* i386-tdep.c (i386_16_byte_align_p): New.
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 struct execution_control_state;
76
77 static int currently_stepping (struct execution_control_state *ecs);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89 static void
90 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92 {
93 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
94 }
95
96 /* In asynchronous mode, but simulating synchronous execution. */
97
98 int sync_execution = 0;
99
100 /* wait_for_inferior and normal_stop use this to notify the user
101 when the inferior stopped in a different thread than it had been
102 running in. */
103
104 static ptid_t previous_inferior_ptid;
105
106 int debug_displaced = 0;
107 static void
108 show_debug_displaced (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
112 }
113
114 static int debug_infrun = 0;
115 static void
116 show_debug_infrun (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118 {
119 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
120 }
121
122 /* If the program uses ELF-style shared libraries, then calls to
123 functions in shared libraries go through stubs, which live in a
124 table called the PLT (Procedure Linkage Table). The first time the
125 function is called, the stub sends control to the dynamic linker,
126 which looks up the function's real address, patches the stub so
127 that future calls will go directly to the function, and then passes
128 control to the function.
129
130 If we are stepping at the source level, we don't want to see any of
131 this --- we just want to skip over the stub and the dynamic linker.
132 The simple approach is to single-step until control leaves the
133 dynamic linker.
134
135 However, on some systems (e.g., Red Hat's 5.2 distribution) the
136 dynamic linker calls functions in the shared C library, so you
137 can't tell from the PC alone whether the dynamic linker is still
138 running. In this case, we use a step-resume breakpoint to get us
139 past the dynamic linker, as if we were using "next" to step over a
140 function call.
141
142 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
143 linker code or not. Normally, this means we single-step. However,
144 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
145 address where we can place a step-resume breakpoint to get past the
146 linker's symbol resolution function.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
149 pretty portable way, by comparing the PC against the address ranges
150 of the dynamic linker's sections.
151
152 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
153 it depends on internal details of the dynamic linker. It's usually
154 not too hard to figure out where to put a breakpoint, but it
155 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
156 sanity checking. If it can't figure things out, returning zero and
157 getting the (possibly confusing) stepping behavior is better than
158 signalling an error, which will obscure the change in the
159 inferior's state. */
160
161 /* This function returns TRUE if pc is the address of an instruction
162 that lies within the dynamic linker (such as the event hook, or the
163 dld itself).
164
165 This function must be used only when a dynamic linker event has
166 been caught, and the inferior is being stepped out of the hook, or
167 undefined results are guaranteed. */
168
169 #ifndef SOLIB_IN_DYNAMIC_LINKER
170 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
171 #endif
172
173
174 /* Convert the #defines into values. This is temporary until wfi control
175 flow is completely sorted out. */
176
177 #ifndef CANNOT_STEP_HW_WATCHPOINTS
178 #define CANNOT_STEP_HW_WATCHPOINTS 0
179 #else
180 #undef CANNOT_STEP_HW_WATCHPOINTS
181 #define CANNOT_STEP_HW_WATCHPOINTS 1
182 #endif
183
184 /* Tables of how to react to signals; the user sets them. */
185
186 static unsigned char *signal_stop;
187 static unsigned char *signal_print;
188 static unsigned char *signal_program;
189
190 #define SET_SIGS(nsigs,sigs,flags) \
191 do { \
192 int signum = (nsigs); \
193 while (signum-- > 0) \
194 if ((sigs)[signum]) \
195 (flags)[signum] = 1; \
196 } while (0)
197
198 #define UNSET_SIGS(nsigs,sigs,flags) \
199 do { \
200 int signum = (nsigs); \
201 while (signum-- > 0) \
202 if ((sigs)[signum]) \
203 (flags)[signum] = 0; \
204 } while (0)
205
206 /* Value to pass to target_resume() to cause all threads to resume */
207
208 #define RESUME_ALL (pid_to_ptid (-1))
209
210 /* Command list pointer for the "stop" placeholder. */
211
212 static struct cmd_list_element *stop_command;
213
214 /* Function inferior was in as of last step command. */
215
216 static struct symbol *step_start_function;
217
218 /* Nonzero if we are presently stepping over a breakpoint.
219
220 If we hit a breakpoint or watchpoint, and then continue,
221 we need to single step the current thread with breakpoints
222 disabled, to avoid hitting the same breakpoint or
223 watchpoint again. And we should step just a single
224 thread and keep other threads stopped, so that
225 other threads don't miss breakpoints while they are removed.
226
227 So, this variable simultaneously means that we need to single
228 step the current thread, keep other threads stopped, and that
229 breakpoints should be removed while we step.
230
231 This variable is set either:
232 - in proceed, when we resume inferior on user's explicit request
233 - in keep_going, if handle_inferior_event decides we need to
234 step over breakpoint.
235
236 The variable is cleared in clear_proceed_status, called every
237 time before we call proceed. The proceed calls wait_for_inferior,
238 which calls handle_inferior_event in a loop, and until
239 wait_for_inferior exits, this variable is changed only by keep_going. */
240
241 static int stepping_over_breakpoint;
242
243 /* Nonzero if we want to give control to the user when we're notified
244 of shared library events by the dynamic linker. */
245 static int stop_on_solib_events;
246 static void
247 show_stop_on_solib_events (struct ui_file *file, int from_tty,
248 struct cmd_list_element *c, const char *value)
249 {
250 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
251 value);
252 }
253
254 /* Nonzero means expecting a trace trap
255 and should stop the inferior and return silently when it happens. */
256
257 int stop_after_trap;
258
259 /* Nonzero means expecting a trap and caller will handle it themselves.
260 It is used after attach, due to attaching to a process;
261 when running in the shell before the child program has been exec'd;
262 and when running some kinds of remote stuff (FIXME?). */
263
264 enum stop_kind stop_soon;
265
266 /* Nonzero if proceed is being used for a "finish" command or a similar
267 situation when stop_registers should be saved. */
268
269 int proceed_to_finish;
270
271 /* Save register contents here when about to pop a stack dummy frame,
272 if-and-only-if proceed_to_finish is set.
273 Thus this contains the return value from the called function (assuming
274 values are returned in a register). */
275
276 struct regcache *stop_registers;
277
278 /* Nonzero after stop if current stack frame should be printed. */
279
280 static int stop_print_frame;
281
282 /* Step-resume or longjmp-resume breakpoint. */
283 static struct breakpoint *step_resume_breakpoint = NULL;
284
285 /* This is a cached copy of the pid/waitstatus of the last event
286 returned by target_wait()/deprecated_target_wait_hook(). This
287 information is returned by get_last_target_status(). */
288 static ptid_t target_last_wait_ptid;
289 static struct target_waitstatus target_last_waitstatus;
290
291 /* This is used to remember when a fork, vfork or exec event
292 was caught by a catchpoint, and thus the event is to be
293 followed at the next resume of the inferior, and not
294 immediately. */
295 static struct
296 {
297 enum target_waitkind kind;
298 struct
299 {
300 int parent_pid;
301 int child_pid;
302 }
303 fork_event;
304 char *execd_pathname;
305 }
306 pending_follow;
307
308 static const char follow_fork_mode_child[] = "child";
309 static const char follow_fork_mode_parent[] = "parent";
310
311 static const char *follow_fork_mode_kind_names[] = {
312 follow_fork_mode_child,
313 follow_fork_mode_parent,
314 NULL
315 };
316
317 static const char *follow_fork_mode_string = follow_fork_mode_parent;
318 static void
319 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
320 struct cmd_list_element *c, const char *value)
321 {
322 fprintf_filtered (file, _("\
323 Debugger response to a program call of fork or vfork is \"%s\".\n"),
324 value);
325 }
326 \f
327
328 static int
329 follow_fork (void)
330 {
331 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
332
333 return target_follow_fork (follow_child);
334 }
335
336 void
337 follow_inferior_reset_breakpoints (void)
338 {
339 /* Was there a step_resume breakpoint? (There was if the user
340 did a "next" at the fork() call.) If so, explicitly reset its
341 thread number.
342
343 step_resumes are a form of bp that are made to be per-thread.
344 Since we created the step_resume bp when the parent process
345 was being debugged, and now are switching to the child process,
346 from the breakpoint package's viewpoint, that's a switch of
347 "threads". We must update the bp's notion of which thread
348 it is for, or it'll be ignored when it triggers. */
349
350 if (step_resume_breakpoint)
351 breakpoint_re_set_thread (step_resume_breakpoint);
352
353 /* Reinsert all breakpoints in the child. The user may have set
354 breakpoints after catching the fork, in which case those
355 were never set in the child, but only in the parent. This makes
356 sure the inserted breakpoints match the breakpoint list. */
357
358 breakpoint_re_set ();
359 insert_breakpoints ();
360 }
361
362 /* EXECD_PATHNAME is assumed to be non-NULL. */
363
364 static void
365 follow_exec (int pid, char *execd_pathname)
366 {
367 int saved_pid = pid;
368 struct target_ops *tgt;
369
370 /* This is an exec event that we actually wish to pay attention to.
371 Refresh our symbol table to the newly exec'd program, remove any
372 momentary bp's, etc.
373
374 If there are breakpoints, they aren't really inserted now,
375 since the exec() transformed our inferior into a fresh set
376 of instructions.
377
378 We want to preserve symbolic breakpoints on the list, since
379 we have hopes that they can be reset after the new a.out's
380 symbol table is read.
381
382 However, any "raw" breakpoints must be removed from the list
383 (e.g., the solib bp's), since their address is probably invalid
384 now.
385
386 And, we DON'T want to call delete_breakpoints() here, since
387 that may write the bp's "shadow contents" (the instruction
388 value that was overwritten witha TRAP instruction). Since
389 we now have a new a.out, those shadow contents aren't valid. */
390 update_breakpoints_after_exec ();
391
392 /* If there was one, it's gone now. We cannot truly step-to-next
393 statement through an exec(). */
394 step_resume_breakpoint = NULL;
395 step_range_start = 0;
396 step_range_end = 0;
397
398 /* What is this a.out's name? */
399 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
400
401 /* We've followed the inferior through an exec. Therefore, the
402 inferior has essentially been killed & reborn. */
403
404 gdb_flush (gdb_stdout);
405 generic_mourn_inferior ();
406 /* Because mourn_inferior resets inferior_ptid. */
407 inferior_ptid = pid_to_ptid (saved_pid);
408
409 if (gdb_sysroot && *gdb_sysroot)
410 {
411 char *name = alloca (strlen (gdb_sysroot)
412 + strlen (execd_pathname)
413 + 1);
414 strcpy (name, gdb_sysroot);
415 strcat (name, execd_pathname);
416 execd_pathname = name;
417 }
418
419 /* That a.out is now the one to use. */
420 exec_file_attach (execd_pathname, 0);
421
422 /* And also is where symbols can be found. */
423 symbol_file_add_main (execd_pathname, 0);
424
425 /* Reset the shared library package. This ensures that we get
426 a shlib event when the child reaches "_start", at which point
427 the dld will have had a chance to initialize the child. */
428 no_shared_libraries (NULL, 0);
429 #ifdef SOLIB_CREATE_INFERIOR_HOOK
430 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
431 #else
432 solib_create_inferior_hook ();
433 #endif
434
435 /* Reinsert all breakpoints. (Those which were symbolic have
436 been reset to the proper address in the new a.out, thanks
437 to symbol_file_command...) */
438 insert_breakpoints ();
439
440 /* The next resume of this inferior should bring it to the shlib
441 startup breakpoints. (If the user had also set bp's on
442 "main" from the old (parent) process, then they'll auto-
443 matically get reset there in the new process.) */
444 }
445
446 /* Non-zero if we just simulating a single-step. This is needed
447 because we cannot remove the breakpoints in the inferior process
448 until after the `wait' in `wait_for_inferior'. */
449 static int singlestep_breakpoints_inserted_p = 0;
450
451 /* The thread we inserted single-step breakpoints for. */
452 static ptid_t singlestep_ptid;
453
454 /* PC when we started this single-step. */
455 static CORE_ADDR singlestep_pc;
456
457 /* If another thread hit the singlestep breakpoint, we save the original
458 thread here so that we can resume single-stepping it later. */
459 static ptid_t saved_singlestep_ptid;
460 static int stepping_past_singlestep_breakpoint;
461
462 /* If not equal to null_ptid, this means that after stepping over breakpoint
463 is finished, we need to switch to deferred_step_ptid, and step it.
464
465 The use case is when one thread has hit a breakpoint, and then the user
466 has switched to another thread and issued 'step'. We need to step over
467 breakpoint in the thread which hit the breakpoint, but then continue
468 stepping the thread user has selected. */
469 static ptid_t deferred_step_ptid;
470 \f
471 /* Displaced stepping. */
472
473 /* In non-stop debugging mode, we must take special care to manage
474 breakpoints properly; in particular, the traditional strategy for
475 stepping a thread past a breakpoint it has hit is unsuitable.
476 'Displaced stepping' is a tactic for stepping one thread past a
477 breakpoint it has hit while ensuring that other threads running
478 concurrently will hit the breakpoint as they should.
479
480 The traditional way to step a thread T off a breakpoint in a
481 multi-threaded program in all-stop mode is as follows:
482
483 a0) Initially, all threads are stopped, and breakpoints are not
484 inserted.
485 a1) We single-step T, leaving breakpoints uninserted.
486 a2) We insert breakpoints, and resume all threads.
487
488 In non-stop debugging, however, this strategy is unsuitable: we
489 don't want to have to stop all threads in the system in order to
490 continue or step T past a breakpoint. Instead, we use displaced
491 stepping:
492
493 n0) Initially, T is stopped, other threads are running, and
494 breakpoints are inserted.
495 n1) We copy the instruction "under" the breakpoint to a separate
496 location, outside the main code stream, making any adjustments
497 to the instruction, register, and memory state as directed by
498 T's architecture.
499 n2) We single-step T over the instruction at its new location.
500 n3) We adjust the resulting register and memory state as directed
501 by T's architecture. This includes resetting T's PC to point
502 back into the main instruction stream.
503 n4) We resume T.
504
505 This approach depends on the following gdbarch methods:
506
507 - gdbarch_max_insn_length and gdbarch_displaced_step_location
508 indicate where to copy the instruction, and how much space must
509 be reserved there. We use these in step n1.
510
511 - gdbarch_displaced_step_copy_insn copies a instruction to a new
512 address, and makes any necessary adjustments to the instruction,
513 register contents, and memory. We use this in step n1.
514
515 - gdbarch_displaced_step_fixup adjusts registers and memory after
516 we have successfuly single-stepped the instruction, to yield the
517 same effect the instruction would have had if we had executed it
518 at its original address. We use this in step n3.
519
520 - gdbarch_displaced_step_free_closure provides cleanup.
521
522 The gdbarch_displaced_step_copy_insn and
523 gdbarch_displaced_step_fixup functions must be written so that
524 copying an instruction with gdbarch_displaced_step_copy_insn,
525 single-stepping across the copied instruction, and then applying
526 gdbarch_displaced_insn_fixup should have the same effects on the
527 thread's memory and registers as stepping the instruction in place
528 would have. Exactly which responsibilities fall to the copy and
529 which fall to the fixup is up to the author of those functions.
530
531 See the comments in gdbarch.sh for details.
532
533 Note that displaced stepping and software single-step cannot
534 currently be used in combination, although with some care I think
535 they could be made to. Software single-step works by placing
536 breakpoints on all possible subsequent instructions; if the
537 displaced instruction is a PC-relative jump, those breakpoints
538 could fall in very strange places --- on pages that aren't
539 executable, or at addresses that are not proper instruction
540 boundaries. (We do generally let other threads run while we wait
541 to hit the software single-step breakpoint, and they might
542 encounter such a corrupted instruction.) One way to work around
543 this would be to have gdbarch_displaced_step_copy_insn fully
544 simulate the effect of PC-relative instructions (and return NULL)
545 on architectures that use software single-stepping.
546
547 In non-stop mode, we can have independent and simultaneous step
548 requests, so more than one thread may need to simultaneously step
549 over a breakpoint. The current implementation assumes there is
550 only one scratch space per process. In this case, we have to
551 serialize access to the scratch space. If thread A wants to step
552 over a breakpoint, but we are currently waiting for some other
553 thread to complete a displaced step, we leave thread A stopped and
554 place it in the displaced_step_request_queue. Whenever a displaced
555 step finishes, we pick the next thread in the queue and start a new
556 displaced step operation on it. See displaced_step_prepare and
557 displaced_step_fixup for details. */
558
559 /* If this is not null_ptid, this is the thread carrying out a
560 displaced single-step. This thread's state will require fixing up
561 once it has completed its step. */
562 static ptid_t displaced_step_ptid;
563
564 struct displaced_step_request
565 {
566 ptid_t ptid;
567 struct displaced_step_request *next;
568 };
569
570 /* A queue of pending displaced stepping requests. */
571 struct displaced_step_request *displaced_step_request_queue;
572
573 /* The architecture the thread had when we stepped it. */
574 static struct gdbarch *displaced_step_gdbarch;
575
576 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
577 for post-step cleanup. */
578 static struct displaced_step_closure *displaced_step_closure;
579
580 /* The address of the original instruction, and the copy we made. */
581 static CORE_ADDR displaced_step_original, displaced_step_copy;
582
583 /* Saved contents of copy area. */
584 static gdb_byte *displaced_step_saved_copy;
585
586 /* When this is non-zero, we are allowed to use displaced stepping, if
587 the architecture supports it. When this is zero, we use
588 traditional the hold-and-step approach. */
589 int can_use_displaced_stepping = 1;
590 static void
591 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
592 struct cmd_list_element *c,
593 const char *value)
594 {
595 fprintf_filtered (file, _("\
596 Debugger's willingness to use displaced stepping to step over "
597 "breakpoints is %s.\n"), value);
598 }
599
600 /* Return non-zero if displaced stepping is enabled, and can be used
601 with GDBARCH. */
602 static int
603 use_displaced_stepping (struct gdbarch *gdbarch)
604 {
605 return (can_use_displaced_stepping
606 && gdbarch_displaced_step_copy_insn_p (gdbarch));
607 }
608
609 /* Clean out any stray displaced stepping state. */
610 static void
611 displaced_step_clear (void)
612 {
613 /* Indicate that there is no cleanup pending. */
614 displaced_step_ptid = null_ptid;
615
616 if (displaced_step_closure)
617 {
618 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
619 displaced_step_closure);
620 displaced_step_closure = NULL;
621 }
622 }
623
624 static void
625 cleanup_displaced_step_closure (void *ptr)
626 {
627 struct displaced_step_closure *closure = ptr;
628
629 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
630 }
631
632 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
633 void
634 displaced_step_dump_bytes (struct ui_file *file,
635 const gdb_byte *buf,
636 size_t len)
637 {
638 int i;
639
640 for (i = 0; i < len; i++)
641 fprintf_unfiltered (file, "%02x ", buf[i]);
642 fputs_unfiltered ("\n", file);
643 }
644
645 /* Prepare to single-step, using displaced stepping.
