MI non-stop and multiprocess docs.
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51 #include "event-top.h"
52
53 /* Prototypes for local functions */
54
55 static void signals_info (char *, int);
56
57 static void handle_command (char *, int);
58
59 static void sig_print_info (enum target_signal);
60
61 static void sig_print_header (void);
62
63 static void resume_cleanups (void *);
64
65 static int hook_stop_stub (void *);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 static int currently_stepping (struct thread_info *tp);
77
78 static int currently_stepping_callback (struct thread_info *tp, void *data);
79
80 static void xdb_handle_command (char *args, int from_tty);
81
82 static int prepare_to_proceed (int);
83
84 void _initialize_infrun (void);
85
86 /* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89 int step_stop_if_no_debug = 0;
90 static void
91 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
92 struct cmd_list_element *c, const char *value)
93 {
94 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
95 }
96
97 /* In asynchronous mode, but simulating synchronous execution. */
98
99 int sync_execution = 0;
100
101 /* wait_for_inferior and normal_stop use this to notify the user
102 when the inferior stopped in a different thread than it had been
103 running in. */
104
105 static ptid_t previous_inferior_ptid;
106
107 int debug_displaced = 0;
108 static void
109 show_debug_displaced (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111 {
112 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
113 }
114
115 static int debug_infrun = 0;
116 static void
117 show_debug_infrun (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
121 }
122
123 /* If the program uses ELF-style shared libraries, then calls to
124 functions in shared libraries go through stubs, which live in a
125 table called the PLT (Procedure Linkage Table). The first time the
126 function is called, the stub sends control to the dynamic linker,
127 which looks up the function's real address, patches the stub so
128 that future calls will go directly to the function, and then passes
129 control to the function.
130
131 If we are stepping at the source level, we don't want to see any of
132 this --- we just want to skip over the stub and the dynamic linker.
133 The simple approach is to single-step until control leaves the
134 dynamic linker.
135
136 However, on some systems (e.g., Red Hat's 5.2 distribution) the
137 dynamic linker calls functions in the shared C library, so you
138 can't tell from the PC alone whether the dynamic linker is still
139 running. In this case, we use a step-resume breakpoint to get us
140 past the dynamic linker, as if we were using "next" to step over a
141 function call.
142
143 in_solib_dynsym_resolve_code() says whether we're in the dynamic
144 linker code or not. Normally, this means we single-step. However,
145 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
146 address where we can place a step-resume breakpoint to get past the
147 linker's symbol resolution function.
148
149 in_solib_dynsym_resolve_code() can generally be implemented in a
150 pretty portable way, by comparing the PC against the address ranges
151 of the dynamic linker's sections.
152
153 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
154 it depends on internal details of the dynamic linker. It's usually
155 not too hard to figure out where to put a breakpoint, but it
156 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
157 sanity checking. If it can't figure things out, returning zero and
158 getting the (possibly confusing) stepping behavior is better than
159 signalling an error, which will obscure the change in the
160 inferior's state. */
161
162 /* This function returns TRUE if pc is the address of an instruction
163 that lies within the dynamic linker (such as the event hook, or the
164 dld itself).
165
166 This function must be used only when a dynamic linker event has
167 been caught, and the inferior is being stepped out of the hook, or
168 undefined results are guaranteed. */
169
170 #ifndef SOLIB_IN_DYNAMIC_LINKER
171 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
172 #endif
173
174
175 /* Convert the #defines into values. This is temporary until wfi control
176 flow is completely sorted out. */
177
178 #ifndef CANNOT_STEP_HW_WATCHPOINTS
179 #define CANNOT_STEP_HW_WATCHPOINTS 0
180 #else
181 #undef CANNOT_STEP_HW_WATCHPOINTS
182 #define CANNOT_STEP_HW_WATCHPOINTS 1
183 #endif
184
185 /* Tables of how to react to signals; the user sets them. */
186
187 static unsigned char *signal_stop;
188 static unsigned char *signal_print;
189 static unsigned char *signal_program;
190
191 #define SET_SIGS(nsigs,sigs,flags) \
192 do { \
193 int signum = (nsigs); \
194 while (signum-- > 0) \
195 if ((sigs)[signum]) \
196 (flags)[signum] = 1; \
197 } while (0)
198
199 #define UNSET_SIGS(nsigs,sigs,flags) \
200 do { \
201 int signum = (nsigs); \
202 while (signum-- > 0) \
203 if ((sigs)[signum]) \
204 (flags)[signum] = 0; \
205 } while (0)
206
207 /* Value to pass to target_resume() to cause all threads to resume */
208
209 #define RESUME_ALL (pid_to_ptid (-1))
210
211 /* Command list pointer for the "stop" placeholder. */
212
213 static struct cmd_list_element *stop_command;
214
215 /* Function inferior was in as of last step command. */
216
217 static struct symbol *step_start_function;
218
219 /* Nonzero if we want to give control to the user when we're notified
220 of shared library events by the dynamic linker. */
221 static int stop_on_solib_events;
222 static void
223 show_stop_on_solib_events (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
227 value);
228 }
229
230 /* Nonzero means expecting a trace trap
231 and should stop the inferior and return silently when it happens. */
232
233 int stop_after_trap;
234
235 /* Save register contents here when executing a "finish" command or are
236 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
237 Thus this contains the return value from the called function (assuming
238 values are returned in a register). */
239
240 struct regcache *stop_registers;
241
242 /* Nonzero after stop if current stack frame should be printed. */
243
244 static int stop_print_frame;
245
246 /* This is a cached copy of the pid/waitstatus of the last event
247 returned by target_wait()/deprecated_target_wait_hook(). This
248 information is returned by get_last_target_status(). */
249 static ptid_t target_last_wait_ptid;
250 static struct target_waitstatus target_last_waitstatus;
251
252 static void context_switch (ptid_t ptid);
253
254 void init_thread_stepping_state (struct thread_info *tss);
255
256 void init_infwait_state (void);
257
258 /* This is used to remember when a fork, vfork or exec event
259 was caught by a catchpoint, and thus the event is to be
260 followed at the next resume of the inferior, and not
261 immediately. */
262 static struct
263 {
264 enum target_waitkind kind;
265 struct
266 {
267 ptid_t parent_pid;
268 ptid_t child_pid;
269 }
270 fork_event;
271 char *execd_pathname;
272 }
273 pending_follow;
274
275 static const char follow_fork_mode_child[] = "child";
276 static const char follow_fork_mode_parent[] = "parent";
277
278 static const char *follow_fork_mode_kind_names[] = {
279 follow_fork_mode_child,
280 follow_fork_mode_parent,
281 NULL
282 };
283
284 static const char *follow_fork_mode_string = follow_fork_mode_parent;
285 static void
286 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
288 {
289 fprintf_filtered (file, _("\
290 Debugger response to a program call of fork or vfork is \"%s\".\n"),
291 value);
292 }
293 \f
294
295 static int
296 follow_fork (void)
297 {
298 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
299
300 return target_follow_fork (follow_child);
301 }
302
303 void
304 follow_inferior_reset_breakpoints (void)
305 {
306 struct thread_info *tp = inferior_thread ();
307
308 /* Was there a step_resume breakpoint? (There was if the user
309 did a "next" at the fork() call.) If so, explicitly reset its
310 thread number.
311
312 step_resumes are a form of bp that are made to be per-thread.
313 Since we created the step_resume bp when the parent process
314 was being debugged, and now are switching to the child process,
315 from the breakpoint package's viewpoint, that's a switch of
316 "threads". We must update the bp's notion of which thread
317 it is for, or it'll be ignored when it triggers. */
318
319 if (tp->step_resume_breakpoint)
320 breakpoint_re_set_thread (tp->step_resume_breakpoint);
321
322 /* Reinsert all breakpoints in the child. The user may have set
323 breakpoints after catching the fork, in which case those
324 were never set in the child, but only in the parent. This makes
325 sure the inserted breakpoints match the breakpoint list. */
326
327 breakpoint_re_set ();
328 insert_breakpoints ();
329 }
330
331 /* EXECD_PATHNAME is assumed to be non-NULL. */
332
333 static void
334 follow_exec (ptid_t pid, char *execd_pathname)
335 {
336 struct target_ops *tgt;
337 struct thread_info *th = inferior_thread ();
338
339 /* This is an exec event that we actually wish to pay attention to.
340 Refresh our symbol table to the newly exec'd program, remove any
341 momentary bp's, etc.
342
343 If there are breakpoints, they aren't really inserted now,
344 since the exec() transformed our inferior into a fresh set
345 of instructions.
346
347 We want to preserve symbolic breakpoints on the list, since
348 we have hopes that they can be reset after the new a.out's
349 symbol table is read.
350
351 However, any "raw" breakpoints must be removed from the list
352 (e.g., the solib bp's), since their address is probably invalid
353 now.
354
355 And, we DON'T want to call delete_breakpoints() here, since
356 that may write the bp's "shadow contents" (the instruction
357 value that was overwritten witha TRAP instruction). Since
358 we now have a new a.out, those shadow contents aren't valid. */
359 update_breakpoints_after_exec ();
360
361 /* If there was one, it's gone now. We cannot truly step-to-next
362 statement through an exec(). */
363 th->step_resume_breakpoint = NULL;
364 th->step_range_start = 0;
365 th->step_range_end = 0;
366
367 /* What is this a.out's name? */
368 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
369
370 /* We've followed the inferior through an exec. Therefore, the
371 inferior has essentially been killed & reborn. */
372
373 gdb_flush (gdb_stdout);
374
375 breakpoint_init_inferior (inf_execd);
376
377 if (gdb_sysroot && *gdb_sysroot)
378 {
379 char *name = alloca (strlen (gdb_sysroot)
380 + strlen (execd_pathname)
381 + 1);
382 strcpy (name, gdb_sysroot);
383 strcat (name, execd_pathname);
384 execd_pathname = name;
385 }
386
387 /* That a.out is now the one to use. */
388 exec_file_attach (execd_pathname, 0);
389
390 /* Reset the shared library package. This ensures that we get a
391 shlib event when the child reaches "_start", at which point the
392 dld will have had a chance to initialize the child. */
393 /* Also, loading a symbol file below may trigger symbol lookups, and
394 we don't want those to be satisfied by the libraries of the
395 previous incarnation of this process. */
396 no_shared_libraries (NULL, 0);
397
398 /* Load the main file's symbols. */
399 symbol_file_add_main (execd_pathname, 0);
400
401 #ifdef SOLIB_CREATE_INFERIOR_HOOK
402 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
403 #else
404 solib_create_inferior_hook ();
405 #endif
406
407 /* Reinsert all breakpoints. (Those which were symbolic have
408 been reset to the proper address in the new a.out, thanks
409 to symbol_file_command...) */
410 insert_breakpoints ();
411
412 /* The next resume of this inferior should bring it to the shlib
413 startup breakpoints. (If the user had also set bp's on
414 "main" from the old (parent) process, then they'll auto-
415 matically get reset there in the new process.) */
416 }
417
418 /* Non-zero if we just simulating a single-step. This is needed
419 because we cannot remove the breakpoints in the inferior process
420 until after the `wait' in `wait_for_inferior'. */
421 static int singlestep_breakpoints_inserted_p = 0;
422
423 /* The thread we inserted single-step breakpoints for. */
424 static ptid_t singlestep_ptid;
425
426 /* PC when we started this single-step. */
427 static CORE_ADDR singlestep_pc;
428
429 /* If another thread hit the singlestep breakpoint, we save the original
430 thread here so that we can resume single-stepping it later. */
431 static ptid_t saved_singlestep_ptid;
432 static int stepping_past_singlestep_breakpoint;
433
434 /* If not equal to null_ptid, this means that after stepping over breakpoint
435 is finished, we need to switch to deferred_step_ptid, and step it.
436
437 The use case is when one thread has hit a breakpoint, and then the user
438 has switched to another thread and issued 'step'. We need to step over
439 breakpoint in the thread which hit the breakpoint, but then continue
440 stepping the thread user has selected. */
441 static ptid_t deferred_step_ptid;
442 \f
443 /* Displaced stepping. */
444
445 /* In non-stop debugging mode, we must take special care to manage
446 breakpoints properly; in particular, the traditional strategy for
447 stepping a thread past a breakpoint it has hit is unsuitable.
448 'Displaced stepping' is a tactic for stepping one thread past a
449 breakpoint it has hit while ensuring that other threads running
450 concurrently will hit the breakpoint as they should.
451
452 The traditional way to step a thread T off a breakpoint in a
453 multi-threaded program in all-stop mode is as follows:
454
455 a0) Initially, all threads are stopped, and breakpoints are not
456 inserted.
457 a1) We single-step T, leaving breakpoints uninserted.
458 a2) We insert breakpoints, and resume all threads.
459
460 In non-stop debugging, however, this strategy is unsuitable: we
461 don't want to have to stop all threads in the system in order to
462 continue or step T past a breakpoint. Instead, we use displaced
463 stepping:
464
465 n0) Initially, T is stopped, other threads are running, and
466 breakpoints are inserted.
467 n1) We copy the instruction "under" the breakpoint to a separate
468 location, outside the main code stream, making any adjustments
469 to the instruction, register, and memory state as directed by
470 T's architecture.
471 n2) We single-step T over the instruction at its new location.
472 n3) We adjust the resulting register and memory state as directed
473 by T's architecture. This includes resetting T's PC to point
474 back into the main instruction stream.
475 n4) We resume T.
476
477 This approach depends on the following gdbarch methods:
478
479 - gdbarch_max_insn_length and gdbarch_displaced_step_location
480 indicate where to copy the instruction, and how much space must
481 be reserved there. We use these in step n1.
482
483 - gdbarch_displaced_step_copy_insn copies a instruction to a new
484 address, and makes any necessary adjustments to the instruction,
485 register contents, and memory. We use this in step n1.
486
487 - gdbarch_displaced_step_fixup adjusts registers and memory after
488 we have successfuly single-stepped the instruction, to yield the
489 same effect the instruction would have had if we had executed it
490 at its original address. We use this in step n3.
491
492 - gdbarch_displaced_step_free_closure provides cleanup.
493
494 The gdbarch_displaced_step_copy_insn and
495 gdbarch_displaced_step_fixup functions must be written so that
496 copying an instruction with gdbarch_displaced_step_copy_insn,
497 single-stepping across the copied instruction, and then applying
498 gdbarch_displaced_insn_fixup should have the same effects on the
499 thread's memory and registers as stepping the instruction in place
500 would have. Exactly which responsibilities fall to the copy and
501 which fall to the fixup is up to the author of those functions.
502
503 See the comments in gdbarch.sh for details.
504
505 Note that displaced stepping and software single-step cannot
506 currently be used in combination, although with some care I think
507 they could be made to. Software single-step works by placing
508 breakpoints on all possible subsequent instructions; if the
509 displaced instruction is a PC-relative jump, those breakpoints
510 could fall in very strange places --- on pages that aren't
511 executable, or at addresses that are not proper instruction
512 boundaries. (We do generally let other threads run while we wait
513 to hit the software single-step breakpoint, and they might
514 encounter such a corrupted instruction.) One way to work around
515 this would be to have gdbarch_displaced_step_copy_insn fully
516 simulate the effect of PC-relative instructions (and return NULL)
517 on architectures that use software single-stepping.
518
519 In non-stop mode, we can have independent and simultaneous step
520 requests, so more than one thread may need to simultaneously step
521 over a breakpoint. The current implementation assumes there is
522 only one scratch space per process. In this case, we have to
523 serialize access to the scratch space. If thread A wants to step
524 over a breakpoint, but we are currently waiting for some other
525 thread to complete a displaced step, we leave thread A stopped and
526 place it in the displaced_step_request_queue. Whenever a displaced
527 step finishes, we pick the next thread in the queue and start a new
528 displaced step operation on it. See displaced_step_prepare and
529 displaced_step_fixup for details. */
530
531 /* If this is not null_ptid, this is the thread carrying out a
532 displaced single-step. This thread's state will require fixing up
533 once it has completed its step. */
534 static ptid_t displaced_step_ptid;
535
536 struct displaced_step_request
537 {
538 ptid_t ptid;
539 struct displaced_step_request *next;
540 };
541
542 /* A queue of pending displaced stepping requests. */
543 struct displaced_step_request *displaced_step_request_queue;
544
545 /* The architecture the thread had when we stepped it. */
546 static struct gdbarch *displaced_step_gdbarch;
547
548 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
549 for post-step cleanup. */
550 static struct displaced_step_closure *displaced_step_closure;
551
552 /* The address of the original instruction, and the copy we made. */
553 static CORE_ADDR displaced_step_original, displaced_step_copy;
554
555 /* Saved contents of copy area. */
556 static gdb_byte *displaced_step_saved_copy;
557
558 /* Enum strings for "set|show displaced-stepping". */
559
560 static const char can_use_displaced_stepping_auto[] = "auto";
561 static const char can_use_displaced_stepping_on[] = "on";
562 static const char can_use_displaced_stepping_off[] = "off";
563 static const char *can_use_displaced_stepping_enum[] =
564 {
565 can_use_displaced_stepping_auto,
566 can_use_displaced_stepping_on,
567 can_use_displaced_stepping_off,
568 NULL,
569 };
570
571 /* If ON, and the architecture supports it, GDB will use displaced
572 stepping to step over breakpoints. If OFF, or if the architecture
573 doesn't support it, GDB will instead use the traditional
574 hold-and-step approach. If AUTO (which is the default), GDB will
575 decide which technique to use to step over breakpoints depending on
576 which of all-stop or non-stop mode is active --- displaced stepping
577 in non-stop mode; hold-and-step in all-stop mode. */
578
579 static const char *can_use_displaced_stepping =
580 can_use_displaced_stepping_auto;
581
582 static void
583 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
584 struct cmd_list_element *c,
585 const char *value)
586 {
587 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
588 fprintf_filtered (file, _("\
589 Debugger's willingness to use displaced stepping to step over \
590 breakpoints is %s (currently %s).\n"),
591 value, non_stop ? "on" : "off");
592 else
593 fprintf_filtered (file, _("\
594 Debugger's willingness to use displaced stepping to step over \
595 breakpoints is %s.\n"), value);
596 }
597
598 /* Return non-zero if displaced stepping can/should be used to step
599 over breakpoints. */
600
601 static int
602 use_displaced_stepping (struct gdbarch *gdbarch)
603 {
604 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
605 && non_stop)
606 || can_use_displaced_stepping == can_use_displaced_stepping_on)
607 && gdbarch_displaced_step_copy_insn_p (gdbarch));
608 }
609
610 /* Clean out any stray displaced stepping state. */
611 static void
612 displaced_step_clear (void)
613 {
614 /* Indicate that there is no cleanup pending. */
615 displaced_step_ptid = null_ptid;
616
617 if (displaced_step_closure)
618 {
619 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
620 displaced_step_closure);
621 displaced_step_closure = NULL;
622 }
623 }
624
625 static void
626 cleanup_displaced_step_closure (void *ptr)
627 {
628 struct displaced_step_closure *closure = ptr;
629
630 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
631 }
632
633 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
634 void
635 displaced_step_dump_bytes (struct ui_file *file,
636 const gdb_byte *buf,
637 size_t len)
638 {
639 int i;
640
641 for (i = 0; i < len; i++)
642 fprintf_unfiltered (file, "%02x ", buf[i]);
643 fputs_unfiltered ("\n", file);
644 }
645
646 /* Prepare to single-step, using displaced stepping.
647
648 Note that we cannot use displaced stepping when we have a signal to
649 deliver. If we have a signal to deliver and an instruction to step
650 over, then after the step, there will be no indication from the
651 target whether the thread entered a signal handler or ignored the
652 signal and stepped over the instruction successfully --- both cases
653 result in a simple SIGTRAP. In the first case we mustn't do a
654 fixup, and in the second case we must --- but we can't tell which.
655 Comments in the code for 'random signals' in handle_inferior_event
656 explain how we handle this case instead.
