8cb772a08a228d42dcce1a11d4180a7de8e71369
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "breakpoint.h"
32 #include "gdb_wait.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "cli/cli-script.h"
36 #include "target.h"
37 #include "gdbthread.h"
38 #include "annotate.h"
39 #include "symfile.h"
40 #include "top.h"
41 #include <signal.h>
42 #include "inf-loop.h"
43 #include "regcache.h"
44 #include "value.h"
45 #include "observer.h"
46 #include "language.h"
47 #include "gdb_assert.h"
48
49 /* Prototypes for local functions */
50
51 static void signals_info (char *, int);
52
53 static void handle_command (char *, int);
54
55 static void sig_print_info (enum target_signal);
56
57 static void sig_print_header (void);
58
59 static void resume_cleanups (void *);
60
61 static int hook_stop_stub (void *);
62
63 static int restore_selected_frame (void *);
64
65 static void build_infrun (void);
66
67 static int follow_fork (void);
68
69 static void set_schedlock_func (char *args, int from_tty,
70 struct cmd_list_element *c);
71
72 struct execution_control_state;
73
74 static int currently_stepping (struct execution_control_state *ecs);
75
76 static void xdb_handle_command (char *args, int from_tty);
77
78 static int prepare_to_proceed (void);
79
80 void _initialize_infrun (void);
81
82 int inferior_ignoring_startup_exec_events = 0;
83 int inferior_ignoring_leading_exec_events = 0;
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89
90 /* In asynchronous mode, but simulating synchronous execution. */
91
92 int sync_execution = 0;
93
94 /* wait_for_inferior and normal_stop use this to notify the user
95 when the inferior stopped in a different thread than it had been
96 running in. */
97
98 static ptid_t previous_inferior_ptid;
99
100 /* This is true for configurations that may follow through execl() and
101 similar functions. At present this is only true for HP-UX native. */
102
103 #ifndef MAY_FOLLOW_EXEC
104 #define MAY_FOLLOW_EXEC (0)
105 #endif
106
107 static int may_follow_exec = MAY_FOLLOW_EXEC;
108
109 /* If the program uses ELF-style shared libraries, then calls to
110 functions in shared libraries go through stubs, which live in a
111 table called the PLT (Procedure Linkage Table). The first time the
112 function is called, the stub sends control to the dynamic linker,
113 which looks up the function's real address, patches the stub so
114 that future calls will go directly to the function, and then passes
115 control to the function.
116
117 If we are stepping at the source level, we don't want to see any of
118 this --- we just want to skip over the stub and the dynamic linker.
119 The simple approach is to single-step until control leaves the
120 dynamic linker.
121
122 However, on some systems (e.g., Red Hat's 5.2 distribution) the
123 dynamic linker calls functions in the shared C library, so you
124 can't tell from the PC alone whether the dynamic linker is still
125 running. In this case, we use a step-resume breakpoint to get us
126 past the dynamic linker, as if we were using "next" to step over a
127 function call.
128
129 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
130 linker code or not. Normally, this means we single-step. However,
131 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
132 address where we can place a step-resume breakpoint to get past the
133 linker's symbol resolution function.
134
135 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
136 pretty portable way, by comparing the PC against the address ranges
137 of the dynamic linker's sections.
138
139 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
140 it depends on internal details of the dynamic linker. It's usually
141 not too hard to figure out where to put a breakpoint, but it
142 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
143 sanity checking. If it can't figure things out, returning zero and
144 getting the (possibly confusing) stepping behavior is better than
145 signalling an error, which will obscure the change in the
146 inferior's state. */
147
148 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
149 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
150 #endif
151
152 /* This function returns TRUE if pc is the address of an instruction
153 that lies within the dynamic linker (such as the event hook, or the
154 dld itself).
155
156 This function must be used only when a dynamic linker event has
157 been caught, and the inferior is being stepped out of the hook, or
158 undefined results are guaranteed. */
159
160 #ifndef SOLIB_IN_DYNAMIC_LINKER
161 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
162 #endif
163
164 /* On MIPS16, a function that returns a floating point value may call
165 a library helper function to copy the return value to a floating point
166 register. The IGNORE_HELPER_CALL macro returns non-zero if we
167 should ignore (i.e. step over) this function call. */
168 #ifndef IGNORE_HELPER_CALL
169 #define IGNORE_HELPER_CALL(pc) 0
170 #endif
171
172 /* On some systems, the PC may be left pointing at an instruction that won't
173 actually be executed. This is usually indicated by a bit in the PSW. If
174 we find ourselves in such a state, then we step the target beyond the
175 nullified instruction before returning control to the user so as to avoid
176 confusion. */
177
178 #ifndef INSTRUCTION_NULLIFIED
179 #define INSTRUCTION_NULLIFIED 0
180 #endif
181
182 /* We can't step off a permanent breakpoint in the ordinary way, because we
183 can't remove it. Instead, we have to advance the PC to the next
184 instruction. This macro should expand to a pointer to a function that
185 does that, or zero if we have no such function. If we don't have a
186 definition for it, we have to report an error. */
187 #ifndef SKIP_PERMANENT_BREAKPOINT
188 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
189 static void
190 default_skip_permanent_breakpoint (void)
191 {
192 error ("\
193 The program is stopped at a permanent breakpoint, but GDB does not know\n\
194 how to step past a permanent breakpoint on this architecture. Try using\n\
195 a command like `return' or `jump' to continue execution.");
196 }
197 #endif
198
199
200 /* Convert the #defines into values. This is temporary until wfi control
201 flow is completely sorted out. */
202
203 #ifndef HAVE_STEPPABLE_WATCHPOINT
204 #define HAVE_STEPPABLE_WATCHPOINT 0
205 #else
206 #undef HAVE_STEPPABLE_WATCHPOINT
207 #define HAVE_STEPPABLE_WATCHPOINT 1
208 #endif
209
210 #ifndef CANNOT_STEP_HW_WATCHPOINTS
211 #define CANNOT_STEP_HW_WATCHPOINTS 0
212 #else
213 #undef CANNOT_STEP_HW_WATCHPOINTS
214 #define CANNOT_STEP_HW_WATCHPOINTS 1
215 #endif
216
217 /* Tables of how to react to signals; the user sets them. */
218
219 static unsigned char *signal_stop;
220 static unsigned char *signal_print;
221 static unsigned char *signal_program;
222
223 #define SET_SIGS(nsigs,sigs,flags) \
224 do { \
225 int signum = (nsigs); \
226 while (signum-- > 0) \
227 if ((sigs)[signum]) \
228 (flags)[signum] = 1; \
229 } while (0)
230
231 #define UNSET_SIGS(nsigs,sigs,flags) \
232 do { \
233 int signum = (nsigs); \
234 while (signum-- > 0) \
235 if ((sigs)[signum]) \
236 (flags)[signum] = 0; \
237 } while (0)
238
239 /* Value to pass to target_resume() to cause all threads to resume */
240
241 #define RESUME_ALL (pid_to_ptid (-1))
242
243 /* Command list pointer for the "stop" placeholder. */
244
245 static struct cmd_list_element *stop_command;
246
247 /* Nonzero if breakpoints are now inserted in the inferior. */
248
249 static int breakpoints_inserted;
250
251 /* Function inferior was in as of last step command. */
252
253 static struct symbol *step_start_function;
254
255 /* Nonzero if we are expecting a trace trap and should proceed from it. */
256
257 static int trap_expected;
258
259 #ifdef SOLIB_ADD
260 /* Nonzero if we want to give control to the user when we're notified
261 of shared library events by the dynamic linker. */
262 static int stop_on_solib_events;
263 #endif
264
265 #ifdef HP_OS_BUG
266 /* Nonzero if the next time we try to continue the inferior, it will
267 step one instruction and generate a spurious trace trap.
