5e624729d387e3f888df7e40e9a73312c56a1972
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2016 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67
68 /* Prototypes for local functions */
69
70 static void signals_info (char *, int);
71
72 static void handle_command (char *, int);
73
74 static void sig_print_info (enum gdb_signal);
75
76 static void sig_print_header (void);
77
78 static void resume_cleanups (void *);
79
80 static int hook_stop_stub (void *);
81
82 static int restore_selected_frame (void *);
83
84 static int follow_fork (void);
85
86 static int follow_fork_inferior (int follow_child, int detach_fork);
87
88 static void follow_inferior_reset_breakpoints (void);
89
90 static void set_schedlock_func (char *args, int from_tty,
91 struct cmd_list_element *c);
92
93 static int currently_stepping (struct thread_info *tp);
94
95 void _initialize_infrun (void);
96
97 void nullify_last_target_wait_ptid (void);
98
99 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
100
101 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
103 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
105 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
107 /* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109 static struct async_event_handler *infrun_async_inferior_event_token;
110
111 /* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113 static int infrun_is_async = -1;
114
115 /* See infrun.h. */
116
117 void
118 infrun_async (int enable)
119 {
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134 }
135
136 /* See infrun.h. */
137
138 void
139 mark_infrun_async_event_handler (void)
140 {
141 mark_async_event_handler (infrun_async_inferior_event_token);
142 }
143
144 /* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147 int step_stop_if_no_debug = 0;
148 static void
149 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153 }
154
155 /* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
158
159 static ptid_t previous_inferior_ptid;
160
161 /* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166 static int detach_fork = 1;
167
168 int debug_displaced = 0;
169 static void
170 show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174 }
175
176 unsigned int debug_infrun = 0;
177 static void
178 show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182 }
183
184
185 /* Support for disabling address space randomization. */
186
187 int disable_randomization = 1;
188
189 static void
190 show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202 }
203
204 static void
205 set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207 {
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212 }
213
214 /* User interface for non-stop mode. */
215
216 int non_stop = 0;
217 static int non_stop_1 = 0;
218
219 static void
220 set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222 {
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230 }
231
232 static void
233 show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239 }
240
241 /* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
245 int observer_mode = 0;
246 static int observer_mode_1 = 0;
247
248 static void
249 set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251 {
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282 }
283
284 static void
285 show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287 {
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289 }
290
291 /* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297 void
298 update_observer_mode (void)
299 {
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314 }
315
316 /* Tables of how to react to signals; the user sets them. */
317
318 static unsigned char *signal_stop;
319 static unsigned char *signal_print;
320 static unsigned char *signal_program;
321
322 /* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326 static unsigned char *signal_catch;
327
328 /* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331 static unsigned char *signal_pass;
332
333 #define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341 #define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
349 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352 void
353 update_signals_program_target (void)
354 {
355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
356 }
357
358 /* Value to pass to target_resume() to cause all threads to resume. */
359
360 #define RESUME_ALL minus_one_ptid
361
362 /* Command list pointer for the "stop" placeholder. */
363
364 static struct cmd_list_element *stop_command;
365
366 /* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
368 int stop_on_solib_events;
369
370 /* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373 static void
374 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375 {
376 update_solib_breakpoints ();
377 }
378
379 static void
380 show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382 {
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385 }
386
387 /* Nonzero after stop if current stack frame should be printed. */
388
389 static int stop_print_frame;
390
391 /* This is a cached copy of the pid/waitstatus of the last event
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
394 static ptid_t target_last_wait_ptid;
395 static struct target_waitstatus target_last_waitstatus;
396
397 static void context_switch (ptid_t ptid);
398
399 void init_thread_stepping_state (struct thread_info *tss);
400
401 static const char follow_fork_mode_child[] = "child";
402 static const char follow_fork_mode_parent[] = "parent";
403
404 static const char *const follow_fork_mode_kind_names[] = {
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
408 };
409
410 static const char *follow_fork_mode_string = follow_fork_mode_parent;
411 static void
412 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414 {
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
418 value);
419 }
420 \f
421
422 /* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428 static int
429 follow_fork_inferior (int follow_child, int detach_fork)
430 {
431 int has_vforked;
432 ptid_t parent_ptid, child_ptid;
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
441 && current_ui->prompt_state == PROMPT_BLOCKED
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450 Can not resume the parent process over vfork in the foreground while\n\
451 holding the child stopped. Try \"set detach-on-fork\" or \
452 \"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
480 target_terminal_ours_for_output ();
481 fprintf_filtered (gdb_stdlog,
482 _("Detaching after %s from child %s.\n"),
483 has_vforked ? "vfork" : "fork",
484 target_pid_to_str (process_ptid));
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
493 child_inf = add_inferior (ptid_get_pid (child_ptid));
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
504 inferior_ptid = child_ptid;
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
572 has_vforked ? "vfork" : "fork",
573 target_pid_to_str (child_ptid));
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
579 child_inf = add_inferior (ptid_get_pid (child_ptid));
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
610 {
611 if (info_verbose || debug_infrun)
612 {
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
619 "child %s.\n"),
620 target_pid_to_str (process_ptid));
621 }
622
623 target_detach (NULL, 0);
624 }
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
632 inferior_ptid = child_ptid;
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662 }
663
664 /* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
668 static int
669 follow_fork (void)
670 {
671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
680 struct breakpoint *exception_resume_breakpoint = NULL;
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
684 struct thread_fsm *thread_fsm = NULL;
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
736 thread_fsm = tp->thread_fsm;
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
747 delete_exception_resume_breakpoint (tp);
748 tp->thread_fsm = NULL;
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
769 tp = find_thread_ptid (parent);
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
777 /* If we followed the child, switch to it... */
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
794 tp->thread_fsm = thread_fsm;
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
804 warning (_("Not resuming: switched threads "
805 "before following fork child."));
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
825
826 return should_resume;
827 }
828
829 static void
830 follow_inferior_reset_breakpoints (void)
831 {
832 struct thread_info *tp = inferior_thread ();
833
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
847 if (tp->control.step_resume_breakpoint)
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
852
853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
854 if (tp->control.exception_resume_breakpoint)
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
859
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
867 }
868
869 /* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872 static int
873 proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875 {
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
890 clear_proceed_status (0);
891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
892 }
893
894 return 0;
895 }
896
897 /* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900 static void
901 handle_vfork_child_exec_or_exit (int exec)
902 {
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
920 /* follow-fork child, detach-on-fork on. */
921
922 inf->vfork_parent->pending_detach = 0;
923
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
958 target_terminal_ours_for_output ();
959
960 if (exec)
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
967 else
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
1025 inf->symfile_flags = SYMFILE_NO_READ;
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1031 inferior. */
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059 }
1060
1061 /* Enum strings for "set|show follow-exec-mode". */
1062
1063 static const char follow_exec_mode_new[] = "new";
1064 static const char follow_exec_mode_same[] = "same";
1065 static const char *const follow_exec_mode_names[] =
1066 {
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070 };
1071
1072 static const char *follow_exec_mode_string = follow_exec_mode_same;
1073 static void
1074 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076 {
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078 }
1079
1080 /* EXECD_PATHNAME is assumed to be non-NULL. */
1081
1082 static void
1083 follow_exec (ptid_t ptid, char *execd_pathname)
1084 {
1085 struct thread_info *th, *tmp;
1086 struct inferior *inf = current_inferior ();
1087 int pid = ptid_get_pid (ptid);
1088 ptid_t process_ptid;
1089
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1109 we now have a new a.out, those shadow contents aren't valid. */
1110
1111 mark_breakpoints_out ();
1112
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
1132 ALL_THREADS_SAFE (th, tmp)
1133 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1134 delete_thread (th->ptid);
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
1140 th = inferior_thread ();
1141 th->control.step_resume_breakpoint = NULL;
1142 th->control.exception_resume_breakpoint = NULL;
1143 th->control.single_step_breakpoints = NULL;
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
1146
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
1150 th->stop_requested = 0;
1151
1152 update_breakpoints_after_exec ();
1153
1154 /* What is this a.out's name? */
1155 process_ptid = pid_to_ptid (pid);
1156 printf_unfiltered (_("%s is executing new program: %s\n"),
1157 target_pid_to_str (process_ptid),
1158 execd_pathname);
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1161 inferior has essentially been killed & reborn. */
1162
1163 gdb_flush (gdb_stdout);
1164
1165 breakpoint_init_inferior (inf_execd);
1166
1167 if (*gdb_sysroot != '\0')
1168 {
1169 char *name = exec_file_find (execd_pathname, NULL);
1170
1171 execd_pathname = (char *) alloca (strlen (name) + 1);
1172 strcpy (execd_pathname, name);
1173 xfree (name);
1174 }
1175
1176 /* Reset the shared library package. This ensures that we get a
1177 shlib event when the child reaches "_start", at which point the
1178 dld will have had a chance to initialize the child. */
1179 /* Also, loading a symbol file below may trigger symbol lookups, and
1180 we don't want those to be satisfied by the libraries of the
1181 previous incarnation of this process. */
1182 no_shared_libraries (NULL, 0);
1183
1184 if (follow_exec_mode_string == follow_exec_mode_new)
1185 {
1186 /* The user wants to keep the old inferior and program spaces
1187 around. Create a new fresh one, and switch to it. */
1188
1189 /* Do exit processing for the original inferior before adding
1190 the new inferior so we don't have two active inferiors with
1191 the same ptid, which can confuse find_inferior_ptid. */
1192 exit_inferior_num_silent (current_inferior ()->num);
1193
1194 inf = add_inferior_with_spaces ();
1195 inf->pid = pid;
1196 target_follow_exec (inf, execd_pathname);
1197
1198 set_current_inferior (inf);
1199 set_current_program_space (inf->pspace);
1200 add_thread (ptid);
1201 }
1202 else
1203 {
1204 /* The old description may no longer be fit for the new image.
1205 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1206 old description; we'll read a new one below. No need to do
1207 this on "follow-exec-mode new", as the old inferior stays
1208 around (its description is later cleared/refetched on
1209 restart). */
1210 target_clear_description ();
1211 }
1212
1213 gdb_assert (current_program_space == inf->pspace);
1214
1215 /* That a.out is now the one to use. */
1216 exec_file_attach (execd_pathname, 0);
1217
1218 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1219 (Position Independent Executable) main symbol file will get applied by
1220 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1221 the breakpoints with the zero displacement. */
1222
1223 symbol_file_add (execd_pathname,
1224 (inf->symfile_flags
1225 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1226 NULL, 0);
1227
1228 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1229 set_initial_language ();
1230
1231 /* If the target can specify a description, read it. Must do this
1232 after flipping to the new executable (because the target supplied
1233 description must be compatible with the executable's
1234 architecture, and the old executable may e.g., be 32-bit, while
1235 the new one 64-bit), and before anything involving memory or
1236 registers. */
1237 target_find_description ();
1238
1239 solib_create_inferior_hook (0);
1240
1241 jit_inferior_created_hook ();
1242
1243 breakpoint_re_set ();
1244
1245 /* Reinsert all breakpoints. (Those which were symbolic have
1246 been reset to the proper address in the new a.out, thanks
1247 to symbol_file_command...). */
1248 insert_breakpoints ();
1249
1250 /* The next resume of this inferior should bring it to the shlib
1251 startup breakpoints. (If the user had also set bp's on
1252 "main" from the old (parent) process, then they'll auto-
1253 matically get reset there in the new process.). */
1254 }
1255
1256 /* The queue of threads that need to do a step-over operation to get
1257 past e.g., a breakpoint. What technique is used to step over the
1258 breakpoint/watchpoint does not matter -- all threads end up in the
1259 same queue, to maintain rough temporal order of execution, in order
1260 to avoid starvation, otherwise, we could e.g., find ourselves
1261 constantly stepping the same couple threads past their breakpoints
1262 over and over, if the single-step finish fast enough. */
1263 struct thread_info *step_over_queue_head;
1264
1265 /* Bit flags indicating what the thread needs to step over. */
1266
1267 enum step_over_what_flag
1268 {
1269 /* Step over a breakpoint. */
1270 STEP_OVER_BREAKPOINT = 1,
1271
1272 /* Step past a non-continuable watchpoint, in order to let the
1273 instruction execute so we can evaluate the watchpoint
1274 expression. */
1275 STEP_OVER_WATCHPOINT = 2
1276 };
1277 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1278
1279 /* Info about an instruction that is being stepped over. */
1280
1281 struct step_over_info
1282 {
1283 /* If we're stepping past a breakpoint, this is the address space
1284 and address of the instruction the breakpoint is set at. We'll
1285 skip inserting all breakpoints here. Valid iff ASPACE is
1286 non-NULL. */
1287 struct address_space *aspace;
1288 CORE_ADDR address;
1289
1290 /* The instruction being stepped over triggers a nonsteppable
1291 watchpoint. If true, we'll skip inserting watchpoints. */
1292 int nonsteppable_watchpoint_p;
1293
1294 /* The thread's global number. */
1295 int thread;
1296 };
1297
1298 /* The step-over info of the location that is being stepped over.
1299
1300 Note that with async/breakpoint always-inserted mode, a user might
1301 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1302 being stepped over. As setting a new breakpoint inserts all
1303 breakpoints, we need to make sure the breakpoint being stepped over
1304 isn't inserted then. We do that by only clearing the step-over
1305 info when the step-over is actually finished (or aborted).
1306
1307 Presently GDB can only step over one breakpoint at any given time.
1308 Given threads that can't run code in the same address space as the
1309 breakpoint's can't really miss the breakpoint, GDB could be taught
1310 to step-over at most one breakpoint per address space (so this info
1311 could move to the address space object if/when GDB is extended).
1312 The set of breakpoints being stepped over will normally be much
1313 smaller than the set of all breakpoints, so a flag in the
1314 breakpoint location structure would be wasteful. A separate list
1315 also saves complexity and run-time, as otherwise we'd have to go
1316 through all breakpoint locations clearing their flag whenever we
1317 start a new sequence. Similar considerations weigh against storing
1318 this info in the thread object. Plus, not all step overs actually
1319 have breakpoint locations -- e.g., stepping past a single-step
1320 breakpoint, or stepping to complete a non-continuable
1321 watchpoint. */
1322 static struct step_over_info step_over_info;
1323
1324 /* Record the address of the breakpoint/instruction we're currently
1325 stepping over. */
1326
1327 static void
1328 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1329 int nonsteppable_watchpoint_p,
1330 int thread)
1331 {
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1335 step_over_info.thread = thread;
1336 }
1337
1338 /* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341 static void
1342 clear_step_over_info (void)
1343 {
1344 if (debug_infrun)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "infrun: clear_step_over_info\n");
1347 step_over_info.aspace = NULL;
1348 step_over_info.address = 0;
1349 step_over_info.nonsteppable_watchpoint_p = 0;
1350 step_over_info.thread = -1;
1351 }
1352
1353 /* See infrun.h. */
1354
1355 int
1356 stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358 {
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363 }
1364
1365 /* See infrun.h. */
1366
1367 int
1368 thread_is_stepping_over_breakpoint (int thread)
1369 {
1370 return (step_over_info.thread != -1
1371 && thread == step_over_info.thread);
1372 }
1373
1374 /* See infrun.h. */
1375
1376 int
1377 stepping_past_nonsteppable_watchpoint (void)
1378 {
1379 return step_over_info.nonsteppable_watchpoint_p;
1380 }
1381
1382 /* Returns true if step-over info is valid. */
1383
1384 static int
1385 step_over_info_valid_p (void)
1386 {
1387 return (step_over_info.aspace != NULL
1388 || stepping_past_nonsteppable_watchpoint ());
1389 }
1390
1391 \f
1392 /* Displaced stepping. */
1393
1394 /* In non-stop debugging mode, we must take special care to manage
1395 breakpoints properly; in particular, the traditional strategy for
1396 stepping a thread past a breakpoint it has hit is unsuitable.
1397 'Displaced stepping' is a tactic for stepping one thread past a
1398 breakpoint it has hit while ensuring that other threads running
1399 concurrently will hit the breakpoint as they should.
1400
1401 The traditional way to step a thread T off a breakpoint in a
1402 multi-threaded program in all-stop mode is as follows:
1403
1404 a0) Initially, all threads are stopped, and breakpoints are not
1405 inserted.
1406 a1) We single-step T, leaving breakpoints uninserted.
1407 a2) We insert breakpoints, and resume all threads.
1408
1409 In non-stop debugging, however, this strategy is unsuitable: we
1410 don't want to have to stop all threads in the system in order to
1411 continue or step T past a breakpoint. Instead, we use displaced
1412 stepping:
1413
1414 n0) Initially, T is stopped, other threads are running, and
1415 breakpoints are inserted.
1416 n1) We copy the instruction "under" the breakpoint to a separate
1417 location, outside the main code stream, making any adjustments
1418 to the instruction, register, and memory state as directed by
1419 T's architecture.
1420 n2) We single-step T over the instruction at its new location.
1421 n3) We adjust the resulting register and memory state as directed
1422 by T's architecture. This includes resetting T's PC to point
1423 back into the main instruction stream.
1424 n4) We resume T.
1425
1426 This approach depends on the following gdbarch methods:
1427
1428 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1429 indicate where to copy the instruction, and how much space must
1430 be reserved there. We use these in step n1.
1431
1432 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1433 address, and makes any necessary adjustments to the instruction,
1434 register contents, and memory. We use this in step n1.
1435
1436 - gdbarch_displaced_step_fixup adjusts registers and memory after
1437 we have successfuly single-stepped the instruction, to yield the
1438 same effect the instruction would have had if we had executed it
1439 at its original address. We use this in step n3.
1440
1441 - gdbarch_displaced_step_free_closure provides cleanup.
1442
1443 The gdbarch_displaced_step_copy_insn and
1444 gdbarch_displaced_step_fixup functions must be written so that
1445 copying an instruction with gdbarch_displaced_step_copy_insn,
1446 single-stepping across the copied instruction, and then applying
1447 gdbarch_displaced_insn_fixup should have the same effects on the
1448 thread's memory and registers as stepping the instruction in place
1449 would have. Exactly which responsibilities fall to the copy and
1450 which fall to the fixup is up to the author of those functions.
1451
1452 See the comments in gdbarch.sh for details.
1453
1454 Note that displaced stepping and software single-step cannot
1455 currently be used in combination, although with some care I think
1456 they could be made to. Software single-step works by placing
1457 breakpoints on all possible subsequent instructions; if the
1458 displaced instruction is a PC-relative jump, those breakpoints
1459 could fall in very strange places --- on pages that aren't
1460 executable, or at addresses that are not proper instruction
1461 boundaries. (We do generally let other threads run while we wait
1462 to hit the software single-step breakpoint, and they might
1463 encounter such a corrupted instruction.) One way to work around
1464 this would be to have gdbarch_displaced_step_copy_insn fully
1465 simulate the effect of PC-relative instructions (and return NULL)
1466 on architectures that use software single-stepping.
1467
1468 In non-stop mode, we can have independent and simultaneous step
1469 requests, so more than one thread may need to simultaneously step
1470 over a breakpoint. The current implementation assumes there is
1471 only one scratch space per process. In this case, we have to
1472 serialize access to the scratch space. If thread A wants to step
1473 over a breakpoint, but we are currently waiting for some other
1474 thread to complete a displaced step, we leave thread A stopped and
1475 place it in the displaced_step_request_queue. Whenever a displaced
1476 step finishes, we pick the next thread in the queue and start a new
1477 displaced step operation on it. See displaced_step_prepare and
1478 displaced_step_fixup for details. */
1479
1480 /* Per-inferior displaced stepping state. */
1481 struct displaced_step_inferior_state
1482 {
1483 /* Pointer to next in linked list. */
1484 struct displaced_step_inferior_state *next;
1485
1486 /* The process this displaced step state refers to. */
1487 int pid;
1488
1489 /* True if preparing a displaced step ever failed. If so, we won't
1490 try displaced stepping for this inferior again. */
1491 int failed_before;
1492
1493 /* If this is not null_ptid, this is the thread carrying out a
1494 displaced single-step in process PID. This thread's state will
1495 require fixing up once it has completed its step. */
1496 ptid_t step_ptid;
1497
1498 /* The architecture the thread had when we stepped it. */
1499 struct gdbarch *step_gdbarch;
1500
1501 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1502 for post-step cleanup. */
1503 struct displaced_step_closure *step_closure;
1504
1505 /* The address of the original instruction, and the copy we
1506 made. */
1507 CORE_ADDR step_original, step_copy;
1508
1509 /* Saved contents of copy area. */
1510 gdb_byte *step_saved_copy;
1511 };
1512
1513 /* The list of states of processes involved in displaced stepping
1514 presently. */
1515 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1516
1517 /* Get the displaced stepping state of process PID. */
1518
1519 static struct displaced_step_inferior_state *
1520 get_displaced_stepping_state (int pid)
1521 {
1522 struct displaced_step_inferior_state *state;
1523
1524 for (state = displaced_step_inferior_states;
1525 state != NULL;
1526 state = state->next)
1527 if (state->pid == pid)
1528 return state;
1529
1530 return NULL;
1531 }
1532
1533 /* Returns true if any inferior has a thread doing a displaced
1534 step. */
1535
1536 static int
1537 displaced_step_in_progress_any_inferior (void)
1538 {
1539 struct displaced_step_inferior_state *state;
1540
1541 for (state = displaced_step_inferior_states;
1542 state != NULL;
1543 state = state->next)
1544 if (!ptid_equal (state->step_ptid, null_ptid))
1545 return 1;
1546
1547 return 0;
1548 }
1549
1550 /* Return true if thread represented by PTID is doing a displaced
1551 step. */
1552
1553 static int
1554 displaced_step_in_progress_thread (ptid_t ptid)
1555 {
1556 struct displaced_step_inferior_state *displaced;
1557
1558 gdb_assert (!ptid_equal (ptid, null_ptid));
1559
1560 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1561
1562 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1563 }
1564
1565 /* Return true if process PID has a thread doing a displaced step. */
1566
1567 static int
1568 displaced_step_in_progress (int pid)
1569 {
1570 struct displaced_step_inferior_state *displaced;
1571
1572 displaced = get_displaced_stepping_state (pid);
1573 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1574 return 1;
1575
1576 return 0;
1577 }
1578
1579 /* Add a new displaced stepping state for process PID to the displaced
1580 stepping state list, or return a pointer to an already existing
1581 entry, if it already exists. Never returns NULL. */
1582
1583 static struct displaced_step_inferior_state *
1584 add_displaced_stepping_state (int pid)
1585 {
1586 struct displaced_step_inferior_state *state;
1587
1588 for (state = displaced_step_inferior_states;
1589 state != NULL;
1590 state = state->next)
1591 if (state->pid == pid)
1592 return state;
1593
1594 state = XCNEW (struct displaced_step_inferior_state);
1595 state->pid = pid;
1596 state->next = displaced_step_inferior_states;
1597 displaced_step_inferior_states = state;
1598
1599 return state;
1600 }
1601
1602 /* If inferior is in displaced stepping, and ADDR equals to starting address
1603 of copy area, return corresponding displaced_step_closure. Otherwise,
1604 return NULL. */
1605
1606 struct displaced_step_closure*
1607 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1608 {
1609 struct displaced_step_inferior_state *displaced
1610 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1611
1612 /* If checking the mode of displaced instruction in copy area. */
1613 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1614 && (displaced->step_copy == addr))
1615 return displaced->step_closure;
1616
1617 return NULL;
1618 }
1619
1620 /* Remove the displaced stepping state of process PID. */
1621
1622 static void
1623 remove_displaced_stepping_state (int pid)
1624 {
1625 struct displaced_step_inferior_state *it, **prev_next_p;
1626
1627 gdb_assert (pid != 0);
1628
1629 it = displaced_step_inferior_states;
1630 prev_next_p = &displaced_step_inferior_states;
1631 while (it)
1632 {
1633 if (it->pid == pid)
1634 {
1635 *prev_next_p = it->next;
1636 xfree (it);
1637 return;
1638 }
1639
1640 prev_next_p = &it->next;
1641 it = *prev_next_p;
1642 }
1643 }
1644
1645 static void
1646 infrun_inferior_exit (struct inferior *inf)
1647 {
1648 remove_displaced_stepping_state (inf->pid);
1649 }
1650
1651 /* If ON, and the architecture supports it, GDB will use displaced
1652 stepping to step over breakpoints. If OFF, or if the architecture
1653 doesn't support it, GDB will instead use the traditional
1654 hold-and-step approach. If AUTO (which is the default), GDB will
1655 decide which technique to use to step over breakpoints depending on
1656 which of all-stop or non-stop mode is active --- displaced stepping
1657 in non-stop mode; hold-and-step in all-stop mode. */
1658
1659 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1660
1661 static void
1662 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1663 struct cmd_list_element *c,
1664 const char *value)
1665 {
1666 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1667 fprintf_filtered (file,
1668 _("Debugger's willingness to use displaced stepping "
1669 "to step over breakpoints is %s (currently %s).\n"),
1670 value, target_is_non_stop_p () ? "on" : "off");
1671 else
1672 fprintf_filtered (file,
1673 _("Debugger's willingness to use displaced stepping "
1674 "to step over breakpoints is %s.\n"), value);
1675 }
1676
1677 /* Return non-zero if displaced stepping can/should be used to step
1678 over breakpoints of thread TP. */
1679
1680 static int
1681 use_displaced_stepping (struct thread_info *tp)
1682 {
1683 struct regcache *regcache = get_thread_regcache (tp->ptid);
1684 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1685 struct displaced_step_inferior_state *displaced_state;
1686
1687 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1688
1689 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1690 && target_is_non_stop_p ())
1691 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1692 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1693 && find_record_target () == NULL
1694 && (displaced_state == NULL
1695 || !displaced_state->failed_before));
1696 }
1697
1698 /* Clean out any stray displaced stepping state. */
1699 static void
1700 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1701 {
1702 /* Indicate that there is no cleanup pending. */
1703 displaced->step_ptid = null_ptid;
1704
1705 if (displaced->step_closure)
1706 {
1707 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1708 displaced->step_closure);
1709 displaced->step_closure = NULL;
1710 }
1711 }
1712
1713 static void
1714 displaced_step_clear_cleanup (void *arg)
1715 {
1716 struct displaced_step_inferior_state *state
1717 = (struct displaced_step_inferior_state *) arg;
1718
1719 displaced_step_clear (state);
1720 }
1721
1722 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1723 void
1724 displaced_step_dump_bytes (struct ui_file *file,
1725 const gdb_byte *buf,
1726 size_t len)
1727 {
1728 int i;
1729
1730 for (i = 0; i < len; i++)
1731 fprintf_unfiltered (file, "%02x ", buf[i]);
1732 fputs_unfiltered ("\n", file);
1733 }
1734
1735 /* Prepare to single-step, using displaced stepping.
1736
1737 Note that we cannot use displaced stepping when we have a signal to
1738 deliver. If we have a signal to deliver and an instruction to step
1739 over, then after the step, there will be no indication from the
1740 target whether the thread entered a signal handler or ignored the
1741 signal and stepped over the instruction successfully --- both cases
1742 result in a simple SIGTRAP. In the first case we mustn't do a
1743 fixup, and in the second case we must --- but we can't tell which.
1744 Comments in the code for 'random signals' in handle_inferior_event
1745 explain how we handle this case instead.
