecs);
1829
1830 if (deprecated_context_hook)
1831 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1832 }
1833
1834 if (singlestep_breakpoints_inserted_p)
1835 {
1836 /* Pull the single step breakpoints out of the target. */
1837 remove_single_step_breakpoints ();
1838 singlestep_breakpoints_inserted_p = 0;
1839 }
1840
1841 if (stepped_after_stopped_by_watchpoint)
1842 stopped_by_watchpoint = 0;
1843 else
1844 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
1845
1846 /* If necessary, step over this watchpoint. We'll be back to display
1847 it in a moment. */
1848 if (stopped_by_watchpoint
1849 && (HAVE_STEPPABLE_WATCHPOINT
1850 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
1851 {
1852 if (debug_infrun)
1853 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1854
1855 /* At this point, we are stopped at an instruction which has
1856 attempted to write to a piece of memory under control of
1857 a watchpoint. The instruction hasn't actually executed
1858 yet. If we were to evaluate the watchpoint expression
1859 now, we would get the old value, and therefore no change
1860 would seem to have occurred.
1861
1862 In order to make watchpoints work `right', we really need
1863 to complete the memory write, and then evaluate the
1864 watchpoint expression. We do this by single-stepping the
1865 target.
1866
1867 It may not be necessary to disable the watchpoint to stop over
1868 it. For example, the PA can (with some kernel cooperation)
1869 single step over a watchpoint without disabling the watchpoint.
1870
1871 It is far more common to need to disable a watchpoint to step
1872 the inferior over it. If we have non-steppable watchpoints,
1873 we must disable the current watchpoint; it's simplest to
1874 disable all watchpoints and breakpoints. */
1875
1876 if (!HAVE_STEPPABLE_WATCHPOINT)
1877 remove_breakpoints ();
1878 registers_changed ();
1879 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1880 ecs->waiton_ptid = ecs->ptid;
1881 if (HAVE_STEPPABLE_WATCHPOINT)
1882 ecs->infwait_state = infwait_step_watch_state;
1883 else
1884 ecs->infwait_state = infwait_nonstep_watch_state;
1885 prepare_to_wait (ecs);
1886 return;
1887 }
1888
1889 ecs->stop_func_start = 0;
1890 ecs->stop_func_end = 0;
1891 ecs->stop_func_name = 0;
1892 /* Don't care about return value; stop_func_start and stop_func_name
1893 will both be 0 if it doesn't work. */
1894 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1895 &ecs->stop_func_start, &ecs->stop_func_end);
1896 ecs->stop_func_start
1897 += gdbarch_deprecated_function_start_offset (current_gdbarch);
1898 ecs->stepping_over_breakpoint = 0;
1899 bpstat_clear (&stop_bpstat);
1900 stop_step = 0;
1901 stop_print_frame = 1;
1902 ecs->random_signal = 0;
1903 stopped_by_random_signal = 0;
1904
1905 if (stop_signal == TARGET_SIGNAL_TRAP
1906 && stepping_over_breakpoint
1907 && gdbarch_single_step_through_delay_p (current_gdbarch)
1908 && currently_stepping (ecs))
1909 {
1910 /* We're trying to step off a breakpoint. Turns out that we're
1911 also on an instruction that needs to be stepped multiple
1912 times before it's been fully executing. E.g., architectures
1913 with a delay slot. It needs to be stepped twice, once for
1914 the instruction and once for the delay slot. */
1915 int step_through_delay
1916 = gdbarch_single_step_through_delay (current_gdbarch,
1917 get_current_frame ());
1918 if (debug_infrun && step_through_delay)
1919 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1920 if (step_range_end == 0 && step_through_delay)
1921 {
1922 /* The user issued a continue when stopped at a breakpoint.
1923 Set up for another trap and get out of here. */
1924 ecs->stepping_over_breakpoint = 1;
1925 keep_going (ecs);
1926 return;
1927 }
1928 else if (step_through_delay)
1929 {
1930 /* The user issued a step when stopped at a breakpoint.
1931 Maybe we should stop, maybe we should not - the delay
1932 slot *might* correspond to a line of source. In any
1933 case, don't decide that here, just set
1934 ecs->stepping_over_breakpoint, making sure we
1935 single-step again before breakpoints are re-inserted. */
1936 ecs->stepping_over_breakpoint = 1;
1937 }
1938 }
1939
1940 /* Look at the cause of the stop, and decide what to do.
1941 The alternatives are:
1942 1) break; to really stop and return to the debugger,
1943 2) drop through to start up again
1944 (set ecs->stepping_over_breakpoint to 1 to single step once)
1945 3) set ecs->random_signal to 1, and the decision between 1 and 2
1946 will be made according to the signal handling tables. */
1947
1948 /* First, distinguish signals caused by the debugger from signals
1949 that have to do with the program's own actions. Note that
1950 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1951 on the operating system version. Here we detect when a SIGILL or
1952 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1953 something similar for SIGSEGV, since a SIGSEGV will be generated
1954 when we're trying to execute a breakpoint instruction on a
1955 non-executable stack. This happens for call dummy breakpoints
1956 for architectures like SPARC that place call dummies on the
1957 stack. */
1958
1959 if (stop_signal == TARGET_SIGNAL_TRAP
1960 || (breakpoint_inserted_here_p (stop_pc)
1961 && (stop_signal == TARGET_SIGNAL_ILL
1962 || stop_signal == TARGET_SIGNAL_SEGV
1963 || stop_signal == TARGET_SIGNAL_EMT))
1964 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1965 || stop_soon == STOP_QUIETLY_REMOTE)
1966 {
1967 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1968 {
1969 if (debug_infrun)
1970 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1971 stop_print_frame = 0;
1972 stop_stepping (ecs);
1973 return;
1974 }
1975
1976 /* This is originated from start_remote(), start_inferior() and
1977 shared libraries hook functions. */
1978 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
1979 {
1980 if (debug_infrun)
1981 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1982 stop_stepping (ecs);
1983 return;
1984 }
1985
1986 /* This originates from attach_command(). We need to overwrite
1987 the stop_signal here, because some kernels don't ignore a
1988 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1989 See more comments in inferior.h. */
1990 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1991 {
1992 stop_stepping (ecs);
1993 if (stop_signal == TARGET_SIGNAL_STOP)
1994 stop_signal = TARGET_SIGNAL_0;
1995 return;
1996 }
1997
1998 /* See if there is a breakpoint at the current PC. */
1999 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2000
2001 /* Following in case break condition called a
2002 function. */
2003 stop_print_frame = 1;
2004
2005 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2006 at one stage in the past included checks for an inferior
2007 function call's call dummy's return breakpoint. The original
2008 comment, that went with the test, read:
2009
2010 ``End of a stack dummy. Some systems (e.g. Sony news) give
2011 another signal besides SIGTRAP, so check here as well as
2012 above.''
2013
2014 If someone ever tries to get get call dummys on a
2015 non-executable stack to work (where the target would stop
2016 with something like a SIGSEGV), then those tests might need
2017 to be re-instated. Given, however, that the tests were only
2018 enabled when momentary breakpoints were not being used, I
2019 suspect that it won't be the case.
2020
2021 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2022 be necessary for call dummies on a non-executable stack on
2023 SPARC. */
2024
2025 if (stop_signal == TARGET_SIGNAL_TRAP)
2026 ecs->random_signal
2027 = !(bpstat_explains_signal (stop_bpstat)
2028 || stepping_over_breakpoint
2029 || (step_range_end && step_resume_breakpoint == NULL));
2030 else
2031 {
2032 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2033 if (!ecs->random_signal)
2034 stop_signal = TARGET_SIGNAL_TRAP;
2035 }
2036 }
2037
2038 /* When we reach this point, we've pretty much decided
2039 that the reason for stopping must've been a random
2040 (unexpected) signal. */
2041
2042 else
2043 ecs->random_signal = 1;
2044
2045 process_event_stop_test:
2046 /* For the program's own signals, act according to
2047 the signal handling tables. */
2048
2049 if (ecs->random_signal)
2050 {
2051 /* Signal not for debugging purposes. */
2052 int printed = 0;
2053
2054 if (debug_infrun)
2055 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2056
2057 stopped_by_random_signal = 1;
2058
2059 if (signal_print[stop_signal])
2060 {
2061 printed = 1;
2062 target_terminal_ours_for_output ();
2063 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2064 }
2065 if (signal_stop[stop_signal])
2066 {
2067 stop_stepping (ecs);
2068 return;
2069 }
2070 /* If not going to stop, give terminal back
2071 if we took it away. */
2072 else if (printed)
2073 target_terminal_inferior ();
2074
2075 /* Clear the signal if it should not be passed. */
2076 if (signal_program[stop_signal] == 0)
2077 stop_signal = TARGET_SIGNAL_0;
2078
2079 if (prev_pc == read_pc ()
2080 && breakpoint_here_p (read_pc ())
2081 && !breakpoint_inserted_here_p (read_pc ())
2082 && step_resume_breakpoint == NULL)
2083 {
2084 /* We were just starting a new sequence, attempting to
2085 single-step off of a breakpoint and expecting a SIGTRAP.
2086 Intead this signal arrives. This signal will take us out
2087 of the stepping range so GDB needs to remember to, when
2088 the signal handler returns, resume stepping off that
2089 breakpoint. */
2090 /* To simplify things, "continue" is forced to use the same
2091 code paths as single-step - set a breakpoint at the
2092 signal return address and then, once hit, step off that
2093 breakpoint. */
2094
2095 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2096 ecs->step_after_step_resume_breakpoint = 1;
2097 keep_going (ecs);
2098 return;
2099 }
2100
2101 if (step_range_end != 0
2102 && stop_signal != TARGET_SIGNAL_0
2103 && stop_pc >= step_range_start && stop_pc < step_range_end
2104 && frame_id_eq (get_frame_id (get_current_frame ()),
2105 step_frame_id)
2106 && step_resume_breakpoint == NULL)
2107 {
2108 /* The inferior is about to take a signal that will take it
2109 out of the single step range. Set a breakpoint at the
2110 current PC (which is presumably where the signal handler
2111 will eventually return) and then allow the inferior to
2112 run free.