268 This is used to compensate for a bug in HP-UX. */
269
270 static int trap_expected_after_continue;
271 #endif
272
273 /* Nonzero means expecting a trace trap
274 and should stop the inferior and return silently when it happens. */
275
276 int stop_after_trap;
277
278 /* Nonzero means expecting a trap and caller will handle it themselves.
279 It is used after attach, due to attaching to a process;
280 when running in the shell before the child program has been exec'd;
281 and when running some kinds of remote stuff (FIXME?). */
282
283 enum stop_kind stop_soon;
284
285 /* Nonzero if proceed is being used for a "finish" command or a similar
286 situation when stop_registers should be saved. */
287
288 int proceed_to_finish;
289
290 /* Save register contents here when about to pop a stack dummy frame,
291 if-and-only-if proceed_to_finish is set.
292 Thus this contains the return value from the called function (assuming
293 values are returned in a register). */
294
295 struct regcache *stop_registers;
296
297 /* Nonzero if program stopped due to error trying to insert breakpoints. */
298
299 static int breakpoints_failed;
300
301 /* Nonzero after stop if current stack frame should be printed. */
302
303 static int stop_print_frame;
304
305 static struct breakpoint *step_resume_breakpoint = NULL;
306
307 /* On some platforms (e.g., HP-UX), hardware watchpoints have bad
308 interactions with an inferior that is running a kernel function
309 (aka, a system call or "syscall"). wait_for_inferior therefore
310 may have a need to know when the inferior is in a syscall. This
311 is a count of the number of inferior threads which are known to
312 currently be running in a syscall. */
313 static int number_of_threads_in_syscalls;
314
315 /* This is a cached copy of the pid/waitstatus of the last event
316 returned by target_wait()/deprecated_target_wait_hook(). This
317 information is returned by get_last_target_status(). */
318 static ptid_t target_last_wait_ptid;
319 static struct target_waitstatus target_last_waitstatus;
320
321 /* This is used to remember when a fork, vfork or exec event
322 was caught by a catchpoint, and thus the event is to be
323 followed at the next resume of the inferior, and not
324 immediately. */
325 static struct
326 {
327 enum target_waitkind kind;
328 struct
329 {
330 int parent_pid;
331 int child_pid;
332 }
333 fork_event;
334 char *execd_pathname;
335 }
336 pending_follow;
337
338 static const char follow_fork_mode_child[] = "child";
339 static const char follow_fork_mode_parent[] = "parent";
340
341 static const char *follow_fork_mode_kind_names[] = {
342 follow_fork_mode_child,
343 follow_fork_mode_parent,
344 NULL
345 };
346
347 static const char *follow_fork_mode_string = follow_fork_mode_parent;
348 \f
349
350 static int
351 follow_fork (void)
352 {
353 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
354
355 return target_follow_fork (follow_child);
356 }
357
358 void
359 follow_inferior_reset_breakpoints (void)
360 {
361 /* Was there a step_resume breakpoint? (There was if the user
362 did a "next" at the fork() call.) If so, explicitly reset its
363 thread number.
364
365 step_resumes are a form of bp that are made to be per-thread.
366 Since we created the step_resume bp when the parent process
367 was being debugged, and now are switching to the child process,
368 from the breakpoint package's viewpoint, that's a switch of
369 "threads". We must update the bp's notion of which thread
370 it is for, or it'll be ignored when it triggers. */
371
372 if (step_resume_breakpoint)
373 breakpoint_re_set_thread (step_resume_breakpoint);
374
375 /* Reinsert all breakpoints in the child. The user may have set
376 breakpoints after catching the fork, in which case those
377 were never set in the child, but only in the parent. This makes
378 sure the inserted breakpoints match the breakpoint list. */
379
380 breakpoint_re_set ();
381 insert_breakpoints ();
382 }
383
384 /* EXECD_PATHNAME is assumed to be non-NULL. */
385
386 static void
387 follow_exec (int pid, char *execd_pathname)
388 {
389 int saved_pid = pid;
390 struct target_ops *tgt;
391
392 if (!may_follow_exec)
393 return;
394
395 /* This is an exec event that we actually wish to pay attention to.
396 Refresh our symbol table to the newly exec'd program, remove any
397 momentary bp's, etc.
398
399 If there are breakpoints, they aren't really inserted now,
400 since the exec() transformed our inferior into a fresh set
401 of instructions.
402
403 We want to preserve symbolic breakpoints on the list, since
404 we have hopes that they can be reset after the new a.out's
405 symbol table is read.
406
407 However, any "raw" breakpoints must be removed from the list
408 (e.g., the solib bp's), since their address is probably invalid
409 now.
410
411 And, we DON'T want to call delete_breakpoints() here, since
412 that may write the bp's "shadow contents" (the instruction
413 value that was overwritten witha TRAP instruction). Since
414 we now have a new a.out, those shadow contents aren't valid. */
415 update_breakpoints_after_exec ();
416
417 /* If there was one, it's gone now. We cannot truly step-to-next
418 statement through an exec(). */
419 step_resume_breakpoint = NULL;
420 step_range_start = 0;
421 step_range_end = 0;
422
423 /* What is this a.out's name? */
424 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
425
426 /* We've followed the inferior through an exec. Therefore, the
427 inferior has essentially been killed & reborn. */
428
429 /* First collect the run target in effect. */
430 tgt = find_run_target ();
431 /* If we can't find one, things are in a very strange state... */
432 if (tgt == NULL)
433 error ("Could find run target to save before following exec");
434
435 gdb_flush (gdb_stdout);
436 target_mourn_inferior ();
437 inferior_ptid = pid_to_ptid (saved_pid);
438 /* Because mourn_inferior resets inferior_ptid. */
439 push_target (tgt);
440
441 /* That a.out is now the one to use. */
442 exec_file_attach (execd_pathname, 0);
443
444 /* And also is where symbols can be found. */
445 symbol_file_add_main (execd_pathname, 0);
446
447 /* Reset the shared library package. This ensures that we get
448 a shlib event when the child reaches "_start", at which point
449 the dld will have had a chance to initialize the child. */
450 #if defined(SOLIB_RESTART)
451 SOLIB_RESTART ();
452 #endif
453 #ifdef SOLIB_CREATE_INFERIOR_HOOK
454 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
455 #endif
456
457 /* Reinsert all breakpoints. (Those which were symbolic have
458 been reset to the proper address in the new a.out, thanks
459 to symbol_file_command...) */
460 insert_breakpoints ();
461
462 /* The next resume of this inferior should bring it to the shlib
463 startup breakpoints. (If the user had also set bp's on
464 "main" from the old (parent) process, then they'll auto-
465 matically get reset there in the new process.) */
466 }
467
468 /* Non-zero if we just simulating a single-step. This is needed
469 because we cannot remove the breakpoints in the inferior process
470 until after the `wait' in `wait_for_inferior'. */
471 static int singlestep_breakpoints_inserted_p = 0;
472
473 /* The thread we inserted single-step breakpoints for. */
474 static ptid_t singlestep_ptid;
475
476 /* If another thread hit the singlestep breakpoint, we save the original
477 thread here so that we can resume single-stepping it later. */
478 static ptid_t saved_singlestep_ptid;
479 static int stepping_past_singlestep_breakpoint;
480 \f
481
482 /* Things to clean up if we QUIT out of resume (). */
483 static void
484 resume_cleanups (void *ignore)
485 {
486 normal_stop ();
487 }
488
489 static const char schedlock_off[] = "off";
490 static const char schedlock_on[] = "on";
491 static const char schedlock_step[] = "step";
492 static const char *scheduler_mode = schedlock_off;
493 static const char *scheduler_enums[] = {
494 schedlock_off,
495 schedlock_on,
496 schedlock_step,
497 NULL
498 };
499
500 static void
501 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
502 {
503 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
504 the set command passed as a parameter. The clone operation will
505 include (BUG?) any ``set'' command callback, if present.