1746
1747 Returns 1 if preparing was successful -- this thread is going to be
1748 stepped now; 0 if displaced stepping this thread got queued; or -1
1749 if this instruction can't be displaced stepped. */
1750
1751 static int
1752 displaced_step_prepare_throw (ptid_t ptid)
1753 {
1754 struct cleanup *old_cleanups, *ignore_cleanups;
1755 struct thread_info *tp = find_thread_ptid (ptid);
1756 struct regcache *regcache = get_thread_regcache (ptid);
1757 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1758 struct address_space *aspace = get_regcache_aspace (regcache);
1759 CORE_ADDR original, copy;
1760 ULONGEST len;
1761 struct displaced_step_closure *closure;
1762 struct displaced_step_inferior_state *displaced;
1763 int status;
1764
1765 /* We should never reach this function if the architecture does not
1766 support displaced stepping. */
1767 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1768
1769 /* Nor if the thread isn't meant to step over a breakpoint. */
1770 gdb_assert (tp->control.trap_expected);
1771
1772 /* Disable range stepping while executing in the scratch pad. We
1773 want a single-step even if executing the displaced instruction in
1774 the scratch buffer lands within the stepping range (e.g., a
1775 jump/branch). */
1776 tp->control.may_range_step = 0;
1777
1778 /* We have to displaced step one thread at a time, as we only have
1779 access to a single scratch space per inferior. */
1780
1781 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1782
1783 if (!ptid_equal (displaced->step_ptid, null_ptid))
1784 {
1785 /* Already waiting for a displaced step to finish. Defer this
1786 request and place in queue. */
1787
1788 if (debug_displaced)
1789 fprintf_unfiltered (gdb_stdlog,
1790 "displaced: deferring step of %s\n",
1791 target_pid_to_str (ptid));
1792
1793 thread_step_over_chain_enqueue (tp);
1794 return 0;
1795 }
1796 else
1797 {
1798 if (debug_displaced)
1799 fprintf_unfiltered (gdb_stdlog,
1800 "displaced: stepping %s now\n",
1801 target_pid_to_str (ptid));
1802 }
1803
1804 displaced_step_clear (displaced);
1805
1806 old_cleanups = save_inferior_ptid ();
1807 inferior_ptid = ptid;
1808
1809 original = regcache_read_pc (regcache);
1810
1811 copy = gdbarch_displaced_step_location (gdbarch);
1812 len = gdbarch_max_insn_length (gdbarch);
1813
1814 if (breakpoint_in_range_p (aspace, copy, len))
1815 {
1816 /* There's a breakpoint set in the scratch pad location range
1817 (which is usually around the entry point). We'd either
1818 install it before resuming, which would overwrite/corrupt the
1819 scratch pad, or if it was already inserted, this displaced
1820 step would overwrite it. The latter is OK in the sense that
1821 we already assume that no thread is going to execute the code
1822 in the scratch pad range (after initial startup) anyway, but
1823 the former is unacceptable. Simply punt and fallback to
1824 stepping over this breakpoint in-line. */
1825 if (debug_displaced)
1826 {
1827 fprintf_unfiltered (gdb_stdlog,
1828 "displaced: breakpoint set in scratch pad. "
1829 "Stepping over breakpoint in-line instead.\n");
1830 }
1831
1832 do_cleanups (old_cleanups);
1833 return -1;
1834 }
1835
1836 /* Save the original contents of the copy area. */
1837 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1838 ignore_cleanups = make_cleanup (free_current_contents,
1839 &displaced->step_saved_copy);
1840 status = target_read_memory (copy, displaced->step_saved_copy, len);
1841 if (status != 0)
1842 throw_error (MEMORY_ERROR,
1843 _("Error accessing memory address %s (%s) for "
1844 "displaced-stepping scratch space."),
1845 paddress (gdbarch, copy), safe_strerror (status));
1846 if (debug_displaced)
1847 {
1848 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1849 paddress (gdbarch, copy));
1850 displaced_step_dump_bytes (gdb_stdlog,
1851 displaced->step_saved_copy,
1852 len);
1853 };
1854
1855 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1856 original, copy, regcache);
1857 if (closure == NULL)
1858 {
1859 /* The architecture doesn't know how or want to displaced step
1860 this instruction or instruction sequence. Fallback to
1861 stepping over the breakpoint in-line. */
1862 do_cleanups (old_cleanups);
1863 return -1;
1864 }
1865
1866 /* Save the information we need to fix things up if the step
1867 succeeds. */
1868 displaced->step_ptid = ptid;
1869 displaced->step_gdbarch = gdbarch;
1870 displaced->step_closure = closure;
1871 displaced->step_original = original;
1872 displaced->step_copy = copy;
1873
1874 make_cleanup (displaced_step_clear_cleanup, displaced);
1875
1876 /* Resume execution at the copy. */
1877 regcache_write_pc (regcache, copy);
1878
1879 discard_cleanups (ignore_cleanups);
1880
1881 do_cleanups (old_cleanups);
1882
1883 if (debug_displaced)
1884 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1885 paddress (gdbarch, copy));
1886
1887 return 1;
1888 }
1889
1890 /* Wrapper for displaced_step_prepare_throw that disabled further
1891 attempts at displaced stepping if we get a memory error. */
1892
1893 static int
1894 displaced_step_prepare (ptid_t ptid)
1895 {
1896 int prepared = -1;
1897
1898 TRY
1899 {
1900 prepared = displaced_step_prepare_throw (ptid);
1901 }
1902 CATCH (ex, RETURN_MASK_ERROR)
1903 {
1904 struct displaced_step_inferior_state *displaced_state;
1905
1906 if (ex.error != MEMORY_ERROR
1907 && ex.error != NOT_SUPPORTED_ERROR)
1908 throw_exception (ex);
1909
1910 if (debug_infrun)
1911 {
1912 fprintf_unfiltered (gdb_stdlog,
1913 "infrun: disabling displaced stepping: %s\n",
1914 ex.message);
1915 }
1916
1917 /* Be verbose if "set displaced-stepping" is "on", silent if
1918 "auto". */
1919 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1920 {
1921 warning (_("disabling displaced stepping: %s"),
1922 ex.message);
1923 }
1924
1925 /* Disable further displaced stepping attempts. */
1926 displaced_state
1927 = get_displaced_stepping_state (ptid_get_pid (ptid));
1928 displaced_state->failed_before = 1;
1929 }
1930 END_CATCH
1931
1932 return prepared;
1933 }
1934
1935 static void
1936 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1937 const gdb_byte *myaddr, int len)
1938 {
1939 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1940
1941 inferior_ptid = ptid;
1942 write_memory (memaddr, myaddr, len);
1943 do_cleanups (ptid_cleanup);
1944 }
1945
1946 /* Restore the contents of the copy area for thread PTID. */
1947
1948 static void
1949 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1950 ptid_t ptid)
1951 {
1952 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1953
1954 write_memory_ptid (ptid, displaced->step_copy,
1955 displaced->step_saved_copy, len);
1956 if (debug_displaced)
1957 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1958 target_pid_to_str (ptid),
1959 paddress (displaced->step_gdbarch,
1960 displaced->step_copy));
1961 }
1962
1963 /* If we displaced stepped an instruction successfully, adjust
1964 registers and memory to yield the same effect the instruction would
1965 have had if we had executed it at its original address, and return
1966 1. If the instruction didn't complete, relocate the PC and return
1967 -1. If the thread wasn't displaced stepping, return 0. */
1968
1969 static int
1970 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1971 {
1972 struct cleanup *old_cleanups;
1973 struct displaced_step_inferior_state *displaced
1974 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1975 int ret;
1976
1977 /* Was any thread of this process doing a displaced step? */
1978 if (displaced == NULL)
1979 return 0;
1980
1981 /* Was this event for the pid we displaced? */
1982 if (ptid_equal (displaced->step_ptid, null_ptid)
1983 || ! ptid_equal (displaced->step_ptid, event_ptid))
1984 return 0;
1985
1986 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1987
1988 displaced_step_restore (displaced, displaced->step_ptid);
1989
1990 /* Fixup may need to read memory/registers. Switch to the thread
1991 that we're fixing up. Also, target_stopped_by_watchpoint checks
1992 the current thread. */
1993 switch_to_thread (event_ptid);
1994
1995 /* Did the instruction complete successfully? */
1996 if (signal == GDB_SIGNAL_TRAP
1997 && !(target_stopped_by_watchpoint ()
1998 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1999 || target_have_steppable_watchpoint)))
2000 {
2001 /* Fix up the resulting state. */
2002 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2003 displaced->step_closure,
2004 displaced->step_original,
2005 displaced->step_copy,
2006 get_thread_regcache (displaced->step_ptid));
2007 ret = 1;
2008 }
2009 else
2010 {
2011 /* Since the instruction didn't complete, all we can do is
2012 relocate the PC. */
2013 struct regcache *regcache = get_thread_regcache (event_ptid);
2014 CORE_ADDR pc = regcache_read_pc (regcache);
2015
2016 pc = displaced->step_original + (pc - displaced->step_copy);
2017 regcache_write_pc (regcache, pc);
2018 ret = -1;
2019 }
2020
2021 do_cleanups (old_cleanups);
2022
2023 displaced->step_ptid = null_ptid;
2024
2025 return ret;
2026 }
2027
2028 /* Data to be passed around while handling an event. This data is
2029 discarded between events. */
2030 struct execution_control_state
2031 {
2032 ptid_t ptid;
2033 /* The thread that got the event, if this was a thread event; NULL
2034 otherwise. */
2035 struct thread_info *event_thread;
2036
2037 struct target_waitstatus ws;
2038 int stop_func_filled_in;
2039 CORE_ADDR stop_func_start;
2040 CORE_ADDR stop_func_end;
2041 const char *stop_func_name;
2042 int wait_some_more;
2043
2044 /* True if the event thread hit the single-step breakpoint of
2045 another thread. Thus the event doesn't cause a stop, the thread
2046 needs to be single-stepped past the single-step breakpoint before
2047 we can switch back to the original stepping thread. */
2048 int hit_singlestep_breakpoint;
2049 };
2050
2051 /* Clear ECS and set it to point at TP. */
2052
2053 static void
2054 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2055 {
2056 memset (ecs, 0, sizeof (*ecs));
2057 ecs->event_thread = tp;
2058 ecs->ptid = tp->ptid;
2059 }
2060
2061 static void keep_going_pass_signal (struct execution_control_state *ecs);
2062 static void prepare_to_wait (struct execution_control_state *ecs);
2063 static int keep_going_stepped_thread (struct thread_info *tp);
2064 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2065
2066 /* Are there any pending step-over requests? If so, run all we can
2067 now and return true. Otherwise, return false. */
2068
2069 static int
2070 start_step_over (void)
2071 {
2072 struct thread_info *tp, *next;
2073
2074 /* Don't start a new step-over if we already have an in-line
2075 step-over operation ongoing. */
2076 if (step_over_info_valid_p ())
2077 return 0;
2078
2079 for (tp = step_over_queue_head; tp != NULL; tp = next)
2080 {
2081 struct execution_control_state ecss;
2082 struct execution_control_state *ecs = &ecss;
2083 step_over_what step_what;
2084 int must_be_in_line;
2085
2086 next = thread_step_over_chain_next (tp);
2087
2088 /* If this inferior already has a displaced step in process,
2089 don't start a new one. */
2090 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2091 continue;
2092
2093 step_what = thread_still_needs_step_over (tp);
2094 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2095 || ((step_what & STEP_OVER_BREAKPOINT)
2096 && !use_displaced_stepping (tp)));
2097
2098 /* We currently stop all threads of all processes to step-over
2099 in-line. If we need to start a new in-line step-over, let
2100 any pending displaced steps finish first. */
2101 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2102 return 0;
2103
2104 thread_step_over_chain_remove (tp);
2105
2106 if (step_over_queue_head == NULL)
2107 {
2108 if (debug_infrun)
2109 fprintf_unfiltered (gdb_stdlog,
2110 "infrun: step-over queue now empty\n");
2111 }
2112
2113 if (tp->control.trap_expected
2114 || tp->resumed
2115 || tp->executing)
2116 {
2117 internal_error (__FILE__, __LINE__,
2118 "[%s] has inconsistent state: "
2119 "trap_expected=%d, resumed=%d, executing=%d\n",
2120 target_pid_to_str (tp->ptid),
2121 tp->control.trap_expected,
2122 tp->resumed,
2123 tp->executing);
2124 }
2125
2126 if (debug_infrun)
2127 fprintf_unfiltered (gdb_stdlog,
2128 "infrun: resuming [%s] for step-over\n",
2129 target_pid_to_str (tp->ptid));
2130
2131 /* keep_going_pass_signal skips the step-over if the breakpoint
2132 is no longer inserted. In all-stop, we want to keep looking
2133 for a thread that needs a step-over instead of resuming TP,
2134 because we wouldn't be able to resume anything else until the
2135 target stops again. In non-stop, the resume always resumes
2136 only TP, so it's OK to let the thread resume freely. */
2137 if (!target_is_non_stop_p () && !step_what)
2138 continue;
2139
2140 switch_to_thread (tp->ptid);
2141 reset_ecs (ecs, tp);
2142 keep_going_pass_signal (ecs);
2143
2144 if (!ecs->wait_some_more)
2145 error (_("Command aborted."));
2146
2147 gdb_assert (tp->resumed);
2148
2149 /* If we started a new in-line step-over, we're done. */
2150 if (step_over_info_valid_p ())
2151 {
2152 gdb_assert (tp->control.trap_expected);
2153 return 1;
2154 }
2155
2156 if (!target_is_non_stop_p ())
2157 {
2158 /* On all-stop, shouldn't have resumed unless we needed a
2159 step over. */
2160 gdb_assert (tp->control.trap_expected
2161 || tp->step_after_step_resume_breakpoint);
2162
2163 /* With remote targets (at least), in all-stop, we can't
2164 issue any further remote commands until the program stops
2165 again. */
2166 return 1;
2167 }
2168
2169 /* Either the thread no longer needed a step-over, or a new
2170 displaced stepping sequence started. Even in the latter
2171 case, continue looking. Maybe we can also start another
2172 displaced step on a thread of other process. */
2173 }
2174
2175 return 0;
2176 }
2177
2178 /* Update global variables holding ptids to hold NEW_PTID if they were
2179 holding OLD_PTID. */
2180 static void
2181 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2182 {
2183 struct displaced_step_inferior_state *displaced;
2184
2185 if (ptid_equal (inferior_ptid, old_ptid))
2186 inferior_ptid = new_ptid;
2187
2188 for (displaced = displaced_step_inferior_states;
2189 displaced;
2190 displaced = displaced->next)
2191 {
2192 if (ptid_equal (displaced->step_ptid, old_ptid))
2193 displaced->step_ptid = new_ptid;
2194 }
2195 }
2196
2197 \f
2198 /* Resuming. */
2199
2200 /* Things to clean up if we QUIT out of resume (). */
2201 static void
2202 resume_cleanups (void *ignore)
2203 {
2204 if (!ptid_equal (inferior_ptid, null_ptid))
2205 delete_single_step_breakpoints (inferior_thread ());
2206
2207 normal_stop ();
2208 }
2209
2210 static const char schedlock_off[] = "off";
2211 static const char schedlock_on[] = "on";
2212 static const char schedlock_step[] = "step";
2213 static const char schedlock_replay[] = "replay";
2214 static const char *const scheduler_enums[] = {
2215 schedlock_off,
2216 schedlock_on,
2217 schedlock_step,
2218 schedlock_replay,
2219 NULL
2220 };
2221 static const char *scheduler_mode = schedlock_replay;
2222 static void
2223 show_scheduler_mode (struct ui_file *file, int from_tty,
2224 struct cmd_list_element *c, const char *value)
2225 {
2226 fprintf_filtered (file,
2227 _("Mode for locking scheduler "
2228 "during execution is \"%s\".\n"),
2229 value);
2230 }
2231
2232 static void
2233 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2234 {
2235 if (!target_can_lock_scheduler)
2236 {
2237 scheduler_mode = schedlock_off;
2238 error (_("Target '%s' cannot support this command."), target_shortname);
2239 }
2240 }
2241
2242 /* True if execution commands resume all threads of all processes by
2243 default; otherwise, resume only threads of the current inferior
2244 process. */
2245 int sched_multi = 0;
2246
2247 /* Try to setup for software single stepping over the specified location.
2248 Return 1 if target_resume() should use hardware single step.
2249
2250 GDBARCH the current gdbarch.
2251 PC the location to step over. */
2252
2253 static int
2254 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2255 {
2256 int hw_step = 1;
2257
2258 if (execution_direction == EXEC_FORWARD
2259 && gdbarch_software_single_step_p (gdbarch)
2260 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2261 {
2262 hw_step = 0;
2263 }
2264 return hw_step;
2265 }
2266
2267 /* See infrun.h. */
2268
2269 ptid_t
2270 user_visible_resume_ptid (int step)
2271 {
2272 ptid_t resume_ptid;
2273
2274 if (non_stop)
2275 {
2276 /* With non-stop mode on, threads are always handled
2277 individually. */
2278 resume_ptid = inferior_ptid;
2279 }
2280 else if ((scheduler_mode == schedlock_on)
2281 || (scheduler_mode == schedlock_step && step))
2282 {
2283 /* User-settable 'scheduler' mode requires solo thread
2284 resume. */
2285 resume_ptid = inferior_ptid;
2286 }
2287 else if ((scheduler_mode == schedlock_replay)
2288 && target_record_will_replay (minus_one_ptid, execution_direction))
2289 {
2290 /* User-settable 'scheduler' mode requires solo thread resume in replay
2291 mode. */
2292 resume_ptid = inferior_ptid;
2293 }
2294 else if (!sched_multi && target_supports_multi_process ())
2295 {
2296 /* Resume all threads of the current process (and none of other
2297 processes). */
2298 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2299 }
2300 else
2301 {
2302 /* Resume all threads of all processes. */
2303 resume_ptid = RESUME_ALL;
2304 }
2305
2306 return resume_ptid;
2307 }
2308
2309 /* Return a ptid representing the set of threads that we will resume,
2310 in the perspective of the target, assuming run control handling
2311 does not require leaving some threads stopped (e.g., stepping past
2312 breakpoint). USER_STEP indicates whether we're about to start the
2313 target for a stepping command. */
2314
2315 static ptid_t
2316 internal_resume_ptid (int user_step)
2317 {
2318 /* In non-stop, we always control threads individually. Note that
2319 the target may always work in non-stop mode even with "set
2320 non-stop off", in which case user_visible_resume_ptid could
2321 return a wildcard ptid. */
2322 if (target_is_non_stop_p ())
2323 return inferior_ptid;
2324 else
2325 return user_visible_resume_ptid (user_step);
2326 }
2327
2328 /* Wrapper for target_resume, that handles infrun-specific
2329 bookkeeping. */
2330
2331 static void
2332 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2333 {
2334 struct thread_info *tp = inferior_thread ();
2335
2336 /* Install inferior's terminal modes. */
2337 target_terminal_inferior ();
2338
2339 /* Avoid confusing the next resume, if the next stop/resume
2340 happens to apply to another thread. */
2341 tp->suspend.stop_signal = GDB_SIGNAL_0;
2342
2343 /* Advise target which signals may be handled silently.
2344
2345 If we have removed breakpoints because we are stepping over one
2346 in-line (in any thread), we need to receive all signals to avoid
2347 accidentally skipping a breakpoint during execution of a signal
2348 handler.
2349
2350 Likewise if we're displaced stepping, otherwise a trap for a
2351 breakpoint in a signal handler might be confused with the
2352 displaced step finishing. We don't make the displaced_step_fixup
2353 step distinguish the cases instead, because:
2354
2355 - a backtrace while stopped in the signal handler would show the
2356 scratch pad as frame older than the signal handler, instead of
2357 the real mainline code.
2358
2359 - when the thread is later resumed, the signal handler would
2360 return to the scratch pad area, which would no longer be
2361 valid. */
2362 if (step_over_info_valid_p ()
2363 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2364 target_pass_signals (0, NULL);
2365 else
2366 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2367
2368 target_resume (resume_ptid, step, sig);
2369
2370 target_commit_resume ();
2371 }
2372
2373 /* Resume the inferior, but allow a QUIT. This is useful if the user
2374 wants to interrupt some lengthy single-stepping operation
2375 (for child processes, the SIGINT goes to the inferior, and so
2376 we get a SIGINT random_signal, but for remote debugging and perhaps
2377 other targets, that's not true).
2378
2379 SIG is the signal to give the inferior (zero for none). */
2380 void
2381 resume (enum gdb_signal sig)
2382 {
2383 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2384 struct regcache *regcache = get_current_regcache ();
2385 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2386 struct thread_info *tp = inferior_thread ();
2387 CORE_ADDR pc = regcache_read_pc (regcache);
2388 struct address_space *aspace = get_regcache_aspace (regcache);
2389 ptid_t resume_ptid;
2390 /* This represents the user's step vs continue request. When
2391 deciding whether "set scheduler-locking step" applies, it's the
2392 user's intention that counts. */
2393 const int user_step = tp->control.stepping_command;
2394 /* This represents what we'll actually request the target to do.
2395 This can decay from a step to a continue, if e.g., we need to
2396 implement single-stepping with breakpoints (software
2397 single-step). */
2398 int step;
2399
2400 gdb_assert (!thread_is_in_step_over_chain (tp));
2401
2402 QUIT;
2403
2404 if (tp->suspend.waitstatus_pending_p)
2405 {
2406 if (debug_infrun)
2407 {
2408 char *statstr;
2409
2410 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2411 fprintf_unfiltered (gdb_stdlog,
2412 "infrun: resume: thread %s has pending wait status %s "
2413 "(currently_stepping=%d).\n",
2414 target_pid_to_str (tp->ptid), statstr,
2415 currently_stepping (tp));
2416 xfree (statstr);
2417 }
2418
2419 tp->resumed = 1;
2420
2421 /* FIXME: What should we do if we are supposed to resume this
2422 thread with a signal? Maybe we should maintain a queue of
2423 pending signals to deliver. */
2424 if (sig != GDB_SIGNAL_0)
2425 {
2426 warning (_("Couldn't deliver signal %s to %s."),
2427 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2428 }
2429
2430 tp->suspend.stop_signal = GDB_SIGNAL_0;
2431 discard_cleanups (old_cleanups);
2432
2433 if (target_can_async_p ())
2434 target_async (1);
2435 return;
2436 }
2437
2438 tp->stepped_breakpoint = 0;
2439
2440 /* Depends on stepped_breakpoint. */
2441 step = currently_stepping (tp);
2442
2443 if (current_inferior ()->waiting_for_vfork_done)
2444 {
2445 /* Don't try to single-step a vfork parent that is waiting for
2446 the child to get out of the shared memory region (by exec'ing
2447 or exiting). This is particularly important on software
2448 single-step archs, as the child process would trip on the
2449 software single step breakpoint inserted for the parent
2450 process. Since the parent will not actually execute any
2451 instruction until the child is out of the shared region (such
2452 are vfork's semantics), it is safe to simply continue it.
2453 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2454 the parent, and tell it to `keep_going', which automatically
2455 re-sets it stepping. */
2456 if (debug_infrun)
2457 fprintf_unfiltered (gdb_stdlog,
2458 "infrun: resume : clear step\n");
2459 step = 0;
2460 }
2461
2462 if (debug_infrun)
2463 fprintf_unfiltered (gdb_stdlog,
2464 "infrun: resume (step=%d, signal=%s), "
2465 "trap_expected=%d, current thread [%s] at %s\n",
2466 step, gdb_signal_to_symbol_string (sig),
2467 tp->control.trap_expected,
2468 target_pid_to_str (inferior_ptid),
2469 paddress (gdbarch, pc));
2470
2471 /* Normally, by the time we reach `resume', the breakpoints are either
2472 removed or inserted, as appropriate. The exception is if we're sitting
2473 at a permanent breakpoint; we need to step over it, but permanent
2474 breakpoints can't be removed. So we have to test for it here. */
2475 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2476 {
2477 if (sig != GDB_SIGNAL_0)
2478 {
2479 /* We have a signal to pass to the inferior. The resume
2480 may, or may not take us to the signal handler. If this
2481 is a step, we'll need to stop in the signal handler, if
2482 there's one, (if the target supports stepping into
2483 handlers), or in the next mainline instruction, if
2484 there's no handler. If this is a continue, we need to be
2485 sure to run the handler with all breakpoints inserted.
2486 In all cases, set a breakpoint at the current address
2487 (where the handler returns to), and once that breakpoint
2488 is hit, resume skipping the permanent breakpoint. If
2489 that breakpoint isn't hit, then we've stepped into the
2490 signal handler (or hit some other event). We'll delete
2491 the step-resume breakpoint then. */
2492
2493 if (debug_infrun)
2494 fprintf_unfiltered (gdb_stdlog,
2495 "infrun: resume: skipping permanent breakpoint, "
2496 "deliver signal first\n");
2497
2498 clear_step_over_info ();
2499 tp->control.trap_expected = 0;
2500
2501 if (tp->control.step_resume_breakpoint == NULL)
2502 {
2503 /* Set a "high-priority" step-resume, as we don't want
2504 user breakpoints at PC to trigger (again) when this
2505 hits. */
2506 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2507 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2508
2509 tp->step_after_step_resume_breakpoint = step;
2510 }
2511
2512 insert_breakpoints ();
2513 }
2514 else
2515 {
2516 /* There's no signal to pass, we can go ahead and skip the
2517 permanent breakpoint manually. */
2518 if (debug_infrun)
2519 fprintf_unfiltered (gdb_stdlog,
2520 "infrun: resume: skipping permanent breakpoint\n");
2521 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2522 /* Update pc to reflect the new address from which we will
2523 execute instructions. */
2524 pc = regcache_read_pc (regcache);
2525
2526 if (step)
2527 {
2528 /* We've already advanced the PC, so the stepping part
2529 is done. Now we need to arrange for a trap to be
2530 reported to handle_inferior_event. Set a breakpoint
2531 at the current PC, and run to it. Don't update
2532 prev_pc, because if we end in
2533 switch_back_to_stepped_thread, we want the "expected
2534 thread advanced also" branch to be taken. IOW, we
2535 don't want this thread to step further from PC
2536 (overstep). */
2537 gdb_assert (!step_over_info_valid_p ());
2538 insert_single_step_breakpoint (gdbarch, aspace, pc);
2539 insert_breakpoints ();
2540
2541 resume_ptid = internal_resume_ptid (user_step);
2542 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2543 discard_cleanups (old_cleanups);
2544 tp->resumed = 1;
2545 return;
2546 }
2547 }
2548 }
2549
2550 /* If we have a breakpoint to step over, make sure to do a single
2551 step only. Same if we have software watchpoints. */
2552 if (tp->control.trap_expected || bpstat_should_step ())
2553 tp->control.may_range_step = 0;
2554
2555 /* If enabled, step over breakpoints by executing a copy of the
2556 instruction at a different address.
2557
2558 We can't use displaced stepping when we have a signal to deliver;
2559 the comments for displaced_step_prepare explain why. The
2560 comments in the handle_inferior event for dealing with 'random
2561 signals' explain what we do instead.
2562
2563 We can't use displaced stepping when we are waiting for vfork_done
2564 event, displaced stepping breaks the vfork child similarly as single
2565 step software breakpoint. */
2566 if (tp->control.trap_expected
2567 && use_displaced_stepping (tp)
2568 && !step_over_info_valid_p ()
2569 && sig == GDB_SIGNAL_0
2570 && !current_inferior ()->waiting_for_vfork_done)
2571 {
2572 int prepared = displaced_step_prepare (inferior_ptid);
2573
2574 if (prepared == 0)
2575 {
2576 if (debug_infrun)
2577 fprintf_unfiltered (gdb_stdlog,
2578 "Got placed in step-over queue\n");
2579
2580 tp->control.trap_expected = 0;
2581 discard_cleanups (old_cleanups);
2582 return;
2583 }
2584 else if (prepared < 0)
2585 {
2586 /* Fallback to stepping over the breakpoint in-line. */
2587
2588 if (target_is_non_stop_p ())
2589 stop_all_threads ();
2590
2591 set_step_over_info (get_regcache_aspace (regcache),
2592 regcache_read_pc (regcache), 0, tp->global_num);
2593
2594 step = maybe_software_singlestep (gdbarch, pc);
2595
2596 insert_breakpoints ();
2597 }
2598 else if (prepared > 0)
2599 {
2600 struct displaced_step_inferior_state *displaced;
2601
2602 /* Update pc to reflect the new address from which we will
2603 execute instructions due to displaced stepping. */
2604 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2605
2606 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2607 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2608 displaced->step_closure);
2609 }
2610 }
2611
2612 /* Do we need to do it the hard way, w/temp breakpoints? */
2613 else if (step)
2614 step = maybe_software_singlestep (gdbarch, pc);
2615
2616 /* Currently, our software single-step implementation leads to different
2617 results than hardware single-stepping in one situation: when stepping
2618 into delivering a signal which has an associated signal handler,
2619 hardware single-step will stop at the first instruction of the handler,
2620 while software single-step will simply skip execution of the handler.
2621
2622 For now, this difference in behavior is accepted since there is no
2623 easy way to actually implement single-stepping into a signal handler
2624 without kernel support.
2625
2626 However, there is one scenario where this difference leads to follow-on
2627 problems: if we're stepping off a breakpoint by removing all breakpoints
2628 and then single-stepping. In this case, the software single-step
2629 behavior means that even if there is a *breakpoint* in the signal
2630 handler, GDB still would not stop.
2631
2632 Fortunately, we can at least fix this particular issue. We detect
2633 here the case where we are about to deliver a signal while software
2634 single-stepping with breakpoints removed. In this situation, we
2635 revert the decisions to remove all breakpoints and insert single-
2636 step breakpoints, and instead we install a step-resume breakpoint
2637 at the current address, deliver the signal without stepping, and
2638 once we arrive back at the step-resume breakpoint, actually step
2639 over the breakpoint we originally wanted to step over. */
2640 if (thread_has_single_step_breakpoints_set (tp)
2641 && sig != GDB_SIGNAL_0
2642 && step_over_info_valid_p ())
2643 {
2644 /* If we have nested signals or a pending signal is delivered
2645 immediately after a handler returns, might might already have
2646 a step-resume breakpoint set on the earlier handler. We cannot
2647 set another step-resume breakpoint; just continue on until the
2648 original breakpoint is hit. */
2649 if (tp->control.step_resume_breakpoint == NULL)
2650 {
2651 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2652 tp->step_after_step_resume_breakpoint = 1;
2653 }
2654
2655 delete_single_step_breakpoints (tp);
2656
2657 clear_step_over_info ();
2658 tp->control.trap_expected = 0;
2659
2660 insert_breakpoints ();
2661 }
2662
2663 /* If STEP is set, it's a request to use hardware stepping
2664 facilities. But in that case, we should never
2665 use singlestep breakpoint. */
2666 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2667
2668 /* Decide the set of threads to ask the target to resume. */
2669 if (tp->control.trap_expected)
2670 {
2671 /* We're allowing a thread to run past a breakpoint it has
2672 hit, either by single-stepping the thread with the breakpoint
2673 removed, or by displaced stepping, with the breakpoint inserted.
2674 In the former case, we need to single-step only this thread,
2675 and keep others stopped, as they can miss this breakpoint if
2676 allowed to run. That's not really a problem for displaced
2677 stepping, but, we still keep other threads stopped, in case
2678 another thread is also stopped for a breakpoint waiting for
2679 its turn in the displaced stepping queue. */
2680 resume_ptid = inferior_ptid;
2681 }
2682 else
2683 resume_ptid = internal_resume_ptid (user_step);
2684
2685 if (execution_direction != EXEC_REVERSE
2686 && step && breakpoint_inserted_here_p (aspace, pc))
2687 {
2688 /* There are two cases where we currently need to step a
2689 breakpoint instruction when we have a signal to deliver:
2690
2691 - See handle_signal_stop where we handle random signals that
2692 could take out us out of the stepping range. Normally, in
2693 that case we end up continuing (instead of stepping) over the
2694 signal handler with a breakpoint at PC, but there are cases
2695 where we should _always_ single-step, even if we have a
2696 step-resume breakpoint, like when a software watchpoint is
2697 set. Assuming single-stepping and delivering a signal at the
2698 same time would takes us to the signal handler, then we could
2699 have removed the breakpoint at PC to step over it. However,
2700 some hardware step targets (like e.g., Mac OS) can't step
2701 into signal handlers, and for those, we need to leave the
2702 breakpoint at PC inserted, as otherwise if the handler
2703 recurses and executes PC again, it'll miss the breakpoint.
2704 So we leave the breakpoint inserted anyway, but we need to
2705 record that we tried to step a breakpoint instruction, so
2706 that adjust_pc_after_break doesn't end up confused.
2707
2708 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2709 in one thread after another thread that was stepping had been
2710 momentarily paused for a step-over. When we re-resume the
2711 stepping thread, it may be resumed from that address with a
2712 breakpoint that hasn't trapped yet. Seen with
2713 gdb.threads/non-stop-fair-events.exp, on targets that don't
2714 do displaced stepping. */
2715
2716 if (debug_infrun)
2717 fprintf_unfiltered (gdb_stdlog,
2718 "infrun: resume: [%s] stepped breakpoint\n",
2719 target_pid_to_str (tp->ptid));
2720
2721 tp->stepped_breakpoint = 1;
2722
2723 /* Most targets can step a breakpoint instruction, thus
2724 executing it normally. But if this one cannot, just
2725 continue and we will hit it anyway. */
2726 if (gdbarch_cannot_step_breakpoint (gdbarch))
2727 step = 0;
2728 }
2729
2730 if (debug_displaced
2731 && tp->control.trap_expected
2732 && use_displaced_stepping (tp)
2733 && !step_over_info_valid_p ())
2734 {
2735 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2736 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2737 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2738 gdb_byte buf[4];
2739
2740 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2741 paddress (resume_gdbarch, actual_pc));
2742 read_memory (actual_pc, buf, sizeof (buf));
2743 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2744 }
2745
2746 if (tp->control.may_range_step)
2747 {
2748 /* If we're resuming a thread with the PC out of the step
2749 range, then we're doing some nested/finer run control
2750 operation, like stepping the thread out of the dynamic
2751 linker or the displaced stepping scratch pad. We
2752 shouldn't have allowed a range step then. */
2753 gdb_assert (pc_in_thread_step_range (pc, tp));
2754 }
2755
2756 do_target_resume (resume_ptid, step, sig);
2757 tp->resumed = 1;
2758 discard_cleanups (old_cleanups);
2759 }
2760 \f
2761 /* Proceeding. */
2762
2763 /* See infrun.h. */
2764
2765 /* Counter that tracks number of user visible stops. This can be used
2766 to tell whether a command has proceeded the inferior past the
2767 current location. This allows e.g., inferior function calls in
2768 breakpoint commands to not interrupt the command list. When the
2769 call finishes successfully, the inferior is standing at the same
2770 breakpoint as if nothing happened (and so we don't call
2771 normal_stop). */
2772 static ULONGEST current_stop_id;
2773
2774 /* See infrun.h. */
2775
2776 ULONGEST
2777 get_stop_id (void)
2778 {
2779 return current_stop_id;
2780 }
2781
2782 /* Called when we report a user visible stop. */
2783
2784 static void
2785 new_stop_id (void)
2786 {
2787 current_stop_id++;
2788 }
2789
2790 /* Clear out all variables saying what to do when inferior is continued.
2791 First do this, then set the ones you want, then call `proceed'. */
2792
2793 static void
2794 clear_proceed_status_thread (struct thread_info *tp)
2795 {
2796 if (debug_infrun)
2797 fprintf_unfiltered (gdb_stdlog,
2798 "infrun: clear_proceed_status_thread (%s)\n",
2799 target_pid_to_str (tp->ptid));
2800
2801 /* If we're starting a new sequence, then the previous finished
2802 single-step is no longer relevant. */
2803 if (tp->suspend.waitstatus_pending_p)
2804 {
2805 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2806 {
2807 if (debug_infrun)
2808 fprintf_unfiltered (gdb_stdlog,
2809 "infrun: clear_proceed_status: pending "
2810 "event of %s was a finished step. "
2811 "Discarding.\n",
2812 target_pid_to_str (tp->ptid));
2813
2814 tp->suspend.waitstatus_pending_p = 0;
2815 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2816 }
2817 else if (debug_infrun)
2818 {
2819 char *statstr;
2820
2821 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2822 fprintf_unfiltered (gdb_stdlog,
2823 "infrun: clear_proceed_status_thread: thread %s "
2824 "has pending wait status %s "
2825 "(currently_stepping=%d).\n",
2826 target_pid_to_str (tp->ptid), statstr,
2827 currently_stepping (tp));
2828 xfree (statstr);
2829 }
2830 }
2831
2832 /* If this signal should not be seen by program, give it zero.
2833 Used for debugging signals. */
2834 if (!signal_pass_state (tp->suspend.stop_signal))
2835 tp->suspend.stop_signal = GDB_SIGNAL_0;
2836
2837 thread_fsm_delete (tp->thread_fsm);
2838 tp->thread_fsm = NULL;
2839
2840 tp->control.trap_expected = 0;
2841 tp->control.step_range_start = 0;
2842 tp->control.step_range_end = 0;
2843 tp->control.may_range_step = 0;
2844 tp->control.step_frame_id = null_frame_id;
2845 tp->control.step_stack_frame_id = null_frame_id;
2846 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2847 tp->control.step_start_function = NULL;
2848 tp->stop_requested = 0;
2849
2850 tp->control.stop_step = 0;
2851
2852 tp->control.proceed_to_finish = 0;
2853
2854 tp->control.stepping_command = 0;
2855
2856 /* Discard any remaining commands or status from previous stop. */
2857 bpstat_clear (&tp->control.stop_bpstat);
2858 }
2859
2860 void
2861 clear_proceed_status (int step)
2862 {
2863 /* With scheduler-locking replay, stop replaying other threads if we're
2864 not replaying the user-visible resume ptid.
2865
2866 This is a convenience feature to not require the user to explicitly
2867 stop replaying the other threads. We're assuming that the user's
2868 intent is to resume tracing the recorded process. */
2869 if (!non_stop && scheduler_mode == schedlock_replay
2870 && target_record_is_replaying (minus_one_ptid)
2871 && !target_record_will_replay (user_visible_resume_ptid (step),
2872 execution_direction))
2873 target_record_stop_replaying ();
2874
2875 if (!non_stop)
2876 {
2877 struct thread_info *tp;
2878 ptid_t resume_ptid;
2879
2880 resume_ptid = user_visible_resume_ptid (step);
2881
2882 /* In all-stop mode, delete the per-thread status of all threads
2883 we're about to resume, implicitly and explicitly. */
2884 ALL_NON_EXITED_THREADS (tp)
2885 {
2886 if (!ptid_match (tp->ptid, resume_ptid))
2887 continue;
2888 clear_proceed_status_thread (tp);
2889 }
2890 }
2891
2892 if (!ptid_equal (inferior_ptid, null_ptid))
2893 {
2894 struct inferior *inferior;
2895
2896 if (non_stop)
2897 {
2898 /* If in non-stop mode, only delete the per-thread status of
2899 the current thread. */
2900 clear_proceed_status_thread (inferior_thread ());
2901 }
2902
2903 inferior = current_inferior ();
2904 inferior->control.stop_soon = NO_STOP_QUIETLY;
2905 }
2906
2907 observer_notify_about_to_proceed ();
2908 }
2909
2910 /* Returns true if TP is still stopped at a breakpoint that needs
2911 stepping-over in order to make progress. If the breakpoint is gone
2912 meanwhile, we can skip the whole step-over dance. */
2913
2914 static int
2915 thread_still_needs_step_over_bp (struct thread_info *tp)
2916 {
2917 if (tp->stepping_over_breakpoint)
2918 {
2919 struct regcache *regcache = get_thread_regcache (tp->ptid);
2920
2921 if (breakpoint_here_p (get_regcache_aspace (regcache),
2922 regcache_read_pc (regcache))
2923 == ordinary_breakpoint_here)
2924 return 1;
2925
2926 tp->stepping_over_breakpoint = 0;
2927 }
2928
2929 return 0;
2930 }
2931
2932 /* Check whether thread TP still needs to start a step-over in order
2933 to make progress when resumed. Returns an bitwise or of enum
2934 step_over_what bits, indicating what needs to be stepped over. */
2935
2936 static step_over_what
2937 thread_still_needs_step_over (struct thread_info *tp)
2938 {
2939 step_over_what what = 0;
2940
2941 if (thread_still_needs_step_over_bp (tp))
2942 what |= STEP_OVER_BREAKPOINT;
2943
2944 if (tp->stepping_over_watchpoint
2945 && !target_have_steppable_watchpoint)
2946 what |= STEP_OVER_WATCHPOINT;
2947
2948 return what;
2949 }
2950
2951 /* Returns true if scheduler locking applies. STEP indicates whether
2952 we're about to do a step/next-like command to a thread. */
2953
2954 static int
2955 schedlock_applies (struct thread_info *tp)
2956 {
2957 return (scheduler_mode == schedlock_on
2958 || (scheduler_mode == schedlock_step
2959 && tp->control.stepping_command)
2960 || (scheduler_mode == schedlock_replay
2961 && target_record_will_replay (minus_one_ptid,
2962 execution_direction)));
2963 }
2964
2965 /* Basic routine for continuing the program in various fashions.
2966
2967 ADDR is the address to resume at, or -1 for resume where stopped.
2968 SIGGNAL is the signal to give it, or 0 for none,
2969 or -1 for act according to how it stopped.
2970 STEP is nonzero if should trap after one instruction.
2971 -1 means return after that and print nothing.
2972 You should probably set various step_... variables
2973 before calling here, if you are stepping.
2974
2975 You should call clear_proceed_status before calling proceed. */
2976
2977 void
2978 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2979 {
2980 struct regcache *regcache;
2981 struct gdbarch *gdbarch;
2982 struct thread_info *tp;
2983 CORE_ADDR pc;
2984 struct address_space *aspace;
2985 ptid_t resume_ptid;
2986 struct execution_control_state ecss;
2987 struct execution_control_state *ecs = &ecss;
2988 struct cleanup *old_chain;
2989 struct cleanup *defer_resume_cleanup;
2990 int started;
2991
2992 /* If we're stopped at a fork/vfork, follow the branch set by the
2993 "set follow-fork-mode" command; otherwise, we'll just proceed
2994 resuming the current thread. */
2995 if (!follow_fork ())
2996 {
2997 /* The target for some reason decided not to resume. */
2998 normal_stop ();
2999 if (target_can_async_p ())
3000 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3001 return;
3002 }
3003
3004 /* We'll update this if & when we switch to a new thread. */
3005 previous_inferior_ptid = inferior_ptid;
3006
3007 regcache = get_current_regcache ();
3008 gdbarch = get_regcache_arch (regcache);
3009 aspace = get_regcache_aspace (regcache);
3010 pc = regcache_read_pc (regcache);
3011 tp = inferior_thread ();
3012
3013 /* Fill in with reasonable starting values. */
3014 init_thread_stepping_state (tp);
3015
3016 gdb_assert (!thread_is_in_step_over_chain (tp));
3017
3018 if (addr == (CORE_ADDR) -1)
3019 {
3020 if (pc == stop_pc
3021 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3022 && execution_direction != EXEC_REVERSE)
3023 /* There is a breakpoint at the address we will resume at,
3024 step one instruction before inserting breakpoints so that
3025 we do not stop right away (and report a second hit at this
3026 breakpoint).