657
658 Returns 1 if preparing was successful -- this thread is going to be
659 stepped now; or 0 if displaced stepping this thread got queued. */
660 static int
661 displaced_step_prepare (ptid_t ptid)
662 {
663 struct cleanup *old_cleanups, *ignore_cleanups;
664 struct regcache *regcache = get_thread_regcache (ptid);
665 struct gdbarch *gdbarch = get_regcache_arch (regcache);
666 CORE_ADDR original, copy;
667 ULONGEST len;
668 struct displaced_step_closure *closure;
669
670 /* We should never reach this function if the architecture does not
671 support displaced stepping. */
672 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
673
674 /* For the first cut, we're displaced stepping one thread at a
675 time. */
676
677 if (!ptid_equal (displaced_step_ptid, null_ptid))
678 {
679 /* Already waiting for a displaced step to finish. Defer this
680 request and place in queue. */
681 struct displaced_step_request *req, *new_req;
682
683 if (debug_displaced)
684 fprintf_unfiltered (gdb_stdlog,
685 "displaced: defering step of %s\n",
686 target_pid_to_str (ptid));
687
688 new_req = xmalloc (sizeof (*new_req));
689 new_req->ptid = ptid;
690 new_req->next = NULL;
691
692 if (displaced_step_request_queue)
693 {
694 for (req = displaced_step_request_queue;
695 req && req->next;
696 req = req->next)
697 ;
698 req->next = new_req;
699 }
700 else
701 displaced_step_request_queue = new_req;
702
703 return 0;
704 }
705 else
706 {
707 if (debug_displaced)
708 fprintf_unfiltered (gdb_stdlog,
709 "displaced: stepping %s now\n",
710 target_pid_to_str (ptid));
711 }
712
713 displaced_step_clear ();
714
715 old_cleanups = save_inferior_ptid ();
716 inferior_ptid = ptid;
717
718 original = regcache_read_pc (regcache);
719
720 copy = gdbarch_displaced_step_location (gdbarch);
721 len = gdbarch_max_insn_length (gdbarch);
722
723 /* Save the original contents of the copy area. */
724 displaced_step_saved_copy = xmalloc (len);
725 ignore_cleanups = make_cleanup (free_current_contents,
726 &displaced_step_saved_copy);
727 read_memory (copy, displaced_step_saved_copy, len);
728 if (debug_displaced)
729 {
730 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
731 paddr_nz (copy));
732 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
733 };
734
735 closure = gdbarch_displaced_step_copy_insn (gdbarch,
736 original, copy, regcache);
737
738 /* We don't support the fully-simulated case at present. */
739 gdb_assert (closure);
740
741 make_cleanup (cleanup_displaced_step_closure, closure);
742
743 /* Resume execution at the copy. */
744 regcache_write_pc (regcache, copy);
745
746 discard_cleanups (ignore_cleanups);
747
748 do_cleanups (old_cleanups);
749
750 if (debug_displaced)
751 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
752 paddr_nz (copy));
753
754 /* Save the information we need to fix things up if the step
755 succeeds. */
756 displaced_step_ptid = ptid;
757 displaced_step_gdbarch = gdbarch;
758 displaced_step_closure = closure;
759 displaced_step_original = original;
760 displaced_step_copy = copy;
761 return 1;
762 }
763
764 static void
765 displaced_step_clear_cleanup (void *ignore)
766 {
767 displaced_step_clear ();
768 }
769
770 static void
771 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
772 {
773 struct cleanup *ptid_cleanup = save_inferior_ptid ();
774 inferior_ptid = ptid;
775 write_memory (memaddr, myaddr, len);
776 do_cleanups (ptid_cleanup);
777 }
778
779 static void
780 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
781 {
782 struct cleanup *old_cleanups;
783
784 /* Was this event for the pid we displaced? */
785 if (ptid_equal (displaced_step_ptid, null_ptid)
786 || ! ptid_equal (displaced_step_ptid, event_ptid))
787 return;
788
789 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
790
791 /* Restore the contents of the copy area. */
792 {
793 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
794 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
795 displaced_step_saved_copy, len);
796 if (debug_displaced)
797 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
798 paddr_nz (displaced_step_copy));
799 }
800
801 /* Did the instruction complete successfully? */
802 if (signal == TARGET_SIGNAL_TRAP)
803 {
804 /* Fix up the resulting state. */
805 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
806 displaced_step_closure,
807 displaced_step_original,
808 displaced_step_copy,
809 get_thread_regcache (displaced_step_ptid));
810 }
811 else
812 {
813 /* Since the instruction didn't complete, all we can do is
814 relocate the PC. */
815 struct regcache *regcache = get_thread_regcache (event_ptid);
816 CORE_ADDR pc = regcache_read_pc (regcache);
817 pc = displaced_step_original + (pc - displaced_step_copy);
818 regcache_write_pc (regcache, pc);
819 }
820
821 do_cleanups (old_cleanups);
822
823 displaced_step_ptid = null_ptid;
824
825 /* Are there any pending displaced stepping requests? If so, run
826 one now. */
827 while (displaced_step_request_queue)
828 {
829 struct displaced_step_request *head;
830 ptid_t ptid;
831 CORE_ADDR actual_pc;
832
833 head = displaced_step_request_queue;
834 ptid = head->ptid;
835 displaced_step_request_queue = head->next;
836 xfree (head);
837
838 context_switch (ptid);
839
840 actual_pc = read_pc ();
841
842 if (breakpoint_here_p (actual_pc))
843 {
844 if (debug_displaced)
845 fprintf_unfiltered (gdb_stdlog,
846 "displaced: stepping queued %s now\n",
847 target_pid_to_str (ptid));
848
849 displaced_step_prepare (ptid);
850
851 if (debug_displaced)
852 {
853 gdb_byte buf[4];
854
855 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
856 paddr_nz (actual_pc));
857 read_memory (actual_pc, buf, sizeof (buf));
858 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
859 }
860
861 target_resume (ptid, 1, TARGET_SIGNAL_0);
862
863 /* Done, we're stepping a thread. */
864 break;
865 }
866 else
867 {
868 int step;
869 struct thread_info *tp = inferior_thread ();
870
871 /* The breakpoint we were sitting under has since been
872 removed. */
873 tp->trap_expected = 0;
874
875 /* Go back to what we were trying to do. */
876 step = currently_stepping (tp);
877
878 if (debug_displaced)
879 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
880 target_pid_to_str (tp->ptid), step);
881
882 target_resume (ptid, step, TARGET_SIGNAL_0);
883 tp->stop_signal = TARGET_SIGNAL_0;
884
885 /* This request was discarded. See if there's any other
886 thread waiting for its turn. */
887 }
888 }
889 }
890
891 /* Update global variables holding ptids to hold NEW_PTID if they were
892 holding OLD_PTID. */
893 static void
894 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
895 {
896 struct displaced_step_request *it;
897
898 if (ptid_equal (inferior_ptid, old_ptid))
899 inferior_ptid = new_ptid;
900
901 if (ptid_equal (singlestep_ptid, old_ptid))
902 singlestep_ptid = new_ptid;
903
904 if (ptid_equal (displaced_step_ptid, old_ptid))
905 displaced_step_ptid = new_ptid;
906
907 if (ptid_equal (deferred_step_ptid, old_ptid))
908 deferred_step_ptid = new_ptid;
909
910 for (it = displaced_step_request_queue; it; it = it->next)
911 if (ptid_equal (it->ptid, old_ptid))
912 it->ptid = new_ptid;
913 }
914
915 \f
916 /* Resuming. */
917
918 /* Things to clean up if we QUIT out of resume (). */
919 static void
920 resume_cleanups (void *ignore)
921 {
922 normal_stop ();
923 }
924
925 static const char schedlock_off[] = "off";
926 static const char schedlock_on[] = "on";
927 static const char schedlock_step[] = "step";
928 static const char *scheduler_enums[] = {
929 schedlock_off,
930 schedlock_on,
931 schedlock_step,
932 NULL
933 };
934 static const char *scheduler_mode = schedlock_off;
935 static void
936 show_scheduler_mode (struct ui_file *file, int from_tty,
937 struct cmd_list_element *c, const char *value)
938 {
939 fprintf_filtered (file, _("\
940 Mode for locking scheduler during execution is \"%s\".\n"),
941 value);
942 }
943
944 static void
945 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
946 {
947 if (!target_can_lock_scheduler)
948 {
949 scheduler_mode = schedlock_off;
950 error (_("Target '%s' cannot support this command."), target_shortname);
951 }
952 }
953
954
955 /* Resume the inferior, but allow a QUIT. This is useful if the user
956 wants to interrupt some lengthy single-stepping operation
957 (for child processes, the SIGINT goes to the inferior, and so
958 we get a SIGINT random_signal, but for remote debugging and perhaps
959 other targets, that's not true).
960
961 STEP nonzero if we should step (zero to continue instead).
962 SIG is the signal to give the inferior (zero for none). */
963 void
964 resume (int step, enum target_signal sig)
965 {
966 int should_resume = 1;
967 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
968
969 /* Note that these must be reset if we follow a fork below. */
970 struct regcache *regcache = get_current_regcache ();
971 struct gdbarch *gdbarch = get_regcache_arch (regcache);
972 struct thread_info *tp = inferior_thread ();
973 CORE_ADDR pc = regcache_read_pc (regcache);
974
975 QUIT;
976
977 if (debug_infrun)
978 fprintf_unfiltered (gdb_stdlog,
979 "infrun: resume (step=%d, signal=%d), "
980 "trap_expected=%d\n",
981 step, sig, tp->trap_expected);
982
983 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
984 over an instruction that causes a page fault without triggering
985 a hardware watchpoint. The kernel properly notices that it shouldn't
986 stop, because the hardware watchpoint is not triggered, but it forgets
987 the step request and continues the program normally.
988 Work around the problem by removing hardware watchpoints if a step is
989 requested, GDB will check for a hardware watchpoint trigger after the
990 step anyway. */
991 if (CANNOT_STEP_HW_WATCHPOINTS && step)
992 remove_hw_watchpoints ();
993
994
995 /* Normally, by the time we reach `resume', the breakpoints are either
996 removed or inserted, as appropriate. The exception is if we're sitting
997 at a permanent breakpoint; we need to step over it, but permanent
998 breakpoints can't be removed. So we have to test for it here. */
999 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
1000 {
1001 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1002 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1003 else
1004 error (_("\
1005 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1006 how to step past a permanent breakpoint on this architecture. Try using\n\
1007 a command like `return' or `jump' to continue execution."));
1008 }
1009
1010 /* If enabled, step over breakpoints by executing a copy of the
1011 instruction at a different address.
1012
1013 We can't use displaced stepping when we have a signal to deliver;
1014 the comments for displaced_step_prepare explain why. The
1015 comments in the handle_inferior event for dealing with 'random
1016 signals' explain what we do instead. */
1017 if (use_displaced_stepping (gdbarch)
1018 && tp->trap_expected
1019 && sig == TARGET_SIGNAL_0)
1020 {
1021 if (!displaced_step_prepare (inferior_ptid))
1022 {
1023 /* Got placed in displaced stepping queue. Will be resumed
1024 later when all the currently queued displaced stepping
1025 requests finish. The thread is not executing at this point,
1026 and the call to set_executing will be made later. But we
1027 need to call set_running here, since from frontend point of view,
1028 the thread is running. */
1029 set_running (inferior_ptid, 1);
1030 discard_cleanups (old_cleanups);
1031 return;
1032 }
1033 }
1034
1035 if (step && gdbarch_software_single_step_p (gdbarch))
1036 {
1037 /* Do it the hard way, w/temp breakpoints */
1038 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
1039 {
1040 /* ...and don't ask hardware to do it. */
1041 step = 0;
1042 /* and do not pull these breakpoints until after a `wait' in
1043 `wait_for_inferior' */
1044 singlestep_breakpoints_inserted_p = 1;
1045 singlestep_ptid = inferior_ptid;
1046 singlestep_pc = pc;
1047 }
1048 }
1049
1050 /* If there were any forks/vforks/execs that were caught and are
1051 now to be followed, then do so. */
1052 switch (pending_follow.kind)
1053 {
1054 case TARGET_WAITKIND_FORKED:
1055 case TARGET_WAITKIND_VFORKED:
1056 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1057 if (follow_fork ())
1058 should_resume = 0;
1059
1060 /* Following a child fork will change our notion of current
1061 thread. */
1062 tp = inferior_thread ();
1063 regcache = get_current_regcache ();
1064 gdbarch = get_regcache_arch (regcache);
1065 pc = regcache_read_pc (regcache);
1066 break;
1067
1068 case TARGET_WAITKIND_EXECD:
1069 /* follow_exec is called as soon as the exec event is seen. */
1070 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1071 break;
1072
1073 default:
1074 break;
1075 }
1076
1077 /* Install inferior's terminal modes. */
1078 target_terminal_inferior ();
1079
1080 if (should_resume)
1081 {
1082 ptid_t resume_ptid;
1083
1084 resume_ptid = RESUME_ALL; /* Default */
1085
1086 /* If STEP is set, it's a request to use hardware stepping
1087 facilities. But in that case, we should never
1088 use singlestep breakpoint. */
1089 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1090
1091 if (singlestep_breakpoints_inserted_p
1092 && stepping_past_singlestep_breakpoint)
1093 {
1094 /* The situation here is as follows. In thread T1 we wanted to
1095 single-step. Lacking hardware single-stepping we've
1096 set breakpoint at the PC of the next instruction -- call it
1097 P. After resuming, we've hit that breakpoint in thread T2.
1098 Now we've removed original breakpoint, inserted breakpoint
1099 at P+1, and try to step to advance T2 past breakpoint.
1100 We need to step only T2, as if T1 is allowed to freely run,
1101 it can run past P, and if other threads are allowed to run,
1102 they can hit breakpoint at P+1, and nested hits of single-step
1103 breakpoints is not something we'd want -- that's complicated
1104 to support, and has no value. */
1105 resume_ptid = inferior_ptid;
1106 }
1107
1108 if ((step || singlestep_breakpoints_inserted_p)
1109 && tp->trap_expected)
1110 {
1111 /* We're allowing a thread to run past a breakpoint it has
1112 hit, by single-stepping the thread with the breakpoint
1113 removed. In which case, we need to single-step only this
1114 thread, and keep others stopped, as they can miss this
1115 breakpoint if allowed to run.
1116
1117 The current code actually removes all breakpoints when
1118 doing this, not just the one being stepped over, so if we
1119 let other threads run, we can actually miss any
1120 breakpoint, not just the one at PC. */
1121 resume_ptid = inferior_ptid;
1122 }
1123
1124 if (non_stop)
1125 {
1126 /* With non-stop mode on, threads are always handled
1127 individually. */
1128 resume_ptid = inferior_ptid;
1129 }
1130 else if ((scheduler_mode == schedlock_on)
1131 || (scheduler_mode == schedlock_step
1132 && (step || singlestep_breakpoints_inserted_p)))
1133 {
1134 /* User-settable 'scheduler' mode requires solo thread resume. */
1135 resume_ptid = inferior_ptid;
1136 }
1137
1138 if (gdbarch_cannot_step_breakpoint (gdbarch))
1139 {
1140 /* Most targets can step a breakpoint instruction, thus
1141 executing it normally. But if this one cannot, just
1142 continue and we will hit it anyway. */
1143 if (step && breakpoint_inserted_here_p (pc))
1144 step = 0;
1145 }
1146
1147 if (debug_displaced
1148 && use_displaced_stepping (gdbarch)
1149 && tp->trap_expected)
1150 {
1151 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1152 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1153 gdb_byte buf[4];
1154
1155 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1156 paddr_nz (actual_pc));
1157 read_memory (actual_pc, buf, sizeof (buf));
1158 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1159 }
1160
1161 /* Avoid confusing the next resume, if the next stop/resume
1162 happens to apply to another thread. */
1163 tp->stop_signal = TARGET_SIGNAL_0;
1164
1165 target_resume (resume_ptid, step, sig);
1166 }
1167
1168 discard_cleanups (old_cleanups);
1169 }
1170 \f
1171 /* Proceeding. */
1172
1173 /* Clear out all variables saying what to do when inferior is continued.
1174 First do this, then set the ones you want, then call `proceed'. */
1175
1176 static void
1177 clear_proceed_status_thread (struct thread_info *tp)
1178 {
1179 if (debug_infrun)
1180 fprintf_unfiltered (gdb_stdlog,
1181 "infrun: clear_proceed_status_thread (%s)\n",
1182 target_pid_to_str (tp->ptid));
1183
1184 tp->trap_expected = 0;
1185 tp->step_range_start = 0;
1186 tp->step_range_end = 0;
1187 tp->step_frame_id = null_frame_id;
1188 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1189 tp->stop_requested = 0;
1190
1191 tp->stop_step = 0;
1192
1193 tp->proceed_to_finish = 0;
1194
1195 /* Discard any remaining commands or status from previous stop. */
1196 bpstat_clear (&tp->stop_bpstat);
1197 }
1198
1199 static int
1200 clear_proceed_status_callback (struct thread_info *tp, void *data)
1201 {
1202 if (is_exited (tp->ptid))
1203 return 0;
1204
1205 clear_proceed_status_thread (tp);
1206 return 0;
1207 }
1208
1209 void
1210 clear_proceed_status (void)
1211 {
1212 if (!ptid_equal (inferior_ptid, null_ptid))
1213 {
1214 struct inferior *inferior;
1215
1216 if (non_stop)
1217 {
1218 /* If in non-stop mode, only delete the per-thread status
1219 of the current thread. */
1220 clear_proceed_status_thread (inferior_thread ());
1221 }
1222 else
1223 {
1224 /* In all-stop mode, delete the per-thread status of
1225 *all* threads. */
1226 iterate_over_threads (clear_proceed_status_callback, NULL);
1227 }
1228
1229 inferior = current_inferior ();
1230 inferior->stop_soon = NO_STOP_QUIETLY;
1231 }
1232
1233 stop_after_trap = 0;
1234 breakpoint_proceeded = 1; /* We're about to proceed... */
1235
1236 if (stop_registers)
1237 {
1238 regcache_xfree (stop_registers);
1239 stop_registers = NULL;
1240 }
1241 }
1242
1243 /* This should be suitable for any targets that support threads. */
1244
1245 static int
1246 prepare_to_proceed (int step)
1247 {
1248 ptid_t wait_ptid;
1249 struct target_waitstatus wait_status;
1250
1251 /* Get the last target status returned by target_wait(). */
1252 get_last_target_status (&wait_ptid, &wait_status);
1253
1254 /* Make sure we were stopped at a breakpoint. */
1255 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1256 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1257 {
1258 return 0;
1259 }
1260
1261 /* Switched over from WAIT_PID. */
1262 if (!ptid_equal (wait_ptid, minus_one_ptid)
1263 && !ptid_equal (inferior_ptid, wait_ptid))
1264 {
1265 struct regcache *regcache = get_thread_regcache (wait_ptid);
1266
1267 if (breakpoint_here_p (regcache_read_pc (regcache)))
1268 {
1269 /* If stepping, remember current thread to switch back to. */
1270 if (step)
1271 deferred_step_ptid = inferior_ptid;
1272
1273 /* Switch back to WAIT_PID thread. */
1274 switch_to_thread (wait_ptid);
1275
1276 /* We return 1 to indicate that there is a breakpoint here,
1277 so we need to step over it before continuing to avoid
1278 hitting it straight away. */
1279 return 1;
1280 }
1281 }
1282
1283 return 0;
1284 }
1285
1286 /* Basic routine for continuing the program in various fashions.
1287
1288 ADDR is the address to resume at, or -1 for resume where stopped.
1289 SIGGNAL is the signal to give it, or 0 for none,
1290 or -1 for act according to how it stopped.
1291 STEP is nonzero if should trap after one instruction.
1292 -1 means return after that and print nothing.
1293 You should probably set various step_... variables
1294 before calling here, if you are stepping.
1295
1296 You should call clear_proceed_status before calling proceed. */
1297
1298 void
1299 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1300 {
1301 struct regcache *regcache = get_current_regcache ();
1302 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1303 struct thread_info *tp;
1304 CORE_ADDR pc = regcache_read_pc (regcache);
1305 int oneproc = 0;
1306
1307 if (step > 0)
1308 step_start_function = find_pc_function (pc);
1309 if (step < 0)
1310 stop_after_trap = 1;
1311
1312 if (addr == (CORE_ADDR) -1)
1313 {
1314 if (pc == stop_pc && breakpoint_here_p (pc)
1315 && execution_direction != EXEC_REVERSE)
1316 /* There is a breakpoint at the address we will resume at,
1317 step one instruction before inserting breakpoints so that
1318 we do not stop right away (and report a second hit at this
1319 breakpoint).
1320
1321 Note, we don't do this in reverse, because we won't
1322 actually be executing the breakpoint insn anyway.
1323 We'll be (un-)executing the previous instruction. */
1324
1325 oneproc = 1;
1326 else if (gdbarch_single_step_through_delay_p (gdbarch)
1327 && gdbarch_single_step_through_delay (gdbarch,
1328 get_current_frame ()))
1329 /* We stepped onto an instruction that needs to be stepped
1330 again before re-inserting the breakpoint, do so. */
1331 oneproc = 1;
1332 }
1333 else
1334 {
1335 regcache_write_pc (regcache, addr);
1336 }
1337
1338 if (debug_infrun)
1339 fprintf_unfiltered (gdb_stdlog,
1340 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1341 paddr_nz (addr), siggnal, step);
1342
1343 if (non_stop)
1344 /* In non-stop, each thread is handled individually. The context
1345 must already be set to the right thread here. */
1346 ;
1347 else
1348 {
1349 /* In a multi-threaded task we may select another thread and
1350 then continue or step.
1351
1352 But if the old thread was stopped at a breakpoint, it will
1353 immediately cause another breakpoint stop without any
1354 execution (i.e. it will report a breakpoint hit incorrectly).
1355 So we must step over it first.
1356
1357 prepare_to_proceed checks the current thread against the
1358 thread that reported the most recent event. If a step-over
1359 is required it returns TRUE and sets the current thread to
1360 the old thread. */
1361 if (prepare_to_proceed (step))
1362 oneproc = 1;
1363 }
1364
1365 /* prepare_to_proceed may change the current thread. */
1366 tp = inferior_thread ();
1367
1368 if (oneproc)
1369 {
1370 tp->trap_expected = 1;
1371 /* If displaced stepping is enabled, we can step over the
1372 breakpoint without hitting it, so leave all breakpoints
1373 inserted. Otherwise we need to disable all breakpoints, step
1374 one instruction, and then re-add them when that step is
1375 finished. */
1376 if (!use_displaced_stepping (gdbarch))
1377 remove_breakpoints ();
1378 }
1379
1380 /* We can insert breakpoints if we're not trying to step over one,
1381 or if we are stepping over one but we're using displaced stepping
1382 to do so. */
1383 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1384 insert_breakpoints ();
1385
1386 if (!non_stop)
1387 {
1388 /* Pass the last stop signal to the thread we're resuming,
1389 irrespective of whether the current thread is the thread that
1390 got the last event or not. This was historically GDB's
1391 behaviour before keeping a stop_signal per thread. */
1392
1393 struct thread_info *last_thread;
1394 ptid_t last_ptid;
1395 struct target_waitstatus last_status;
1396
1397 get_last_target_status (&last_ptid, &last_status);
1398 if (!ptid_equal (inferior_ptid, last_ptid)
1399 && !ptid_equal (last_ptid, null_ptid)
1400 && !ptid_equal (last_ptid, minus_one_ptid))
1401 {
1402 last_thread = find_thread_pid (last_ptid);
1403 if (last_thread)
1404 {
1405 tp->stop_signal = last_thread->stop_signal;
1406 last_thread->stop_signal = TARGET_SIGNAL_0;
1407 }
1408 }
1409 }
1410
1411 if (siggnal != TARGET_SIGNAL_DEFAULT)
1412 tp->stop_signal = siggnal;
1413 /* If this signal should not be seen by program,
1414 give it zero. Used for debugging signals. */
1415 else if (!signal_program[tp->stop_signal])
1416 tp->stop_signal = TARGET_SIGNAL_0;
1417
1418 annotate_starting ();
1419
1420 /* Make sure that output from GDB appears before output from the
1421 inferior. */
1422 gdb_flush (gdb_stdout);
1423
1424 /* Refresh prev_pc value just prior to resuming. This used to be
1425 done in stop_stepping, however, setting prev_pc there did not handle
1426 scenarios such as inferior function calls or returning from
1427 a function via the return command. In those cases, the prev_pc
1428 value was not set properly for subsequent commands. The prev_pc value
1429 is used to initialize the starting line number in the ecs. With an
1430 invalid value, the gdb next command ends up stopping at the position
1431 represented by the next line table entry past our start position.