506 Commands like ``info set'' call all the ``show'' command
507 callbacks. Unfortunately, for ``show'' commands cloned from
508 ``set'', this includes callbacks belonging to ``set'' commands.
509 Making this worse, this only occures if add_show_from_set() is
510 called after add_cmd_sfunc() (BUG?). */
511 if (cmd_type (c) == set_cmd)
512 if (!target_can_lock_scheduler)
513 {
514 scheduler_mode = schedlock_off;
515 error ("Target '%s' cannot support this command.", target_shortname);
516 }
517 }
518
519
520 /* Resume the inferior, but allow a QUIT. This is useful if the user
521 wants to interrupt some lengthy single-stepping operation
522 (for child processes, the SIGINT goes to the inferior, and so
523 we get a SIGINT random_signal, but for remote debugging and perhaps
524 other targets, that's not true).
525
526 STEP nonzero if we should step (zero to continue instead).
527 SIG is the signal to give the inferior (zero for none). */
528 void
529 resume (int step, enum target_signal sig)
530 {
531 int should_resume = 1;
532 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
533 QUIT;
534
535 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
536
537
538 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
539 over an instruction that causes a page fault without triggering
540 a hardware watchpoint. The kernel properly notices that it shouldn't
541 stop, because the hardware watchpoint is not triggered, but it forgets
542 the step request and continues the program normally.
543 Work around the problem by removing hardware watchpoints if a step is
544 requested, GDB will check for a hardware watchpoint trigger after the
545 step anyway. */
546 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
547 remove_hw_watchpoints ();
548
549
550 /* Normally, by the time we reach `resume', the breakpoints are either
551 removed or inserted, as appropriate. The exception is if we're sitting
552 at a permanent breakpoint; we need to step over it, but permanent
553 breakpoints can't be removed. So we have to test for it here. */
554 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
555 SKIP_PERMANENT_BREAKPOINT ();
556
557 if (SOFTWARE_SINGLE_STEP_P () && step)
558 {
559 /* Do it the hard way, w/temp breakpoints */
560 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
561 /* ...and don't ask hardware to do it. */
562 step = 0;
563 /* and do not pull these breakpoints until after a `wait' in
564 `wait_for_inferior' */
565 singlestep_breakpoints_inserted_p = 1;
566 singlestep_ptid = inferior_ptid;
567 }
568
569 /* If there were any forks/vforks/execs that were caught and are
570 now to be followed, then do so. */
571 switch (pending_follow.kind)
572 {
573 case TARGET_WAITKIND_FORKED:
574 case TARGET_WAITKIND_VFORKED:
575 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
576 if (follow_fork ())
577 should_resume = 0;
578 break;
579
580 case TARGET_WAITKIND_EXECD:
581 /* follow_exec is called as soon as the exec event is seen. */
582 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
583 break;
584
585 default:
586 break;
587 }
588
589 /* Install inferior's terminal modes. */
590 target_terminal_inferior ();
591
592 if (should_resume)
593 {
594 ptid_t resume_ptid;
595
596 resume_ptid = RESUME_ALL; /* Default */
597
598 if ((step || singlestep_breakpoints_inserted_p) &&
599 (stepping_past_singlestep_breakpoint
600 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
601 {
602 /* Stepping past a breakpoint without inserting breakpoints.
603 Make sure only the current thread gets to step, so that
604 other threads don't sneak past breakpoints while they are
605 not inserted. */
606
607 resume_ptid = inferior_ptid;
608 }
609
610 if ((scheduler_mode == schedlock_on) ||
611 (scheduler_mode == schedlock_step &&
612 (step || singlestep_breakpoints_inserted_p)))
613 {
614 /* User-settable 'scheduler' mode requires solo thread resume. */
615 resume_ptid = inferior_ptid;
616 }
617
618 if (CANNOT_STEP_BREAKPOINT)
619 {
620 /* Most targets can step a breakpoint instruction, thus
621 executing it normally. But if this one cannot, just
622 continue and we will hit it anyway. */
623 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
624 step = 0;
625 }
626 target_resume (resume_ptid, step, sig);
627 }
628
629 discard_cleanups (old_cleanups);
630 }
631 \f
632
633 /* Clear out all variables saying what to do when inferior is continued.
634 First do this, then set the ones you want, then call `proceed'. */
635
636 void
637 clear_proceed_status (void)
638 {
639 trap_expected = 0;
640 step_range_start = 0;
641 step_range_end = 0;
642 step_frame_id = null_frame_id;
643 step_over_calls = STEP_OVER_UNDEBUGGABLE;
644 stop_after_trap = 0;
645 stop_soon = NO_STOP_QUIETLY;
646 proceed_to_finish = 0;
647 breakpoint_proceeded = 1; /* We're about to proceed... */
648
649 /* Discard any remaining commands or status from previous stop. */
650 bpstat_clear (&stop_bpstat);
651 }
652
653 /* This should be suitable for any targets that support threads. */
654
655 static int
656 prepare_to_proceed (void)
657 {
658 ptid_t wait_ptid;
659 struct target_waitstatus wait_status;
660
661 /* Get the last target status returned by target_wait(). */
662 get_last_target_status (&wait_ptid, &wait_status);
663
664 /* Make sure we were stopped either at a breakpoint, or because
665 of a Ctrl-C. */
666 if (wait_status.kind != TARGET_WAITKIND_STOPPED
667 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
668 wait_status.value.sig != TARGET_SIGNAL_INT))
669 {
670 return 0;
671 }
672
673 if (!ptid_equal (wait_ptid, minus_one_ptid)
674 && !ptid_equal (inferior_ptid, wait_ptid))
675 {
676 /* Switched over from WAIT_PID. */
677 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
678
679 if (wait_pc != read_pc ())
680 {
681 /* Switch back to WAIT_PID thread. */
682 inferior_ptid = wait_ptid;
683
684 /* FIXME: This stuff came from switch_to_thread() in
685 thread.c (which should probably be a public function). */
686 flush_cached_frames ();
687 registers_changed ();
688 stop_pc = wait_pc;
689 select_frame (get_current_frame ());
690 }
691
692 /* We return 1 to indicate that there is a breakpoint here,
693 so we need to step over it before continuing to avoid
694 hitting it straight away. */
695 if (breakpoint_here_p (wait_pc))
696 return 1;
697 }
698
699 return 0;
700
701 }
702
703 /* Record the pc of the program the last time it stopped. This is
704 just used internally by wait_for_inferior, but need to be preserved
705 over calls to it and cleared when the inferior is started. */
706 static CORE_ADDR prev_pc;
707
708 /* Basic routine for continuing the program in various fashions.
709
710 ADDR is the address to resume at, or -1 for resume where stopped.
711 SIGGNAL is the signal to give it, or 0 for none,
712 or -1 for act according to how it stopped.
713 STEP is nonzero if should trap after one instruction.
714 -1 means return after that and print nothing.
715 You should probably set various step_... variables
716 before calling here, if you are stepping.