2113
2114 Note that this is only needed for a signal delivered
2115 while in the single-step range. Nested signals aren't a
2116 problem as they eventually all return. */
2117 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2118 keep_going (ecs);
2119 return;
2120 }
2121
2122 /* Note: step_resume_breakpoint may be non-NULL. This occures
2123 when either there's a nested signal, or when there's a
2124 pending signal enabled just as the signal handler returns
2125 (leaving the inferior at the step-resume-breakpoint without
2126 actually executing it). Either way continue until the
2127 breakpoint is really hit. */
2128 keep_going (ecs);
2129 return;
2130 }
2131
2132 /* Handle cases caused by hitting a breakpoint. */
2133 {
2134 CORE_ADDR jmp_buf_pc;
2135 struct bpstat_what what;
2136
2137 what = bpstat_what (stop_bpstat);
2138
2139 if (what.call_dummy)
2140 {
2141 stop_stack_dummy = 1;
2142 }
2143
2144 switch (what.main_action)
2145 {
2146 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2147 /* If we hit the breakpoint at longjmp, disable it for the
2148 duration of this command. Then, install a temporary
2149 breakpoint at the target of the jmp_buf. */
2150 if (debug_infrun)
2151 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2152 disable_longjmp_breakpoint ();
2153 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2154 || !gdbarch_get_longjmp_target (current_gdbarch,
2155 get_current_frame (), &jmp_buf_pc))
2156 {
2157 keep_going (ecs);
2158 return;
2159 }
2160
2161 /* Need to blow away step-resume breakpoint, as it
2162 interferes with us */
2163 if (step_resume_breakpoint != NULL)
2164 {
2165 delete_step_resume_breakpoint (&step_resume_breakpoint);
2166 }
2167
2168 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2169 ecs->handling_longjmp = 1; /* FIXME */
2170 keep_going (ecs);
2171 return;
2172
2173 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2174 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2175 if (debug_infrun)
2176 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2177 disable_longjmp_breakpoint ();
2178 ecs->handling_longjmp = 0; /* FIXME */
2179 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2180 break;
2181 /* else fallthrough */
2182
2183 case BPSTAT_WHAT_SINGLE:
2184 if (debug_infrun)
2185 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2186 ecs->stepping_over_breakpoint = 1;
2187 /* Still need to check other stuff, at least the case
2188 where we are stepping and step out of the right range. */
2189 break;
2190
2191 case BPSTAT_WHAT_STOP_NOISY:
2192 if (debug_infrun)
2193 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2194 stop_print_frame = 1;
2195
2196 /* We are about to nuke the step_resume_breakpointt via the
2197 cleanup chain, so no need to worry about it here. */
2198
2199 stop_stepping (ecs);
2200 return;
2201
2202 case BPSTAT_WHAT_STOP_SILENT:
2203 if (debug_infrun)
2204 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2205 stop_print_frame = 0;
2206
2207 /* We are about to nuke the step_resume_breakpoin via the
2208 cleanup chain, so no need to worry about it here. */
2209
2210 stop_stepping (ecs);
2211 return;
2212
2213 case BPSTAT_WHAT_STEP_RESUME:
2214 /* This proably demands a more elegant solution, but, yeah
2215 right...
2216
2217 This function's use of the simple variable
2218 step_resume_breakpoint doesn't seem to accomodate
2219 simultaneously active step-resume bp's, although the
2220 breakpoint list certainly can.
2221
2222 If we reach here and step_resume_breakpoint is already
2223 NULL, then apparently we have multiple active
2224 step-resume bp's. We'll just delete the breakpoint we
2225 stopped at, and carry on.
2226
2227 Correction: what the code currently does is delete a
2228 step-resume bp, but it makes no effort to ensure that
2229 the one deleted is the one currently stopped at. MVS */
2230
2231 if (debug_infrun)
2232 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2233
2234 if (step_resume_breakpoint == NULL)
2235 {
2236 step_resume_breakpoint =
2237 bpstat_find_step_resume_breakpoint (stop_bpstat);
2238 }
2239 delete_step_resume_breakpoint (&step_resume_breakpoint);
2240 if (ecs->step_after_step_resume_breakpoint)
2241 {
2242 /* Back when the step-resume breakpoint was inserted, we
2243 were trying to single-step off a breakpoint. Go back
2244 to doing that. */
2245 ecs->step_after_step_resume_breakpoint = 0;
2246 ecs->stepping_over_breakpoint = 1;
2247 keep_going (ecs);
2248 return;
2249 }
2250 break;
2251
2252 case BPSTAT_WHAT_CHECK_SHLIBS:
2253 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2254 {
2255 if (debug_infrun)
2256 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2257 /* Remove breakpoints, we eventually want to step over the
2258 shlib event breakpoint, and SOLIB_ADD might adjust
2259 breakpoint addresses via breakpoint_re_set. */
2260 remove_breakpoints ();
2261
2262 /* Check for any newly added shared libraries if we're
2263 supposed to be adding them automatically. Switch
2264 terminal for any messages produced by
2265 breakpoint_re_set. */
2266 target_terminal_ours_for_output ();
2267 /* NOTE: cagney/2003-11-25: Make certain that the target
2268 stack's section table is kept up-to-date. Architectures,
2269 (e.g., PPC64), use the section table to perform
2270 operations such as address => section name and hence
2271 require the table to contain all sections (including
2272 those found in shared libraries). */
2273 /* NOTE: cagney/2003-11-25: Pass current_target and not
2274 exec_ops to SOLIB_ADD. This is because current GDB is
2275 only tooled to propagate section_table changes out from
2276 the "current_target" (see target_resize_to_sections), and
2277 not up from the exec stratum. This, of course, isn't
2278 right. "infrun.c" should only interact with the
2279 exec/process stratum, instead relying on the target stack
2280 to propagate relevant changes (stop, section table
2281 changed, ...) up to other layers. */
2282 #ifdef SOLIB_ADD
2283 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2284 #else
2285 solib_add (NULL, 0, &current_target, auto_solib_add);
2286 #endif
2287 target_terminal_inferior ();
2288
2289 /* If requested, stop when the dynamic linker notifies
2290 gdb of events. This allows the user to get control
2291 and place breakpoints in initializer routines for
2292 dynamically loaded objects (among other things). */
2293 if (stop_on_solib_events || stop_stack_dummy)
2294 {
2295 stop_stepping (ecs);
2296 return;
2297 }
2298
2299 /* If we stopped due to an explicit catchpoint, then the
2300 (see above) call to SOLIB_ADD pulled in any symbols
2301 from a newly-loaded library, if appropriate.
2302
2303 We do want the inferior to stop, but not where it is
2304 now, which is in the dynamic linker callback. Rather,
2305 we would like it stop in the user's program, just after
2306 the call that caused this catchpoint to trigger. That
2307 gives the user a more useful vantage from which to
2308 examine their program's state. */
2309 else if (what.main_action
2310 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2311 {
2312 /* ??rehrauer: If I could figure out how to get the
2313 right return PC from here, we could just set a temp
2314 breakpoint and resume. I'm not sure we can without
2315 cracking open the dld's shared libraries and sniffing
2316 their unwind tables and text/data ranges, and that's
2317 not a terribly portable notion.
2318
2319 Until that time, we must step the inferior out of the
2320 dld callback, and also out of the dld itself (and any
2321 code or stubs in libdld.sl, such as "shl_load" and
2322 friends) until we reach non-dld code. At that point,
2323 we can stop stepping. */
2324 bpstat_get_triggered_catchpoints (stop_bpstat,
2325 &ecs->
2326 stepping_through_solib_catchpoints);
2327 ecs->stepping_through_solib_after_catch = 1;
2328
2329 /* Be sure to lift all breakpoints, so the inferior does
2330 actually step past this point... */
2331 ecs->stepping_over_breakpoint = 1;
2332 break;
2333 }
2334 else
2335 {
2336 /* We want to step over this breakpoint, then keep going. */
2337 ecs->stepping_over_breakpoint = 1;
2338 break;
2339 }
2340 }
2341 break;
2342
2343 case BPSTAT_WHAT_LAST:
2344 /* Not a real code, but listed here to shut up gcc -Wall. */
2345
2346 case BPSTAT_WHAT_KEEP_CHECKING:
2347 break;
2348 }
2349 }
2350
2351 /* We come here if we hit a breakpoint but should not
2352 stop for it. Possibly we also were stepping
2353 and should stop for that. So fall through and
2354 test for stepping. But, if not stepping,
2355 do not stop. */
2356
2357 /* Are we stepping to get the inferior out of the dynamic linker's
2358 hook (and possibly the dld itself) after catching a shlib
2359 event? */
2360 if (ecs->stepping_through_solib_after_catch)
2361 {
2362 #if defined(SOLIB_ADD)
2363 /* Have we reached our destination? If not, keep going. */
2364 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2365 {
2366 if (debug_infrun)
2367 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2368 ecs->stepping_over_breakpoint = 1;
2369 keep_going (ecs);
2370 return;
2371 }
2372 #endif
2373 if (debug_infrun)
2374 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2375 /* Else, stop and report the catchpoint(s) whose triggering
2376 caused us to begin stepping. */
2377 ecs->stepping_through_solib_after_catch = 0;
2378 bpstat_clear (&stop_bpstat);
2379 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2380 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2381 stop_print_frame = 1;
2382 stop_stepping (ecs);
2383 return;
2384 }
2385
2386 if (step_resume_breakpoint)
2387 {
2388 if (debug_infrun)
2389 fprintf_unfiltered (gdb_stdlog,
2390 "infrun: step-resume breakpoint is inserted\n");
2391
2392 /* Having a step-resume breakpoint overrides anything
2393 else having to do with stepping commands until
2394 that breakpoint is reached. */
2395 keep_going (ecs);
2396 return;
2397 }
2398
2399 if (step_range_end == 0)
2400 {
2401 if (debug_infrun)
2402 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2403 /* Likewise if we aren't even stepping. */
2404 keep_going (ecs);
2405 return;
2406 }
2407
2408 /* If stepping through a line, keep going if still within it.