3027
3028 Note, we don't do this in reverse, because we won't
3029 actually be executing the breakpoint insn anyway.
3030 We'll be (un-)executing the previous instruction. */
3031 tp->stepping_over_breakpoint = 1;
3032 else if (gdbarch_single_step_through_delay_p (gdbarch)
3033 && gdbarch_single_step_through_delay (gdbarch,
3034 get_current_frame ()))
3035 /* We stepped onto an instruction that needs to be stepped
3036 again before re-inserting the breakpoint, do so. */
3037 tp->stepping_over_breakpoint = 1;
3038 }
3039 else
3040 {
3041 regcache_write_pc (regcache, addr);
3042 }
3043
3044 if (siggnal != GDB_SIGNAL_DEFAULT)
3045 tp->suspend.stop_signal = siggnal;
3046
3047 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3048
3049 /* If an exception is thrown from this point on, make sure to
3050 propagate GDB's knowledge of the executing state to the
3051 frontend/user running state. */
3052 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3053
3054 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3055 threads (e.g., we might need to set threads stepping over
3056 breakpoints first), from the user/frontend's point of view, all
3057 threads in RESUME_PTID are now running. Unless we're calling an
3058 inferior function, as in that case we pretend the inferior
3059 doesn't run at all. */
3060 if (!tp->control.in_infcall)
3061 set_running (resume_ptid, 1);
3062
3063 if (debug_infrun)
3064 fprintf_unfiltered (gdb_stdlog,
3065 "infrun: proceed (addr=%s, signal=%s)\n",
3066 paddress (gdbarch, addr),
3067 gdb_signal_to_symbol_string (siggnal));
3068
3069 annotate_starting ();
3070
3071 /* Make sure that output from GDB appears before output from the
3072 inferior. */
3073 gdb_flush (gdb_stdout);
3074
3075 /* In a multi-threaded task we may select another thread and
3076 then continue or step.
3077
3078 But if a thread that we're resuming had stopped at a breakpoint,
3079 it will immediately cause another breakpoint stop without any
3080 execution (i.e. it will report a breakpoint hit incorrectly). So
3081 we must step over it first.
3082
3083 Look for threads other than the current (TP) that reported a
3084 breakpoint hit and haven't been resumed yet since. */
3085
3086 /* If scheduler locking applies, we can avoid iterating over all
3087 threads. */
3088 if (!non_stop && !schedlock_applies (tp))
3089 {
3090 struct thread_info *current = tp;
3091
3092 ALL_NON_EXITED_THREADS (tp)
3093 {
3094 /* Ignore the current thread here. It's handled
3095 afterwards. */
3096 if (tp == current)
3097 continue;
3098
3099 /* Ignore threads of processes we're not resuming. */
3100 if (!ptid_match (tp->ptid, resume_ptid))
3101 continue;
3102
3103 if (!thread_still_needs_step_over (tp))
3104 continue;
3105
3106 gdb_assert (!thread_is_in_step_over_chain (tp));
3107
3108 if (debug_infrun)
3109 fprintf_unfiltered (gdb_stdlog,
3110 "infrun: need to step-over [%s] first\n",
3111 target_pid_to_str (tp->ptid));
3112
3113 thread_step_over_chain_enqueue (tp);
3114 }
3115
3116 tp = current;
3117 }
3118
3119 /* Enqueue the current thread last, so that we move all other
3120 threads over their breakpoints first. */
3121 if (tp->stepping_over_breakpoint)
3122 thread_step_over_chain_enqueue (tp);
3123
3124 /* If the thread isn't started, we'll still need to set its prev_pc,
3125 so that switch_back_to_stepped_thread knows the thread hasn't
3126 advanced. Must do this before resuming any thread, as in
3127 all-stop/remote, once we resume we can't send any other packet
3128 until the target stops again. */
3129 tp->prev_pc = regcache_read_pc (regcache);
3130
3131 defer_resume_cleanup = make_cleanup_defer_target_commit_resume ();
3132
3133 started = start_step_over ();
3134
3135 if (step_over_info_valid_p ())
3136 {
3137 /* Either this thread started a new in-line step over, or some
3138 other thread was already doing one. In either case, don't
3139 resume anything else until the step-over is finished. */
3140 }
3141 else if (started && !target_is_non_stop_p ())
3142 {
3143 /* A new displaced stepping sequence was started. In all-stop,
3144 we can't talk to the target anymore until it next stops. */
3145 }
3146 else if (!non_stop && target_is_non_stop_p ())
3147 {
3148 /* In all-stop, but the target is always in non-stop mode.
3149 Start all other threads that are implicitly resumed too. */
3150 ALL_NON_EXITED_THREADS (tp)
3151 {
3152 /* Ignore threads of processes we're not resuming. */
3153 if (!ptid_match (tp->ptid, resume_ptid))
3154 continue;
3155
3156 if (tp->resumed)
3157 {
3158 if (debug_infrun)
3159 fprintf_unfiltered (gdb_stdlog,
3160 "infrun: proceed: [%s] resumed\n",
3161 target_pid_to_str (tp->ptid));
3162 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3163 continue;
3164 }
3165
3166 if (thread_is_in_step_over_chain (tp))
3167 {
3168 if (debug_infrun)
3169 fprintf_unfiltered (gdb_stdlog,
3170 "infrun: proceed: [%s] needs step-over\n",
3171 target_pid_to_str (tp->ptid));
3172 continue;
3173 }
3174
3175 if (debug_infrun)
3176 fprintf_unfiltered (gdb_stdlog,
3177 "infrun: proceed: resuming %s\n",
3178 target_pid_to_str (tp->ptid));
3179
3180 reset_ecs (ecs, tp);
3181 switch_to_thread (tp->ptid);
3182 keep_going_pass_signal (ecs);
3183 if (!ecs->wait_some_more)
3184 error (_("Command aborted."));
3185 }
3186 }
3187 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3188 {
3189 /* The thread wasn't started, and isn't queued, run it now. */
3190 reset_ecs (ecs, tp);
3191 switch_to_thread (tp->ptid);
3192 keep_going_pass_signal (ecs);
3193 if (!ecs->wait_some_more)
3194 error (_("Command aborted."));
3195 }
3196
3197 do_cleanups (defer_resume_cleanup);
3198 target_commit_resume ();
3199
3200 discard_cleanups (old_chain);
3201
3202 /* Tell the event loop to wait for it to stop. If the target
3203 supports asynchronous execution, it'll do this from within
3204 target_resume. */
3205 if (!target_can_async_p ())
3206 mark_async_event_handler (infrun_async_inferior_event_token);
3207 }
3208 \f
3209
3210 /* Start remote-debugging of a machine over a serial link. */
3211
3212 void
3213 start_remote (int from_tty)
3214 {
3215 struct inferior *inferior;
3216
3217 inferior = current_inferior ();
3218 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3219
3220 /* Always go on waiting for the target, regardless of the mode. */
3221 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3222 indicate to wait_for_inferior that a target should timeout if
3223 nothing is returned (instead of just blocking). Because of this,
3224 targets expecting an immediate response need to, internally, set
3225 things up so that the target_wait() is forced to eventually
3226 timeout. */
3227 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3228 differentiate to its caller what the state of the target is after
3229 the initial open has been performed. Here we're assuming that
3230 the target has stopped. It should be possible to eventually have
3231 target_open() return to the caller an indication that the target
3232 is currently running and GDB state should be set to the same as
3233 for an async run. */
3234 wait_for_inferior ();
3235
3236 /* Now that the inferior has stopped, do any bookkeeping like
3237 loading shared libraries. We want to do this before normal_stop,
3238 so that the displayed frame is up to date. */
3239 post_create_inferior (&current_target, from_tty);
3240
3241 normal_stop ();
3242 }
3243
3244 /* Initialize static vars when a new inferior begins. */
3245
3246 void
3247 init_wait_for_inferior (void)
3248 {
3249 /* These are meaningless until the first time through wait_for_inferior. */
3250
3251 breakpoint_init_inferior (inf_starting);
3252
3253 clear_proceed_status (0);
3254
3255 target_last_wait_ptid = minus_one_ptid;
3256
3257 previous_inferior_ptid = inferior_ptid;
3258
3259 /* Discard any skipped inlined frames. */
3260 clear_inline_frame_state (minus_one_ptid);
3261 }
3262
3263 \f
3264
3265 static void handle_inferior_event (struct execution_control_state *ecs);
3266
3267 static void handle_step_into_function (struct gdbarch *gdbarch,
3268 struct execution_control_state *ecs);
3269 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3270 struct execution_control_state *ecs);
3271 static void handle_signal_stop (struct execution_control_state *ecs);
3272 static void check_exception_resume (struct execution_control_state *,
3273 struct frame_info *);
3274
3275 static void end_stepping_range (struct execution_control_state *ecs);
3276 static void stop_waiting (struct execution_control_state *ecs);
3277 static void keep_going (struct execution_control_state *ecs);
3278 static void process_event_stop_test (struct execution_control_state *ecs);
3279 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3280
3281 /* Callback for iterate over threads. If the thread is stopped, but
3282 the user/frontend doesn't know about that yet, go through
3283 normal_stop, as if the thread had just stopped now. ARG points at
3284 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3285 ptid_is_pid(PTID) is true, applies to all threads of the process
3286 pointed at by PTID. Otherwise, apply only to the thread pointed by
3287 PTID. */
3288
3289 static int
3290 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3291 {
3292 ptid_t ptid = * (ptid_t *) arg;
3293
3294 if ((ptid_equal (info->ptid, ptid)
3295 || ptid_equal (minus_one_ptid, ptid)
3296 || (ptid_is_pid (ptid)
3297 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3298 && is_running (info->ptid)
3299 && !is_executing (info->ptid))
3300 {
3301 struct cleanup *old_chain;
3302 struct execution_control_state ecss;
3303 struct execution_control_state *ecs = &ecss;
3304
3305 memset (ecs, 0, sizeof (*ecs));
3306
3307 old_chain = make_cleanup_restore_current_thread ();
3308
3309 overlay_cache_invalid = 1;
3310 /* Flush target cache before starting to handle each event.
3311 Target was running and cache could be stale. This is just a
3312 heuristic. Running threads may modify target memory, but we
3313 don't get any event. */
3314 target_dcache_invalidate ();
3315
3316 /* Go through handle_inferior_event/normal_stop, so we always
3317 have consistent output as if the stop event had been
3318 reported. */
3319 ecs->ptid = info->ptid;
3320 ecs->event_thread = info;
3321 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3322 ecs->ws.value.sig = GDB_SIGNAL_0;
3323
3324 handle_inferior_event (ecs);
3325
3326 if (!ecs->wait_some_more)
3327 {
3328 /* Cancel any running execution command. */
3329 thread_cancel_execution_command (info);
3330
3331 normal_stop ();
3332 }
3333
3334 do_cleanups (old_chain);
3335 }
3336
3337 return 0;
3338 }
3339
3340 /* This function is attached as a "thread_stop_requested" observer.
3341 Cleanup local state that assumed the PTID was to be resumed, and
3342 report the stop to the frontend. */
3343
3344 static void
3345 infrun_thread_stop_requested (ptid_t ptid)
3346 {
3347 struct thread_info *tp;
3348
3349 /* PTID was requested to stop. Remove matching threads from the
3350 step-over queue, so we don't try to resume them
3351 automatically. */
3352 ALL_NON_EXITED_THREADS (tp)
3353 if (ptid_match (tp->ptid, ptid))
3354 {
3355 if (thread_is_in_step_over_chain (tp))
3356 thread_step_over_chain_remove (tp);
3357 }
3358
3359 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3360 }
3361
3362 static void
3363 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3364 {
3365 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3366 nullify_last_target_wait_ptid ();
3367 }
3368
3369 /* Delete the step resume, single-step and longjmp/exception resume
3370 breakpoints of TP. */
3371
3372 static void
3373 delete_thread_infrun_breakpoints (struct thread_info *tp)
3374 {
3375 delete_step_resume_breakpoint (tp);
3376 delete_exception_resume_breakpoint (tp);
3377 delete_single_step_breakpoints (tp);
3378 }
3379
3380 /* If the target still has execution, call FUNC for each thread that
3381 just stopped. In all-stop, that's all the non-exited threads; in
3382 non-stop, that's the current thread, only. */
3383
3384 typedef void (*for_each_just_stopped_thread_callback_func)
3385 (struct thread_info *tp);
3386
3387 static void
3388 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3389 {
3390 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3391 return;
3392
3393 if (target_is_non_stop_p ())
3394 {
3395 /* If in non-stop mode, only the current thread stopped. */
3396 func (inferior_thread ());
3397 }
3398 else
3399 {
3400 struct thread_info *tp;
3401
3402 /* In all-stop mode, all threads have stopped. */
3403 ALL_NON_EXITED_THREADS (tp)
3404 {
3405 func (tp);
3406 }
3407 }
3408 }
3409
3410 /* Delete the step resume and longjmp/exception resume breakpoints of
3411 the threads that just stopped. */
3412
3413 static void
3414 delete_just_stopped_threads_infrun_breakpoints (void)
3415 {
3416 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3417 }
3418
3419 /* Delete the single-step breakpoints of the threads that just
3420 stopped. */
3421
3422 static void
3423 delete_just_stopped_threads_single_step_breakpoints (void)
3424 {
3425 for_each_just_stopped_thread (delete_single_step_breakpoints);
3426 }
3427
3428 /* A cleanup wrapper. */
3429
3430 static void
3431 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3432 {
3433 delete_just_stopped_threads_infrun_breakpoints ();
3434 }
3435
3436 /* See infrun.h. */
3437
3438 void
3439 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3440 const struct target_waitstatus *ws)
3441 {
3442 char *status_string = target_waitstatus_to_string (ws);
3443 struct ui_file *tmp_stream = mem_fileopen ();
3444 char *text;
3445
3446 /* The text is split over several lines because it was getting too long.
3447 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3448 output as a unit; we want only one timestamp printed if debug_timestamp
3449 is set. */
3450
3451 fprintf_unfiltered (tmp_stream,
3452 "infrun: target_wait (%d.%ld.%ld",
3453 ptid_get_pid (waiton_ptid),
3454 ptid_get_lwp (waiton_ptid),
3455 ptid_get_tid (waiton_ptid));
3456 if (ptid_get_pid (waiton_ptid) != -1)
3457 fprintf_unfiltered (tmp_stream,
3458 " [%s]", target_pid_to_str (waiton_ptid));
3459 fprintf_unfiltered (tmp_stream, ", status) =\n");
3460 fprintf_unfiltered (tmp_stream,
3461 "infrun: %d.%ld.%ld [%s],\n",
3462 ptid_get_pid (result_ptid),
3463 ptid_get_lwp (result_ptid),
3464 ptid_get_tid (result_ptid),
3465 target_pid_to_str (result_ptid));
3466 fprintf_unfiltered (tmp_stream,
3467 "infrun: %s\n",
3468 status_string);
3469
3470 text = ui_file_xstrdup (tmp_stream, NULL);
3471
3472 /* This uses %s in part to handle %'s in the text, but also to avoid
3473 a gcc error: the format attribute requires a string literal. */
3474 fprintf_unfiltered (gdb_stdlog, "%s", text);
3475
3476 xfree (status_string);
3477 xfree (text);
3478 ui_file_delete (tmp_stream);
3479 }
3480
3481 /* Select a thread at random, out of those which are resumed and have
3482 had events. */
3483
3484 static struct thread_info *
3485 random_pending_event_thread (ptid_t waiton_ptid)
3486 {
3487 struct thread_info *event_tp;
3488 int num_events = 0;
3489 int random_selector;
3490
3491 /* First see how many events we have. Count only resumed threads
3492 that have an event pending. */
3493 ALL_NON_EXITED_THREADS (event_tp)
3494 if (ptid_match (event_tp->ptid, waiton_ptid)
3495 && event_tp->resumed
3496 && event_tp->suspend.waitstatus_pending_p)
3497 num_events++;
3498
3499 if (num_events == 0)
3500 return NULL;
3501
3502 /* Now randomly pick a thread out of those that have had events. */
3503 random_selector = (int)
3504 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3505
3506 if (debug_infrun && num_events > 1)
3507 fprintf_unfiltered (gdb_stdlog,
3508 "infrun: Found %d events, selecting #%d\n",
3509 num_events, random_selector);
3510
3511 /* Select the Nth thread that has had an event. */
3512 ALL_NON_EXITED_THREADS (event_tp)
3513 if (ptid_match (event_tp->ptid, waiton_ptid)
3514 && event_tp->resumed
3515 && event_tp->suspend.waitstatus_pending_p)
3516 if (random_selector-- == 0)
3517 break;
3518
3519 return event_tp;
3520 }
3521
3522 /* Wrapper for target_wait that first checks whether threads have
3523 pending statuses to report before actually asking the target for
3524 more events. */
3525
3526 static ptid_t
3527 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3528 {
3529 ptid_t event_ptid;
3530 struct thread_info *tp;
3531
3532 /* First check if there is a resumed thread with a wait status
3533 pending. */
3534 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3535 {
3536 tp = random_pending_event_thread (ptid);
3537 }
3538 else
3539 {
3540 if (debug_infrun)
3541 fprintf_unfiltered (gdb_stdlog,
3542 "infrun: Waiting for specific thread %s.\n",
3543 target_pid_to_str (ptid));
3544
3545 /* We have a specific thread to check. */
3546 tp = find_thread_ptid (ptid);
3547 gdb_assert (tp != NULL);
3548 if (!tp->suspend.waitstatus_pending_p)
3549 tp = NULL;
3550 }
3551
3552 if (tp != NULL
3553 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3554 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3555 {
3556 struct regcache *regcache = get_thread_regcache (tp->ptid);
3557 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3558 CORE_ADDR pc;
3559 int discard = 0;
3560
3561 pc = regcache_read_pc (regcache);
3562
3563 if (pc != tp->suspend.stop_pc)
3564 {
3565 if (debug_infrun)
3566 fprintf_unfiltered (gdb_stdlog,
3567 "infrun: PC of %s changed. was=%s, now=%s\n",
3568 target_pid_to_str (tp->ptid),
3569 paddress (gdbarch, tp->prev_pc),
3570 paddress (gdbarch, pc));
3571 discard = 1;
3572 }
3573 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3574 {
3575 if (debug_infrun)
3576 fprintf_unfiltered (gdb_stdlog,
3577 "infrun: previous breakpoint of %s, at %s gone\n",
3578 target_pid_to_str (tp->ptid),
3579 paddress (gdbarch, pc));
3580
3581 discard = 1;
3582 }
3583
3584 if (discard)
3585 {
3586 if (debug_infrun)
3587 fprintf_unfiltered (gdb_stdlog,
3588 "infrun: pending event of %s cancelled.\n",
3589 target_pid_to_str (tp->ptid));
3590
3591 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3592 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3593 }
3594 }
3595
3596 if (tp != NULL)
3597 {
3598 if (debug_infrun)
3599 {
3600 char *statstr;
3601
3602 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3603 fprintf_unfiltered (gdb_stdlog,
3604 "infrun: Using pending wait status %s for %s.\n",
3605 statstr,
3606 target_pid_to_str (tp->ptid));
3607 xfree (statstr);
3608 }
3609
3610 /* Now that we've selected our final event LWP, un-adjust its PC
3611 if it was a software breakpoint (and the target doesn't
3612 always adjust the PC itself). */
3613 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3614 && !target_supports_stopped_by_sw_breakpoint ())
3615 {
3616 struct regcache *regcache;
3617 struct gdbarch *gdbarch;
3618 int decr_pc;
3619
3620 regcache = get_thread_regcache (tp->ptid);
3621 gdbarch = get_regcache_arch (regcache);
3622
3623 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3624 if (decr_pc != 0)
3625 {
3626 CORE_ADDR pc;
3627
3628 pc = regcache_read_pc (regcache);
3629 regcache_write_pc (regcache, pc + decr_pc);
3630 }
3631 }
3632
3633 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3634 *status = tp->suspend.waitstatus;
3635 tp->suspend.waitstatus_pending_p = 0;
3636
3637 /* Wake up the event loop again, until all pending events are
3638 processed. */
3639 if (target_is_async_p ())
3640 mark_async_event_handler (infrun_async_inferior_event_token);
3641 return tp->ptid;
3642 }
3643
3644 /* But if we don't find one, we'll have to wait. */
3645
3646 if (deprecated_target_wait_hook)
3647 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3648 else
3649 event_ptid = target_wait (ptid, status, options);
3650
3651 return event_ptid;
3652 }
3653
3654 /* Prepare and stabilize the inferior for detaching it. E.g.,
3655 detaching while a thread is displaced stepping is a recipe for
3656 crashing it, as nothing would readjust the PC out of the scratch
3657 pad. */
3658
3659 void
3660 prepare_for_detach (void)
3661 {
3662 struct inferior *inf = current_inferior ();
3663 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3664 struct cleanup *old_chain_1;
3665 struct displaced_step_inferior_state *displaced;
3666
3667 displaced = get_displaced_stepping_state (inf->pid);
3668
3669 /* Is any thread of this process displaced stepping? If not,
3670 there's nothing else to do. */
3671 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3672 return;
3673
3674 if (debug_infrun)
3675 fprintf_unfiltered (gdb_stdlog,
3676 "displaced-stepping in-process while detaching");
3677
3678 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3679 inf->detaching = 1;
3680
3681 while (!ptid_equal (displaced->step_ptid, null_ptid))
3682 {
3683 struct cleanup *old_chain_2;
3684 struct execution_control_state ecss;
3685 struct execution_control_state *ecs;
3686
3687 ecs = &ecss;
3688 memset (ecs, 0, sizeof (*ecs));
3689
3690 overlay_cache_invalid = 1;
3691 /* Flush target cache before starting to handle each event.
3692 Target was running and cache could be stale. This is just a
3693 heuristic. Running threads may modify target memory, but we
3694 don't get any event. */
3695 target_dcache_invalidate ();
3696
3697 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3698
3699 if (debug_infrun)
3700 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3701
3702 /* If an error happens while handling the event, propagate GDB's
3703 knowledge of the executing state to the frontend/user running
3704 state. */
3705 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3706 &minus_one_ptid);
3707
3708 /* Now figure out what to do with the result of the result. */
3709 handle_inferior_event (ecs);
3710
3711 /* No error, don't finish the state yet. */
3712 discard_cleanups (old_chain_2);
3713
3714 /* Breakpoints and watchpoints are not installed on the target
3715 at this point, and signals are passed directly to the
3716 inferior, so this must mean the process is gone. */
3717 if (!ecs->wait_some_more)
3718 {
3719 discard_cleanups (old_chain_1);
3720 error (_("Program exited while detaching"));
3721 }
3722 }
3723
3724 discard_cleanups (old_chain_1);
3725 }
3726
3727 /* Wait for control to return from inferior to debugger.
3728
3729 If inferior gets a signal, we may decide to start it up again
3730 instead of returning. That is why there is a loop in this function.
3731 When this function actually returns it means the inferior
3732 should be left stopped and GDB should read more commands. */
3733
3734 void
3735 wait_for_inferior (void)
3736 {
3737 struct cleanup *old_cleanups;
3738 struct cleanup *thread_state_chain;
3739
3740 if (debug_infrun)
3741 fprintf_unfiltered
3742 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3743
3744 old_cleanups
3745 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3746 NULL);
3747
3748 /* If an error happens while handling the event, propagate GDB's
3749 knowledge of the executing state to the frontend/user running
3750 state. */
3751 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3752
3753 while (1)
3754 {
3755 struct execution_control_state ecss;
3756 struct execution_control_state *ecs = &ecss;
3757 ptid_t waiton_ptid = minus_one_ptid;
3758
3759 memset (ecs, 0, sizeof (*ecs));
3760
3761 overlay_cache_invalid = 1;
3762
3763 /* Flush target cache before starting to handle each event.
3764 Target was running and cache could be stale. This is just a
3765 heuristic. Running threads may modify target memory, but we
3766 don't get any event. */
3767 target_dcache_invalidate ();
3768
3769 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3770
3771 if (debug_infrun)
3772 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3773
3774 /* Now figure out what to do with the result of the result. */
3775 handle_inferior_event (ecs);
3776
3777 if (!ecs->wait_some_more)
3778 break;
3779 }
3780
3781 /* No error, don't finish the state yet. */
3782 discard_cleanups (thread_state_chain);
3783
3784 do_cleanups (old_cleanups);
3785 }
3786
3787 /* Cleanup that reinstalls the readline callback handler, if the
3788 target is running in the background. If while handling the target
3789 event something triggered a secondary prompt, like e.g., a
3790 pagination prompt, we'll have removed the callback handler (see
3791 gdb_readline_wrapper_line). Need to do this as we go back to the
3792 event loop, ready to process further input. Note this has no
3793 effect if the handler hasn't actually been removed, because calling
3794 rl_callback_handler_install resets the line buffer, thus losing
3795 input. */
3796
3797 static void
3798 reinstall_readline_callback_handler_cleanup (void *arg)
3799 {
3800 struct ui *ui = current_ui;
3801
3802 if (!ui->async)
3803 {
3804 /* We're not going back to the top level event loop yet. Don't
3805 install the readline callback, as it'd prep the terminal,
3806 readline-style (raw, noecho) (e.g., --batch). We'll install
3807 it the next time the prompt is displayed, when we're ready
3808 for input. */
3809 return;
3810 }
3811
3812 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3813 gdb_rl_callback_handler_reinstall ();
3814 }
3815
3816 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3817 that's just the event thread. In all-stop, that's all threads. */
3818
3819 static void
3820 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3821 {
3822 struct thread_info *thr = ecs->event_thread;
3823
3824 if (thr != NULL && thr->thread_fsm != NULL)
3825 thread_fsm_clean_up (thr->thread_fsm, thr);
3826
3827 if (!non_stop)
3828 {
3829 ALL_NON_EXITED_THREADS (thr)
3830 {
3831 if (thr->thread_fsm == NULL)
3832 continue;
3833 if (thr == ecs->event_thread)
3834 continue;
3835
3836 switch_to_thread (thr->ptid);
3837 thread_fsm_clean_up (thr->thread_fsm, thr);
3838 }
3839
3840 if (ecs->event_thread != NULL)
3841 switch_to_thread (ecs->event_thread->ptid);
3842 }
3843 }
3844
3845 /* Helper for all_uis_check_sync_execution_done that works on the
3846 current UI. */
3847
3848 static void
3849 check_curr_ui_sync_execution_done (void)
3850 {
3851 struct ui *ui = current_ui;
3852
3853 if (ui->prompt_state == PROMPT_NEEDED
3854 && ui->async
3855 && !gdb_in_secondary_prompt_p (ui))
3856 {
3857 target_terminal_ours ();
3858 observer_notify_sync_execution_done ();
3859 ui_register_input_event_handler (ui);
3860 }
3861 }
3862
3863 /* See infrun.h. */
3864
3865 void
3866 all_uis_check_sync_execution_done (void)
3867 {
3868 SWITCH_THRU_ALL_UIS ()
3869 {
3870 check_curr_ui_sync_execution_done ();
3871 }
3872 }
3873
3874 /* See infrun.h. */
3875
3876 void
3877 all_uis_on_sync_execution_starting (void)
3878 {
3879 SWITCH_THRU_ALL_UIS ()
3880 {
3881 if (current_ui->prompt_state == PROMPT_NEEDED)
3882 async_disable_stdin ();
3883 }
3884 }
3885
3886 /* Asynchronous version of wait_for_inferior. It is called by the
3887 event loop whenever a change of state is detected on the file
3888 descriptor corresponding to the target. It can be called more than
3889 once to complete a single execution command. In such cases we need
3890 to keep the state in a global variable ECSS. If it is the last time
3891 that this function is called for a single execution command, then
3892 report to the user that the inferior has stopped, and do the
3893 necessary cleanups. */
3894
3895 void
3896 fetch_inferior_event (void *client_data)
3897 {
3898 struct execution_control_state ecss;
3899 struct execution_control_state *ecs = &ecss;
3900 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3901 struct cleanup *ts_old_chain;
3902 int cmd_done = 0;
3903 ptid_t waiton_ptid = minus_one_ptid;
3904
3905 memset (ecs, 0, sizeof (*ecs));
3906
3907 /* Events are always processed with the main UI as current UI. This
3908 way, warnings, debug output, etc. are always consistently sent to
3909 the main console. */
3910 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3911
3912 /* End up with readline processing input, if necessary. */
3913 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3914
3915 /* We're handling a live event, so make sure we're doing live
3916 debugging. If we're looking at traceframes while the target is
3917 running, we're going to need to get back to that mode after
3918 handling the event. */
3919 if (non_stop)
3920 {
3921 make_cleanup_restore_current_traceframe ();
3922 set_current_traceframe (-1);
3923 }
3924
3925 if (non_stop)
3926 /* In non-stop mode, the user/frontend should not notice a thread
3927 switch due to internal events. Make sure we reverse to the
3928 user selected thread and frame after handling the event and
3929 running any breakpoint commands. */
3930 make_cleanup_restore_current_thread ();
3931
3932 overlay_cache_invalid = 1;
3933 /* Flush target cache before starting to handle each event. Target
3934 was running and cache could be stale. This is just a heuristic.
3935 Running threads may modify target memory, but we don't get any
3936 event. */
3937 target_dcache_invalidate ();
3938
3939 scoped_restore save_exec_dir
3940 = make_scoped_restore (&execution_direction, target_execution_direction ());
3941
3942 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3943 target_can_async_p () ? TARGET_WNOHANG : 0);
3944
3945 if (debug_infrun)
3946 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3947
3948 /* If an error happens while handling the event, propagate GDB's
3949 knowledge of the executing state to the frontend/user running
3950 state. */
3951 if (!target_is_non_stop_p ())
3952 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3953 else
3954 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3955
3956 /* Get executed before make_cleanup_restore_current_thread above to apply
3957 still for the thread which has thrown the exception. */
3958 make_bpstat_clear_actions_cleanup ();
3959
3960 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3961
3962 /* Now figure out what to do with the result of the result. */
3963 handle_inferior_event (ecs);
3964
3965 if (!ecs->wait_some_more)
3966 {
3967 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3968 int should_stop = 1;
3969 struct thread_info *thr = ecs->event_thread;
3970 int should_notify_stop = 1;
3971
3972 delete_just_stopped_threads_infrun_breakpoints ();
3973
3974 if (thr != NULL)
3975 {
3976 struct thread_fsm *thread_fsm = thr->thread_fsm;
3977
3978 if (thread_fsm != NULL)
3979 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3980 }
3981
3982 if (!should_stop)
3983 {
3984 keep_going (ecs);
3985 }
3986 else
3987 {
3988 clean_up_just_stopped_threads_fsms (ecs);
3989
3990 if (thr != NULL && thr->thread_fsm != NULL)
3991 {
3992 should_notify_stop
3993 = thread_fsm_should_notify_stop (thr->thread_fsm);
3994 }
3995
3996 if (should_notify_stop)
3997 {
3998 int proceeded = 0;
3999
4000 /* We may not find an inferior if this was a process exit. */
4001 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4002 proceeded = normal_stop ();
4003
4004 if (!proceeded)
4005 {
4006 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4007 cmd_done = 1;
4008 }
4009 }
4010 }
4011 }
4012
4013 /* No error, don't finish the thread states yet. */
4014 discard_cleanups (ts_old_chain);
4015
4016 /* Revert thread and frame. */
4017 do_cleanups (old_chain);
4018
4019 /* If a UI was in sync execution mode, and now isn't, restore its
4020 prompt (a synchronous execution command has finished, and we're
4021 ready for input). */
4022 all_uis_check_sync_execution_done ();
4023
4024 if (cmd_done
4025 && exec_done_display_p
4026 && (ptid_equal (inferior_ptid, null_ptid)
4027 || !is_running (inferior_ptid)))
4028 printf_unfiltered (_("completed.\n"));
4029 }
4030
4031 /* Record the frame and location we're currently stepping through. */
4032 void
4033 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4034 {
4035 struct thread_info *tp = inferior_thread ();
4036
4037 tp->control.step_frame_id = get_frame_id (frame);
4038 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4039
4040 tp->current_symtab = sal.symtab;
4041 tp->current_line = sal.line;
4042 }
4043
4044 /* Clear context switchable stepping state. */
4045
4046 void
4047 init_thread_stepping_state (struct thread_info *tss)
4048 {
4049 tss->stepped_breakpoint = 0;
4050 tss->stepping_over_breakpoint = 0;
4051 tss->stepping_over_watchpoint = 0;
4052 tss->step_after_step_resume_breakpoint = 0;
4053 }
4054
4055 /* Set the cached copy of the last ptid/waitstatus. */
4056
4057 void
4058 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4059 {
4060 target_last_wait_ptid = ptid;
4061 target_last_waitstatus = status;
4062 }
4063
4064 /* Return the cached copy of the last pid/waitstatus returned by
4065 target_wait()/deprecated_target_wait_hook(). The data is actually
4066 cached by handle_inferior_event(), which gets called immediately
4067 after target_wait()/deprecated_target_wait_hook(). */
4068
4069 void
4070 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4071 {
4072 *ptidp = target_last_wait_ptid;
4073 *status = target_last_waitstatus;
4074 }
4075
4076 void
4077 nullify_last_target_wait_ptid (void)
4078 {
4079 target_last_wait_ptid = minus_one_ptid;
4080 }
4081
4082 /* Switch thread contexts. */
4083
4084 static void
4085 context_switch (ptid_t ptid)
4086 {
4087 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4088 {
4089 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4090 target_pid_to_str (inferior_ptid));
4091 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4092 target_pid_to_str (ptid));
4093 }
4094
4095 switch_to_thread (ptid);
4096 }
4097
4098 /* If the target can't tell whether we've hit breakpoints
4099 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4100 check whether that could have been caused by a breakpoint. If so,
4101 adjust the PC, per gdbarch_decr_pc_after_break. */
4102
4103 static void
4104 adjust_pc_after_break (struct thread_info *thread,
4105 struct target_waitstatus *ws)
4106 {
4107 struct regcache *regcache;
4108 struct gdbarch *gdbarch;
4109 struct address_space *aspace;
4110 CORE_ADDR breakpoint_pc, decr_pc;
4111
4112 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4113 we aren't, just return.
4114
4115 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4116 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4117 implemented by software breakpoints should be handled through the normal
4118 breakpoint layer.
4119
4120 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4121 different signals (SIGILL or SIGEMT for instance), but it is less
4122 clear where the PC is pointing afterwards. It may not match
4123 gdbarch_decr_pc_after_break. I don't know any specific target that
4124 generates these signals at breakpoints (the code has been in GDB since at
4125 least 1992) so I can not guess how to handle them here.