646
647 Note that we cannot use displaced stepping when we have a signal to
648 deliver. If we have a signal to deliver and an instruction to step
649 over, then after the step, there will be no indication from the
650 target whether the thread entered a signal handler or ignored the
651 signal and stepped over the instruction successfully --- both cases
652 result in a simple SIGTRAP. In the first case we mustn't do a
653 fixup, and in the second case we must --- but we can't tell which.
654 Comments in the code for 'random signals' in handle_inferior_event
655 explain how we handle this case instead.
656
657 Returns 1 if preparing was successful -- this thread is going to be
658 stepped now; or 0 if displaced stepping this thread got queued. */
659 static int
660 displaced_step_prepare (ptid_t ptid)
661 {
662 struct cleanup *old_cleanups;
663 struct regcache *regcache = get_thread_regcache (ptid);
664 struct gdbarch *gdbarch = get_regcache_arch (regcache);
665 CORE_ADDR original, copy;
666 ULONGEST len;
667 struct displaced_step_closure *closure;
668
669 /* We should never reach this function if the architecture does not
670 support displaced stepping. */
671 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
672
673 /* For the first cut, we're displaced stepping one thread at a
674 time. */
675
676 if (!ptid_equal (displaced_step_ptid, null_ptid))
677 {
678 /* Already waiting for a displaced step to finish. Defer this
679 request and place in queue. */
680 struct displaced_step_request *req, *new_req;
681
682 if (debug_displaced)
683 fprintf_unfiltered (gdb_stdlog,
684 "displaced: defering step of %s\n",
685 target_pid_to_str (ptid));
686
687 new_req = xmalloc (sizeof (*new_req));
688 new_req->ptid = ptid;
689 new_req->next = NULL;
690
691 if (displaced_step_request_queue)
692 {
693 for (req = displaced_step_request_queue;
694 req && req->next;
695 req = req->next)
696 ;
697 req->next = new_req;
698 }
699 else
700 displaced_step_request_queue = new_req;
701
702 return 0;
703 }
704 else
705 {
706 if (debug_displaced)
707 fprintf_unfiltered (gdb_stdlog,
708 "displaced: stepping %s now\n",
709 target_pid_to_str (ptid));
710 }
711
712 displaced_step_clear ();
713
714 original = regcache_read_pc (regcache);
715
716 copy = gdbarch_displaced_step_location (gdbarch);
717 len = gdbarch_max_insn_length (gdbarch);
718
719 /* Save the original contents of the copy area. */
720 displaced_step_saved_copy = xmalloc (len);
721 old_cleanups = make_cleanup (free_current_contents,
722 &displaced_step_saved_copy);
723 read_memory (copy, displaced_step_saved_copy, len);
724 if (debug_displaced)
725 {
726 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
727 paddr_nz (copy));
728 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
729 };
730
731 closure = gdbarch_displaced_step_copy_insn (gdbarch,
732 original, copy, regcache);
733
734 /* We don't support the fully-simulated case at present. */
735 gdb_assert (closure);
736
737 make_cleanup (cleanup_displaced_step_closure, closure);
738
739 /* Resume execution at the copy. */
740 regcache_write_pc (regcache, copy);
741
742 discard_cleanups (old_cleanups);
743
744 if (debug_displaced)
745 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
746 paddr_nz (copy));
747
748 /* Save the information we need to fix things up if the step
749 succeeds. */
750 displaced_step_ptid = ptid;
751 displaced_step_gdbarch = gdbarch;
752 displaced_step_closure = closure;
753 displaced_step_original = original;
754 displaced_step_copy = copy;
755 return 1;
756 }
757
758 static void
759 displaced_step_clear_cleanup (void *ignore)
760 {
761 displaced_step_clear ();
762 }
763
764 static void
765 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
766 {
767 struct cleanup *ptid_cleanup = save_inferior_ptid ();
768 inferior_ptid = ptid;
769 write_memory (memaddr, myaddr, len);
770 do_cleanups (ptid_cleanup);
771 }
772
773 static void
774 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
775 {
776 struct cleanup *old_cleanups;
777
778 /* Was this event for the pid we displaced? */
779 if (ptid_equal (displaced_step_ptid, null_ptid)
780 || ! ptid_equal (displaced_step_ptid, event_ptid))
781 return;
782
783 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
784
785 /* Restore the contents of the copy area. */
786 {
787 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
788 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
789 displaced_step_saved_copy, len);
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
792 paddr_nz (displaced_step_copy));
793 }
794
795 /* Did the instruction complete successfully? */
796 if (signal == TARGET_SIGNAL_TRAP)
797 {
798 /* Fix up the resulting state. */
799 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
800 displaced_step_closure,
801 displaced_step_original,
802 displaced_step_copy,
803 get_thread_regcache (displaced_step_ptid));
804 }
805 else
806 {
807 /* Since the instruction didn't complete, all we can do is
808 relocate the PC. */
809 struct regcache *regcache = get_thread_regcache (event_ptid);
810 CORE_ADDR pc = regcache_read_pc (regcache);
811 pc = displaced_step_original + (pc - displaced_step_copy);
812 regcache_write_pc (regcache, pc);
813 }
814
815 do_cleanups (old_cleanups);
816
817 /* Are there any pending displaced stepping requests? If so, run
818 one now. */
819 if (displaced_step_request_queue)
820 {
821 struct displaced_step_request *head;
822 ptid_t ptid;
823
824 head = displaced_step_request_queue;
825 ptid = head->ptid;
826 displaced_step_request_queue = head->next;
827 xfree (head);
828
829 if (debug_displaced)
830 fprintf_unfiltered (gdb_stdlog,
831 "displaced: stepping queued %s now\n",
832 target_pid_to_str (ptid));
833
834
835 displaced_step_ptid = null_ptid;
836 displaced_step_prepare (ptid);
837 target_resume (ptid, 1, TARGET_SIGNAL_0);
838 }
839 }
840
841 \f
842 /* Resuming. */
843
844 /* Things to clean up if we QUIT out of resume (). */
845 static void
846 resume_cleanups (void *ignore)
847 {
848 normal_stop ();
849 }
850
851 static const char schedlock_off[] = "off";
852 static const char schedlock_on[] = "on";
853 static const char schedlock_step[] = "step";
854 static const char *scheduler_enums[] = {
855 schedlock_off,
856 schedlock_on,
857 schedlock_step,
858 NULL
859 };
860 static const char *scheduler_mode = schedlock_off;
861 static void
862 show_scheduler_mode (struct ui_file *file, int from_tty,
863 struct cmd_list_element *c, const char *value)
864 {
865 fprintf_filtered (file, _("\
866 Mode for locking scheduler during execution is \"%s\".\n"),
867 value);
868 }
869
870 static void
871 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
872 {
873 if (!target_can_lock_scheduler)
874 {
875 scheduler_mode = schedlock_off;
876 error (_("Target '%s' cannot support this command."), target_shortname);
877 }
878 }
879
880
881 /* Resume the inferior, but allow a QUIT. This is useful if the user
882 wants to interrupt some lengthy single-stepping operation
883 (for child processes, the SIGINT goes to the inferior, and so
884 we get a SIGINT random_signal, but for remote debugging and perhaps
885 other targets, that's not true).
886
887 STEP nonzero if we should step (zero to continue instead).
888 SIG is the signal to give the inferior (zero for none). */
889 void
890 resume (int step, enum target_signal sig)
891 {
892 int should_resume = 1;
893 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
894 struct regcache *regcache = get_current_regcache ();
895 struct gdbarch *gdbarch = get_regcache_arch (regcache);
896 CORE_ADDR pc = regcache_read_pc (regcache);
897 QUIT;
898
899 if (debug_infrun)
900 fprintf_unfiltered (gdb_stdlog,
901 "infrun: resume (step=%d, signal=%d), "
902 "stepping_over_breakpoint=%d\n",
903 step, sig, stepping_over_breakpoint);
904
905 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
906 over an instruction that causes a page fault without triggering
907 a hardware watchpoint. The kernel properly notices that it shouldn't
908 stop, because the hardware watchpoint is not triggered, but it forgets
909 the step request and continues the program normally.
910 Work around the problem by removing hardware watchpoints if a step is
911 requested, GDB will check for a hardware watchpoint trigger after the
912 step anyway. */
913 if (CANNOT_STEP_HW_WATCHPOINTS && step)
914 remove_hw_watchpoints ();
915
916
917 /* Normally, by the time we reach `resume', the breakpoints are either
918 removed or inserted, as appropriate. The exception is if we're sitting
919 at a permanent breakpoint; we need to step over it, but permanent
920 breakpoints can't be removed. So we have to test for it here. */
921 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
922 {
923 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
924 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
925 else
926 error (_("\
927 The program is stopped at a permanent breakpoint, but GDB does not know\n\
928 how to step past a permanent breakpoint on this architecture. Try using\n\
929 a command like `return' or `jump' to continue execution."));
930 }
931
932 /* If enabled, step over breakpoints by executing a copy of the
933 instruction at a different address.
934
935 We can't use displaced stepping when we have a signal to deliver;
936 the comments for displaced_step_prepare explain why. The
937 comments in the handle_inferior event for dealing with 'random
938 signals' explain what we do instead. */
939 if (use_displaced_stepping (gdbarch)
940 && stepping_over_breakpoint
941 && sig == TARGET_SIGNAL_0)
942 {
943 if (!displaced_step_prepare (inferior_ptid))
944 /* Got placed in displaced stepping queue. Will be resumed
945 later when all the currently queued displaced stepping
946 requests finish. */
947 return;
948 }
949
950 if (step && gdbarch_software_single_step_p (gdbarch))
951 {
952 /* Do it the hard way, w/temp breakpoints */
953 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
954 {
955 /* ...and don't ask hardware to do it. */
956 step = 0;
957 /* and do not pull these breakpoints until after a `wait' in
958 `wait_for_inferior' */
959 singlestep_breakpoints_inserted_p = 1;
960 singlestep_ptid = inferior_ptid;
961 singlestep_pc = pc;
962 }
963 }
964
965 /* If there were any forks/vforks/execs that were caught and are
966 now to be followed, then do so. */
967 switch (pending_follow.kind)
968 {
969 case TARGET_WAITKIND_FORKED:
970 case TARGET_WAITKIND_VFORKED:
971 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
972 if (follow_fork ())
973 should_resume = 0;
974 break;
975
976 case TARGET_WAITKIND_EXECD:
977 /* follow_exec is called as soon as the exec event is seen. */
978 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
979 break;
980
981 default:
982 break;
983 }
984
985 /* Install inferior's terminal modes. */
986 target_terminal_inferior ();
987
988 if (should_resume)
989 {
990 ptid_t resume_ptid;
991
992 resume_ptid = RESUME_ALL; /* Default */
993
994 /* If STEP is set, it's a request to use hardware stepping
995 facilities. But in that case, we should never
996 use singlestep breakpoint. */
997 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
998
999 if (singlestep_breakpoints_inserted_p
1000 && stepping_past_singlestep_breakpoint)
1001 {
1002 /* The situation here is as follows. In thread T1 we wanted to
1003 single-step. Lacking hardware single-stepping we've
1004 set breakpoint at the PC of the next instruction -- call it
1005 P. After resuming, we've hit that breakpoint in thread T2.
1006 Now we've removed original breakpoint, inserted breakpoint
1007 at P+1, and try to step to advance T2 past breakpoint.
1008 We need to step only T2, as if T1 is allowed to freely run,
1009 it can run past P, and if other threads are allowed to run,
1010 they can hit breakpoint at P+1, and nested hits of single-step
1011 breakpoints is not something we'd want -- that's complicated
1012 to support, and has no value. */
1013 resume_ptid = inferior_ptid;
1014 }
1015
1016 if ((step || singlestep_breakpoints_inserted_p)
1017 && stepping_over_breakpoint)
1018 {
1019 /* We're allowing a thread to run past a breakpoint it has
1020 hit, by single-stepping the thread with the breakpoint
1021 removed. In which case, we need to single-step only this
1022 thread, and keep others stopped, as they can miss this
1023 breakpoint if allowed to run.
1024
1025 The current code actually removes all breakpoints when
1026 doing this, not just the one being stepped over, so if we
1027 let other threads run, we can actually miss any
1028 breakpoint, not just the one at PC. */
1029 resume_ptid = inferior_ptid;
1030 }
1031
1032 if ((scheduler_mode == schedlock_on)
1033 || (scheduler_mode == schedlock_step
1034 && (step || singlestep_breakpoints_inserted_p)))
1035 {
1036 /* User-settable 'scheduler' mode requires solo thread resume. */
1037 resume_ptid = inferior_ptid;
1038 }
1039
1040 if (gdbarch_cannot_step_breakpoint (gdbarch))
1041 {
1042 /* Most targets can step a breakpoint instruction, thus
1043 executing it normally. But if this one cannot, just
1044 continue and we will hit it anyway. */
1045 if (step && breakpoint_inserted_here_p (pc))
1046 step = 0;
1047 }
1048
1049 if (debug_displaced
1050 && use_displaced_stepping (gdbarch)
1051 && stepping_over_breakpoint)
1052 {
1053 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1054 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1055 gdb_byte buf[4];
1056
1057 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1058 paddr_nz (actual_pc));
1059 read_memory (actual_pc, buf, sizeof (buf));
1060 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1061 }
1062
1063 target_resume (resume_ptid, step, sig);
1064 }
1065
1066 discard_cleanups (old_cleanups);
1067 }
1068 \f
1069 /* Proceeding. */
1070
1071 /* Clear out all variables saying what to do when inferior is continued.
1072 First do this, then set the ones you want, then call `proceed'. */
1073
1074 void
1075 clear_proceed_status (void)
1076 {
1077 stepping_over_breakpoint = 0;
1078 step_range_start = 0;
1079 step_range_end = 0;
1080 step_frame_id = null_frame_id;
1081 step_over_calls = STEP_OVER_UNDEBUGGABLE;
1082 stop_after_trap = 0;
1083 stop_soon = NO_STOP_QUIETLY;
1084 proceed_to_finish = 0;
1085 breakpoint_proceeded = 1; /* We're about to proceed... */
1086
1087 if (stop_registers)
1088 {
1089 regcache_xfree (stop_registers);
1090 stop_registers = NULL;
1091 }
1092
1093 /* Discard any remaining commands or status from previous stop. */
1094 bpstat_clear (&stop_bpstat);
1095 }
1096
1097 /* This should be suitable for any targets that support threads. */
1098
1099 static int
1100 prepare_to_proceed (int step)
1101 {
1102 ptid_t wait_ptid;
1103 struct target_waitstatus wait_status;
1104
1105 /* Get the last target status returned by target_wait(). */
1106 get_last_target_status (&wait_ptid, &wait_status);
1107
1108 /* Make sure we were stopped at a breakpoint. */
1109 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1110 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1111 {
1112 return 0;
1113 }
1114
1115 /* Switched over from WAIT_PID. */
1116 if (!ptid_equal (wait_ptid, minus_one_ptid)
1117 && !ptid_equal (inferior_ptid, wait_ptid))
1118 {
1119 struct regcache *regcache = get_thread_regcache (wait_ptid);
1120
1121 if (breakpoint_here_p (regcache_read_pc (regcache)))
1122 {
1123 /* If stepping, remember current thread to switch back to. */
1124 if (step)
1125 deferred_step_ptid = inferior_ptid;
1126
1127 /* Switch back to WAIT_PID thread. */
1128 switch_to_thread (wait_ptid);
1129
1130 /* We return 1 to indicate that there is a breakpoint here,
1131 so we need to step over it before continuing to avoid
1132 hitting it straight away. */
1133 return 1;
1134 }
1135 }
1136
1137 return 0;
1138 }
1139
1140 /* Record the pc of the program the last time it stopped. This is
1141 just used internally by wait_for_inferior, but need to be preserved
1142 over calls to it and cleared when the inferior is started. */
1143 static CORE_ADDR prev_pc;
1144
1145 /* Basic routine for continuing the program in various fashions.
1146
1147 ADDR is the address to resume at, or -1 for resume where stopped.
1148 SIGGNAL is the signal to give it, or 0 for none,
1149 or -1 for act according to how it stopped.
1150 STEP is nonzero if should trap after one instruction.
1151 -1 means return after that and print nothing.
1152 You should probably set various step_... variables
1153 before calling here, if you are stepping.
1154
1155 You should call clear_proceed_status before calling proceed. */
1156
1157 void
1158 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1159 {
1160 struct regcache *regcache = get_current_regcache ();
1161 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1162 CORE_ADDR pc = regcache_read_pc (regcache);
1163 int oneproc = 0;
1164
1165 if (step > 0)
1166 step_start_function = find_pc_function (pc);
1167 if (step < 0)
1168 stop_after_trap = 1;
1169
1170 if (addr == (CORE_ADDR) -1)
1171 {
1172 if (pc == stop_pc && breakpoint_here_p (pc))
1173 /* There is a breakpoint at the address we will resume at,
1174 step one instruction before inserting breakpoints so that
1175 we do not stop right away (and report a second hit at this
1176 breakpoint). */
1177 oneproc = 1;
1178 else if (gdbarch_single_step_through_delay_p (gdbarch)
1179 && gdbarch_single_step_through_delay (gdbarch,
1180 get_current_frame ()))
1181 /* We stepped onto an instruction that needs to be stepped
1182 again before re-inserting the breakpoint, do so. */
1183 oneproc = 1;
1184 }
1185 else
1186 {
1187 regcache_write_pc (regcache, addr);
1188 }
1189
1190 if (debug_infrun)
1191 fprintf_unfiltered (gdb_stdlog,
1192 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1193 paddr_nz (addr), siggnal, step);
1194
1195 /* In a multi-threaded task we may select another thread
1196 and then continue or step.
1197
1198 But if the old thread was stopped at a breakpoint, it
1199 will immediately cause another breakpoint stop without
1200 any execution (i.e. it will report a breakpoint hit
1201 incorrectly). So we must step over it first.
1202
1203 prepare_to_proceed checks the current thread against the thread
1204 that reported the most recent event. If a step-over is required
1205 it returns TRUE and sets the current thread to the old thread. */
1206 if (prepare_to_proceed (step))
1207 oneproc = 1;
1208
1209 if (oneproc)
1210 {
1211 stepping_over_breakpoint = 1;
1212 /* If displaced stepping is enabled, we can step over the
1213 breakpoint without hitting it, so leave all breakpoints
1214 inserted. Otherwise we need to disable all breakpoints, step
1215 one instruction, and then re-add them when that step is
1216 finished. */
1217 if (!use_displaced_stepping (gdbarch))
1218 remove_breakpoints ();
1219 }
1220
1221 /* We can insert breakpoints if we're not trying to step over one,
1222 or if we are stepping over one but we're using displaced stepping
1223 to do so. */
1224 if (! stepping_over_breakpoint || use_displaced_stepping (gdbarch))
1225 insert_breakpoints ();
1226
1227 if (siggnal != TARGET_SIGNAL_DEFAULT)
1228 stop_signal = siggnal;
1229 /* If this signal should not be seen by program,
1230 give it zero. Used for debugging signals. */
1231 else if (!signal_program[stop_signal])
1232 stop_signal = TARGET_SIGNAL_0;
1233
1234 annotate_starting ();
1235
1236 /* Make sure that output from GDB appears before output from the
1237 inferior. */
1238 gdb_flush (gdb_stdout);
1239
1240 /* Refresh prev_pc value just prior to resuming. This used to be
1241 done in stop_stepping, however, setting prev_pc there did not handle
1242 scenarios such as inferior function calls or returning from
1243 a function via the return command. In those cases, the prev_pc
1244 value was not set properly for subsequent commands. The prev_pc value
1245 is used to initialize the starting line number in the ecs. With an
1246 invalid value, the gdb next command ends up stopping at the position
1247 represented by the next line table entry past our start position.