2409
2410 Note that step_range_end is the address of the first instruction
2411 beyond the step range, and NOT the address of the last instruction
2412 within it! */
2413 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2414 {
2415 if (debug_infrun)
2416 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2417 paddr_nz (step_range_start),
2418 paddr_nz (step_range_end));
2419 keep_going (ecs);
2420 return;
2421 }
2422
2423 /* We stepped out of the stepping range. */
2424
2425 /* If we are stepping at the source level and entered the runtime
2426 loader dynamic symbol resolution code, we keep on single stepping
2427 until we exit the run time loader code and reach the callee's
2428 address. */
2429 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2430 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2431 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2432 #else
2433 && in_solib_dynsym_resolve_code (stop_pc)
2434 #endif
2435 )
2436 {
2437 CORE_ADDR pc_after_resolver =
2438 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2439
2440 if (debug_infrun)
2441 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2442
2443 if (pc_after_resolver)
2444 {
2445 /* Set up a step-resume breakpoint at the address
2446 indicated by SKIP_SOLIB_RESOLVER. */
2447 struct symtab_and_line sr_sal;
2448 init_sal (&sr_sal);
2449 sr_sal.pc = pc_after_resolver;
2450
2451 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2452 }
2453
2454 keep_going (ecs);
2455 return;
2456 }
2457
2458 if (step_range_end != 1
2459 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2460 || step_over_calls == STEP_OVER_ALL)
2461 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2462 {
2463 if (debug_infrun)
2464 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2465 /* The inferior, while doing a "step" or "next", has ended up in
2466 a signal trampoline (either by a signal being delivered or by
2467 the signal handler returning). Just single-step until the
2468 inferior leaves the trampoline (either by calling the handler
2469 or returning). */
2470 keep_going (ecs);
2471 return;
2472 }
2473
2474 /* Check for subroutine calls. The check for the current frame
2475 equalling the step ID is not necessary - the check of the
2476 previous frame's ID is sufficient - but it is a common case and
2477 cheaper than checking the previous frame's ID.
2478
2479 NOTE: frame_id_eq will never report two invalid frame IDs as
2480 being equal, so to get into this block, both the current and
2481 previous frame must have valid frame IDs. */
2482 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2483 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2484 {
2485 CORE_ADDR real_stop_pc;
2486
2487 if (debug_infrun)
2488 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2489
2490 if ((step_over_calls == STEP_OVER_NONE)
2491 || ((step_range_end == 1)
2492 && in_prologue (prev_pc, ecs->stop_func_start)))
2493 {
2494 /* I presume that step_over_calls is only 0 when we're
2495 supposed to be stepping at the assembly language level
2496 ("stepi"). Just stop. */
2497 /* Also, maybe we just did a "nexti" inside a prolog, so we
2498 thought it was a subroutine call but it was not. Stop as
2499 well. FENN */
2500 stop_step = 1;
2501 print_stop_reason (END_STEPPING_RANGE, 0);
2502 stop_stepping (ecs);
2503 return;
2504 }
2505
2506 if (step_over_calls == STEP_OVER_ALL)
2507 {
2508 /* We're doing a "next", set a breakpoint at callee's return
2509 address (the address at which the caller will
2510 resume). */
2511 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2512 keep_going (ecs);
2513 return;
2514 }
2515
2516 /* If we are in a function call trampoline (a stub between the
2517 calling routine and the real function), locate the real
2518 function. That's what tells us (a) whether we want to step
2519 into it at all, and (b) what prologue we want to run to the
2520 end of, if we do step into it. */
2521 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2522 if (real_stop_pc == 0)
2523 real_stop_pc = gdbarch_skip_trampoline_code
2524 (current_gdbarch, get_current_frame (), stop_pc);
2525 if (real_stop_pc != 0)
2526 ecs->stop_func_start = real_stop_pc;
2527
2528 if (
2529 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2530 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2531 #else
2532 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2533 #endif
2534 )
2535 {
2536 struct symtab_and_line sr_sal;
2537 init_sal (&sr_sal);
2538 sr_sal.pc = ecs->stop_func_start;
2539
2540 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2541 keep_going (ecs);
2542 return;
2543 }
2544
2545 /* If we have line number information for the function we are
2546 thinking of stepping into, step into it.
2547
2548 If there are several symtabs at that PC (e.g. with include
2549 files), just want to know whether *any* of them have line
2550 numbers. find_pc_line handles this. */
2551 {
2552 struct symtab_and_line tmp_sal;
2553
2554 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2555 if (tmp_sal.line != 0)
2556 {
2557 step_into_function (ecs);
2558 return;
2559 }
2560 }
2561
2562 /* If we have no line number and the step-stop-if-no-debug is
2563 set, we stop the step so that the user has a chance to switch
2564 in assembly mode. */
2565 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2566 {
2567 stop_step = 1;
2568 print_stop_reason (END_STEPPING_RANGE, 0);
2569 stop_stepping (ecs);
2570 return;
2571 }
2572
2573 /* Set a breakpoint at callee's return address (the address at
2574 which the caller will resume). */
2575 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2576 keep_going (ecs);
2577 return;
2578 }
2579
2580 /* If we're in the return path from a shared library trampoline,
2581 we want to proceed through the trampoline when stepping. */
2582 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2583 stop_pc, ecs->stop_func_name))
2584 {
2585 /* Determine where this trampoline returns. */
2586 CORE_ADDR real_stop_pc;
2587 real_stop_pc = gdbarch_skip_trampoline_code
2588 (current_gdbarch, get_current_frame (), stop_pc);
2589
2590 if (debug_infrun)
2591 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2592
2593 /* Only proceed through if we know where it's going. */
2594 if (real_stop_pc)
2595 {
2596 /* And put the step-breakpoint there and go until there. */
2597 struct symtab_and_line sr_sal;
2598
2599 init_sal (&sr_sal); /* initialize to zeroes */
2600 sr_sal.pc = real_stop_pc;
2601 sr_sal.section = find_pc_overlay (sr_sal.pc);
2602
2603 /* Do not specify what the fp should be when we stop since
2604 on some machines the prologue is where the new fp value
2605 is established. */
2606 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2607
2608 /* Restart without fiddling with the step ranges or
2609 other state. */
2610 keep_going (ecs);
2611 return;
2612 }
2613 }
2614
2615 ecs->sal = find_pc_line (stop_pc, 0);
2616
2617 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2618 the trampoline processing logic, however, there are some trampolines
2619 that have no names, so we should do trampoline handling first. */
2620 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2621 && ecs->stop_func_name == NULL
2622 && ecs->sal.line == 0)
2623 {
2624 if (debug_infrun)
2625 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2626
2627 /* The inferior just stepped into, or returned to, an
2628 undebuggable function (where there is no debugging information
2629 and no line number corresponding to the address where the
2630 inferior stopped). Since we want to skip this kind of code,
2631 we keep going until the inferior returns from this
2632 function - unless the user has asked us not to (via
2633 set step-mode) or we no longer know how to get back
2634 to the call site. */
2635 if (step_stop_if_no_debug
2636 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2637 {
2638 /* If we have no line number and the step-stop-if-no-debug
2639 is set, we stop the step so that the user has a chance to
2640 switch in assembly mode. */
2641 stop_step = 1;
2642 print_stop_reason (END_STEPPING_RANGE, 0);
2643 stop_stepping (ecs);
2644 return;
2645 }
2646 else
2647 {
2648 /* Set a breakpoint at callee's return address (the address
2649 at which the caller will resume). */
2650 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2651 keep_going (ecs);
2652 return;
2653 }
2654 }
2655
2656 if (step_range_end == 1)
2657 {
2658 /* It is stepi or nexti. We always want to stop stepping after
2659 one instruction. */
2660 if (debug_infrun)
2661 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2662 stop_step = 1;
2663 print_stop_reason (END_STEPPING_RANGE, 0);
2664 stop_stepping (ecs);
2665 return;
2666 }
2667
2668 if (ecs->sal.line == 0)
2669 {
2670 /* We have no line number information. That means to stop
2671 stepping (does this always happen right after one instruction,
2672 when we do "s" in a function with no line numbers,
2673 or can this happen as a result of a return or longjmp?). */
2674 if (debug_infrun)
2675 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2676 stop_step = 1;
2677 print_stop_reason (END_STEPPING_RANGE, 0);
2678 stop_stepping (ecs);
2679 return;
2680 }
2681
2682 if ((stop_pc == ecs->sal.pc)
2683 && (ecs->current_line != ecs->sal.line
2684 || ecs->current_symtab != ecs->sal.symtab))
2685 {
2686 /* We are at the start of a different line. So stop. Note that
2687 we don't stop if we step into the middle of a different line.
2688 That is said to make things like for (;;) statements work
2689 better. */
2690 if (debug_infrun)
2691 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2692 stop_step = 1;
2693 print_stop_reason (END_STEPPING_RANGE, 0);
2694 stop_stepping (ecs);
2695 return;
2696 }
2697
2698 /* We aren't done stepping.