4126
4127 In earlier versions of GDB, a target with
4128 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4129 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4130 target with both of these set in GDB history, and it seems unlikely to be
4131 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4132
4133 if (ws->kind != TARGET_WAITKIND_STOPPED)
4134 return;
4135
4136 if (ws->value.sig != GDB_SIGNAL_TRAP)
4137 return;
4138
4139 /* In reverse execution, when a breakpoint is hit, the instruction
4140 under it has already been de-executed. The reported PC always
4141 points at the breakpoint address, so adjusting it further would
4142 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4143 architecture:
4144
4145 B1 0x08000000 : INSN1
4146 B2 0x08000001 : INSN2
4147 0x08000002 : INSN3
4148 PC -> 0x08000003 : INSN4
4149
4150 Say you're stopped at 0x08000003 as above. Reverse continuing
4151 from that point should hit B2 as below. Reading the PC when the
4152 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4153 been de-executed already.
4154
4155 B1 0x08000000 : INSN1
4156 B2 PC -> 0x08000001 : INSN2
4157 0x08000002 : INSN3
4158 0x08000003 : INSN4
4159
4160 We can't apply the same logic as for forward execution, because
4161 we would wrongly adjust the PC to 0x08000000, since there's a
4162 breakpoint at PC - 1. We'd then report a hit on B1, although
4163 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4164 behaviour. */
4165 if (execution_direction == EXEC_REVERSE)
4166 return;
4167
4168 /* If the target can tell whether the thread hit a SW breakpoint,
4169 trust it. Targets that can tell also adjust the PC
4170 themselves. */
4171 if (target_supports_stopped_by_sw_breakpoint ())
4172 return;
4173
4174 /* Note that relying on whether a breakpoint is planted in memory to
4175 determine this can fail. E.g,. the breakpoint could have been
4176 removed since. Or the thread could have been told to step an
4177 instruction the size of a breakpoint instruction, and only
4178 _after_ was a breakpoint inserted at its address. */
4179
4180 /* If this target does not decrement the PC after breakpoints, then
4181 we have nothing to do. */
4182 regcache = get_thread_regcache (thread->ptid);
4183 gdbarch = get_regcache_arch (regcache);
4184
4185 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4186 if (decr_pc == 0)
4187 return;
4188
4189 aspace = get_regcache_aspace (regcache);
4190
4191 /* Find the location where (if we've hit a breakpoint) the
4192 breakpoint would be. */
4193 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4194
4195 /* If the target can't tell whether a software breakpoint triggered,
4196 fallback to figuring it out based on breakpoints we think were
4197 inserted in the target, and on whether the thread was stepped or
4198 continued. */
4199
4200 /* Check whether there actually is a software breakpoint inserted at
4201 that location.
4202
4203 If in non-stop mode, a race condition is possible where we've
4204 removed a breakpoint, but stop events for that breakpoint were
4205 already queued and arrive later. To suppress those spurious
4206 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4207 and retire them after a number of stop events are reported. Note
4208 this is an heuristic and can thus get confused. The real fix is
4209 to get the "stopped by SW BP and needs adjustment" info out of
4210 the target/kernel (and thus never reach here; see above). */
4211 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4212 || (target_is_non_stop_p ()
4213 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4214 {
4215 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4216
4217 if (record_full_is_used ())
4218 record_full_gdb_operation_disable_set ();
4219
4220 /* When using hardware single-step, a SIGTRAP is reported for both
4221 a completed single-step and a software breakpoint. Need to
4222 differentiate between the two, as the latter needs adjusting
4223 but the former does not.
4224
4225 The SIGTRAP can be due to a completed hardware single-step only if
4226 - we didn't insert software single-step breakpoints
4227 - this thread is currently being stepped
4228
4229 If any of these events did not occur, we must have stopped due
4230 to hitting a software breakpoint, and have to back up to the
4231 breakpoint address.
4232
4233 As a special case, we could have hardware single-stepped a
4234 software breakpoint. In this case (prev_pc == breakpoint_pc),
4235 we also need to back up to the breakpoint address. */
4236
4237 if (thread_has_single_step_breakpoints_set (thread)
4238 || !currently_stepping (thread)
4239 || (thread->stepped_breakpoint
4240 && thread->prev_pc == breakpoint_pc))
4241 regcache_write_pc (regcache, breakpoint_pc);
4242
4243 do_cleanups (old_cleanups);
4244 }
4245 }
4246
4247 static int
4248 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4249 {
4250 for (frame = get_prev_frame (frame);
4251 frame != NULL;
4252 frame = get_prev_frame (frame))
4253 {
4254 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4255 return 1;
4256 if (get_frame_type (frame) != INLINE_FRAME)
4257 break;
4258 }
4259
4260 return 0;
4261 }
4262
4263 /* Auxiliary function that handles syscall entry/return events.
4264 It returns 1 if the inferior should keep going (and GDB
4265 should ignore the event), or 0 if the event deserves to be
4266 processed. */
4267
4268 static int
4269 handle_syscall_event (struct execution_control_state *ecs)
4270 {
4271 struct regcache *regcache;
4272 int syscall_number;
4273
4274 if (!ptid_equal (ecs->ptid, inferior_ptid))
4275 context_switch (ecs->ptid);
4276
4277 regcache = get_thread_regcache (ecs->ptid);
4278 syscall_number = ecs->ws.value.syscall_number;
4279 stop_pc = regcache_read_pc (regcache);
4280
4281 if (catch_syscall_enabled () > 0
4282 && catching_syscall_number (syscall_number) > 0)
4283 {
4284 if (debug_infrun)
4285 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4286 syscall_number);
4287
4288 ecs->event_thread->control.stop_bpstat
4289 = bpstat_stop_status (get_regcache_aspace (regcache),
4290 stop_pc, ecs->ptid, &ecs->ws);
4291
4292 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4293 {
4294 /* Catchpoint hit. */
4295 return 0;
4296 }
4297 }
4298
4299 /* If no catchpoint triggered for this, then keep going. */
4300 keep_going (ecs);
4301 return 1;
4302 }
4303
4304 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4305
4306 static void
4307 fill_in_stop_func (struct gdbarch *gdbarch,
4308 struct execution_control_state *ecs)
4309 {
4310 if (!ecs->stop_func_filled_in)
4311 {
4312 /* Don't care about return value; stop_func_start and stop_func_name
4313 will both be 0 if it doesn't work. */
4314 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4315 &ecs->stop_func_start, &ecs->stop_func_end);
4316 ecs->stop_func_start
4317 += gdbarch_deprecated_function_start_offset (gdbarch);
4318
4319 if (gdbarch_skip_entrypoint_p (gdbarch))
4320 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4321 ecs->stop_func_start);
4322
4323 ecs->stop_func_filled_in = 1;
4324 }
4325 }
4326
4327
4328 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4329
4330 static enum stop_kind
4331 get_inferior_stop_soon (ptid_t ptid)
4332 {
4333 struct inferior *inf = find_inferior_ptid (ptid);
4334
4335 gdb_assert (inf != NULL);
4336 return inf->control.stop_soon;
4337 }
4338
4339 /* Wait for one event. Store the resulting waitstatus in WS, and
4340 return the event ptid. */
4341
4342 static ptid_t
4343 wait_one (struct target_waitstatus *ws)
4344 {
4345 ptid_t event_ptid;
4346 ptid_t wait_ptid = minus_one_ptid;
4347
4348 overlay_cache_invalid = 1;
4349
4350 /* Flush target cache before starting to handle each event.
4351 Target was running and cache could be stale. This is just a
4352 heuristic. Running threads may modify target memory, but we
4353 don't get any event. */
4354 target_dcache_invalidate ();
4355
4356 if (deprecated_target_wait_hook)
4357 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4358 else
4359 event_ptid = target_wait (wait_ptid, ws, 0);
4360
4361 if (debug_infrun)
4362 print_target_wait_results (wait_ptid, event_ptid, ws);
4363
4364 return event_ptid;
4365 }
4366
4367 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4368 instead of the current thread. */
4369 #define THREAD_STOPPED_BY(REASON) \
4370 static int \
4371 thread_stopped_by_ ## REASON (ptid_t ptid) \
4372 { \
4373 struct cleanup *old_chain; \
4374 int res; \
4375 \
4376 old_chain = save_inferior_ptid (); \
4377 inferior_ptid = ptid; \
4378 \
4379 res = target_stopped_by_ ## REASON (); \
4380 \
4381 do_cleanups (old_chain); \
4382 \
4383 return res; \
4384 }
4385
4386 /* Generate thread_stopped_by_watchpoint. */
4387 THREAD_STOPPED_BY (watchpoint)
4388 /* Generate thread_stopped_by_sw_breakpoint. */
4389 THREAD_STOPPED_BY (sw_breakpoint)
4390 /* Generate thread_stopped_by_hw_breakpoint. */
4391 THREAD_STOPPED_BY (hw_breakpoint)
4392
4393 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4394
4395 static void
4396 switch_to_thread_cleanup (void *ptid_p)
4397 {
4398 ptid_t ptid = *(ptid_t *) ptid_p;
4399
4400 switch_to_thread (ptid);
4401 }
4402
4403 /* Save the thread's event and stop reason to process it later. */
4404
4405 static void
4406 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4407 {
4408 struct regcache *regcache;
4409 struct address_space *aspace;
4410
4411 if (debug_infrun)
4412 {
4413 char *statstr;
4414
4415 statstr = target_waitstatus_to_string (ws);
4416 fprintf_unfiltered (gdb_stdlog,
4417 "infrun: saving status %s for %d.%ld.%ld\n",
4418 statstr,
4419 ptid_get_pid (tp->ptid),
4420 ptid_get_lwp (tp->ptid),
4421 ptid_get_tid (tp->ptid));
4422 xfree (statstr);
4423 }
4424
4425 /* Record for later. */
4426 tp->suspend.waitstatus = *ws;
4427 tp->suspend.waitstatus_pending_p = 1;
4428
4429 regcache = get_thread_regcache (tp->ptid);
4430 aspace = get_regcache_aspace (regcache);
4431
4432 if (ws->kind == TARGET_WAITKIND_STOPPED
4433 && ws->value.sig == GDB_SIGNAL_TRAP)
4434 {
4435 CORE_ADDR pc = regcache_read_pc (regcache);
4436
4437 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4438
4439 if (thread_stopped_by_watchpoint (tp->ptid))
4440 {
4441 tp->suspend.stop_reason
4442 = TARGET_STOPPED_BY_WATCHPOINT;
4443 }
4444 else if (target_supports_stopped_by_sw_breakpoint ()
4445 && thread_stopped_by_sw_breakpoint (tp->ptid))
4446 {
4447 tp->suspend.stop_reason
4448 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4449 }
4450 else if (target_supports_stopped_by_hw_breakpoint ()
4451 && thread_stopped_by_hw_breakpoint (tp->ptid))
4452 {
4453 tp->suspend.stop_reason
4454 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4455 }
4456 else if (!target_supports_stopped_by_hw_breakpoint ()
4457 && hardware_breakpoint_inserted_here_p (aspace,
4458 pc))
4459 {
4460 tp->suspend.stop_reason
4461 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4462 }
4463 else if (!target_supports_stopped_by_sw_breakpoint ()
4464 && software_breakpoint_inserted_here_p (aspace,
4465 pc))
4466 {
4467 tp->suspend.stop_reason
4468 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4469 }
4470 else if (!thread_has_single_step_breakpoints_set (tp)
4471 && currently_stepping (tp))
4472 {
4473 tp->suspend.stop_reason
4474 = TARGET_STOPPED_BY_SINGLE_STEP;
4475 }
4476 }
4477 }
4478
4479 /* A cleanup that disables thread create/exit events. */
4480
4481 static void
4482 disable_thread_events (void *arg)
4483 {
4484 target_thread_events (0);
4485 }
4486
4487 /* See infrun.h. */
4488
4489 void
4490 stop_all_threads (void)
4491 {
4492 /* We may need multiple passes to discover all threads. */
4493 int pass;
4494 int iterations = 0;
4495 ptid_t entry_ptid;
4496 struct cleanup *old_chain;
4497
4498 gdb_assert (target_is_non_stop_p ());
4499
4500 if (debug_infrun)
4501 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4502
4503 entry_ptid = inferior_ptid;
4504 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4505
4506 target_thread_events (1);
4507 make_cleanup (disable_thread_events, NULL);
4508
4509 /* Request threads to stop, and then wait for the stops. Because
4510 threads we already know about can spawn more threads while we're
4511 trying to stop them, and we only learn about new threads when we
4512 update the thread list, do this in a loop, and keep iterating
4513 until two passes find no threads that need to be stopped. */
4514 for (pass = 0; pass < 2; pass++, iterations++)
4515 {
4516 if (debug_infrun)
4517 fprintf_unfiltered (gdb_stdlog,
4518 "infrun: stop_all_threads, pass=%d, "
4519 "iterations=%d\n", pass, iterations);
4520 while (1)
4521 {
4522 ptid_t event_ptid;
4523 struct target_waitstatus ws;
4524 int need_wait = 0;
4525 struct thread_info *t;
4526
4527 update_thread_list ();
4528
4529 /* Go through all threads looking for threads that we need
4530 to tell the target to stop. */
4531 ALL_NON_EXITED_THREADS (t)
4532 {
4533 if (t->executing)
4534 {
4535 /* If already stopping, don't request a stop again.
4536 We just haven't seen the notification yet. */
4537 if (!t->stop_requested)
4538 {
4539 if (debug_infrun)
4540 fprintf_unfiltered (gdb_stdlog,
4541 "infrun: %s executing, "
4542 "need stop\n",
4543 target_pid_to_str (t->ptid));
4544 target_stop (t->ptid);
4545 t->stop_requested = 1;
4546 }
4547 else
4548 {
4549 if (debug_infrun)
4550 fprintf_unfiltered (gdb_stdlog,
4551 "infrun: %s executing, "
4552 "already stopping\n",
4553 target_pid_to_str (t->ptid));
4554 }
4555
4556 if (t->stop_requested)
4557 need_wait = 1;
4558 }
4559 else
4560 {
4561 if (debug_infrun)
4562 fprintf_unfiltered (gdb_stdlog,
4563 "infrun: %s not executing\n",
4564 target_pid_to_str (t->ptid));
4565
4566 /* The thread may be not executing, but still be
4567 resumed with a pending status to process. */
4568 t->resumed = 0;
4569 }
4570 }
4571
4572 if (!need_wait)
4573 break;
4574
4575 /* If we find new threads on the second iteration, restart
4576 over. We want to see two iterations in a row with all
4577 threads stopped. */
4578 if (pass > 0)
4579 pass = -1;
4580
4581 event_ptid = wait_one (&ws);
4582 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4583 {
4584 /* All resumed threads exited. */
4585 }
4586 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4587 || ws.kind == TARGET_WAITKIND_EXITED
4588 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4589 {
4590 if (debug_infrun)
4591 {
4592 ptid_t ptid = pid_to_ptid (ws.value.integer);
4593
4594 fprintf_unfiltered (gdb_stdlog,
4595 "infrun: %s exited while "
4596 "stopping threads\n",
4597 target_pid_to_str (ptid));
4598 }
4599 }
4600 else
4601 {
4602 struct inferior *inf;
4603
4604 t = find_thread_ptid (event_ptid);
4605 if (t == NULL)
4606 t = add_thread (event_ptid);
4607
4608 t->stop_requested = 0;
4609 t->executing = 0;
4610 t->resumed = 0;
4611 t->control.may_range_step = 0;
4612
4613 /* This may be the first time we see the inferior report
4614 a stop. */
4615 inf = find_inferior_ptid (event_ptid);
4616 if (inf->needs_setup)
4617 {
4618 switch_to_thread_no_regs (t);
4619 setup_inferior (0);
4620 }
4621
4622 if (ws.kind == TARGET_WAITKIND_STOPPED
4623 && ws.value.sig == GDB_SIGNAL_0)
4624 {
4625 /* We caught the event that we intended to catch, so
4626 there's no event pending. */
4627 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4628 t->suspend.waitstatus_pending_p = 0;
4629
4630 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4631 {
4632 /* Add it back to the step-over queue. */
4633 if (debug_infrun)
4634 {
4635 fprintf_unfiltered (gdb_stdlog,
4636 "infrun: displaced-step of %s "
4637 "canceled: adding back to the "
4638 "step-over queue\n",
4639 target_pid_to_str (t->ptid));
4640 }
4641 t->control.trap_expected = 0;
4642 thread_step_over_chain_enqueue (t);
4643 }
4644 }
4645 else
4646 {
4647 enum gdb_signal sig;
4648 struct regcache *regcache;
4649
4650 if (debug_infrun)
4651 {
4652 char *statstr;
4653
4654 statstr = target_waitstatus_to_string (&ws);
4655 fprintf_unfiltered (gdb_stdlog,
4656 "infrun: target_wait %s, saving "
4657 "status for %d.%ld.%ld\n",
4658 statstr,
4659 ptid_get_pid (t->ptid),
4660 ptid_get_lwp (t->ptid),
4661 ptid_get_tid (t->ptid));
4662 xfree (statstr);
4663 }
4664
4665 /* Record for later. */
4666 save_waitstatus (t, &ws);
4667
4668 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4669 ? ws.value.sig : GDB_SIGNAL_0);
4670
4671 if (displaced_step_fixup (t->ptid, sig) < 0)
4672 {
4673 /* Add it back to the step-over queue. */
4674 t->control.trap_expected = 0;
4675 thread_step_over_chain_enqueue (t);
4676 }
4677
4678 regcache = get_thread_regcache (t->ptid);
4679 t->suspend.stop_pc = regcache_read_pc (regcache);
4680
4681 if (debug_infrun)
4682 {
4683 fprintf_unfiltered (gdb_stdlog,
4684 "infrun: saved stop_pc=%s for %s "
4685 "(currently_stepping=%d)\n",
4686 paddress (target_gdbarch (),
4687 t->suspend.stop_pc),
4688 target_pid_to_str (t->ptid),
4689 currently_stepping (t));
4690 }
4691 }
4692 }
4693 }
4694 }
4695
4696 do_cleanups (old_chain);
4697
4698 if (debug_infrun)
4699 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4700 }
4701
4702 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4703
4704 static int
4705 handle_no_resumed (struct execution_control_state *ecs)
4706 {
4707 struct inferior *inf;
4708 struct thread_info *thread;
4709
4710 if (target_can_async_p ())
4711 {
4712 struct ui *ui;
4713 int any_sync = 0;
4714
4715 ALL_UIS (ui)
4716 {
4717 if (ui->prompt_state == PROMPT_BLOCKED)
4718 {
4719 any_sync = 1;
4720 break;
4721 }
4722 }
4723 if (!any_sync)
4724 {
4725 /* There were no unwaited-for children left in the target, but,
4726 we're not synchronously waiting for events either. Just
4727 ignore. */
4728
4729 if (debug_infrun)
4730 fprintf_unfiltered (gdb_stdlog,
4731 "infrun: TARGET_WAITKIND_NO_RESUMED "
4732 "(ignoring: bg)\n");
4733 prepare_to_wait (ecs);
4734 return 1;
4735 }
4736 }
4737
4738 /* Otherwise, if we were running a synchronous execution command, we
4739 may need to cancel it and give the user back the terminal.
4740
4741 In non-stop mode, the target can't tell whether we've already
4742 consumed previous stop events, so it can end up sending us a
4743 no-resumed event like so:
4744
4745 #0 - thread 1 is left stopped
4746
4747 #1 - thread 2 is resumed and hits breakpoint
4748 -> TARGET_WAITKIND_STOPPED
4749
4750 #2 - thread 3 is resumed and exits
4751 this is the last resumed thread, so
4752 -> TARGET_WAITKIND_NO_RESUMED
4753
4754 #3 - gdb processes stop for thread 2 and decides to re-resume
4755 it.
4756
4757 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4758 thread 2 is now resumed, so the event should be ignored.
4759
4760 IOW, if the stop for thread 2 doesn't end a foreground command,
4761 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4762 event. But it could be that the event meant that thread 2 itself
4763 (or whatever other thread was the last resumed thread) exited.
4764
4765 To address this we refresh the thread list and check whether we
4766 have resumed threads _now_. In the example above, this removes
4767 thread 3 from the thread list. If thread 2 was re-resumed, we
4768 ignore this event. If we find no thread resumed, then we cancel
4769 the synchronous command show "no unwaited-for " to the user. */
4770 update_thread_list ();
4771
4772 ALL_NON_EXITED_THREADS (thread)
4773 {
4774 if (thread->executing
4775 || thread->suspend.waitstatus_pending_p)
4776 {
4777 /* There were no unwaited-for children left in the target at
4778 some point, but there are now. Just ignore. */
4779 if (debug_infrun)
4780 fprintf_unfiltered (gdb_stdlog,
4781 "infrun: TARGET_WAITKIND_NO_RESUMED "
4782 "(ignoring: found resumed)\n");
4783 prepare_to_wait (ecs);
4784 return 1;
4785 }
4786 }
4787
4788 /* Note however that we may find no resumed thread because the whole
4789 process exited meanwhile (thus updating the thread list results
4790 in an empty thread list). In this case we know we'll be getting
4791 a process exit event shortly. */
4792 ALL_INFERIORS (inf)
4793 {
4794 if (inf->pid == 0)
4795 continue;
4796
4797 thread = any_live_thread_of_process (inf->pid);
4798 if (thread == NULL)
4799 {
4800 if (debug_infrun)
4801 fprintf_unfiltered (gdb_stdlog,
4802 "infrun: TARGET_WAITKIND_NO_RESUMED "
4803 "(expect process exit)\n");
4804 prepare_to_wait (ecs);
4805 return 1;
4806 }
4807 }
4808
4809 /* Go ahead and report the event. */
4810 return 0;
4811 }
4812
4813 /* Given an execution control state that has been freshly filled in by
4814 an event from the inferior, figure out what it means and take
4815 appropriate action.
4816
4817 The alternatives are:
4818
4819 1) stop_waiting and return; to really stop and return to the
4820 debugger.
4821
4822 2) keep_going and return; to wait for the next event (set
4823 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4824 once). */
4825
4826 static void
4827 handle_inferior_event_1 (struct execution_control_state *ecs)
4828 {
4829 enum stop_kind stop_soon;
4830
4831 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4832 {
4833 /* We had an event in the inferior, but we are not interested in
4834 handling it at this level. The lower layers have already
4835 done what needs to be done, if anything.
4836
4837 One of the possible circumstances for this is when the
4838 inferior produces output for the console. The inferior has
4839 not stopped, and we are ignoring the event. Another possible
4840 circumstance is any event which the lower level knows will be
4841 reported multiple times without an intervening resume. */
4842 if (debug_infrun)
4843 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4844 prepare_to_wait (ecs);
4845 return;
4846 }
4847
4848 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4849 {
4850 if (debug_infrun)
4851 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4852 prepare_to_wait (ecs);
4853 return;
4854 }
4855
4856 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4857 && handle_no_resumed (ecs))
4858 return;
4859
4860 /* Cache the last pid/waitstatus. */
4861 set_last_target_status (ecs->ptid, ecs->ws);
4862
4863 /* Always clear state belonging to the previous time we stopped. */
4864 stop_stack_dummy = STOP_NONE;
4865
4866 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4867 {
4868 /* No unwaited-for children left. IOW, all resumed children
4869 have exited. */
4870 if (debug_infrun)
4871 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4872
4873 stop_print_frame = 0;
4874 stop_waiting (ecs);
4875 return;
4876 }
4877
4878 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4879 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4880 {
4881 ecs->event_thread = find_thread_ptid (ecs->ptid);
4882 /* If it's a new thread, add it to the thread database. */
4883 if (ecs->event_thread == NULL)
4884 ecs->event_thread = add_thread (ecs->ptid);
4885
4886 /* Disable range stepping. If the next step request could use a
4887 range, this will be end up re-enabled then. */
4888 ecs->event_thread->control.may_range_step = 0;
4889 }
4890
4891 /* Dependent on valid ECS->EVENT_THREAD. */
4892 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4893
4894 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4895 reinit_frame_cache ();
4896
4897 breakpoint_retire_moribund ();
4898
4899 /* First, distinguish signals caused by the debugger from signals
4900 that have to do with the program's own actions. Note that
4901 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4902 on the operating system version. Here we detect when a SIGILL or
4903 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4904 something similar for SIGSEGV, since a SIGSEGV will be generated
4905 when we're trying to execute a breakpoint instruction on a
4906 non-executable stack. This happens for call dummy breakpoints
4907 for architectures like SPARC that place call dummies on the
4908 stack. */
4909 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4910 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4911 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4912 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4913 {
4914 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4915
4916 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4917 regcache_read_pc (regcache)))
4918 {
4919 if (debug_infrun)
4920 fprintf_unfiltered (gdb_stdlog,
4921 "infrun: Treating signal as SIGTRAP\n");
4922 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4923 }
4924 }
4925
4926 /* Mark the non-executing threads accordingly. In all-stop, all
4927 threads of all processes are stopped when we get any event
4928 reported. In non-stop mode, only the event thread stops. */
4929 {
4930 ptid_t mark_ptid;
4931
4932 if (!target_is_non_stop_p ())
4933 mark_ptid = minus_one_ptid;
4934 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4935 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4936 {
4937 /* If we're handling a process exit in non-stop mode, even
4938 though threads haven't been deleted yet, one would think
4939 that there is nothing to do, as threads of the dead process
4940 will be soon deleted, and threads of any other process were
4941 left running. However, on some targets, threads survive a
4942 process exit event. E.g., for the "checkpoint" command,
4943 when the current checkpoint/fork exits, linux-fork.c
4944 automatically switches to another fork from within
4945 target_mourn_inferior, by associating the same
4946 inferior/thread to another fork. We haven't mourned yet at
4947 this point, but we must mark any threads left in the
4948 process as not-executing so that finish_thread_state marks
4949 them stopped (in the user's perspective) if/when we present
4950 the stop to the user. */
4951 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4952 }
4953 else
4954 mark_ptid = ecs->ptid;
4955
4956 set_executing (mark_ptid, 0);
4957
4958 /* Likewise the resumed flag. */
4959 set_resumed (mark_ptid, 0);
4960 }
4961
4962 switch (ecs->ws.kind)
4963 {
4964 case TARGET_WAITKIND_LOADED:
4965 if (debug_infrun)
4966 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4967 if (!ptid_equal (ecs->ptid, inferior_ptid))
4968 context_switch (ecs->ptid);
4969 /* Ignore gracefully during startup of the inferior, as it might
4970 be the shell which has just loaded some objects, otherwise
4971 add the symbols for the newly loaded objects. Also ignore at
4972 the beginning of an attach or remote session; we will query
4973 the full list of libraries once the connection is
4974 established. */
4975
4976 stop_soon = get_inferior_stop_soon (ecs->ptid);
4977 if (stop_soon == NO_STOP_QUIETLY)
4978 {
4979 struct regcache *regcache;
4980
4981 regcache = get_thread_regcache (ecs->ptid);
4982
4983 handle_solib_event ();
4984
4985 ecs->event_thread->control.stop_bpstat
4986 = bpstat_stop_status (get_regcache_aspace (regcache),
4987 stop_pc, ecs->ptid, &ecs->ws);
4988
4989 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4990 {
4991 /* A catchpoint triggered. */
4992 process_event_stop_test (ecs);
4993 return;
4994 }
4995
4996 /* If requested, stop when the dynamic linker notifies
4997 gdb of events. This allows the user to get control
4998 and place breakpoints in initializer routines for
4999 dynamically loaded objects (among other things). */
5000 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5001 if (stop_on_solib_events)
5002 {
5003 /* Make sure we print "Stopped due to solib-event" in
5004 normal_stop. */
5005 stop_print_frame = 1;
5006
5007 stop_waiting (ecs);
5008 return;
5009 }
5010 }
5011
5012 /* If we are skipping through a shell, or through shared library
5013 loading that we aren't interested in, resume the program. If
5014 we're running the program normally, also resume. */
5015 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5016 {
5017 /* Loading of shared libraries might have changed breakpoint
5018 addresses. Make sure new breakpoints are inserted. */
5019 if (stop_soon == NO_STOP_QUIETLY)
5020 insert_breakpoints ();
5021 resume (GDB_SIGNAL_0);
5022 prepare_to_wait (ecs);
5023 return;
5024 }
5025
5026 /* But stop if we're attaching or setting up a remote
5027 connection. */
5028 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5029 || stop_soon == STOP_QUIETLY_REMOTE)
5030 {
5031 if (debug_infrun)
5032 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5033 stop_waiting (ecs);
5034 return;
5035 }
5036
5037 internal_error (__FILE__, __LINE__,
5038 _("unhandled stop_soon: %d"), (int) stop_soon);
5039
5040 case TARGET_WAITKIND_SPURIOUS:
5041 if (debug_infrun)
5042 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5043 if (!ptid_equal (ecs->ptid, inferior_ptid))
5044 context_switch (ecs->ptid);
5045 resume (GDB_SIGNAL_0);
5046 prepare_to_wait (ecs);
5047 return;
5048
5049 case TARGET_WAITKIND_THREAD_CREATED:
5050 if (debug_infrun)
5051 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5052 if (!ptid_equal (ecs->ptid, inferior_ptid))
5053 context_switch (ecs->ptid);
5054 if (!switch_back_to_stepped_thread (ecs))
5055 keep_going (ecs);
5056 return;
5057
5058 case TARGET_WAITKIND_EXITED:
5059 case TARGET_WAITKIND_SIGNALLED:
5060 if (debug_infrun)
5061 {
5062 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5063 fprintf_unfiltered (gdb_stdlog,
5064 "infrun: TARGET_WAITKIND_EXITED\n");
5065 else
5066 fprintf_unfiltered (gdb_stdlog,
5067 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5068 }
5069
5070 inferior_ptid = ecs->ptid;
5071 set_current_inferior (find_inferior_ptid (ecs->ptid));
5072 set_current_program_space (current_inferior ()->pspace);
5073 handle_vfork_child_exec_or_exit (0);
5074 target_terminal_ours (); /* Must do this before mourn anyway. */
5075
5076 /* Clearing any previous state of convenience variables. */
5077 clear_exit_convenience_vars ();
5078
5079 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5080 {
5081 /* Record the exit code in the convenience variable $_exitcode, so
5082 that the user can inspect this again later. */
5083 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5084 (LONGEST) ecs->ws.value.integer);
5085
5086 /* Also record this in the inferior itself. */
5087 current_inferior ()->has_exit_code = 1;
5088 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5089
5090 /* Support the --return-child-result option. */
5091 return_child_result_value = ecs->ws.value.integer;
5092
5093 observer_notify_exited (ecs->ws.value.integer);
5094 }
5095 else
5096 {
5097 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5098 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5099
5100 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5101 {
5102 /* Set the value of the internal variable $_exitsignal,
5103 which holds the signal uncaught by the inferior. */
5104 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5105 gdbarch_gdb_signal_to_target (gdbarch,
5106 ecs->ws.value.sig));
5107 }
5108 else
5109 {
5110 /* We don't have access to the target's method used for
5111 converting between signal numbers (GDB's internal
5112 representation <-> target's representation).
5113 Therefore, we cannot do a good job at displaying this
5114 information to the user. It's better to just warn
5115 her about it (if infrun debugging is enabled), and
5116 give up. */
5117 if (debug_infrun)
5118 fprintf_filtered (gdb_stdlog, _("\
5119 Cannot fill $_exitsignal with the correct signal number.\n"));
5120 }
5121
5122 observer_notify_signal_exited (ecs->ws.value.sig);
5123 }
5124
5125 gdb_flush (gdb_stdout);
5126 target_mourn_inferior (inferior_ptid);
5127 stop_print_frame = 0;
5128 stop_waiting (ecs);
5129 return;
5130
5131 /* The following are the only cases in which we keep going;
5132 the above cases end in a continue or goto. */
5133 case TARGET_WAITKIND_FORKED:
5134 case TARGET_WAITKIND_VFORKED:
5135 if (debug_infrun)
5136 {
5137 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5138 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5139 else
5140 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5141 }
5142
5143 /* Check whether the inferior is displaced stepping. */
5144 {
5145 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5146 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5147
5148 /* If checking displaced stepping is supported, and thread
5149 ecs->ptid is displaced stepping. */
5150 if (displaced_step_in_progress_thread (ecs->ptid))
5151 {
5152 struct inferior *parent_inf
5153 = find_inferior_ptid (ecs->ptid);
5154 struct regcache *child_regcache;
5155 CORE_ADDR parent_pc;
5156
5157 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5158 indicating that the displaced stepping of syscall instruction
5159 has been done. Perform cleanup for parent process here. Note
5160 that this operation also cleans up the child process for vfork,
5161 because their pages are shared. */
5162 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5163 /* Start a new step-over in another thread if there's one
5164 that needs it. */
5165 start_step_over ();
5166
5167 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5168 {
5169 struct displaced_step_inferior_state *displaced
5170 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5171
5172 /* Restore scratch pad for child process. */
5173 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5174 }
5175
5176 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5177 the child's PC is also within the scratchpad. Set the child's PC
5178 to the parent's PC value, which has already been fixed up.
5179 FIXME: we use the parent's aspace here, although we're touching
5180 the child, because the child hasn't been added to the inferior
5181 list yet at this point. */
5182
5183 child_regcache
5184 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5185 gdbarch,
5186 parent_inf->aspace);
5187 /* Read PC value of parent process. */
5188 parent_pc = regcache_read_pc (regcache);
5189
5190 if (debug_displaced)
5191 fprintf_unfiltered (gdb_stdlog,
5192 "displaced: write child pc from %s to %s\n",
5193 paddress (gdbarch,
5194 regcache_read_pc (child_regcache)),
5195 paddress (gdbarch, parent_pc));
5196
5197 regcache_write_pc (child_regcache, parent_pc);
5198 }
5199 }
5200
5201 if (!ptid_equal (ecs->ptid, inferior_ptid))
5202 context_switch (ecs->ptid);
5203
5204 /* Immediately detach breakpoints from the child before there's
5205 any chance of letting the user delete breakpoints from the
5206 breakpoint lists. If we don't do this early, it's easy to
5207 leave left over traps in the child, vis: "break foo; catch
5208 fork; c; <fork>; del; c; <child calls foo>". We only follow
5209 the fork on the last `continue', and by that time the
5210 breakpoint at "foo" is long gone from the breakpoint table.