1248 On platforms that generate one line table entry per line, this
1249 is not a problem. However, on the ia64, the compiler generates
1250 extraneous line table entries that do not increase the line number.
1251 When we issue the gdb next command on the ia64 after an inferior call
1252 or a return command, we often end up a few instructions forward, still
1253 within the original line we started.
1254
1255 An attempt was made to have init_execution_control_state () refresh
1256 the prev_pc value before calculating the line number. This approach
1257 did not work because on platforms that use ptrace, the pc register
1258 cannot be read unless the inferior is stopped. At that point, we
1259 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1260 call can fail. Setting the prev_pc value here ensures the value is
1261 updated correctly when the inferior is stopped. */
1262 prev_pc = regcache_read_pc (get_current_regcache ());
1263
1264 /* Resume inferior. */
1265 resume (oneproc || step || bpstat_should_step (), stop_signal);
1266
1267 /* Wait for it to stop (if not standalone)
1268 and in any case decode why it stopped, and act accordingly. */
1269 /* Do this only if we are not using the event loop, or if the target
1270 does not support asynchronous execution. */
1271 if (!target_can_async_p ())
1272 {
1273 wait_for_inferior (0);
1274 normal_stop ();
1275 }
1276 }
1277 \f
1278
1279 /* Start remote-debugging of a machine over a serial link. */
1280
1281 void
1282 start_remote (int from_tty)
1283 {
1284 init_wait_for_inferior ();
1285 stop_soon = STOP_QUIETLY_REMOTE;
1286 stepping_over_breakpoint = 0;
1287
1288 /* Always go on waiting for the target, regardless of the mode. */
1289 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1290 indicate to wait_for_inferior that a target should timeout if
1291 nothing is returned (instead of just blocking). Because of this,
1292 targets expecting an immediate response need to, internally, set
1293 things up so that the target_wait() is forced to eventually
1294 timeout. */
1295 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1296 differentiate to its caller what the state of the target is after
1297 the initial open has been performed. Here we're assuming that
1298 the target has stopped. It should be possible to eventually have
1299 target_open() return to the caller an indication that the target
1300 is currently running and GDB state should be set to the same as
1301 for an async run. */
1302 wait_for_inferior (0);
1303
1304 /* Now that the inferior has stopped, do any bookkeeping like
1305 loading shared libraries. We want to do this before normal_stop,
1306 so that the displayed frame is up to date. */
1307 post_create_inferior (&current_target, from_tty);
1308
1309 normal_stop ();
1310 }
1311
1312 /* Initialize static vars when a new inferior begins. */
1313
1314 void
1315 init_wait_for_inferior (void)
1316 {
1317 /* These are meaningless until the first time through wait_for_inferior. */
1318 prev_pc = 0;
1319
1320 breakpoint_init_inferior (inf_starting);
1321
1322 /* Don't confuse first call to proceed(). */
1323 stop_signal = TARGET_SIGNAL_0;
1324
1325 /* The first resume is not following a fork/vfork/exec. */
1326 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1327
1328 clear_proceed_status ();
1329
1330 stepping_past_singlestep_breakpoint = 0;
1331 deferred_step_ptid = null_ptid;
1332
1333 target_last_wait_ptid = minus_one_ptid;
1334
1335 displaced_step_clear ();
1336 }
1337
1338 \f
1339 /* This enum encodes possible reasons for doing a target_wait, so that
1340 wfi can call target_wait in one place. (Ultimately the call will be
1341 moved out of the infinite loop entirely.) */
1342
1343 enum infwait_states
1344 {
1345 infwait_normal_state,
1346 infwait_thread_hop_state,
1347 infwait_step_watch_state,
1348 infwait_nonstep_watch_state
1349 };
1350
1351 /* Why did the inferior stop? Used to print the appropriate messages
1352 to the interface from within handle_inferior_event(). */
1353 enum inferior_stop_reason
1354 {
1355 /* Step, next, nexti, stepi finished. */
1356 END_STEPPING_RANGE,
1357 /* Inferior terminated by signal. */
1358 SIGNAL_EXITED,
1359 /* Inferior exited. */
1360 EXITED,
1361 /* Inferior received signal, and user asked to be notified. */
1362 SIGNAL_RECEIVED
1363 };
1364
1365 /* This structure contains what used to be local variables in
1366 wait_for_inferior. Probably many of them can return to being
1367 locals in handle_inferior_event. */
1368
1369 struct execution_control_state
1370 {
1371 struct target_waitstatus ws;
1372 struct target_waitstatus *wp;
1373 /* Should we step over breakpoint next time keep_going
1374 is called? */
1375 int stepping_over_breakpoint;
1376 int random_signal;
1377 CORE_ADDR stop_func_start;
1378 CORE_ADDR stop_func_end;
1379 char *stop_func_name;
1380 struct symtab_and_line sal;
1381 int current_line;
1382 struct symtab *current_symtab;
1383 ptid_t ptid;
1384 ptid_t saved_inferior_ptid;
1385 int step_after_step_resume_breakpoint;
1386 int stepping_through_solib_after_catch;
1387 bpstat stepping_through_solib_catchpoints;
1388 int new_thread_event;
1389 struct target_waitstatus tmpstatus;
1390 enum infwait_states infwait_state;
1391 ptid_t waiton_ptid;
1392 int wait_some_more;
1393 };
1394
1395 void init_execution_control_state (struct execution_control_state *ecs);
1396
1397 void handle_inferior_event (struct execution_control_state *ecs);
1398
1399 static void step_into_function (struct execution_control_state *ecs);
1400 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1401 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1402 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1403 struct frame_id sr_id);
1404 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1405
1406 static void stop_stepping (struct execution_control_state *ecs);
1407 static void prepare_to_wait (struct execution_control_state *ecs);
1408 static void keep_going (struct execution_control_state *ecs);
1409 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1410 int stop_info);
1411
1412 /* Wait for control to return from inferior to debugger.
1413
1414 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1415 as if they were SIGTRAP signals. This can be useful during
1416 the startup sequence on some targets such as HP/UX, where
1417 we receive an EXEC event instead of the expected SIGTRAP.
1418
1419 If inferior gets a signal, we may decide to start it up again
1420 instead of returning. That is why there is a loop in this function.
1421 When this function actually returns it means the inferior
1422 should be left stopped and GDB should read more commands. */
1423
1424 void
1425 wait_for_inferior (int treat_exec_as_sigtrap)
1426 {
1427 struct cleanup *old_cleanups;
1428 struct execution_control_state ecss;
1429 struct execution_control_state *ecs;
1430
1431 if (debug_infrun)
1432 fprintf_unfiltered
1433 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1434 treat_exec_as_sigtrap);
1435
1436 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1437 &step_resume_breakpoint);
1438
1439 /* wfi still stays in a loop, so it's OK just to take the address of
1440 a local to get the ecs pointer. */
1441 ecs = &ecss;
1442
1443 /* Fill in with reasonable starting values. */
1444 init_execution_control_state (ecs);
1445
1446 /* We'll update this if & when we switch to a new thread. */
1447 previous_inferior_ptid = inferior_ptid;
1448
1449 overlay_cache_invalid = 1;
1450
1451 /* We have to invalidate the registers BEFORE calling target_wait
1452 because they can be loaded from the target while in target_wait.
1453 This makes remote debugging a bit more efficient for those
1454 targets that provide critical registers as part of their normal
1455 status mechanism. */
1456
1457 registers_changed ();
1458
1459 while (1)
1460 {
1461 if (deprecated_target_wait_hook)
1462 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1463 else
1464 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1465
1466 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1467 {
1468 xfree (ecs->ws.value.execd_pathname);
1469 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1470 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1471 }
1472
1473 /* Now figure out what to do with the result of the result. */
1474 handle_inferior_event (ecs);
1475
1476 if (!ecs->wait_some_more)
1477 break;
1478 }
1479 do_cleanups (old_cleanups);
1480 }
1481
1482 /* Asynchronous version of wait_for_inferior. It is called by the
1483 event loop whenever a change of state is detected on the file
1484 descriptor corresponding to the target. It can be called more than
1485 once to complete a single execution command. In such cases we need
1486 to keep the state in a global variable ASYNC_ECSS. If it is the
1487 last time that this function is called for a single execution
1488 command, then report to the user that the inferior has stopped, and
1489 do the necessary cleanups. */
1490
1491 struct execution_control_state async_ecss;
1492 struct execution_control_state *async_ecs;
1493
1494 void
1495 fetch_inferior_event (void *client_data)
1496 {
1497 static struct cleanup *old_cleanups;
1498
1499 async_ecs = &async_ecss;
1500
1501 if (!async_ecs->wait_some_more)
1502 {
1503 /* Fill in with reasonable starting values. */
1504 init_execution_control_state (async_ecs);
1505
1506 /* We'll update this if & when we switch to a new thread. */
1507 previous_inferior_ptid = inferior_ptid;
1508
1509 overlay_cache_invalid = 1;
1510
1511 /* We have to invalidate the registers BEFORE calling target_wait
1512 because they can be loaded from the target while in target_wait.
1513 This makes remote debugging a bit more efficient for those
1514 targets that provide critical registers as part of their normal
1515 status mechanism. */
1516
1517 registers_changed ();
1518 }
1519
1520 if (deprecated_target_wait_hook)
1521 async_ecs->ptid =
1522 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1523 else
1524 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1525
1526 /* Now figure out what to do with the result of the result. */
1527 handle_inferior_event (async_ecs);
1528
1529 if (!async_ecs->wait_some_more)
1530 {
1531 delete_step_resume_breakpoint (&step_resume_breakpoint);
1532
1533 normal_stop ();
1534 if (step_multi && stop_step)
1535 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1536 else
1537 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1538 }
1539 }
1540
1541 /* Prepare an execution control state for looping through a
1542 wait_for_inferior-type loop. */
1543
1544 void
1545 init_execution_control_state (struct execution_control_state *ecs)
1546 {
1547 ecs->stepping_over_breakpoint = 0;
1548 ecs->random_signal = 0;
1549 ecs->step_after_step_resume_breakpoint = 0;
1550 ecs->stepping_through_solib_after_catch = 0;
1551 ecs->stepping_through_solib_catchpoints = NULL;
1552 ecs->sal = find_pc_line (prev_pc, 0);
1553 ecs->current_line = ecs->sal.line;
1554 ecs->current_symtab = ecs->sal.symtab;
1555 ecs->infwait_state = infwait_normal_state;
1556 ecs->waiton_ptid = pid_to_ptid (-1);
1557 ecs->wp = &(ecs->ws);
1558 }
1559
1560 /* Return the cached copy of the last pid/waitstatus returned by
1561 target_wait()/deprecated_target_wait_hook(). The data is actually
1562 cached by handle_inferior_event(), which gets called immediately
1563 after target_wait()/deprecated_target_wait_hook(). */
1564
1565 void
1566 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1567 {
1568 *ptidp = target_last_wait_ptid;
1569 *status = target_last_waitstatus;
1570 }
1571
1572 void
1573 nullify_last_target_wait_ptid (void)
1574 {
1575 target_last_wait_ptid = minus_one_ptid;
1576 }
1577
1578 /* Switch thread contexts, maintaining "infrun state". */
1579
1580 static void
1581 context_switch (struct execution_control_state *ecs)
1582 {
1583 /* Caution: it may happen that the new thread (or the old one!)
1584 is not in the thread list. In this case we must not attempt
1585 to "switch context", or we run the risk that our context may
1586 be lost. This may happen as a result of the target module
1587 mishandling thread creation. */
1588
1589 if (debug_infrun)
1590 {
1591 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1592 target_pid_to_str (inferior_ptid));
1593 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1594 target_pid_to_str (ecs->ptid));
1595 }
1596
1597 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1598 { /* Perform infrun state context switch: */
1599 /* Save infrun state for the old thread. */
1600 save_infrun_state (inferior_ptid, prev_pc,
1601 stepping_over_breakpoint, step_resume_breakpoint,
1602 step_range_start,
1603 step_range_end, &step_frame_id,
1604 ecs->stepping_over_breakpoint,
1605 ecs->stepping_through_solib_after_catch,
1606 ecs->stepping_through_solib_catchpoints,
1607 ecs->current_line, ecs->current_symtab);
1608
1609 /* Load infrun state for the new thread. */
1610 load_infrun_state (ecs->ptid, &prev_pc,
1611 &stepping_over_breakpoint, &step_resume_breakpoint,
1612 &step_range_start,
1613 &step_range_end, &step_frame_id,
1614 &ecs->stepping_over_breakpoint,
1615 &ecs->stepping_through_solib_after_catch,
1616 &ecs->stepping_through_solib_catchpoints,
1617 &ecs->current_line, &ecs->current_symtab);
1618 }
1619
1620 switch_to_thread (ecs->ptid);
1621 }
1622
1623 static void
1624 adjust_pc_after_break (struct execution_control_state *ecs)
1625 {
1626 struct regcache *regcache = get_thread_regcache (ecs->ptid);
1627 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1628 CORE_ADDR breakpoint_pc;
1629
1630 /* If this target does not decrement the PC after breakpoints, then
1631 we have nothing to do. */
1632 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
1633 return;
1634
1635 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1636 we aren't, just return.
1637
1638 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1639 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1640 implemented by software breakpoints should be handled through the normal
1641 breakpoint layer.
1642
1643 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1644 different signals (SIGILL or SIGEMT for instance), but it is less
1645 clear where the PC is pointing afterwards. It may not match
1646 gdbarch_decr_pc_after_break. I don't know any specific target that
1647 generates these signals at breakpoints (the code has been in GDB since at
1648 least 1992) so I can not guess how to handle them here.
1649
1650 In earlier versions of GDB, a target with
1651 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1652 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1653 target with both of these set in GDB history, and it seems unlikely to be
1654 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1655
1656 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1657 return;
1658
1659 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1660 return;
1661
1662 /* Find the location where (if we've hit a breakpoint) the
1663 breakpoint would be. */
1664 breakpoint_pc = regcache_read_pc (regcache)
1665 - gdbarch_decr_pc_after_break (gdbarch);
1666
1667 /* Check whether there actually is a software breakpoint inserted
1668 at that location. */
1669 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1670 {
1671 /* When using hardware single-step, a SIGTRAP is reported for both
1672 a completed single-step and a software breakpoint. Need to
1673 differentiate between the two, as the latter needs adjusting
1674 but the former does not.
1675
1676 The SIGTRAP can be due to a completed hardware single-step only if
1677 - we didn't insert software single-step breakpoints
1678 - the thread to be examined is still the current thread
1679 - this thread is currently being stepped
1680
1681 If any of these events did not occur, we must have stopped due
1682 to hitting a software breakpoint, and have to back up to the
1683 breakpoint address.