2699
2700 Optimize by setting the stepping range to the line.
2701 (We might not be in the original line, but if we entered a
2702 new line in mid-statement, we continue stepping. This makes
2703 things like for(;;) statements work better.) */
2704
2705 step_range_start = ecs->sal.pc;
2706 step_range_end = ecs->sal.end;
2707 step_frame_id = get_frame_id (get_current_frame ());
2708 ecs->current_line = ecs->sal.line;
2709 ecs->current_symtab = ecs->sal.symtab;
2710
2711 /* In the case where we just stepped out of a function into the
2712 middle of a line of the caller, continue stepping, but
2713 step_frame_id must be modified to current frame */
2714 #if 0
2715 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2716 generous. It will trigger on things like a step into a frameless
2717 stackless leaf function. I think the logic should instead look
2718 at the unwound frame ID has that should give a more robust
2719 indication of what happened. */
2720 if (step - ID == current - ID)
2721 still stepping in same function;
2722 else if (step - ID == unwind (current - ID))
2723 stepped into a function;
2724 else
2725 stepped out of a function;
2726 /* Of course this assumes that the frame ID unwind code is robust
2727 and we're willing to introduce frame unwind logic into this
2728 function. Fortunately, those days are nearly upon us. */
2729 #endif
2730 {
2731 struct frame_info *frame = get_current_frame ();
2732 struct frame_id current_frame = get_frame_id (frame);
2733 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
2734 step_frame_id)))
2735 step_frame_id = current_frame;
2736 }
2737
2738 if (debug_infrun)
2739 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2740 keep_going (ecs);
2741 }
2742
2743 /* Are we in the middle of stepping? */
2744
2745 static int
2746 currently_stepping (struct execution_control_state *ecs)
2747 {
2748 return ((!ecs->handling_longjmp
2749 && ((step_range_end && step_resume_breakpoint == NULL)
2750 || stepping_over_breakpoint))
2751 || ecs->stepping_through_solib_after_catch
2752 || bpstat_should_step ());
2753 }
2754
2755 /* Subroutine call with source code we should not step over. Do step
2756 to the first line of code in it. */
2757
2758 static void
2759 step_into_function (struct execution_control_state *ecs)
2760 {
2761 struct symtab *s;
2762 struct symtab_and_line sr_sal;
2763
2764 s = find_pc_symtab (stop_pc);
2765 if (s && s->language != language_asm)
2766 ecs->stop_func_start = gdbarch_skip_prologue
2767 (current_gdbarch, ecs->stop_func_start);
2768
2769 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2770 /* Use the step_resume_break to step until the end of the prologue,
2771 even if that involves jumps (as it seems to on the vax under
2772 4.2). */
2773 /* If the prologue ends in the middle of a source line, continue to
2774 the end of that source line (if it is still within the function).
2775 Otherwise, just go to end of prologue. */
2776 if (ecs->sal.end
2777 && ecs->sal.pc != ecs->stop_func_start
2778 && ecs->sal.end < ecs->stop_func_end)
2779 ecs->stop_func_start = ecs->sal.end;
2780
2781 /* Architectures which require breakpoint adjustment might not be able
2782 to place a breakpoint at the computed address. If so, the test
2783 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2784 ecs->stop_func_start to an address at which a breakpoint may be
2785 legitimately placed.
2786
2787 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2788 made, GDB will enter an infinite loop when stepping through
2789 optimized code consisting of VLIW instructions which contain
2790 subinstructions corresponding to different source lines. On
2791 FR-V, it's not permitted to place a breakpoint on any but the
2792 first subinstruction of a VLIW instruction. When a breakpoint is
2793 set, GDB will adjust the breakpoint address to the beginning of
2794 the VLIW instruction. Thus, we need to make the corresponding
2795 adjustment here when computing the stop address. */
2796
2797 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2798 {
2799 ecs->stop_func_start
2800 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2801 ecs->stop_func_start);
2802 }
2803
2804 if (ecs->stop_func_start == stop_pc)
2805 {
2806 /* We are already there: stop now. */
2807 stop_step = 1;
2808 print_stop_reason (END_STEPPING_RANGE, 0);
2809 stop_stepping (ecs);
2810 return;
2811 }
2812 else
2813 {
2814 /* Put the step-breakpoint there and go until there. */
2815 init_sal (&sr_sal); /* initialize to zeroes */
2816 sr_sal.pc = ecs->stop_func_start;
2817 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2818
2819 /* Do not specify what the fp should be when we stop since on
2820 some machines the prologue is where the new fp value is
2821 established. */
2822 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2823
2824 /* And make sure stepping stops right away then. */
2825 step_range_end = step_range_start;
2826 }
2827 keep_going (ecs);
2828 }
2829
2830 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2831 This is used to both functions and to skip over code. */
2832
2833 static void
2834 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2835 struct frame_id sr_id)
2836 {
2837 /* There should never be more than one step-resume breakpoint per
2838 thread, so we should never be setting a new
2839 step_resume_breakpoint when one is already active. */
2840 gdb_assert (step_resume_breakpoint == NULL);
2841
2842 if (debug_infrun)
2843 fprintf_unfiltered (gdb_stdlog,
2844 "infrun: inserting step-resume breakpoint at 0x%s\n",
2845 paddr_nz (sr_sal.pc));
2846
2847 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2848 bp_step_resume);
2849 }
2850
2851 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2852 to skip a potential signal handler.
2853
2854 This is called with the interrupted function's frame. The signal
2855 handler, when it returns, will resume the interrupted function at
2856 RETURN_FRAME.pc. */
2857
2858 static void
2859 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2860 {
2861 struct symtab_and_line sr_sal;
2862
2863 gdb_assert (return_frame != NULL);
2864 init_sal (&sr_sal); /* initialize to zeros */
2865
2866 sr_sal.pc = gdbarch_addr_bits_remove
2867 (current_gdbarch, get_frame_pc (return_frame));
2868 sr_sal.section = find_pc_overlay (sr_sal.pc);
2869
2870 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2871 }
2872
2873 /* Similar to insert_step_resume_breakpoint_at_frame, except
2874 but a breakpoint at the previous frame's PC. This is used to
2875 skip a function after stepping into it (for "next" or if the called
2876 function has no debugging information).
2877
2878 The current function has almost always been reached by single
2879 stepping a call or return instruction. NEXT_FRAME belongs to the
2880 current function, and the breakpoint will be set at the caller's
2881 resume address.
2882
2883 This is a separate function rather than reusing
2884 insert_step_resume_breakpoint_at_frame in order to avoid
2885 get_prev_frame, which may stop prematurely (see the implementation
2886 of frame_unwind_id for an example). */
2887
2888 static void
2889 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2890 {
2891 struct symtab_and_line sr_sal;
2892
2893 /* We shouldn't have gotten here if we don't know where the call site
2894 is. */
2895 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2896
2897 init_sal (&sr_sal); /* initialize to zeros */
2898
2899 sr_sal.pc = gdbarch_addr_bits_remove
2900 (current_gdbarch, frame_pc_unwind (next_frame));
2901 sr_sal.section = find_pc_overlay (sr_sal.pc);
2902
2903 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2904 }
2905
2906 static void
2907 stop_stepping (struct execution_control_state *ecs)
2908 {
2909 if (debug_infrun)
2910 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2911
2912 /* Let callers know we don't want to wait for the inferior anymore. */
2913 ecs->wait_some_more = 0;
2914 }
2915
2916 /* This function handles various cases where we need to continue
2917 waiting for the inferior. */
2918 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2919
2920 static void
2921 keep_going (struct execution_control_state *ecs)
2922 {
2923 /* Save the pc before execution, to compare with pc after stop. */
2924 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2925
2926 /* If we did not do break;, it means we should keep running the
2927 inferior and not return to debugger. */
2928
2929 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
2930 {
2931 /* We took a signal (which we are supposed to pass through to
2932 the inferior, else we'd have done a break above) and we
2933 haven't yet gotten our trap. Simply continue. */
2934 resume (currently_stepping (ecs), stop_signal);
2935 }
2936 else
2937 {
2938 /* Either the trap was not expected, but we are continuing
2939 anyway (the user asked that this signal be passed to the
2940 child)
2941 -- or --
2942 The signal was SIGTRAP, e.g. it was our signal, but we
2943 decided we should resume from it.
2944
2945 We're going to run this baby now!
2946
2947 Note that insert_breakpoints won't try to re-insert
2948 already inserted breakpoints. Therefore, we don't
2949 care if breakpoints were already inserted, or not. */
2950
2951 if (ecs->stepping_over_breakpoint)
2952 {
2953 remove_breakpoints ();
2954 }
2955 else
2956 {
2957 struct gdb_exception e;
2958 /* Stop stepping when inserting breakpoints
2959 has failed. */
2960 TRY_CATCH (e, RETURN_MASK_ERROR)
2961 {
2962 insert_breakpoints ();
2963 }
2964 if (e.reason < 0)
2965 {
2966 stop_stepping (ecs);
2967 return;
2968 }
2969 }
2970
2971 stepping_over_breakpoint = ecs->stepping_over_breakpoint;
2972
2973 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2974 specifies that such a signal should be delivered to the
2975 target program).