5211 If we vforked, then we don't need to unpatch here, since both
5212 parent and child are sharing the same memory pages; we'll
5213 need to unpatch at follow/detach time instead to be certain
5214 that new breakpoints added between catchpoint hit time and
5215 vfork follow are detached. */
5216 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5217 {
5218 /* This won't actually modify the breakpoint list, but will
5219 physically remove the breakpoints from the child. */
5220 detach_breakpoints (ecs->ws.value.related_pid);
5221 }
5222
5223 delete_just_stopped_threads_single_step_breakpoints ();
5224
5225 /* In case the event is caught by a catchpoint, remember that
5226 the event is to be followed at the next resume of the thread,
5227 and not immediately. */
5228 ecs->event_thread->pending_follow = ecs->ws;
5229
5230 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5231
5232 ecs->event_thread->control.stop_bpstat
5233 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5234 stop_pc, ecs->ptid, &ecs->ws);
5235
5236 /* If no catchpoint triggered for this, then keep going. Note
5237 that we're interested in knowing the bpstat actually causes a
5238 stop, not just if it may explain the signal. Software
5239 watchpoints, for example, always appear in the bpstat. */
5240 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5241 {
5242 ptid_t parent;
5243 ptid_t child;
5244 int should_resume;
5245 int follow_child
5246 = (follow_fork_mode_string == follow_fork_mode_child);
5247
5248 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5249
5250 should_resume = follow_fork ();
5251
5252 parent = ecs->ptid;
5253 child = ecs->ws.value.related_pid;
5254
5255 /* At this point, the parent is marked running, and the
5256 child is marked stopped. */
5257
5258 /* If not resuming the parent, mark it stopped. */
5259 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5260 set_running (parent, 0);
5261
5262 /* If resuming the child, mark it running. */
5263 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5264 set_running (child, 1);
5265
5266 /* In non-stop mode, also resume the other branch. */
5267 if (!detach_fork && (non_stop
5268 || (sched_multi && target_is_non_stop_p ())))
5269 {
5270 if (follow_child)
5271 switch_to_thread (parent);
5272 else
5273 switch_to_thread (child);
5274
5275 ecs->event_thread = inferior_thread ();
5276 ecs->ptid = inferior_ptid;
5277 keep_going (ecs);
5278 }
5279
5280 if (follow_child)
5281 switch_to_thread (child);
5282 else
5283 switch_to_thread (parent);
5284
5285 ecs->event_thread = inferior_thread ();
5286 ecs->ptid = inferior_ptid;
5287
5288 if (should_resume)
5289 keep_going (ecs);
5290 else
5291 stop_waiting (ecs);
5292 return;
5293 }
5294 process_event_stop_test (ecs);
5295 return;
5296
5297 case TARGET_WAITKIND_VFORK_DONE:
5298 /* Done with the shared memory region. Re-insert breakpoints in
5299 the parent, and keep going. */
5300
5301 if (debug_infrun)
5302 fprintf_unfiltered (gdb_stdlog,
5303 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5304
5305 if (!ptid_equal (ecs->ptid, inferior_ptid))
5306 context_switch (ecs->ptid);
5307
5308 current_inferior ()->waiting_for_vfork_done = 0;
5309 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5310 /* This also takes care of reinserting breakpoints in the
5311 previously locked inferior. */
5312 keep_going (ecs);
5313 return;
5314
5315 case TARGET_WAITKIND_EXECD:
5316 if (debug_infrun)
5317 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5318
5319 if (!ptid_equal (ecs->ptid, inferior_ptid))
5320 context_switch (ecs->ptid);
5321
5322 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5323
5324 /* Do whatever is necessary to the parent branch of the vfork. */
5325 handle_vfork_child_exec_or_exit (1);
5326
5327 /* This causes the eventpoints and symbol table to be reset.
5328 Must do this now, before trying to determine whether to
5329 stop. */
5330 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5331
5332 /* In follow_exec we may have deleted the original thread and
5333 created a new one. Make sure that the event thread is the
5334 execd thread for that case (this is a nop otherwise). */
5335 ecs->event_thread = inferior_thread ();
5336
5337 ecs->event_thread->control.stop_bpstat
5338 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5339 stop_pc, ecs->ptid, &ecs->ws);
5340
5341 /* Note that this may be referenced from inside
5342 bpstat_stop_status above, through inferior_has_execd. */
5343 xfree (ecs->ws.value.execd_pathname);
5344 ecs->ws.value.execd_pathname = NULL;
5345
5346 /* If no catchpoint triggered for this, then keep going. */
5347 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5348 {
5349 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5350 keep_going (ecs);
5351 return;
5352 }
5353 process_event_stop_test (ecs);
5354 return;
5355
5356 /* Be careful not to try to gather much state about a thread
5357 that's in a syscall. It's frequently a losing proposition. */
5358 case TARGET_WAITKIND_SYSCALL_ENTRY:
5359 if (debug_infrun)
5360 fprintf_unfiltered (gdb_stdlog,
5361 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5362 /* Getting the current syscall number. */
5363 if (handle_syscall_event (ecs) == 0)
5364 process_event_stop_test (ecs);
5365 return;
5366
5367 /* Before examining the threads further, step this thread to
5368 get it entirely out of the syscall. (We get notice of the
5369 event when the thread is just on the verge of exiting a
5370 syscall. Stepping one instruction seems to get it back
5371 into user code.) */
5372 case TARGET_WAITKIND_SYSCALL_RETURN:
5373 if (debug_infrun)
5374 fprintf_unfiltered (gdb_stdlog,
5375 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5376 if (handle_syscall_event (ecs) == 0)
5377 process_event_stop_test (ecs);
5378 return;
5379
5380 case TARGET_WAITKIND_STOPPED:
5381 if (debug_infrun)
5382 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5383 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5384 handle_signal_stop (ecs);
5385 return;
5386
5387 case TARGET_WAITKIND_NO_HISTORY:
5388 if (debug_infrun)
5389 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5390 /* Reverse execution: target ran out of history info. */
5391
5392 /* Switch to the stopped thread. */
5393 if (!ptid_equal (ecs->ptid, inferior_ptid))
5394 context_switch (ecs->ptid);
5395 if (debug_infrun)
5396 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5397
5398 delete_just_stopped_threads_single_step_breakpoints ();
5399 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5400 observer_notify_no_history ();
5401 stop_waiting (ecs);
5402 return;
5403 }
5404 }
5405
5406 /* A wrapper around handle_inferior_event_1, which also makes sure
5407 that all temporary struct value objects that were created during
5408 the handling of the event get deleted at the end. */
5409
5410 static void
5411 handle_inferior_event (struct execution_control_state *ecs)
5412 {
5413 struct value *mark = value_mark ();
5414
5415 handle_inferior_event_1 (ecs);
5416 /* Purge all temporary values created during the event handling,
5417 as it could be a long time before we return to the command level
5418 where such values would otherwise be purged. */
5419 value_free_to_mark (mark);
5420 }
5421
5422 /* Restart threads back to what they were trying to do back when we
5423 paused them for an in-line step-over. The EVENT_THREAD thread is
5424 ignored. */
5425
5426 static void
5427 restart_threads (struct thread_info *event_thread)
5428 {
5429 struct thread_info *tp;
5430
5431 /* In case the instruction just stepped spawned a new thread. */
5432 update_thread_list ();
5433
5434 ALL_NON_EXITED_THREADS (tp)
5435 {
5436 if (tp == event_thread)
5437 {
5438 if (debug_infrun)
5439 fprintf_unfiltered (gdb_stdlog,
5440 "infrun: restart threads: "
5441 "[%s] is event thread\n",
5442 target_pid_to_str (tp->ptid));
5443 continue;
5444 }
5445
5446 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5447 {
5448 if (debug_infrun)
5449 fprintf_unfiltered (gdb_stdlog,
5450 "infrun: restart threads: "
5451 "[%s] not meant to be running\n",
5452 target_pid_to_str (tp->ptid));
5453 continue;
5454 }
5455
5456 if (tp->resumed)
5457 {
5458 if (debug_infrun)
5459 fprintf_unfiltered (gdb_stdlog,
5460 "infrun: restart threads: [%s] resumed\n",
5461 target_pid_to_str (tp->ptid));
5462 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5463 continue;
5464 }
5465
5466 if (thread_is_in_step_over_chain (tp))
5467 {
5468 if (debug_infrun)
5469 fprintf_unfiltered (gdb_stdlog,
5470 "infrun: restart threads: "
5471 "[%s] needs step-over\n",
5472 target_pid_to_str (tp->ptid));
5473 gdb_assert (!tp->resumed);
5474 continue;
5475 }
5476
5477
5478 if (tp->suspend.waitstatus_pending_p)
5479 {
5480 if (debug_infrun)
5481 fprintf_unfiltered (gdb_stdlog,
5482 "infrun: restart threads: "
5483 "[%s] has pending status\n",
5484 target_pid_to_str (tp->ptid));
5485 tp->resumed = 1;
5486 continue;
5487 }
5488
5489 /* If some thread needs to start a step-over at this point, it
5490 should still be in the step-over queue, and thus skipped
5491 above. */
5492 if (thread_still_needs_step_over (tp))
5493 {
5494 internal_error (__FILE__, __LINE__,
5495 "thread [%s] needs a step-over, but not in "
5496 "step-over queue\n",
5497 target_pid_to_str (tp->ptid));
5498 }
5499
5500 if (currently_stepping (tp))
5501 {
5502 if (debug_infrun)
5503 fprintf_unfiltered (gdb_stdlog,
5504 "infrun: restart threads: [%s] was stepping\n",
5505 target_pid_to_str (tp->ptid));
5506 keep_going_stepped_thread (tp);
5507 }
5508 else
5509 {
5510 struct execution_control_state ecss;
5511 struct execution_control_state *ecs = &ecss;
5512
5513 if (debug_infrun)
5514 fprintf_unfiltered (gdb_stdlog,
5515 "infrun: restart threads: [%s] continuing\n",
5516 target_pid_to_str (tp->ptid));
5517 reset_ecs (ecs, tp);
5518 switch_to_thread (tp->ptid);
5519 keep_going_pass_signal (ecs);
5520 }
5521 }
5522 }
5523
5524 /* Callback for iterate_over_threads. Find a resumed thread that has
5525 a pending waitstatus. */
5526
5527 static int
5528 resumed_thread_with_pending_status (struct thread_info *tp,
5529 void *arg)
5530 {
5531 return (tp->resumed
5532 && tp->suspend.waitstatus_pending_p);
5533 }
5534
5535 /* Called when we get an event that may finish an in-line or
5536 out-of-line (displaced stepping) step-over started previously.
5537 Return true if the event is processed and we should go back to the
5538 event loop; false if the caller should continue processing the
5539 event. */
5540
5541 static int
5542 finish_step_over (struct execution_control_state *ecs)
5543 {
5544 int had_step_over_info;
5545
5546 displaced_step_fixup (ecs->ptid,
5547 ecs->event_thread->suspend.stop_signal);
5548
5549 had_step_over_info = step_over_info_valid_p ();
5550
5551 if (had_step_over_info)
5552 {
5553 /* If we're stepping over a breakpoint with all threads locked,
5554 then only the thread that was stepped should be reporting
5555 back an event. */
5556 gdb_assert (ecs->event_thread->control.trap_expected);
5557
5558 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5559 clear_step_over_info ();
5560 }
5561
5562 if (!target_is_non_stop_p ())
5563 return 0;
5564
5565 /* Start a new step-over in another thread if there's one that
5566 needs it. */
5567 start_step_over ();
5568
5569 /* If we were stepping over a breakpoint before, and haven't started
5570 a new in-line step-over sequence, then restart all other threads
5571 (except the event thread). We can't do this in all-stop, as then
5572 e.g., we wouldn't be able to issue any other remote packet until
5573 these other threads stop. */
5574 if (had_step_over_info && !step_over_info_valid_p ())
5575 {
5576 struct thread_info *pending;
5577
5578 /* If we only have threads with pending statuses, the restart
5579 below won't restart any thread and so nothing re-inserts the
5580 breakpoint we just stepped over. But we need it inserted
5581 when we later process the pending events, otherwise if
5582 another thread has a pending event for this breakpoint too,
5583 we'd discard its event (because the breakpoint that
5584 originally caused the event was no longer inserted). */
5585 context_switch (ecs->ptid);
5586 insert_breakpoints ();
5587
5588 restart_threads (ecs->event_thread);
5589
5590 /* If we have events pending, go through handle_inferior_event
5591 again, picking up a pending event at random. This avoids
5592 thread starvation. */
5593
5594 /* But not if we just stepped over a watchpoint in order to let
5595 the instruction execute so we can evaluate its expression.
5596 The set of watchpoints that triggered is recorded in the
5597 breakpoint objects themselves (see bp->watchpoint_triggered).
5598 If we processed another event first, that other event could
5599 clobber this info. */
5600 if (ecs->event_thread->stepping_over_watchpoint)
5601 return 0;
5602
5603 pending = iterate_over_threads (resumed_thread_with_pending_status,
5604 NULL);
5605 if (pending != NULL)
5606 {
5607 struct thread_info *tp = ecs->event_thread;
5608 struct regcache *regcache;
5609
5610 if (debug_infrun)
5611 {
5612 fprintf_unfiltered (gdb_stdlog,
5613 "infrun: found resumed threads with "
5614 "pending events, saving status\n");
5615 }
5616
5617 gdb_assert (pending != tp);
5618
5619 /* Record the event thread's event for later. */
5620 save_waitstatus (tp, &ecs->ws);
5621 /* This was cleared early, by handle_inferior_event. Set it
5622 so this pending event is considered by
5623 do_target_wait. */
5624 tp->resumed = 1;
5625
5626 gdb_assert (!tp->executing);
5627
5628 regcache = get_thread_regcache (tp->ptid);
5629 tp->suspend.stop_pc = regcache_read_pc (regcache);
5630
5631 if (debug_infrun)
5632 {
5633 fprintf_unfiltered (gdb_stdlog,
5634 "infrun: saved stop_pc=%s for %s "
5635 "(currently_stepping=%d)\n",
5636 paddress (target_gdbarch (),
5637 tp->suspend.stop_pc),
5638 target_pid_to_str (tp->ptid),
5639 currently_stepping (tp));
5640 }
5641
5642 /* This in-line step-over finished; clear this so we won't
5643 start a new one. This is what handle_signal_stop would
5644 do, if we returned false. */
5645 tp->stepping_over_breakpoint = 0;
5646
5647 /* Wake up the event loop again. */
5648 mark_async_event_handler (infrun_async_inferior_event_token);
5649
5650 prepare_to_wait (ecs);
5651 return 1;
5652 }
5653 }
5654
5655 return 0;
5656 }
5657
5658 /* Come here when the program has stopped with a signal. */
5659
5660 static void
5661 handle_signal_stop (struct execution_control_state *ecs)
5662 {
5663 struct frame_info *frame;
5664 struct gdbarch *gdbarch;
5665 int stopped_by_watchpoint;
5666 enum stop_kind stop_soon;
5667 int random_signal;
5668
5669 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5670
5671 /* Do we need to clean up the state of a thread that has
5672 completed a displaced single-step? (Doing so usually affects
5673 the PC, so do it here, before we set stop_pc.) */
5674 if (finish_step_over (ecs))
5675 return;
5676
5677 /* If we either finished a single-step or hit a breakpoint, but
5678 the user wanted this thread to be stopped, pretend we got a
5679 SIG0 (generic unsignaled stop). */
5680 if (ecs->event_thread->stop_requested
5681 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5682 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5683
5684 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5685
5686 if (debug_infrun)
5687 {
5688 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5689 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5690 struct cleanup *old_chain = save_inferior_ptid ();
5691
5692 inferior_ptid = ecs->ptid;
5693
5694 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5695 paddress (gdbarch, stop_pc));
5696 if (target_stopped_by_watchpoint ())
5697 {
5698 CORE_ADDR addr;
5699
5700 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5701
5702 if (target_stopped_data_address (&current_target, &addr))
5703 fprintf_unfiltered (gdb_stdlog,
5704 "infrun: stopped data address = %s\n",
5705 paddress (gdbarch, addr));
5706 else
5707 fprintf_unfiltered (gdb_stdlog,
5708 "infrun: (no data address available)\n");
5709 }
5710
5711 do_cleanups (old_chain);
5712 }
5713
5714 /* This is originated from start_remote(), start_inferior() and
5715 shared libraries hook functions. */
5716 stop_soon = get_inferior_stop_soon (ecs->ptid);
5717 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5718 {
5719 if (!ptid_equal (ecs->ptid, inferior_ptid))
5720 context_switch (ecs->ptid);
5721 if (debug_infrun)
5722 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5723 stop_print_frame = 1;
5724 stop_waiting (ecs);
5725 return;
5726 }
5727
5728 /* This originates from attach_command(). We need to overwrite
5729 the stop_signal here, because some kernels don't ignore a
5730 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5731 See more comments in inferior.h. On the other hand, if we
5732 get a non-SIGSTOP, report it to the user - assume the backend
5733 will handle the SIGSTOP if it should show up later.
5734
5735 Also consider that the attach is complete when we see a
5736 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5737 target extended-remote report it instead of a SIGSTOP
5738 (e.g. gdbserver). We already rely on SIGTRAP being our
5739 signal, so this is no exception.
5740
5741 Also consider that the attach is complete when we see a
5742 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5743 the target to stop all threads of the inferior, in case the
5744 low level attach operation doesn't stop them implicitly. If
5745 they weren't stopped implicitly, then the stub will report a
5746 GDB_SIGNAL_0, meaning: stopped for no particular reason
5747 other than GDB's request. */
5748 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5749 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5750 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5751 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5752 {
5753 stop_print_frame = 1;
5754 stop_waiting (ecs);
5755 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5756 return;
5757 }
5758
5759 /* See if something interesting happened to the non-current thread. If
5760 so, then switch to that thread. */
5761 if (!ptid_equal (ecs->ptid, inferior_ptid))
5762 {
5763 if (debug_infrun)
5764 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5765
5766 context_switch (ecs->ptid);
5767
5768 if (deprecated_context_hook)
5769 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5770 }
5771
5772 /* At this point, get hold of the now-current thread's frame. */
5773 frame = get_current_frame ();
5774 gdbarch = get_frame_arch (frame);
5775
5776 /* Pull the single step breakpoints out of the target. */
5777 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5778 {
5779 struct regcache *regcache;
5780 struct address_space *aspace;
5781 CORE_ADDR pc;
5782
5783 regcache = get_thread_regcache (ecs->ptid);
5784 aspace = get_regcache_aspace (regcache);
5785 pc = regcache_read_pc (regcache);
5786
5787 /* However, before doing so, if this single-step breakpoint was
5788 actually for another thread, set this thread up for moving
5789 past it. */
5790 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5791 aspace, pc))
5792 {
5793 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5794 {
5795 if (debug_infrun)
5796 {
5797 fprintf_unfiltered (gdb_stdlog,
5798 "infrun: [%s] hit another thread's "
5799 "single-step breakpoint\n",
5800 target_pid_to_str (ecs->ptid));
5801 }
5802 ecs->hit_singlestep_breakpoint = 1;
5803 }
5804 }
5805 else
5806 {
5807 if (debug_infrun)
5808 {
5809 fprintf_unfiltered (gdb_stdlog,
5810 "infrun: [%s] hit its "
5811 "single-step breakpoint\n",
5812 target_pid_to_str (ecs->ptid));
5813 }
5814 }
5815 }
5816 delete_just_stopped_threads_single_step_breakpoints ();
5817
5818 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5819 && ecs->event_thread->control.trap_expected
5820 && ecs->event_thread->stepping_over_watchpoint)
5821 stopped_by_watchpoint = 0;
5822 else
5823 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5824
5825 /* If necessary, step over this watchpoint. We'll be back to display
5826 it in a moment. */
5827 if (stopped_by_watchpoint
5828 && (target_have_steppable_watchpoint
5829 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5830 {
5831 /* At this point, we are stopped at an instruction which has
5832 attempted to write to a piece of memory under control of
5833 a watchpoint. The instruction hasn't actually executed
5834 yet. If we were to evaluate the watchpoint expression
5835 now, we would get the old value, and therefore no change
5836 would seem to have occurred.
5837
5838 In order to make watchpoints work `right', we really need
5839 to complete the memory write, and then evaluate the
5840 watchpoint expression. We do this by single-stepping the
5841 target.
5842
5843 It may not be necessary to disable the watchpoint to step over
5844 it. For example, the PA can (with some kernel cooperation)
5845 single step over a watchpoint without disabling the watchpoint.
5846
5847 It is far more common to need to disable a watchpoint to step
5848 the inferior over it. If we have non-steppable watchpoints,
5849 we must disable the current watchpoint; it's simplest to
5850 disable all watchpoints.
5851
5852 Any breakpoint at PC must also be stepped over -- if there's
5853 one, it will have already triggered before the watchpoint
5854 triggered, and we either already reported it to the user, or
5855 it didn't cause a stop and we called keep_going. In either
5856 case, if there was a breakpoint at PC, we must be trying to
5857 step past it. */
5858 ecs->event_thread->stepping_over_watchpoint = 1;
5859 keep_going (ecs);
5860 return;
5861 }
5862
5863 ecs->event_thread->stepping_over_breakpoint = 0;
5864 ecs->event_thread->stepping_over_watchpoint = 0;
5865 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5866 ecs->event_thread->control.stop_step = 0;
5867 stop_print_frame = 1;
5868 stopped_by_random_signal = 0;
5869
5870 /* Hide inlined functions starting here, unless we just performed stepi or
5871 nexti. After stepi and nexti, always show the innermost frame (not any
5872 inline function call sites). */
5873 if (ecs->event_thread->control.step_range_end != 1)
5874 {
5875 struct address_space *aspace =
5876 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5877
5878 /* skip_inline_frames is expensive, so we avoid it if we can
5879 determine that the address is one where functions cannot have
5880 been inlined. This improves performance with inferiors that
5881 load a lot of shared libraries, because the solib event
5882 breakpoint is defined as the address of a function (i.e. not
5883 inline). Note that we have to check the previous PC as well
5884 as the current one to catch cases when we have just
5885 single-stepped off a breakpoint prior to reinstating it.
5886 Note that we're assuming that the code we single-step to is
5887 not inline, but that's not definitive: there's nothing
5888 preventing the event breakpoint function from containing
5889 inlined code, and the single-step ending up there. If the
5890 user had set a breakpoint on that inlined code, the missing
5891 skip_inline_frames call would break things. Fortunately
5892 that's an extremely unlikely scenario. */
5893 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5894 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5895 && ecs->event_thread->control.trap_expected
5896 && pc_at_non_inline_function (aspace,
5897 ecs->event_thread->prev_pc,
5898 &ecs->ws)))
5899 {
5900 skip_inline_frames (ecs->ptid);
5901
5902 /* Re-fetch current thread's frame in case that invalidated
5903 the frame cache. */
5904 frame = get_current_frame ();
5905 gdbarch = get_frame_arch (frame);
5906 }
5907 }
5908
5909 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5910 && ecs->event_thread->control.trap_expected
5911 && gdbarch_single_step_through_delay_p (gdbarch)
5912 && currently_stepping (ecs->event_thread))
5913 {
5914 /* We're trying to step off a breakpoint. Turns out that we're
5915 also on an instruction that needs to be stepped multiple
5916 times before it's been fully executing. E.g., architectures
5917 with a delay slot. It needs to be stepped twice, once for
5918 the instruction and once for the delay slot. */
5919 int step_through_delay
5920 = gdbarch_single_step_through_delay (gdbarch, frame);
5921
5922 if (debug_infrun && step_through_delay)
5923 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5924 if (ecs->event_thread->control.step_range_end == 0
5925 && step_through_delay)
5926 {
5927 /* The user issued a continue when stopped at a breakpoint.
5928 Set up for another trap and get out of here. */
5929 ecs->event_thread->stepping_over_breakpoint = 1;
5930 keep_going (ecs);
5931 return;
5932 }
5933 else if (step_through_delay)
5934 {
5935 /* The user issued a step when stopped at a breakpoint.
5936 Maybe we should stop, maybe we should not - the delay
5937 slot *might* correspond to a line of source. In any
5938 case, don't decide that here, just set
5939 ecs->stepping_over_breakpoint, making sure we
5940 single-step again before breakpoints are re-inserted. */
5941 ecs->event_thread->stepping_over_breakpoint = 1;
5942 }
5943 }
5944
5945 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5946 handles this event. */
5947 ecs->event_thread->control.stop_bpstat
5948 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5949 stop_pc, ecs->ptid, &ecs->ws);
5950
5951 /* Following in case break condition called a
5952 function. */
5953 stop_print_frame = 1;
5954
5955 /* This is where we handle "moribund" watchpoints. Unlike
5956 software breakpoints traps, hardware watchpoint traps are
5957 always distinguishable from random traps. If no high-level
5958 watchpoint is associated with the reported stop data address
5959 anymore, then the bpstat does not explain the signal ---
5960 simply make sure to ignore it if `stopped_by_watchpoint' is
5961 set. */
5962
5963 if (debug_infrun
5964 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5965 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5966 GDB_SIGNAL_TRAP)
5967 && stopped_by_watchpoint)
5968 fprintf_unfiltered (gdb_stdlog,
5969 "infrun: no user watchpoint explains "
5970 "watchpoint SIGTRAP, ignoring\n");
5971
5972 /* NOTE: cagney/2003-03-29: These checks for a random signal
5973 at one stage in the past included checks for an inferior
5974 function call's call dummy's return breakpoint. The original
5975 comment, that went with the test, read:
5976
5977 ``End of a stack dummy. Some systems (e.g. Sony news) give
5978 another signal besides SIGTRAP, so check here as well as
5979 above.''
5980
5981 If someone ever tries to get call dummys on a
5982 non-executable stack to work (where the target would stop
5983 with something like a SIGSEGV), then those tests might need
5984 to be re-instated. Given, however, that the tests were only
5985 enabled when momentary breakpoints were not being used, I
5986 suspect that it won't be the case.
5987
5988 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5989 be necessary for call dummies on a non-executable stack on
5990 SPARC. */
5991
5992 /* See if the breakpoints module can explain the signal. */
5993 random_signal
5994 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5995 ecs->event_thread->suspend.stop_signal);
5996
5997 /* Maybe this was a trap for a software breakpoint that has since
5998 been removed. */
5999 if (random_signal && target_stopped_by_sw_breakpoint ())
6000 {
6001 if (program_breakpoint_here_p (gdbarch, stop_pc))
6002 {
6003 struct regcache *regcache;
6004 int decr_pc;
6005
6006 /* Re-adjust PC to what the program would see if GDB was not
6007 debugging it. */
6008 regcache = get_thread_regcache (ecs->event_thread->ptid);
6009 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6010 if (decr_pc != 0)
6011 {
6012 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6013
6014 if (record_full_is_used ())
6015 record_full_gdb_operation_disable_set ();
6016
6017 regcache_write_pc (regcache, stop_pc + decr_pc);
6018
6019 do_cleanups (old_cleanups);
6020 }
6021 }
6022 else
6023 {
6024 /* A delayed software breakpoint event. Ignore the trap. */
6025 if (debug_infrun)
6026 fprintf_unfiltered (gdb_stdlog,
6027 "infrun: delayed software breakpoint "
6028 "trap, ignoring\n");
6029 random_signal = 0;
6030 }
6031 }
6032
6033 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6034 has since been removed. */
6035 if (random_signal && target_stopped_by_hw_breakpoint ())
6036 {
6037 /* A delayed hardware breakpoint event. Ignore the trap. */
6038 if (debug_infrun)
6039 fprintf_unfiltered (gdb_stdlog,
6040 "infrun: delayed hardware breakpoint/watchpoint "
6041 "trap, ignoring\n");
6042 random_signal = 0;
6043 }
6044
6045 /* If not, perhaps stepping/nexting can. */
6046 if (random_signal)
6047 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6048 && currently_stepping (ecs->event_thread));
6049
6050 /* Perhaps the thread hit a single-step breakpoint of _another_
6051 thread. Single-step breakpoints are transparent to the
6052 breakpoints module. */
6053 if (random_signal)
6054 random_signal = !ecs->hit_singlestep_breakpoint;
6055
6056 /* No? Perhaps we got a moribund watchpoint. */
6057 if (random_signal)
6058 random_signal = !stopped_by_watchpoint;
6059
6060 /* For the program's own signals, act according to
6061 the signal handling tables. */
6062
6063 if (random_signal)
6064 {
6065 /* Signal not for debugging purposes. */
6066 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6067 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6068
6069 if (debug_infrun)
6070 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6071 gdb_signal_to_symbol_string (stop_signal));
6072
6073 stopped_by_random_signal = 1;
6074
6075 /* Always stop on signals if we're either just gaining control
6076 of the program, or the user explicitly requested this thread
6077 to remain stopped. */
6078 if (stop_soon != NO_STOP_QUIETLY
6079 || ecs->event_thread->stop_requested
6080 || (!inf->detaching
6081 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6082 {
6083 stop_waiting (ecs);
6084 return;
6085 }
6086
6087 /* Notify observers the signal has "handle print" set. Note we
6088 returned early above if stopping; normal_stop handles the
6089 printing in that case. */
6090 if (signal_print[ecs->event_thread->suspend.stop_signal])
6091 {
6092 /* The signal table tells us to print about this signal. */
6093 target_terminal_ours_for_output ();
6094 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6095 target_terminal_inferior ();
6096 }
6097
6098 /* Clear the signal if it should not be passed. */
6099 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6100 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6101
6102 if (ecs->event_thread->prev_pc == stop_pc
6103 && ecs->event_thread->control.trap_expected
6104 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6105 {
6106 int was_in_line;
6107
6108 /* We were just starting a new sequence, attempting to
6109 single-step off of a breakpoint and expecting a SIGTRAP.
6110 Instead this signal arrives. This signal will take us out
6111 of the stepping range so GDB needs to remember to, when
6112 the signal handler returns, resume stepping off that
6113 breakpoint. */
6114 /* To simplify things, "continue" is forced to use the same
6115 code paths as single-step - set a breakpoint at the
6116 signal return address and then, once hit, step off that
6117 breakpoint. */
6118 if (debug_infrun)
6119 fprintf_unfiltered (gdb_stdlog,
6120 "infrun: signal arrived while stepping over "
6121 "breakpoint\n");
6122
6123 was_in_line = step_over_info_valid_p ();
6124 clear_step_over_info ();
6125 insert_hp_step_resume_breakpoint_at_frame (frame);
6126 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6127 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6128 ecs->event_thread->control.trap_expected = 0;
6129
6130 if (target_is_non_stop_p ())
6131 {
6132 /* Either "set non-stop" is "on", or the target is
6133 always in non-stop mode. In this case, we have a bit
6134 more work to do. Resume the current thread, and if
6135 we had paused all threads, restart them while the
6136 signal handler runs. */
6137 keep_going (ecs);
6138
6139 if (was_in_line)
6140 {
6141 restart_threads (ecs->event_thread);
6142 }
6143 else if (debug_infrun)
6144 {
6145 fprintf_unfiltered (gdb_stdlog,
6146 "infrun: no need to restart threads\n");
6147 }
6148 return;
6149 }
6150
6151 /* If we were nexting/stepping some other thread, switch to
6152 it, so that we don't continue it, losing control. */
6153 if (!switch_back_to_stepped_thread (ecs))
6154 keep_going (ecs);
6155 return;
6156 }
6157
6158 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6159 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6160 || ecs->event_thread->control.step_range_end == 1)
6161 && frame_id_eq (get_stack_frame_id (frame),
6162 ecs->event_thread->control.step_stack_frame_id)
6163 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6164 {
6165 /* The inferior is about to take a signal that will take it
6166 out of the single step range. Set a breakpoint at the
6167 current PC (which is presumably where the signal handler
6168 will eventually return) and then allow the inferior to
6169 run free.
6170
6171 Note that this is only needed for a signal delivered
6172 while in the single-step range. Nested signals aren't a
6173 problem as they eventually all return. */
6174 if (debug_infrun)
6175 fprintf_unfiltered (gdb_stdlog,
6176 "infrun: signal may take us out of "
6177 "single-step range\n");
6178
6179 clear_step_over_info ();
6180 insert_hp_step_resume_breakpoint_at_frame (frame);
6181 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6182 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6183 ecs->event_thread->control.trap_expected = 0;
6184 keep_going (ecs);
6185 return;
6186 }
6187
6188 /* Note: step_resume_breakpoint may be non-NULL. This occures
6189 when either there's a nested signal, or when there's a
6190 pending signal enabled just as the signal handler returns
6191 (leaving the inferior at the step-resume-breakpoint without
6192 actually executing it). Either way continue until the
6193 breakpoint is really hit. */
6194
6195 if (!switch_back_to_stepped_thread (ecs))
6196 {
6197 if (debug_infrun)
6198 fprintf_unfiltered (gdb_stdlog,
6199 "infrun: random signal, keep going\n");
6200
6201 keep_going (ecs);
6202 }
6203 return;
6204 }
6205
6206 process_event_stop_test (ecs);
6207 }
6208
6209 /* Come here when we've got some debug event / signal we can explain
6210 (IOW, not a random signal), and test whether it should cause a
6211 stop, or whether we should resume the inferior (transparently).
6212 E.g., could be a breakpoint whose condition evaluates false; we
6213 could be still stepping within the line; etc. */
6214
6215 static void
6216 process_event_stop_test (struct execution_control_state *ecs)
6217 {
6218 struct symtab_and_line stop_pc_sal;
6219 struct frame_info *frame;
6220 struct gdbarch *gdbarch;
6221 CORE_ADDR jmp_buf_pc;
6222 struct bpstat_what what;
6223
6224 /* Handle cases caused by hitting a breakpoint. */
6225
6226 frame = get_current_frame ();
6227 gdbarch = get_frame_arch (frame);
6228
6229 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6230
6231 if (what.call_dummy)
6232 {
6233 stop_stack_dummy = what.call_dummy;
6234 }
6235
6236 /* A few breakpoint types have callbacks associated (e.g.,
6237 bp_jit_event). Run them now. */
6238 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6239
6240 /* If we hit an internal event that triggers symbol changes, the
6241 current frame will be invalidated within bpstat_what (e.g., if we
6242 hit an internal solib event). Re-fetch it. */
6243 frame = get_current_frame ();
6244 gdbarch = get_frame_arch (frame);
6245
6246 switch (what.main_action)
6247 {
6248 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6249 /* If we hit the breakpoint at longjmp while stepping, we
6250 install a momentary breakpoint at the target of the
6251 jmp_buf. */
6252
6253 if (debug_infrun)
6254 fprintf_unfiltered (gdb_stdlog,
6255 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6256
6257 ecs->event_thread->stepping_over_breakpoint = 1;
6258
6259 if (what.is_longjmp)
6260 {
6261 struct value *arg_value;
6262
6263 /* If we set the longjmp breakpoint via a SystemTap probe,
6264 then use it to extract the arguments. The destination PC
6265 is the third argument to the probe. */
6266 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6267 if (arg_value)
6268 {
6269 jmp_buf_pc = value_as_address (arg_value);
6270 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6271 }
6272 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6273 || !gdbarch_get_longjmp_target (gdbarch,
6274 frame, &jmp_buf_pc))
6275 {
6276 if (debug_infrun)
6277 fprintf_unfiltered (gdb_stdlog,
6278 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6279 "(!gdbarch_get_longjmp_target)\n");
6280 keep_going (ecs);
6281 return;
6282 }
6283
6284 /* Insert a breakpoint at resume address. */
6285 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6286 }
6287 else
6288 check_exception_resume (ecs, frame);
6289 keep_going (ecs);
6290 return;
6291
6292 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6293 {
6294 struct frame_info *init_frame;
6295
6296 /* There are several cases to consider.
6297
6298 1. The initiating frame no longer exists. In this case we
6299 must stop, because the exception or longjmp has gone too
6300 far.
6301
6302 2. The initiating frame exists, and is the same as the
6303 current frame. We stop, because the exception or longjmp
6304 has been caught.