717
718 You should call clear_proceed_status before calling proceed. */
719
720 void
721 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
722 {
723 int oneproc = 0;
724
725 if (step > 0)
726 step_start_function = find_pc_function (read_pc ());
727 if (step < 0)
728 stop_after_trap = 1;
729
730 if (addr == (CORE_ADDR) -1)
731 {
732 /* If there is a breakpoint at the address we will resume at,
733 step one instruction before inserting breakpoints
734 so that we do not stop right away (and report a second
735 hit at this breakpoint). */
736
737 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
738 oneproc = 1;
739
740 #ifndef STEP_SKIPS_DELAY
741 #define STEP_SKIPS_DELAY(pc) (0)
742 #define STEP_SKIPS_DELAY_P (0)
743 #endif
744 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
745 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
746 is slow (it needs to read memory from the target). */
747 if (STEP_SKIPS_DELAY_P
748 && breakpoint_here_p (read_pc () + 4)
749 && STEP_SKIPS_DELAY (read_pc ()))
750 oneproc = 1;
751 }
752 else
753 {
754 write_pc (addr);
755 }
756
757 /* In a multi-threaded task we may select another thread
758 and then continue or step.
759
760 But if the old thread was stopped at a breakpoint, it
761 will immediately cause another breakpoint stop without
762 any execution (i.e. it will report a breakpoint hit
763 incorrectly). So we must step over it first.
764
765 prepare_to_proceed checks the current thread against the thread
766 that reported the most recent event. If a step-over is required
767 it returns TRUE and sets the current thread to the old thread. */
768 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
769 oneproc = 1;
770
771 #ifdef HP_OS_BUG
772 if (trap_expected_after_continue)
773 {
774 /* If (step == 0), a trap will be automatically generated after
775 the first instruction is executed. Force step one
776 instruction to clear this condition. This should not occur
777 if step is nonzero, but it is harmless in that case. */
778 oneproc = 1;
779 trap_expected_after_continue = 0;
780 }
781 #endif /* HP_OS_BUG */
782
783 if (oneproc)
784 /* We will get a trace trap after one instruction.
785 Continue it automatically and insert breakpoints then. */
786 trap_expected = 1;
787 else
788 {
789 insert_breakpoints ();
790 /* If we get here there was no call to error() in
791 insert breakpoints -- so they were inserted. */
792 breakpoints_inserted = 1;
793 }
794
795 if (siggnal != TARGET_SIGNAL_DEFAULT)
796 stop_signal = siggnal;
797 /* If this signal should not be seen by program,
798 give it zero. Used for debugging signals. */
799 else if (!signal_program[stop_signal])
800 stop_signal = TARGET_SIGNAL_0;
801
802 annotate_starting ();
803
804 /* Make sure that output from GDB appears before output from the
805 inferior. */
806 gdb_flush (gdb_stdout);
807
808 /* Refresh prev_pc value just prior to resuming. This used to be
809 done in stop_stepping, however, setting prev_pc there did not handle
810 scenarios such as inferior function calls or returning from
811 a function via the return command. In those cases, the prev_pc
812 value was not set properly for subsequent commands. The prev_pc value
813 is used to initialize the starting line number in the ecs. With an
814 invalid value, the gdb next command ends up stopping at the position
815 represented by the next line table entry past our start position.
816 On platforms that generate one line table entry per line, this
817 is not a problem. However, on the ia64, the compiler generates
818 extraneous line table entries that do not increase the line number.
819 When we issue the gdb next command on the ia64 after an inferior call
820 or a return command, we often end up a few instructions forward, still
821 within the original line we started.
822
823 An attempt was made to have init_execution_control_state () refresh
824 the prev_pc value before calculating the line number. This approach
825 did not work because on platforms that use ptrace, the pc register
826 cannot be read unless the inferior is stopped. At that point, we
827 are not guaranteed the inferior is stopped and so the read_pc ()
828 call can fail. Setting the prev_pc value here ensures the value is
829 updated correctly when the inferior is stopped. */
830 prev_pc = read_pc ();
831
832 /* Resume inferior. */
833 resume (oneproc || step || bpstat_should_step (), stop_signal);
834
835 /* Wait for it to stop (if not standalone)
836 and in any case decode why it stopped, and act accordingly. */
837 /* Do this only if we are not using the event loop, or if the target
838 does not support asynchronous execution. */
839 if (!event_loop_p || !target_can_async_p ())
840 {
841 wait_for_inferior ();
842 normal_stop ();
843 }
844 }
845 \f
846
847 /* Start remote-debugging of a machine over a serial link. */
848
849 void
850 start_remote (void)
851 {
852 init_thread_list ();
853 init_wait_for_inferior ();
854 stop_soon = STOP_QUIETLY;
855 trap_expected = 0;
856
857 /* Always go on waiting for the target, regardless of the mode. */
858 /* FIXME: cagney/1999-09-23: At present it isn't possible to
859 indicate to wait_for_inferior that a target should timeout if
860 nothing is returned (instead of just blocking). Because of this,
861 targets expecting an immediate response need to, internally, set
862 things up so that the target_wait() is forced to eventually
863 timeout. */
864 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
865 differentiate to its caller what the state of the target is after
866 the initial open has been performed. Here we're assuming that
867 the target has stopped. It should be possible to eventually have
868 target_open() return to the caller an indication that the target
869 is currently running and GDB state should be set to the same as
870 for an async run. */
871 wait_for_inferior ();
872 normal_stop ();
873 }
874
875 /* Initialize static vars when a new inferior begins. */
876
877 void
878 init_wait_for_inferior (void)
879 {
880 /* These are meaningless until the first time through wait_for_inferior. */
881 prev_pc = 0;
882
883 #ifdef HP_OS_BUG
884 trap_expected_after_continue = 0;
885 #endif
886 breakpoints_inserted = 0;
887 breakpoint_init_inferior (inf_starting);
888
889 /* Don't confuse first call to proceed(). */
890 stop_signal = TARGET_SIGNAL_0;
891
892 /* The first resume is not following a fork/vfork/exec. */
893 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
894
895 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
896 number_of_threads_in_syscalls = 0;
897
898 clear_proceed_status ();
899
900 stepping_past_singlestep_breakpoint = 0;
901 }
902 \f
903 /* This enum encodes possible reasons for doing a target_wait, so that
904 wfi can call target_wait in one place. (Ultimately the call will be
905 moved out of the infinite loop entirely.) */
906
907 enum infwait_states
908 {
909 infwait_normal_state,
910 infwait_thread_hop_state,
911 infwait_nullified_state,
912 infwait_nonstep_watch_state
913 };
914
915 /* Why did the inferior stop? Used to print the appropriate messages
916 to the interface from within handle_inferior_event(). */
917 enum inferior_stop_reason
918 {
919 /* We don't know why. */
920 STOP_UNKNOWN,
921 /* Step, next, nexti, stepi finished. */
922 END_STEPPING_RANGE,
923 /* Found breakpoint. */
924 BREAKPOINT_HIT,
925 /* Inferior terminated by signal. */
926 SIGNAL_EXITED,
927 /* Inferior exited. */
928 EXITED,
929 /* Inferior received signal, and user asked to be notified. */
930 SIGNAL_RECEIVED
931 };
932
933 /* This structure contains what used to be local variables in
934 wait_for_inferior. Probably many of them can return to being
935 locals in handle_inferior_event. */
936
937 struct execution_control_state
938 {
939 struct target_waitstatus ws;
940 struct target_waitstatus *wp;
941 int another_trap;
942 int random_signal;
943 CORE_ADDR stop_func_start;
944 CORE_ADDR stop_func_end;
945 char *stop_func_name;
946 struct symtab_and_line sal;
947 int remove_breakpoints_on_following_step;
948 int current_line;
949 struct symtab *current_symtab;
950 int handling_longjmp; /* FIXME */
951 ptid_t ptid;
952 ptid_t saved_inferior_ptid;
953 int update_step_sp;
954 int stepping_through_solib_after_catch;
955 bpstat stepping_through_solib_catchpoints;
956 int enable_hw_watchpoints_after_wait;
957 int stepping_through_sigtramp;
958 int new_thread_event;
959 struct target_waitstatus tmpstatus;
960 enum infwait_states infwait_state;
961 ptid_t waiton_ptid;
962 int wait_some_more;
963 };
964
965 void init_execution_control_state (struct execution_control_state *ecs);
966
967 static void handle_step_into_function (struct execution_control_state *ecs);
968 void handle_inferior_event (struct execution_control_state *ecs);
969
970 static void step_into_function (struct execution_control_state *ecs);
971 static void insert_step_resume_breakpoint (struct frame_info *step_frame,
972 struct execution_control_state *ecs);
973 static void stop_stepping (struct execution_control_state *ecs);
974 static void prepare_to_wait (struct execution_control_state *ecs);
975 static void keep_going (struct execution_control_state *ecs);
976 static void print_stop_reason (enum inferior_stop_reason stop_reason,
977 int stop_info);
978
979 /* Wait for control to return from inferior to debugger.