1684
1685 As a special case, we could have hardware single-stepped a
1686 software breakpoint. In this case (prev_pc == breakpoint_pc),
1687 we also need to back up to the breakpoint address. */
1688
1689 if (singlestep_breakpoints_inserted_p
1690 || !ptid_equal (ecs->ptid, inferior_ptid)
1691 || !currently_stepping (ecs)
1692 || prev_pc == breakpoint_pc)
1693 regcache_write_pc (regcache, breakpoint_pc);
1694 }
1695 }
1696
1697 /* Given an execution control state that has been freshly filled in
1698 by an event from the inferior, figure out what it means and take
1699 appropriate action. */
1700
1701 void
1702 handle_inferior_event (struct execution_control_state *ecs)
1703 {
1704 int sw_single_step_trap_p = 0;
1705 int stopped_by_watchpoint;
1706 int stepped_after_stopped_by_watchpoint = 0;
1707
1708 /* Cache the last pid/waitstatus. */
1709 target_last_wait_ptid = ecs->ptid;
1710 target_last_waitstatus = *ecs->wp;
1711
1712 /* Always clear state belonging to the previous time we stopped. */
1713 stop_stack_dummy = 0;
1714
1715 adjust_pc_after_break (ecs);
1716
1717 switch (ecs->infwait_state)
1718 {
1719 case infwait_thread_hop_state:
1720 if (debug_infrun)
1721 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1722 /* Cancel the waiton_ptid. */
1723 ecs->waiton_ptid = pid_to_ptid (-1);
1724 break;
1725
1726 case infwait_normal_state:
1727 if (debug_infrun)
1728 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1729 break;
1730
1731 case infwait_step_watch_state:
1732 if (debug_infrun)
1733 fprintf_unfiltered (gdb_stdlog,
1734 "infrun: infwait_step_watch_state\n");
1735
1736 stepped_after_stopped_by_watchpoint = 1;
1737 break;
1738
1739 case infwait_nonstep_watch_state:
1740 if (debug_infrun)
1741 fprintf_unfiltered (gdb_stdlog,
1742 "infrun: infwait_nonstep_watch_state\n");
1743 insert_breakpoints ();
1744
1745 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1746 handle things like signals arriving and other things happening
1747 in combination correctly? */
1748 stepped_after_stopped_by_watchpoint = 1;
1749 break;
1750
1751 default:
1752 internal_error (__FILE__, __LINE__, _("bad switch"));
1753 }
1754 ecs->infwait_state = infwait_normal_state;
1755
1756 reinit_frame_cache ();
1757
1758 /* If it's a new process, add it to the thread database */
1759
1760 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1761 && !ptid_equal (ecs->ptid, minus_one_ptid)
1762 && !in_thread_list (ecs->ptid));
1763
1764 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1765 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1766 add_thread (ecs->ptid);
1767
1768 switch (ecs->ws.kind)
1769 {
1770 case TARGET_WAITKIND_LOADED:
1771 if (debug_infrun)
1772 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1773 /* Ignore gracefully during startup of the inferior, as it might
1774 be the shell which has just loaded some objects, otherwise
1775 add the symbols for the newly loaded objects. Also ignore at
1776 the beginning of an attach or remote session; we will query
1777 the full list of libraries once the connection is
1778 established. */
1779 if (stop_soon == NO_STOP_QUIETLY)
1780 {
1781 /* Check for any newly added shared libraries if we're
1782 supposed to be adding them automatically. Switch
1783 terminal for any messages produced by
1784 breakpoint_re_set. */
1785 target_terminal_ours_for_output ();
1786 /* NOTE: cagney/2003-11-25: Make certain that the target
1787 stack's section table is kept up-to-date. Architectures,
1788 (e.g., PPC64), use the section table to perform
1789 operations such as address => section name and hence
1790 require the table to contain all sections (including
1791 those found in shared libraries). */
1792 /* NOTE: cagney/2003-11-25: Pass current_target and not
1793 exec_ops to SOLIB_ADD. This is because current GDB is
1794 only tooled to propagate section_table changes out from
1795 the "current_target" (see target_resize_to_sections), and
1796 not up from the exec stratum. This, of course, isn't
1797 right. "infrun.c" should only interact with the
1798 exec/process stratum, instead relying on the target stack
1799 to propagate relevant changes (stop, section table
1800 changed, ...) up to other layers. */
1801 #ifdef SOLIB_ADD
1802 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1803 #else
1804 solib_add (NULL, 0, &current_target, auto_solib_add);
1805 #endif
1806 target_terminal_inferior ();
1807
1808 /* If requested, stop when the dynamic linker notifies
1809 gdb of events. This allows the user to get control
1810 and place breakpoints in initializer routines for
1811 dynamically loaded objects (among other things). */
1812 if (stop_on_solib_events)
1813 {
1814 stop_stepping (ecs);
1815 return;
1816 }
1817
1818 /* NOTE drow/2007-05-11: This might be a good place to check
1819 for "catch load". */
1820 }
1821
1822 /* If we are skipping through a shell, or through shared library
1823 loading that we aren't interested in, resume the program. If
1824 we're running the program normally, also resume. But stop if
1825 we're attaching or setting up a remote connection. */
1826 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1827 {
1828 /* Loading of shared libraries might have changed breakpoint
1829 addresses. Make sure new breakpoints are inserted. */
1830 if (stop_soon == NO_STOP_QUIETLY
1831 && !breakpoints_always_inserted_mode ())
1832 insert_breakpoints ();
1833 resume (0, TARGET_SIGNAL_0);
1834 prepare_to_wait (ecs);
1835 return;
1836 }
1837
1838 break;
1839
1840 case TARGET_WAITKIND_SPURIOUS:
1841 if (debug_infrun)
1842 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1843 resume (0, TARGET_SIGNAL_0);
1844 prepare_to_wait (ecs);
1845 return;
1846
1847 case TARGET_WAITKIND_EXITED:
1848 if (debug_infrun)
1849 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1850 target_terminal_ours (); /* Must do this before mourn anyway */
1851 print_stop_reason (EXITED, ecs->ws.value.integer);
1852
1853 /* Record the exit code in the convenience variable $_exitcode, so
1854 that the user can inspect this again later. */
1855 set_internalvar (lookup_internalvar ("_exitcode"),
1856 value_from_longest (builtin_type_int,
1857 (LONGEST) ecs->ws.value.integer));
1858 gdb_flush (gdb_stdout);
1859 target_mourn_inferior ();
1860 singlestep_breakpoints_inserted_p = 0;
1861 stop_print_frame = 0;
1862 stop_stepping (ecs);
1863 return;
1864
1865 case TARGET_WAITKIND_SIGNALLED:
1866 if (debug_infrun)
1867 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1868 stop_print_frame = 0;
1869 stop_signal = ecs->ws.value.sig;
1870 target_terminal_ours (); /* Must do this before mourn anyway */
1871
1872 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1873 reach here unless the inferior is dead. However, for years
1874 target_kill() was called here, which hints that fatal signals aren't
1875 really fatal on some systems. If that's true, then some changes
1876 may be needed. */
1877 target_mourn_inferior ();
1878
1879 print_stop_reason (SIGNAL_EXITED, stop_signal);
1880 singlestep_breakpoints_inserted_p = 0;
1881 stop_stepping (ecs);
1882 return;
1883
1884 /* The following are the only cases in which we keep going;
1885 the above cases end in a continue or goto. */
1886 case TARGET_WAITKIND_FORKED:
1887 case TARGET_WAITKIND_VFORKED:
1888 if (debug_infrun)
1889 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1890 stop_signal = TARGET_SIGNAL_TRAP;
1891 pending_follow.kind = ecs->ws.kind;
1892
1893 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1894 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1895
1896 if (!ptid_equal (ecs->ptid, inferior_ptid))
1897 {
1898 context_switch (ecs);
1899 reinit_frame_cache ();
1900 }
1901
1902 stop_pc = read_pc ();
1903
1904 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1905
1906 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1907
1908 /* If no catchpoint triggered for this, then keep going. */
1909 if (ecs->random_signal)
1910 {
1911 stop_signal = TARGET_SIGNAL_0;
1912 keep_going (ecs);
1913 return;
1914 }
1915 goto process_event_stop_test;
1916
1917 case TARGET_WAITKIND_EXECD:
1918 if (debug_infrun)
1919 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1920 stop_signal = TARGET_SIGNAL_TRAP;
1921
1922 pending_follow.execd_pathname =
1923 savestring (ecs->ws.value.execd_pathname,
1924 strlen (ecs->ws.value.execd_pathname));
1925
1926 /* This causes the eventpoints and symbol table to be reset. Must
1927 do this now, before trying to determine whether to stop. */
1928 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1929 xfree (pending_follow.execd_pathname);
1930
1931 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
1932 ecs->saved_inferior_ptid = inferior_ptid;
1933 inferior_ptid = ecs->ptid;
1934
1935 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1936
1937 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1938 inferior_ptid = ecs->saved_inferior_ptid;
1939
1940 if (!ptid_equal (ecs->ptid, inferior_ptid))
1941 {
1942 context_switch (ecs);
1943 reinit_frame_cache ();
1944 }
1945
1946 /* If no catchpoint triggered for this, then keep going. */
1947 if (ecs->random_signal)
1948 {
1949 stop_signal = TARGET_SIGNAL_0;
1950 keep_going (ecs);
1951 return;
1952 }
1953 goto process_event_stop_test;
1954
1955 /* Be careful not to try to gather much state about a thread
1956 that's in a syscall. It's frequently a losing proposition. */
1957 case TARGET_WAITKIND_SYSCALL_ENTRY:
1958 if (debug_infrun)
1959 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1960 resume (0, TARGET_SIGNAL_0);
1961 prepare_to_wait (ecs);
1962 return;
1963
1964 /* Before examining the threads further, step this thread to
1965 get it entirely out of the syscall. (We get notice of the
1966 event when the thread is just on the verge of exiting a
1967 syscall. Stepping one instruction seems to get it back
1968 into user code.) */
1969 case TARGET_WAITKIND_SYSCALL_RETURN:
1970 if (debug_infrun)
1971 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1972 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1973 prepare_to_wait (ecs);
1974 return;
1975
1976 case TARGET_WAITKIND_STOPPED:
1977 if (debug_infrun)
1978 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1979 stop_signal = ecs->ws.value.sig;
1980 break;
1981
1982 /* We had an event in the inferior, but we are not interested
1983 in handling it at this level. The lower layers have already
1984 done what needs to be done, if anything.
1985
1986 One of the possible circumstances for this is when the
1987 inferior produces output for the console. The inferior has
1988 not stopped, and we are ignoring the event. Another possible
1989 circumstance is any event which the lower level knows will be
1990 reported multiple times without an intervening resume. */
1991 case TARGET_WAITKIND_IGNORE:
1992 if (debug_infrun)
1993 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1994 prepare_to_wait (ecs);
1995 return;
1996 }
1997
1998 /* We may want to consider not doing a resume here in order to give
1999 the user a chance to play with the new thread. It might be good
2000 to make that a user-settable option. */
2001
2002 /* At this point, all threads are stopped (happens automatically in
2003 either the OS or the native code). Therefore we need to continue
2004 all threads in order to make progress. */
2005 if (ecs->new_thread_event)
2006 {
2007 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2008 prepare_to_wait (ecs);
2009 return;
2010 }
2011
2012 /* Do we need to clean up the state of a thread that has completed a
2013 displaced single-step? (Doing so usually affects the PC, so do
2014 it here, before we set stop_pc.) */
2015 displaced_step_fixup (ecs->ptid, stop_signal);
2016
2017 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2018
2019 if (debug_infrun)
2020 {
2021 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2022 paddr_nz (stop_pc));
2023 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2024 {
2025 CORE_ADDR addr;
2026 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2027
2028 if (target_stopped_data_address (&current_target, &addr))
2029 fprintf_unfiltered (gdb_stdlog,
2030 "infrun: stopped data address = 0x%s\n",
2031 paddr_nz (addr));
2032 else
2033 fprintf_unfiltered (gdb_stdlog,
2034 "infrun: (no data address available)\n");
2035 }
2036 }
2037
2038 if (stepping_past_singlestep_breakpoint)
2039 {
2040 gdb_assert (singlestep_breakpoints_inserted_p);
2041 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2042 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2043
2044 stepping_past_singlestep_breakpoint = 0;
2045
2046 /* We've either finished single-stepping past the single-step
2047 breakpoint, or stopped for some other reason. It would be nice if
2048 we could tell, but we can't reliably. */
2049 if (stop_signal == TARGET_SIGNAL_TRAP)
2050 {
2051 if (debug_infrun)
2052 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2053 /* Pull the single step breakpoints out of the target. */
2054 remove_single_step_breakpoints ();
2055 singlestep_breakpoints_inserted_p = 0;
2056
2057 ecs->random_signal = 0;
2058
2059 ecs->ptid = saved_singlestep_ptid;
2060 context_switch (ecs);
2061 if (deprecated_context_hook)
2062 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2063
2064 resume (1, TARGET_SIGNAL_0);
2065 prepare_to_wait (ecs);
2066 return;
2067 }
2068 }
2069
2070 stepping_past_singlestep_breakpoint = 0;
2071
2072 if (!ptid_equal (deferred_step_ptid, null_ptid))
2073 {
2074 /* If we stopped for some other reason than single-stepping, ignore
2075 the fact that we were supposed to switch back. */
2076 if (stop_signal == TARGET_SIGNAL_TRAP)
2077 {
2078 if (debug_infrun)
2079 fprintf_unfiltered (gdb_stdlog,
2080 "infrun: handling deferred step\n");
2081
2082 /* Pull the single step breakpoints out of the target. */
2083 if (singlestep_breakpoints_inserted_p)
2084 {
2085 remove_single_step_breakpoints ();
2086 singlestep_breakpoints_inserted_p = 0;
2087 }
2088
2089 /* Note: We do not call context_switch at this point, as the
2090 context is already set up for stepping the original thread. */
2091 switch_to_thread (deferred_step_ptid);
2092 deferred_step_ptid = null_ptid;
2093 /* Suppress spurious "Switching to ..." message. */
2094 previous_inferior_ptid = inferior_ptid;
2095
2096 resume (1, TARGET_SIGNAL_0);
2097 prepare_to_wait (ecs);
2098 return;
2099 }
2100
2101 deferred_step_ptid = null_ptid;
2102 }
2103
2104 /* See if a thread hit a thread-specific breakpoint that was meant for
2105 another thread. If so, then step that thread past the breakpoint,
2106 and continue it. */
2107
2108 if (stop_signal == TARGET_SIGNAL_TRAP)
2109 {
2110 int thread_hop_needed = 0;
2111
2112 /* Check if a regular breakpoint has been hit before checking
2113 for a potential single step breakpoint. Otherwise, GDB will
2114 not see this breakpoint hit when stepping onto breakpoints. */
2115 if (regular_breakpoint_inserted_here_p (stop_pc))
2116 {
2117 ecs->random_signal = 0;
2118 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2119 thread_hop_needed = 1;
2120 }
2121 else if (singlestep_breakpoints_inserted_p)
2122 {
2123 /* We have not context switched yet, so this should be true
2124 no matter which thread hit the singlestep breakpoint. */
2125 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2126 if (debug_infrun)
2127 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2128 "trap for %s\n",
2129 target_pid_to_str (ecs->ptid));
2130
2131 ecs->random_signal = 0;
2132 /* The call to in_thread_list is necessary because PTIDs sometimes
2133 change when we go from single-threaded to multi-threaded. If
2134 the singlestep_ptid is still in the list, assume that it is
2135 really different from ecs->ptid. */
2136 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2137 && in_thread_list (singlestep_ptid))
2138 {
2139 /* If the PC of the thread we were trying to single-step
2140 has changed, discard this event (which we were going
2141 to ignore anyway), and pretend we saw that thread
2142 trap. This prevents us continuously moving the
2143 single-step breakpoint forward, one instruction at a
2144 time. If the PC has changed, then the thread we were
2145 trying to single-step has trapped or been signalled,
2146 but the event has not been reported to GDB yet.
2147
2148 There might be some cases where this loses signal
2149 information, if a signal has arrived at exactly the
2150 same time that the PC changed, but this is the best
2151 we can do with the information available. Perhaps we
2152 should arrange to report all events for all threads
2153 when they stop, or to re-poll the remote looking for
2154 this particular thread (i.e. temporarily enable
2155 schedlock). */
2156
2157 CORE_ADDR new_singlestep_pc
2158 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2159
2160 if (new_singlestep_pc != singlestep_pc)
2161 {
2162 if (debug_infrun)
2163 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2164 " but expected thread advanced also\n");
2165
2166 /* The current context still belongs to
2167 singlestep_ptid. Don't swap here, since that's
2168 the context we want to use. Just fudge our
2169 state and continue. */
2170 ecs->ptid = singlestep_ptid;
2171 stop_pc = new_singlestep_pc;
2172 }
2173 else
2174 {
2175 if (debug_infrun)
2176 fprintf_unfiltered (gdb_stdlog,
2177 "infrun: unexpected thread\n");
2178
2179 thread_hop_needed = 1;
2180 stepping_past_singlestep_breakpoint = 1;
2181 saved_singlestep_ptid = singlestep_ptid;
2182 }
2183 }
2184 }
2185
2186 if (thread_hop_needed)
2187 {
2188 int remove_status = 0;
2189
2190 if (debug_infrun)
2191 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2192
2193 /* Saw a breakpoint, but it was hit by the wrong thread.
2194 Just continue. */
2195
2196 if (singlestep_breakpoints_inserted_p)
2197 {
2198 /* Pull the single step breakpoints out of the target. */
2199 remove_single_step_breakpoints ();
2200 singlestep_breakpoints_inserted_p = 0;
2201 }
2202
2203 /* If the arch can displace step, don't remove the
2204 breakpoints. */
2205 if (!use_displaced_stepping (current_gdbarch))
2206 remove_status = remove_breakpoints ();
2207
2208 /* Did we fail to remove breakpoints? If so, try
2209 to set the PC past the bp. (There's at least
2210 one situation in which we can fail to remove
2211 the bp's: On HP-UX's that use ttrace, we can't
2212 change the address space of a vforking child
2213 process until the child exits (well, okay, not
2214 then either :-) or execs. */
2215 if (remove_status != 0)
2216 error (_("Cannot step over breakpoint hit in wrong thread"));
2217 else
2218 { /* Single step */
2219 if (!ptid_equal (inferior_ptid, ecs->ptid))
2220 context_switch (ecs);
2221 ecs->waiton_ptid = ecs->ptid;
2222 ecs->wp = &(ecs->ws);
2223 ecs->stepping_over_breakpoint = 1;
2224
2225 ecs->infwait_state = infwait_thread_hop_state;
2226 keep_going (ecs);
2227 registers_changed ();
2228 return;
2229 }
2230 }
2231 else if (singlestep_breakpoints_inserted_p)
2232 {
2233 sw_single_step_trap_p = 1;
2234 ecs->random_signal = 0;
2235 }
2236 }
2237 else
2238 ecs->random_signal = 1;
2239
2240 /* See if something interesting happened to the non-current thread. If
2241 so, then switch to that thread. */
2242 if (!ptid_equal (ecs->ptid, inferior_ptid))
2243 {
2244 if (debug_infrun)
2245 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2246
2247 context_switch (ecs);
2248
2249 if (deprecated_context_hook)
2250 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2251 }
2252
2253 if (singlestep_breakpoints_inserted_p)
2254 {
2255 /* Pull the single step breakpoints out of the target. */
2256 remove_single_step_breakpoints ();
2257 singlestep_breakpoints_inserted_p = 0;
2258 }
2259
2260 if (stepped_after_stopped_by_watchpoint)
2261 stopped_by_watchpoint = 0;
2262 else
2263 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2264
2265 /* If necessary, step over this watchpoint. We'll be back to display
2266 it in a moment. */
2267 if (stopped_by_watchpoint
2268 && (HAVE_STEPPABLE_WATCHPOINT
2269 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2270 {
2271 /* At this point, we are stopped at an instruction which has
2272 attempted to write to a piece of memory under control of
2273 a watchpoint. The instruction hasn't actually executed
2274 yet. If we were to evaluate the watchpoint expression
2275 now, we would get the old value, and therefore no change
2276 would seem to have occurred.
2277
2278 In order to make watchpoints work `right', we really need
2279 to complete the memory write, and then evaluate the
2280 watchpoint expression. We do this by single-stepping the
2281 target.
2282
2283 It may not be necessary to disable the watchpoint to stop over
2284 it. For example, the PA can (with some kernel cooperation)
2285 single step over a watchpoint without disabling the watchpoint.
2286
2287 It is far more common to need to disable a watchpoint to step
2288 the inferior over it. If we have non-steppable watchpoints,
2289 we must disable the current watchpoint; it's simplest to
2290 disable all watchpoints and breakpoints. */
2291
2292 if (!HAVE_STEPPABLE_WATCHPOINT)
2293 remove_breakpoints ();
2294 registers_changed ();
2295 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2296 ecs->waiton_ptid = ecs->ptid;
2297 if (HAVE_STEPPABLE_WATCHPOINT)
2298 ecs->infwait_state = infwait_step_watch_state;
2299 else
2300 ecs->infwait_state = infwait_nonstep_watch_state;
2301 prepare_to_wait (ecs);
2302 return;
2303 }
2304
2305 ecs->stop_func_start = 0;
2306 ecs->stop_func_end = 0;
2307 ecs->stop_func_name = 0;
2308 /* Don't care about return value; stop_func_start and stop_func_name
2309 will both be 0 if it doesn't work. */
2310 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2311 &ecs->stop_func_start, &ecs->stop_func_end);
2312 ecs->stop_func_start
2313 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2314 ecs->stepping_over_breakpoint = 0;
2315 bpstat_clear (&stop_bpstat);
2316 stop_step = 0;
2317 stop_print_frame = 1;
2318 ecs->random_signal = 0;
2319 stopped_by_random_signal = 0;
2320
2321 if (stop_signal == TARGET_SIGNAL_TRAP
2322 && stepping_over_breakpoint
2323 && gdbarch_single_step_through_delay_p (current_gdbarch)
2324 && currently_stepping (ecs))
2325 {
2326 /* We're trying to step off a breakpoint. Turns out that we're
2327 also on an instruction that needs to be stepped multiple
2328 times before it's been fully executing. E.g., architectures
2329 with a delay slot. It needs to be stepped twice, once for
2330 the instruction and once for the delay slot. */
2331 int step_through_delay
2332 = gdbarch_single_step_through_delay (current_gdbarch,
2333 get_current_frame ());
2334 if (debug_infrun && step_through_delay)
2335 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2336 if (step_range_end == 0 && step_through_delay)
2337 {
2338 /* The user issued a continue when stopped at a breakpoint.