6305
6306 3. The initiating frame exists and is different from the
6307 current frame. This means the exception or longjmp has
6308 been caught beneath the initiating frame, so keep going.
6309
6310 4. longjmp breakpoint has been placed just to protect
6311 against stale dummy frames and user is not interested in
6312 stopping around longjmps. */
6313
6314 if (debug_infrun)
6315 fprintf_unfiltered (gdb_stdlog,
6316 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6317
6318 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6319 != NULL);
6320 delete_exception_resume_breakpoint (ecs->event_thread);
6321
6322 if (what.is_longjmp)
6323 {
6324 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6325
6326 if (!frame_id_p (ecs->event_thread->initiating_frame))
6327 {
6328 /* Case 4. */
6329 keep_going (ecs);
6330 return;
6331 }
6332 }
6333
6334 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6335
6336 if (init_frame)
6337 {
6338 struct frame_id current_id
6339 = get_frame_id (get_current_frame ());
6340 if (frame_id_eq (current_id,
6341 ecs->event_thread->initiating_frame))
6342 {
6343 /* Case 2. Fall through. */
6344 }
6345 else
6346 {
6347 /* Case 3. */
6348 keep_going (ecs);
6349 return;
6350 }
6351 }
6352
6353 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6354 exists. */
6355 delete_step_resume_breakpoint (ecs->event_thread);
6356
6357 end_stepping_range (ecs);
6358 }
6359 return;
6360
6361 case BPSTAT_WHAT_SINGLE:
6362 if (debug_infrun)
6363 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6364 ecs->event_thread->stepping_over_breakpoint = 1;
6365 /* Still need to check other stuff, at least the case where we
6366 are stepping and step out of the right range. */
6367 break;
6368
6369 case BPSTAT_WHAT_STEP_RESUME:
6370 if (debug_infrun)
6371 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6372
6373 delete_step_resume_breakpoint (ecs->event_thread);
6374 if (ecs->event_thread->control.proceed_to_finish
6375 && execution_direction == EXEC_REVERSE)
6376 {
6377 struct thread_info *tp = ecs->event_thread;
6378
6379 /* We are finishing a function in reverse, and just hit the
6380 step-resume breakpoint at the start address of the
6381 function, and we're almost there -- just need to back up
6382 by one more single-step, which should take us back to the
6383 function call. */
6384 tp->control.step_range_start = tp->control.step_range_end = 1;
6385 keep_going (ecs);
6386 return;
6387 }
6388 fill_in_stop_func (gdbarch, ecs);
6389 if (stop_pc == ecs->stop_func_start
6390 && execution_direction == EXEC_REVERSE)
6391 {
6392 /* We are stepping over a function call in reverse, and just
6393 hit the step-resume breakpoint at the start address of
6394 the function. Go back to single-stepping, which should
6395 take us back to the function call. */
6396 ecs->event_thread->stepping_over_breakpoint = 1;
6397 keep_going (ecs);
6398 return;
6399 }
6400 break;
6401
6402 case BPSTAT_WHAT_STOP_NOISY:
6403 if (debug_infrun)
6404 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6405 stop_print_frame = 1;
6406
6407 /* Assume the thread stopped for a breapoint. We'll still check
6408 whether a/the breakpoint is there when the thread is next
6409 resumed. */
6410 ecs->event_thread->stepping_over_breakpoint = 1;
6411
6412 stop_waiting (ecs);
6413 return;
6414
6415 case BPSTAT_WHAT_STOP_SILENT:
6416 if (debug_infrun)
6417 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6418 stop_print_frame = 0;
6419
6420 /* Assume the thread stopped for a breapoint. We'll still check
6421 whether a/the breakpoint is there when the thread is next
6422 resumed. */
6423 ecs->event_thread->stepping_over_breakpoint = 1;
6424 stop_waiting (ecs);
6425 return;
6426
6427 case BPSTAT_WHAT_HP_STEP_RESUME:
6428 if (debug_infrun)
6429 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6430
6431 delete_step_resume_breakpoint (ecs->event_thread);
6432 if (ecs->event_thread->step_after_step_resume_breakpoint)
6433 {
6434 /* Back when the step-resume breakpoint was inserted, we
6435 were trying to single-step off a breakpoint. Go back to
6436 doing that. */
6437 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6438 ecs->event_thread->stepping_over_breakpoint = 1;
6439 keep_going (ecs);
6440 return;
6441 }
6442 break;
6443
6444 case BPSTAT_WHAT_KEEP_CHECKING:
6445 break;
6446 }
6447
6448 /* If we stepped a permanent breakpoint and we had a high priority
6449 step-resume breakpoint for the address we stepped, but we didn't
6450 hit it, then we must have stepped into the signal handler. The
6451 step-resume was only necessary to catch the case of _not_
6452 stepping into the handler, so delete it, and fall through to
6453 checking whether the step finished. */
6454 if (ecs->event_thread->stepped_breakpoint)
6455 {
6456 struct breakpoint *sr_bp
6457 = ecs->event_thread->control.step_resume_breakpoint;
6458
6459 if (sr_bp != NULL
6460 && sr_bp->loc->permanent
6461 && sr_bp->type == bp_hp_step_resume
6462 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6463 {
6464 if (debug_infrun)
6465 fprintf_unfiltered (gdb_stdlog,
6466 "infrun: stepped permanent breakpoint, stopped in "
6467 "handler\n");
6468 delete_step_resume_breakpoint (ecs->event_thread);
6469 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6470 }
6471 }
6472
6473 /* We come here if we hit a breakpoint but should not stop for it.
6474 Possibly we also were stepping and should stop for that. So fall
6475 through and test for stepping. But, if not stepping, do not
6476 stop. */
6477
6478 /* In all-stop mode, if we're currently stepping but have stopped in
6479 some other thread, we need to switch back to the stepped thread. */
6480 if (switch_back_to_stepped_thread (ecs))
6481 return;
6482
6483 if (ecs->event_thread->control.step_resume_breakpoint)
6484 {
6485 if (debug_infrun)
6486 fprintf_unfiltered (gdb_stdlog,
6487 "infrun: step-resume breakpoint is inserted\n");
6488
6489 /* Having a step-resume breakpoint overrides anything
6490 else having to do with stepping commands until
6491 that breakpoint is reached. */
6492 keep_going (ecs);
6493 return;
6494 }
6495
6496 if (ecs->event_thread->control.step_range_end == 0)
6497 {
6498 if (debug_infrun)
6499 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6500 /* Likewise if we aren't even stepping. */
6501 keep_going (ecs);
6502 return;
6503 }
6504
6505 /* Re-fetch current thread's frame in case the code above caused
6506 the frame cache to be re-initialized, making our FRAME variable
6507 a dangling pointer. */
6508 frame = get_current_frame ();
6509 gdbarch = get_frame_arch (frame);
6510 fill_in_stop_func (gdbarch, ecs);
6511
6512 /* If stepping through a line, keep going if still within it.
6513
6514 Note that step_range_end is the address of the first instruction
6515 beyond the step range, and NOT the address of the last instruction
6516 within it!
6517
6518 Note also that during reverse execution, we may be stepping
6519 through a function epilogue and therefore must detect when
6520 the current-frame changes in the middle of a line. */
6521
6522 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6523 && (execution_direction != EXEC_REVERSE
6524 || frame_id_eq (get_frame_id (frame),
6525 ecs->event_thread->control.step_frame_id)))
6526 {
6527 if (debug_infrun)
6528 fprintf_unfiltered
6529 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6530 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6531 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6532
6533 /* Tentatively re-enable range stepping; `resume' disables it if
6534 necessary (e.g., if we're stepping over a breakpoint or we
6535 have software watchpoints). */
6536 ecs->event_thread->control.may_range_step = 1;
6537
6538 /* When stepping backward, stop at beginning of line range
6539 (unless it's the function entry point, in which case
6540 keep going back to the call point). */
6541 if (stop_pc == ecs->event_thread->control.step_range_start
6542 && stop_pc != ecs->stop_func_start
6543 && execution_direction == EXEC_REVERSE)
6544 end_stepping_range (ecs);
6545 else
6546 keep_going (ecs);
6547
6548 return;
6549 }
6550
6551 /* We stepped out of the stepping range. */
6552
6553 /* If we are stepping at the source level and entered the runtime
6554 loader dynamic symbol resolution code...
6555
6556 EXEC_FORWARD: we keep on single stepping until we exit the run
6557 time loader code and reach the callee's address.
6558
6559 EXEC_REVERSE: we've already executed the callee (backward), and
6560 the runtime loader code is handled just like any other
6561 undebuggable function call. Now we need only keep stepping
6562 backward through the trampoline code, and that's handled further
6563 down, so there is nothing for us to do here. */
6564
6565 if (execution_direction != EXEC_REVERSE
6566 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6567 && in_solib_dynsym_resolve_code (stop_pc))
6568 {
6569 CORE_ADDR pc_after_resolver =
6570 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6571
6572 if (debug_infrun)
6573 fprintf_unfiltered (gdb_stdlog,
6574 "infrun: stepped into dynsym resolve code\n");
6575
6576 if (pc_after_resolver)
6577 {
6578 /* Set up a step-resume breakpoint at the address
6579 indicated by SKIP_SOLIB_RESOLVER. */
6580 struct symtab_and_line sr_sal;
6581
6582 init_sal (&sr_sal);
6583 sr_sal.pc = pc_after_resolver;
6584 sr_sal.pspace = get_frame_program_space (frame);
6585
6586 insert_step_resume_breakpoint_at_sal (gdbarch,
6587 sr_sal, null_frame_id);
6588 }
6589
6590 keep_going (ecs);
6591 return;
6592 }
6593
6594 if (ecs->event_thread->control.step_range_end != 1
6595 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6596 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6597 && get_frame_type (frame) == SIGTRAMP_FRAME)
6598 {
6599 if (debug_infrun)
6600 fprintf_unfiltered (gdb_stdlog,
6601 "infrun: stepped into signal trampoline\n");
6602 /* The inferior, while doing a "step" or "next", has ended up in
6603 a signal trampoline (either by a signal being delivered or by
6604 the signal handler returning). Just single-step until the
6605 inferior leaves the trampoline (either by calling the handler
6606 or returning). */
6607 keep_going (ecs);
6608 return;
6609 }
6610
6611 /* If we're in the return path from a shared library trampoline,
6612 we want to proceed through the trampoline when stepping. */
6613 /* macro/2012-04-25: This needs to come before the subroutine
6614 call check below as on some targets return trampolines look
6615 like subroutine calls (MIPS16 return thunks). */
6616 if (gdbarch_in_solib_return_trampoline (gdbarch,
6617 stop_pc, ecs->stop_func_name)
6618 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6619 {
6620 /* Determine where this trampoline returns. */
6621 CORE_ADDR real_stop_pc;
6622
6623 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6624
6625 if (debug_infrun)
6626 fprintf_unfiltered (gdb_stdlog,
6627 "infrun: stepped into solib return tramp\n");
6628
6629 /* Only proceed through if we know where it's going. */
6630 if (real_stop_pc)
6631 {
6632 /* And put the step-breakpoint there and go until there. */
6633 struct symtab_and_line sr_sal;
6634
6635 init_sal (&sr_sal); /* initialize to zeroes */
6636 sr_sal.pc = real_stop_pc;
6637 sr_sal.section = find_pc_overlay (sr_sal.pc);
6638 sr_sal.pspace = get_frame_program_space (frame);
6639
6640 /* Do not specify what the fp should be when we stop since
6641 on some machines the prologue is where the new fp value
6642 is established. */
6643 insert_step_resume_breakpoint_at_sal (gdbarch,
6644 sr_sal, null_frame_id);
6645
6646 /* Restart without fiddling with the step ranges or
6647 other state. */
6648 keep_going (ecs);
6649 return;
6650 }
6651 }
6652
6653 /* Check for subroutine calls. The check for the current frame
6654 equalling the step ID is not necessary - the check of the
6655 previous frame's ID is sufficient - but it is a common case and
6656 cheaper than checking the previous frame's ID.
6657
6658 NOTE: frame_id_eq will never report two invalid frame IDs as
6659 being equal, so to get into this block, both the current and
6660 previous frame must have valid frame IDs. */
6661 /* The outer_frame_id check is a heuristic to detect stepping
6662 through startup code. If we step over an instruction which
6663 sets the stack pointer from an invalid value to a valid value,
6664 we may detect that as a subroutine call from the mythical
6665 "outermost" function. This could be fixed by marking
6666 outermost frames as !stack_p,code_p,special_p. Then the
6667 initial outermost frame, before sp was valid, would
6668 have code_addr == &_start. See the comment in frame_id_eq
6669 for more. */
6670 if (!frame_id_eq (get_stack_frame_id (frame),
6671 ecs->event_thread->control.step_stack_frame_id)
6672 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6673 ecs->event_thread->control.step_stack_frame_id)
6674 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6675 outer_frame_id)
6676 || (ecs->event_thread->control.step_start_function
6677 != find_pc_function (stop_pc)))))
6678 {
6679 CORE_ADDR real_stop_pc;
6680
6681 if (debug_infrun)
6682 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6683
6684 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6685 {
6686 /* I presume that step_over_calls is only 0 when we're
6687 supposed to be stepping at the assembly language level
6688 ("stepi"). Just stop. */
6689 /* And this works the same backward as frontward. MVS */
6690 end_stepping_range (ecs);
6691 return;
6692 }
6693
6694 /* Reverse stepping through solib trampolines. */
6695
6696 if (execution_direction == EXEC_REVERSE
6697 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6698 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6699 || (ecs->stop_func_start == 0
6700 && in_solib_dynsym_resolve_code (stop_pc))))
6701 {
6702 /* Any solib trampoline code can be handled in reverse
6703 by simply continuing to single-step. We have already
6704 executed the solib function (backwards), and a few
6705 steps will take us back through the trampoline to the
6706 caller. */
6707 keep_going (ecs);
6708 return;
6709 }
6710
6711 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6712 {
6713 /* We're doing a "next".
6714
6715 Normal (forward) execution: set a breakpoint at the
6716 callee's return address (the address at which the caller
6717 will resume).
6718
6719 Reverse (backward) execution. set the step-resume
6720 breakpoint at the start of the function that we just
6721 stepped into (backwards), and continue to there. When we
6722 get there, we'll need to single-step back to the caller. */
6723
6724 if (execution_direction == EXEC_REVERSE)
6725 {
6726 /* If we're already at the start of the function, we've either
6727 just stepped backward into a single instruction function,
6728 or stepped back out of a signal handler to the first instruction
6729 of the function. Just keep going, which will single-step back
6730 to the caller. */
6731 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6732 {
6733 struct symtab_and_line sr_sal;
6734
6735 /* Normal function call return (static or dynamic). */
6736 init_sal (&sr_sal);
6737 sr_sal.pc = ecs->stop_func_start;
6738 sr_sal.pspace = get_frame_program_space (frame);
6739 insert_step_resume_breakpoint_at_sal (gdbarch,
6740 sr_sal, null_frame_id);
6741 }
6742 }
6743 else
6744 insert_step_resume_breakpoint_at_caller (frame);
6745
6746 keep_going (ecs);
6747 return;
6748 }
6749
6750 /* If we are in a function call trampoline (a stub between the
6751 calling routine and the real function), locate the real
6752 function. That's what tells us (a) whether we want to step
6753 into it at all, and (b) what prologue we want to run to the
6754 end of, if we do step into it. */
6755 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6756 if (real_stop_pc == 0)
6757 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6758 if (real_stop_pc != 0)
6759 ecs->stop_func_start = real_stop_pc;
6760
6761 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6762 {
6763 struct symtab_and_line sr_sal;
6764
6765 init_sal (&sr_sal);
6766 sr_sal.pc = ecs->stop_func_start;
6767 sr_sal.pspace = get_frame_program_space (frame);
6768
6769 insert_step_resume_breakpoint_at_sal (gdbarch,
6770 sr_sal, null_frame_id);
6771 keep_going (ecs);
6772 return;
6773 }
6774
6775 /* If we have line number information for the function we are
6776 thinking of stepping into and the function isn't on the skip
6777 list, step into it.
6778
6779 If there are several symtabs at that PC (e.g. with include
6780 files), just want to know whether *any* of them have line
6781 numbers. find_pc_line handles this. */
6782 {
6783 struct symtab_and_line tmp_sal;
6784
6785 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6786 if (tmp_sal.line != 0
6787 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6788 &tmp_sal))
6789 {
6790 if (execution_direction == EXEC_REVERSE)
6791 handle_step_into_function_backward (gdbarch, ecs);
6792 else
6793 handle_step_into_function (gdbarch, ecs);
6794 return;
6795 }
6796 }
6797
6798 /* If we have no line number and the step-stop-if-no-debug is
6799 set, we stop the step so that the user has a chance to switch
6800 in assembly mode. */
6801 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6802 && step_stop_if_no_debug)
6803 {
6804 end_stepping_range (ecs);
6805 return;
6806 }
6807
6808 if (execution_direction == EXEC_REVERSE)
6809 {
6810 /* If we're already at the start of the function, we've either just
6811 stepped backward into a single instruction function without line
6812 number info, or stepped back out of a signal handler to the first
6813 instruction of the function without line number info. Just keep
6814 going, which will single-step back to the caller. */
6815 if (ecs->stop_func_start != stop_pc)
6816 {
6817 /* Set a breakpoint at callee's start address.
6818 From there we can step once and be back in the caller. */
6819 struct symtab_and_line sr_sal;
6820
6821 init_sal (&sr_sal);
6822 sr_sal.pc = ecs->stop_func_start;
6823 sr_sal.pspace = get_frame_program_space (frame);
6824 insert_step_resume_breakpoint_at_sal (gdbarch,
6825 sr_sal, null_frame_id);
6826 }
6827 }
6828 else
6829 /* Set a breakpoint at callee's return address (the address
6830 at which the caller will resume). */
6831 insert_step_resume_breakpoint_at_caller (frame);
6832
6833 keep_going (ecs);
6834 return;
6835 }
6836
6837 /* Reverse stepping through solib trampolines. */
6838
6839 if (execution_direction == EXEC_REVERSE
6840 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6841 {
6842 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6843 || (ecs->stop_func_start == 0
6844 && in_solib_dynsym_resolve_code (stop_pc)))
6845 {
6846 /* Any solib trampoline code can be handled in reverse
6847 by simply continuing to single-step. We have already
6848 executed the solib function (backwards), and a few
6849 steps will take us back through the trampoline to the
6850 caller. */
6851 keep_going (ecs);
6852 return;
6853 }
6854 else if (in_solib_dynsym_resolve_code (stop_pc))
6855 {
6856 /* Stepped backward into the solib dynsym resolver.
6857 Set a breakpoint at its start and continue, then
6858 one more step will take us out. */
6859 struct symtab_and_line sr_sal;
6860
6861 init_sal (&sr_sal);
6862 sr_sal.pc = ecs->stop_func_start;
6863 sr_sal.pspace = get_frame_program_space (frame);
6864 insert_step_resume_breakpoint_at_sal (gdbarch,
6865 sr_sal, null_frame_id);
6866 keep_going (ecs);
6867 return;
6868 }
6869 }
6870
6871 stop_pc_sal = find_pc_line (stop_pc, 0);
6872
6873 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6874 the trampoline processing logic, however, there are some trampolines
6875 that have no names, so we should do trampoline handling first. */
6876 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6877 && ecs->stop_func_name == NULL
6878 && stop_pc_sal.line == 0)
6879 {
6880 if (debug_infrun)
6881 fprintf_unfiltered (gdb_stdlog,
6882 "infrun: stepped into undebuggable function\n");
6883
6884 /* The inferior just stepped into, or returned to, an
6885 undebuggable function (where there is no debugging information
6886 and no line number corresponding to the address where the
6887 inferior stopped). Since we want to skip this kind of code,
6888 we keep going until the inferior returns from this
6889 function - unless the user has asked us not to (via
6890 set step-mode) or we no longer know how to get back
6891 to the call site. */
6892 if (step_stop_if_no_debug
6893 || !frame_id_p (frame_unwind_caller_id (frame)))
6894 {
6895 /* If we have no line number and the step-stop-if-no-debug
6896 is set, we stop the step so that the user has a chance to
6897 switch in assembly mode. */
6898 end_stepping_range (ecs);
6899 return;
6900 }
6901 else
6902 {
6903 /* Set a breakpoint at callee's return address (the address
6904 at which the caller will resume). */
6905 insert_step_resume_breakpoint_at_caller (frame);
6906 keep_going (ecs);
6907 return;
6908 }
6909 }
6910
6911 if (ecs->event_thread->control.step_range_end == 1)
6912 {
6913 /* It is stepi or nexti. We always want to stop stepping after
6914 one instruction. */
6915 if (debug_infrun)
6916 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6917 end_stepping_range (ecs);
6918 return;
6919 }
6920
6921 if (stop_pc_sal.line == 0)
6922 {
6923 /* We have no line number information. That means to stop
6924 stepping (does this always happen right after one instruction,
6925 when we do "s" in a function with no line numbers,
6926 or can this happen as a result of a return or longjmp?). */
6927 if (debug_infrun)
6928 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6929 end_stepping_range (ecs);
6930 return;
6931 }
6932
6933 /* Look for "calls" to inlined functions, part one. If the inline
6934 frame machinery detected some skipped call sites, we have entered
6935 a new inline function. */
6936
6937 if (frame_id_eq (get_frame_id (get_current_frame ()),
6938 ecs->event_thread->control.step_frame_id)
6939 && inline_skipped_frames (ecs->ptid))
6940 {
6941 struct symtab_and_line call_sal;
6942
6943 if (debug_infrun)
6944 fprintf_unfiltered (gdb_stdlog,
6945 "infrun: stepped into inlined function\n");
6946
6947 find_frame_sal (get_current_frame (), &call_sal);
6948
6949 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6950 {
6951 /* For "step", we're going to stop. But if the call site
6952 for this inlined function is on the same source line as
6953 we were previously stepping, go down into the function
6954 first. Otherwise stop at the call site. */
6955
6956 if (call_sal.line == ecs->event_thread->current_line
6957 && call_sal.symtab == ecs->event_thread->current_symtab)
6958 step_into_inline_frame (ecs->ptid);
6959
6960 end_stepping_range (ecs);
6961 return;
6962 }
6963 else
6964 {
6965 /* For "next", we should stop at the call site if it is on a
6966 different source line. Otherwise continue through the
6967 inlined function. */
6968 if (call_sal.line == ecs->event_thread->current_line
6969 && call_sal.symtab == ecs->event_thread->current_symtab)
6970 keep_going (ecs);
6971 else
6972 end_stepping_range (ecs);
6973 return;
6974 }
6975 }
6976
6977 /* Look for "calls" to inlined functions, part two. If we are still
6978 in the same real function we were stepping through, but we have
6979 to go further up to find the exact frame ID, we are stepping
6980 through a more inlined call beyond its call site. */
6981
6982 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6983 && !frame_id_eq (get_frame_id (get_current_frame ()),
6984 ecs->event_thread->control.step_frame_id)
6985 && stepped_in_from (get_current_frame (),
6986 ecs->event_thread->control.step_frame_id))
6987 {
6988 if (debug_infrun)
6989 fprintf_unfiltered (gdb_stdlog,
6990 "infrun: stepping through inlined function\n");
6991
6992 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6993 keep_going (ecs);
6994 else
6995 end_stepping_range (ecs);
6996 return;
6997 }
6998
6999 if ((stop_pc == stop_pc_sal.pc)
7000 && (ecs->event_thread->current_line != stop_pc_sal.line
7001 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7002 {
7003 /* We are at the start of a different line. So stop. Note that
7004 we don't stop if we step into the middle of a different line.
7005 That is said to make things like for (;;) statements work
7006 better. */
7007 if (debug_infrun)
7008 fprintf_unfiltered (gdb_stdlog,
7009 "infrun: stepped to a different line\n");
7010 end_stepping_range (ecs);
7011 return;
7012 }
7013
7014 /* We aren't done stepping.
7015
7016 Optimize by setting the stepping range to the line.
7017 (We might not be in the original line, but if we entered a
7018 new line in mid-statement, we continue stepping. This makes
7019 things like for(;;) statements work better.) */
7020
7021 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7022 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7023 ecs->event_thread->control.may_range_step = 1;
7024 set_step_info (frame, stop_pc_sal);
7025
7026 if (debug_infrun)
7027 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7028 keep_going (ecs);
7029 }
7030
7031 /* In all-stop mode, if we're currently stepping but have stopped in
7032 some other thread, we may need to switch back to the stepped
7033 thread. Returns true we set the inferior running, false if we left
7034 it stopped (and the event needs further processing). */
7035
7036 static int
7037 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7038 {
7039 if (!target_is_non_stop_p ())
7040 {
7041 struct thread_info *tp;
7042 struct thread_info *stepping_thread;
7043
7044 /* If any thread is blocked on some internal breakpoint, and we
7045 simply need to step over that breakpoint to get it going
7046 again, do that first. */
7047
7048 /* However, if we see an event for the stepping thread, then we
7049 know all other threads have been moved past their breakpoints
7050 already. Let the caller check whether the step is finished,
7051 etc., before deciding to move it past a breakpoint. */
7052 if (ecs->event_thread->control.step_range_end != 0)
7053 return 0;
7054
7055 /* Check if the current thread is blocked on an incomplete
7056 step-over, interrupted by a random signal. */
7057 if (ecs->event_thread->control.trap_expected
7058 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7059 {
7060 if (debug_infrun)
7061 {
7062 fprintf_unfiltered (gdb_stdlog,
7063 "infrun: need to finish step-over of [%s]\n",
7064 target_pid_to_str (ecs->event_thread->ptid));
7065 }
7066 keep_going (ecs);
7067 return 1;
7068 }
7069
7070 /* Check if the current thread is blocked by a single-step
7071 breakpoint of another thread. */
7072 if (ecs->hit_singlestep_breakpoint)
7073 {
7074 if (debug_infrun)
7075 {
7076 fprintf_unfiltered (gdb_stdlog,
7077 "infrun: need to step [%s] over single-step "
7078 "breakpoint\n",
7079 target_pid_to_str (ecs->ptid));
7080 }
7081 keep_going (ecs);
7082 return 1;
7083 }
7084
7085 /* If this thread needs yet another step-over (e.g., stepping
7086 through a delay slot), do it first before moving on to
7087 another thread. */
7088 if (thread_still_needs_step_over (ecs->event_thread))
7089 {
7090 if (debug_infrun)
7091 {
7092 fprintf_unfiltered (gdb_stdlog,
7093 "infrun: thread [%s] still needs step-over\n",
7094 target_pid_to_str (ecs->event_thread->ptid));
7095 }
7096 keep_going (ecs);
7097 return 1;
7098 }
7099
7100 /* If scheduler locking applies even if not stepping, there's no
7101 need to walk over threads. Above we've checked whether the
7102 current thread is stepping. If some other thread not the
7103 event thread is stepping, then it must be that scheduler
7104 locking is not in effect. */
7105 if (schedlock_applies (ecs->event_thread))
7106 return 0;
7107
7108 /* Otherwise, we no longer expect a trap in the current thread.
7109 Clear the trap_expected flag before switching back -- this is
7110 what keep_going does as well, if we call it. */
7111 ecs->event_thread->control.trap_expected = 0;
7112
7113 /* Likewise, clear the signal if it should not be passed. */
7114 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7115 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7116
7117 /* Do all pending step-overs before actually proceeding with
7118 step/next/etc. */
7119 if (start_step_over ())
7120 {
7121 prepare_to_wait (ecs);
7122 return 1;
7123 }
7124
7125 /* Look for the stepping/nexting thread. */
7126 stepping_thread = NULL;
7127
7128 ALL_NON_EXITED_THREADS (tp)
7129 {
7130 /* Ignore threads of processes the caller is not
7131 resuming. */
7132 if (!sched_multi
7133 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7134 continue;
7135
7136 /* When stepping over a breakpoint, we lock all threads
7137 except the one that needs to move past the breakpoint.
7138 If a non-event thread has this set, the "incomplete
7139 step-over" check above should have caught it earlier. */
7140 if (tp->control.trap_expected)
7141 {
7142 internal_error (__FILE__, __LINE__,
7143 "[%s] has inconsistent state: "
7144 "trap_expected=%d\n",
7145 target_pid_to_str (tp->ptid),
7146 tp->control.trap_expected);
7147 }
7148
7149 /* Did we find the stepping thread? */
7150 if (tp->control.step_range_end)
7151 {
7152 /* Yep. There should only one though. */
7153 gdb_assert (stepping_thread == NULL);
7154
7155 /* The event thread is handled at the top, before we
7156 enter this loop. */
7157 gdb_assert (tp != ecs->event_thread);
7158
7159 /* If some thread other than the event thread is
7160 stepping, then scheduler locking can't be in effect,
7161 otherwise we wouldn't have resumed the current event
7162 thread in the first place. */
7163 gdb_assert (!schedlock_applies (tp));
7164
7165 stepping_thread = tp;
7166 }
7167 }
7168
7169 if (stepping_thread != NULL)
7170 {
7171 if (debug_infrun)
7172 fprintf_unfiltered (gdb_stdlog,
7173 "infrun: switching back to stepped thread\n");
7174
7175 if (keep_going_stepped_thread (stepping_thread))
7176 {
7177 prepare_to_wait (ecs);
7178 return 1;
7179 }
7180 }
7181 }
7182
7183 return 0;
7184 }
7185
7186 /* Set a previously stepped thread back to stepping. Returns true on
7187 success, false if the resume is not possible (e.g., the thread
7188 vanished). */
7189
7190 static int
7191 keep_going_stepped_thread (struct thread_info *tp)
7192 {
7193 struct frame_info *frame;
7194 struct execution_control_state ecss;
7195 struct execution_control_state *ecs = &ecss;
7196
7197 /* If the stepping thread exited, then don't try to switch back and
7198 resume it, which could fail in several different ways depending
7199 on the target. Instead, just keep going.
7200
7201 We can find a stepping dead thread in the thread list in two
7202 cases:
7203
7204 - The target supports thread exit events, and when the target
7205 tries to delete the thread from the thread list, inferior_ptid
7206 pointed at the exiting thread. In such case, calling
7207 delete_thread does not really remove the thread from the list;
7208 instead, the thread is left listed, with 'exited' state.
7209
7210 - The target's debug interface does not support thread exit
7211 events, and so we have no idea whatsoever if the previously
7212 stepping thread is still alive. For that reason, we need to
7213 synchronously query the target now. */
7214
7215 if (is_exited (tp->ptid)
7216 || !target_thread_alive (tp->ptid))
7217 {
7218 if (debug_infrun)
7219 fprintf_unfiltered (gdb_stdlog,
7220 "infrun: not resuming previously "
7221 "stepped thread, it has vanished\n");
7222
7223 delete_thread (tp->ptid);
7224 return 0;
7225 }
7226
7227 if (debug_infrun)
7228 fprintf_unfiltered (gdb_stdlog,
7229 "infrun: resuming previously stepped thread\n");
7230
7231 reset_ecs (ecs, tp);
7232 switch_to_thread (tp->ptid);
7233
7234 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7235 frame = get_current_frame ();
7236
7237 /* If the PC of the thread we were trying to single-step has
7238 changed, then that thread has trapped or been signaled, but the
7239 event has not been reported to GDB yet. Re-poll the target
7240 looking for this particular thread's event (i.e. temporarily
7241 enable schedlock) by:
7242
7243 - setting a break at the current PC
7244 - resuming that particular thread, only (by setting trap
7245 expected)
7246
7247 This prevents us continuously moving the single-step breakpoint
7248 forward, one instruction at a time, overstepping. */
7249
7250 if (stop_pc != tp->prev_pc)
7251 {
7252 ptid_t resume_ptid;
7253
7254 if (debug_infrun)
7255 fprintf_unfiltered (gdb_stdlog,
7256 "infrun: expected thread advanced also (%s -> %s)\n",
7257 paddress (target_gdbarch (), tp->prev_pc),
7258 paddress (target_gdbarch (), stop_pc));
7259
7260 /* Clear the info of the previous step-over, as it's no longer
7261 valid (if the thread was trying to step over a breakpoint, it
7262 has already succeeded). It's what keep_going would do too,
7263 if we called it. Do this before trying to insert the sss
7264 breakpoint, otherwise if we were previously trying to step
7265 over this exact address in another thread, the breakpoint is
7266 skipped. */
7267 clear_step_over_info ();
7268 tp->control.trap_expected = 0;
7269
7270 insert_single_step_breakpoint (get_frame_arch (frame),
7271 get_frame_address_space (frame),
7272 stop_pc);
7273
7274 tp->resumed = 1;
7275 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7276 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7277 }
7278 else
7279 {
7280 if (debug_infrun)
7281 fprintf_unfiltered (gdb_stdlog,
7282 "infrun: expected thread still hasn't advanced\n");
7283
7284 keep_going_pass_signal (ecs);
7285 }
7286 return 1;
7287 }
7288
7289 /* Is thread TP in the middle of (software or hardware)
7290 single-stepping? (Note the result of this function must never be
7291 passed directly as target_resume's STEP parameter.) */
7292
7293 static int
7294 currently_stepping (struct thread_info *tp)
7295 {
7296 return ((tp->control.step_range_end
7297 && tp->control.step_resume_breakpoint == NULL)
7298 || tp->control.trap_expected
7299 || tp->stepped_breakpoint
7300 || bpstat_should_step ());
7301 }
7302
7303 /* Inferior has stepped into a subroutine call with source code that
7304 we should not step over. Do step to the first line of code in
7305 it. */
7306
7307 static void
7308 handle_step_into_function (struct gdbarch *gdbarch,
7309 struct execution_control_state *ecs)
7310 {
7311 struct compunit_symtab *cust;
7312 struct symtab_and_line stop_func_sal, sr_sal;
7313
7314 fill_in_stop_func (gdbarch, ecs);
7315
7316 cust = find_pc_compunit_symtab (stop_pc);
7317 if (cust != NULL && compunit_language (cust) != language_asm)
7318 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7319 ecs->stop_func_start);
7320
7321 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7322 /* Use the step_resume_break to step until the end of the prologue,
7323 even if that involves jumps (as it seems to on the vax under
7324 4.2). */
7325 /* If the prologue ends in the middle of a source line, continue to
7326 the end of that source line (if it is still within the function).
7327 Otherwise, just go to end of prologue. */
7328 if (stop_func_sal.end
7329 && stop_func_sal.pc != ecs->stop_func_start
7330 && stop_func_sal.end < ecs->stop_func_end)
7331 ecs->stop_func_start = stop_func_sal.end;
7332
7333 /* Architectures which require breakpoint adjustment might not be able
7334 to place a breakpoint at the computed address. If so, the test
7335 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7336 ecs->stop_func_start to an address at which a breakpoint may be
7337 legitimately placed.