980 If inferior gets a signal, we may decide to start it up again
981 instead of returning. That is why there is a loop in this function.
982 When this function actually returns it means the inferior
983 should be left stopped and GDB should read more commands. */
984
985 void
986 wait_for_inferior (void)
987 {
988 struct cleanup *old_cleanups;
989 struct execution_control_state ecss;
990 struct execution_control_state *ecs;
991
992 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
993 &step_resume_breakpoint);
994
995 /* wfi still stays in a loop, so it's OK just to take the address of
996 a local to get the ecs pointer. */
997 ecs = &ecss;
998
999 /* Fill in with reasonable starting values. */
1000 init_execution_control_state (ecs);
1001
1002 /* We'll update this if & when we switch to a new thread. */
1003 previous_inferior_ptid = inferior_ptid;
1004
1005 overlay_cache_invalid = 1;
1006
1007 /* We have to invalidate the registers BEFORE calling target_wait
1008 because they can be loaded from the target while in target_wait.
1009 This makes remote debugging a bit more efficient for those
1010 targets that provide critical registers as part of their normal
1011 status mechanism. */
1012
1013 registers_changed ();
1014
1015 while (1)
1016 {
1017 if (deprecated_target_wait_hook)
1018 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1019 else
1020 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1021
1022 /* Now figure out what to do with the result of the result. */
1023 handle_inferior_event (ecs);
1024
1025 if (!ecs->wait_some_more)
1026 break;
1027 }
1028 do_cleanups (old_cleanups);
1029 }
1030
1031 /* Asynchronous version of wait_for_inferior. It is called by the
1032 event loop whenever a change of state is detected on the file
1033 descriptor corresponding to the target. It can be called more than
1034 once to complete a single execution command. In such cases we need
1035 to keep the state in a global variable ASYNC_ECSS. If it is the
1036 last time that this function is called for a single execution
1037 command, then report to the user that the inferior has stopped, and
1038 do the necessary cleanups. */
1039
1040 struct execution_control_state async_ecss;
1041 struct execution_control_state *async_ecs;
1042
1043 void
1044 fetch_inferior_event (void *client_data)
1045 {
1046 static struct cleanup *old_cleanups;
1047
1048 async_ecs = &async_ecss;
1049
1050 if (!async_ecs->wait_some_more)
1051 {
1052 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1053 &step_resume_breakpoint);
1054
1055 /* Fill in with reasonable starting values. */
1056 init_execution_control_state (async_ecs);
1057
1058 /* We'll update this if & when we switch to a new thread. */
1059 previous_inferior_ptid = inferior_ptid;
1060
1061 overlay_cache_invalid = 1;
1062
1063 /* We have to invalidate the registers BEFORE calling target_wait
1064 because they can be loaded from the target while in target_wait.
1065 This makes remote debugging a bit more efficient for those
1066 targets that provide critical registers as part of their normal
1067 status mechanism. */
1068
1069 registers_changed ();
1070 }
1071
1072 if (deprecated_target_wait_hook)
1073 async_ecs->ptid =
1074 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1075 else
1076 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1077
1078 /* Now figure out what to do with the result of the result. */
1079 handle_inferior_event (async_ecs);
1080
1081 if (!async_ecs->wait_some_more)
1082 {
1083 /* Do only the cleanups that have been added by this
1084 function. Let the continuations for the commands do the rest,
1085 if there are any. */
1086 do_exec_cleanups (old_cleanups);
1087 normal_stop ();
1088 if (step_multi && stop_step)
1089 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1090 else
1091 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1092 }
1093 }
1094
1095 /* Prepare an execution control state for looping through a
1096 wait_for_inferior-type loop. */
1097
1098 void
1099 init_execution_control_state (struct execution_control_state *ecs)
1100 {
1101 /* ecs->another_trap? */
1102 ecs->random_signal = 0;
1103 ecs->remove_breakpoints_on_following_step = 0;
1104 ecs->handling_longjmp = 0; /* FIXME */
1105 ecs->update_step_sp = 0;
1106 ecs->stepping_through_solib_after_catch = 0;
1107 ecs->stepping_through_solib_catchpoints = NULL;
1108 ecs->enable_hw_watchpoints_after_wait = 0;
1109 ecs->stepping_through_sigtramp = 0;
1110 ecs->sal = find_pc_line (prev_pc, 0);
1111 ecs->current_line = ecs->sal.line;
1112 ecs->current_symtab = ecs->sal.symtab;
1113 ecs->infwait_state = infwait_normal_state;
1114 ecs->waiton_ptid = pid_to_ptid (-1);
1115 ecs->wp = &(ecs->ws);
1116 }
1117
1118 /* Call this function before setting step_resume_breakpoint, as a
1119 sanity check. There should never be more than one step-resume
1120 breakpoint per thread, so we should never be setting a new
1121 step_resume_breakpoint when one is already active. */
1122 static void
1123 check_for_old_step_resume_breakpoint (void)
1124 {
1125 if (step_resume_breakpoint)
1126 warning
1127 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
1128 }
1129
1130 /* Return the cached copy of the last pid/waitstatus returned by
1131 target_wait()/deprecated_target_wait_hook(). The data is actually
1132 cached by handle_inferior_event(), which gets called immediately
1133 after target_wait()/deprecated_target_wait_hook(). */
1134
1135 void
1136 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1137 {
1138 *ptidp = target_last_wait_ptid;
1139 *status = target_last_waitstatus;
1140 }
1141
1142 /* Switch thread contexts, maintaining "infrun state". */
1143
1144 static void
1145 context_switch (struct execution_control_state *ecs)
1146 {
1147 /* Caution: it may happen that the new thread (or the old one!)