2976
2977 Typically, this would occure when a user is debugging a
2978 target monitor on a simulator: the target monitor sets a
2979 breakpoint; the simulator encounters this break-point and
2980 halts the simulation handing control to GDB; GDB, noteing
2981 that the break-point isn't valid, returns control back to the
2982 simulator; the simulator then delivers the hardware
2983 equivalent of a SIGNAL_TRAP to the program being debugged. */
2984
2985 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2986 stop_signal = TARGET_SIGNAL_0;
2987
2988
2989 resume (currently_stepping (ecs), stop_signal);
2990 }
2991
2992 prepare_to_wait (ecs);
2993 }
2994
2995 /* This function normally comes after a resume, before
2996 handle_inferior_event exits. It takes care of any last bits of
2997 housekeeping, and sets the all-important wait_some_more flag. */
2998
2999 static void
3000 prepare_to_wait (struct execution_control_state *ecs)
3001 {
3002 if (debug_infrun)
3003 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
3004 if (ecs->infwait_state == infwait_normal_state)
3005 {
3006 overlay_cache_invalid = 1;
3007
3008 /* We have to invalidate the registers BEFORE calling
3009 target_wait because they can be loaded from the target while
3010 in target_wait. This makes remote debugging a bit more
3011 efficient for those targets that provide critical registers
3012 as part of their normal status mechanism. */
3013
3014 registers_changed ();
3015 ecs->waiton_ptid = pid_to_ptid (-1);
3016 ecs->wp = &(ecs->ws);
3017 }
3018 /* This is the old end of the while loop. Let everybody know we
3019 want to wait for the inferior some more and get called again
3020 soon. */
3021 ecs->wait_some_more = 1;
3022 }
3023
3024 /* Print why the inferior has stopped. We always print something when
3025 the inferior exits, or receives a signal. The rest of the cases are
3026 dealt with later on in normal_stop() and print_it_typical(). Ideally
3027 there should be a call to this function from handle_inferior_event()
3028 each time stop_stepping() is called.*/
3029 static void
3030 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3031 {
3032 switch (stop_reason)
3033 {
3034 case END_STEPPING_RANGE:
3035 /* We are done with a step/next/si/ni command. */
3036 /* For now print nothing. */
3037 /* Print a message only if not in the middle of doing a "step n"
3038 operation for n > 1 */
3039 if (!step_multi || !stop_step)
3040 if (ui_out_is_mi_like_p (uiout))
3041 ui_out_field_string
3042 (uiout, "reason",
3043 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3044 break;
3045 case SIGNAL_EXITED:
3046 /* The inferior was terminated by a signal. */
3047 annotate_signalled ();
3048 if (ui_out_is_mi_like_p (uiout))
3049 ui_out_field_string
3050 (uiout, "reason",
3051 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3052 ui_out_text (uiout, "\nProgram terminated with signal ");
3053 annotate_signal_name ();
3054 ui_out_field_string (uiout, "signal-name",
3055 target_signal_to_name (stop_info));
3056 annotate_signal_name_end ();
3057 ui_out_text (uiout, ", ");
3058 annotate_signal_string ();
3059 ui_out_field_string (uiout, "signal-meaning",
3060 target_signal_to_string (stop_info));
3061 annotate_signal_string_end ();
3062 ui_out_text (uiout, ".\n");
3063 ui_out_text (uiout, "The program no longer exists.\n");
3064 break;
3065 case EXITED:
3066 /* The inferior program is finished. */
3067 annotate_exited (stop_info);
3068 if (stop_info)
3069 {
3070 if (ui_out_is_mi_like_p (uiout))
3071 ui_out_field_string (uiout, "reason",
3072 async_reason_lookup (EXEC_ASYNC_EXITED));
3073 ui_out_text (uiout, "\nProgram exited with code ");
3074 ui_out_field_fmt (uiout, "exit-code", "0%o",
3075 (unsigned int) stop_info);
3076 ui_out_text (uiout, ".\n");
3077 }
3078 else
3079 {
3080 if (ui_out_is_mi_like_p (uiout))
3081 ui_out_field_string
3082 (uiout, "reason",
3083 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3084 ui_out_text (uiout, "\nProgram exited normally.\n");
3085 }
3086 /* Support the --return-child-result option. */
3087 return_child_result_value = stop_info;
3088 break;
3089 case SIGNAL_RECEIVED:
3090 /* Signal received. The signal table tells us to print about
3091 it. */
3092 annotate_signal ();
3093 ui_out_text (uiout, "\nProgram received signal ");
3094 annotate_signal_name ();
3095 if (ui_out_is_mi_like_p (uiout))
3096 ui_out_field_string
3097 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3098 ui_out_field_string (uiout, "signal-name",
3099 target_signal_to_name (stop_info));
3100 annotate_signal_name_end ();
3101 ui_out_text (uiout, ", ");
3102 annotate_signal_string ();
3103 ui_out_field_string (uiout, "signal-meaning",
3104 target_signal_to_string (stop_info));
3105 annotate_signal_string_end ();
3106 ui_out_text (uiout, ".\n");
3107 break;
3108 default:
3109 internal_error (__FILE__, __LINE__,
3110 _("print_stop_reason: unrecognized enum value"));
3111 break;
3112 }
3113 }
3114 \f
3115
3116 /* Here to return control to GDB when the inferior stops for real.
3117 Print appropriate messages, remove breakpoints, give terminal our modes.
3118
3119 STOP_PRINT_FRAME nonzero means print the executing frame
3120 (pc, function, args, file, line number and line text).
3121 BREAKPOINTS_FAILED nonzero means stop was due to error
3122 attempting to insert breakpoints. */
3123
3124 void
3125 normal_stop (void)
3126 {
3127 struct target_waitstatus last;
3128 ptid_t last_ptid;
3129
3130 get_last_target_status (&last_ptid, &last);
3131
3132 /* As with the notification of thread events, we want to delay
3133 notifying the user that we've switched thread context until
3134 the inferior actually stops.
3135
3136 There's no point in saying anything if the inferior has exited.
3137 Note that SIGNALLED here means "exited with a signal", not
3138 "received a signal". */
3139 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3140 && target_has_execution
3141 && last.kind != TARGET_WAITKIND_SIGNALLED
3142 && last.kind != TARGET_WAITKIND_EXITED)
3143 {
3144 target_terminal_ours_for_output ();
3145 printf_filtered (_("[Switching to %s]\n"),
3146 target_pid_to_str (inferior_ptid));
3147 previous_inferior_ptid = inferior_ptid;
3148 }
3149
3150 /* NOTE drow/2004-01-17: Is this still necessary? */
3151 /* Make sure that the current_frame's pc is correct. This
3152 is a correction for setting up the frame info before doing
3153 gdbarch_decr_pc_after_break */
3154 if (target_has_execution)
3155 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3156 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3157 frame code to check for this and sort out any resultant mess.
3158 gdbarch_decr_pc_after_break needs to just go away. */
3159 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3160
3161 if (target_has_execution)
3162 {
3163 if (remove_breakpoints ())
3164 {
3165 target_terminal_ours_for_output ();
3166 printf_filtered (_("\
3167 Cannot remove breakpoints because program is no longer writable.\n\
3168 It might be running in another process.\n\
3169 Further execution is probably impossible.\n"));
3170 }
3171 }
3172
3173 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3174 Delete any breakpoint that is to be deleted at the next stop. */
3175
3176 breakpoint_auto_delete (stop_bpstat);
3177
3178 /* If an auto-display called a function and that got a signal,
3179 delete that auto-display to avoid an infinite recursion. */
3180
3181 if (stopped_by_random_signal)
3182 disable_current_display ();
3183
3184 /* Don't print a message if in the middle of doing a "step n"
3185 operation for n > 1 */
3186 if (step_multi && stop_step)
3187 goto done;
3188
3189 target_terminal_ours ();
3190
3191 /* Set the current source location. This will also happen if we
3192 display the frame below, but the current SAL will be incorrect
3193 during a user hook-stop function. */
3194 if (target_has_stack && !stop_stack_dummy)
3195 set_current_sal_from_frame (get_current_frame (), 1);
3196
3197 /* Look up the hook_stop and run it (CLI internally handles problem
3198 of stop_command's pre-hook not existing). */
3199 if (stop_command)
3200 catch_errors (hook_stop_stub, stop_command,
3201 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3202
3203 if (!target_has_stack)
3204 {
3205
3206 goto done;
3207 }
3208
3209 /* Select innermost stack frame - i.e., current frame is frame 0,
3210 and current location is based on that.
3211 Don't do this on return from a stack dummy routine,
3212 or if the program has exited. */
3213
3214 if (!stop_stack_dummy)
3215 {
3216 select_frame (get_current_frame ());
3217
3218 /* Print current location without a level number, if
3219 we have changed functions or hit a breakpoint.
3220 Print source line if we have one.
3221 bpstat_print() contains the logic deciding in detail
3222 what to print, based on the event(s) that just occurred. */
3223
3224 if (stop_print_frame)
3225 {
3226 int bpstat_ret;
3227 int source_flag;
3228 int do_frame_printing = 1;
3229
3230 bpstat_ret = bpstat_print (stop_bpstat);
3231 switch (bpstat_ret)
3232 {
3233 case PRINT_UNKNOWN:
3234 /* If we had hit a shared library event breakpoint,
3235 bpstat_print would print out this message. If we hit
3236 an OS-level shared library event, do the same
3237 thing. */
3238 if (last.kind == TARGET_WAITKIND_LOADED)
3239 {
3240 printf_filtered (_("Stopped due to shared library event\n"));
3241 source_flag = SRC_LINE; /* something bogus */
3242 do_frame_printing = 0;
3243 break;
3244 }
3245
3246 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3247 (or should) carry around the function and does (or
3248 should) use that when doing a frame comparison. */
3249 if (stop_step
3250 && frame_id_eq (step_frame_id,
3251 get_frame_id (get_current_frame ()))
3252 && step_start_function == find_pc_function (stop_pc))
3253 source_flag = SRC_LINE; /* finished step, just print source line */
3254 else
3255 source_flag = SRC_AND_LOC; /* print location and source line */
3256 break;
3257 case PRINT_SRC_AND_LOC:
3258 source_flag = SRC_AND_LOC; /* print location and source line */
3259 break;
3260 case PRINT_SRC_ONLY:
3261 source_flag = SRC_LINE;
3262 break;
3263 case PRINT_NOTHING:
3264 source_flag = SRC_LINE; /* something bogus */
3265 do_frame_printing = 0;
3266 break;
3267 default:
3268 internal_error (__FILE__, __LINE__, _("Unknown value."));
3269 }
3270
3271 if (ui_out_is_mi_like_p (uiout))
3272 ui_out_field_int (uiout, "thread-id",
3273 pid_to_thread_id (inferior_ptid));
3274 /* The behavior of this routine with respect to the source
3275 flag is:
3276 SRC_LINE: Print only source line
3277 LOCATION: Print only location
3278 SRC_AND_LOC: Print location and source line */
3279 if (do_frame_printing)
3280 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3281
3282 /* Display the auto-display expressions. */
3283 do_displays ();
3284 }
3285 }
3286
3287 /* Save the function value return registers, if we care.