7338
7339 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7340 made, GDB will enter an infinite loop when stepping through
7341 optimized code consisting of VLIW instructions which contain
7342 subinstructions corresponding to different source lines. On
7343 FR-V, it's not permitted to place a breakpoint on any but the
7344 first subinstruction of a VLIW instruction. When a breakpoint is
7345 set, GDB will adjust the breakpoint address to the beginning of
7346 the VLIW instruction. Thus, we need to make the corresponding
7347 adjustment here when computing the stop address. */
7348
7349 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7350 {
7351 ecs->stop_func_start
7352 = gdbarch_adjust_breakpoint_address (gdbarch,
7353 ecs->stop_func_start);
7354 }
7355
7356 if (ecs->stop_func_start == stop_pc)
7357 {
7358 /* We are already there: stop now. */
7359 end_stepping_range (ecs);
7360 return;
7361 }
7362 else
7363 {
7364 /* Put the step-breakpoint there and go until there. */
7365 init_sal (&sr_sal); /* initialize to zeroes */
7366 sr_sal.pc = ecs->stop_func_start;
7367 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7368 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7369
7370 /* Do not specify what the fp should be when we stop since on
7371 some machines the prologue is where the new fp value is
7372 established. */
7373 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7374
7375 /* And make sure stepping stops right away then. */
7376 ecs->event_thread->control.step_range_end
7377 = ecs->event_thread->control.step_range_start;
7378 }
7379 keep_going (ecs);
7380 }
7381
7382 /* Inferior has stepped backward into a subroutine call with source
7383 code that we should not step over. Do step to the beginning of the
7384 last line of code in it. */
7385
7386 static void
7387 handle_step_into_function_backward (struct gdbarch *gdbarch,
7388 struct execution_control_state *ecs)
7389 {
7390 struct compunit_symtab *cust;
7391 struct symtab_and_line stop_func_sal;
7392
7393 fill_in_stop_func (gdbarch, ecs);
7394
7395 cust = find_pc_compunit_symtab (stop_pc);
7396 if (cust != NULL && compunit_language (cust) != language_asm)
7397 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7398 ecs->stop_func_start);
7399
7400 stop_func_sal = find_pc_line (stop_pc, 0);
7401
7402 /* OK, we're just going to keep stepping here. */
7403 if (stop_func_sal.pc == stop_pc)
7404 {
7405 /* We're there already. Just stop stepping now. */
7406 end_stepping_range (ecs);
7407 }
7408 else
7409 {
7410 /* Else just reset the step range and keep going.
7411 No step-resume breakpoint, they don't work for
7412 epilogues, which can have multiple entry paths. */
7413 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7414 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7415 keep_going (ecs);
7416 }
7417 return;
7418 }
7419
7420 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7421 This is used to both functions and to skip over code. */
7422
7423 static void
7424 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7425 struct symtab_and_line sr_sal,
7426 struct frame_id sr_id,
7427 enum bptype sr_type)
7428 {
7429 /* There should never be more than one step-resume or longjmp-resume
7430 breakpoint per thread, so we should never be setting a new
7431 step_resume_breakpoint when one is already active. */
7432 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7433 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7434
7435 if (debug_infrun)
7436 fprintf_unfiltered (gdb_stdlog,
7437 "infrun: inserting step-resume breakpoint at %s\n",
7438 paddress (gdbarch, sr_sal.pc));
7439
7440 inferior_thread ()->control.step_resume_breakpoint
7441 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7442 }
7443
7444 void
7445 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7446 struct symtab_and_line sr_sal,
7447 struct frame_id sr_id)
7448 {
7449 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7450 sr_sal, sr_id,
7451 bp_step_resume);
7452 }
7453
7454 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7455 This is used to skip a potential signal handler.
7456
7457 This is called with the interrupted function's frame. The signal
7458 handler, when it returns, will resume the interrupted function at
7459 RETURN_FRAME.pc. */
7460
7461 static void
7462 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7463 {
7464 struct symtab_and_line sr_sal;
7465 struct gdbarch *gdbarch;
7466
7467 gdb_assert (return_frame != NULL);
7468 init_sal (&sr_sal); /* initialize to zeros */
7469
7470 gdbarch = get_frame_arch (return_frame);
7471 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7472 sr_sal.section = find_pc_overlay (sr_sal.pc);
7473 sr_sal.pspace = get_frame_program_space (return_frame);
7474
7475 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7476 get_stack_frame_id (return_frame),
7477 bp_hp_step_resume);
7478 }
7479
7480 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7481 is used to skip a function after stepping into it (for "next" or if
7482 the called function has no debugging information).
7483
7484 The current function has almost always been reached by single
7485 stepping a call or return instruction. NEXT_FRAME belongs to the
7486 current function, and the breakpoint will be set at the caller's
7487 resume address.
7488
7489 This is a separate function rather than reusing
7490 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7491 get_prev_frame, which may stop prematurely (see the implementation
7492 of frame_unwind_caller_id for an example). */
7493
7494 static void
7495 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7496 {
7497 struct symtab_and_line sr_sal;
7498 struct gdbarch *gdbarch;
7499
7500 /* We shouldn't have gotten here if we don't know where the call site
7501 is. */
7502 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7503
7504 init_sal (&sr_sal); /* initialize to zeros */
7505
7506 gdbarch = frame_unwind_caller_arch (next_frame);
7507 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7508 frame_unwind_caller_pc (next_frame));
7509 sr_sal.section = find_pc_overlay (sr_sal.pc);
7510 sr_sal.pspace = frame_unwind_program_space (next_frame);
7511
7512 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7513 frame_unwind_caller_id (next_frame));
7514 }
7515
7516 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7517 new breakpoint at the target of a jmp_buf. The handling of
7518 longjmp-resume uses the same mechanisms used for handling
7519 "step-resume" breakpoints. */
7520
7521 static void
7522 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7523 {
7524 /* There should never be more than one longjmp-resume breakpoint per
7525 thread, so we should never be setting a new
7526 longjmp_resume_breakpoint when one is already active. */
7527 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7528
7529 if (debug_infrun)
7530 fprintf_unfiltered (gdb_stdlog,
7531 "infrun: inserting longjmp-resume breakpoint at %s\n",
7532 paddress (gdbarch, pc));
7533
7534 inferior_thread ()->control.exception_resume_breakpoint =
7535 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7536 }
7537
7538 /* Insert an exception resume breakpoint. TP is the thread throwing
7539 the exception. The block B is the block of the unwinder debug hook
7540 function. FRAME is the frame corresponding to the call to this
7541 function. SYM is the symbol of the function argument holding the
7542 target PC of the exception. */
7543
7544 static void
7545 insert_exception_resume_breakpoint (struct thread_info *tp,
7546 const struct block *b,
7547 struct frame_info *frame,
7548 struct symbol *sym)
7549 {
7550 TRY
7551 {
7552 struct block_symbol vsym;
7553 struct value *value;
7554 CORE_ADDR handler;
7555 struct breakpoint *bp;
7556
7557 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7558 value = read_var_value (vsym.symbol, vsym.block, frame);
7559 /* If the value was optimized out, revert to the old behavior. */
7560 if (! value_optimized_out (value))
7561 {
7562 handler = value_as_address (value);
7563
7564 if (debug_infrun)
7565 fprintf_unfiltered (gdb_stdlog,
7566 "infrun: exception resume at %lx\n",
7567 (unsigned long) handler);
7568
7569 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7570 handler, bp_exception_resume);
7571
7572 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7573 frame = NULL;
7574
7575 bp->thread = tp->global_num;
7576 inferior_thread ()->control.exception_resume_breakpoint = bp;
7577 }
7578 }
7579 CATCH (e, RETURN_MASK_ERROR)
7580 {
7581 /* We want to ignore errors here. */
7582 }
7583 END_CATCH
7584 }
7585
7586 /* A helper for check_exception_resume that sets an
7587 exception-breakpoint based on a SystemTap probe. */
7588
7589 static void
7590 insert_exception_resume_from_probe (struct thread_info *tp,
7591 const struct bound_probe *probe,
7592 struct frame_info *frame)
7593 {
7594 struct value *arg_value;
7595 CORE_ADDR handler;
7596 struct breakpoint *bp;
7597
7598 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7599 if (!arg_value)
7600 return;
7601
7602 handler = value_as_address (arg_value);
7603
7604 if (debug_infrun)
7605 fprintf_unfiltered (gdb_stdlog,
7606 "infrun: exception resume at %s\n",
7607 paddress (get_objfile_arch (probe->objfile),
7608 handler));
7609
7610 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7611 handler, bp_exception_resume);
7612 bp->thread = tp->global_num;
7613 inferior_thread ()->control.exception_resume_breakpoint = bp;
7614 }
7615
7616 /* This is called when an exception has been intercepted. Check to
7617 see whether the exception's destination is of interest, and if so,
7618 set an exception resume breakpoint there. */
7619
7620 static void
7621 check_exception_resume (struct execution_control_state *ecs,
7622 struct frame_info *frame)
7623 {
7624 struct bound_probe probe;
7625 struct symbol *func;
7626
7627 /* First see if this exception unwinding breakpoint was set via a
7628 SystemTap probe point. If so, the probe has two arguments: the
7629 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7630 set a breakpoint there. */
7631 probe = find_probe_by_pc (get_frame_pc (frame));
7632 if (probe.probe)
7633 {
7634 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7635 return;
7636 }
7637
7638 func = get_frame_function (frame);
7639 if (!func)
7640 return;
7641
7642 TRY
7643 {
7644 const struct block *b;
7645 struct block_iterator iter;
7646 struct symbol *sym;
7647 int argno = 0;
7648
7649 /* The exception breakpoint is a thread-specific breakpoint on
7650 the unwinder's debug hook, declared as:
7651
7652 void _Unwind_DebugHook (void *cfa, void *handler);
7653
7654 The CFA argument indicates the frame to which control is
7655 about to be transferred. HANDLER is the destination PC.
7656
7657 We ignore the CFA and set a temporary breakpoint at HANDLER.
7658 This is not extremely efficient but it avoids issues in gdb
7659 with computing the DWARF CFA, and it also works even in weird
7660 cases such as throwing an exception from inside a signal
7661 handler. */
7662
7663 b = SYMBOL_BLOCK_VALUE (func);
7664 ALL_BLOCK_SYMBOLS (b, iter, sym)
7665 {
7666 if (!SYMBOL_IS_ARGUMENT (sym))
7667 continue;
7668
7669 if (argno == 0)
7670 ++argno;
7671 else
7672 {
7673 insert_exception_resume_breakpoint (ecs->event_thread,
7674 b, frame, sym);
7675 break;
7676 }
7677 }
7678 }
7679 CATCH (e, RETURN_MASK_ERROR)
7680 {
7681 }
7682 END_CATCH
7683 }
7684
7685 static void
7686 stop_waiting (struct execution_control_state *ecs)
7687 {
7688 if (debug_infrun)
7689 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7690
7691 clear_step_over_info ();
7692
7693 /* Let callers know we don't want to wait for the inferior anymore. */
7694 ecs->wait_some_more = 0;
7695
7696 /* If all-stop, but the target is always in non-stop mode, stop all
7697 threads now that we're presenting the stop to the user. */
7698 if (!non_stop && target_is_non_stop_p ())
7699 stop_all_threads ();
7700 }
7701
7702 /* Like keep_going, but passes the signal to the inferior, even if the
7703 signal is set to nopass. */
7704
7705 static void
7706 keep_going_pass_signal (struct execution_control_state *ecs)
7707 {
7708 /* Make sure normal_stop is called if we get a QUIT handled before
7709 reaching resume. */
7710 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7711
7712 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7713 gdb_assert (!ecs->event_thread->resumed);
7714
7715 /* Save the pc before execution, to compare with pc after stop. */
7716 ecs->event_thread->prev_pc
7717 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7718
7719 if (ecs->event_thread->control.trap_expected)
7720 {
7721 struct thread_info *tp = ecs->event_thread;
7722
7723 if (debug_infrun)
7724 fprintf_unfiltered (gdb_stdlog,
7725 "infrun: %s has trap_expected set, "
7726 "resuming to collect trap\n",
7727 target_pid_to_str (tp->ptid));
7728
7729 /* We haven't yet gotten our trap, and either: intercepted a
7730 non-signal event (e.g., a fork); or took a signal which we
7731 are supposed to pass through to the inferior. Simply
7732 continue. */
7733 discard_cleanups (old_cleanups);
7734 resume (ecs->event_thread->suspend.stop_signal);
7735 }
7736 else if (step_over_info_valid_p ())
7737 {
7738 /* Another thread is stepping over a breakpoint in-line. If
7739 this thread needs a step-over too, queue the request. In
7740 either case, this resume must be deferred for later. */
7741 struct thread_info *tp = ecs->event_thread;
7742
7743 if (ecs->hit_singlestep_breakpoint
7744 || thread_still_needs_step_over (tp))
7745 {
7746 if (debug_infrun)
7747 fprintf_unfiltered (gdb_stdlog,
7748 "infrun: step-over already in progress: "
7749 "step-over for %s deferred\n",
7750 target_pid_to_str (tp->ptid));
7751 thread_step_over_chain_enqueue (tp);
7752 }
7753 else
7754 {
7755 if (debug_infrun)
7756 fprintf_unfiltered (gdb_stdlog,
7757 "infrun: step-over in progress: "
7758 "resume of %s deferred\n",
7759 target_pid_to_str (tp->ptid));
7760 }
7761
7762 discard_cleanups (old_cleanups);
7763 }
7764 else
7765 {
7766 struct regcache *regcache = get_current_regcache ();
7767 int remove_bp;
7768 int remove_wps;
7769 step_over_what step_what;
7770
7771 /* Either the trap was not expected, but we are continuing
7772 anyway (if we got a signal, the user asked it be passed to
7773 the child)
7774 -- or --
7775 We got our expected trap, but decided we should resume from
7776 it.
7777
7778 We're going to run this baby now!
7779
7780 Note that insert_breakpoints won't try to re-insert
7781 already inserted breakpoints. Therefore, we don't
7782 care if breakpoints were already inserted, or not. */
7783
7784 /* If we need to step over a breakpoint, and we're not using
7785 displaced stepping to do so, insert all breakpoints
7786 (watchpoints, etc.) but the one we're stepping over, step one
7787 instruction, and then re-insert the breakpoint when that step
7788 is finished. */
7789
7790 step_what = thread_still_needs_step_over (ecs->event_thread);
7791
7792 remove_bp = (ecs->hit_singlestep_breakpoint
7793 || (step_what & STEP_OVER_BREAKPOINT));
7794 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7795
7796 /* We can't use displaced stepping if we need to step past a
7797 watchpoint. The instruction copied to the scratch pad would
7798 still trigger the watchpoint. */
7799 if (remove_bp
7800 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7801 {
7802 set_step_over_info (get_regcache_aspace (regcache),
7803 regcache_read_pc (regcache), remove_wps,
7804 ecs->event_thread->global_num);
7805 }
7806 else if (remove_wps)
7807 set_step_over_info (NULL, 0, remove_wps, -1);
7808
7809 /* If we now need to do an in-line step-over, we need to stop
7810 all other threads. Note this must be done before
7811 insert_breakpoints below, because that removes the breakpoint
7812 we're about to step over, otherwise other threads could miss
7813 it. */
7814 if (step_over_info_valid_p () && target_is_non_stop_p ())
7815 stop_all_threads ();
7816
7817 /* Stop stepping if inserting breakpoints fails. */
7818 TRY
7819 {
7820 insert_breakpoints ();
7821 }
7822 CATCH (e, RETURN_MASK_ERROR)
7823 {
7824 exception_print (gdb_stderr, e);
7825 stop_waiting (ecs);
7826 discard_cleanups (old_cleanups);
7827 return;
7828 }
7829 END_CATCH
7830
7831 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7832
7833 discard_cleanups (old_cleanups);
7834 resume (ecs->event_thread->suspend.stop_signal);
7835 }
7836
7837 prepare_to_wait (ecs);
7838 }
7839
7840 /* Called when we should continue running the inferior, because the
7841 current event doesn't cause a user visible stop. This does the
7842 resuming part; waiting for the next event is done elsewhere. */
7843
7844 static void
7845 keep_going (struct execution_control_state *ecs)
7846 {
7847 if (ecs->event_thread->control.trap_expected
7848 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7849 ecs->event_thread->control.trap_expected = 0;
7850
7851 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7852 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7853 keep_going_pass_signal (ecs);
7854 }
7855
7856 /* This function normally comes after a resume, before
7857 handle_inferior_event exits. It takes care of any last bits of
7858 housekeeping, and sets the all-important wait_some_more flag. */
7859
7860 static void
7861 prepare_to_wait (struct execution_control_state *ecs)
7862 {
7863 if (debug_infrun)
7864 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7865
7866 ecs->wait_some_more = 1;
7867
7868 if (!target_is_async_p ())
7869 mark_infrun_async_event_handler ();
7870 }
7871
7872 /* We are done with the step range of a step/next/si/ni command.
7873 Called once for each n of a "step n" operation. */
7874
7875 static void
7876 end_stepping_range (struct execution_control_state *ecs)
7877 {
7878 ecs->event_thread->control.stop_step = 1;
7879 stop_waiting (ecs);
7880 }
7881
7882 /* Several print_*_reason functions to print why the inferior has stopped.
7883 We always print something when the inferior exits, or receives a signal.
7884 The rest of the cases are dealt with later on in normal_stop and
7885 print_it_typical. Ideally there should be a call to one of these
7886 print_*_reason functions functions from handle_inferior_event each time
7887 stop_waiting is called.
7888
7889 Note that we don't call these directly, instead we delegate that to
7890 the interpreters, through observers. Interpreters then call these
7891 with whatever uiout is right. */
7892
7893 void
7894 print_end_stepping_range_reason (struct ui_out *uiout)
7895 {
7896 /* For CLI-like interpreters, print nothing. */
7897
7898 if (ui_out_is_mi_like_p (uiout))
7899 {
7900 ui_out_field_string (uiout, "reason",
7901 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7902 }
7903 }
7904
7905 void
7906 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7907 {
7908 annotate_signalled ();
7909 if (ui_out_is_mi_like_p (uiout))
7910 ui_out_field_string
7911 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7912 ui_out_text (uiout, "\nProgram terminated with signal ");
7913 annotate_signal_name ();
7914 ui_out_field_string (uiout, "signal-name",
7915 gdb_signal_to_name (siggnal));
7916 annotate_signal_name_end ();
7917 ui_out_text (uiout, ", ");
7918 annotate_signal_string ();
7919 ui_out_field_string (uiout, "signal-meaning",
7920 gdb_signal_to_string (siggnal));
7921 annotate_signal_string_end ();
7922 ui_out_text (uiout, ".\n");
7923 ui_out_text (uiout, "The program no longer exists.\n");
7924 }
7925
7926 void
7927 print_exited_reason (struct ui_out *uiout, int exitstatus)
7928 {
7929 struct inferior *inf = current_inferior ();
7930 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7931
7932 annotate_exited (exitstatus);
7933 if (exitstatus)
7934 {
7935 if (ui_out_is_mi_like_p (uiout))
7936 ui_out_field_string (uiout, "reason",
7937 async_reason_lookup (EXEC_ASYNC_EXITED));
7938 ui_out_text (uiout, "[Inferior ");
7939 ui_out_text (uiout, plongest (inf->num));
7940 ui_out_text (uiout, " (");
7941 ui_out_text (uiout, pidstr);
7942 ui_out_text (uiout, ") exited with code ");
7943 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7944 ui_out_text (uiout, "]\n");
7945 }
7946 else
7947 {
7948 if (ui_out_is_mi_like_p (uiout))
7949 ui_out_field_string
7950 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7951 ui_out_text (uiout, "[Inferior ");
7952 ui_out_text (uiout, plongest (inf->num));
7953 ui_out_text (uiout, " (");
7954 ui_out_text (uiout, pidstr);
7955 ui_out_text (uiout, ") exited normally]\n");
7956 }
7957 }
7958
7959 /* Some targets/architectures can do extra processing/display of
7960 segmentation faults. E.g., Intel MPX boundary faults.
7961 Call the architecture dependent function to handle the fault. */
7962
7963 static void
7964 handle_segmentation_fault (struct ui_out *uiout)
7965 {
7966 struct regcache *regcache = get_current_regcache ();
7967 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7968
7969 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7970 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7971 }
7972
7973 void
7974 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7975 {
7976 struct thread_info *thr = inferior_thread ();
7977
7978 annotate_signal ();
7979
7980 if (ui_out_is_mi_like_p (uiout))
7981 ;
7982 else if (show_thread_that_caused_stop ())
7983 {
7984 const char *name;
7985
7986 ui_out_text (uiout, "\nThread ");
7987 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
7988
7989 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7990 if (name != NULL)
7991 {
7992 ui_out_text (uiout, " \"");
7993 ui_out_field_fmt (uiout, "name", "%s", name);
7994 ui_out_text (uiout, "\"");
7995 }
7996 }
7997 else
7998 ui_out_text (uiout, "\nProgram");
7999
8000 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
8001 ui_out_text (uiout, " stopped");
8002 else
8003 {
8004 ui_out_text (uiout, " received signal ");
8005 annotate_signal_name ();
8006 if (ui_out_is_mi_like_p (uiout))
8007 ui_out_field_string
8008 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8009 ui_out_field_string (uiout, "signal-name",
8010 gdb_signal_to_name (siggnal));
8011 annotate_signal_name_end ();
8012 ui_out_text (uiout, ", ");
8013 annotate_signal_string ();
8014 ui_out_field_string (uiout, "signal-meaning",
8015 gdb_signal_to_string (siggnal));
8016
8017 if (siggnal == GDB_SIGNAL_SEGV)
8018 handle_segmentation_fault (uiout);
8019
8020 annotate_signal_string_end ();
8021 }
8022 ui_out_text (uiout, ".\n");
8023 }
8024
8025 void
8026 print_no_history_reason (struct ui_out *uiout)
8027 {
8028 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
8029 }
8030
8031 /* Print current location without a level number, if we have changed
8032 functions or hit a breakpoint. Print source line if we have one.
8033 bpstat_print contains the logic deciding in detail what to print,
8034 based on the event(s) that just occurred. */
8035
8036 static void
8037 print_stop_location (struct target_waitstatus *ws)
8038 {
8039 int bpstat_ret;
8040 enum print_what source_flag;
8041 int do_frame_printing = 1;
8042 struct thread_info *tp = inferior_thread ();
8043
8044 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8045 switch (bpstat_ret)
8046 {
8047 case PRINT_UNKNOWN:
8048 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8049 should) carry around the function and does (or should) use
8050 that when doing a frame comparison. */
8051 if (tp->control.stop_step
8052 && frame_id_eq (tp->control.step_frame_id,
8053 get_frame_id (get_current_frame ()))
8054 && tp->control.step_start_function == find_pc_function (stop_pc))
8055 {
8056 /* Finished step, just print source line. */
8057 source_flag = SRC_LINE;
8058 }
8059 else
8060 {
8061 /* Print location and source line. */
8062 source_flag = SRC_AND_LOC;
8063 }
8064 break;
8065 case PRINT_SRC_AND_LOC:
8066 /* Print location and source line. */
8067 source_flag = SRC_AND_LOC;
8068 break;
8069 case PRINT_SRC_ONLY:
8070 source_flag = SRC_LINE;
8071 break;
8072 case PRINT_NOTHING:
8073 /* Something bogus. */
8074 source_flag = SRC_LINE;
8075 do_frame_printing = 0;
8076 break;
8077 default:
8078 internal_error (__FILE__, __LINE__, _("Unknown value."));
8079 }
8080
8081 /* The behavior of this routine with respect to the source
8082 flag is:
8083 SRC_LINE: Print only source line
8084 LOCATION: Print only location
8085 SRC_AND_LOC: Print location and source line. */
8086 if (do_frame_printing)
8087 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8088 }
8089
8090 /* See infrun.h. */
8091
8092 void
8093 print_stop_event (struct ui_out *uiout)
8094 {
8095 struct target_waitstatus last;
8096 ptid_t last_ptid;
8097 struct thread_info *tp;
8098
8099 get_last_target_status (&last_ptid, &last);
8100
8101 {
8102 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8103
8104 print_stop_location (&last);
8105
8106 /* Display the auto-display expressions. */
8107 do_displays ();
8108 }
8109
8110 tp = inferior_thread ();
8111 if (tp->thread_fsm != NULL
8112 && thread_fsm_finished_p (tp->thread_fsm))
8113 {
8114 struct return_value_info *rv;
8115
8116 rv = thread_fsm_return_value (tp->thread_fsm);
8117 if (rv != NULL)
8118 print_return_value (uiout, rv);
8119 }
8120 }
8121
8122 /* See infrun.h. */
8123
8124 void
8125 maybe_remove_breakpoints (void)
8126 {
8127 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8128 {
8129 if (remove_breakpoints ())
8130 {
8131 target_terminal_ours_for_output ();
8132 printf_filtered (_("Cannot remove breakpoints because "
8133 "program is no longer writable.\nFurther "
8134 "execution is probably impossible.\n"));
8135 }
8136 }
8137 }
8138
8139 /* The execution context that just caused a normal stop. */
8140
8141 struct stop_context
8142 {
8143 /* The stop ID. */
8144 ULONGEST stop_id;
8145
8146 /* The event PTID. */
8147
8148 ptid_t ptid;
8149
8150 /* If stopp for a thread event, this is the thread that caused the
8151 stop. */
8152 struct thread_info *thread;
8153
8154 /* The inferior that caused the stop. */
8155 int inf_num;
8156 };
8157
8158 /* Returns a new stop context. If stopped for a thread event, this
8159 takes a strong reference to the thread. */
8160
8161 static struct stop_context *
8162 save_stop_context (void)
8163 {
8164 struct stop_context *sc = XNEW (struct stop_context);
8165
8166 sc->stop_id = get_stop_id ();
8167 sc->ptid = inferior_ptid;
8168 sc->inf_num = current_inferior ()->num;
8169
8170 if (!ptid_equal (inferior_ptid, null_ptid))
8171 {
8172 /* Take a strong reference so that the thread can't be deleted
8173 yet. */
8174 sc->thread = inferior_thread ();
8175 sc->thread->refcount++;
8176 }
8177 else
8178 sc->thread = NULL;
8179
8180 return sc;
8181 }
8182
8183 /* Release a stop context previously created with save_stop_context.
8184 Releases the strong reference to the thread as well. */
8185
8186 static void
8187 release_stop_context_cleanup (void *arg)
8188 {
8189 struct stop_context *sc = (struct stop_context *) arg;
8190
8191 if (sc->thread != NULL)
8192 sc->thread->refcount--;
8193 xfree (sc);
8194 }
8195
8196 /* Return true if the current context no longer matches the saved stop
8197 context. */
8198
8199 static int
8200 stop_context_changed (struct stop_context *prev)
8201 {
8202 if (!ptid_equal (prev->ptid, inferior_ptid))
8203 return 1;
8204 if (prev->inf_num != current_inferior ()->num)
8205 return 1;
8206 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8207 return 1;
8208 if (get_stop_id () != prev->stop_id)
8209 return 1;
8210 return 0;
8211 }
8212
8213 /* See infrun.h. */
8214
8215 int
8216 normal_stop (void)
8217 {
8218 struct target_waitstatus last;
8219 ptid_t last_ptid;
8220 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8221 ptid_t pid_ptid;
8222
8223 get_last_target_status (&last_ptid, &last);
8224
8225 new_stop_id ();
8226
8227 /* If an exception is thrown from this point on, make sure to
8228 propagate GDB's knowledge of the executing state to the
8229 frontend/user running state. A QUIT is an easy exception to see
8230 here, so do this before any filtered output. */
8231 if (!non_stop)
8232 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8233 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8234 || last.kind == TARGET_WAITKIND_EXITED)
8235 {
8236 /* On some targets, we may still have live threads in the
8237 inferior when we get a process exit event. E.g., for
8238 "checkpoint", when the current checkpoint/fork exits,
8239 linux-fork.c automatically switches to another fork from
8240 within target_mourn_inferior. */
8241 if (!ptid_equal (inferior_ptid, null_ptid))
8242 {
8243 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8244 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8245 }
8246 }
8247 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8248 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8249
8250 /* As we're presenting a stop, and potentially removing breakpoints,
8251 update the thread list so we can tell whether there are threads
8252 running on the target. With target remote, for example, we can
8253 only learn about new threads when we explicitly update the thread
8254 list. Do this before notifying the interpreters about signal
8255 stops, end of stepping ranges, etc., so that the "new thread"
8256 output is emitted before e.g., "Program received signal FOO",
8257 instead of after. */
8258 update_thread_list ();
8259
8260 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8261 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8262
8263 /* As with the notification of thread events, we want to delay
8264 notifying the user that we've switched thread context until
8265 the inferior actually stops.
8266
8267 There's no point in saying anything if the inferior has exited.
8268 Note that SIGNALLED here means "exited with a signal", not
8269 "received a signal".
8270
8271 Also skip saying anything in non-stop mode. In that mode, as we
8272 don't want GDB to switch threads behind the user's back, to avoid
8273 races where the user is typing a command to apply to thread x,
8274 but GDB switches to thread y before the user finishes entering
8275 the command, fetch_inferior_event installs a cleanup to restore
8276 the current thread back to the thread the user had selected right
8277 after this event is handled, so we're not really switching, only
8278 informing of a stop. */
8279 if (!non_stop
8280 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8281 && target_has_execution
8282 && last.kind != TARGET_WAITKIND_SIGNALLED
8283 && last.kind != TARGET_WAITKIND_EXITED
8284 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8285 {
8286 SWITCH_THRU_ALL_UIS ()
8287 {
8288 target_terminal_ours_for_output ();
8289 printf_filtered (_("[Switching to %s]\n"),
8290 target_pid_to_str (inferior_ptid));
8291 annotate_thread_changed ();
8292 }
8293 previous_inferior_ptid = inferior_ptid;
8294 }
8295
8296 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8297 {
8298 SWITCH_THRU_ALL_UIS ()
8299 if (current_ui->prompt_state == PROMPT_BLOCKED)
8300 {
8301 target_terminal_ours_for_output ();
8302 printf_filtered (_("No unwaited-for children left.\n"));
8303 }
8304 }
8305
8306 /* Note: this depends on the update_thread_list call above. */
8307 maybe_remove_breakpoints ();
8308
8309 /* If an auto-display called a function and that got a signal,
8310 delete that auto-display to avoid an infinite recursion. */
8311
8312 if (stopped_by_random_signal)
8313 disable_current_display ();
8314
8315 SWITCH_THRU_ALL_UIS ()
8316 {
8317 async_enable_stdin ();
8318 }
8319
8320 /* Let the user/frontend see the threads as stopped. */
8321 do_cleanups (old_chain);
8322
8323 /* Select innermost stack frame - i.e., current frame is frame 0,
8324 and current location is based on that. Handle the case where the
8325 dummy call is returning after being stopped. E.g. the dummy call
8326 previously hit a breakpoint. (If the dummy call returns
8327 normally, we won't reach here.) Do this before the stop hook is
8328 run, so that it doesn't get to see the temporary dummy frame,
8329 which is not where we'll present the stop. */
8330 if (has_stack_frames ())
8331 {
8332 if (stop_stack_dummy == STOP_STACK_DUMMY)
8333 {
8334 /* Pop the empty frame that contains the stack dummy. This
8335 also restores inferior state prior to the call (struct
8336 infcall_suspend_state). */
8337 struct frame_info *frame = get_current_frame ();
8338
8339 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8340 frame_pop (frame);
8341 /* frame_pop calls reinit_frame_cache as the last thing it
8342 does which means there's now no selected frame. */
8343 }
8344
8345 select_frame (get_current_frame ());
8346
8347 /* Set the current source location. */
8348 set_current_sal_from_frame (get_current_frame ());
8349 }
8350
8351 /* Look up the hook_stop and run it (CLI internally handles problem
8352 of stop_command's pre-hook not existing). */
8353 if (stop_command != NULL)
8354 {
8355 struct stop_context *saved_context = save_stop_context ();
8356 struct cleanup *old_chain
8357 = make_cleanup (release_stop_context_cleanup, saved_context);
8358
8359 catch_errors (hook_stop_stub, stop_command,
8360 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8361
8362 /* If the stop hook resumes the target, then there's no point in
8363 trying to notify about the previous stop; its context is
8364 gone. Likewise if the command switches thread or inferior --
8365 the observers would print a stop for the wrong
8366 thread/inferior. */
8367 if (stop_context_changed (saved_context))
8368 {
8369 do_cleanups (old_chain);
8370 return 1;
8371 }
8372 do_cleanups (old_chain);
8373 }
8374
8375 /* Notify observers about the stop. This is where the interpreters
8376 print the stop event. */
8377 if (!ptid_equal (inferior_ptid, null_ptid))
8378 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8379 stop_print_frame);
8380 else
8381 observer_notify_normal_stop (NULL, stop_print_frame);
8382
8383 annotate_stopped ();
8384
8385 if (target_has_execution)
8386 {
8387 if (last.kind != TARGET_WAITKIND_SIGNALLED
8388 && last.kind != TARGET_WAITKIND_EXITED)
8389 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8390 Delete any breakpoint that is to be deleted at the next stop. */
8391 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8392 }
8393
8394 /* Try to get rid of automatically added inferiors that are no
8395 longer needed. Keeping those around slows down things linearly.