2339 Set up for another trap and get out of here. */
2340 ecs->stepping_over_breakpoint = 1;
2341 keep_going (ecs);
2342 return;
2343 }
2344 else if (step_through_delay)
2345 {
2346 /* The user issued a step when stopped at a breakpoint.
2347 Maybe we should stop, maybe we should not - the delay
2348 slot *might* correspond to a line of source. In any
2349 case, don't decide that here, just set
2350 ecs->stepping_over_breakpoint, making sure we
2351 single-step again before breakpoints are re-inserted. */
2352 ecs->stepping_over_breakpoint = 1;
2353 }
2354 }
2355
2356 /* Look at the cause of the stop, and decide what to do.
2357 The alternatives are:
2358 1) break; to really stop and return to the debugger,
2359 2) drop through to start up again
2360 (set ecs->stepping_over_breakpoint to 1 to single step once)
2361 3) set ecs->random_signal to 1, and the decision between 1 and 2
2362 will be made according to the signal handling tables. */
2363
2364 /* First, distinguish signals caused by the debugger from signals
2365 that have to do with the program's own actions. Note that
2366 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2367 on the operating system version. Here we detect when a SIGILL or
2368 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2369 something similar for SIGSEGV, since a SIGSEGV will be generated
2370 when we're trying to execute a breakpoint instruction on a
2371 non-executable stack. This happens for call dummy breakpoints
2372 for architectures like SPARC that place call dummies on the
2373 stack.
2374
2375 If we're doing a displaced step past a breakpoint, then the
2376 breakpoint is always inserted at the original instruction;
2377 non-standard signals can't be explained by the breakpoint. */
2378 if (stop_signal == TARGET_SIGNAL_TRAP
2379 || (! stepping_over_breakpoint
2380 && breakpoint_inserted_here_p (stop_pc)
2381 && (stop_signal == TARGET_SIGNAL_ILL
2382 || stop_signal == TARGET_SIGNAL_SEGV
2383 || stop_signal == TARGET_SIGNAL_EMT))
2384 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2385 || stop_soon == STOP_QUIETLY_REMOTE)
2386 {
2387 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2388 {
2389 if (debug_infrun)
2390 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2391 stop_print_frame = 0;
2392 stop_stepping (ecs);
2393 return;
2394 }
2395
2396 /* This is originated from start_remote(), start_inferior() and
2397 shared libraries hook functions. */
2398 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2399 {
2400 if (debug_infrun)
2401 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2402 stop_stepping (ecs);
2403 return;
2404 }
2405
2406 /* This originates from attach_command(). We need to overwrite
2407 the stop_signal here, because some kernels don't ignore a
2408 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2409 See more comments in inferior.h. On the other hand, if we
2410 get a non-SIGSTOP, report it to the user - assume the backend
2411 will handle the SIGSTOP if it should show up later. */
2412 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2413 && stop_signal == TARGET_SIGNAL_STOP)
2414 {
2415 stop_stepping (ecs);
2416 stop_signal = TARGET_SIGNAL_0;
2417 return;
2418 }
2419
2420 /* See if there is a breakpoint at the current PC. */
2421 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2422
2423 /* Following in case break condition called a
2424 function. */
2425 stop_print_frame = 1;
2426
2427 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2428 at one stage in the past included checks for an inferior
2429 function call's call dummy's return breakpoint. The original
2430 comment, that went with the test, read:
2431
2432 ``End of a stack dummy. Some systems (e.g. Sony news) give
2433 another signal besides SIGTRAP, so check here as well as
2434 above.''
2435
2436 If someone ever tries to get get call dummys on a
2437 non-executable stack to work (where the target would stop
2438 with something like a SIGSEGV), then those tests might need
2439 to be re-instated. Given, however, that the tests were only
2440 enabled when momentary breakpoints were not being used, I
2441 suspect that it won't be the case.
2442
2443 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2444 be necessary for call dummies on a non-executable stack on
2445 SPARC. */
2446
2447 if (stop_signal == TARGET_SIGNAL_TRAP)
2448 ecs->random_signal
2449 = !(bpstat_explains_signal (stop_bpstat)
2450 || stepping_over_breakpoint
2451 || (step_range_end && step_resume_breakpoint == NULL));
2452 else
2453 {
2454 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2455 if (!ecs->random_signal)
2456 stop_signal = TARGET_SIGNAL_TRAP;
2457 }
2458 }
2459
2460 /* When we reach this point, we've pretty much decided
2461 that the reason for stopping must've been a random
2462 (unexpected) signal. */
2463
2464 else
2465 ecs->random_signal = 1;
2466
2467 process_event_stop_test:
2468 /* For the program's own signals, act according to
2469 the signal handling tables. */
2470
2471 if (ecs->random_signal)
2472 {
2473 /* Signal not for debugging purposes. */
2474 int printed = 0;
2475
2476 if (debug_infrun)
2477 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2478
2479 stopped_by_random_signal = 1;
2480
2481 if (signal_print[stop_signal])
2482 {
2483 printed = 1;
2484 target_terminal_ours_for_output ();
2485 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2486 }
2487 if (signal_stop_state (stop_signal))
2488 {
2489 stop_stepping (ecs);
2490 return;
2491 }
2492 /* If not going to stop, give terminal back
2493 if we took it away. */
2494 else if (printed)
2495 target_terminal_inferior ();
2496
2497 /* Clear the signal if it should not be passed. */
2498 if (signal_program[stop_signal] == 0)
2499 stop_signal = TARGET_SIGNAL_0;
2500
2501 if (prev_pc == read_pc ()
2502 && stepping_over_breakpoint
2503 && step_resume_breakpoint == NULL)
2504 {
2505 /* We were just starting a new sequence, attempting to
2506 single-step off of a breakpoint and expecting a SIGTRAP.
2507 Instead this signal arrives. This signal will take us out
2508 of the stepping range so GDB needs to remember to, when
2509 the signal handler returns, resume stepping off that
2510 breakpoint. */
2511 /* To simplify things, "continue" is forced to use the same
2512 code paths as single-step - set a breakpoint at the
2513 signal return address and then, once hit, step off that
2514 breakpoint. */
2515 if (debug_infrun)
2516 fprintf_unfiltered (gdb_stdlog,
2517 "infrun: signal arrived while stepping over "
2518 "breakpoint\n");
2519
2520 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2521 ecs->step_after_step_resume_breakpoint = 1;
2522 keep_going (ecs);
2523 return;
2524 }
2525
2526 if (step_range_end != 0
2527 && stop_signal != TARGET_SIGNAL_0
2528 && stop_pc >= step_range_start && stop_pc < step_range_end
2529 && frame_id_eq (get_frame_id (get_current_frame ()),
2530 step_frame_id)
2531 && step_resume_breakpoint == NULL)
2532 {
2533 /* The inferior is about to take a signal that will take it
2534 out of the single step range. Set a breakpoint at the
2535 current PC (which is presumably where the signal handler
2536 will eventually return) and then allow the inferior to
2537 run free.
2538
2539 Note that this is only needed for a signal delivered
2540 while in the single-step range. Nested signals aren't a
2541 problem as they eventually all return. */
2542 if (debug_infrun)
2543 fprintf_unfiltered (gdb_stdlog,
2544 "infrun: signal may take us out of "
2545 "single-step range\n");
2546
2547 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2548 keep_going (ecs);
2549 return;
2550 }
2551
2552 /* Note: step_resume_breakpoint may be non-NULL. This occures
2553 when either there's a nested signal, or when there's a
2554 pending signal enabled just as the signal handler returns
2555 (leaving the inferior at the step-resume-breakpoint without
2556 actually executing it). Either way continue until the
2557 breakpoint is really hit. */
2558 keep_going (ecs);
2559 return;
2560 }
2561
2562 /* Handle cases caused by hitting a breakpoint. */
2563 {
2564 CORE_ADDR jmp_buf_pc;
2565 struct bpstat_what what;
2566
2567 what = bpstat_what (stop_bpstat);
2568
2569 if (what.call_dummy)
2570 {
2571 stop_stack_dummy = 1;
2572 }
2573
2574 switch (what.main_action)
2575 {
2576 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2577 /* If we hit the breakpoint at longjmp while stepping, we
2578 install a momentary breakpoint at the target of the
2579 jmp_buf. */
2580
2581 if (debug_infrun)
2582 fprintf_unfiltered (gdb_stdlog,
2583 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2584
2585 ecs->stepping_over_breakpoint = 1;
2586
2587 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2588 || !gdbarch_get_longjmp_target (current_gdbarch,
2589 get_current_frame (), &jmp_buf_pc))
2590 {
2591 if (debug_infrun)
2592 fprintf_unfiltered (gdb_stdlog, "\
2593 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
2594 keep_going (ecs);
2595 return;
2596 }
2597
2598 /* We're going to replace the current step-resume breakpoint
2599 with a longjmp-resume breakpoint. */
2600 if (step_resume_breakpoint != NULL)
2601 delete_step_resume_breakpoint (&step_resume_breakpoint);
2602
2603 /* Insert a breakpoint at resume address. */
2604 insert_longjmp_resume_breakpoint (jmp_buf_pc);
2605
2606 keep_going (ecs);
2607 return;
2608
2609 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2610 if (debug_infrun)
2611 fprintf_unfiltered (gdb_stdlog,
2612 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2613
2614 gdb_assert (step_resume_breakpoint != NULL);
2615 delete_step_resume_breakpoint (&step_resume_breakpoint);
2616
2617 stop_step = 1;
2618 print_stop_reason (END_STEPPING_RANGE, 0);
2619 stop_stepping (ecs);
2620 return;
2621
2622 case BPSTAT_WHAT_SINGLE:
2623 if (debug_infrun)
2624 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2625 ecs->stepping_over_breakpoint = 1;
2626 /* Still need to check other stuff, at least the case
2627 where we are stepping and step out of the right range. */
2628 break;
2629
2630 case BPSTAT_WHAT_STOP_NOISY:
2631 if (debug_infrun)
2632 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2633 stop_print_frame = 1;
2634
2635 /* We are about to nuke the step_resume_breakpointt via the
2636 cleanup chain, so no need to worry about it here. */
2637
2638 stop_stepping (ecs);
2639 return;
2640
2641 case BPSTAT_WHAT_STOP_SILENT:
2642 if (debug_infrun)
2643 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2644 stop_print_frame = 0;
2645
2646 /* We are about to nuke the step_resume_breakpoin via the
2647 cleanup chain, so no need to worry about it here. */
2648
2649 stop_stepping (ecs);
2650 return;
2651
2652 case BPSTAT_WHAT_STEP_RESUME:
2653 /* This proably demands a more elegant solution, but, yeah
2654 right...
2655
2656 This function's use of the simple variable
2657 step_resume_breakpoint doesn't seem to accomodate
2658 simultaneously active step-resume bp's, although the
2659 breakpoint list certainly can.
2660
2661 If we reach here and step_resume_breakpoint is already
2662 NULL, then apparently we have multiple active
2663 step-resume bp's. We'll just delete the breakpoint we
2664 stopped at, and carry on.
2665
2666 Correction: what the code currently does is delete a
2667 step-resume bp, but it makes no effort to ensure that
2668 the one deleted is the one currently stopped at. MVS */
2669
2670 if (debug_infrun)
2671 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2672
2673 if (step_resume_breakpoint == NULL)
2674 {
2675 step_resume_breakpoint =
2676 bpstat_find_step_resume_breakpoint (stop_bpstat);
2677 }
2678 delete_step_resume_breakpoint (&step_resume_breakpoint);
2679 if (ecs->step_after_step_resume_breakpoint)
2680 {
2681 /* Back when the step-resume breakpoint was inserted, we
2682 were trying to single-step off a breakpoint. Go back
2683 to doing that. */
2684 ecs->step_after_step_resume_breakpoint = 0;
2685 ecs->stepping_over_breakpoint = 1;
2686 keep_going (ecs);
2687 return;
2688 }
2689 break;
2690
2691 case BPSTAT_WHAT_CHECK_SHLIBS:
2692 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2693 {
2694 if (debug_infrun)
2695 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2696
2697 /* Check for any newly added shared libraries if we're
2698 supposed to be adding them automatically. Switch
2699 terminal for any messages produced by
2700 breakpoint_re_set. */
2701 target_terminal_ours_for_output ();
2702 /* NOTE: cagney/2003-11-25: Make certain that the target
2703 stack's section table is kept up-to-date. Architectures,
2704 (e.g., PPC64), use the section table to perform
2705 operations such as address => section name and hence
2706 require the table to contain all sections (including
2707 those found in shared libraries). */
2708 /* NOTE: cagney/2003-11-25: Pass current_target and not
2709 exec_ops to SOLIB_ADD. This is because current GDB is
2710 only tooled to propagate section_table changes out from
2711 the "current_target" (see target_resize_to_sections), and
2712 not up from the exec stratum. This, of course, isn't
2713 right. "infrun.c" should only interact with the
2714 exec/process stratum, instead relying on the target stack
2715 to propagate relevant changes (stop, section table
2716 changed, ...) up to other layers. */
2717 #ifdef SOLIB_ADD
2718 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2719 #else
2720 solib_add (NULL, 0, &current_target, auto_solib_add);
2721 #endif
2722 target_terminal_inferior ();
2723
2724 /* If requested, stop when the dynamic linker notifies
2725 gdb of events. This allows the user to get control
2726 and place breakpoints in initializer routines for
2727 dynamically loaded objects (among other things). */
2728 if (stop_on_solib_events || stop_stack_dummy)
2729 {
2730 stop_stepping (ecs);
2731 return;
2732 }
2733
2734 /* If we stopped due to an explicit catchpoint, then the
2735 (see above) call to SOLIB_ADD pulled in any symbols
2736 from a newly-loaded library, if appropriate.
2737
2738 We do want the inferior to stop, but not where it is
2739 now, which is in the dynamic linker callback. Rather,
2740 we would like it stop in the user's program, just after
2741 the call that caused this catchpoint to trigger. That
2742 gives the user a more useful vantage from which to
2743 examine their program's state. */
2744 else if (what.main_action
2745 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2746 {
2747 /* ??rehrauer: If I could figure out how to get the
2748 right return PC from here, we could just set a temp
2749 breakpoint and resume. I'm not sure we can without
2750 cracking open the dld's shared libraries and sniffing
2751 their unwind tables and text/data ranges, and that's
2752 not a terribly portable notion.
2753
2754 Until that time, we must step the inferior out of the
2755 dld callback, and also out of the dld itself (and any
2756 code or stubs in libdld.sl, such as "shl_load" and
2757 friends) until we reach non-dld code. At that point,
2758 we can stop stepping. */
2759 bpstat_get_triggered_catchpoints (stop_bpstat,
2760 &ecs->
2761 stepping_through_solib_catchpoints);
2762 ecs->stepping_through_solib_after_catch = 1;
2763
2764 /* Be sure to lift all breakpoints, so the inferior does
2765 actually step past this point... */
2766 ecs->stepping_over_breakpoint = 1;
2767 break;
2768 }
2769 else
2770 {
2771 /* We want to step over this breakpoint, then keep going. */
2772 ecs->stepping_over_breakpoint = 1;
2773 break;
2774 }
2775 }
2776 break;
2777
2778 case BPSTAT_WHAT_LAST:
2779 /* Not a real code, but listed here to shut up gcc -Wall. */
2780
2781 case BPSTAT_WHAT_KEEP_CHECKING:
2782 break;
2783 }
2784 }
2785
2786 /* We come here if we hit a breakpoint but should not
2787 stop for it. Possibly we also were stepping
2788 and should stop for that. So fall through and
2789 test for stepping. But, if not stepping,
2790 do not stop. */
2791
2792 /* Are we stepping to get the inferior out of the dynamic linker's
2793 hook (and possibly the dld itself) after catching a shlib
2794 event? */
2795 if (ecs->stepping_through_solib_after_catch)
2796 {
2797 #if defined(SOLIB_ADD)
2798 /* Have we reached our destination? If not, keep going. */
2799 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2800 {
2801 if (debug_infrun)
2802 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2803 ecs->stepping_over_breakpoint = 1;
2804 keep_going (ecs);
2805 return;
2806 }
2807 #endif
2808 if (debug_infrun)
2809 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2810 /* Else, stop and report the catchpoint(s) whose triggering
2811 caused us to begin stepping. */
2812 ecs->stepping_through_solib_after_catch = 0;
2813 bpstat_clear (&stop_bpstat);
2814 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2815 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2816 stop_print_frame = 1;
2817 stop_stepping (ecs);
2818 return;
2819 }
2820
2821 if (step_resume_breakpoint)
2822 {
2823 if (debug_infrun)
2824 fprintf_unfiltered (gdb_stdlog,
2825 "infrun: step-resume breakpoint is inserted\n");
2826
2827 /* Having a step-resume breakpoint overrides anything
2828 else having to do with stepping commands until
2829 that breakpoint is reached. */
2830 keep_going (ecs);
2831 return;
2832 }
2833
2834 if (step_range_end == 0)
2835 {
2836 if (debug_infrun)
2837 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2838 /* Likewise if we aren't even stepping. */
2839 keep_going (ecs);
2840 return;
2841 }
2842
2843 /* If stepping through a line, keep going if still within it.
2844
2845 Note that step_range_end is the address of the first instruction
2846 beyond the step range, and NOT the address of the last instruction
2847 within it! */
2848 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2849 {
2850 if (debug_infrun)
2851 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2852 paddr_nz (step_range_start),
2853 paddr_nz (step_range_end));
2854 keep_going (ecs);
2855 return;
2856 }
2857
2858 /* We stepped out of the stepping range. */
2859
2860 /* If we are stepping at the source level and entered the runtime
2861 loader dynamic symbol resolution code, we keep on single stepping
2862 until we exit the run time loader code and reach the callee's
2863 address. */
2864 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2865 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2866 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2867 #else
2868 && in_solib_dynsym_resolve_code (stop_pc)
2869 #endif
2870 )
2871 {
2872 CORE_ADDR pc_after_resolver =
2873 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2874
2875 if (debug_infrun)
2876 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2877
2878 if (pc_after_resolver)
2879 {
2880 /* Set up a step-resume breakpoint at the address
2881 indicated by SKIP_SOLIB_RESOLVER. */
2882 struct symtab_and_line sr_sal;
2883 init_sal (&sr_sal);
2884 sr_sal.pc = pc_after_resolver;
2885
2886 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2887 }
2888
2889 keep_going (ecs);
2890 return;
2891 }
2892
2893 if (step_range_end != 1
2894 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2895 || step_over_calls == STEP_OVER_ALL)
2896 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2897 {
2898 if (debug_infrun)
2899 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2900 /* The inferior, while doing a "step" or "next", has ended up in
2901 a signal trampoline (either by a signal being delivered or by
2902 the signal handler returning). Just single-step until the
2903 inferior leaves the trampoline (either by calling the handler
2904 or returning). */
2905 keep_going (ecs);
2906 return;
2907 }
2908
2909 /* Check for subroutine calls. The check for the current frame
2910 equalling the step ID is not necessary - the check of the
2911 previous frame's ID is sufficient - but it is a common case and
2912 cheaper than checking the previous frame's ID.