3288 We might be about to restore their previous contents. */
3289 if (proceed_to_finish)
3290 {
3291 /* This should not be necessary. */
3292 if (stop_registers)
3293 regcache_xfree (stop_registers);
3294
3295 /* NB: The copy goes through to the target picking up the value of
3296 all the registers. */
3297 stop_registers = regcache_dup (get_current_regcache ());
3298 }
3299
3300 if (stop_stack_dummy)
3301 {
3302 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3303 ends with a setting of the current frame, so we can use that
3304 next. */
3305 frame_pop (get_current_frame ());
3306 /* Set stop_pc to what it was before we called the function.
3307 Can't rely on restore_inferior_status because that only gets
3308 called if we don't stop in the called function. */
3309 stop_pc = read_pc ();
3310 select_frame (get_current_frame ());
3311 }
3312
3313 done:
3314 annotate_stopped ();
3315 observer_notify_normal_stop (stop_bpstat);
3316 }
3317
3318 static int
3319 hook_stop_stub (void *cmd)
3320 {
3321 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3322 return (0);
3323 }
3324 \f
3325 int
3326 signal_stop_state (int signo)
3327 {
3328 return signal_stop[signo];
3329 }
3330
3331 int
3332 signal_print_state (int signo)
3333 {
3334 return signal_print[signo];
3335 }
3336
3337 int
3338 signal_pass_state (int signo)
3339 {
3340 return signal_program[signo];
3341 }
3342
3343 int
3344 signal_stop_update (int signo, int state)
3345 {
3346 int ret = signal_stop[signo];
3347 signal_stop[signo] = state;
3348 return ret;
3349 }
3350
3351 int
3352 signal_print_update (int signo, int state)
3353 {
3354 int ret = signal_print[signo];
3355 signal_print[signo] = state;
3356 return ret;
3357 }
3358
3359 int
3360 signal_pass_update (int signo, int state)
3361 {
3362 int ret = signal_program[signo];
3363 signal_program[signo] = state;
3364 return ret;
3365 }
3366
3367 static void
3368 sig_print_header (void)
3369 {
3370 printf_filtered (_("\
3371 Signal Stop\tPrint\tPass to program\tDescription\n"));
3372 }
3373
3374 static void
3375 sig_print_info (enum target_signal oursig)
3376 {
3377 char *name = target_signal_to_name (oursig);
3378 int name_padding = 13 - strlen (name);
3379
3380 if (name_padding <= 0)
3381 name_padding = 0;
3382
3383 printf_filtered ("%s", name);
3384 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3385 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3386 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3387 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3388 printf_filtered ("%s\n", target_signal_to_string (oursig));
3389 }
3390
3391 /* Specify how various signals in the inferior should be handled. */
3392
3393 static void
3394 handle_command (char *args, int from_tty)
3395 {
3396 char **argv;
3397 int digits, wordlen;
3398 int sigfirst, signum, siglast;
3399 enum target_signal oursig;
3400 int allsigs;
3401 int nsigs;
3402 unsigned char *sigs;
3403 struct cleanup *old_chain;
3404
3405 if (args == NULL)
3406 {
3407 error_no_arg (_("signal to handle"));
3408 }
3409
3410 /* Allocate and zero an array of flags for which signals to handle. */
3411
3412 nsigs = (int) TARGET_SIGNAL_LAST;
3413 sigs = (unsigned char *) alloca (nsigs);
3414 memset (sigs, 0, nsigs);
3415
3416 /* Break the command line up into args. */
3417
3418 argv = buildargv (args);
3419 if (argv == NULL)
3420 {
3421 nomem (0);
3422 }
3423 old_chain = make_cleanup_freeargv (argv);
3424
3425 /* Walk through the args, looking for signal oursigs, signal names, and
3426 actions. Signal numbers and signal names may be interspersed with
3427 actions, with the actions being performed for all signals cumulatively
3428 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3429
3430 while (*argv != NULL)
3431 {
3432 wordlen = strlen (*argv);
3433 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3434 {;
3435 }
3436 allsigs = 0;
3437 sigfirst = siglast = -1;
3438
3439 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3440 {
3441 /* Apply action to all signals except those used by the
3442 debugger. Silently skip those. */
3443 allsigs = 1;
3444 sigfirst = 0;
3445 siglast = nsigs - 1;
3446 }
3447 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3448 {
3449 SET_SIGS (nsigs, sigs, signal_stop);
3450 SET_SIGS (nsigs, sigs, signal_print);
3451 }
3452 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3453 {
3454 UNSET_SIGS (nsigs, sigs, signal_program);
3455 }
3456 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3457 {
3458 SET_SIGS (nsigs, sigs, signal_print);
3459 }
3460 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3461 {
3462 SET_SIGS (nsigs, sigs, signal_program);
3463 }
3464 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3465 {
3466 UNSET_SIGS (nsigs, sigs, signal_stop);
3467 }
3468 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3469 {
3470 SET_SIGS (nsigs, sigs, signal_program);
3471 }
3472 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3473 {
3474 UNSET_SIGS (nsigs, sigs, signal_print);
3475 UNSET_SIGS (nsigs, sigs, signal_stop);
3476 }
3477 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3478 {
3479 UNSET_SIGS (nsigs, sigs, signal_program);
3480 }
3481 else if (digits > 0)
3482 {
3483 /* It is numeric. The numeric signal refers to our own
3484 internal signal numbering from target.h, not to host/target
3485 signal number. This is a feature; users really should be
3486 using symbolic names anyway, and the common ones like
3487 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3488
3489 sigfirst = siglast = (int)
3490 target_signal_from_command (atoi (*argv));
3491 if ((*argv)[digits] == '-')
3492 {
3493 siglast = (int)
3494 target_signal_from_command (atoi ((*argv) + digits + 1));
3495 }
3496 if (sigfirst > siglast)
3497 {
3498 /* Bet he didn't figure we'd think of this case... */
3499 signum = sigfirst;
3500 sigfirst = siglast;
3501 siglast = signum;
3502 }
3503 }
3504 else
3505 {
3506 oursig = target_signal_from_name (*argv);
3507 if (oursig != TARGET_SIGNAL_UNKNOWN)
3508 {
3509 sigfirst = siglast = (int) oursig;
3510 }
3511 else
3512 {
3513 /* Not a number and not a recognized flag word => complain. */
3514 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3515 }
3516 }
3517
3518 /* If any signal numbers or symbol names were found, set flags for
3519 which signals to apply actions to. */
3520
3521 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3522 {
3523 switch ((enum target_signal) signum)
3524 {
3525 case TARGET_SIGNAL_TRAP:
3526 case TARGET_SIGNAL_INT:
3527 if (!allsigs && !sigs[signum])
3528 {
3529 if (query ("%s is used by the debugger.\n\
3530 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3531 {
3532 sigs[signum] = 1;
3533 }
3534 else
3535 {
3536 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3537 gdb_flush (gdb_stdout);
3538 }
3539 }
3540 break;
3541 case TARGET_SIGNAL_0:
3542 case TARGET_SIGNAL_DEFAULT:
3543 case TARGET_SIGNAL_UNKNOWN:
3544 /* Make sure that "all" doesn't print these. */
3545 break;
3546 default:
3547 sigs[signum] = 1;
3548 break;
3549 }
3550 }
3551
3552 argv++;
3553 }
3554
3555 target_notice_signals (inferior_ptid);
3556
3557 if (from_tty)
3558 {
3559 /* Show the results. */
3560 sig_print_header ();
3561 for (signum = 0; signum < nsigs; signum++)
3562 {
3563 if (sigs[signum])
3564 {
3565 sig_print_info (signum);
3566 }
3567 }
3568 }
3569
3570 do_cleanups (old_chain);
3571 }
3572
3573 static void
3574 xdb_handle_command (char *args, int from_tty)
3575 {
3576 char **argv;
3577 struct cleanup *old_chain;
3578
3579 /* Break the command line up into args. */
3580
3581 argv = buildargv (args);
3582 if (argv == NULL)
3583 {
3584 nomem (0);
3585 }
3586 old_chain = make_cleanup_freeargv (argv);
3587 if (argv[1] != (char *) NULL)
3588 {
3589 char *argBuf;
3590 int bufLen;
3591
3592 bufLen = strlen (argv[0]) + 20;
3593 argBuf = (char *) xmalloc (bufLen);
3594 if (argBuf)
3595 {
3596 int validFlag = 1;
3597 enum target_signal oursig;
3598
3599 oursig = target_signal_from_name (argv[0]);
3600 memset (argBuf, 0, bufLen);
3601 if (strcmp (argv[1], "Q") == 0)
3602 sprintf (argBuf, "%s %s", argv[0], "noprint");
3603 else
3604 {
3605 if (strcmp (argv[1], "s") == 0)
3606 {
3607 if (!signal_stop[oursig])
3608 sprintf (argBuf, "%s %s", argv[0], "stop");
3609 else
3610 sprintf (argBuf, "%s %s", argv[0], "nostop");
3611 }
3612 else if (strcmp (argv[1], "i") == 0)
3613 {
3614 if (!signal_program[oursig])
3615 sprintf (argBuf, "%s %s", argv[0], "pass");
3616 else
3617 sprintf (argBuf, "%s %s", argv[0], "nopass");
3618 }
3619 else if (strcmp (argv[1], "r") == 0)
3620 {
3621 if (!signal_print[oursig])
3622 sprintf (argBuf, "%s %s", argv[0], "print");
3623 else
3624 sprintf (argBuf, "%s %s", argv[0], "noprint");
3625 }
3626 else
3627 validFlag = 0;
3628 }
3629 if (validFlag)
3630 handle_command (argBuf, from_tty);
3631 else
3632 printf_filtered (_("Invalid signal handling flag.\n"));
3633 if (argBuf)
3634 xfree (argBuf);
3635 }
3636 }
3637 do_cleanups (old_chain);
3638 }
3639
3640 /* Print current contents of the tables set by the handle command.