8396 Note that this never removes the current inferior. */
8397 prune_inferiors ();
8398
8399 return 0;
8400 }
8401
8402 static int
8403 hook_stop_stub (void *cmd)
8404 {
8405 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8406 return (0);
8407 }
8408 \f
8409 int
8410 signal_stop_state (int signo)
8411 {
8412 return signal_stop[signo];
8413 }
8414
8415 int
8416 signal_print_state (int signo)
8417 {
8418 return signal_print[signo];
8419 }
8420
8421 int
8422 signal_pass_state (int signo)
8423 {
8424 return signal_program[signo];
8425 }
8426
8427 static void
8428 signal_cache_update (int signo)
8429 {
8430 if (signo == -1)
8431 {
8432 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8433 signal_cache_update (signo);
8434
8435 return;
8436 }
8437
8438 signal_pass[signo] = (signal_stop[signo] == 0
8439 && signal_print[signo] == 0
8440 && signal_program[signo] == 1
8441 && signal_catch[signo] == 0);
8442 }
8443
8444 int
8445 signal_stop_update (int signo, int state)
8446 {
8447 int ret = signal_stop[signo];
8448
8449 signal_stop[signo] = state;
8450 signal_cache_update (signo);
8451 return ret;
8452 }
8453
8454 int
8455 signal_print_update (int signo, int state)
8456 {
8457 int ret = signal_print[signo];
8458
8459 signal_print[signo] = state;
8460 signal_cache_update (signo);
8461 return ret;
8462 }
8463
8464 int
8465 signal_pass_update (int signo, int state)
8466 {
8467 int ret = signal_program[signo];
8468
8469 signal_program[signo] = state;
8470 signal_cache_update (signo);
8471 return ret;
8472 }
8473
8474 /* Update the global 'signal_catch' from INFO and notify the
8475 target. */
8476
8477 void
8478 signal_catch_update (const unsigned int *info)
8479 {
8480 int i;
8481
8482 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8483 signal_catch[i] = info[i] > 0;
8484 signal_cache_update (-1);
8485 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8486 }
8487
8488 static void
8489 sig_print_header (void)
8490 {
8491 printf_filtered (_("Signal Stop\tPrint\tPass "
8492 "to program\tDescription\n"));
8493 }
8494
8495 static void
8496 sig_print_info (enum gdb_signal oursig)
8497 {
8498 const char *name = gdb_signal_to_name (oursig);
8499 int name_padding = 13 - strlen (name);
8500
8501 if (name_padding <= 0)
8502 name_padding = 0;
8503
8504 printf_filtered ("%s", name);
8505 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8506 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8507 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8508 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8509 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8510 }
8511
8512 /* Specify how various signals in the inferior should be handled. */
8513
8514 static void
8515 handle_command (char *args, int from_tty)
8516 {
8517 char **argv;
8518 int digits, wordlen;
8519 int sigfirst, signum, siglast;
8520 enum gdb_signal oursig;
8521 int allsigs;
8522 int nsigs;
8523 unsigned char *sigs;
8524 struct cleanup *old_chain;
8525
8526 if (args == NULL)
8527 {
8528 error_no_arg (_("signal to handle"));
8529 }
8530
8531 /* Allocate and zero an array of flags for which signals to handle. */
8532
8533 nsigs = (int) GDB_SIGNAL_LAST;
8534 sigs = (unsigned char *) alloca (nsigs);
8535 memset (sigs, 0, nsigs);
8536
8537 /* Break the command line up into args. */
8538
8539 argv = gdb_buildargv (args);
8540 old_chain = make_cleanup_freeargv (argv);
8541
8542 /* Walk through the args, looking for signal oursigs, signal names, and
8543 actions. Signal numbers and signal names may be interspersed with
8544 actions, with the actions being performed for all signals cumulatively
8545 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8546
8547 while (*argv != NULL)
8548 {
8549 wordlen = strlen (*argv);
8550 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8551 {;
8552 }
8553 allsigs = 0;
8554 sigfirst = siglast = -1;
8555
8556 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8557 {
8558 /* Apply action to all signals except those used by the
8559 debugger. Silently skip those. */
8560 allsigs = 1;
8561 sigfirst = 0;
8562 siglast = nsigs - 1;
8563 }
8564 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8565 {
8566 SET_SIGS (nsigs, sigs, signal_stop);
8567 SET_SIGS (nsigs, sigs, signal_print);
8568 }
8569 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8570 {
8571 UNSET_SIGS (nsigs, sigs, signal_program);
8572 }
8573 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8574 {
8575 SET_SIGS (nsigs, sigs, signal_print);
8576 }
8577 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8578 {
8579 SET_SIGS (nsigs, sigs, signal_program);
8580 }
8581 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8582 {
8583 UNSET_SIGS (nsigs, sigs, signal_stop);
8584 }
8585 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8586 {
8587 SET_SIGS (nsigs, sigs, signal_program);
8588 }
8589 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8590 {
8591 UNSET_SIGS (nsigs, sigs, signal_print);
8592 UNSET_SIGS (nsigs, sigs, signal_stop);
8593 }
8594 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8595 {
8596 UNSET_SIGS (nsigs, sigs, signal_program);
8597 }
8598 else if (digits > 0)
8599 {
8600 /* It is numeric. The numeric signal refers to our own
8601 internal signal numbering from target.h, not to host/target
8602 signal number. This is a feature; users really should be
8603 using symbolic names anyway, and the common ones like
8604 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8605
8606 sigfirst = siglast = (int)
8607 gdb_signal_from_command (atoi (*argv));
8608 if ((*argv)[digits] == '-')
8609 {
8610 siglast = (int)
8611 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8612 }
8613 if (sigfirst > siglast)
8614 {
8615 /* Bet he didn't figure we'd think of this case... */
8616 signum = sigfirst;
8617 sigfirst = siglast;
8618 siglast = signum;
8619 }
8620 }
8621 else
8622 {
8623 oursig = gdb_signal_from_name (*argv);
8624 if (oursig != GDB_SIGNAL_UNKNOWN)
8625 {
8626 sigfirst = siglast = (int) oursig;
8627 }
8628 else
8629 {
8630 /* Not a number and not a recognized flag word => complain. */
8631 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8632 }
8633 }
8634
8635 /* If any signal numbers or symbol names were found, set flags for
8636 which signals to apply actions to. */
8637
8638 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8639 {
8640 switch ((enum gdb_signal) signum)
8641 {
8642 case GDB_SIGNAL_TRAP:
8643 case GDB_SIGNAL_INT:
8644 if (!allsigs && !sigs[signum])
8645 {
8646 if (query (_("%s is used by the debugger.\n\
8647 Are you sure you want to change it? "),
8648 gdb_signal_to_name ((enum gdb_signal) signum)))
8649 {
8650 sigs[signum] = 1;
8651 }
8652 else
8653 {
8654 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8655 gdb_flush (gdb_stdout);
8656 }
8657 }
8658 break;
8659 case GDB_SIGNAL_0:
8660 case GDB_SIGNAL_DEFAULT:
8661 case GDB_SIGNAL_UNKNOWN:
8662 /* Make sure that "all" doesn't print these. */
8663 break;
8664 default:
8665 sigs[signum] = 1;
8666 break;
8667 }
8668 }
8669
8670 argv++;
8671 }
8672
8673 for (signum = 0; signum < nsigs; signum++)
8674 if (sigs[signum])
8675 {
8676 signal_cache_update (-1);
8677 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8678 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8679
8680 if (from_tty)
8681 {
8682 /* Show the results. */
8683 sig_print_header ();
8684 for (; signum < nsigs; signum++)
8685 if (sigs[signum])
8686 sig_print_info ((enum gdb_signal) signum);
8687 }
8688
8689 break;
8690 }
8691
8692 do_cleanups (old_chain);
8693 }
8694
8695 /* Complete the "handle" command. */
8696
8697 static VEC (char_ptr) *
8698 handle_completer (struct cmd_list_element *ignore,
8699 const char *text, const char *word)
8700 {
8701 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8702 static const char * const keywords[] =
8703 {
8704 "all",
8705 "stop",
8706 "ignore",
8707 "print",
8708 "pass",
8709 "nostop",
8710 "noignore",
8711 "noprint",
8712 "nopass",
8713 NULL,
8714 };
8715
8716 vec_signals = signal_completer (ignore, text, word);
8717 vec_keywords = complete_on_enum (keywords, word, word);
8718
8719 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8720 VEC_free (char_ptr, vec_signals);
8721 VEC_free (char_ptr, vec_keywords);
8722 return return_val;
8723 }
8724
8725 enum gdb_signal
8726 gdb_signal_from_command (int num)
8727 {
8728 if (num >= 1 && num <= 15)
8729 return (enum gdb_signal) num;
8730 error (_("Only signals 1-15 are valid as numeric signals.\n\
8731 Use \"info signals\" for a list of symbolic signals."));
8732 }
8733
8734 /* Print current contents of the tables set by the handle command.
8735 It is possible we should just be printing signals actually used
8736 by the current target (but for things to work right when switching
8737 targets, all signals should be in the signal tables). */
8738
8739 static void
8740 signals_info (char *signum_exp, int from_tty)
8741 {
8742 enum gdb_signal oursig;
8743
8744 sig_print_header ();
8745
8746 if (signum_exp)
8747 {
8748 /* First see if this is a symbol name. */
8749 oursig = gdb_signal_from_name (signum_exp);
8750 if (oursig == GDB_SIGNAL_UNKNOWN)
8751 {
8752 /* No, try numeric. */
8753 oursig =
8754 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8755 }
8756 sig_print_info (oursig);
8757 return;
8758 }
8759
8760 printf_filtered ("\n");
8761 /* These ugly casts brought to you by the native VAX compiler. */
8762 for (oursig = GDB_SIGNAL_FIRST;
8763 (int) oursig < (int) GDB_SIGNAL_LAST;
8764 oursig = (enum gdb_signal) ((int) oursig + 1))
8765 {
8766 QUIT;
8767
8768 if (oursig != GDB_SIGNAL_UNKNOWN
8769 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8770 sig_print_info (oursig);
8771 }
8772
8773 printf_filtered (_("\nUse the \"handle\" command "
8774 "to change these tables.\n"));
8775 }
8776
8777 /* The $_siginfo convenience variable is a bit special. We don't know
8778 for sure the type of the value until we actually have a chance to
8779 fetch the data. The type can change depending on gdbarch, so it is
8780 also dependent on which thread you have selected.
8781
8782 1. making $_siginfo be an internalvar that creates a new value on
8783 access.
8784
8785 2. making the value of $_siginfo be an lval_computed value. */
8786
8787 /* This function implements the lval_computed support for reading a
8788 $_siginfo value. */
8789
8790 static void
8791 siginfo_value_read (struct value *v)
8792 {
8793 LONGEST transferred;
8794
8795 /* If we can access registers, so can we access $_siginfo. Likewise
8796 vice versa. */
8797 validate_registers_access ();
8798
8799 transferred =
8800 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8801 NULL,
8802 value_contents_all_raw (v),
8803 value_offset (v),
8804 TYPE_LENGTH (value_type (v)));
8805
8806 if (transferred != TYPE_LENGTH (value_type (v)))
8807 error (_("Unable to read siginfo"));
8808 }
8809
8810 /* This function implements the lval_computed support for writing a
8811 $_siginfo value. */
8812
8813 static void
8814 siginfo_value_write (struct value *v, struct value *fromval)
8815 {
8816 LONGEST transferred;
8817
8818 /* If we can access registers, so can we access $_siginfo. Likewise
8819 vice versa. */
8820 validate_registers_access ();
8821
8822 transferred = target_write (&current_target,
8823 TARGET_OBJECT_SIGNAL_INFO,
8824 NULL,
8825 value_contents_all_raw (fromval),
8826 value_offset (v),
8827 TYPE_LENGTH (value_type (fromval)));
8828
8829 if (transferred != TYPE_LENGTH (value_type (fromval)))
8830 error (_("Unable to write siginfo"));
8831 }
8832
8833 static const struct lval_funcs siginfo_value_funcs =
8834 {
8835 siginfo_value_read,
8836 siginfo_value_write
8837 };
8838
8839 /* Return a new value with the correct type for the siginfo object of
8840 the current thread using architecture GDBARCH. Return a void value
8841 if there's no object available. */
8842
8843 static struct value *
8844 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8845 void *ignore)
8846 {
8847 if (target_has_stack
8848 && !ptid_equal (inferior_ptid, null_ptid)
8849 && gdbarch_get_siginfo_type_p (gdbarch))
8850 {
8851 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8852
8853 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8854 }
8855
8856 return allocate_value (builtin_type (gdbarch)->builtin_void);
8857 }
8858
8859 \f
8860 /* infcall_suspend_state contains state about the program itself like its
8861 registers and any signal it received when it last stopped.
8862 This state must be restored regardless of how the inferior function call
8863 ends (either successfully, or after it hits a breakpoint or signal)
8864 if the program is to properly continue where it left off. */
8865
8866 struct infcall_suspend_state
8867 {
8868 struct thread_suspend_state thread_suspend;
8869
8870 /* Other fields: */
8871 CORE_ADDR stop_pc;
8872 struct regcache *registers;
8873
8874 /* Format of SIGINFO_DATA or NULL if it is not present. */
8875 struct gdbarch *siginfo_gdbarch;
8876
8877 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8878 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8879 content would be invalid. */
8880 gdb_byte *siginfo_data;
8881 };
8882
8883 struct infcall_suspend_state *
8884 save_infcall_suspend_state (void)
8885 {
8886 struct infcall_suspend_state *inf_state;
8887 struct thread_info *tp = inferior_thread ();
8888 struct regcache *regcache = get_current_regcache ();
8889 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8890 gdb_byte *siginfo_data = NULL;
8891
8892 if (gdbarch_get_siginfo_type_p (gdbarch))
8893 {
8894 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8895 size_t len = TYPE_LENGTH (type);
8896 struct cleanup *back_to;
8897
8898 siginfo_data = (gdb_byte *) xmalloc (len);
8899 back_to = make_cleanup (xfree, siginfo_data);
8900
8901 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8902 siginfo_data, 0, len) == len)
8903 discard_cleanups (back_to);
8904 else
8905 {
8906 /* Errors ignored. */
8907 do_cleanups (back_to);
8908 siginfo_data = NULL;
8909 }
8910 }
8911
8912 inf_state = XCNEW (struct infcall_suspend_state);
8913
8914 if (siginfo_data)
8915 {
8916 inf_state->siginfo_gdbarch = gdbarch;
8917 inf_state->siginfo_data = siginfo_data;
8918 }
8919
8920 inf_state->thread_suspend = tp->suspend;
8921
8922 /* run_inferior_call will not use the signal due to its `proceed' call with
8923 GDB_SIGNAL_0 anyway. */
8924 tp->suspend.stop_signal = GDB_SIGNAL_0;
8925
8926 inf_state->stop_pc = stop_pc;
8927
8928 inf_state->registers = regcache_dup (regcache);
8929
8930 return inf_state;
8931 }
8932
8933 /* Restore inferior session state to INF_STATE. */
8934
8935 void
8936 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8937 {
8938 struct thread_info *tp = inferior_thread ();
8939 struct regcache *regcache = get_current_regcache ();
8940 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8941
8942 tp->suspend = inf_state->thread_suspend;
8943
8944 stop_pc = inf_state->stop_pc;
8945
8946 if (inf_state->siginfo_gdbarch == gdbarch)
8947 {
8948 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8949
8950 /* Errors ignored. */
8951 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8952 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8953 }
8954
8955 /* The inferior can be gone if the user types "print exit(0)"
8956 (and perhaps other times). */
8957 if (target_has_execution)
8958 /* NB: The register write goes through to the target. */
8959 regcache_cpy (regcache, inf_state->registers);
8960
8961 discard_infcall_suspend_state (inf_state);
8962 }
8963
8964 static void
8965 do_restore_infcall_suspend_state_cleanup (void *state)
8966 {
8967 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8968 }
8969
8970 struct cleanup *
8971 make_cleanup_restore_infcall_suspend_state
8972 (struct infcall_suspend_state *inf_state)
8973 {
8974 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8975 }
8976
8977 void
8978 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8979 {
8980 regcache_xfree (inf_state->registers);
8981 xfree (inf_state->siginfo_data);
8982 xfree (inf_state);
8983 }
8984
8985 struct regcache *
8986 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8987 {
8988 return inf_state->registers;
8989 }
8990
8991 /* infcall_control_state contains state regarding gdb's control of the
8992 inferior itself like stepping control. It also contains session state like
8993 the user's currently selected frame. */
8994
8995 struct infcall_control_state
8996 {
8997 struct thread_control_state thread_control;
8998 struct inferior_control_state inferior_control;
8999
9000 /* Other fields: */
9001 enum stop_stack_kind stop_stack_dummy;
9002 int stopped_by_random_signal;
9003
9004 /* ID if the selected frame when the inferior function call was made. */
9005 struct frame_id selected_frame_id;
9006 };
9007
9008 /* Save all of the information associated with the inferior<==>gdb
9009 connection. */
9010
9011 struct infcall_control_state *
9012 save_infcall_control_state (void)
9013 {
9014 struct infcall_control_state *inf_status =
9015 XNEW (struct infcall_control_state);
9016 struct thread_info *tp = inferior_thread ();
9017 struct inferior *inf = current_inferior ();
9018
9019 inf_status->thread_control = tp->control;
9020 inf_status->inferior_control = inf->control;
9021
9022 tp->control.step_resume_breakpoint = NULL;
9023 tp->control.exception_resume_breakpoint = NULL;
9024
9025 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9026 chain. If caller's caller is walking the chain, they'll be happier if we
9027 hand them back the original chain when restore_infcall_control_state is
9028 called. */
9029 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9030
9031 /* Other fields: */
9032 inf_status->stop_stack_dummy = stop_stack_dummy;
9033 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9034
9035 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9036
9037 return inf_status;
9038 }
9039
9040 static int
9041 restore_selected_frame (void *args)
9042 {
9043 struct frame_id *fid = (struct frame_id *) args;
9044 struct frame_info *frame;
9045
9046 frame = frame_find_by_id (*fid);
9047
9048 /* If inf_status->selected_frame_id is NULL, there was no previously
9049 selected frame. */
9050 if (frame == NULL)
9051 {
9052 warning (_("Unable to restore previously selected frame."));
9053 return 0;
9054 }
9055
9056 select_frame (frame);
9057
9058 return (1);
9059 }
9060
9061 /* Restore inferior session state to INF_STATUS. */
9062
9063 void
9064 restore_infcall_control_state (struct infcall_control_state *inf_status)
9065 {
9066 struct thread_info *tp = inferior_thread ();
9067 struct inferior *inf = current_inferior ();
9068
9069 if (tp->control.step_resume_breakpoint)
9070 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9071
9072 if (tp->control.exception_resume_breakpoint)
9073 tp->control.exception_resume_breakpoint->disposition
9074 = disp_del_at_next_stop;
9075
9076 /* Handle the bpstat_copy of the chain. */
9077 bpstat_clear (&tp->control.stop_bpstat);
9078
9079 tp->control = inf_status->thread_control;
9080 inf->control = inf_status->inferior_control;
9081
9082 /* Other fields: */
9083 stop_stack_dummy = inf_status->stop_stack_dummy;
9084 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9085
9086 if (target_has_stack)
9087 {
9088 /* The point of catch_errors is that if the stack is clobbered,
9089 walking the stack might encounter a garbage pointer and
9090 error() trying to dereference it. */
9091 if (catch_errors
9092 (restore_selected_frame, &inf_status->selected_frame_id,
9093 "Unable to restore previously selected frame:\n",
9094 RETURN_MASK_ERROR) == 0)
9095 /* Error in restoring the selected frame. Select the innermost
9096 frame. */
9097 select_frame (get_current_frame ());
9098 }
9099
9100 xfree (inf_status);
9101 }
9102
9103 static void
9104 do_restore_infcall_control_state_cleanup (void *sts)
9105 {
9106 restore_infcall_control_state ((struct infcall_control_state *) sts);
9107 }
9108
9109 struct cleanup *
9110 make_cleanup_restore_infcall_control_state
9111 (struct infcall_control_state *inf_status)
9112 {
9113 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9114 }
9115
9116 void
9117 discard_infcall_control_state (struct infcall_control_state *inf_status)
9118 {
9119 if (inf_status->thread_control.step_resume_breakpoint)
9120 inf_status->thread_control.step_resume_breakpoint->disposition
9121 = disp_del_at_next_stop;
9122
9123 if (inf_status->thread_control.exception_resume_breakpoint)
9124 inf_status->thread_control.exception_resume_breakpoint->disposition
9125 = disp_del_at_next_stop;
9126
9127 /* See save_infcall_control_state for info on stop_bpstat. */
9128 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9129
9130 xfree (inf_status);
9131 }
9132 \f
9133 /* restore_inferior_ptid() will be used by the cleanup machinery
9134 to restore the inferior_ptid value saved in a call to
9135 save_inferior_ptid(). */
9136
9137 static void
9138 restore_inferior_ptid (void *arg)
9139 {
9140 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
9141
9142 inferior_ptid = *saved_ptid_ptr;
9143 xfree (arg);
9144 }
9145
9146 /* Save the value of inferior_ptid so that it may be restored by a
9147 later call to do_cleanups(). Returns the struct cleanup pointer
9148 needed for later doing the cleanup. */
9149
9150 struct cleanup *
9151 save_inferior_ptid (void)
9152 {
9153 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
9154
9155 *saved_ptid_ptr = inferior_ptid;
9156 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9157 }
9158
9159 /* See infrun.h. */
9160
9161 void
9162 clear_exit_convenience_vars (void)
9163 {
9164 clear_internalvar (lookup_internalvar ("_exitsignal"));
9165 clear_internalvar (lookup_internalvar ("_exitcode"));
9166 }
9167 \f
9168
9169 /* User interface for reverse debugging:
9170 Set exec-direction / show exec-direction commands
9171 (returns error unless target implements to_set_exec_direction method). */
9172
9173 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9174 static const char exec_forward[] = "forward";
9175 static const char exec_reverse[] = "reverse";
9176 static const char *exec_direction = exec_forward;
9177 static const char *const exec_direction_names[] = {
9178 exec_forward,
9179 exec_reverse,
9180 NULL
9181 };
9182
9183 static void
9184 set_exec_direction_func (char *args, int from_tty,
9185 struct cmd_list_element *cmd)
9186 {
9187 if (target_can_execute_reverse)
9188 {
9189 if (!strcmp (exec_direction, exec_forward))
9190 execution_direction = EXEC_FORWARD;
9191 else if (!strcmp (exec_direction, exec_reverse))
9192 execution_direction = EXEC_REVERSE;
9193 }
9194 else
9195 {
9196 exec_direction = exec_forward;
9197 error (_("Target does not support this operation."));
9198 }
9199 }
9200
9201 static void
9202 show_exec_direction_func (struct ui_file *out, int from_tty,
9203 struct cmd_list_element *cmd, const char *value)
9204 {
9205 switch (execution_direction) {
9206 case EXEC_FORWARD:
9207 fprintf_filtered (out, _("Forward.\n"));
9208 break;
9209 case EXEC_REVERSE:
9210 fprintf_filtered (out, _("Reverse.\n"));
9211 break;
9212 default:
9213 internal_error (__FILE__, __LINE__,
9214 _("bogus execution_direction value: %d"),
9215 (int) execution_direction);
9216 }
9217 }
9218
9219 static void
9220 show_schedule_multiple (struct ui_file *file, int from_tty,
9221 struct cmd_list_element *c, const char *value)
9222 {
9223 fprintf_filtered (file, _("Resuming the execution of threads "
9224 "of all processes is %s.\n"), value);
9225 }
9226
9227 /* Implementation of `siginfo' variable. */
9228
9229 static const struct internalvar_funcs siginfo_funcs =
9230 {
9231 siginfo_make_value,
9232 NULL,
9233 NULL
9234 };
9235
9236 /* Callback for infrun's target events source. This is marked when a
9237 thread has a pending status to process. */
9238
9239 static void
9240 infrun_async_inferior_event_handler (gdb_client_data data)
9241 {
9242 inferior_event_handler (INF_REG_EVENT, NULL);
9243 }
9244
9245 void
9246 _initialize_infrun (void)
9247 {
9248 int i;
9249 int numsigs;
9250 struct cmd_list_element *c;
9251
9252 /* Register extra event sources in the event loop. */
9253 infrun_async_inferior_event_token
9254 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9255
9256 add_info ("signals", signals_info, _("\
9257 What debugger does when program gets various signals.\n\
9258 Specify a signal as argument to print info on that signal only."));
9259 add_info_alias ("handle", "signals", 0);
9260
9261 c = add_com ("handle", class_run, handle_command, _("\
9262 Specify how to handle signals.\n\
9263 Usage: handle SIGNAL [ACTIONS]\n\
9264 Args are signals and actions to apply to those signals.\n\
9265 If no actions are specified, the current settings for the specified signals\n\
9266 will be displayed instead.\n\
9267 \n\
9268 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9269 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9270 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9271 The special arg \"all\" is recognized to mean all signals except those\n\
9272 used by the debugger, typically SIGTRAP and SIGINT.\n\
9273 \n\
9274 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9275 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9276 Stop means reenter debugger if this signal happens (implies print).\n\
9277 Print means print a message if this signal happens.\n\
9278 Pass means let program see this signal; otherwise program doesn't know.\n\
9279 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9280 Pass and Stop may be combined.\n\
9281 \n\
9282 Multiple signals may be specified. Signal numbers and signal names\n\
9283 may be interspersed with actions, with the actions being performed for\n\
9284 all signals cumulatively specified."));
9285 set_cmd_completer (c, handle_completer);
9286
9287 if (!dbx_commands)
9288 stop_command = add_cmd ("stop", class_obscure,
9289 not_just_help_class_command, _("\
9290 There is no `stop' command, but you can set a hook on `stop'.\n\
9291 This allows you to set a list of commands to be run each time execution\n\
9292 of the program stops."), &cmdlist);
9293
9294 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9295 Set inferior debugging."), _("\
9296 Show inferior debugging."), _("\
9297 When non-zero, inferior specific debugging is enabled."),
9298 NULL,
9299 show_debug_infrun,
9300 &setdebuglist, &showdebuglist);
9301
9302 add_setshow_boolean_cmd ("displaced", class_maintenance,
9303 &debug_displaced, _("\
9304 Set displaced stepping debugging."), _("\
9305 Show displaced stepping debugging."), _("\
9306 When non-zero, displaced stepping specific debugging is enabled."),
9307 NULL,
9308 show_debug_displaced,
9309 &setdebuglist, &showdebuglist);
9310
9311 add_setshow_boolean_cmd ("non-stop", no_class,
9312 &non_stop_1, _("\
9313 Set whether gdb controls the inferior in non-stop mode."), _("\
9314 Show whether gdb controls the inferior in non-stop mode."), _("\
9315 When debugging a multi-threaded program and this setting is\n\
9316 off (the default, also called all-stop mode), when one thread stops\n\
9317 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9318 all other threads in the program while you interact with the thread of\n\
9319 interest. When you continue or step a thread, you can allow the other\n\
9320 threads to run, or have them remain stopped, but while you inspect any\n\
9321 thread's state, all threads stop.\n\
9322 \n\
9323 In non-stop mode, when one thread stops, other threads can continue\n\
9324 to run freely. You'll be able to step each thread independently,\n\
9325 leave it stopped or free to run as needed."),
9326 set_non_stop,
9327 show_non_stop,
9328 &setlist,
9329 &showlist);
9330
9331 numsigs = (int) GDB_SIGNAL_LAST;
9332 signal_stop = XNEWVEC (unsigned char, numsigs);
9333 signal_print = XNEWVEC (unsigned char, numsigs);
9334 signal_program = XNEWVEC (unsigned char, numsigs);
9335 signal_catch = XNEWVEC (unsigned char, numsigs);
9336 signal_pass = XNEWVEC (unsigned char, numsigs);
9337 for (i = 0; i < numsigs; i++)
9338 {
9339 signal_stop[i] = 1;
9340 signal_print[i] = 1;
9341 signal_program[i] = 1;
9342 signal_catch[i] = 0;
9343 }
9344
9345 /* Signals caused by debugger's own actions should not be given to
9346 the program afterwards.
9347
9348 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9349 explicitly specifies that it should be delivered to the target
9350 program. Typically, that would occur when a user is debugging a
9351 target monitor on a simulator: the target monitor sets a
9352 breakpoint; the simulator encounters this breakpoint and halts
9353 the simulation handing control to GDB; GDB, noting that the stop
9354 address doesn't map to any known breakpoint, returns control back
9355 to the simulator; the simulator then delivers the hardware
9356 equivalent of a GDB_SIGNAL_TRAP to the program being
9357 debugged. */
9358 signal_program[GDB_SIGNAL_TRAP] = 0;
9359 signal_program[GDB_SIGNAL_INT] = 0;
9360
9361 /* Signals that are not errors should not normally enter the debugger. */
9362 signal_stop[GDB_SIGNAL_ALRM] = 0;
9363 signal_print[GDB_SIGNAL_ALRM] = 0;
9364 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9365 signal_print[GDB_SIGNAL_VTALRM] = 0;
9366 signal_stop[GDB_SIGNAL_PROF] = 0;
9367 signal_print[GDB_SIGNAL_PROF] = 0;
9368 signal_stop[GDB_SIGNAL_CHLD] = 0;
9369 signal_print[GDB_SIGNAL_CHLD] = 0;
9370 signal_stop[GDB_SIGNAL_IO] = 0;
9371 signal_print[GDB_SIGNAL_IO] = 0;
9372 signal_stop[GDB_SIGNAL_POLL] = 0;
9373 signal_print[GDB_SIGNAL_POLL] = 0;
9374 signal_stop[GDB_SIGNAL_URG] = 0;
9375 signal_print[GDB_SIGNAL_URG] = 0;
9376 signal_stop[GDB_SIGNAL_WINCH] = 0;
9377 signal_print[GDB_SIGNAL_WINCH] = 0;
9378 signal_stop[GDB_SIGNAL_PRIO] = 0;
9379 signal_print[GDB_SIGNAL_PRIO] = 0;
9380
9381 /* These signals are used internally by user-level thread
9382 implementations. (See signal(5) on Solaris.) Like the above
9383 signals, a healthy program receives and handles them as part of
9384 its normal operation. */
9385 signal_stop[GDB_SIGNAL_LWP] = 0;
9386 signal_print[GDB_SIGNAL_LWP] = 0;
9387 signal_stop[GDB_SIGNAL_WAITING] = 0;
9388 signal_print[GDB_SIGNAL_WAITING] = 0;
9389 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9390 signal_print[GDB_SIGNAL_CANCEL] = 0;
9391 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9392 signal_print[GDB_SIGNAL_LIBRT] = 0;
9393
9394 /* Update cached state. */
9395 signal_cache_update (-1);
9396
9397 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9398 &stop_on_solib_events, _("\
9399 Set stopping for shared library events."), _("\
9400 Show stopping for shared library events."), _("\
9401 If nonzero, gdb will give control to the user when the dynamic linker\n\
9402 notifies gdb of shared library events. The most common event of interest\n\
9403 to the user would be loading/unloading of a new library."),
9404 set_stop_on_solib_events,
9405 show_stop_on_solib_events,
9406 &setlist, &showlist);
9407
9408 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9409 follow_fork_mode_kind_names,
9410 &follow_fork_mode_string, _("\
9411 Set debugger response to a program call of fork or vfork."), _("\
9412 Show debugger response to a program call of fork or vfork."), _("\
9413 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9414 parent - the original process is debugged after a fork\n\
9415 child - the new process is debugged after a fork\n\
9416 The unfollowed process will continue to run.\n\
9417 By default, the debugger will follow the parent process."),
9418 NULL,
9419 show_follow_fork_mode_string,
9420 &setlist, &showlist);
9421
9422 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9423 follow_exec_mode_names,
9424 &follow_exec_mode_string, _("\
9425 Set debugger response to a program call of exec."), _("\
9426 Show debugger response to a program call of exec."), _("\
9427 An exec call replaces the program image of a process.\n\
9428 \n\
9429 follow-exec-mode can be:\n\
9430 \n\
9431 new - the debugger creates a new inferior and rebinds the process\n\
9432 to this new inferior. The program the process was running before\n\
9433 the exec call can be restarted afterwards by restarting the original\n\
9434 inferior.\n\
9435 \n\
9436 same - the debugger keeps the process bound to the same inferior.\n\
9437 The new executable image replaces the previous executable loaded in\n\
9438 the inferior. Restarting the inferior after the exec call restarts\n\
9439 the executable the process was running after the exec call.\n\
9440 \n\
9441 By default, the debugger will use the same inferior."),
9442 NULL,
9443 show_follow_exec_mode_string,
9444 &setlist, &showlist);
9445
9446 add_setshow_enum_cmd ("scheduler-locking", class_run,
9447 scheduler_enums, &scheduler_mode, _("\
9448 Set mode for locking scheduler during execution."), _("\
9449 Show mode for locking scheduler during execution."), _("\
9450 off == no locking (threads may preempt at any time)\n\
9451 on == full locking (no thread except the current thread may run)\n\
9452 This applies to both normal execution and replay mode.\n\
9453 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9454 In this mode, other threads may run during other commands.\n\
9455 This applies to both normal execution and replay mode.\n\
9456 replay == scheduler locked in replay mode and unlocked during normal execution."),
9457 set_schedlock_func, /* traps on target vector */
9458 show_scheduler_mode,
9459 &setlist, &showlist);
9460
9461 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9462 Set mode for resuming threads of all processes."), _("\
9463 Show mode for resuming threads of all processes."), _("\
9464 When on, execution commands (such as 'continue' or 'next') resume all\n\
9465 threads of all processes. When off (which is the default), execution\n\
9466 commands only resume the threads of the current process. The set of\n\
9467 threads that are resumed is further refined by the scheduler-locking\n\
9468 mode (see help set scheduler-locking)."),
9469 NULL,
9470 show_schedule_multiple,
9471 &setlist, &showlist);
9472
9473 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9474 Set mode of the step operation."), _("\
9475 Show mode of the step operation."), _("\
9476 When set, doing a step over a function without debug line information\n\
9477 will stop at the first instruction of that function. Otherwise, the\n\
9478 function is skipped and the step command stops at a different source line."),
9479 NULL,
9480 show_step_stop_if_no_debug,
9481 &setlist, &showlist);
9482
9483 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9484 &can_use_displaced_stepping, _("\
9485 Set debugger's willingness to use displaced stepping."), _("\
9486 Show debugger's willingness to use displaced stepping."), _("\
9487 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9488 supported by the target architecture. If off, gdb will not use displaced\n\
9489 stepping to step over breakpoints, even if such is supported by the target\n\
9490 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9491 if the target architecture supports it and non-stop mode is active, but will not\n\
9492 use it in all-stop mode (see help set non-stop)."),
9493 NULL,
9494 show_can_use_displaced_stepping,
9495 &setlist, &showlist);
9496
9497 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9498 &exec_direction, _("Set direction of execution.\n\
9499 Options are 'forward' or 'reverse'."),
9500 _("Show direction of execution (forward/reverse)."),
9501 _("Tells gdb whether to execute forward or backward."),
9502 set_exec_direction_func, show_exec_direction_func,
9503 &setlist, &showlist);
9504
9505 /* Set/show detach-on-fork: user-settable mode. */
9506
9507 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9508 Set whether gdb will detach the child of a fork."), _("\
9509 Show whether gdb will detach the child of a fork."), _("\
9510 Tells gdb whether to detach the child of a fork."),
9511 NULL, NULL, &setlist, &showlist);
9512
9513 /* Set/show disable address space randomization mode. */
9514
9515 add_setshow_boolean_cmd ("disable-randomization", class_support,
9516 &disable_randomization, _("\
9517 Set disabling of debuggee's virtual address space randomization."), _("\
9518 Show disabling of debuggee's virtual address space randomization."), _("\
9519 When this mode is on (which is the default), randomization of the virtual\n\
9520 address space is disabled. Standalone programs run with the randomization\n\
9521 enabled by default on some platforms."),
9522 &set_disable_randomization,
9523 &show_disable_randomization,
9524 &setlist, &showlist);
9525
9526 /* ptid initializations */
9527 inferior_ptid = null_ptid;
9528 target_last_wait_ptid = minus_one_ptid;
9529
9530 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9531 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9532 observer_attach_thread_exit (infrun_thread_thread_exit);
9533 observer_attach_inferior_exit (infrun_inferior_exit);
9534
9535 /* Explicitly create without lookup, since that tries to create a
9536 value with a void typed value, and when we get here, gdbarch
9537 isn't initialized yet. At this point, we're quite sure there
9538 isn't another convenience variable of the same name. */
9539 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9540
9541 add_setshow_boolean_cmd ("observer", no_class,
9542 &observer_mode_1, _("\
9543 Set whether gdb controls the inferior in observer mode."), _("\
9544 Show whether gdb controls the inferior in observer mode."), _("\
9545 In observer mode, GDB can get data from the inferior, but not\n\
9546 affect its execution. Registers and memory may not be changed,\n\
9547 breakpoints may not be set, and the program cannot be interrupted\n\
9548 or signalled."),
9549 set_observer_mode,
9550 show_observer_mode,
9551 &setlist,
9552 &showlist);
9553 }
This page took 0.25738 seconds and 4 git commands to generate.