1432 On platforms that generate one line table entry per line, this
1433 is not a problem. However, on the ia64, the compiler generates
1434 extraneous line table entries that do not increase the line number.
1435 When we issue the gdb next command on the ia64 after an inferior call
1436 or a return command, we often end up a few instructions forward, still
1437 within the original line we started.
1438
1439 An attempt was made to have init_execution_control_state () refresh
1440 the prev_pc value before calculating the line number. This approach
1441 did not work because on platforms that use ptrace, the pc register
1442 cannot be read unless the inferior is stopped. At that point, we
1443 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1444 call can fail. Setting the prev_pc value here ensures the value is
1445 updated correctly when the inferior is stopped. */
1446 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1447
1448 /* Fill in with reasonable starting values. */
1449 init_thread_stepping_state (tp);
1450
1451 /* Reset to normal state. */
1452 init_infwait_state ();
1453
1454 /* Resume inferior. */
1455 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1456
1457 /* Wait for it to stop (if not standalone)
1458 and in any case decode why it stopped, and act accordingly. */
1459 /* Do this only if we are not using the event loop, or if the target
1460 does not support asynchronous execution. */
1461 if (!target_can_async_p ())
1462 {
1463 wait_for_inferior (0);
1464 normal_stop ();
1465 }
1466 }
1467 \f
1468
1469 /* Start remote-debugging of a machine over a serial link. */
1470
1471 void
1472 start_remote (int from_tty)
1473 {
1474 struct inferior *inferior;
1475 init_wait_for_inferior ();
1476
1477 inferior = current_inferior ();
1478 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1479
1480 /* Always go on waiting for the target, regardless of the mode. */
1481 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1482 indicate to wait_for_inferior that a target should timeout if
1483 nothing is returned (instead of just blocking). Because of this,
1484 targets expecting an immediate response need to, internally, set
1485 things up so that the target_wait() is forced to eventually
1486 timeout. */
1487 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1488 differentiate to its caller what the state of the target is after
1489 the initial open has been performed. Here we're assuming that
1490 the target has stopped. It should be possible to eventually have
1491 target_open() return to the caller an indication that the target
1492 is currently running and GDB state should be set to the same as
1493 for an async run. */
1494 wait_for_inferior (0);
1495
1496 /* Now that the inferior has stopped, do any bookkeeping like
1497 loading shared libraries. We want to do this before normal_stop,
1498 so that the displayed frame is up to date. */
1499 post_create_inferior (&current_target, from_tty);
1500
1501 normal_stop ();
1502 }
1503
1504 /* Initialize static vars when a new inferior begins. */
1505
1506 void
1507 init_wait_for_inferior (void)
1508 {
1509 /* These are meaningless until the first time through wait_for_inferior. */
1510
1511 breakpoint_init_inferior (inf_starting);
1512
1513 /* The first resume is not following a fork/vfork/exec. */
1514 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1515
1516 clear_proceed_status ();
1517
1518 stepping_past_singlestep_breakpoint = 0;
1519 deferred_step_ptid = null_ptid;
1520
1521 target_last_wait_ptid = minus_one_ptid;
1522
1523 previous_inferior_ptid = null_ptid;
1524 init_infwait_state ();
1525
1526 displaced_step_clear ();
1527 }
1528
1529 \f
1530 /* This enum encodes possible reasons for doing a target_wait, so that
1531 wfi can call target_wait in one place. (Ultimately the call will be
1532 moved out of the infinite loop entirely.) */
1533
1534 enum infwait_states
1535 {
1536 infwait_normal_state,
1537 infwait_thread_hop_state,
1538 infwait_step_watch_state,
1539 infwait_nonstep_watch_state
1540 };
1541
1542 /* Why did the inferior stop? Used to print the appropriate messages
1543 to the interface from within handle_inferior_event(). */
1544 enum inferior_stop_reason
1545 {
1546 /* Step, next, nexti, stepi finished. */
1547 END_STEPPING_RANGE,
1548 /* Inferior terminated by signal. */
1549 SIGNAL_EXITED,
1550 /* Inferior exited. */
1551 EXITED,
1552 /* Inferior received signal, and user asked to be notified. */
1553 SIGNAL_RECEIVED,
1554 /* Reverse execution -- target ran out of history info. */
1555 NO_HISTORY
1556 };
1557
1558 /* The PTID we'll do a target_wait on.*/
1559 ptid_t waiton_ptid;
1560
1561 /* Current inferior wait state. */
1562 enum infwait_states infwait_state;
1563
1564 /* Data to be passed around while handling an event. This data is
1565 discarded between events. */
1566 struct execution_control_state
1567 {
1568 ptid_t ptid;
1569 /* The thread that got the event, if this was a thread event; NULL
1570 otherwise. */
1571 struct thread_info *event_thread;
1572
1573 struct target_waitstatus ws;
1574 int random_signal;
1575 CORE_ADDR stop_func_start;
1576 CORE_ADDR stop_func_end;
1577 char *stop_func_name;
1578 int new_thread_event;
1579 int wait_some_more;
1580 };
1581
1582 void init_execution_control_state (struct execution_control_state *ecs);
1583
1584 void handle_inferior_event (struct execution_control_state *ecs);
1585
1586 static void handle_step_into_function (struct execution_control_state *ecs);
1587 static void handle_step_into_function_backward (struct execution_control_state *ecs);
1588 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1589 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1590 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1591 struct frame_id sr_id);
1592 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1593
1594 static void stop_stepping (struct execution_control_state *ecs);
1595 static void prepare_to_wait (struct execution_control_state *ecs);
1596 static void keep_going (struct execution_control_state *ecs);
1597 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1598 int stop_info);
1599
1600 /* Callback for iterate over threads. If the thread is stopped, but
1601 the user/frontend doesn't know about that yet, go through
1602 normal_stop, as if the thread had just stopped now. ARG points at
1603 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1604 ptid_is_pid(PTID) is true, applies to all threads of the process
1605 pointed at by PTID. Otherwise, apply only to the thread pointed by
1606 PTID. */
1607
1608 static int
1609 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1610 {
1611 ptid_t ptid = * (ptid_t *) arg;
1612
1613 if ((ptid_equal (info->ptid, ptid)
1614 || ptid_equal (minus_one_ptid, ptid)
1615 || (ptid_is_pid (ptid)
1616 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1617 && is_running (info->ptid)
1618 && !is_executing (info->ptid))
1619 {
1620 struct cleanup *old_chain;
1621 struct execution_control_state ecss;
1622 struct execution_control_state *ecs = &ecss;
1623
1624 memset (ecs, 0, sizeof (*ecs));
1625
1626 old_chain = make_cleanup_restore_current_thread ();
1627
1628 switch_to_thread (info->ptid);
1629
1630 /* Go through handle_inferior_event/normal_stop, so we always
1631 have consistent output as if the stop event had been
1632 reported. */
1633 ecs->ptid = info->ptid;
1634 ecs->event_thread = find_thread_pid (info->ptid);
1635 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1636 ecs->ws.value.sig = TARGET_SIGNAL_0;
1637
1638 handle_inferior_event (ecs);
1639
1640 if (!ecs->wait_some_more)
1641 {
1642 struct thread_info *tp;
1643
1644 normal_stop ();
1645
1646 /* Finish off the continuations. The continations
1647 themselves are responsible for realising the thread
1648 didn't finish what it was supposed to do. */
1649 tp = inferior_thread ();
1650 do_all_intermediate_continuations_thread (tp);
1651 do_all_continuations_thread (tp);
1652 }
1653
1654 do_cleanups (old_chain);
1655 }
1656
1657 return 0;
1658 }
1659
1660 /* This function is attached as a "thread_stop_requested" observer.
1661 Cleanup local state that assumed the PTID was to be resumed, and
1662 report the stop to the frontend. */
1663
1664 void
1665 infrun_thread_stop_requested (ptid_t ptid)
1666 {
1667 struct displaced_step_request *it, *next, *prev = NULL;
1668
1669 /* PTID was requested to stop. Remove it from the displaced
1670 stepping queue, so we don't try to resume it automatically. */
1671 for (it = displaced_step_request_queue; it; it = next)
1672 {
1673 next = it->next;
1674
1675 if (ptid_equal (it->ptid, ptid)
1676 || ptid_equal (minus_one_ptid, ptid)
1677 || (ptid_is_pid (ptid)
1678 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1679 {
1680 if (displaced_step_request_queue == it)
1681 displaced_step_request_queue = it->next;
1682 else
1683 prev->next = it->next;
1684
1685 xfree (it);
1686 }
1687 else
1688 prev = it;
1689 }
1690
1691 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1692 }
1693
1694 /* Callback for iterate_over_threads. */
1695
1696 static int
1697 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1698 {
1699 if (is_exited (info->ptid))
1700 return 0;
1701
1702 delete_step_resume_breakpoint (info);
1703 return 0;
1704 }
1705
1706 /* In all-stop, delete the step resume breakpoint of any thread that
1707 had one. In non-stop, delete the step resume breakpoint of the
1708 thread that just stopped. */
1709
1710 static void
1711 delete_step_thread_step_resume_breakpoint (void)
1712 {
1713 if (!target_has_execution
1714 || ptid_equal (inferior_ptid, null_ptid))
1715 /* If the inferior has exited, we have already deleted the step
1716 resume breakpoints out of GDB's lists. */
1717 return;
1718
1719 if (non_stop)
1720 {
1721 /* If in non-stop mode, only delete the step-resume or
1722 longjmp-resume breakpoint of the thread that just stopped
1723 stepping. */
1724 struct thread_info *tp = inferior_thread ();
1725 delete_step_resume_breakpoint (tp);
1726 }
1727 else
1728 /* In all-stop mode, delete all step-resume and longjmp-resume
1729 breakpoints of any thread that had them. */
1730 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1731 }
1732
1733 /* A cleanup wrapper. */
1734
1735 static void
1736 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1737 {
1738 delete_step_thread_step_resume_breakpoint ();
1739 }
1740
1741 /* Wait for control to return from inferior to debugger.
1742
1743 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1744 as if they were SIGTRAP signals. This can be useful during
1745 the startup sequence on some targets such as HP/UX, where
1746 we receive an EXEC event instead of the expected SIGTRAP.
1747
1748 If inferior gets a signal, we may decide to start it up again
1749 instead of returning. That is why there is a loop in this function.
1750 When this function actually returns it means the inferior
1751 should be left stopped and GDB should read more commands. */
1752
1753 void
1754 wait_for_inferior (int treat_exec_as_sigtrap)
1755 {
1756 struct cleanup *old_cleanups;
1757 struct execution_control_state ecss;
1758 struct execution_control_state *ecs;
1759
1760 if (debug_infrun)
1761 fprintf_unfiltered
1762 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1763 treat_exec_as_sigtrap);
1764
1765 old_cleanups =
1766 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
1767
1768 ecs = &ecss;
1769 memset (ecs, 0, sizeof (*ecs));
1770
1771 overlay_cache_invalid = 1;
1772
1773 /* We'll update this if & when we switch to a new thread. */
1774 previous_inferior_ptid = inferior_ptid;
1775
1776 /* We have to invalidate the registers BEFORE calling target_wait
1777 because they can be loaded from the target while in target_wait.
1778 This makes remote debugging a bit more efficient for those
1779 targets that provide critical registers as part of their normal
1780 status mechanism. */
1781
1782 registers_changed ();
1783
1784 while (1)
1785 {
1786 if (deprecated_target_wait_hook)
1787 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1788 else
1789 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1790
1791 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1792 {
1793 xfree (ecs->ws.value.execd_pathname);
1794 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1795 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1796 }
1797
1798 /* Now figure out what to do with the result of the result. */
1799 handle_inferior_event (ecs);
1800
1801 if (!ecs->wait_some_more)
1802 break;
1803 }
1804
1805 do_cleanups (old_cleanups);
1806 }
1807
1808 /* Asynchronous version of wait_for_inferior. It is called by the
1809 event loop whenever a change of state is detected on the file
1810 descriptor corresponding to the target. It can be called more than
1811 once to complete a single execution command. In such cases we need
1812 to keep the state in a global variable ECSS. If it is the last time
1813 that this function is called for a single execution command, then
1814 report to the user that the inferior has stopped, and do the
1815 necessary cleanups. */
1816
1817 void
1818 fetch_inferior_event (void *client_data)
1819 {
1820 struct execution_control_state ecss;
1821 struct execution_control_state *ecs = &ecss;
1822 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1823 int was_sync = sync_execution;
1824
1825 memset (ecs, 0, sizeof (*ecs));
1826
1827 overlay_cache_invalid = 1;
1828
1829 /* We can only rely on wait_for_more being correct before handling
1830 the event in all-stop, but previous_inferior_ptid isn't used in
1831 non-stop. */
1832 if (!ecs->wait_some_more)
1833 /* We'll update this if & when we switch to a new thread. */
1834 previous_inferior_ptid = inferior_ptid;
1835
1836 if (non_stop)
1837 /* In non-stop mode, the user/frontend should not notice a thread
1838 switch due to internal events. Make sure we reverse to the
1839 user selected thread and frame after handling the event and
1840 running any breakpoint commands. */
1841 make_cleanup_restore_current_thread ();
1842
1843 /* We have to invalidate the registers BEFORE calling target_wait
1844 because they can be loaded from the target while in target_wait.
1845 This makes remote debugging a bit more efficient for those
1846 targets that provide critical registers as part of their normal
1847 status mechanism. */
1848
1849 registers_changed ();
1850
1851 if (deprecated_target_wait_hook)
1852 ecs->ptid =
1853 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1854 else
1855 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1856
1857 if (non_stop
1858 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1859 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1860 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1861 /* In non-stop mode, each thread is handled individually. Switch
1862 early, so the global state is set correctly for this
1863 thread. */
1864 context_switch (ecs->ptid);
1865
1866 /* Now figure out what to do with the result of the result. */
1867 handle_inferior_event (ecs);
1868
1869 if (!ecs->wait_some_more)
1870 {
1871 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1872
1873 delete_step_thread_step_resume_breakpoint ();
1874
1875 /* We may not find an inferior if this was a process exit. */
1876 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
1877 normal_stop ();
1878
1879 if (target_has_execution
1880 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1881 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1882 && ecs->event_thread->step_multi
1883 && ecs->event_thread->stop_step)
1884 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1885 else
1886 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1887 }
1888
1889 /* Revert thread and frame. */
1890 do_cleanups (old_chain);
1891
1892 /* If the inferior was in sync execution mode, and now isn't,
1893 restore the prompt. */
1894 if (was_sync && !sync_execution)
1895 display_gdb_prompt (0);
1896 }
1897
1898 /* Prepare an execution control state for looping through a
1899 wait_for_inferior-type loop. */
1900
1901 void
1902 init_execution_control_state (struct execution_control_state *ecs)
1903 {
1904 ecs->random_signal = 0;
1905 }
1906
1907 /* Clear context switchable stepping state. */
1908
1909 void
1910 init_thread_stepping_state (struct thread_info *tss)
1911 {
1912 struct symtab_and_line sal;
1913
1914 tss->stepping_over_breakpoint = 0;
1915 tss->step_after_step_resume_breakpoint = 0;
1916 tss->stepping_through_solib_after_catch = 0;
1917 tss->stepping_through_solib_catchpoints = NULL;
1918
1919 sal = find_pc_line (tss->prev_pc, 0);
1920 tss->current_line = sal.line;
1921 tss->current_symtab = sal.symtab;
1922 }
1923
1924 /* Return the cached copy of the last pid/waitstatus returned by
1925 target_wait()/deprecated_target_wait_hook(). The data is actually
1926 cached by handle_inferior_event(), which gets called immediately
1927 after target_wait()/deprecated_target_wait_hook(). */
1928
1929 void
1930 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1931 {
1932 *ptidp = target_last_wait_ptid;
1933 *status = target_last_waitstatus;
1934 }
1935
1936 void
1937 nullify_last_target_wait_ptid (void)
1938 {
1939 target_last_wait_ptid = minus_one_ptid;
1940 }
1941
1942 /* Switch thread contexts. */
1943
1944 static void
1945 context_switch (ptid_t ptid)
1946 {
1947 if (debug_infrun)
1948 {
1949 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1950 target_pid_to_str (inferior_ptid));
1951 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1952 target_pid_to_str (ptid));
1953 }
1954
1955 switch_to_thread (ptid);
1956 }
1957
1958 static void
1959 adjust_pc_after_break (struct execution_control_state *ecs)
1960 {
1961 struct regcache *regcache;
1962 struct gdbarch *gdbarch;
1963 CORE_ADDR breakpoint_pc;
1964
1965 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1966 we aren't, just return.
1967
1968 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1969 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1970 implemented by software breakpoints should be handled through the normal
1971 breakpoint layer.
1972
1973 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1974 different signals (SIGILL or SIGEMT for instance), but it is less
1975 clear where the PC is pointing afterwards. It may not match
1976 gdbarch_decr_pc_after_break. I don't know any specific target that
1977 generates these signals at breakpoints (the code has been in GDB since at
1978 least 1992) so I can not guess how to handle them here.
1979
1980 In earlier versions of GDB, a target with
1981 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1982 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1983 target with both of these set in GDB history, and it seems unlikely to be
1984 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1985
1986 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1987 return;
1988
1989 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1990 return;
1991
1992 /* In reverse execution, when a breakpoint is hit, the instruction
1993 under it has already been de-executed. The reported PC always
1994 points at the breakpoint address, so adjusting it further would
1995 be wrong. E.g., consider this case on a decr_pc_after_break == 1
1996 architecture:
1997
1998 B1 0x08000000 : INSN1
1999 B2 0x08000001 : INSN2
2000 0x08000002 : INSN3
2001 PC -> 0x08000003 : INSN4
2002
2003 Say you're stopped at 0x08000003 as above. Reverse continuing
2004 from that point should hit B2 as below. Reading the PC when the
2005 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2006 been de-executed already.
2007
2008 B1 0x08000000 : INSN1
2009 B2 PC -> 0x08000001 : INSN2
2010 0x08000002 : INSN3
2011 0x08000003 : INSN4
2012
2013 We can't apply the same logic as for forward execution, because
2014 we would wrongly adjust the PC to 0x08000000, since there's a
2015 breakpoint at PC - 1. We'd then report a hit on B1, although
2016 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2017 behaviour. */
2018 if (execution_direction == EXEC_REVERSE)
2019 return;
2020
2021 /* If this target does not decrement the PC after breakpoints, then
2022 we have nothing to do. */
2023 regcache = get_thread_regcache (ecs->ptid);
2024 gdbarch = get_regcache_arch (regcache);
2025 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2026 return;
2027
2028 /* Find the location where (if we've hit a breakpoint) the
2029 breakpoint would be. */
2030 breakpoint_pc = regcache_read_pc (regcache)
2031 - gdbarch_decr_pc_after_break (gdbarch);
2032
2033 /* Check whether there actually is a software breakpoint inserted at
2034 that location.
2035
2036 If in non-stop mode, a race condition is possible where we've
2037 removed a breakpoint, but stop events for that breakpoint were
2038 already queued and arrive later. To suppress those spurious
2039 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2040 and retire them after a number of stop events are reported. */
2041 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2042 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
2043 {
2044 /* When using hardware single-step, a SIGTRAP is reported for both
2045 a completed single-step and a software breakpoint. Need to
2046 differentiate between the two, as the latter needs adjusting
2047 but the former does not.
2048
2049 The SIGTRAP can be due to a completed hardware single-step only if
2050 - we didn't insert software single-step breakpoints
2051 - the thread to be examined is still the current thread
2052 - this thread is currently being stepped
2053
2054 If any of these events did not occur, we must have stopped due
2055 to hitting a software breakpoint, and have to back up to the
2056 breakpoint address.