2913
2914 NOTE: frame_id_eq will never report two invalid frame IDs as
2915 being equal, so to get into this block, both the current and
2916 previous frame must have valid frame IDs. */
2917 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2918 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2919 {
2920 CORE_ADDR real_stop_pc;
2921
2922 if (debug_infrun)
2923 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2924
2925 if ((step_over_calls == STEP_OVER_NONE)
2926 || ((step_range_end == 1)
2927 && in_prologue (prev_pc, ecs->stop_func_start)))
2928 {
2929 /* I presume that step_over_calls is only 0 when we're
2930 supposed to be stepping at the assembly language level
2931 ("stepi"). Just stop. */
2932 /* Also, maybe we just did a "nexti" inside a prolog, so we
2933 thought it was a subroutine call but it was not. Stop as
2934 well. FENN */
2935 stop_step = 1;
2936 print_stop_reason (END_STEPPING_RANGE, 0);
2937 stop_stepping (ecs);
2938 return;
2939 }
2940
2941 if (step_over_calls == STEP_OVER_ALL)
2942 {
2943 /* We're doing a "next", set a breakpoint at callee's return
2944 address (the address at which the caller will
2945 resume). */
2946 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2947 keep_going (ecs);
2948 return;
2949 }
2950
2951 /* If we are in a function call trampoline (a stub between the
2952 calling routine and the real function), locate the real
2953 function. That's what tells us (a) whether we want to step
2954 into it at all, and (b) what prologue we want to run to the
2955 end of, if we do step into it. */
2956 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2957 if (real_stop_pc == 0)
2958 real_stop_pc = gdbarch_skip_trampoline_code
2959 (current_gdbarch, get_current_frame (), stop_pc);
2960 if (real_stop_pc != 0)
2961 ecs->stop_func_start = real_stop_pc;
2962
2963 if (
2964 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2965 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2966 #else
2967 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2968 #endif
2969 )
2970 {
2971 struct symtab_and_line sr_sal;
2972 init_sal (&sr_sal);
2973 sr_sal.pc = ecs->stop_func_start;
2974
2975 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2976 keep_going (ecs);
2977 return;
2978 }
2979
2980 /* If we have line number information for the function we are
2981 thinking of stepping into, step into it.
2982
2983 If there are several symtabs at that PC (e.g. with include
2984 files), just want to know whether *any* of them have line
2985 numbers. find_pc_line handles this. */
2986 {
2987 struct symtab_and_line tmp_sal;
2988
2989 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2990 if (tmp_sal.line != 0)
2991 {
2992 step_into_function (ecs);
2993 return;
2994 }
2995 }
2996
2997 /* If we have no line number and the step-stop-if-no-debug is
2998 set, we stop the step so that the user has a chance to switch
2999 in assembly mode. */
3000 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
3001 {
3002 stop_step = 1;
3003 print_stop_reason (END_STEPPING_RANGE, 0);
3004 stop_stepping (ecs);
3005 return;
3006 }
3007
3008 /* Set a breakpoint at callee's return address (the address at
3009 which the caller will resume). */
3010 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3011 keep_going (ecs);
3012 return;
3013 }
3014
3015 /* If we're in the return path from a shared library trampoline,
3016 we want to proceed through the trampoline when stepping. */
3017 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3018 stop_pc, ecs->stop_func_name))
3019 {
3020 /* Determine where this trampoline returns. */
3021 CORE_ADDR real_stop_pc;
3022 real_stop_pc = gdbarch_skip_trampoline_code
3023 (current_gdbarch, get_current_frame (), stop_pc);
3024
3025 if (debug_infrun)
3026 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3027
3028 /* Only proceed through if we know where it's going. */
3029 if (real_stop_pc)
3030 {
3031 /* And put the step-breakpoint there and go until there. */
3032 struct symtab_and_line sr_sal;
3033
3034 init_sal (&sr_sal); /* initialize to zeroes */
3035 sr_sal.pc = real_stop_pc;
3036 sr_sal.section = find_pc_overlay (sr_sal.pc);
3037
3038 /* Do not specify what the fp should be when we stop since
3039 on some machines the prologue is where the new fp value
3040 is established. */
3041 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3042
3043 /* Restart without fiddling with the step ranges or
3044 other state. */
3045 keep_going (ecs);
3046 return;
3047 }
3048 }
3049
3050 ecs->sal = find_pc_line (stop_pc, 0);
3051
3052 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3053 the trampoline processing logic, however, there are some trampolines
3054 that have no names, so we should do trampoline handling first. */
3055 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
3056 && ecs->stop_func_name == NULL
3057 && ecs->sal.line == 0)
3058 {
3059 if (debug_infrun)
3060 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3061
3062 /* The inferior just stepped into, or returned to, an
3063 undebuggable function (where there is no debugging information
3064 and no line number corresponding to the address where the
3065 inferior stopped). Since we want to skip this kind of code,
3066 we keep going until the inferior returns from this
3067 function - unless the user has asked us not to (via
3068 set step-mode) or we no longer know how to get back
3069 to the call site. */
3070 if (step_stop_if_no_debug
3071 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3072 {
3073 /* If we have no line number and the step-stop-if-no-debug
3074 is set, we stop the step so that the user has a chance to
3075 switch in assembly mode. */
3076 stop_step = 1;
3077 print_stop_reason (END_STEPPING_RANGE, 0);
3078 stop_stepping (ecs);
3079 return;
3080 }
3081 else
3082 {
3083 /* Set a breakpoint at callee's return address (the address
3084 at which the caller will resume). */
3085 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3086 keep_going (ecs);
3087 return;
3088 }
3089 }
3090
3091 if (step_range_end == 1)
3092 {
3093 /* It is stepi or nexti. We always want to stop stepping after
3094 one instruction. */
3095 if (debug_infrun)
3096 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3097 stop_step = 1;
3098 print_stop_reason (END_STEPPING_RANGE, 0);
3099 stop_stepping (ecs);
3100 return;
3101 }
3102
3103 if (ecs->sal.line == 0)
3104 {
3105 /* We have no line number information. That means to stop
3106 stepping (does this always happen right after one instruction,
3107 when we do "s" in a function with no line numbers,
3108 or can this happen as a result of a return or longjmp?). */
3109 if (debug_infrun)
3110 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3111 stop_step = 1;
3112 print_stop_reason (END_STEPPING_RANGE, 0);
3113 stop_stepping (ecs);
3114 return;
3115 }
3116
3117 if ((stop_pc == ecs->sal.pc)
3118 && (ecs->current_line != ecs->sal.line
3119 || ecs->current_symtab != ecs->sal.symtab))
3120 {
3121 /* We are at the start of a different line. So stop. Note that
3122 we don't stop if we step into the middle of a different line.
3123 That is said to make things like for (;;) statements work
3124 better. */
3125 if (debug_infrun)
3126 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3127 stop_step = 1;
3128 print_stop_reason (END_STEPPING_RANGE, 0);
3129 stop_stepping (ecs);
3130 return;
3131 }
3132
3133 /* We aren't done stepping.
3134
3135 Optimize by setting the stepping range to the line.
3136 (We might not be in the original line, but if we entered a
3137 new line in mid-statement, we continue stepping. This makes
3138 things like for(;;) statements work better.) */
3139
3140 step_range_start = ecs->sal.pc;
3141 step_range_end = ecs->sal.end;
3142 step_frame_id = get_frame_id (get_current_frame ());
3143 ecs->current_line = ecs->sal.line;
3144 ecs->current_symtab = ecs->sal.symtab;
3145
3146 /* In the case where we just stepped out of a function into the
3147 middle of a line of the caller, continue stepping, but
3148 step_frame_id must be modified to current frame */
3149 #if 0
3150 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
3151 generous. It will trigger on things like a step into a frameless
3152 stackless leaf function. I think the logic should instead look
3153 at the unwound frame ID has that should give a more robust
3154 indication of what happened. */
3155 if (step - ID == current - ID)
3156 still stepping in same function;
3157 else if (step - ID == unwind (current - ID))
3158 stepped into a function;
3159 else
3160 stepped out of a function;
3161 /* Of course this assumes that the frame ID unwind code is robust
3162 and we're willing to introduce frame unwind logic into this
3163 function. Fortunately, those days are nearly upon us. */
3164 #endif
3165 {
3166 struct frame_info *frame = get_current_frame ();
3167 struct frame_id current_frame = get_frame_id (frame);
3168 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
3169 step_frame_id)))
3170 step_frame_id = current_frame;
3171 }
3172
3173 if (debug_infrun)
3174 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3175 keep_going (ecs);
3176 }
3177
3178 /* Are we in the middle of stepping? */
3179
3180 static int
3181 currently_stepping (struct execution_control_state *ecs)
3182 {
3183 return (((step_range_end && step_resume_breakpoint == NULL)
3184 || stepping_over_breakpoint)
3185 || ecs->stepping_through_solib_after_catch
3186 || bpstat_should_step ());
3187 }
3188
3189 /* Subroutine call with source code we should not step over. Do step
3190 to the first line of code in it. */
3191
3192 static void
3193 step_into_function (struct execution_control_state *ecs)
3194 {
3195 struct symtab *s;
3196 struct symtab_and_line sr_sal;
3197
3198 s = find_pc_symtab (stop_pc);
3199 if (s && s->language != language_asm)
3200 ecs->stop_func_start = gdbarch_skip_prologue
3201 (current_gdbarch, ecs->stop_func_start);
3202
3203 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
3204 /* Use the step_resume_break to step until the end of the prologue,
3205 even if that involves jumps (as it seems to on the vax under
3206 4.2). */
3207 /* If the prologue ends in the middle of a source line, continue to
3208 the end of that source line (if it is still within the function).
3209 Otherwise, just go to end of prologue. */
3210 if (ecs->sal.end
3211 && ecs->sal.pc != ecs->stop_func_start
3212 && ecs->sal.end < ecs->stop_func_end)
3213 ecs->stop_func_start = ecs->sal.end;
3214
3215 /* Architectures which require breakpoint adjustment might not be able
3216 to place a breakpoint at the computed address. If so, the test
3217 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3218 ecs->stop_func_start to an address at which a breakpoint may be
3219 legitimately placed.
3220
3221 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3222 made, GDB will enter an infinite loop when stepping through
3223 optimized code consisting of VLIW instructions which contain
3224 subinstructions corresponding to different source lines. On
3225 FR-V, it's not permitted to place a breakpoint on any but the
3226 first subinstruction of a VLIW instruction. When a breakpoint is
3227 set, GDB will adjust the breakpoint address to the beginning of
3228 the VLIW instruction. Thus, we need to make the corresponding
3229 adjustment here when computing the stop address. */
3230
3231 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3232 {
3233 ecs->stop_func_start
3234 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3235 ecs->stop_func_start);
3236 }
3237
3238 if (ecs->stop_func_start == stop_pc)
3239 {
3240 /* We are already there: stop now. */
3241 stop_step = 1;
3242 print_stop_reason (END_STEPPING_RANGE, 0);
3243 stop_stepping (ecs);
3244 return;
3245 }
3246 else
3247 {
3248 /* Put the step-breakpoint there and go until there. */
3249 init_sal (&sr_sal); /* initialize to zeroes */
3250 sr_sal.pc = ecs->stop_func_start;
3251 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3252
3253 /* Do not specify what the fp should be when we stop since on
3254 some machines the prologue is where the new fp value is
3255 established. */
3256 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3257
3258 /* And make sure stepping stops right away then. */
3259 step_range_end = step_range_start;
3260 }
3261 keep_going (ecs);
3262 }
3263
3264 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3265 This is used to both functions and to skip over code. */
3266
3267 static void
3268 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3269 struct frame_id sr_id)
3270 {
3271 /* There should never be more than one step-resume or longjmp-resume
3272 breakpoint per thread, so we should never be setting a new
3273 step_resume_breakpoint when one is already active. */
3274 gdb_assert (step_resume_breakpoint == NULL);
3275
3276 if (debug_infrun)
3277 fprintf_unfiltered (gdb_stdlog,
3278 "infrun: inserting step-resume breakpoint at 0x%s\n",
3279 paddr_nz (sr_sal.pc));
3280
3281 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
3282 bp_step_resume);
3283 }
3284
3285 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3286 to skip a potential signal handler.
3287
3288 This is called with the interrupted function's frame. The signal
3289 handler, when it returns, will resume the interrupted function at
3290 RETURN_FRAME.pc. */
3291
3292 static void
3293 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3294 {
3295 struct symtab_and_line sr_sal;
3296
3297 gdb_assert (return_frame != NULL);
3298 init_sal (&sr_sal); /* initialize to zeros */
3299
3300 sr_sal.pc = gdbarch_addr_bits_remove
3301 (current_gdbarch, get_frame_pc (return_frame));
3302 sr_sal.section = find_pc_overlay (sr_sal.pc);
3303
3304 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3305 }
3306
3307 /* Similar to insert_step_resume_breakpoint_at_frame, except
3308 but a breakpoint at the previous frame's PC. This is used to
3309 skip a function after stepping into it (for "next" or if the called
3310 function has no debugging information).
3311
3312 The current function has almost always been reached by single
3313 stepping a call or return instruction. NEXT_FRAME belongs to the
3314 current function, and the breakpoint will be set at the caller's
3315 resume address.
3316
3317 This is a separate function rather than reusing
3318 insert_step_resume_breakpoint_at_frame in order to avoid
3319 get_prev_frame, which may stop prematurely (see the implementation
3320 of frame_unwind_id for an example). */
3321
3322 static void
3323 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3324 {
3325 struct symtab_and_line sr_sal;
3326
3327 /* We shouldn't have gotten here if we don't know where the call site
3328 is. */
3329 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3330
3331 init_sal (&sr_sal); /* initialize to zeros */
3332
3333 sr_sal.pc = gdbarch_addr_bits_remove
3334 (current_gdbarch, frame_pc_unwind (next_frame));
3335 sr_sal.section = find_pc_overlay (sr_sal.pc);
3336
3337 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3338 }
3339
3340 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3341 new breakpoint at the target of a jmp_buf. The handling of
3342 longjmp-resume uses the same mechanisms used for handling
3343 "step-resume" breakpoints. */
3344
3345 static void
3346 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3347 {
3348 /* There should never be more than one step-resume or longjmp-resume
3349 breakpoint per thread, so we should never be setting a new
3350 longjmp_resume_breakpoint when one is already active. */
3351 gdb_assert (step_resume_breakpoint == NULL);
3352
3353 if (debug_infrun)
3354 fprintf_unfiltered (gdb_stdlog,
3355 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3356 paddr_nz (pc));
3357
3358 step_resume_breakpoint =
3359 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3360 }
3361
3362 static void
3363 stop_stepping (struct execution_control_state *ecs)
3364 {
3365 if (debug_infrun)
3366 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3367
3368 /* Let callers know we don't want to wait for the inferior anymore. */
3369 ecs->wait_some_more = 0;
3370 }
3371
3372 /* This function handles various cases where we need to continue
3373 waiting for the inferior. */
3374 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3375
3376 static void
3377 keep_going (struct execution_control_state *ecs)
3378 {
3379 /* Save the pc before execution, to compare with pc after stop. */
3380 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3381
3382 /* If we did not do break;, it means we should keep running the
3383 inferior and not return to debugger. */
3384
3385 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
3386 {
3387 /* We took a signal (which we are supposed to pass through to
3388 the inferior, else we'd have done a break above) and we
3389 haven't yet gotten our trap. Simply continue. */
3390 resume (currently_stepping (ecs), stop_signal);
3391 }
3392 else
3393 {
3394 /* Either the trap was not expected, but we are continuing
3395 anyway (the user asked that this signal be passed to the
3396 child)
3397 -- or --
3398 The signal was SIGTRAP, e.g. it was our signal, but we
3399 decided we should resume from it.
3400
3401 We're going to run this baby now!
3402
3403 Note that insert_breakpoints won't try to re-insert
3404 already inserted breakpoints. Therefore, we don't
3405 care if breakpoints were already inserted, or not. */
3406
3407 if (ecs->stepping_over_breakpoint)
3408 {
3409 if (! use_displaced_stepping (current_gdbarch))
3410 /* Since we can't do a displaced step, we have to remove
3411 the breakpoint while we step it. To keep things
3412 simple, we remove them all. */
3413 remove_breakpoints ();
3414 }
3415 else
3416 {
3417 struct gdb_exception e;
3418 /* Stop stepping when inserting breakpoints
3419 has failed. */
3420 TRY_CATCH (e, RETURN_MASK_ERROR)
3421 {
3422 insert_breakpoints ();
3423 }
3424 if (e.reason < 0)
3425 {
3426 stop_stepping (ecs);
3427 return;
3428 }
3429 }
3430
3431 stepping_over_breakpoint = ecs->stepping_over_breakpoint;
3432
3433 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3434 specifies that such a signal should be delivered to the
3435 target program).