1148 is not in the thread list. In this case we must not attempt
1149 to "switch context", or we run the risk that our context may
1150 be lost. This may happen as a result of the target module
1151 mishandling thread creation. */
1152
1153 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1154 { /* Perform infrun state context switch: */
1155 /* Save infrun state for the old thread. */
1156 save_infrun_state (inferior_ptid, prev_pc,
1157 trap_expected, step_resume_breakpoint,
1158 step_range_start,
1159 step_range_end, &step_frame_id,
1160 ecs->handling_longjmp, ecs->another_trap,
1161 ecs->stepping_through_solib_after_catch,
1162 ecs->stepping_through_solib_catchpoints,
1163 ecs->stepping_through_sigtramp,
1164 ecs->current_line, ecs->current_symtab, step_sp);
1165
1166 /* Load infrun state for the new thread. */
1167 load_infrun_state (ecs->ptid, &prev_pc,
1168 &trap_expected, &step_resume_breakpoint,
1169 &step_range_start,
1170 &step_range_end, &step_frame_id,
1171 &ecs->handling_longjmp, &ecs->another_trap,
1172 &ecs->stepping_through_solib_after_catch,
1173 &ecs->stepping_through_solib_catchpoints,
1174 &ecs->stepping_through_sigtramp,
1175 &ecs->current_line, &ecs->current_symtab, &step_sp);
1176 }
1177 inferior_ptid = ecs->ptid;
1178 }
1179
1180 /* Handle the inferior event in the cases when we just stepped
1181 into a function. */
1182
1183 static void
1184 handle_step_into_function (struct execution_control_state *ecs)
1185 {
1186 CORE_ADDR real_stop_pc;
1187
1188 if ((step_over_calls == STEP_OVER_NONE)
1189 || ((step_range_end == 1)
1190 && in_prologue (prev_pc, ecs->stop_func_start)))
1191 {
1192 /* I presume that step_over_calls is only 0 when we're
1193 supposed to be stepping at the assembly language level
1194 ("stepi"). Just stop. */
1195 /* Also, maybe we just did a "nexti" inside a prolog,
1196 so we thought it was a subroutine call but it was not.
1197 Stop as well. FENN */
1198 stop_step = 1;
1199 print_stop_reason (END_STEPPING_RANGE, 0);
1200 stop_stepping (ecs);
1201 return;
1202 }
1203
1204 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
1205 {
1206 /* We're doing a "next", set a breakpoint at callee's return
1207 address (the address at which the caller will resume). */
1208 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()),
1209 ecs);
1210 keep_going (ecs);
1211 return;
1212 }
1213
1214 /* If we are in a function call trampoline (a stub between
1215 the calling routine and the real function), locate the real
1216 function. That's what tells us (a) whether we want to step
1217 into it at all, and (b) what prologue we want to run to
1218 the end of, if we do step into it. */
1219 real_stop_pc = skip_language_trampoline (stop_pc);
1220 if (real_stop_pc == 0)
1221 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
1222 if (real_stop_pc != 0)
1223 ecs->stop_func_start = real_stop_pc;
1224
1225 /* If we have line number information for the function we
1226 are thinking of stepping into, step into it.
1227
1228 If there are several symtabs at that PC (e.g. with include
1229 files), just want to know whether *any* of them have line
1230 numbers. find_pc_line handles this. */
1231 {
1232 struct symtab_and_line tmp_sal;
1233
1234 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
1235 if (tmp_sal.line != 0)
1236 {
1237 step_into_function (ecs);
1238 return;
1239 }
1240 }
1241
1242 /* If we have no line number and the step-stop-if-no-debug
1243 is set, we stop the step so that the user has a chance to
1244 switch in assembly mode. */
1245 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
1246 {
1247 stop_step = 1;
1248 print_stop_reason (END_STEPPING_RANGE, 0);
1249 stop_stepping (ecs);
1250 return;
1251 }
1252
1253 /* Set a breakpoint at callee's return address (the address at which
1254 the caller will resume). */
1255 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()), ecs);
1256 keep_going (ecs);
1257 return;
1258 }
1259
1260 static void
1261 adjust_pc_after_break (struct execution_control_state *ecs)
1262 {
1263 CORE_ADDR stop_pc;
1264
1265 /* If this target does not decrement the PC after breakpoints, then
1266 we have nothing to do. */
1267 if (DECR_PC_AFTER_BREAK == 0)
1268 return;
1269
1270 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1271 we aren't, just return.
1272
1273 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1274 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1275 by software breakpoints should be handled through the normal breakpoint
1276 layer.
1277
1278 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1279 different signals (SIGILL or SIGEMT for instance), but it is less
1280 clear where the PC is pointing afterwards. It may not match
1281 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1282 these signals at breakpoints (the code has been in GDB since at least
1283 1992) so I can not guess how to handle them here.
1284
1285 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1286 would have the PC after hitting a watchpoint affected by
1287 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1288 in GDB history, and it seems unlikely to be correct, so
1289 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1290
1291 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1292 return;
1293
1294 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1295 return;
1296
1297 /* Find the location where (if we've hit a breakpoint) the breakpoint would
1298 be. */
1299 stop_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1300
1301 /* If we're software-single-stepping, then assume this is a breakpoint.
1302 NOTE drow/2004-01-17: This doesn't check that the PC matches, or that
1303 we're even in the right thread. The software-single-step code needs
1304 some modernization.
1305
1306 If we're not software-single-stepping, then we first check that there
1307 is an enabled software breakpoint at this address. If there is, and
1308 we weren't using hardware-single-step, then we've hit the breakpoint.
1309
1310 If we were using hardware-single-step, we check prev_pc; if we just
1311 stepped over an inserted software breakpoint, then we should decrement
1312 the PC and eventually report hitting the breakpoint. The prev_pc check
1313 prevents us from decrementing the PC if we just stepped over a jump
1314 instruction and landed on the instruction after a breakpoint.
1315
1316 The last bit checks that we didn't hit a breakpoint in a signal handler
1317 without an intervening stop in sigtramp, which is detected by a new
1318 stack pointer value below any usual function calling stack adjustments.
1319
1320 NOTE drow/2004-01-17: I'm not sure that this is necessary. The check
1321 predates checking for software single step at the same time. Also,
1322 if we've moved into a signal handler we should have seen the
1323 signal. */
1324
1325 if ((SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1326 || (software_breakpoint_inserted_here_p (stop_pc)
1327 && !(currently_stepping (ecs)
1328 && prev_pc != stop_pc
1329 && !(step_range_end && INNER_THAN (read_sp (), (step_sp - 16))))))
1330 write_pc_pid (stop_pc, ecs->ptid);
1331 }
1332
1333 /* Given an execution control state that has been freshly filled in
1334 by an event from the inferior, figure out what it means and take
1335 appropriate action. */
1336
1337 int stepped_after_stopped_by_watchpoint;
1338
1339 void
1340 handle_inferior_event (struct execution_control_state *ecs)
1341 {
1342 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1343 thinking that the variable stepped_after_stopped_by_watchpoint
1344 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1345 defined in the file "config/pa/nm-hppah.h", accesses the variable
1346 indirectly. Mutter something rude about the HP merge. */
1347 int sw_single_step_trap_p = 0;
1348
1349 /* Cache the last pid/waitstatus. */
1350 target_last_wait_ptid = ecs->ptid;
1351 target_last_waitstatus = *ecs->wp;
1352
1353 adjust_pc_after_break (ecs);
1354
1355 switch (ecs->infwait_state)
1356 {
1357 case infwait_thread_hop_state:
1358 /* Cancel the waiton_ptid. */
1359 ecs->waiton_ptid = pid_to_ptid (-1);
1360 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1361 is serviced in this loop, below. */
1362 if (ecs->enable_hw_watchpoints_after_wait)
1363 {
1364 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1365 ecs->enable_hw_watchpoints_after_wait = 0;
1366 }
1367 stepped_after_stopped_by_watchpoint = 0;
1368 break;
1369
1370 case infwait_normal_state:
1371 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1372 is serviced in this loop, below. */
1373 if (ecs->enable_hw_watchpoints_after_wait)
1374 {
1375 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1376 ecs->enable_hw_watchpoints_after_wait = 0;
1377 }
1378 stepped_after_stopped_by_watchpoint = 0;
1379 break;
1380
1381 case infwait_nullified_state:
1382 stepped_after_stopped_by_watchpoint = 0;
1383 break;
1384
1385 case infwait_nonstep_watch_state:
1386 insert_breakpoints ();
1387
1388 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1389 handle things like signals arriving and other things happening
1390 in combination correctly? */
1391 stepped_after_stopped_by_watchpoint = 1;
1392 break;
1393
1394 default:
1395 internal_error (__FILE__, __LINE__, "bad switch");
1396 }
1397 ecs->infwait_state = infwait_normal_state;
1398
1399 flush_cached_frames ();
1400
1401 /* If it's a new process, add it to the thread database */
1402
1403 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1404 && !in_thread_list (ecs->ptid));
1405
1406 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1407 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1408 {
1409 add_thread (ecs->ptid);
1410
1411 ui_out_text (uiout, "[New ");
1412 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1413 ui_out_text (uiout, "]\n");
1414
1415 #if 0
1416 /* NOTE: This block is ONLY meant to be invoked in case of a
1417 "thread creation event"! If it is invoked for any other
1418 sort of event (such as a new thread landing on a breakpoint),
1419 the event will be discarded, which is almost certainly
1420 a bad thing!