3641 It is possible we should just be printing signals actually used
3642 by the current target (but for things to work right when switching
3643 targets, all signals should be in the signal tables). */
3644
3645 static void
3646 signals_info (char *signum_exp, int from_tty)
3647 {
3648 enum target_signal oursig;
3649 sig_print_header ();
3650
3651 if (signum_exp)
3652 {
3653 /* First see if this is a symbol name. */
3654 oursig = target_signal_from_name (signum_exp);
3655 if (oursig == TARGET_SIGNAL_UNKNOWN)
3656 {
3657 /* No, try numeric. */
3658 oursig =
3659 target_signal_from_command (parse_and_eval_long (signum_exp));
3660 }
3661 sig_print_info (oursig);
3662 return;
3663 }
3664
3665 printf_filtered ("\n");
3666 /* These ugly casts brought to you by the native VAX compiler. */
3667 for (oursig = TARGET_SIGNAL_FIRST;
3668 (int) oursig < (int) TARGET_SIGNAL_LAST;
3669 oursig = (enum target_signal) ((int) oursig + 1))
3670 {
3671 QUIT;
3672
3673 if (oursig != TARGET_SIGNAL_UNKNOWN
3674 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3675 sig_print_info (oursig);
3676 }
3677
3678 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3679 }
3680 \f
3681 struct inferior_status
3682 {
3683 enum target_signal stop_signal;
3684 CORE_ADDR stop_pc;
3685 bpstat stop_bpstat;
3686 int stop_step;
3687 int stop_stack_dummy;
3688 int stopped_by_random_signal;
3689 int stepping_over_breakpoint;
3690 CORE_ADDR step_range_start;
3691 CORE_ADDR step_range_end;
3692 struct frame_id step_frame_id;
3693 enum step_over_calls_kind step_over_calls;
3694 CORE_ADDR step_resume_break_address;
3695 int stop_after_trap;
3696 int stop_soon;
3697
3698 /* These are here because if call_function_by_hand has written some
3699 registers and then decides to call error(), we better not have changed
3700 any registers. */
3701 struct regcache *registers;
3702
3703 /* A frame unique identifier. */
3704 struct frame_id selected_frame_id;
3705
3706 int breakpoint_proceeded;
3707 int restore_stack_info;
3708 int proceed_to_finish;
3709 };
3710
3711 void
3712 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3713 LONGEST val)
3714 {
3715 int size = register_size (current_gdbarch, regno);
3716 void *buf = alloca (size);
3717 store_signed_integer (buf, size, val);
3718 regcache_raw_write (inf_status->registers, regno, buf);
3719 }
3720
3721 /* Save all of the information associated with the inferior<==>gdb
3722 connection. INF_STATUS is a pointer to a "struct inferior_status"
3723 (defined in inferior.h). */
3724
3725 struct inferior_status *
3726 save_inferior_status (int restore_stack_info)
3727 {
3728 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3729
3730 inf_status->stop_signal = stop_signal;
3731 inf_status->stop_pc = stop_pc;
3732 inf_status->stop_step = stop_step;
3733 inf_status->stop_stack_dummy = stop_stack_dummy;
3734 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3735 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
3736 inf_status->step_range_start = step_range_start;
3737 inf_status->step_range_end = step_range_end;
3738 inf_status->step_frame_id = step_frame_id;
3739 inf_status->step_over_calls = step_over_calls;
3740 inf_status->stop_after_trap = stop_after_trap;
3741 inf_status->stop_soon = stop_soon;
3742 /* Save original bpstat chain here; replace it with copy of chain.
3743 If caller's caller is walking the chain, they'll be happier if we
3744 hand them back the original chain when restore_inferior_status is
3745 called. */
3746 inf_status->stop_bpstat = stop_bpstat;
3747 stop_bpstat = bpstat_copy (stop_bpstat);
3748 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3749 inf_status->restore_stack_info = restore_stack_info;
3750 inf_status->proceed_to_finish = proceed_to_finish;
3751
3752 inf_status->registers = regcache_dup (get_current_regcache ());
3753
3754 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3755 return inf_status;
3756 }
3757
3758 static int
3759 restore_selected_frame (void *args)
3760 {
3761 struct frame_id *fid = (struct frame_id *) args;
3762 struct frame_info *frame;
3763
3764 frame = frame_find_by_id (*fid);
3765
3766 /* If inf_status->selected_frame_id is NULL, there was no previously
3767 selected frame. */
3768 if (frame == NULL)
3769 {
3770 warning (_("Unable to restore previously selected frame."));
3771 return 0;
3772 }
3773
3774 select_frame (frame);
3775
3776 return (1);
3777 }
3778
3779 void
3780 restore_inferior_status (struct inferior_status *inf_status)
3781 {
3782 stop_signal = inf_status->stop_signal;
3783 stop_pc = inf_status->stop_pc;
3784 stop_step = inf_status->stop_step;
3785 stop_stack_dummy = inf_status->stop_stack_dummy;
3786 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3787 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
3788 step_range_start = inf_status->step_range_start;
3789 step_range_end = inf_status->step_range_end;
3790 step_frame_id = inf_status->step_frame_id;
3791 step_over_calls = inf_status->step_over_calls;
3792 stop_after_trap = inf_status->stop_after_trap;
3793 stop_soon = inf_status->stop_soon;
3794 bpstat_clear (&stop_bpstat);
3795 stop_bpstat = inf_status->stop_bpstat;
3796 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3797 proceed_to_finish = inf_status->proceed_to_finish;
3798
3799 /* The inferior can be gone if the user types "print exit(0)"
3800 (and perhaps other times). */
3801 if (target_has_execution)
3802 /* NB: The register write goes through to the target. */
3803 regcache_cpy (get_current_regcache (), inf_status->registers);
3804 regcache_xfree (inf_status->registers);
3805
3806 /* FIXME: If we are being called after stopping in a function which
3807 is called from gdb, we should not be trying to restore the
3808 selected frame; it just prints a spurious error message (The
3809 message is useful, however, in detecting bugs in gdb (like if gdb
3810 clobbers the stack)). In fact, should we be restoring the
3811 inferior status at all in that case? . */
3812
3813 if (target_has_stack && inf_status->restore_stack_info)
3814 {
3815 /* The point of catch_errors is that if the stack is clobbered,
3816 walking the stack might encounter a garbage pointer and
3817 error() trying to dereference it. */
3818 if (catch_errors
3819 (restore_selected_frame, &inf_status->selected_frame_id,
3820 "Unable to restore previously selected frame:\n",
3821 RETURN_MASK_ERROR) == 0)
3822 /* Error in restoring the selected frame. Select the innermost
3823 frame. */
3824 select_frame (get_current_frame ());
3825
3826 }
3827
3828 xfree (inf_status);
3829 }
3830
3831 static void
3832 do_restore_inferior_status_cleanup (void *sts)
3833 {
3834 restore_inferior_status (sts);
3835 }
3836
3837 struct cleanup *
3838 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3839 {
3840 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3841 }
3842
3843 void
3844 discard_inferior_status (struct inferior_status *inf_status)
3845 {
3846 /* See save_inferior_status for info on stop_bpstat. */
3847 bpstat_clear (&inf_status->stop_bpstat);
3848 regcache_xfree (inf_status->registers);
3849 xfree (inf_status);
3850 }
3851
3852 int
3853 inferior_has_forked (int pid, int *child_pid)
3854 {
3855 struct target_waitstatus last;
3856 ptid_t last_ptid;
3857
3858 get_last_target_status (&last_ptid, &last);
3859
3860 if (last.kind != TARGET_WAITKIND_FORKED)
3861 return 0;
3862
3863 if (ptid_get_pid (last_ptid) != pid)
3864 return 0;
3865
3866 *child_pid = last.value.related_pid;
3867 return 1;
3868 }
3869
3870 int
3871 inferior_has_vforked (int pid, int *child_pid)
3872 {
3873 struct target_waitstatus last;
3874 ptid_t last_ptid;
3875
3876 get_last_target_status (&last_ptid, &last);
3877
3878 if (last.kind != TARGET_WAITKIND_VFORKED)
3879 return 0;
3880
3881 if (ptid_get_pid (last_ptid) != pid)
3882 return 0;
3883
3884 *child_pid = last.value.related_pid;
3885 return 1;
3886 }
3887
3888 int
3889 inferior_has_execd (int pid, char **execd_pathname)
3890 {
3891 struct target_waitstatus last;
3892 ptid_t last_ptid;
3893
3894 get_last_target_status (&last_ptid, &last);
3895
3896 if (last.kind != TARGET_WAITKIND_EXECD)
3897 return 0;
3898
3899 if (ptid_get_pid (last_ptid) != pid)
3900 return 0;
3901
3902 *execd_pathname = xstrdup (last.value.execd_pathname);
3903 return 1;
3904 }
3905
3906 /* Oft used ptids */
3907 ptid_t null_ptid;
3908 ptid_t minus_one_ptid;
3909
3910 /* Create a ptid given the necessary PID, LWP, and TID components. */
3911
3912 ptid_t
3913 ptid_build (int pid, long lwp, long tid)
3914 {
3915 ptid_t ptid;
3916
3917 ptid.pid = pid;
3918 ptid.lwp = lwp;
3919 ptid.tid = tid;
3920 return ptid;
3921 }
3922
3923 /* Create a ptid from just a pid. */
3924
3925 ptid_t
3926 pid_to_ptid (int pid)
3927 {
3928 return ptid_build (pid, 0, 0);
3929 }
3930
3931 /* Fetch the pid (process id) component from a ptid. */
3932
3933 int
3934 ptid_get_pid (ptid_t ptid)
3935 {
3936 return ptid.pid;