2057
2058 As a special case, we could have hardware single-stepped a
2059 software breakpoint. In this case (prev_pc == breakpoint_pc),
2060 we also need to back up to the breakpoint address. */
2061
2062 if (singlestep_breakpoints_inserted_p
2063 || !ptid_equal (ecs->ptid, inferior_ptid)
2064 || !currently_stepping (ecs->event_thread)
2065 || ecs->event_thread->prev_pc == breakpoint_pc)
2066 regcache_write_pc (regcache, breakpoint_pc);
2067 }
2068 }
2069
2070 void
2071 init_infwait_state (void)
2072 {
2073 waiton_ptid = pid_to_ptid (-1);
2074 infwait_state = infwait_normal_state;
2075 }
2076
2077 void
2078 error_is_running (void)
2079 {
2080 error (_("\
2081 Cannot execute this command while the selected thread is running."));
2082 }
2083
2084 void
2085 ensure_not_running (void)
2086 {
2087 if (is_running (inferior_ptid))
2088 error_is_running ();
2089 }
2090
2091 /* Given an execution control state that has been freshly filled in
2092 by an event from the inferior, figure out what it means and take
2093 appropriate action. */
2094
2095 void
2096 handle_inferior_event (struct execution_control_state *ecs)
2097 {
2098 int sw_single_step_trap_p = 0;
2099 int stopped_by_watchpoint;
2100 int stepped_after_stopped_by_watchpoint = 0;
2101 struct symtab_and_line stop_pc_sal;
2102 enum stop_kind stop_soon;
2103
2104 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2105 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2106 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2107 {
2108 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2109 gdb_assert (inf);
2110 stop_soon = inf->stop_soon;
2111 }
2112 else
2113 stop_soon = NO_STOP_QUIETLY;
2114
2115 /* Cache the last pid/waitstatus. */
2116 target_last_wait_ptid = ecs->ptid;
2117 target_last_waitstatus = ecs->ws;
2118
2119 /* Always clear state belonging to the previous time we stopped. */
2120 stop_stack_dummy = 0;
2121
2122 /* If it's a new process, add it to the thread database */
2123
2124 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2125 && !ptid_equal (ecs->ptid, minus_one_ptid)
2126 && !in_thread_list (ecs->ptid));
2127
2128 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2129 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2130 add_thread (ecs->ptid);
2131
2132 ecs->event_thread = find_thread_pid (ecs->ptid);
2133
2134 /* Dependent on valid ECS->EVENT_THREAD. */
2135 adjust_pc_after_break (ecs);
2136
2137 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2138 reinit_frame_cache ();
2139
2140 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2141 {
2142 breakpoint_retire_moribund ();
2143
2144 /* Mark the non-executing threads accordingly. */
2145 if (!non_stop
2146 || ecs->ws.kind == TARGET_WAITKIND_EXITED
2147 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
2148 set_executing (pid_to_ptid (-1), 0);
2149 else
2150 set_executing (ecs->ptid, 0);
2151 }
2152
2153 switch (infwait_state)
2154 {
2155 case infwait_thread_hop_state:
2156 if (debug_infrun)
2157 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
2158 /* Cancel the waiton_ptid. */
2159 waiton_ptid = pid_to_ptid (-1);
2160 break;
2161
2162 case infwait_normal_state:
2163 if (debug_infrun)
2164 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2165 break;
2166
2167 case infwait_step_watch_state:
2168 if (debug_infrun)
2169 fprintf_unfiltered (gdb_stdlog,
2170 "infrun: infwait_step_watch_state\n");
2171
2172 stepped_after_stopped_by_watchpoint = 1;
2173 break;
2174
2175 case infwait_nonstep_watch_state:
2176 if (debug_infrun)
2177 fprintf_unfiltered (gdb_stdlog,
2178 "infrun: infwait_nonstep_watch_state\n");
2179 insert_breakpoints ();
2180
2181 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2182 handle things like signals arriving and other things happening
2183 in combination correctly? */
2184 stepped_after_stopped_by_watchpoint = 1;
2185 break;
2186
2187 default:
2188 internal_error (__FILE__, __LINE__, _("bad switch"));
2189 }
2190 infwait_state = infwait_normal_state;
2191
2192 switch (ecs->ws.kind)
2193 {
2194 case TARGET_WAITKIND_LOADED:
2195 if (debug_infrun)
2196 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2197 /* Ignore gracefully during startup of the inferior, as it might
2198 be the shell which has just loaded some objects, otherwise
2199 add the symbols for the newly loaded objects. Also ignore at
2200 the beginning of an attach or remote session; we will query
2201 the full list of libraries once the connection is
2202 established. */
2203 if (stop_soon == NO_STOP_QUIETLY)
2204 {
2205 /* Check for any newly added shared libraries if we're
2206 supposed to be adding them automatically. Switch
2207 terminal for any messages produced by
2208 breakpoint_re_set. */
2209 target_terminal_ours_for_output ();
2210 /* NOTE: cagney/2003-11-25: Make certain that the target
2211 stack's section table is kept up-to-date. Architectures,
2212 (e.g., PPC64), use the section table to perform
2213 operations such as address => section name and hence
2214 require the table to contain all sections (including
2215 those found in shared libraries). */
2216 /* NOTE: cagney/2003-11-25: Pass current_target and not
2217 exec_ops to SOLIB_ADD. This is because current GDB is
2218 only tooled to propagate section_table changes out from
2219 the "current_target" (see target_resize_to_sections), and
2220 not up from the exec stratum. This, of course, isn't
2221 right. "infrun.c" should only interact with the
2222 exec/process stratum, instead relying on the target stack
2223 to propagate relevant changes (stop, section table
2224 changed, ...) up to other layers. */
2225 #ifdef SOLIB_ADD
2226 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2227 #else
2228 solib_add (NULL, 0, &current_target, auto_solib_add);
2229 #endif
2230 target_terminal_inferior ();
2231
2232 /* If requested, stop when the dynamic linker notifies
2233 gdb of events. This allows the user to get control
2234 and place breakpoints in initializer routines for
2235 dynamically loaded objects (among other things). */
2236 if (stop_on_solib_events)
2237 {
2238 stop_stepping (ecs);
2239 return;
2240 }
2241
2242 /* NOTE drow/2007-05-11: This might be a good place to check
2243 for "catch load". */
2244 }
2245
2246 /* If we are skipping through a shell, or through shared library
2247 loading that we aren't interested in, resume the program. If
2248 we're running the program normally, also resume. But stop if
2249 we're attaching or setting up a remote connection. */
2250 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2251 {
2252 /* Loading of shared libraries might have changed breakpoint
2253 addresses. Make sure new breakpoints are inserted. */
2254 if (stop_soon == NO_STOP_QUIETLY
2255 && !breakpoints_always_inserted_mode ())
2256 insert_breakpoints ();
2257 resume (0, TARGET_SIGNAL_0);
2258 prepare_to_wait (ecs);
2259 return;
2260 }
2261
2262 break;
2263
2264 case TARGET_WAITKIND_SPURIOUS:
2265 if (debug_infrun)
2266 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2267 resume (0, TARGET_SIGNAL_0);
2268 prepare_to_wait (ecs);
2269 return;
2270
2271 case TARGET_WAITKIND_EXITED:
2272 if (debug_infrun)
2273 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2274 target_terminal_ours (); /* Must do this before mourn anyway */
2275 print_stop_reason (EXITED, ecs->ws.value.integer);
2276
2277 /* Record the exit code in the convenience variable $_exitcode, so
2278 that the user can inspect this again later. */
2279 set_internalvar (lookup_internalvar ("_exitcode"),
2280 value_from_longest (builtin_type_int32,
2281 (LONGEST) ecs->ws.value.integer));
2282 gdb_flush (gdb_stdout);
2283 target_mourn_inferior ();
2284 singlestep_breakpoints_inserted_p = 0;
2285 stop_print_frame = 0;
2286 stop_stepping (ecs);
2287 return;
2288
2289 case TARGET_WAITKIND_SIGNALLED:
2290 if (debug_infrun)
2291 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2292 stop_print_frame = 0;
2293 target_terminal_ours (); /* Must do this before mourn anyway */
2294
2295 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2296 reach here unless the inferior is dead. However, for years
2297 target_kill() was called here, which hints that fatal signals aren't
2298 really fatal on some systems. If that's true, then some changes
2299 may be needed. */
2300 target_mourn_inferior ();
2301
2302 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2303 singlestep_breakpoints_inserted_p = 0;
2304 stop_stepping (ecs);
2305 return;
2306
2307 /* The following are the only cases in which we keep going;
2308 the above cases end in a continue or goto. */
2309 case TARGET_WAITKIND_FORKED:
2310 case TARGET_WAITKIND_VFORKED:
2311 if (debug_infrun)
2312 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2313 pending_follow.kind = ecs->ws.kind;
2314
2315 pending_follow.fork_event.parent_pid = ecs->ptid;
2316 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
2317
2318 if (!ptid_equal (ecs->ptid, inferior_ptid))
2319 {
2320 context_switch (ecs->ptid);
2321 reinit_frame_cache ();
2322 }
2323
2324 stop_pc = read_pc ();
2325
2326 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2327
2328 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2329
2330 /* If no catchpoint triggered for this, then keep going. */
2331 if (ecs->random_signal)
2332 {
2333 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2334 keep_going (ecs);
2335 return;
2336 }
2337 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2338 goto process_event_stop_test;
2339
2340 case TARGET_WAITKIND_EXECD:
2341 if (debug_infrun)
2342 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2343 pending_follow.execd_pathname =
2344 savestring (ecs->ws.value.execd_pathname,
2345 strlen (ecs->ws.value.execd_pathname));
2346
2347 if (!ptid_equal (ecs->ptid, inferior_ptid))
2348 {
2349 context_switch (ecs->ptid);
2350 reinit_frame_cache ();
2351 }
2352
2353 stop_pc = read_pc ();
2354
2355 /* This causes the eventpoints and symbol table to be reset.
2356 Must do this now, before trying to determine whether to
2357 stop. */
2358 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2359 xfree (pending_follow.execd_pathname);
2360
2361 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2362 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2363
2364 /* If no catchpoint triggered for this, then keep going. */
2365 if (ecs->random_signal)
2366 {
2367 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2368 keep_going (ecs);
2369 return;
2370 }
2371 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2372 goto process_event_stop_test;
2373
2374 /* Be careful not to try to gather much state about a thread
2375 that's in a syscall. It's frequently a losing proposition. */
2376 case TARGET_WAITKIND_SYSCALL_ENTRY:
2377 if (debug_infrun)
2378 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2379 resume (0, TARGET_SIGNAL_0);
2380 prepare_to_wait (ecs);
2381 return;
2382
2383 /* Before examining the threads further, step this thread to
2384 get it entirely out of the syscall. (We get notice of the
2385 event when the thread is just on the verge of exiting a
2386 syscall. Stepping one instruction seems to get it back
2387 into user code.) */
2388 case TARGET_WAITKIND_SYSCALL_RETURN:
2389 if (debug_infrun)
2390 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2391 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2392 prepare_to_wait (ecs);
2393 return;
2394
2395 case TARGET_WAITKIND_STOPPED:
2396 if (debug_infrun)
2397 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2398 ecs->event_thread->stop_signal = ecs->ws.value.sig;
2399 break;
2400
2401 case TARGET_WAITKIND_NO_HISTORY:
2402 /* Reverse execution: target ran out of history info. */
2403 stop_pc = read_pc ();
2404 print_stop_reason (NO_HISTORY, 0);
2405 stop_stepping (ecs);
2406 return;
2407
2408 /* We had an event in the inferior, but we are not interested
2409 in handling it at this level. The lower layers have already
2410 done what needs to be done, if anything.
2411
2412 One of the possible circumstances for this is when the
2413 inferior produces output for the console. The inferior has
2414 not stopped, and we are ignoring the event. Another possible
2415 circumstance is any event which the lower level knows will be
2416 reported multiple times without an intervening resume. */
2417 case TARGET_WAITKIND_IGNORE:
2418 if (debug_infrun)
2419 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2420 prepare_to_wait (ecs);
2421 return;
2422 }
2423
2424 if (ecs->new_thread_event)
2425 {
2426 if (non_stop)
2427 /* Non-stop assumes that the target handles adding new threads
2428 to the thread list. */
2429 internal_error (__FILE__, __LINE__, "\
2430 targets should add new threads to the thread list themselves in non-stop mode.");
2431
2432 /* We may want to consider not doing a resume here in order to
2433 give the user a chance to play with the new thread. It might
2434 be good to make that a user-settable option. */
2435
2436 /* At this point, all threads are stopped (happens automatically
2437 in either the OS or the native code). Therefore we need to
2438 continue all threads in order to make progress. */
2439
2440 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2441 prepare_to_wait (ecs);
2442 return;
2443 }
2444
2445 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2446 {
2447 /* Do we need to clean up the state of a thread that has
2448 completed a displaced single-step? (Doing so usually affects
2449 the PC, so do it here, before we set stop_pc.) */
2450 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2451
2452 /* If we either finished a single-step or hit a breakpoint, but
2453 the user wanted this thread to be stopped, pretend we got a
2454 SIG0 (generic unsignaled stop). */
2455
2456 if (ecs->event_thread->stop_requested
2457 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2458 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2459 }
2460
2461 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2462
2463 if (debug_infrun)
2464 {
2465 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2466 paddr_nz (stop_pc));
2467 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2468 {
2469 CORE_ADDR addr;
2470 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2471
2472 if (target_stopped_data_address (&current_target, &addr))
2473 fprintf_unfiltered (gdb_stdlog,
2474 "infrun: stopped data address = 0x%s\n",
2475 paddr_nz (addr));
2476 else
2477 fprintf_unfiltered (gdb_stdlog,
2478 "infrun: (no data address available)\n");
2479 }
2480 }
2481
2482 if (stepping_past_singlestep_breakpoint)
2483 {
2484 gdb_assert (singlestep_breakpoints_inserted_p);
2485 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2486 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2487
2488 stepping_past_singlestep_breakpoint = 0;
2489
2490 /* We've either finished single-stepping past the single-step
2491 breakpoint, or stopped for some other reason. It would be nice if
2492 we could tell, but we can't reliably. */
2493 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2494 {
2495 if (debug_infrun)
2496 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2497 /* Pull the single step breakpoints out of the target. */
2498 remove_single_step_breakpoints ();
2499 singlestep_breakpoints_inserted_p = 0;
2500
2501 ecs->random_signal = 0;
2502
2503 context_switch (saved_singlestep_ptid);
2504 if (deprecated_context_hook)
2505 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2506
2507 resume (1, TARGET_SIGNAL_0);
2508 prepare_to_wait (ecs);
2509 return;
2510 }
2511 }
2512
2513 stepping_past_singlestep_breakpoint = 0;
2514
2515 if (!ptid_equal (deferred_step_ptid, null_ptid))
2516 {
2517 /* In non-stop mode, there's never a deferred_step_ptid set. */
2518 gdb_assert (!non_stop);
2519
2520 /* If we stopped for some other reason than single-stepping, ignore
2521 the fact that we were supposed to switch back. */
2522 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2523 {
2524 struct thread_info *tp;
2525
2526 if (debug_infrun)
2527 fprintf_unfiltered (gdb_stdlog,
2528 "infrun: handling deferred step\n");
2529
2530 /* Pull the single step breakpoints out of the target. */
2531 if (singlestep_breakpoints_inserted_p)
2532 {
2533 remove_single_step_breakpoints ();
2534 singlestep_breakpoints_inserted_p = 0;
2535 }
2536
2537 /* Note: We do not call context_switch at this point, as the
2538 context is already set up for stepping the original thread. */
2539 switch_to_thread (deferred_step_ptid);
2540 deferred_step_ptid = null_ptid;
2541 /* Suppress spurious "Switching to ..." message. */
2542 previous_inferior_ptid = inferior_ptid;
2543
2544 resume (1, TARGET_SIGNAL_0);
2545 prepare_to_wait (ecs);
2546 return;
2547 }
2548
2549 deferred_step_ptid = null_ptid;
2550 }
2551
2552 /* See if a thread hit a thread-specific breakpoint that was meant for
2553 another thread. If so, then step that thread past the breakpoint,
2554 and continue it. */
2555
2556 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2557 {
2558 int thread_hop_needed = 0;
2559
2560 /* Check if a regular breakpoint has been hit before checking
2561 for a potential single step breakpoint. Otherwise, GDB will
2562 not see this breakpoint hit when stepping onto breakpoints. */
2563 if (regular_breakpoint_inserted_here_p (stop_pc))
2564 {
2565 ecs->random_signal = 0;
2566 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2567 thread_hop_needed = 1;
2568 }
2569 else if (singlestep_breakpoints_inserted_p)
2570 {
2571 /* We have not context switched yet, so this should be true
2572 no matter which thread hit the singlestep breakpoint. */
2573 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2574 if (debug_infrun)
2575 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2576 "trap for %s\n",
2577 target_pid_to_str (ecs->ptid));
2578
2579 ecs->random_signal = 0;
2580 /* The call to in_thread_list is necessary because PTIDs sometimes
2581 change when we go from single-threaded to multi-threaded. If
2582 the singlestep_ptid is still in the list, assume that it is
2583 really different from ecs->ptid. */
2584 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2585 && in_thread_list (singlestep_ptid))
2586 {
2587 /* If the PC of the thread we were trying to single-step
2588 has changed, discard this event (which we were going
2589 to ignore anyway), and pretend we saw that thread
2590 trap. This prevents us continuously moving the
2591 single-step breakpoint forward, one instruction at a
2592 time. If the PC has changed, then the thread we were
2593 trying to single-step has trapped or been signalled,
2594 but the event has not been reported to GDB yet.
2595
2596 There might be some cases where this loses signal
2597 information, if a signal has arrived at exactly the
2598 same time that the PC changed, but this is the best
2599 we can do with the information available. Perhaps we
2600 should arrange to report all events for all threads
2601 when they stop, or to re-poll the remote looking for
2602 this particular thread (i.e. temporarily enable
2603 schedlock). */
2604
2605 CORE_ADDR new_singlestep_pc
2606 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2607
2608 if (new_singlestep_pc != singlestep_pc)
2609 {
2610 enum target_signal stop_signal;
2611
2612 if (debug_infrun)
2613 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2614 " but expected thread advanced also\n");
2615
2616 /* The current context still belongs to
2617 singlestep_ptid. Don't swap here, since that's
2618 the context we want to use. Just fudge our
2619 state and continue. */
2620 stop_signal = ecs->event_thread->stop_signal;
2621 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2622 ecs->ptid = singlestep_ptid;
2623 ecs->event_thread = find_thread_pid (ecs->ptid);
2624 ecs->event_thread->stop_signal = stop_signal;
2625 stop_pc = new_singlestep_pc;
2626 }
2627 else
2628 {
2629 if (debug_infrun)
2630 fprintf_unfiltered (gdb_stdlog,
2631 "infrun: unexpected thread\n");
2632
2633 thread_hop_needed = 1;
2634 stepping_past_singlestep_breakpoint = 1;
2635 saved_singlestep_ptid = singlestep_ptid;
2636 }
2637 }
2638 }
2639
2640 if (thread_hop_needed)
2641 {
2642 int remove_status = 0;
2643
2644 if (debug_infrun)
2645 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2646
2647 /* Saw a breakpoint, but it was hit by the wrong thread.
2648 Just continue. */
2649
2650 if (singlestep_breakpoints_inserted_p)
2651 {
2652 /* Pull the single step breakpoints out of the target. */
2653 remove_single_step_breakpoints ();
2654 singlestep_breakpoints_inserted_p = 0;
2655 }
2656
2657 /* If the arch can displace step, don't remove the
2658 breakpoints. */
2659 if (!use_displaced_stepping (current_gdbarch))
2660 remove_status = remove_breakpoints ();
2661
2662 /* Did we fail to remove breakpoints? If so, try
2663 to set the PC past the bp. (There's at least
2664 one situation in which we can fail to remove
2665 the bp's: On HP-UX's that use ttrace, we can't
2666 change the address space of a vforking child
2667 process until the child exits (well, okay, not
2668 then either :-) or execs. */
2669 if (remove_status != 0)
2670 error (_("Cannot step over breakpoint hit in wrong thread"));
2671 else
2672 { /* Single step */
2673 if (!ptid_equal (inferior_ptid, ecs->ptid))
2674 context_switch (ecs->ptid);
2675
2676 if (!non_stop)
2677 {
2678 /* Only need to require the next event from this
2679 thread in all-stop mode. */
2680 waiton_ptid = ecs->ptid;
2681 infwait_state = infwait_thread_hop_state;
2682 }
2683
2684 ecs->event_thread->stepping_over_breakpoint = 1;
2685 keep_going (ecs);
2686 registers_changed ();
2687 return;
2688 }
2689 }
2690 else if (singlestep_breakpoints_inserted_p)
2691 {
2692 sw_single_step_trap_p = 1;
2693 ecs->random_signal = 0;
2694 }
2695 }
2696 else
2697 ecs->random_signal = 1;
2698
2699 /* See if something interesting happened to the non-current thread. If
2700 so, then switch to that thread. */
2701 if (!ptid_equal (ecs->ptid, inferior_ptid))
2702 {
2703 if (debug_infrun)
2704 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2705
2706 context_switch (ecs->ptid);
2707
2708 if (deprecated_context_hook)
2709 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2710 }
2711
2712 if (singlestep_breakpoints_inserted_p)
2713 {
2714 /* Pull the single step breakpoints out of the target. */
2715 remove_single_step_breakpoints ();
2716 singlestep_breakpoints_inserted_p = 0;
2717 }
2718
2719 if (stepped_after_stopped_by_watchpoint)
2720 stopped_by_watchpoint = 0;
2721 else
2722 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2723
2724 /* If necessary, step over this watchpoint. We'll be back to display
2725 it in a moment. */
2726 if (stopped_by_watchpoint
2727 && (HAVE_STEPPABLE_WATCHPOINT
2728 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2729 {
2730 /* At this point, we are stopped at an instruction which has
2731 attempted to write to a piece of memory under control of
2732 a watchpoint. The instruction hasn't actually executed
2733 yet. If we were to evaluate the watchpoint expression
2734 now, we would get the old value, and therefore no change
2735 would seem to have occurred.
2736
2737 In order to make watchpoints work `right', we really need
2738 to complete the memory write, and then evaluate the
2739 watchpoint expression. We do this by single-stepping the
2740 target.
2741
2742 It may not be necessary to disable the watchpoint to stop over
2743 it. For example, the PA can (with some kernel cooperation)
2744 single step over a watchpoint without disabling the watchpoint.