3436
3437 Typically, this would occure when a user is debugging a
3438 target monitor on a simulator: the target monitor sets a
3439 breakpoint; the simulator encounters this break-point and
3440 halts the simulation handing control to GDB; GDB, noteing
3441 that the break-point isn't valid, returns control back to the
3442 simulator; the simulator then delivers the hardware
3443 equivalent of a SIGNAL_TRAP to the program being debugged. */
3444
3445 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
3446 stop_signal = TARGET_SIGNAL_0;
3447
3448
3449 resume (currently_stepping (ecs), stop_signal);
3450 }
3451
3452 prepare_to_wait (ecs);
3453 }
3454
3455 /* This function normally comes after a resume, before
3456 handle_inferior_event exits. It takes care of any last bits of
3457 housekeeping, and sets the all-important wait_some_more flag. */
3458
3459 static void
3460 prepare_to_wait (struct execution_control_state *ecs)
3461 {
3462 if (debug_infrun)
3463 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
3464 if (ecs->infwait_state == infwait_normal_state)
3465 {
3466 overlay_cache_invalid = 1;
3467
3468 /* We have to invalidate the registers BEFORE calling
3469 target_wait because they can be loaded from the target while
3470 in target_wait. This makes remote debugging a bit more
3471 efficient for those targets that provide critical registers
3472 as part of their normal status mechanism. */
3473
3474 registers_changed ();
3475 ecs->waiton_ptid = pid_to_ptid (-1);
3476 ecs->wp = &(ecs->ws);
3477 }
3478 /* This is the old end of the while loop. Let everybody know we
3479 want to wait for the inferior some more and get called again
3480 soon. */
3481 ecs->wait_some_more = 1;
3482 }
3483
3484 /* Print why the inferior has stopped. We always print something when
3485 the inferior exits, or receives a signal. The rest of the cases are
3486 dealt with later on in normal_stop() and print_it_typical(). Ideally
3487 there should be a call to this function from handle_inferior_event()
3488 each time stop_stepping() is called.*/
3489 static void
3490 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3491 {
3492 switch (stop_reason)
3493 {
3494 case END_STEPPING_RANGE:
3495 /* We are done with a step/next/si/ni command. */
3496 /* For now print nothing. */
3497 /* Print a message only if not in the middle of doing a "step n"
3498 operation for n > 1 */
3499 if (!step_multi || !stop_step)
3500 if (ui_out_is_mi_like_p (uiout))
3501 ui_out_field_string
3502 (uiout, "reason",
3503 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3504 break;
3505 case SIGNAL_EXITED:
3506 /* The inferior was terminated by a signal. */
3507 annotate_signalled ();
3508 if (ui_out_is_mi_like_p (uiout))
3509 ui_out_field_string
3510 (uiout, "reason",
3511 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3512 ui_out_text (uiout, "\nProgram terminated with signal ");
3513 annotate_signal_name ();
3514 ui_out_field_string (uiout, "signal-name",
3515 target_signal_to_name (stop_info));
3516 annotate_signal_name_end ();
3517 ui_out_text (uiout, ", ");
3518 annotate_signal_string ();
3519 ui_out_field_string (uiout, "signal-meaning",
3520 target_signal_to_string (stop_info));
3521 annotate_signal_string_end ();
3522 ui_out_text (uiout, ".\n");
3523 ui_out_text (uiout, "The program no longer exists.\n");
3524 break;
3525 case EXITED:
3526 /* The inferior program is finished. */
3527 annotate_exited (stop_info);
3528 if (stop_info)
3529 {
3530 if (ui_out_is_mi_like_p (uiout))
3531 ui_out_field_string (uiout, "reason",
3532 async_reason_lookup (EXEC_ASYNC_EXITED));
3533 ui_out_text (uiout, "\nProgram exited with code ");
3534 ui_out_field_fmt (uiout, "exit-code", "0%o",
3535 (unsigned int) stop_info);
3536 ui_out_text (uiout, ".\n");
3537 }
3538 else
3539 {
3540 if (ui_out_is_mi_like_p (uiout))
3541 ui_out_field_string
3542 (uiout, "reason",
3543 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3544 ui_out_text (uiout, "\nProgram exited normally.\n");
3545 }
3546 /* Support the --return-child-result option. */
3547 return_child_result_value = stop_info;
3548 break;
3549 case SIGNAL_RECEIVED:
3550 /* Signal received. The signal table tells us to print about
3551 it. */
3552 annotate_signal ();
3553 ui_out_text (uiout, "\nProgram received signal ");
3554 annotate_signal_name ();
3555 if (ui_out_is_mi_like_p (uiout))
3556 ui_out_field_string
3557 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3558 ui_out_field_string (uiout, "signal-name",
3559 target_signal_to_name (stop_info));
3560 annotate_signal_name_end ();
3561 ui_out_text (uiout, ", ");
3562 annotate_signal_string ();
3563 ui_out_field_string (uiout, "signal-meaning",
3564 target_signal_to_string (stop_info));
3565 annotate_signal_string_end ();
3566 ui_out_text (uiout, ".\n");
3567 break;
3568 default:
3569 internal_error (__FILE__, __LINE__,
3570 _("print_stop_reason: unrecognized enum value"));
3571 break;
3572 }
3573 }
3574 \f
3575
3576 /* Here to return control to GDB when the inferior stops for real.
3577 Print appropriate messages, remove breakpoints, give terminal our modes.
3578
3579 STOP_PRINT_FRAME nonzero means print the executing frame
3580 (pc, function, args, file, line number and line text).
3581 BREAKPOINTS_FAILED nonzero means stop was due to error
3582 attempting to insert breakpoints. */
3583
3584 void
3585 normal_stop (void)
3586 {
3587 struct target_waitstatus last;
3588 ptid_t last_ptid;
3589
3590 get_last_target_status (&last_ptid, &last);
3591
3592 /* As with the notification of thread events, we want to delay
3593 notifying the user that we've switched thread context until
3594 the inferior actually stops.
3595
3596 There's no point in saying anything if the inferior has exited.
3597 Note that SIGNALLED here means "exited with a signal", not
3598 "received a signal". */
3599 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3600 && target_has_execution
3601 && last.kind != TARGET_WAITKIND_SIGNALLED
3602 && last.kind != TARGET_WAITKIND_EXITED)
3603 {
3604 target_terminal_ours_for_output ();
3605 printf_filtered (_("[Switching to %s]\n"),
3606 target_pid_to_str (inferior_ptid));
3607 annotate_thread_changed ();
3608 previous_inferior_ptid = inferior_ptid;
3609 }
3610
3611 /* NOTE drow/2004-01-17: Is this still necessary? */
3612 /* Make sure that the current_frame's pc is correct. This
3613 is a correction for setting up the frame info before doing
3614 gdbarch_decr_pc_after_break */
3615 if (target_has_execution)
3616 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3617 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3618 frame code to check for this and sort out any resultant mess.
3619 gdbarch_decr_pc_after_break needs to just go away. */
3620 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3621
3622 if (!breakpoints_always_inserted_mode () && target_has_execution)
3623 {
3624 if (remove_breakpoints ())
3625 {
3626 target_terminal_ours_for_output ();
3627 printf_filtered (_("\
3628 Cannot remove breakpoints because program is no longer writable.\n\
3629 It might be running in another process.\n\
3630 Further execution is probably impossible.\n"));
3631 }
3632 }
3633
3634 /* If an auto-display called a function and that got a signal,
3635 delete that auto-display to avoid an infinite recursion. */
3636
3637 if (stopped_by_random_signal)
3638 disable_current_display ();
3639
3640 /* Don't print a message if in the middle of doing a "step n"
3641 operation for n > 1 */
3642 if (step_multi && stop_step)
3643 goto done;
3644
3645 target_terminal_ours ();
3646
3647 /* Set the current source location. This will also happen if we
3648 display the frame below, but the current SAL will be incorrect
3649 during a user hook-stop function. */
3650 if (target_has_stack && !stop_stack_dummy)
3651 set_current_sal_from_frame (get_current_frame (), 1);
3652
3653 /* Look up the hook_stop and run it (CLI internally handles problem
3654 of stop_command's pre-hook not existing). */
3655 if (stop_command)
3656 catch_errors (hook_stop_stub, stop_command,
3657 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3658
3659 if (!target_has_stack)
3660 {
3661
3662 goto done;
3663 }
3664
3665 /* Select innermost stack frame - i.e., current frame is frame 0,
3666 and current location is based on that.
3667 Don't do this on return from a stack dummy routine,
3668 or if the program has exited. */
3669
3670 if (!stop_stack_dummy)
3671 {
3672 select_frame (get_current_frame ());
3673
3674 /* Print current location without a level number, if
3675 we have changed functions or hit a breakpoint.
3676 Print source line if we have one.
3677 bpstat_print() contains the logic deciding in detail
3678 what to print, based on the event(s) that just occurred. */
3679
3680 /* If --batch-silent is enabled then there's no need to print the current
3681 source location, and to try risks causing an error message about
3682 missing source files. */
3683 if (stop_print_frame && !batch_silent)
3684 {
3685 int bpstat_ret;
3686 int source_flag;
3687 int do_frame_printing = 1;
3688
3689 bpstat_ret = bpstat_print (stop_bpstat);
3690 switch (bpstat_ret)
3691 {
3692 case PRINT_UNKNOWN:
3693 /* If we had hit a shared library event breakpoint,
3694 bpstat_print would print out this message. If we hit
3695 an OS-level shared library event, do the same
3696 thing. */
3697 if (last.kind == TARGET_WAITKIND_LOADED)
3698 {
3699 printf_filtered (_("Stopped due to shared library event\n"));
3700 source_flag = SRC_LINE; /* something bogus */
3701 do_frame_printing = 0;
3702 break;
3703 }
3704
3705 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3706 (or should) carry around the function and does (or
3707 should) use that when doing a frame comparison. */
3708 if (stop_step
3709 && frame_id_eq (step_frame_id,
3710 get_frame_id (get_current_frame ()))
3711 && step_start_function == find_pc_function (stop_pc))
3712 source_flag = SRC_LINE; /* finished step, just print source line */
3713 else
3714 source_flag = SRC_AND_LOC; /* print location and source line */
3715 break;
3716 case PRINT_SRC_AND_LOC:
3717 source_flag = SRC_AND_LOC; /* print location and source line */
3718 break;
3719 case PRINT_SRC_ONLY:
3720 source_flag = SRC_LINE;
3721 break;
3722 case PRINT_NOTHING:
3723 source_flag = SRC_LINE; /* something bogus */
3724 do_frame_printing = 0;
3725 break;
3726 default:
3727 internal_error (__FILE__, __LINE__, _("Unknown value."));
3728 }
3729
3730 if (ui_out_is_mi_like_p (uiout))
3731 ui_out_field_int (uiout, "thread-id",
3732 pid_to_thread_id (inferior_ptid));
3733 /* The behavior of this routine with respect to the source
3734 flag is:
3735 SRC_LINE: Print only source line
3736 LOCATION: Print only location
3737 SRC_AND_LOC: Print location and source line */
3738 if (do_frame_printing)
3739 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3740
3741 /* Display the auto-display expressions. */
3742 do_displays ();
3743 }
3744 }
3745
3746 /* Save the function value return registers, if we care.
3747 We might be about to restore their previous contents. */
3748 if (proceed_to_finish)
3749 {
3750 /* This should not be necessary. */
3751 if (stop_registers)
3752 regcache_xfree (stop_registers);
3753
3754 /* NB: The copy goes through to the target picking up the value of
3755 all the registers. */
3756 stop_registers = regcache_dup (get_current_regcache ());
3757 }
3758
3759 if (stop_stack_dummy)
3760 {
3761 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3762 ends with a setting of the current frame, so we can use that
3763 next. */
3764 frame_pop (get_current_frame ());
3765 /* Set stop_pc to what it was before we called the function.
3766 Can't rely on restore_inferior_status because that only gets
3767 called if we don't stop in the called function. */
3768 stop_pc = read_pc ();
3769 select_frame (get_current_frame ());
3770 }
3771
3772 done:
3773 annotate_stopped ();
3774 if (!suppress_stop_observer && !step_multi)
3775 observer_notify_normal_stop (stop_bpstat);
3776 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3777 Delete any breakpoint that is to be deleted at the next stop. */
3778 breakpoint_auto_delete (stop_bpstat);
3779 set_running (pid_to_ptid (-1), 0);
3780 }
3781
3782 static int
3783 hook_stop_stub (void *cmd)
3784 {
3785 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3786 return (0);
3787 }
3788 \f
3789 int
3790 signal_stop_state (int signo)
3791 {
3792 /* Always stop on signals if we're just gaining control of the
3793 program. */
3794 return signal_stop[signo] || stop_soon != NO_STOP_QUIETLY;
3795 }
3796
3797 int
3798 signal_print_state (int signo)
3799 {
3800 return signal_print[signo];
3801 }
3802
3803 int
3804 signal_pass_state (int signo)
3805 {
3806 return signal_program[signo];
3807 }
3808
3809 int
3810 signal_stop_update (int signo, int state)
3811 {
3812 int ret = signal_stop[signo];
3813 signal_stop[signo] = state;
3814 return ret;
3815 }
3816
3817 int
3818 signal_print_update (int signo, int state)
3819 {
3820 int ret = signal_print[signo];
3821 signal_print[signo] = state;
3822 return ret;
3823 }
3824
3825 int
3826 signal_pass_update (int signo, int state)
3827 {
3828 int ret = signal_program[signo];
3829 signal_program[signo] = state;
3830 return ret;
3831 }
3832
3833 static void
3834 sig_print_header (void)
3835 {
3836 printf_filtered (_("\
3837 Signal Stop\tPrint\tPass to program\tDescription\n"));
3838 }
3839
3840 static void
3841 sig_print_info (enum target_signal oursig)
3842 {
3843 char *name = target_signal_to_name (oursig);
3844 int name_padding = 13 - strlen (name);
3845
3846 if (name_padding <= 0)
3847 name_padding = 0;
3848
3849 printf_filtered ("%s", name);
3850 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3851 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3852 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3853 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3854 printf_filtered ("%s\n", target_signal_to_string (oursig));
3855 }
3856
3857 /* Specify how various signals in the inferior should be handled. */
3858
3859 static void
3860 handle_command (char *args, int from_tty)
3861 {
3862 char **argv;
3863 int digits, wordlen;
3864 int sigfirst, signum, siglast;
3865 enum target_signal oursig;
3866 int allsigs;
3867 int nsigs;
3868 unsigned char *sigs;
3869 struct cleanup *old_chain;
3870
3871 if (args == NULL)
3872 {
3873 error_no_arg (_("signal to handle"));
3874 }
3875
3876 /* Allocate and zero an array of flags for which signals to handle. */
3877
3878 nsigs = (int) TARGET_SIGNAL_LAST;
3879 sigs = (unsigned char *) alloca (nsigs);
3880 memset (sigs, 0, nsigs);
3881
3882 /* Break the command line up into args. */
3883
3884 argv = buildargv (args);
3885 if (argv == NULL)
3886 {
3887 nomem (0);
3888 }
3889 old_chain = make_cleanup_freeargv (argv);
3890
3891 /* Walk through the args, looking for signal oursigs, signal names, and
3892 actions. Signal numbers and signal names may be interspersed with
3893 actions, with the actions being performed for all signals cumulatively
3894 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3895
3896 while (*argv != NULL)
3897 {
3898 wordlen = strlen (*argv);
3899 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3900 {;
3901 }
3902 allsigs = 0;
3903 sigfirst = siglast = -1;
3904
3905 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3906 {
3907 /* Apply action to all signals except those used by the
3908 debugger. Silently skip those. */
3909 allsigs = 1;
3910 sigfirst = 0;
3911 siglast = nsigs - 1;
3912 }
3913 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3914 {
3915 SET_SIGS (nsigs, sigs, signal_stop);
3916 SET_SIGS (nsigs, sigs, signal_print);
3917 }
3918 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3919 {
3920 UNSET_SIGS (nsigs, sigs, signal_program);
3921 }
3922 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3923 {
3924 SET_SIGS (nsigs, sigs, signal_print);
3925 }
3926 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3927 {
3928 SET_SIGS (nsigs, sigs, signal_program);
3929 }
3930 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3931 {
3932 UNSET_SIGS (nsigs, sigs, signal_stop);
3933 }
3934 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3935 {
3936 SET_SIGS (nsigs, sigs, signal_program);
3937 }
3938 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3939 {
3940 UNSET_SIGS (nsigs, sigs, signal_print);
3941 UNSET_SIGS (nsigs, sigs, signal_stop);
3942 }
3943 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3944 {
3945 UNSET_SIGS (nsigs, sigs, signal_program);
3946 }
3947 else if (digits > 0)
3948 {
3949 /* It is numeric. The numeric signal refers to our own
3950 internal signal numbering from target.h, not to host/target
3951 signal number. This is a feature; users really should be
3952 using symbolic names anyway, and the common ones like
3953 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3954
3955 sigfirst = siglast = (int)
3956 target_signal_from_command (atoi (*argv));
3957 if ((*argv)[digits] == '-')
3958 {
3959 siglast = (int)
3960 target_signal_from_command (atoi ((*argv) + digits + 1));
3961 }
3962 if (sigfirst > siglast)
3963 {
3964 /* Bet he didn't figure we'd think of this case... */
3965 signum = sigfirst;
3966 sigfirst = siglast;
3967 siglast = signum;
3968 }
3969 }
3970 else
3971 {
3972 oursig = target_signal_from_name (*argv);
3973 if (oursig != TARGET_SIGNAL_UNKNOWN)
3974 {
3975 sigfirst = siglast = (int) oursig;
3976 }
3977 else
3978 {
3979 /* Not a number and not a recognized flag word => complain. */
3980 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3981 }
3982 }
3983
3984 /* If any signal numbers or symbol names were found, set flags for
3985 which signals to apply actions to. */
3986
3987 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3988 {
3989 switch ((enum target_signal) signum)
3990 {
3991 case TARGET_SIGNAL_TRAP:
3992 case TARGET_SIGNAL_INT:
3993 if (!allsigs && !sigs[signum])
3994 {
3995 if (query ("%s is used by the debugger.\n\
3996 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3997 {
3998 sigs[signum] = 1;
3999 }
4000 else
4001 {
4002 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4003 gdb_flush (gdb_stdout);
4004 }
4005 }
4006 break;
4007 case TARGET_SIGNAL_0:
4008 case TARGET_SIGNAL_DEFAULT:
4009 case TARGET_SIGNAL_UNKNOWN:
4010 /* Make sure that "all" doesn't print these. */
4011 break;
4012 default:
4013 sigs[signum] = 1;
4014 break;
4015 }
4016 }
4017
4018 argv++;
4019 }
4020
4021 target_notice_signals (inferior_ptid);
4022
4023 if (from_tty)
4024 {
4025 /* Show the results. */
4026 sig_print_header ();
4027 for (signum = 0; signum < nsigs; signum++)
4028 {
4029 if (sigs[signum])
4030 {
4031 sig_print_info (signum);
4032 }
4033 }
4034 }
4035
4036 do_cleanups (old_chain);
4037 }
4038
4039 static void
4040 xdb_handle_command (char *args, int from_tty)
4041 {
4042 char **argv;
4043 struct cleanup *old_chain;
4044
4045 /* Break the command line up into args. */
4046
4047 argv = buildargv (args);
4048 if (argv == NULL)
4049 {
4050 nomem (0);
4051 }
4052 old_chain = make_cleanup_freeargv (argv);
4053 if (argv[1] != (char *) NULL)
4054 {
4055 char *argBuf;
4056 int bufLen;
4057
4058 bufLen = strlen (argv[0]) + 20;
4059 argBuf = (char *) xmalloc (bufLen);
4060 if (argBuf)
4061 {
4062 int validFlag = 1;
4063 enum target_signal oursig;
4064
4065 oursig = target_signal_from_name (argv[0]);
4066 memset (argBuf, 0, bufLen);
4067 if (strcmp (argv[1], "Q") == 0)
4068 sprintf (argBuf, "%s %s", argv[0], "noprint");
4069 else
4070 {
4071 if (strcmp (argv[1], "s") == 0)
4072 {
4073 if (!signal_stop[oursig])
4074 sprintf (argBuf, "%s %s", argv[0], "stop");
4075 else
4076 sprintf (argBuf, "%s %s", argv[0], "nostop");
4077 }
4078 else if (strcmp (argv[1], "i") == 0)
4079 {
4080 if (!signal_program[oursig])
4081 sprintf (argBuf, "%s %s", argv[0], "pass");
4082 else
4083 sprintf (argBuf, "%s %s", argv[0], "nopass");
4084 }
4085 else if (strcmp (argv[1], "r") == 0)
4086 {
4087 if (!signal_print[oursig])
4088 sprintf (argBuf, "%s %s", argv[0], "print");
4089 else
4090 sprintf (argBuf, "%s %s", argv[0], "noprint");
4091 }
4092 else
4093 validFlag = 0;
4094 }
4095 if (validFlag)
4096 handle_command (argBuf, from_tty);
4097 else
4098 printf_filtered (_("Invalid signal handling flag.\n"));
4099 if (argBuf)
4100 xfree (argBuf);
4101 }
4102 }
4103 do_cleanups (old_chain);
4104 }
4105
4106 /* Print current contents of the tables set by the handle command.