1421
1422 To avoid this, the low-level module (eg. target_wait)
1423 should call in_thread_list and add_thread, so that the
1424 new thread is known by the time we get here. */
1425
1426 /* We may want to consider not doing a resume here in order
1427 to give the user a chance to play with the new thread.
1428 It might be good to make that a user-settable option. */
1429
1430 /* At this point, all threads are stopped (happens
1431 automatically in either the OS or the native code).
1432 Therefore we need to continue all threads in order to
1433 make progress. */
1434
1435 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1436 prepare_to_wait (ecs);
1437 return;
1438 #endif
1439 }
1440
1441 switch (ecs->ws.kind)
1442 {
1443 case TARGET_WAITKIND_LOADED:
1444 /* Ignore gracefully during startup of the inferior, as it
1445 might be the shell which has just loaded some objects,
1446 otherwise add the symbols for the newly loaded objects. */
1447 #ifdef SOLIB_ADD
1448 if (stop_soon == NO_STOP_QUIETLY)
1449 {
1450 /* Remove breakpoints, SOLIB_ADD might adjust
1451 breakpoint addresses via breakpoint_re_set. */
1452 if (breakpoints_inserted)
1453 remove_breakpoints ();
1454
1455 /* Check for any newly added shared libraries if we're
1456 supposed to be adding them automatically. Switch
1457 terminal for any messages produced by
1458 breakpoint_re_set. */
1459 target_terminal_ours_for_output ();
1460 /* NOTE: cagney/2003-11-25: Make certain that the target
1461 stack's section table is kept up-to-date. Architectures,
1462 (e.g., PPC64), use the section table to perform
1463 operations such as address => section name and hence
1464 require the table to contain all sections (including
1465 those found in shared libraries). */
1466 /* NOTE: cagney/2003-11-25: Pass current_target and not
1467 exec_ops to SOLIB_ADD. This is because current GDB is
1468 only tooled to propagate section_table changes out from
1469 the "current_target" (see target_resize_to_sections), and
1470 not up from the exec stratum. This, of course, isn't
1471 right. "infrun.c" should only interact with the
1472 exec/process stratum, instead relying on the target stack
1473 to propagate relevant changes (stop, section table
1474 changed, ...) up to other layers. */
1475 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1476 target_terminal_inferior ();
1477
1478 /* Reinsert breakpoints and continue. */
1479 if (breakpoints_inserted)
1480 insert_breakpoints ();
1481 }
1482 #endif
1483 resume (0, TARGET_SIGNAL_0);
1484 prepare_to_wait (ecs);
1485 return;
1486
1487 case TARGET_WAITKIND_SPURIOUS:
1488 resume (0, TARGET_SIGNAL_0);
1489 prepare_to_wait (ecs);
1490 return;
1491
1492 case TARGET_WAITKIND_EXITED:
1493 target_terminal_ours (); /* Must do this before mourn anyway */
1494 print_stop_reason (EXITED, ecs->ws.value.integer);
1495
1496 /* Record the exit code in the convenience variable $_exitcode, so
1497 that the user can inspect this again later. */
1498 set_internalvar (lookup_internalvar ("_exitcode"),
1499 value_from_longest (builtin_type_int,
1500 (LONGEST) ecs->ws.value.integer));
1501 gdb_flush (gdb_stdout);
1502 target_mourn_inferior ();
1503 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1504 stop_print_frame = 0;
1505 stop_stepping (ecs);
1506 return;
1507
1508 case TARGET_WAITKIND_SIGNALLED:
1509 stop_print_frame = 0;
1510 stop_signal = ecs->ws.value.sig;
1511 target_terminal_ours (); /* Must do this before mourn anyway */
1512
1513 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1514 reach here unless the inferior is dead. However, for years
1515 target_kill() was called here, which hints that fatal signals aren't
1516 really fatal on some systems. If that's true, then some changes
1517 may be needed. */
1518 target_mourn_inferior ();
1519
1520 print_stop_reason (SIGNAL_EXITED, stop_signal);
1521 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1522 stop_stepping (ecs);
1523 return;
1524
1525 /* The following are the only cases in which we keep going;
1526 the above cases end in a continue or goto. */
1527 case TARGET_WAITKIND_FORKED:
1528 case TARGET_WAITKIND_VFORKED:
1529 stop_signal = TARGET_SIGNAL_TRAP;
1530 pending_follow.kind = ecs->ws.kind;
1531
1532 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1533 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1534
1535 stop_pc = read_pc ();
1536
1537 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1538
1539 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1540
1541 /* If no catchpoint triggered for this, then keep going. */
1542 if (ecs->random_signal)
1543 {
1544 stop_signal = TARGET_SIGNAL_0;
1545 keep_going (ecs);
1546 return;
1547 }
1548 goto process_event_stop_test;
1549
1550 case TARGET_WAITKIND_EXECD:
1551 stop_signal = TARGET_SIGNAL_TRAP;
1552
1553 /* NOTE drow/2002-12-05: This code should be pushed down into the
1554 target_wait function. Until then following vfork on HP/UX 10.20
1555 is probably broken by this. Of course, it's broken anyway. */
1556 /* Is this a target which reports multiple exec events per actual
1557 call to exec()? (HP-UX using ptrace does, for example.) If so,
1558 ignore all but the last one. Just resume the exec'r, and wait
1559 for the next exec event. */
1560 if (inferior_ignoring_leading_exec_events)
1561 {
1562 inferior_ignoring_leading_exec_events--;
1563 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1564 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1565 parent_pid);
1566 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1567 prepare_to_wait (ecs);
1568 return;
1569 }
1570 inferior_ignoring_leading_exec_events =
1571 target_reported_exec_events_per_exec_call () - 1;
1572
1573 pending_follow.execd_pathname =
1574 savestring (ecs->ws.value.execd_pathname,
1575 strlen (ecs->ws.value.execd_pathname));
1576
1577 /* This causes the eventpoints and symbol table to be reset. Must
1578 do this now, before trying to determine whether to stop. */
1579 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1580 xfree (pending_follow.execd_pathname);
1581
1582 stop_pc = read_pc_pid (ecs->ptid);
1583 ecs->saved_inferior_ptid = inferior_ptid;
1584 inferior_ptid = ecs->ptid;
1585
1586 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1587
1588 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1589 inferior_ptid = ecs->saved_inferior_ptid;
1590
1591 /* If no catchpoint triggered for this, then keep going. */
1592 if (ecs->random_signal)
1593 {
1594 stop_signal = TARGET_SIGNAL_0;
1595 keep_going (ecs);
1596 return;
1597 }
1598 goto process_event_stop_test;
1599
1600 /* These syscall events are returned on HP-UX, as part of its
1601 implementation of page-protection-based "hardware" watchpoints.