2745
2746 It is far more common to need to disable a watchpoint to step
2747 the inferior over it. If we have non-steppable watchpoints,
2748 we must disable the current watchpoint; it's simplest to
2749 disable all watchpoints and breakpoints. */
2750
2751 if (!HAVE_STEPPABLE_WATCHPOINT)
2752 remove_breakpoints ();
2753 registers_changed ();
2754 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2755 waiton_ptid = ecs->ptid;
2756 if (HAVE_STEPPABLE_WATCHPOINT)
2757 infwait_state = infwait_step_watch_state;
2758 else
2759 infwait_state = infwait_nonstep_watch_state;
2760 prepare_to_wait (ecs);
2761 return;
2762 }
2763
2764 ecs->stop_func_start = 0;
2765 ecs->stop_func_end = 0;
2766 ecs->stop_func_name = 0;
2767 /* Don't care about return value; stop_func_start and stop_func_name
2768 will both be 0 if it doesn't work. */
2769 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2770 &ecs->stop_func_start, &ecs->stop_func_end);
2771 ecs->stop_func_start
2772 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2773 ecs->event_thread->stepping_over_breakpoint = 0;
2774 bpstat_clear (&ecs->event_thread->stop_bpstat);
2775 ecs->event_thread->stop_step = 0;
2776 stop_print_frame = 1;
2777 ecs->random_signal = 0;
2778 stopped_by_random_signal = 0;
2779
2780 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2781 && ecs->event_thread->trap_expected
2782 && gdbarch_single_step_through_delay_p (current_gdbarch)
2783 && currently_stepping (ecs->event_thread))
2784 {
2785 /* We're trying to step off a breakpoint. Turns out that we're
2786 also on an instruction that needs to be stepped multiple
2787 times before it's been fully executing. E.g., architectures
2788 with a delay slot. It needs to be stepped twice, once for
2789 the instruction and once for the delay slot. */
2790 int step_through_delay
2791 = gdbarch_single_step_through_delay (current_gdbarch,
2792 get_current_frame ());
2793 if (debug_infrun && step_through_delay)
2794 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2795 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
2796 {
2797 /* The user issued a continue when stopped at a breakpoint.
2798 Set up for another trap and get out of here. */
2799 ecs->event_thread->stepping_over_breakpoint = 1;
2800 keep_going (ecs);
2801 return;
2802 }
2803 else if (step_through_delay)
2804 {
2805 /* The user issued a step when stopped at a breakpoint.
2806 Maybe we should stop, maybe we should not - the delay
2807 slot *might* correspond to a line of source. In any
2808 case, don't decide that here, just set
2809 ecs->stepping_over_breakpoint, making sure we
2810 single-step again before breakpoints are re-inserted. */
2811 ecs->event_thread->stepping_over_breakpoint = 1;
2812 }
2813 }
2814
2815 /* Look at the cause of the stop, and decide what to do.
2816 The alternatives are:
2817 1) stop_stepping and return; to really stop and return to the debugger,
2818 2) keep_going and return to start up again
2819 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
2820 3) set ecs->random_signal to 1, and the decision between 1 and 2
2821 will be made according to the signal handling tables. */
2822
2823 /* First, distinguish signals caused by the debugger from signals
2824 that have to do with the program's own actions. Note that
2825 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2826 on the operating system version. Here we detect when a SIGILL or
2827 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2828 something similar for SIGSEGV, since a SIGSEGV will be generated
2829 when we're trying to execute a breakpoint instruction on a
2830 non-executable stack. This happens for call dummy breakpoints
2831 for architectures like SPARC that place call dummies on the
2832 stack.
2833
2834 If we're doing a displaced step past a breakpoint, then the
2835 breakpoint is always inserted at the original instruction;
2836 non-standard signals can't be explained by the breakpoint. */
2837 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2838 || (! ecs->event_thread->trap_expected
2839 && breakpoint_inserted_here_p (stop_pc)
2840 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
2841 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
2842 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
2843 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2844 || stop_soon == STOP_QUIETLY_REMOTE)
2845 {
2846 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2847 {
2848 if (debug_infrun)
2849 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2850 stop_print_frame = 0;
2851 stop_stepping (ecs);
2852 return;
2853 }
2854
2855 /* This is originated from start_remote(), start_inferior() and
2856 shared libraries hook functions. */
2857 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2858 {
2859 if (debug_infrun)
2860 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2861 stop_stepping (ecs);
2862 return;
2863 }
2864
2865 /* This originates from attach_command(). We need to overwrite
2866 the stop_signal here, because some kernels don't ignore a
2867 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2868 See more comments in inferior.h. On the other hand, if we
2869 get a non-SIGSTOP, report it to the user - assume the backend
2870 will handle the SIGSTOP if it should show up later.
2871
2872 Also consider that the attach is complete when we see a
2873 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2874 target extended-remote report it instead of a SIGSTOP
2875 (e.g. gdbserver). We already rely on SIGTRAP being our
2876 signal, so this is no exception.
2877
2878 Also consider that the attach is complete when we see a
2879 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
2880 the target to stop all threads of the inferior, in case the
2881 low level attach operation doesn't stop them implicitly. If
2882 they weren't stopped implicitly, then the stub will report a
2883 TARGET_SIGNAL_0, meaning: stopped for no particular reason
2884 other than GDB's request. */
2885 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2886 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
2887 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2888 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
2889 {
2890 stop_stepping (ecs);
2891 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2892 return;
2893 }
2894
2895 /* See if there is a breakpoint at the current PC. */
2896 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2897
2898 /* Following in case break condition called a
2899 function. */
2900 stop_print_frame = 1;
2901
2902 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2903 at one stage in the past included checks for an inferior
2904 function call's call dummy's return breakpoint. The original
2905 comment, that went with the test, read:
2906
2907 ``End of a stack dummy. Some systems (e.g. Sony news) give
2908 another signal besides SIGTRAP, so check here as well as
2909 above.''
2910
2911 If someone ever tries to get call dummys on a
2912 non-executable stack to work (where the target would stop
2913 with something like a SIGSEGV), then those tests might need
2914 to be re-instated. Given, however, that the tests were only
2915 enabled when momentary breakpoints were not being used, I
2916 suspect that it won't be the case.
2917
2918 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2919 be necessary for call dummies on a non-executable stack on
2920 SPARC. */
2921
2922 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2923 ecs->random_signal
2924 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
2925 || ecs->event_thread->trap_expected
2926 || (ecs->event_thread->step_range_end
2927 && ecs->event_thread->step_resume_breakpoint == NULL));
2928 else
2929 {
2930 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2931 if (!ecs->random_signal)
2932 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2933 }
2934 }
2935
2936 /* When we reach this point, we've pretty much decided
2937 that the reason for stopping must've been a random
2938 (unexpected) signal. */
2939
2940 else
2941 ecs->random_signal = 1;
2942
2943 process_event_stop_test:
2944 /* For the program's own signals, act according to
2945 the signal handling tables. */
2946
2947 if (ecs->random_signal)
2948 {
2949 /* Signal not for debugging purposes. */
2950 int printed = 0;
2951
2952 if (debug_infrun)
2953 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
2954 ecs->event_thread->stop_signal);
2955
2956 stopped_by_random_signal = 1;
2957
2958 if (signal_print[ecs->event_thread->stop_signal])
2959 {
2960 printed = 1;
2961 target_terminal_ours_for_output ();
2962 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
2963 }
2964 /* Always stop on signals if we're either just gaining control
2965 of the program, or the user explicitly requested this thread
2966 to remain stopped. */
2967 if (stop_soon != NO_STOP_QUIETLY
2968 || ecs->event_thread->stop_requested
2969 || signal_stop_state (ecs->event_thread->stop_signal))
2970 {
2971 stop_stepping (ecs);
2972 return;
2973 }
2974 /* If not going to stop, give terminal back
2975 if we took it away. */
2976 else if (printed)
2977 target_terminal_inferior ();
2978
2979 /* Clear the signal if it should not be passed. */
2980 if (signal_program[ecs->event_thread->stop_signal] == 0)
2981 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2982
2983 if (ecs->event_thread->prev_pc == read_pc ()
2984 && ecs->event_thread->trap_expected
2985 && ecs->event_thread->step_resume_breakpoint == NULL)
2986 {
2987 /* We were just starting a new sequence, attempting to
2988 single-step off of a breakpoint and expecting a SIGTRAP.
2989 Instead this signal arrives. This signal will take us out
2990 of the stepping range so GDB needs to remember to, when
2991 the signal handler returns, resume stepping off that
2992 breakpoint. */
2993 /* To simplify things, "continue" is forced to use the same
2994 code paths as single-step - set a breakpoint at the
2995 signal return address and then, once hit, step off that
2996 breakpoint. */
2997 if (debug_infrun)
2998 fprintf_unfiltered (gdb_stdlog,
2999 "infrun: signal arrived while stepping over "
3000 "breakpoint\n");
3001
3002 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3003 ecs->event_thread->step_after_step_resume_breakpoint = 1;
3004 keep_going (ecs);
3005 return;
3006 }
3007
3008 if (ecs->event_thread->step_range_end != 0
3009 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
3010 && (ecs->event_thread->step_range_start <= stop_pc
3011 && stop_pc < ecs->event_thread->step_range_end)
3012 && frame_id_eq (get_frame_id (get_current_frame ()),
3013 ecs->event_thread->step_frame_id)
3014 && ecs->event_thread->step_resume_breakpoint == NULL)
3015 {
3016 /* The inferior is about to take a signal that will take it
3017 out of the single step range. Set a breakpoint at the
3018 current PC (which is presumably where the signal handler
3019 will eventually return) and then allow the inferior to
3020 run free.
3021
3022 Note that this is only needed for a signal delivered
3023 while in the single-step range. Nested signals aren't a
3024 problem as they eventually all return. */
3025 if (debug_infrun)
3026 fprintf_unfiltered (gdb_stdlog,
3027 "infrun: signal may take us out of "
3028 "single-step range\n");
3029
3030 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3031 keep_going (ecs);
3032 return;
3033 }
3034
3035 /* Note: step_resume_breakpoint may be non-NULL. This occures
3036 when either there's a nested signal, or when there's a
3037 pending signal enabled just as the signal handler returns
3038 (leaving the inferior at the step-resume-breakpoint without
3039 actually executing it). Either way continue until the
3040 breakpoint is really hit. */
3041 keep_going (ecs);
3042 return;
3043 }
3044
3045 /* Handle cases caused by hitting a breakpoint. */
3046 {
3047 CORE_ADDR jmp_buf_pc;
3048 struct bpstat_what what;
3049
3050 what = bpstat_what (ecs->event_thread->stop_bpstat);
3051
3052 if (what.call_dummy)
3053 {
3054 stop_stack_dummy = 1;
3055 }
3056
3057 switch (what.main_action)
3058 {
3059 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
3060 /* If we hit the breakpoint at longjmp while stepping, we
3061 install a momentary breakpoint at the target of the
3062 jmp_buf. */
3063
3064 if (debug_infrun)
3065 fprintf_unfiltered (gdb_stdlog,
3066 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3067
3068 ecs->event_thread->stepping_over_breakpoint = 1;
3069
3070 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
3071 || !gdbarch_get_longjmp_target (current_gdbarch,
3072 get_current_frame (), &jmp_buf_pc))
3073 {
3074 if (debug_infrun)
3075 fprintf_unfiltered (gdb_stdlog, "\
3076 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
3077 keep_going (ecs);
3078 return;
3079 }
3080
3081 /* We're going to replace the current step-resume breakpoint
3082 with a longjmp-resume breakpoint. */
3083 delete_step_resume_breakpoint (ecs->event_thread);
3084
3085 /* Insert a breakpoint at resume address. */
3086 insert_longjmp_resume_breakpoint (jmp_buf_pc);
3087
3088 keep_going (ecs);
3089 return;
3090
3091 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
3092 if (debug_infrun)
3093 fprintf_unfiltered (gdb_stdlog,
3094 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3095
3096 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3097 delete_step_resume_breakpoint (ecs->event_thread);
3098
3099 ecs->event_thread->stop_step = 1;
3100 print_stop_reason (END_STEPPING_RANGE, 0);
3101 stop_stepping (ecs);
3102 return;
3103
3104 case BPSTAT_WHAT_SINGLE:
3105 if (debug_infrun)
3106 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
3107 ecs->event_thread->stepping_over_breakpoint = 1;
3108 /* Still need to check other stuff, at least the case
3109 where we are stepping and step out of the right range. */
3110 break;
3111
3112 case BPSTAT_WHAT_STOP_NOISY:
3113 if (debug_infrun)
3114 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
3115 stop_print_frame = 1;
3116
3117 /* We are about to nuke the step_resume_breakpointt via the
3118 cleanup chain, so no need to worry about it here. */
3119
3120 stop_stepping (ecs);
3121 return;
3122
3123 case BPSTAT_WHAT_STOP_SILENT:
3124 if (debug_infrun)
3125 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
3126 stop_print_frame = 0;
3127
3128 /* We are about to nuke the step_resume_breakpoin via the
3129 cleanup chain, so no need to worry about it here. */
3130
3131 stop_stepping (ecs);
3132 return;
3133
3134 case BPSTAT_WHAT_STEP_RESUME:
3135 if (debug_infrun)
3136 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
3137
3138 delete_step_resume_breakpoint (ecs->event_thread);
3139 if (ecs->event_thread->step_after_step_resume_breakpoint)
3140 {
3141 /* Back when the step-resume breakpoint was inserted, we
3142 were trying to single-step off a breakpoint. Go back
3143 to doing that. */
3144 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3145 ecs->event_thread->stepping_over_breakpoint = 1;
3146 keep_going (ecs);
3147 return;
3148 }
3149 if (stop_pc == ecs->stop_func_start
3150 && execution_direction == EXEC_REVERSE)
3151 {
3152 /* We are stepping over a function call in reverse, and
3153 just hit the step-resume breakpoint at the start
3154 address of the function. Go back to single-stepping,
3155 which should take us back to the function call. */
3156 ecs->event_thread->stepping_over_breakpoint = 1;
3157 keep_going (ecs);
3158 return;
3159 }
3160 break;
3161
3162 case BPSTAT_WHAT_CHECK_SHLIBS:
3163 {
3164 if (debug_infrun)
3165 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
3166
3167 /* Check for any newly added shared libraries if we're
3168 supposed to be adding them automatically. Switch
3169 terminal for any messages produced by
3170 breakpoint_re_set. */
3171 target_terminal_ours_for_output ();
3172 /* NOTE: cagney/2003-11-25: Make certain that the target
3173 stack's section table is kept up-to-date. Architectures,
3174 (e.g., PPC64), use the section table to perform
3175 operations such as address => section name and hence
3176 require the table to contain all sections (including
3177 those found in shared libraries). */
3178 /* NOTE: cagney/2003-11-25: Pass current_target and not
3179 exec_ops to SOLIB_ADD. This is because current GDB is
3180 only tooled to propagate section_table changes out from
3181 the "current_target" (see target_resize_to_sections), and
3182 not up from the exec stratum. This, of course, isn't
3183 right. "infrun.c" should only interact with the
3184 exec/process stratum, instead relying on the target stack
3185 to propagate relevant changes (stop, section table
3186 changed, ...) up to other layers. */
3187 #ifdef SOLIB_ADD
3188 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3189 #else
3190 solib_add (NULL, 0, &current_target, auto_solib_add);
3191 #endif
3192 target_terminal_inferior ();
3193
3194 /* If requested, stop when the dynamic linker notifies
3195 gdb of events. This allows the user to get control
3196 and place breakpoints in initializer routines for
3197 dynamically loaded objects (among other things). */
3198 if (stop_on_solib_events || stop_stack_dummy)
3199 {
3200 stop_stepping (ecs);
3201 return;
3202 }
3203 else
3204 {
3205 /* We want to step over this breakpoint, then keep going. */
3206 ecs->event_thread->stepping_over_breakpoint = 1;
3207 break;
3208 }
3209 }
3210 break;
3211
3212 case BPSTAT_WHAT_LAST:
3213 /* Not a real code, but listed here to shut up gcc -Wall. */
3214
3215 case BPSTAT_WHAT_KEEP_CHECKING:
3216 break;
3217 }
3218 }
3219
3220 /* We come here if we hit a breakpoint but should not
3221 stop for it. Possibly we also were stepping
3222 and should stop for that. So fall through and
3223 test for stepping. But, if not stepping,
3224 do not stop. */
3225
3226 /* In all-stop mode, if we're currently stepping but have stopped in
3227 some other thread, we need to switch back to the stepped thread. */
3228 if (!non_stop)
3229 {
3230 struct thread_info *tp;
3231 tp = iterate_over_threads (currently_stepping_callback,
3232 ecs->event_thread);
3233 if (tp)
3234 {
3235 /* However, if the current thread is blocked on some internal
3236 breakpoint, and we simply need to step over that breakpoint
3237 to get it going again, do that first. */
3238 if ((ecs->event_thread->trap_expected
3239 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3240 || ecs->event_thread->stepping_over_breakpoint)
3241 {
3242 keep_going (ecs);
3243 return;
3244 }
3245
3246 /* Otherwise, we no longer expect a trap in the current thread.
3247 Clear the trap_expected flag before switching back -- this is
3248 what keep_going would do as well, if we called it. */
3249 ecs->event_thread->trap_expected = 0;
3250
3251 if (debug_infrun)
3252 fprintf_unfiltered (gdb_stdlog,
3253 "infrun: switching back to stepped thread\n");
3254
3255 ecs->event_thread = tp;
3256 ecs->ptid = tp->ptid;
3257 context_switch (ecs->ptid);
3258 keep_going (ecs);
3259 return;
3260 }
3261 }
3262
3263 /* Are we stepping to get the inferior out of the dynamic linker's
3264 hook (and possibly the dld itself) after catching a shlib
3265 event? */
3266 if (ecs->event_thread->stepping_through_solib_after_catch)
3267 {
3268 #if defined(SOLIB_ADD)
3269 /* Have we reached our destination? If not, keep going. */
3270 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3271 {
3272 if (debug_infrun)
3273 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
3274 ecs->event_thread->stepping_over_breakpoint = 1;
3275 keep_going (ecs);
3276 return;
3277 }
3278 #endif
3279 if (debug_infrun)
3280 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
3281 /* Else, stop and report the catchpoint(s) whose triggering
3282 caused us to begin stepping. */
3283 ecs->event_thread->stepping_through_solib_after_catch = 0;
3284 bpstat_clear (&ecs->event_thread->stop_bpstat);
3285 ecs->event_thread->stop_bpstat
3286 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
3287 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
3288 stop_print_frame = 1;
3289 stop_stepping (ecs);
3290 return;
3291 }
3292
3293 if (ecs->event_thread->step_resume_breakpoint)
3294 {
3295 if (debug_infrun)
3296 fprintf_unfiltered (gdb_stdlog,
3297 "infrun: step-resume breakpoint is inserted\n");
3298
3299 /* Having a step-resume breakpoint overrides anything
3300 else having to do with stepping commands until
3301 that breakpoint is reached. */
3302 keep_going (ecs);
3303 return;
3304 }
3305
3306 if (ecs->event_thread->step_range_end == 0)
3307 {
3308 if (debug_infrun)
3309 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3310 /* Likewise if we aren't even stepping. */
3311 keep_going (ecs);
3312 return;
3313 }
3314
3315 /* If stepping through a line, keep going if still within it.
3316
3317 Note that step_range_end is the address of the first instruction
3318 beyond the step range, and NOT the address of the last instruction
3319 within it! */
3320 if (stop_pc >= ecs->event_thread->step_range_start
3321 && stop_pc < ecs->event_thread->step_range_end)
3322 {
3323 if (debug_infrun)
3324 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3325 paddr_nz (ecs->event_thread->step_range_start),
3326 paddr_nz (ecs->event_thread->step_range_end));
3327
3328 /* When stepping backward, stop at beginning of line range
3329 (unless it's the function entry point, in which case
3330 keep going back to the call point). */
3331 if (stop_pc == ecs->event_thread->step_range_start
3332 && stop_pc != ecs->stop_func_start
3333 && execution_direction == EXEC_REVERSE)
3334 {
3335 ecs->event_thread->stop_step = 1;
3336 print_stop_reason (END_STEPPING_RANGE, 0);
3337 stop_stepping (ecs);
3338 }
3339 else
3340 keep_going (ecs);
3341
3342 return;
3343 }
3344
3345 /* We stepped out of the stepping range. */
3346
3347 /* If we are stepping at the source level and entered the runtime
3348 loader dynamic symbol resolution code, we keep on single stepping
3349 until we exit the run time loader code and reach the callee's
3350 address. */
3351 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3352 && in_solib_dynsym_resolve_code (stop_pc))
3353 {
3354 CORE_ADDR pc_after_resolver =
3355 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3356
3357 if (debug_infrun)
3358 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3359
3360 if (pc_after_resolver)
3361 {
3362 /* Set up a step-resume breakpoint at the address
3363 indicated by SKIP_SOLIB_RESOLVER. */
3364 struct symtab_and_line sr_sal;
3365 init_sal (&sr_sal);
3366 sr_sal.pc = pc_after_resolver;
3367
3368 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3369 }
3370
3371 keep_going (ecs);
3372 return;
3373 }
3374
3375 if (ecs->event_thread->step_range_end != 1
3376 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3377 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3378 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3379 {
3380 if (debug_infrun)
3381 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3382 /* The inferior, while doing a "step" or "next", has ended up in
3383 a signal trampoline (either by a signal being delivered or by
3384 the signal handler returning). Just single-step until the
3385 inferior leaves the trampoline (either by calling the handler
3386 or returning). */
3387 keep_going (ecs);
3388 return;
3389 }
3390
3391 /* Check for subroutine calls. The check for the current frame
3392 equalling the step ID is not necessary - the check of the
3393 previous frame's ID is sufficient - but it is a common case and
3394 cheaper than checking the previous frame's ID.