4107 It is possible we should just be printing signals actually used
4108 by the current target (but for things to work right when switching
4109 targets, all signals should be in the signal tables). */
4110
4111 static void
4112 signals_info (char *signum_exp, int from_tty)
4113 {
4114 enum target_signal oursig;
4115 sig_print_header ();
4116
4117 if (signum_exp)
4118 {
4119 /* First see if this is a symbol name. */
4120 oursig = target_signal_from_name (signum_exp);
4121 if (oursig == TARGET_SIGNAL_UNKNOWN)
4122 {
4123 /* No, try numeric. */
4124 oursig =
4125 target_signal_from_command (parse_and_eval_long (signum_exp));
4126 }
4127 sig_print_info (oursig);
4128 return;
4129 }
4130
4131 printf_filtered ("\n");
4132 /* These ugly casts brought to you by the native VAX compiler. */
4133 for (oursig = TARGET_SIGNAL_FIRST;
4134 (int) oursig < (int) TARGET_SIGNAL_LAST;
4135 oursig = (enum target_signal) ((int) oursig + 1))
4136 {
4137 QUIT;
4138
4139 if (oursig != TARGET_SIGNAL_UNKNOWN
4140 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4141 sig_print_info (oursig);
4142 }
4143
4144 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4145 }
4146 \f
4147 struct inferior_status
4148 {
4149 enum target_signal stop_signal;
4150 CORE_ADDR stop_pc;
4151 bpstat stop_bpstat;
4152 int stop_step;
4153 int stop_stack_dummy;
4154 int stopped_by_random_signal;
4155 int stepping_over_breakpoint;
4156 CORE_ADDR step_range_start;
4157 CORE_ADDR step_range_end;
4158 struct frame_id step_frame_id;
4159 enum step_over_calls_kind step_over_calls;
4160 CORE_ADDR step_resume_break_address;
4161 int stop_after_trap;
4162 int stop_soon;
4163
4164 /* These are here because if call_function_by_hand has written some
4165 registers and then decides to call error(), we better not have changed
4166 any registers. */
4167 struct regcache *registers;
4168
4169 /* A frame unique identifier. */
4170 struct frame_id selected_frame_id;
4171
4172 int breakpoint_proceeded;
4173 int restore_stack_info;
4174 int proceed_to_finish;
4175 };
4176
4177 void
4178 write_inferior_status_register (struct inferior_status *inf_status, int regno,
4179 LONGEST val)
4180 {
4181 int size = register_size (current_gdbarch, regno);
4182 void *buf = alloca (size);
4183 store_signed_integer (buf, size, val);
4184 regcache_raw_write (inf_status->registers, regno, buf);
4185 }
4186
4187 /* Save all of the information associated with the inferior<==>gdb
4188 connection. INF_STATUS is a pointer to a "struct inferior_status"
4189 (defined in inferior.h). */
4190
4191 struct inferior_status *
4192 save_inferior_status (int restore_stack_info)
4193 {
4194 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4195
4196 inf_status->stop_signal = stop_signal;
4197 inf_status->stop_pc = stop_pc;
4198 inf_status->stop_step = stop_step;
4199 inf_status->stop_stack_dummy = stop_stack_dummy;
4200 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4201 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
4202 inf_status->step_range_start = step_range_start;
4203 inf_status->step_range_end = step_range_end;
4204 inf_status->step_frame_id = step_frame_id;
4205 inf_status->step_over_calls = step_over_calls;
4206 inf_status->stop_after_trap = stop_after_trap;
4207 inf_status->stop_soon = stop_soon;
4208 /* Save original bpstat chain here; replace it with copy of chain.
4209 If caller's caller is walking the chain, they'll be happier if we
4210 hand them back the original chain when restore_inferior_status is
4211 called. */
4212 inf_status->stop_bpstat = stop_bpstat;
4213 stop_bpstat = bpstat_copy (stop_bpstat);
4214 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4215 inf_status->restore_stack_info = restore_stack_info;
4216 inf_status->proceed_to_finish = proceed_to_finish;
4217
4218 inf_status->registers = regcache_dup (get_current_regcache ());
4219
4220 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4221 return inf_status;
4222 }
4223
4224 static int
4225 restore_selected_frame (void *args)
4226 {
4227 struct frame_id *fid = (struct frame_id *) args;
4228 struct frame_info *frame;
4229
4230 frame = frame_find_by_id (*fid);
4231
4232 /* If inf_status->selected_frame_id is NULL, there was no previously
4233 selected frame. */
4234 if (frame == NULL)
4235 {
4236 warning (_("Unable to restore previously selected frame."));
4237 return 0;
4238 }
4239
4240 select_frame (frame);
4241
4242 return (1);
4243 }
4244
4245 void
4246 restore_inferior_status (struct inferior_status *inf_status)
4247 {
4248 stop_signal = inf_status->stop_signal;
4249 stop_pc = inf_status->stop_pc;
4250 stop_step = inf_status->stop_step;
4251 stop_stack_dummy = inf_status->stop_stack_dummy;
4252 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4253 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
4254 step_range_start = inf_status->step_range_start;
4255 step_range_end = inf_status->step_range_end;
4256 step_frame_id = inf_status->step_frame_id;
4257 step_over_calls = inf_status->step_over_calls;
4258 stop_after_trap = inf_status->stop_after_trap;
4259 stop_soon = inf_status->stop_soon;
4260 bpstat_clear (&stop_bpstat);
4261 stop_bpstat = inf_status->stop_bpstat;
4262 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4263 proceed_to_finish = inf_status->proceed_to_finish;
4264
4265 /* The inferior can be gone if the user types "print exit(0)"
4266 (and perhaps other times). */
4267 if (target_has_execution)
4268 /* NB: The register write goes through to the target. */
4269 regcache_cpy (get_current_regcache (), inf_status->registers);
4270 regcache_xfree (inf_status->registers);
4271
4272 /* FIXME: If we are being called after stopping in a function which
4273 is called from gdb, we should not be trying to restore the
4274 selected frame; it just prints a spurious error message (The
4275 message is useful, however, in detecting bugs in gdb (like if gdb
4276 clobbers the stack)). In fact, should we be restoring the
4277 inferior status at all in that case? . */
4278
4279 if (target_has_stack && inf_status->restore_stack_info)
4280 {
4281 /* The point of catch_errors is that if the stack is clobbered,
4282 walking the stack might encounter a garbage pointer and
4283 error() trying to dereference it. */
4284 if (catch_errors
4285 (restore_selected_frame, &inf_status->selected_frame_id,
4286 "Unable to restore previously selected frame:\n",
4287 RETURN_MASK_ERROR) == 0)
4288 /* Error in restoring the selected frame. Select the innermost
4289 frame. */
4290 select_frame (get_current_frame ());
4291
4292 }
4293
4294 xfree (inf_status);
4295 }
4296
4297 static void
4298 do_restore_inferior_status_cleanup (void *sts)
4299 {
4300 restore_inferior_status (sts);
4301 }
4302
4303 struct cleanup *
4304 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4305 {
4306 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4307 }
4308
4309 void
4310 discard_inferior_status (struct inferior_status *inf_status)
4311 {
4312 /* See save_inferior_status for info on stop_bpstat. */
4313 bpstat_clear (&inf_status->stop_bpstat);
4314 regcache_xfree (inf_status->registers);
4315 xfree (inf_status);
4316 }
4317
4318 int
4319 inferior_has_forked (int pid, int *child_pid)
4320 {
4321 struct target_waitstatus last;
4322 ptid_t last_ptid;
4323
4324 get_last_target_status (&last_ptid, &last);
4325
4326 if (last.kind != TARGET_WAITKIND_FORKED)
4327 return 0;
4328
4329 if (ptid_get_pid (last_ptid) != pid)
4330 return 0;
4331
4332 *child_pid = last.value.related_pid;
4333 return 1;
4334 }
4335
4336 int
4337 inferior_has_vforked (int pid, int *child_pid)
4338 {
4339 struct target_waitstatus last;
4340 ptid_t last_ptid;
4341
4342 get_last_target_status (&last_ptid, &last);
4343
4344 if (last.kind != TARGET_WAITKIND_VFORKED)
4345 return 0;
4346
4347 if (ptid_get_pid (last_ptid) != pid)
4348 return 0;
4349
4350 *child_pid = last.value.related_pid;
4351 return 1;
4352 }
4353
4354 int
4355 inferior_has_execd (int pid, char **execd_pathname)
4356 {
4357 struct target_waitstatus last;
4358 ptid_t last_ptid;
4359
4360 get_last_target_status (&last_ptid, &last);
4361
4362 if (last.kind != TARGET_WAITKIND_EXECD)
4363 return 0;
4364
4365 if (ptid_get_pid (last_ptid) != pid)
4366 return 0;
4367
4368 *execd_pathname = xstrdup (last.value.execd_pathname);
4369 return 1;
4370 }
4371
4372 /* Oft used ptids */
4373 ptid_t null_ptid;
4374 ptid_t minus_one_ptid;
4375
4376 /* Create a ptid given the necessary PID, LWP, and TID components. */
4377
4378 ptid_t
4379 ptid_build (int pid, long lwp, long tid)
4380 {
4381 ptid_t ptid;
4382
4383 ptid.pid = pid;
4384 ptid.lwp = lwp;
4385 ptid.tid = tid;
4386 return ptid;
4387 }
4388
4389 /* Create a ptid from just a pid. */
4390
4391 ptid_t
4392 pid_to_ptid (int pid)
4393 {
4394 return ptid_build (pid, 0, 0);
4395 }
4396
4397 /* Fetch the pid (process id) component from a ptid. */
4398
4399 int
4400 ptid_get_pid (ptid_t ptid)
4401 {
4402 return ptid.pid;
4403 }
4404
4405 /* Fetch the lwp (lightweight process) component from a ptid. */
4406
4407 long
4408 ptid_get_lwp (ptid_t ptid)
4409 {
4410 return ptid.lwp;
4411 }
4412
4413 /* Fetch the tid (thread id) component from a ptid. */
4414
4415 long
4416 ptid_get_tid (ptid_t ptid)
4417 {
4418 return ptid.tid;
4419 }
4420
4421 /* ptid_equal() is used to test equality of two ptids. */
4422
4423 int
4424 ptid_equal (ptid_t ptid1, ptid_t ptid2)
4425 {
4426 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4427 && ptid1.tid == ptid2.tid);
4428 }
4429
4430 /* restore_inferior_ptid() will be used by the cleanup machinery
4431 to restore the inferior_ptid value saved in a call to
4432 save_inferior_ptid(). */
4433
4434 static void
4435 restore_inferior_ptid (void *arg)
4436 {
4437 ptid_t *saved_ptid_ptr = arg;
4438 inferior_ptid = *saved_ptid_ptr;
4439 xfree (arg);
4440 }
4441
4442 /* Save the value of inferior_ptid so that it may be restored by a
4443 later call to do_cleanups(). Returns the struct cleanup pointer
4444 needed for later doing the cleanup. */
4445
4446 struct cleanup *
4447 save_inferior_ptid (void)
4448 {
4449 ptid_t *saved_ptid_ptr;
4450
4451 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4452 *saved_ptid_ptr = inferior_ptid;
4453 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4454 }
4455 \f
4456
4457 void
4458 _initialize_infrun (void)
4459 {
4460 int i;
4461 int numsigs;
4462 struct cmd_list_element *c;
4463
4464 add_info ("signals", signals_info, _("\
4465 What debugger does when program gets various signals.\n\
4466 Specify a signal as argument to print info on that signal only."));
4467 add_info_alias ("handle", "signals", 0);
4468
4469 add_com ("handle", class_run, handle_command, _("\
4470 Specify how to handle a signal.\n\
4471 Args are signals and actions to apply to those signals.\n\
4472 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4473 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4474 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4475 The special arg \"all\" is recognized to mean all signals except those\n\
4476 used by the debugger, typically SIGTRAP and SIGINT.\n\
4477 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4478 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4479 Stop means reenter debugger if this signal happens (implies print).\n\
4480 Print means print a message if this signal happens.\n\
4481 Pass means let program see this signal; otherwise program doesn't know.\n\
4482 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4483 Pass and Stop may be combined."));
4484 if (xdb_commands)
4485 {
4486 add_com ("lz", class_info, signals_info, _("\
4487 What debugger does when program gets various signals.\n\
4488 Specify a signal as argument to print info on that signal only."));
4489 add_com ("z", class_run, xdb_handle_command, _("\
4490 Specify how to handle a signal.\n\
4491 Args are signals and actions to apply to those signals.\n\
4492 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4493 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4494 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4495 The special arg \"all\" is recognized to mean all signals except those\n\
4496 used by the debugger, typically SIGTRAP and SIGINT.\n\
4497 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4498 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4499 nopass), \"Q\" (noprint)\n\
4500 Stop means reenter debugger if this signal happens (implies print).\n\
4501 Print means print a message if this signal happens.\n\
4502 Pass means let program see this signal; otherwise program doesn't know.\n\
4503 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4504 Pass and Stop may be combined."));
4505 }
4506
4507 if (!dbx_commands)
4508 stop_command = add_cmd ("stop", class_obscure,
4509 not_just_help_class_command, _("\
4510 There is no `stop' command, but you can set a hook on `stop'.\n\
4511 This allows you to set a list of commands to be run each time execution\n\
4512 of the program stops."), &cmdlist);
4513
4514 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4515 Set inferior debugging."), _("\
4516 Show inferior debugging."), _("\
4517 When non-zero, inferior specific debugging is enabled."),
4518 NULL,
4519 show_debug_infrun,
4520 &setdebuglist, &showdebuglist);
4521
4522 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4523 Set displaced stepping debugging."), _("\
4524 Show displaced stepping debugging."), _("\
4525 When non-zero, displaced stepping specific debugging is enabled."),
4526 NULL,
4527 show_debug_displaced,
4528 &setdebuglist, &showdebuglist);
4529
4530 numsigs = (int) TARGET_SIGNAL_LAST;
4531 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4532 signal_print = (unsigned char *)
4533 xmalloc (sizeof (signal_print[0]) * numsigs);
4534 signal_program = (unsigned char *)
4535 xmalloc (sizeof (signal_program[0]) * numsigs);
4536 for (i = 0; i < numsigs; i++)
4537 {
4538 signal_stop[i] = 1;
4539 signal_print[i] = 1;
4540 signal_program[i] = 1;
4541 }
4542
4543 /* Signals caused by debugger's own actions
4544 should not be given to the program afterwards. */
4545 signal_program[TARGET_SIGNAL_TRAP] = 0;
4546 signal_program[TARGET_SIGNAL_INT] = 0;
4547
4548 /* Signals that are not errors should not normally enter the debugger. */
4549 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4550 signal_print[TARGET_SIGNAL_ALRM] = 0;
4551 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4552 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4553 signal_stop[TARGET_SIGNAL_PROF] = 0;
4554 signal_print[TARGET_SIGNAL_PROF] = 0;
4555 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4556 signal_print[TARGET_SIGNAL_CHLD] = 0;
4557 signal_stop[TARGET_SIGNAL_IO] = 0;
4558 signal_print[TARGET_SIGNAL_IO] = 0;
4559 signal_stop[TARGET_SIGNAL_POLL] = 0;
4560 signal_print[TARGET_SIGNAL_POLL] = 0;
4561 signal_stop[TARGET_SIGNAL_URG] = 0;
4562 signal_print[TARGET_SIGNAL_URG] = 0;
4563 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4564 signal_print[TARGET_SIGNAL_WINCH] = 0;
4565
4566 /* These signals are used internally by user-level thread
4567 implementations. (See signal(5) on Solaris.) Like the above
4568 signals, a healthy program receives and handles them as part of
4569 its normal operation. */
4570 signal_stop[TARGET_SIGNAL_LWP] = 0;
4571 signal_print[TARGET_SIGNAL_LWP] = 0;
4572 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4573 signal_print[TARGET_SIGNAL_WAITING] = 0;
4574 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4575 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4576
4577 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4578 &stop_on_solib_events, _("\
4579 Set stopping for shared library events."), _("\
4580 Show stopping for shared library events."), _("\
4581 If nonzero, gdb will give control to the user when the dynamic linker\n\
4582 notifies gdb of shared library events. The most common event of interest\n\
4583 to the user would be loading/unloading of a new library."),
4584 NULL,
4585 show_stop_on_solib_events,
4586 &setlist, &showlist);
4587
4588 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4589 follow_fork_mode_kind_names,
4590 &follow_fork_mode_string, _("\
4591 Set debugger response to a program call of fork or vfork."), _("\
4592 Show debugger response to a program call of fork or vfork."), _("\
4593 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4594 parent - the original process is debugged after a fork\n\
4595 child - the new process is debugged after a fork\n\
4596 The unfollowed process will continue to run.\n\
4597 By default, the debugger will follow the parent process."),
4598 NULL,
4599 show_follow_fork_mode_string,
4600 &setlist, &showlist);
4601
4602 add_setshow_enum_cmd ("scheduler-locking", class_run,
4603 scheduler_enums, &scheduler_mode, _("\
4604 Set mode for locking scheduler during execution."), _("\
4605 Show mode for locking scheduler during execution."), _("\
4606 off == no locking (threads may preempt at any time)\n\
4607 on == full locking (no thread except the current thread may run)\n\
4608 step == scheduler locked during every single-step operation.\n\
4609 In this mode, no other thread may run during a step command.\n\
4610 Other threads may run while stepping over a function call ('next')."),
4611 set_schedlock_func, /* traps on target vector */
4612 show_scheduler_mode,
4613 &setlist, &showlist);
4614
4615 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4616 Set mode of the step operation."), _("\
4617 Show mode of the step operation."), _("\
4618 When set, doing a step over a function without debug line information\n\
4619 will stop at the first instruction of that function. Otherwise, the\n\
4620 function is skipped and the step command stops at a different source line."),
4621 NULL,
4622 show_step_stop_if_no_debug,
4623 &setlist, &showlist);
4624
4625 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
4626 &can_use_displaced_stepping, _("\
4627 Set debugger's willingness to use displaced stepping."), _("\
4628 Show debugger's willingness to use displaced stepping."), _("\
4629 If zero, gdb will not use displaced stepping to step over\n\
4630 breakpoints, even if such is supported by the target."),
4631 NULL,
4632 show_can_use_displaced_stepping,
4633 &maintenance_set_cmdlist,
4634 &maintenance_show_cmdlist);
4635
4636 /* ptid initializations */
4637 null_ptid = ptid_build (0, 0, 0);
4638 minus_one_ptid = ptid_build (-1, 0, 0);
4639 inferior_ptid = null_ptid;
4640 target_last_wait_ptid = minus_one_ptid;
4641 displaced_step_ptid = null_ptid;
4642 }
This page took 0.125118 seconds and 4 git commands to generate.