3937 }
3938
3939 /* Fetch the lwp (lightweight process) component from a ptid. */
3940
3941 long
3942 ptid_get_lwp (ptid_t ptid)
3943 {
3944 return ptid.lwp;
3945 }
3946
3947 /* Fetch the tid (thread id) component from a ptid. */
3948
3949 long
3950 ptid_get_tid (ptid_t ptid)
3951 {
3952 return ptid.tid;
3953 }
3954
3955 /* ptid_equal() is used to test equality of two ptids. */
3956
3957 int
3958 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3959 {
3960 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3961 && ptid1.tid == ptid2.tid);
3962 }
3963
3964 /* restore_inferior_ptid() will be used by the cleanup machinery
3965 to restore the inferior_ptid value saved in a call to
3966 save_inferior_ptid(). */
3967
3968 static void
3969 restore_inferior_ptid (void *arg)
3970 {
3971 ptid_t *saved_ptid_ptr = arg;
3972 inferior_ptid = *saved_ptid_ptr;
3973 xfree (arg);
3974 }
3975
3976 /* Save the value of inferior_ptid so that it may be restored by a
3977 later call to do_cleanups(). Returns the struct cleanup pointer
3978 needed for later doing the cleanup. */
3979
3980 struct cleanup *
3981 save_inferior_ptid (void)
3982 {
3983 ptid_t *saved_ptid_ptr;
3984
3985 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3986 *saved_ptid_ptr = inferior_ptid;
3987 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3988 }
3989 \f
3990
3991 void
3992 _initialize_infrun (void)
3993 {
3994 int i;
3995 int numsigs;
3996 struct cmd_list_element *c;
3997
3998 add_info ("signals", signals_info, _("\
3999 What debugger does when program gets various signals.\n\
4000 Specify a signal as argument to print info on that signal only."));
4001 add_info_alias ("handle", "signals", 0);
4002
4003 add_com ("handle", class_run, handle_command, _("\
4004 Specify how to handle a signal.\n\
4005 Args are signals and actions to apply to those signals.\n\
4006 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4007 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4008 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4009 The special arg \"all\" is recognized to mean all signals except those\n\
4010 used by the debugger, typically SIGTRAP and SIGINT.\n\
4011 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4012 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4013 Stop means reenter debugger if this signal happens (implies print).\n\
4014 Print means print a message if this signal happens.\n\
4015 Pass means let program see this signal; otherwise program doesn't know.\n\
4016 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4017 Pass and Stop may be combined."));
4018 if (xdb_commands)
4019 {
4020 add_com ("lz", class_info, signals_info, _("\
4021 What debugger does when program gets various signals.\n\
4022 Specify a signal as argument to print info on that signal only."));
4023 add_com ("z", class_run, xdb_handle_command, _("\
4024 Specify how to handle a signal.\n\
4025 Args are signals and actions to apply to those signals.\n\
4026 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4027 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4028 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4029 The special arg \"all\" is recognized to mean all signals except those\n\
4030 used by the debugger, typically SIGTRAP and SIGINT.\n\
4031 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4032 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4033 nopass), \"Q\" (noprint)\n\
4034 Stop means reenter debugger if this signal happens (implies print).\n\
4035 Print means print a message if this signal happens.\n\
4036 Pass means let program see this signal; otherwise program doesn't know.\n\
4037 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4038 Pass and Stop may be combined."));
4039 }
4040
4041 if (!dbx_commands)
4042 stop_command = add_cmd ("stop", class_obscure,
4043 not_just_help_class_command, _("\
4044 There is no `stop' command, but you can set a hook on `stop'.\n\
4045 This allows you to set a list of commands to be run each time execution\n\
4046 of the program stops."), &cmdlist);
4047
4048 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4049 Set inferior debugging."), _("\
4050 Show inferior debugging."), _("\
4051 When non-zero, inferior specific debugging is enabled."),
4052 NULL,
4053 show_debug_infrun,
4054 &setdebuglist, &showdebuglist);
4055
4056 numsigs = (int) TARGET_SIGNAL_LAST;
4057 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4058 signal_print = (unsigned char *)
4059 xmalloc (sizeof (signal_print[0]) * numsigs);
4060 signal_program = (unsigned char *)
4061 xmalloc (sizeof (signal_program[0]) * numsigs);
4062 for (i = 0; i < numsigs; i++)
4063 {
4064 signal_stop[i] = 1;
4065 signal_print[i] = 1;
4066 signal_program[i] = 1;
4067 }
4068
4069 /* Signals caused by debugger's own actions
4070 should not be given to the program afterwards. */
4071 signal_program[TARGET_SIGNAL_TRAP] = 0;
4072 signal_program[TARGET_SIGNAL_INT] = 0;
4073
4074 /* Signals that are not errors should not normally enter the debugger. */
4075 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4076 signal_print[TARGET_SIGNAL_ALRM] = 0;
4077 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4078 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4079 signal_stop[TARGET_SIGNAL_PROF] = 0;
4080 signal_print[TARGET_SIGNAL_PROF] = 0;
4081 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4082 signal_print[TARGET_SIGNAL_CHLD] = 0;
4083 signal_stop[TARGET_SIGNAL_IO] = 0;
4084 signal_print[TARGET_SIGNAL_IO] = 0;
4085 signal_stop[TARGET_SIGNAL_POLL] = 0;
4086 signal_print[TARGET_SIGNAL_POLL] = 0;
4087 signal_stop[TARGET_SIGNAL_URG] = 0;
4088 signal_print[TARGET_SIGNAL_URG] = 0;
4089 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4090 signal_print[TARGET_SIGNAL_WINCH] = 0;
4091
4092 /* These signals are used internally by user-level thread
4093 implementations. (See signal(5) on Solaris.) Like the above
4094 signals, a healthy program receives and handles them as part of
4095 its normal operation. */
4096 signal_stop[TARGET_SIGNAL_LWP] = 0;
4097 signal_print[TARGET_SIGNAL_LWP] = 0;
4098 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4099 signal_print[TARGET_SIGNAL_WAITING] = 0;
4100 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4101 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4102
4103 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4104 &stop_on_solib_events, _("\
4105 Set stopping for shared library events."), _("\
4106 Show stopping for shared library events."), _("\
4107 If nonzero, gdb will give control to the user when the dynamic linker\n\
4108 notifies gdb of shared library events. The most common event of interest\n\
4109 to the user would be loading/unloading of a new library."),
4110 NULL,
4111 show_stop_on_solib_events,
4112 &setlist, &showlist);
4113
4114 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4115 follow_fork_mode_kind_names,
4116 &follow_fork_mode_string, _("\
4117 Set debugger response to a program call of fork or vfork."), _("\
4118 Show debugger response to a program call of fork or vfork."), _("\
4119 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4120 parent - the original process is debugged after a fork\n\
4121 child - the new process is debugged after a fork\n\
4122 The unfollowed process will continue to run.\n\
4123 By default, the debugger will follow the parent process."),
4124 NULL,
4125 show_follow_fork_mode_string,
4126 &setlist, &showlist);
4127
4128 add_setshow_enum_cmd ("scheduler-locking", class_run,
4129 scheduler_enums, &scheduler_mode, _("\
4130 Set mode for locking scheduler during execution."), _("\
4131 Show mode for locking scheduler during execution."), _("\
4132 off == no locking (threads may preempt at any time)\n\
4133 on == full locking (no thread except the current thread may run)\n\
4134 step == scheduler locked during every single-step operation.\n\
4135 In this mode, no other thread may run during a step command.\n\
4136 Other threads may run while stepping over a function call ('next')."),
4137 set_schedlock_func, /* traps on target vector */
4138 show_scheduler_mode,
4139 &setlist, &showlist);
4140
4141 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4142 Set mode of the step operation."), _("\
4143 Show mode of the step operation."), _("\
4144 When set, doing a step over a function without debug line information\n\
4145 will stop at the first instruction of that function. Otherwise, the\n\
4146 function is skipped and the step command stops at a different source line."),
4147 NULL,
4148 show_step_stop_if_no_debug,
4149 &setlist, &showlist);
4150
4151 /* ptid initializations */
4152 null_ptid = ptid_build (0, 0, 0);
4153 minus_one_ptid = ptid_build (-1, 0, 0);
4154 inferior_ptid = null_ptid;
4155 target_last_wait_ptid = minus_one_ptid;
4156 }
This page took 0.206312 seconds and 3 git commands to generate.