3395
3396 NOTE: frame_id_eq will never report two invalid frame IDs as
3397 being equal, so to get into this block, both the current and
3398 previous frame must have valid frame IDs. */
3399 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3400 ecs->event_thread->step_frame_id)
3401 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3402 ecs->event_thread->step_frame_id)
3403 || execution_direction == EXEC_REVERSE))
3404 {
3405 CORE_ADDR real_stop_pc;
3406
3407 if (debug_infrun)
3408 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3409
3410 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3411 || ((ecs->event_thread->step_range_end == 1)
3412 && in_prologue (ecs->event_thread->prev_pc,
3413 ecs->stop_func_start)))
3414 {
3415 /* I presume that step_over_calls is only 0 when we're
3416 supposed to be stepping at the assembly language level
3417 ("stepi"). Just stop. */
3418 /* Also, maybe we just did a "nexti" inside a prolog, so we
3419 thought it was a subroutine call but it was not. Stop as
3420 well. FENN */
3421 ecs->event_thread->stop_step = 1;
3422 print_stop_reason (END_STEPPING_RANGE, 0);
3423 stop_stepping (ecs);
3424 return;
3425 }
3426
3427 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3428 {
3429 /* We're doing a "next".
3430
3431 Normal (forward) execution: set a breakpoint at the
3432 callee's return address (the address at which the caller
3433 will resume).
3434
3435 Reverse (backward) execution. set the step-resume
3436 breakpoint at the start of the function that we just
3437 stepped into (backwards), and continue to there. When we
3438 get there, we'll need to single-step back to the caller. */
3439
3440 if (execution_direction == EXEC_REVERSE)
3441 {
3442 struct symtab_and_line sr_sal;
3443
3444 if (ecs->stop_func_start == 0
3445 && in_solib_dynsym_resolve_code (stop_pc))
3446 {
3447 /* Stepped into runtime loader dynamic symbol
3448 resolution code. Since we're in reverse,
3449 we have already backed up through the runtime
3450 loader and the dynamic function. This is just
3451 the trampoline (jump table).
3452
3453 Just keep stepping, we'll soon be home.
3454 */
3455 keep_going (ecs);
3456 return;
3457 }
3458 /* Normal (staticly linked) function call return. */
3459 init_sal (&sr_sal);
3460 sr_sal.pc = ecs->stop_func_start;
3461 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3462 }
3463 else
3464 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3465
3466 keep_going (ecs);
3467 return;
3468 }
3469
3470 /* If we are in a function call trampoline (a stub between the
3471 calling routine and the real function), locate the real
3472 function. That's what tells us (a) whether we want to step
3473 into it at all, and (b) what prologue we want to run to the
3474 end of, if we do step into it. */
3475 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3476 if (real_stop_pc == 0)
3477 real_stop_pc = gdbarch_skip_trampoline_code
3478 (current_gdbarch, get_current_frame (), stop_pc);
3479 if (real_stop_pc != 0)
3480 ecs->stop_func_start = real_stop_pc;
3481
3482 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
3483 {
3484 struct symtab_and_line sr_sal;
3485 init_sal (&sr_sal);
3486 sr_sal.pc = ecs->stop_func_start;
3487
3488 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3489 keep_going (ecs);
3490 return;
3491 }
3492
3493 /* If we have line number information for the function we are
3494 thinking of stepping into, step into it.
3495
3496 If there are several symtabs at that PC (e.g. with include
3497 files), just want to know whether *any* of them have line
3498 numbers. find_pc_line handles this. */
3499 {
3500 struct symtab_and_line tmp_sal;
3501
3502 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3503 if (tmp_sal.line != 0)
3504 {
3505 if (execution_direction == EXEC_REVERSE)
3506 handle_step_into_function_backward (ecs);
3507 else
3508 handle_step_into_function (ecs);
3509 return;
3510 }
3511 }
3512
3513 /* If we have no line number and the step-stop-if-no-debug is
3514 set, we stop the step so that the user has a chance to switch
3515 in assembly mode. */
3516 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3517 && step_stop_if_no_debug)
3518 {
3519 ecs->event_thread->stop_step = 1;
3520 print_stop_reason (END_STEPPING_RANGE, 0);
3521 stop_stepping (ecs);
3522 return;
3523 }
3524
3525 if (execution_direction == EXEC_REVERSE)
3526 {
3527 /* Set a breakpoint at callee's start address.
3528 From there we can step once and be back in the caller. */
3529 struct symtab_and_line sr_sal;
3530 init_sal (&sr_sal);
3531 sr_sal.pc = ecs->stop_func_start;
3532 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3533 }
3534 else
3535 /* Set a breakpoint at callee's return address (the address
3536 at which the caller will resume). */
3537 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3538
3539 keep_going (ecs);
3540 return;
3541 }
3542
3543 /* If we're in the return path from a shared library trampoline,
3544 we want to proceed through the trampoline when stepping. */
3545 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3546 stop_pc, ecs->stop_func_name))
3547 {
3548 /* Determine where this trampoline returns. */
3549 CORE_ADDR real_stop_pc;
3550 real_stop_pc = gdbarch_skip_trampoline_code
3551 (current_gdbarch, get_current_frame (), stop_pc);
3552
3553 if (debug_infrun)
3554 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3555
3556 /* Only proceed through if we know where it's going. */
3557 if (real_stop_pc)
3558 {
3559 /* And put the step-breakpoint there and go until there. */
3560 struct symtab_and_line sr_sal;
3561
3562 init_sal (&sr_sal); /* initialize to zeroes */
3563 sr_sal.pc = real_stop_pc;
3564 sr_sal.section = find_pc_overlay (sr_sal.pc);
3565
3566 /* Do not specify what the fp should be when we stop since
3567 on some machines the prologue is where the new fp value
3568 is established. */
3569 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3570
3571 /* Restart without fiddling with the step ranges or
3572 other state. */
3573 keep_going (ecs);
3574 return;
3575 }
3576 }
3577
3578 stop_pc_sal = find_pc_line (stop_pc, 0);
3579
3580 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3581 the trampoline processing logic, however, there are some trampolines
3582 that have no names, so we should do trampoline handling first. */
3583 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3584 && ecs->stop_func_name == NULL
3585 && stop_pc_sal.line == 0)
3586 {
3587 if (debug_infrun)
3588 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3589
3590 /* The inferior just stepped into, or returned to, an
3591 undebuggable function (where there is no debugging information
3592 and no line number corresponding to the address where the
3593 inferior stopped). Since we want to skip this kind of code,
3594 we keep going until the inferior returns from this
3595 function - unless the user has asked us not to (via
3596 set step-mode) or we no longer know how to get back
3597 to the call site. */
3598 if (step_stop_if_no_debug
3599 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3600 {
3601 /* If we have no line number and the step-stop-if-no-debug
3602 is set, we stop the step so that the user has a chance to
3603 switch in assembly mode. */
3604 ecs->event_thread->stop_step = 1;
3605 print_stop_reason (END_STEPPING_RANGE, 0);
3606 stop_stepping (ecs);
3607 return;
3608 }
3609 else
3610 {
3611 /* Set a breakpoint at callee's return address (the address
3612 at which the caller will resume). */
3613 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3614 keep_going (ecs);
3615 return;
3616 }
3617 }
3618
3619 if (ecs->event_thread->step_range_end == 1)
3620 {
3621 /* It is stepi or nexti. We always want to stop stepping after
3622 one instruction. */
3623 if (debug_infrun)
3624 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3625 ecs->event_thread->stop_step = 1;
3626 print_stop_reason (END_STEPPING_RANGE, 0);
3627 stop_stepping (ecs);
3628 return;
3629 }
3630
3631 if (stop_pc_sal.line == 0)
3632 {
3633 /* We have no line number information. That means to stop
3634 stepping (does this always happen right after one instruction,
3635 when we do "s" in a function with no line numbers,
3636 or can this happen as a result of a return or longjmp?). */
3637 if (debug_infrun)
3638 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3639 ecs->event_thread->stop_step = 1;
3640 print_stop_reason (END_STEPPING_RANGE, 0);
3641 stop_stepping (ecs);
3642 return;
3643 }
3644
3645 if ((stop_pc == stop_pc_sal.pc)
3646 && (ecs->event_thread->current_line != stop_pc_sal.line
3647 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
3648 {
3649 /* We are at the start of a different line. So stop. Note that
3650 we don't stop if we step into the middle of a different line.
3651 That is said to make things like for (;;) statements work
3652 better. */
3653 if (debug_infrun)
3654 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3655 ecs->event_thread->stop_step = 1;
3656 print_stop_reason (END_STEPPING_RANGE, 0);
3657 stop_stepping (ecs);
3658 return;
3659 }
3660
3661 /* We aren't done stepping.
3662
3663 Optimize by setting the stepping range to the line.
3664 (We might not be in the original line, but if we entered a
3665 new line in mid-statement, we continue stepping. This makes
3666 things like for(;;) statements work better.) */
3667
3668 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3669 ecs->event_thread->step_range_end = stop_pc_sal.end;
3670 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3671 ecs->event_thread->current_line = stop_pc_sal.line;
3672 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
3673
3674 if (debug_infrun)
3675 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3676 keep_going (ecs);
3677 }
3678
3679 /* Are we in the middle of stepping? */
3680
3681 static int
3682 currently_stepping_thread (struct thread_info *tp)
3683 {
3684 return (tp->step_range_end && tp->step_resume_breakpoint == NULL)
3685 || tp->trap_expected
3686 || tp->stepping_through_solib_after_catch;
3687 }
3688
3689 static int
3690 currently_stepping_callback (struct thread_info *tp, void *data)
3691 {
3692 /* Return true if any thread *but* the one passed in "data" is
3693 in the middle of stepping. */
3694 return tp != data && currently_stepping_thread (tp);
3695 }
3696
3697 static int
3698 currently_stepping (struct thread_info *tp)
3699 {
3700 return currently_stepping_thread (tp) || bpstat_should_step ();
3701 }
3702
3703 /* Inferior has stepped into a subroutine call with source code that
3704 we should not step over. Do step to the first line of code in
3705 it. */
3706
3707 static void
3708 handle_step_into_function (struct execution_control_state *ecs)
3709 {
3710 struct symtab *s;
3711 struct symtab_and_line stop_func_sal, sr_sal;
3712
3713 s = find_pc_symtab (stop_pc);
3714 if (s && s->language != language_asm)
3715 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3716 ecs->stop_func_start);
3717
3718 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3719 /* Use the step_resume_break to step until the end of the prologue,
3720 even if that involves jumps (as it seems to on the vax under
3721 4.2). */
3722 /* If the prologue ends in the middle of a source line, continue to
3723 the end of that source line (if it is still within the function).
3724 Otherwise, just go to end of prologue. */
3725 if (stop_func_sal.end
3726 && stop_func_sal.pc != ecs->stop_func_start
3727 && stop_func_sal.end < ecs->stop_func_end)
3728 ecs->stop_func_start = stop_func_sal.end;
3729
3730 /* Architectures which require breakpoint adjustment might not be able
3731 to place a breakpoint at the computed address. If so, the test
3732 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3733 ecs->stop_func_start to an address at which a breakpoint may be
3734 legitimately placed.
3735
3736 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3737 made, GDB will enter an infinite loop when stepping through
3738 optimized code consisting of VLIW instructions which contain
3739 subinstructions corresponding to different source lines. On
3740 FR-V, it's not permitted to place a breakpoint on any but the
3741 first subinstruction of a VLIW instruction. When a breakpoint is
3742 set, GDB will adjust the breakpoint address to the beginning of
3743 the VLIW instruction. Thus, we need to make the corresponding
3744 adjustment here when computing the stop address. */
3745
3746 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3747 {
3748 ecs->stop_func_start
3749 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3750 ecs->stop_func_start);
3751 }
3752
3753 if (ecs->stop_func_start == stop_pc)
3754 {
3755 /* We are already there: stop now. */
3756 ecs->event_thread->stop_step = 1;
3757 print_stop_reason (END_STEPPING_RANGE, 0);
3758 stop_stepping (ecs);
3759 return;
3760 }
3761 else
3762 {
3763 /* Put the step-breakpoint there and go until there. */
3764 init_sal (&sr_sal); /* initialize to zeroes */
3765 sr_sal.pc = ecs->stop_func_start;
3766 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3767
3768 /* Do not specify what the fp should be when we stop since on
3769 some machines the prologue is where the new fp value is
3770 established. */
3771 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3772
3773 /* And make sure stepping stops right away then. */
3774 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
3775 }
3776 keep_going (ecs);
3777 }
3778
3779 /* Inferior has stepped backward into a subroutine call with source
3780 code that we should not step over. Do step to the beginning of the
3781 last line of code in it. */
3782
3783 static void
3784 handle_step_into_function_backward (struct execution_control_state *ecs)
3785 {
3786 struct symtab *s;
3787 struct symtab_and_line stop_func_sal, sr_sal;
3788
3789 s = find_pc_symtab (stop_pc);
3790 if (s && s->language != language_asm)
3791 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3792 ecs->stop_func_start);
3793
3794 stop_func_sal = find_pc_line (stop_pc, 0);
3795
3796 /* OK, we're just going to keep stepping here. */
3797 if (stop_func_sal.pc == stop_pc)
3798 {
3799 /* We're there already. Just stop stepping now. */
3800 ecs->event_thread->stop_step = 1;
3801 print_stop_reason (END_STEPPING_RANGE, 0);
3802 stop_stepping (ecs);
3803 }
3804 else
3805 {
3806 /* Else just reset the step range and keep going.
3807 No step-resume breakpoint, they don't work for
3808 epilogues, which can have multiple entry paths. */
3809 ecs->event_thread->step_range_start = stop_func_sal.pc;
3810 ecs->event_thread->step_range_end = stop_func_sal.end;
3811 keep_going (ecs);
3812 }
3813 return;
3814 }
3815
3816 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3817 This is used to both functions and to skip over code. */
3818
3819 static void
3820 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3821 struct frame_id sr_id)
3822 {
3823 /* There should never be more than one step-resume or longjmp-resume
3824 breakpoint per thread, so we should never be setting a new
3825 step_resume_breakpoint when one is already active. */
3826 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3827
3828 if (debug_infrun)
3829 fprintf_unfiltered (gdb_stdlog,
3830 "infrun: inserting step-resume breakpoint at 0x%s\n",
3831 paddr_nz (sr_sal.pc));
3832
3833 inferior_thread ()->step_resume_breakpoint
3834 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
3835 }
3836
3837 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3838 to skip a potential signal handler.
3839
3840 This is called with the interrupted function's frame. The signal
3841 handler, when it returns, will resume the interrupted function at
3842 RETURN_FRAME.pc. */
3843
3844 static void
3845 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3846 {
3847 struct symtab_and_line sr_sal;
3848
3849 gdb_assert (return_frame != NULL);
3850 init_sal (&sr_sal); /* initialize to zeros */
3851
3852 sr_sal.pc = gdbarch_addr_bits_remove
3853 (current_gdbarch, get_frame_pc (return_frame));
3854 sr_sal.section = find_pc_overlay (sr_sal.pc);
3855
3856 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3857 }
3858
3859 /* Similar to insert_step_resume_breakpoint_at_frame, except
3860 but a breakpoint at the previous frame's PC. This is used to
3861 skip a function after stepping into it (for "next" or if the called
3862 function has no debugging information).
3863
3864 The current function has almost always been reached by single
3865 stepping a call or return instruction. NEXT_FRAME belongs to the
3866 current function, and the breakpoint will be set at the caller's
3867 resume address.
3868
3869 This is a separate function rather than reusing
3870 insert_step_resume_breakpoint_at_frame in order to avoid
3871 get_prev_frame, which may stop prematurely (see the implementation
3872 of frame_unwind_id for an example). */
3873
3874 static void
3875 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3876 {
3877 struct symtab_and_line sr_sal;
3878
3879 /* We shouldn't have gotten here if we don't know where the call site
3880 is. */
3881 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3882
3883 init_sal (&sr_sal); /* initialize to zeros */
3884
3885 sr_sal.pc = gdbarch_addr_bits_remove
3886 (current_gdbarch, frame_pc_unwind (next_frame));
3887 sr_sal.section = find_pc_overlay (sr_sal.pc);
3888
3889 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3890 }
3891
3892 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3893 new breakpoint at the target of a jmp_buf. The handling of
3894 longjmp-resume uses the same mechanisms used for handling
3895 "step-resume" breakpoints. */
3896
3897 static void
3898 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3899 {
3900 /* There should never be more than one step-resume or longjmp-resume
3901 breakpoint per thread, so we should never be setting a new
3902 longjmp_resume_breakpoint when one is already active. */
3903 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3904
3905 if (debug_infrun)
3906 fprintf_unfiltered (gdb_stdlog,
3907 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3908 paddr_nz (pc));
3909
3910 inferior_thread ()->step_resume_breakpoint =
3911 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3912 }
3913
3914 static void
3915 stop_stepping (struct execution_control_state *ecs)
3916 {
3917 if (debug_infrun)
3918 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3919
3920 /* Let callers know we don't want to wait for the inferior anymore. */
3921 ecs->wait_some_more = 0;
3922 }
3923
3924 /* This function handles various cases where we need to continue
3925 waiting for the inferior. */
3926 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3927
3928 static void
3929 keep_going (struct execution_control_state *ecs)
3930 {
3931 /* Save the pc before execution, to compare with pc after stop. */
3932 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3933
3934 /* If we did not do break;, it means we should keep running the
3935 inferior and not return to debugger. */
3936
3937 if (ecs->event_thread->trap_expected
3938 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3939 {
3940 /* We took a signal (which we are supposed to pass through to
3941 the inferior, else we'd not get here) and we haven't yet
3942 gotten our trap. Simply continue. */
3943 resume (currently_stepping (ecs->event_thread),
3944 ecs->event_thread->stop_signal);
3945 }
3946 else
3947 {
3948 /* Either the trap was not expected, but we are continuing
3949 anyway (the user asked that this signal be passed to the
3950 child)
3951 -- or --
3952 The signal was SIGTRAP, e.g. it was our signal, but we
3953 decided we should resume from it.
3954
3955 We're going to run this baby now!
3956
3957 Note that insert_breakpoints won't try to re-insert
3958 already inserted breakpoints. Therefore, we don't
3959 care if breakpoints were already inserted, or not. */
3960
3961 if (ecs->event_thread->stepping_over_breakpoint)
3962 {
3963 if (! use_displaced_stepping (current_gdbarch))
3964 /* Since we can't do a displaced step, we have to remove
3965 the breakpoint while we step it. To keep things
3966 simple, we remove them all. */
3967 remove_breakpoints ();
3968 }
3969 else
3970 {
3971 struct gdb_exception e;
3972 /* Stop stepping when inserting breakpoints
3973 has failed. */
3974 TRY_CATCH (e, RETURN_MASK_ERROR)
3975 {
3976 insert_breakpoints ();
3977 }
3978 if (e.reason < 0)
3979 {
3980 stop_stepping (ecs);
3981 return;
3982 }
3983 }
3984
3985 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
3986
3987 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3988 specifies that such a signal should be delivered to the
3989 target program).
3990
3991 Typically, this would occure when a user is debugging a
3992 target monitor on a simulator: the target monitor sets a
3993 breakpoint; the simulator encounters this break-point and
3994 halts the simulation handing control to GDB; GDB, noteing
3995 that the break-point isn't valid, returns control back to the
3996 simulator; the simulator then delivers the hardware
3997 equivalent of a SIGNAL_TRAP to the program being debugged. */
3998
3999 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4000 && !signal_program[ecs->event_thread->stop_signal])
4001 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
4002
4003 resume (currently_stepping (ecs->event_thread),
4004 ecs->event_thread->stop_signal);
4005 }
4006
4007 prepare_to_wait (ecs);
4008 }
4009
4010 /* This function normally comes after a resume, before
4011 handle_inferior_event exits. It takes care of any last bits of
4012 housekeeping, and sets the all-important wait_some_more flag. */
4013
4014 static void
4015 prepare_to_wait (struct execution_control_state *ecs)
4016 {
4017 if (debug_infrun)
4018 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
4019 if (infwait_state == infwait_normal_state)
4020 {
4021 overlay_cache_invalid = 1;
4022
4023 /* We have to invalidate the registers BEFORE calling
4024 target_wait because they can be loaded from the target while
4025 in target_wait. This makes remote debugging a bit more
4026 efficient for those targets that provide critical registers
4027 as part of their normal status mechanism. */
4028
4029 registers_changed ();
4030 waiton_ptid = pid_to_ptid (-1);
4031 }
4032 /* This is the old end of the while loop. Let everybody know we
4033 want to wait for the inferior some more and get called again
4034 soon. */
4035 ecs->wait_some_more = 1;
4036 }
4037
4038 /* Print why the inferior has stopped. We always print something when
4039 the inferior exits, or receives a signal. The rest of the cases are
4040 dealt with later on in normal_stop() and print_it_typical(). Ideally
4041 there should be a call to this function from handle_inferior_event()
4042 each time stop_stepping() is called.*/
4043 static void
4044 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4045 {
4046 switch (stop_reason)
4047 {
4048 case END_STEPPING_RANGE:
4049 /* We are done with a step/next/si/ni command. */
4050 /* For now print nothing. */
4051 /* Print a message only if not in the middle of doing a "step n"
4052 operation for n > 1 */
4053 if (!inferior_thread ()->step_multi
4054 || !inferior_thread ()->stop_step)
4055 if (ui_out_is_mi_like_p (uiout))
4056 ui_out_field_string
4057 (uiout, "reason",
4058 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
4059 break;
4060 case SIGNAL_EXITED:
4061 /* The inferior was terminated by a signal. */
4062 annotate_signalled ();
4063 if (ui_out_is_mi_like_p (uiout))
4064 ui_out_field_string
4065 (uiout, "reason",
4066 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
4067 ui_out_text (uiout, "\nProgram terminated with signal ");
4068 annotate_signal_name ();
4069 ui_out_field_string (uiout, "signal-name",
4070 target_signal_to_name (stop_info));
4071 annotate_signal_name_end ();
4072 ui_out_text (uiout, ", ");
4073 annotate_signal_string ();
4074 ui_out_field_string (uiout, "signal-meaning",
4075 target_signal_to_string (stop_info));
4076 annotate_signal_string_end ();
4077 ui_out_text (uiout, ".\n");
4078 ui_out_text (uiout, "The program no longer exists.\n");
4079 break;
4080 case EXITED:
4081 /* The inferior program is finished. */
4082 annotate_exited (stop_info);
4083 if (stop_info)
4084 {
4085 if (ui_out_is_mi_like_p (uiout))
4086 ui_out_field_string (uiout, "reason",
4087 async_reason_lookup (EXEC_ASYNC_EXITED));
4088 ui_out_text (uiout, "\nProgram exited with code ");
4089 ui_out_field_fmt (uiout, "exit-code", "0%o",
4090 (unsigned int) stop_info);
4091 ui_out_text (uiout, ".\n");
4092 }
4093 else
4094 {
4095 if (ui_out_is_mi_like_p (uiout))
4096 ui_out_field_string
4097 (uiout, "reason",
4098 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
4099 ui_out_text (uiout, "\nProgram exited normally.\n");
4100 }
4101 /* Support the --return-child-result option. */
4102 return_child_result_value = stop_info;
4103 break;
4104 case SIGNAL_RECEIVED:
4105 /* Signal received. The signal table tells us to print about
4106 it. */
4107 annotate_signal ();
4108
4109 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4110 {
4111 struct thread_info *t = inferior_thread ();
4112
4113 ui_out_text (uiout, "\n[");
4114 ui_out_field_string (uiout, "thread-name",
4115 target_pid_to_str (t->ptid));
4116 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4117 ui_out_text (uiout, " stopped");
4118 }
4119 else
4120 {
4121 ui_out_text (uiout, "\nProgram received signal ");
4122 annotate_signal_name ();
4123 if (ui_out_is_mi_like_p (uiout))
4124 ui_out_field_string
4125 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4126 ui_out_field_string (uiout, "signal-name",
4127 target_signal_to_name (stop_info));
4128 annotate_signal_name_end ();
4129 ui_out_text (uiout, ", ");
4130 annotate_signal_string ();
4131 ui_out_field_string (uiout, "signal-meaning",
4132 target_signal_to_string (stop_info));
4133 annotate_signal_string_end ();
4134 }
4135 ui_out_text (uiout, ".\n");
4136 break;
4137 case NO_HISTORY:
4138 /* Reverse execution: target ran out of history info. */
4139 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4140 break;
4141 default:
4142 internal_error (__FILE__, __LINE__,
4143 _("print_stop_reason: unrecognized enum value"));
4144 break;
4145 }
4146 }
4147 \f
4148
4149 /* Here to return control to GDB when the inferior stops for real.
4150 Print appropriate messages, remove breakpoints, give terminal our modes.
4151
4152 STOP_PRINT_FRAME nonzero means print the executing frame
4153 (pc, function, args, file, line number and line text).
4154 BREAKPOINTS_FAILED nonzero means stop was due to error
4155 attempting to insert breakpoints. */
4156
4157 void
4158 normal_stop (void)
4159 {
4160 struct target_waitstatus last;
4161 ptid_t last_ptid;
4162
4163 get_last_target_status (&last_ptid, &last);
4164
4165 /* In non-stop mode, we don't want GDB to switch threads behind the
4166 user's back, to avoid races where the user is typing a command to
4167 apply to thread x, but GDB switches to thread y before the user
4168 finishes entering the command. */
4169
4170 /* As with the notification of thread events, we want to delay
4171 notifying the user that we've switched thread context until
4172 the inferior actually stops.
4173
4174 There's no point in saying anything if the inferior has exited.
4175 Note that SIGNALLED here means "exited with a signal", not
4176 "received a signal". */
4177 if (!non_stop
4178 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
4179 && target_has_execution
4180 && last.kind != TARGET_WAITKIND_SIGNALLED
4181 && last.kind != TARGET_WAITKIND_EXITED)
4182 {
4183 target_terminal_ours_for_output ();
4184 printf_filtered (_("[Switching to %s]\n"),
4185 target_pid_to_str (inferior_ptid));
4186 annotate_thread_changed ();
4187 previous_inferior_ptid = inferior_ptid;
4188 }
4189
4190 /* NOTE drow/2004-01-17: Is this still necessary? */
4191 /* Make sure that the current_frame's pc is correct. This
4192 is a correction for setting up the frame info before doing
4193 gdbarch_decr_pc_after_break */
4194 if (target_has_execution)
4195 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
4196 gdbarch_decr_pc_after_break, the program counter can change. Ask the
4197 frame code to check for this and sort out any resultant mess.
4198 gdbarch_decr_pc_after_break needs to just go away. */
4199 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
4200
4201 if (!breakpoints_always_inserted_mode () && target_has_execution)
4202 {
4203 if (remove_breakpoints ())
4204 {
4205 target_terminal_ours_for_output ();
4206 printf_filtered (_("\
4207 Cannot remove breakpoints because program is no longer writable.\n\
4208 It might be running in another process.\n\
4209 Further execution is probably impossible.\n"));
4210 }
4211 }
4212
4213 /* If an auto-display called a function and that got a signal,
4214 delete that auto-display to avoid an infinite recursion. */
4215
4216 if (stopped_by_random_signal)
4217 disable_current_display ();
4218
4219 /* Don't print a message if in the middle of doing a "step n"
4220 operation for n > 1 */
4221 if (target_has_execution
4222 && last.kind != TARGET_WAITKIND_SIGNALLED
4223 && last.kind != TARGET_WAITKIND_EXITED
4224 && inferior_thread ()->step_multi
4225 && inferior_thread ()->stop_step)
4226 goto done;
4227
4228 target_terminal_ours ();
4229
4230 /* Set the current source location. This will also happen if we
4231 display the frame below, but the current SAL will be incorrect
4232 during a user hook-stop function. */
4233 if (target_has_stack && !stop_stack_dummy)
4234 set_current_sal_from_frame (get_current_frame (), 1);
4235
4236 if (!target_has_stack)
4237 goto done;
4238
4239 if (last.kind == TARGET_WAITKIND_SIGNALLED
4240 || last.kind == TARGET_WAITKIND_EXITED)
4241 goto done;
4242
4243 /* Select innermost stack frame - i.e., current frame is frame 0,
4244 and current location is based on that.
4245 Don't do this on return from a stack dummy routine,
4246 or if the program has exited. */
4247
4248 if (!stop_stack_dummy)
4249 {
4250 select_frame (get_current_frame ());
4251
4252 /* Print current location without a level number, if
4253 we have changed functions or hit a breakpoint.
4254 Print source line if we have one.
4255 bpstat_print() contains the logic deciding in detail
4256 what to print, based on the event(s) that just occurred. */
4257
4258 /* If --batch-silent is enabled then there's no need to print the current
4259 source location, and to try risks causing an error message about
4260 missing source files. */
4261 if (stop_print_frame && !batch_silent)
4262 {
4263 int bpstat_ret;
4264 int source_flag;
4265 int do_frame_printing = 1;
4266 struct thread_info *tp = inferior_thread ();
4267
4268 bpstat_ret = bpstat_print (tp->stop_bpstat);
4269 switch (bpstat_ret)
4270 {
4271 case PRINT_UNKNOWN:
4272 /* If we had hit a shared library event breakpoint,
4273 bpstat_print would print out this message. If we hit
4274 an OS-level shared library event, do the same
4275 thing. */
4276 if (last.kind == TARGET_WAITKIND_LOADED)
4277 {
4278 printf_filtered (_("Stopped due to shared library event\n"));
4279 source_flag = SRC_LINE; /* something bogus */
4280 do_frame_printing = 0;
4281 break;
4282 }
4283
4284 /* FIXME: cagney/2002-12-01: Given that a frame ID does
4285 (or should) carry around the function and does (or
4286 should) use that when doing a frame comparison. */
4287 if (tp->stop_step
4288 && frame_id_eq (tp->step_frame_id,
4289 get_frame_id (get_current_frame ()))
4290 && step_start_function == find_pc_function (stop_pc))
4291 source_flag = SRC_LINE; /* finished step, just print source line */
4292 else
4293 source_flag = SRC_AND_LOC; /* print location and source line */
4294 break;
4295 case PRINT_SRC_AND_LOC:
4296 source_flag = SRC_AND_LOC; /* print location and source line */
4297 break;
4298 case PRINT_SRC_ONLY:
4299 source_flag = SRC_LINE;
4300 break;
4301 case PRINT_NOTHING:
4302 source_flag = SRC_LINE; /* something bogus */
4303 do_frame_printing = 0;
4304 break;
4305 default:
4306 internal_error (__FILE__, __LINE__, _("Unknown value."));
4307 }
4308
4309 if (ui_out_is_mi_like_p (uiout))
4310 {
4311
4312 ui_out_field_int (uiout, "thread-id",
4313 pid_to_thread_id (inferior_ptid));
4314 if (non_stop)
4315 {
4316 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
4317 (uiout, "stopped-threads");
4318 ui_out_field_int (uiout, NULL,
4319 pid_to_thread_id (inferior_ptid));
4320 do_cleanups (back_to);
4321 }
4322 else
4323 ui_out_field_string (uiout, "stopped-threads", "all");
4324 }
4325 /* The behavior of this routine with respect to the source
4326 flag is:
4327 SRC_LINE: Print only source line
4328 LOCATION: Print only location
4329 SRC_AND_LOC: Print location and source line */
4330 if (do_frame_printing)
4331 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
4332
4333 /* Display the auto-display expressions. */
4334 do_displays ();
4335 }
4336 }
4337
4338 /* Save the function value return registers, if we care.
4339 We might be about to restore their previous contents. */
4340 if (inferior_thread ()->proceed_to_finish)
4341 {
4342 /* This should not be necessary. */
4343 if (stop_registers)
4344 regcache_xfree (stop_registers);
4345
4346 /* NB: The copy goes through to the target picking up the value of
4347 all the registers. */
4348 stop_registers = regcache_dup (get_current_regcache ());
4349 }
4350
4351 if (stop_stack_dummy)
4352 {
4353 /* Pop the empty frame that contains the stack dummy. POP_FRAME
4354 ends with a setting of the current frame, so we can use that
4355 next. */
4356 frame_pop (get_current_frame ());
4357 /* Set stop_pc to what it was before we called the function.
4358 Can't rely on restore_inferior_status because that only gets
4359 called if we don't stop in the called function. */
4360 stop_pc = read_pc ();
4361 select_frame (get_current_frame ());
4362 }
4363
4364 done:
4365 annotate_stopped ();
4366 if (!suppress_stop_observer
4367 && !(target_has_execution
4368 && last.kind != TARGET_WAITKIND_SIGNALLED
4369 && last.kind != TARGET_WAITKIND_EXITED
4370 && inferior_thread ()->step_multi))
4371 {
4372 if (!ptid_equal (inferior_ptid, null_ptid))
4373 observer_notify_normal_stop (inferior_thread ()->stop_bpstat);
4374 else
4375 observer_notify_normal_stop (NULL);
4376 }
4377 if (target_has_execution
4378 && last.kind != TARGET_WAITKIND_SIGNALLED
4379 && last.kind != TARGET_WAITKIND_EXITED)
4380 {
4381 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4382 Delete any breakpoint that is to be deleted at the next stop. */
4383 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4384
4385 if (!non_stop)
4386 set_running (pid_to_ptid (-1), 0);
4387 else
4388 set_running (inferior_ptid, 0);
4389 }
4390
4391 /* Look up the hook_stop and run it (CLI internally handles problem
4392 of stop_command's pre-hook not existing). */
4393 if (stop_command)
4394 catch_errors (hook_stop_stub, stop_command,
4395 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4396
4397 }
4398
4399 static int
4400 hook_stop_stub (void *cmd)
4401 {
4402 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
4403 return (0);
4404 }
4405 \f
4406 int
4407 signal_stop_state (int signo)
4408 {
4409 return signal_stop[signo];
4410 }
4411
4412 int
4413 signal_print_state (int signo)
4414 {
4415 return signal_print[signo];
4416 }
4417
4418 int
4419 signal_pass_state (int signo)
4420 {
4421 return signal_program[signo];
4422 }
4423
4424 int
4425 signal_stop_update (int signo, int state)
4426 {
4427 int ret = signal_stop[signo];
4428 signal_stop[signo] = state;
4429 return ret;
4430 }
4431
4432 int
4433 signal_print_update (int signo, int state)
4434 {
4435 int ret = signal_print[signo];
4436 signal_print[signo] = state;
4437 return ret;
4438 }
4439
4440 int
4441 signal_pass_update (int signo, int state)
4442 {
4443 int ret = signal_program[signo];
4444 signal_program[signo] = state;
4445 return ret;
4446 }
4447
4448 static void
4449 sig_print_header (void)
4450 {
4451 printf_filtered (_("\
4452 Signal Stop\tPrint\tPass to program\tDescription\n"));
4453 }
4454
4455 static void
4456 sig_print_info (enum target_signal oursig)
4457 {
4458 char *name = target_signal_to_name (oursig);
4459 int name_padding = 13 - strlen (name);
4460
4461 if (name_padding <= 0)
4462 name_padding = 0;
4463
4464 printf_filtered ("%s", name);
4465 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4466 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4467 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4468 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4469 printf_filtered ("%s\n", target_signal_to_string (oursig));
4470 }
4471
4472 /* Specify how various signals in the inferior should be handled. */
4473
4474 static void
4475 handle_command (char *args, int from_tty)
4476 {
4477 char **argv;
4478 int digits, wordlen;
4479 int sigfirst, signum, siglast;
4480 enum target_signal oursig;
4481 int allsigs;
4482 int nsigs;
4483 unsigned char *sigs;
4484 struct cleanup *old_chain;
4485
4486 if (args == NULL)
4487 {
4488 error_no_arg (_("signal to handle"));
4489 }
4490
4491 /* Allocate and zero an array of flags for which signals to handle. */
4492
4493 nsigs = (int) TARGET_SIGNAL_LAST;
4494 sigs = (unsigned char *) alloca (nsigs);
4495 memset (sigs, 0, nsigs);
4496
4497 /* Break the command line up into args. */
4498
4499 argv = gdb_buildargv (args);
4500 old_chain = make_cleanup_freeargv (argv);
4501
4502 /* Walk through the args, looking for signal oursigs, signal names, and
4503 actions. Signal numbers and signal names may be interspersed with
4504 actions, with the actions being performed for all signals cumulatively
4505 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4506
4507 while (*argv != NULL)
4508 {
4509 wordlen = strlen (*argv);
4510 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4511 {;
4512 }
4513 allsigs = 0;
4514 sigfirst = siglast = -1;
4515
4516 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4517 {
4518 /* Apply action to all signals except those used by the
4519 debugger. Silently skip those. */
4520 allsigs = 1;
4521 sigfirst = 0;
4522 siglast = nsigs - 1;
4523 }
4524 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4525 {
4526 SET_SIGS (nsigs, sigs, signal_stop);
4527 SET_SIGS (nsigs, sigs, signal_print);
4528 }
4529 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4530 {
4531 UNSET_SIGS (nsigs, sigs, signal_program);
4532 }
4533 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4534 {
4535 SET_SIGS (nsigs, sigs, signal_print);
4536 }
4537 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4538 {
4539 SET_SIGS (nsigs, sigs, signal_program);
4540 }
4541 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4542 {
4543 UNSET_SIGS (nsigs, sigs, signal_stop);
4544 }
4545 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4546 {
4547 SET_SIGS (nsigs, sigs, signal_program);
4548 }
4549 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4550 {
4551 UNSET_SIGS (nsigs, sigs, signal_print);
4552 UNSET_SIGS (nsigs, sigs, signal_stop);
4553 }
4554 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4555 {
4556 UNSET_SIGS (nsigs, sigs, signal_program);
4557 }
4558 else if (digits > 0)
4559 {
4560 /* It is numeric. The numeric signal refers to our own
4561 internal signal numbering from target.h, not to host/target
4562 signal number. This is a feature; users really should be
4563 using symbolic names anyway, and the common ones like
4564 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4565
4566 sigfirst = siglast = (int)
4567 target_signal_from_command (atoi (*argv));
4568 if ((*argv)[digits] == '-')
4569 {
4570 siglast = (int)
4571 target_signal_from_command (atoi ((*argv) + digits + 1));
4572 }
4573 if (sigfirst > siglast)
4574 {
4575 /* Bet he didn't figure we'd think of this case... */
4576 signum = sigfirst;
4577 sigfirst = siglast;
4578 siglast = signum;
4579 }
4580 }
4581 else
4582 {
4583 oursig = target_signal_from_name (*argv);
4584 if (oursig != TARGET_SIGNAL_UNKNOWN)
4585 {
4586 sigfirst = siglast = (int) oursig;
4587 }
4588 else
4589 {
4590 /* Not a number and not a recognized flag word => complain. */
4591 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4592 }
4593 }
4594
4595 /* If any signal numbers or symbol names were found, set flags for
4596 which signals to apply actions to. */
4597
4598 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4599 {
4600 switch ((enum target_signal) signum)
4601 {
4602 case TARGET_SIGNAL_TRAP:
4603 case TARGET_SIGNAL_INT:
4604 if (!allsigs && !sigs[signum])
4605 {
4606 if (query ("%s is used by the debugger.\n\
4607 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4608 {
4609 sigs[signum] = 1;
4610 }
4611 else
4612 {
4613 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4614 gdb_flush (gdb_stdout);
4615 }
4616 }
4617 break;
4618 case TARGET_SIGNAL_0:
4619 case TARGET_SIGNAL_DEFAULT:
4620 case TARGET_SIGNAL_UNKNOWN:
4621 /* Make sure that "all" doesn't print these. */
4622 break;
4623 default:
4624 sigs[signum] = 1;
4625 break;
4626 }
4627 }
4628
4629 argv++;
4630 }
4631
4632 target_notice_signals (inferior_ptid);
4633
4634 if (from_tty)
4635 {
4636 /* Show the results. */
4637 sig_print_header ();
4638 for (signum = 0; signum < nsigs; signum++)
4639 {
4640 if (sigs[signum])
4641 {
4642 sig_print_info (signum);
4643 }
4644 }
4645 }
4646
4647 do_cleanups (old_chain);
4648 }
4649
4650 static void
4651 xdb_handle_command (char *args, int from_tty)
4652 {
4653 char **argv;
4654 struct cleanup *old_chain;
4655
4656 if (args == NULL)
4657 error_no_arg (_("xdb command"));
4658
4659 /* Break the command line up into args. */
4660
4661 argv = gdb_buildargv (args);
4662 old_chain = make_cleanup_freeargv (argv);
4663 if (argv[1] != (char *) NULL)
4664 {
4665 char *argBuf;
4666 int bufLen;
4667
4668 bufLen = strlen (argv[0]) + 20;
4669 argBuf = (char *) xmalloc (bufLen);
4670 if (argBuf)
4671 {
4672 int validFlag = 1;
4673 enum target_signal oursig;
4674
4675 oursig = target_signal_from_name (argv[0]);
4676 memset (argBuf, 0, bufLen);
4677 if (strcmp (argv[1], "Q") == 0)
4678 sprintf (argBuf, "%s %s", argv[0], "noprint");
4679 else
4680 {
4681 if (strcmp (argv[1], "s") == 0)
4682 {
4683 if (!signal_stop[oursig])
4684 sprintf (argBuf, "%s %s", argv[0], "stop");
4685 else
4686 sprintf (argBuf, "%s %s", argv[0], "nostop");
4687 }
4688 else if (strcmp (argv[1], "i") == 0)
4689 {
4690 if (!signal_program[oursig])
4691 sprintf (argBuf, "%s %s", argv[0], "pass");
4692 else
4693 sprintf (argBuf, "%s %s", argv[0], "nopass");
4694 }
4695 else if (strcmp (argv[1], "r") == 0)
4696 {
4697 if (!signal_print[oursig])
4698 sprintf (argBuf, "%s %s", argv[0], "print");
4699 else
4700 sprintf (argBuf, "%s %s", argv[0], "noprint");
4701 }
4702 else
4703 validFlag = 0;
4704 }
4705 if (validFlag)
4706 handle_command (argBuf, from_tty);
4707 else
4708 printf_filtered (_("Invalid signal handling flag.\n"));
4709 if (argBuf)
4710 xfree (argBuf);
4711 }
4712 }
4713 do_cleanups (old_chain);
4714 }
4715
4716 /* Print current contents of the tables set by the handle command.
4717 It is possible we should just be printing signals actually used
4718 by the current target (but for things to work right when switching
4719 targets, all signals should be in the signal tables). */
4720
4721 static void
4722 signals_info (char *signum_exp, int from_tty)
4723 {
4724 enum target_signal oursig;
4725 sig_print_header ();
4726
4727 if (signum_exp)
4728 {
4729 /* First see if this is a symbol name. */
4730 oursig = target_signal_from_name (signum_exp);
4731 if (oursig == TARGET_SIGNAL_UNKNOWN)
4732 {
4733 /* No, try numeric. */
4734 oursig =
4735 target_signal_from_command (parse_and_eval_long (signum_exp));
4736 }
4737 sig_print_info (oursig);
4738 return;
4739 }
4740
4741 printf_filtered ("\n");
4742 /* These ugly casts brought to you by the native VAX compiler. */
4743 for (oursig = TARGET_SIGNAL_FIRST;
4744 (int) oursig < (int) TARGET_SIGNAL_LAST;
4745 oursig = (enum target_signal) ((int) oursig + 1))
4746 {
4747 QUIT;
4748
4749 if (oursig != TARGET_SIGNAL_UNKNOWN
4750 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4751 sig_print_info (oursig);
4752 }
4753
4754 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4755 }
4756 \f
4757 struct inferior_status
4758 {
4759 enum target_signal stop_signal;
4760 CORE_ADDR stop_pc;
4761 bpstat stop_bpstat;
4762 int stop_step;
4763 int stop_stack_dummy;
4764 int stopped_by_random_signal;
4765 int stepping_over_breakpoint;
4766 CORE_ADDR step_range_start;
4767 CORE_ADDR step_range_end;
4768 struct frame_id step_frame_id;
4769 enum step_over_calls_kind step_over_calls;
4770 CORE_ADDR step_resume_break_address;
4771 int stop_after_trap;
4772 int stop_soon;
4773
4774 /* These are here because if call_function_by_hand has written some
4775 registers and then decides to call error(), we better not have changed
4776 any registers. */
4777 struct regcache *registers;
4778
4779 /* A frame unique identifier. */
4780 struct frame_id selected_frame_id;
4781
4782 int breakpoint_proceeded;
4783 int restore_stack_info;
4784 int proceed_to_finish;
4785 };
4786
4787 /* Save all of the information associated with the inferior<==>gdb
4788 connection. INF_STATUS is a pointer to a "struct inferior_status"
4789 (defined in inferior.h). */
4790
4791 struct inferior_status *
4792 save_inferior_status (int restore_stack_info)
4793 {
4794 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4795 struct thread_info *tp = inferior_thread ();
4796 struct inferior *inf = current_inferior ();
4797
4798 inf_status->stop_signal = tp->stop_signal;
4799 inf_status->stop_pc = stop_pc;
4800 inf_status->stop_step = tp->stop_step;
4801 inf_status->stop_stack_dummy = stop_stack_dummy;
4802 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4803 inf_status->stepping_over_breakpoint = tp->trap_expected;
4804 inf_status->step_range_start = tp->step_range_start;
4805 inf_status->step_range_end = tp->step_range_end;
4806 inf_status->step_frame_id = tp->step_frame_id;
4807 inf_status->step_over_calls = tp->step_over_calls;
4808 inf_status->stop_after_trap = stop_after_trap;
4809 inf_status->stop_soon = inf->stop_soon;
4810 /* Save original bpstat chain here; replace it with copy of chain.
4811 If caller's caller is walking the chain, they'll be happier if we
4812 hand them back the original chain when restore_inferior_status is
4813 called. */
4814 inf_status->stop_bpstat = tp->stop_bpstat;
4815 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
4816 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4817 inf_status->restore_stack_info = restore_stack_info;
4818 inf_status->proceed_to_finish = tp->proceed_to_finish;
4819
4820 inf_status->registers = regcache_dup (get_current_regcache ());
4821
4822 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4823 return inf_status;
4824 }
4825
4826 static int
4827 restore_selected_frame (void *args)
4828 {
4829 struct frame_id *fid = (struct frame_id *) args;
4830 struct frame_info *frame;
4831
4832 frame = frame_find_by_id (*fid);
4833
4834 /* If inf_status->selected_frame_id is NULL, there was no previously
4835 selected frame. */
4836 if (frame == NULL)
4837 {
4838 warning (_("Unable to restore previously selected frame."));
4839 return 0;
4840 }
4841
4842 select_frame (frame);
4843
4844 return (1);
4845 }
4846
4847 void
4848 restore_inferior_status (struct inferior_status *inf_status)
4849 {
4850 struct thread_info *tp = inferior_thread ();
4851 struct inferior *inf = current_inferior ();
4852
4853 tp->stop_signal = inf_status->stop_signal;
4854 stop_pc = inf_status->stop_pc;
4855 tp->stop_step = inf_status->stop_step;
4856 stop_stack_dummy = inf_status->stop_stack_dummy;
4857 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4858 tp->trap_expected = inf_status->stepping_over_breakpoint;
4859 tp->step_range_start = inf_status->step_range_start;
4860 tp->step_range_end = inf_status->step_range_end;
4861 tp->step_frame_id = inf_status->step_frame_id;
4862 tp->step_over_calls = inf_status->step_over_calls;
4863 stop_after_trap = inf_status->stop_after_trap;
4864 inf->stop_soon = inf_status->stop_soon;
4865 bpstat_clear (&tp->stop_bpstat);
4866 tp->stop_bpstat = inf_status->stop_bpstat;
4867 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4868 tp->proceed_to_finish = inf_status->proceed_to_finish;
4869
4870 /* The inferior can be gone if the user types "print exit(0)"
4871 (and perhaps other times). */
4872 if (target_has_execution)
4873 /* NB: The register write goes through to the target. */
4874 regcache_cpy (get_current_regcache (), inf_status->registers);
4875 regcache_xfree (inf_status->registers);
4876
4877 /* FIXME: If we are being called after stopping in a function which
4878 is called from gdb, we should not be trying to restore the
4879 selected frame; it just prints a spurious error message (The
4880 message is useful, however, in detecting bugs in gdb (like if gdb
4881 clobbers the stack)). In fact, should we be restoring the
4882 inferior status at all in that case? . */
4883
4884 if (target_has_stack && inf_status->restore_stack_info)
4885 {
4886 /* The point of catch_errors is that if the stack is clobbered,
4887 walking the stack might encounter a garbage pointer and
4888 error() trying to dereference it. */
4889 if (catch_errors
4890 (restore_selected_frame, &inf_status->selected_frame_id,
4891 "Unable to restore previously selected frame:\n",
4892 RETURN_MASK_ERROR) == 0)
4893 /* Error in restoring the selected frame. Select the innermost
4894 frame. */
4895 select_frame (get_current_frame ());
4896
4897 }
4898
4899 xfree (inf_status);
4900 }
4901
4902 static void
4903 do_restore_inferior_status_cleanup (void *sts)
4904 {
4905 restore_inferior_status (sts);
4906 }
4907
4908 struct cleanup *
4909 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4910 {
4911 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4912 }
4913
4914 void
4915 discard_inferior_status (struct inferior_status *inf_status)
4916 {
4917 /* See save_inferior_status for info on stop_bpstat. */
4918 bpstat_clear (&inf_status->stop_bpstat);
4919 regcache_xfree (inf_status->registers);
4920 xfree (inf_status);
4921 }
4922
4923 int
4924 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
4925 {
4926 struct target_waitstatus last;
4927 ptid_t last_ptid;
4928
4929 get_last_target_status (&last_ptid, &last);
4930
4931 if (last.kind != TARGET_WAITKIND_FORKED)
4932 return 0;
4933
4934 if (!ptid_equal (last_ptid, pid))
4935 return 0;
4936
4937 *child_pid = last.value.related_pid;
4938 return 1;
4939 }
4940
4941 int
4942 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
4943 {
4944 struct target_waitstatus last;
4945 ptid_t last_ptid;
4946
4947 get_last_target_status (&last_ptid, &last);
4948
4949 if (last.kind != TARGET_WAITKIND_VFORKED)
4950 return 0;
4951
4952 if (!ptid_equal (last_ptid, pid))
4953 return 0;
4954
4955 *child_pid = last.value.related_pid;
4956 return 1;
4957 }
4958
4959 int
4960 inferior_has_execd (ptid_t pid, char **execd_pathname)
4961 {
4962 struct target_waitstatus last;
4963 ptid_t last_ptid;
4964
4965 get_last_target_status (&last_ptid, &last);
4966
4967 if (last.kind != TARGET_WAITKIND_EXECD)
4968 return 0;
4969
4970 if (!ptid_equal (last_ptid, pid))
4971 return 0;
4972
4973 *execd_pathname = xstrdup (last.value.execd_pathname);
4974 return 1;
4975 }
4976
4977 /* Oft used ptids */
4978 ptid_t null_ptid;
4979 ptid_t minus_one_ptid;
4980
4981 /* Create a ptid given the necessary PID, LWP, and TID components. */
4982
4983 ptid_t
4984 ptid_build (int pid, long lwp, long tid)
4985 {
4986 ptid_t ptid;
4987
4988 ptid.pid = pid;
4989 ptid.lwp = lwp;
4990 ptid.tid = tid;
4991 return ptid;
4992 }
4993
4994 /* Create a ptid from just a pid. */
4995
4996 ptid_t
4997 pid_to_ptid (int pid)
4998 {
4999 return ptid_build (pid, 0, 0);
5000 }
5001
5002 /* Fetch the pid (process id) component from a ptid. */
5003
5004 int
5005 ptid_get_pid (ptid_t ptid)
5006 {
5007 return ptid.pid;
5008 }
5009
5010 /* Fetch the lwp (lightweight process) component from a ptid. */
5011
5012 long
5013 ptid_get_lwp (ptid_t ptid)
5014 {
5015 return ptid.lwp;
5016 }
5017
5018 /* Fetch the tid (thread id) component from a ptid. */
5019
5020 long
5021 ptid_get_tid (ptid_t ptid)
5022 {
5023 return ptid.tid;
5024 }
5025
5026 /* ptid_equal() is used to test equality of two ptids. */
5027
5028 int
5029 ptid_equal (ptid_t ptid1, ptid_t ptid2)
5030 {
5031 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
5032 && ptid1.tid == ptid2.tid);
5033 }
5034
5035 /* Returns true if PTID represents a process. */
5036
5037 int
5038 ptid_is_pid (ptid_t ptid)
5039 {
5040 if (ptid_equal (minus_one_ptid, ptid))
5041 return 0;
5042 if (ptid_equal (null_ptid, ptid))
5043 return 0;
5044
5045 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5046 }
5047
5048 /* restore_inferior_ptid() will be used by the cleanup machinery
5049 to restore the inferior_ptid value saved in a call to
5050 save_inferior_ptid(). */
5051
5052 static void
5053 restore_inferior_ptid (void *arg)
5054 {
5055 ptid_t *saved_ptid_ptr = arg;
5056 inferior_ptid = *saved_ptid_ptr;
5057 xfree (arg);
5058 }
5059
5060 /* Save the value of inferior_ptid so that it may be restored by a
5061 later call to do_cleanups(). Returns the struct cleanup pointer
5062 needed for later doing the cleanup. */
5063
5064 struct cleanup *
5065 save_inferior_ptid (void)
5066 {
5067 ptid_t *saved_ptid_ptr;
5068
5069 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5070 *saved_ptid_ptr = inferior_ptid;
5071 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5072 }
5073 \f
5074
5075 /* User interface for reverse debugging:
5076 Set exec-direction / show exec-direction commands
5077 (returns error unless target implements to_set_exec_direction method). */
5078
5079 enum exec_direction_kind execution_direction = EXEC_FORWARD;
5080 static const char exec_forward[] = "forward";
5081 static const char exec_reverse[] = "reverse";
5082 static const char *exec_direction = exec_forward;
5083 static const char *exec_direction_names[] = {
5084 exec_forward,
5085 exec_reverse,
5086 NULL
5087 };
5088
5089 static void
5090 set_exec_direction_func (char *args, int from_tty,
5091 struct cmd_list_element *cmd)
5092 {
5093 if (target_can_execute_reverse)
5094 {
5095 if (!strcmp (exec_direction, exec_forward))
5096 execution_direction = EXEC_FORWARD;
5097 else if (!strcmp (exec_direction, exec_reverse))
5098 execution_direction = EXEC_REVERSE;
5099 }
5100 }
5101
5102 static void
5103 show_exec_direction_func (struct ui_file *out, int from_tty,
5104 struct cmd_list_element *cmd, const char *value)
5105 {
5106 switch (execution_direction) {
5107 case EXEC_FORWARD:
5108 fprintf_filtered (out, _("Forward.\n"));
5109 break;
5110 case EXEC_REVERSE:
5111 fprintf_filtered (out, _("Reverse.\n"));
5112 break;
5113 case EXEC_ERROR:
5114 default:
5115 fprintf_filtered (out,
5116 _("Forward (target `%s' does not support exec-direction).\n"),
5117 target_shortname);
5118 break;
5119 }
5120 }
5121
5122 /* User interface for non-stop mode. */
5123
5124 int non_stop = 0;
5125 static int non_stop_1 = 0;
5126
5127 static void
5128 set_non_stop (char *args, int from_tty,
5129 struct cmd_list_element *c)
5130 {
5131 if (target_has_execution)
5132 {
5133 non_stop_1 = non_stop;
5134 error (_("Cannot change this setting while the inferior is running."));
5135 }
5136
5137 non_stop = non_stop_1;
5138 }
5139
5140 static void
5141 show_non_stop (struct ui_file *file, int from_tty,
5142 struct cmd_list_element *c, const char *value)
5143 {
5144 fprintf_filtered (file,
5145 _("Controlling the inferior in non-stop mode is %s.\n"),
5146 value);
5147 }
5148
5149
5150 void
5151 _initialize_infrun (void)
5152 {
5153 int i;
5154 int numsigs;
5155 struct cmd_list_element *c;
5156
5157 add_info ("signals", signals_info, _("\
5158 What debugger does when program gets various signals.\n\
5159 Specify a signal as argument to print info on that signal only."));
5160 add_info_alias ("handle", "signals", 0);
5161
5162 add_com ("handle", class_run, handle_command, _("\
5163 Specify how to handle a signal.\n\
5164 Args are signals and actions to apply to those signals.\n\
5165 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5166 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5167 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5168 The special arg \"all\" is recognized to mean all signals except those\n\
5169 used by the debugger, typically SIGTRAP and SIGINT.\n\
5170 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
5171 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5172 Stop means reenter debugger if this signal happens (implies print).\n\
5173 Print means print a message if this signal happens.\n\
5174 Pass means let program see this signal; otherwise program doesn't know.\n\
5175 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5176 Pass and Stop may be combined."));
5177 if (xdb_commands)
5178 {
5179 add_com ("lz", class_info, signals_info, _("\
5180 What debugger does when program gets various signals.\n\
5181 Specify a signal as argument to print info on that signal only."));
5182 add_com ("z", class_run, xdb_handle_command, _("\
5183 Specify how to handle a signal.\n\
5184 Args are signals and actions to apply to those signals.\n\
5185 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5186 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5187 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5188 The special arg \"all\" is recognized to mean all signals except those\n\
5189 used by the debugger, typically SIGTRAP and SIGINT.\n\
5190 Recognized actions include \"s\" (toggles between stop and nostop), \n\
5191 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5192 nopass), \"Q\" (noprint)\n\
5193 Stop means reenter debugger if this signal happens (implies print).\n\
5194 Print means print a message if this signal happens.\n\
5195 Pass means let program see this signal; otherwise program doesn't know.\n\
5196 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5197 Pass and Stop may be combined."));
5198 }
5199
5200 if (!dbx_commands)
5201 stop_command = add_cmd ("stop", class_obscure,
5202 not_just_help_class_command, _("\
5203 There is no `stop' command, but you can set a hook on `stop'.\n\
5204 This allows you to set a list of commands to be run each time execution\n\
5205 of the program stops."), &cmdlist);
5206
5207 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5208 Set inferior debugging."), _("\
5209 Show inferior debugging."), _("\
5210 When non-zero, inferior specific debugging is enabled."),
5211 NULL,
5212 show_debug_infrun,
5213 &setdebuglist, &showdebuglist);
5214
5215 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5216 Set displaced stepping debugging."), _("\
5217 Show displaced stepping debugging."), _("\
5218 When non-zero, displaced stepping specific debugging is enabled."),
5219 NULL,
5220 show_debug_displaced,
5221 &setdebuglist, &showdebuglist);
5222
5223 add_setshow_boolean_cmd ("non-stop", no_class,
5224 &non_stop_1, _("\
5225 Set whether gdb controls the inferior in non-stop mode."), _("\
5226 Show whether gdb controls the inferior in non-stop mode."), _("\
5227 When debugging a multi-threaded program and this setting is\n\
5228 off (the default, also called all-stop mode), when one thread stops\n\
5229 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5230 all other threads in the program while you interact with the thread of\n\
5231 interest. When you continue or step a thread, you can allow the other\n\
5232 threads to run, or have them remain stopped, but while you inspect any\n\
5233 thread's state, all threads stop.\n\
5234 \n\
5235 In non-stop mode, when one thread stops, other threads can continue\n\
5236 to run freely. You'll be able to step each thread independently,\n\
5237 leave it stopped or free to run as needed."),
5238 set_non_stop,
5239 show_non_stop,
5240 &setlist,
5241 &showlist);
5242
5243 numsigs = (int) TARGET_SIGNAL_LAST;
5244 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
5245 signal_print = (unsigned char *)
5246 xmalloc (sizeof (signal_print[0]) * numsigs);
5247 signal_program = (unsigned char *)
5248 xmalloc (sizeof (signal_program[0]) * numsigs);
5249 for (i = 0; i < numsigs; i++)
5250 {
5251 signal_stop[i] = 1;
5252 signal_print[i] = 1;
5253 signal_program[i] = 1;
5254 }
5255
5256 /* Signals caused by debugger's own actions
5257 should not be given to the program afterwards. */
5258 signal_program[TARGET_SIGNAL_TRAP] = 0;
5259 signal_program[TARGET_SIGNAL_INT] = 0;
5260
5261 /* Signals that are not errors should not normally enter the debugger. */
5262 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5263 signal_print[TARGET_SIGNAL_ALRM] = 0;
5264 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5265 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5266 signal_stop[TARGET_SIGNAL_PROF] = 0;
5267 signal_print[TARGET_SIGNAL_PROF] = 0;
5268 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5269 signal_print[TARGET_SIGNAL_CHLD] = 0;
5270 signal_stop[TARGET_SIGNAL_IO] = 0;
5271 signal_print[TARGET_SIGNAL_IO] = 0;
5272 signal_stop[TARGET_SIGNAL_POLL] = 0;
5273 signal_print[TARGET_SIGNAL_POLL] = 0;
5274 signal_stop[TARGET_SIGNAL_URG] = 0;
5275 signal_print[TARGET_SIGNAL_URG] = 0;
5276 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5277 signal_print[TARGET_SIGNAL_WINCH] = 0;
5278
5279 /* These signals are used internally by user-level thread
5280 implementations. (See signal(5) on Solaris.) Like the above
5281 signals, a healthy program receives and handles them as part of
5282 its normal operation. */
5283 signal_stop[TARGET_SIGNAL_LWP] = 0;
5284 signal_print[TARGET_SIGNAL_LWP] = 0;
5285 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5286 signal_print[TARGET_SIGNAL_WAITING] = 0;
5287 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5288 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5289
5290 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5291 &stop_on_solib_events, _("\
5292 Set stopping for shared library events."), _("\
5293 Show stopping for shared library events."), _("\
5294 If nonzero, gdb will give control to the user when the dynamic linker\n\
5295 notifies gdb of shared library events. The most common event of interest\n\
5296 to the user would be loading/unloading of a new library."),
5297 NULL,
5298 show_stop_on_solib_events,
5299 &setlist, &showlist);
5300
5301 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5302 follow_fork_mode_kind_names,
5303 &follow_fork_mode_string, _("\
5304 Set debugger response to a program call of fork or vfork."), _("\
5305 Show debugger response to a program call of fork or vfork."), _("\
5306 A fork or vfork creates a new process. follow-fork-mode can be:\n\
5307 parent - the original process is debugged after a fork\n\
5308 child - the new process is debugged after a fork\n\
5309 The unfollowed process will continue to run.\n\
5310 By default, the debugger will follow the parent process."),
5311 NULL,
5312 show_follow_fork_mode_string,
5313 &setlist, &showlist);
5314
5315 add_setshow_enum_cmd ("scheduler-locking", class_run,
5316 scheduler_enums, &scheduler_mode, _("\
5317 Set mode for locking scheduler during execution."), _("\
5318 Show mode for locking scheduler during execution."), _("\
5319 off == no locking (threads may preempt at any time)\n\
5320 on == full locking (no thread except the current thread may run)\n\
5321 step == scheduler locked during every single-step operation.\n\
5322 In this mode, no other thread may run during a step command.\n\
5323 Other threads may run while stepping over a function call ('next')."),
5324 set_schedlock_func, /* traps on target vector */
5325 show_scheduler_mode,
5326 &setlist, &showlist);
5327
5328 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5329 Set mode of the step operation."), _("\
5330 Show mode of the step operation."), _("\
5331 When set, doing a step over a function without debug line information\n\
5332 will stop at the first instruction of that function. Otherwise, the\n\
5333 function is skipped and the step command stops at a different source line."),
5334 NULL,
5335 show_step_stop_if_no_debug,
5336 &setlist, &showlist);
5337
5338 add_setshow_enum_cmd ("displaced-stepping", class_run,
5339 can_use_displaced_stepping_enum,
5340 &can_use_displaced_stepping, _("\
5341 Set debugger's willingness to use displaced stepping."), _("\
5342 Show debugger's willingness to use displaced stepping."), _("\
5343 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5344 supported by the target architecture. If off, gdb will not use displaced\n\
5345 stepping to step over breakpoints, even if such is supported by the target\n\
5346 architecture. If auto (which is the default), gdb will use displaced stepping\n\
5347 if the target architecture supports it and non-stop mode is active, but will not\n\
5348 use it in all-stop mode (see help set non-stop)."),
5349 NULL,
5350 show_can_use_displaced_stepping,
5351 &setlist, &showlist);
5352
5353 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5354 &exec_direction, _("Set direction of execution.\n\
5355 Options are 'forward' or 'reverse'."),
5356 _("Show direction of execution (forward/reverse)."),
5357 _("Tells gdb whether to execute forward or backward."),
5358 set_exec_direction_func, show_exec_direction_func,
5359 &setlist, &showlist);
5360
5361 /* ptid initializations */
5362 null_ptid = ptid_build (0, 0, 0);
5363 minus_one_ptid = ptid_build (-1, 0, 0);
5364 inferior_ptid = null_ptid;
5365 target_last_wait_ptid = minus_one_ptid;
5366 displaced_step_ptid = null_ptid;
5367
5368 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
5369 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
5370 }
This page took 0.141744 seconds and 4 git commands to generate.