1602 HP-UX has unfortunate interactions between page-protections and
1603 some system calls. Our solution is to disable hardware watches
1604 when a system call is entered, and reenable them when the syscall
1605 completes. The downside of this is that we may miss the precise
1606 point at which a watched piece of memory is modified. "Oh well."
1607
1608 Note that we may have multiple threads running, which may each
1609 enter syscalls at roughly the same time. Since we don't have a
1610 good notion currently of whether a watched piece of memory is
1611 thread-private, we'd best not have any page-protections active
1612 when any thread is in a syscall. Thus, we only want to reenable
1613 hardware watches when no threads are in a syscall.
1614
1615 Also, be careful not to try to gather much state about a thread
1616 that's in a syscall. It's frequently a losing proposition. */
1617 case TARGET_WAITKIND_SYSCALL_ENTRY:
1618 number_of_threads_in_syscalls++;
1619 if (number_of_threads_in_syscalls == 1)
1620 {
1621 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1622 }
1623 resume (0, TARGET_SIGNAL_0);
1624 prepare_to_wait (ecs);
1625 return;
1626
1627 /* Before examining the threads further, step this thread to
1628 get it entirely out of the syscall. (We get notice of the
1629 event when the thread is just on the verge of exiting a
1630 syscall. Stepping one instruction seems to get it back
1631 into user code.)
1632
1633 Note that although the logical place to reenable h/w watches
1634 is here, we cannot. We cannot reenable them before stepping
1635 the thread (this causes the next wait on the thread to hang).
1636
1637 Nor can we enable them after stepping until we've done a wait.
1638 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1639 here, which will be serviced immediately after the target
1640 is waited on. */
1641 case TARGET_WAITKIND_SYSCALL_RETURN:
1642 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1643
1644 if (number_of_threads_in_syscalls > 0)
1645 {
1646 number_of_threads_in_syscalls--;
1647 ecs->enable_hw_watchpoints_after_wait =
1648 (number_of_threads_in_syscalls == 0);
1649 }
1650 prepare_to_wait (ecs);
1651 return;
1652
1653 case TARGET_WAITKIND_STOPPED:
1654 stop_signal = ecs->ws.value.sig;
1655 break;
1656
1657 /* We had an event in the inferior, but we are not interested
1658 in handling it at this level. The lower layers have already
1659 done what needs to be done, if anything.
1660
1661 One of the possible circumstances for this is when the
1662 inferior produces output for the console. The inferior has
1663 not stopped, and we are ignoring the event. Another possible
1664 circumstance is any event which the lower level knows will be
1665 reported multiple times without an intervening resume. */
1666 case TARGET_WAITKIND_IGNORE:
1667 prepare_to_wait (ecs);
1668 return;
1669 }
1670
1671 /* We may want to consider not doing a resume here in order to give
1672 the user a chance to play with the new thread. It might be good
1673 to make that a user-settable option. */
1674
1675 /* At this point, all threads are stopped (happens automatically in
1676 either the OS or the native code). Therefore we need to continue
1677 all threads in order to make progress. */
1678 if (ecs->new_thread_event)
1679 {
1680 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1681 prepare_to_wait (ecs);
1682 return;
1683 }
1684
1685 stop_pc = read_pc_pid (ecs->ptid);
1686
1687 if (stepping_past_singlestep_breakpoint)
1688 {
1689 gdb_assert (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p);
1690 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1691 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1692
1693 stepping_past_singlestep_breakpoint = 0;
1694
1695 /* We've either finished single-stepping past the single-step
1696 breakpoint, or stopped for some other reason. It would be nice if
1697 we could tell, but we can't reliably. */
1698 if (stop_signal == TARGET_SIGNAL_TRAP)
1699 {
1700 /* Pull the single step breakpoints out of the target. */
1701 SOFTWARE_SINGLE_STEP (0, 0);
1702 singlestep_breakpoints_inserted_p = 0;
1703
1704 ecs->random_signal = 0;
1705
1706 ecs->ptid = saved_singlestep_ptid;
1707 context_switch (ecs);
1708 if (deprecated_context_hook)
1709 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1710
1711 resume (1, TARGET_SIGNAL_0);
1712 prepare_to_wait (ecs);
1713 return;
1714 }
1715 }
1716
1717 stepping_past_singlestep_breakpoint = 0;
1718
1719 /* See if a thread hit a thread-specific breakpoint that was meant for
1720 another thread. If so, then step that thread past the breakpoint,
1721 and continue it. */
1722
1723 if (stop_signal == TARGET_SIGNAL_TRAP)
1724 {
1725 int thread_hop_needed = 0;
1726
1727 /* Check if a regular breakpoint has been hit before checking
1728 for a potential single step breakpoint. Otherwise, GDB will
1729 not see this breakpoint hit when stepping onto breakpoints. */
1730 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1731 {
1732 ecs->random_signal = 0;
1733 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1734 thread_hop_needed = 1;
1735 }
1736 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1737 {
1738 ecs->random_signal = 0;
1739 /* The call to in_thread_list is necessary because PTIDs sometimes
1740 change when we go from single-threaded to multi-threaded. If
1741 the singlestep_ptid is still in the list, assume that it is
1742 really different from ecs->ptid. */
1743 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1744 && in_thread_list (singlestep_ptid))
1745 {
1746 thread_hop_needed = 1;
1747 stepping_past_singlestep_breakpoint = 1;
1748 saved_singlestep_ptid = singlestep_ptid;
1749 }
1750 }
1751
1752 if (thread_hop_needed)
1753 {
1754 int remove_status;
1755
1756 /* Saw a breakpoint, but it was hit by the wrong thread.
1757 Just continue. */
1758
1759 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1760 {
1761 /* Pull the single step breakpoints out of the target. */
1762 SOFTWARE_SINGLE_STEP (0, 0);
1763 singlestep_breakpoints_inserted_p = 0;
1764 }
1765
1766 remove_status = remove_breakpoints ();
1767 /* Did we fail to remove breakpoints? If so, try
1768 to set the PC past the bp. (There's at least
1769 one situation in which we can fail to remove
1770 the bp's: On HP-UX's that use ttrace, we can't
1771 change the address space of a vforking child
1772 process until the child exits (well, okay, not
1773 then either :-) or execs. */
1774 if (remove_status != 0)
1775 {
1776 /* FIXME! This is obviously non-portable! */
1777 write_pc_pid (stop_pc + 4, ecs->ptid);
1778 /* We need to restart all the threads now,
1779 * unles we're running in scheduler-locked mode.
1780 * Use currently_stepping to determine whether to
1781 * step or continue.
1782 */
1783 /* FIXME MVS: is there any reason not to call resume()? */
1784 if (scheduler_mode == schedlock_on)
1785 target_resume (ecs->ptid,
1786 currently_stepping (ecs), TARGET_SIGNAL_0);
1787 else
1788 target_resume (RESUME_ALL,
1789 currently_stepping (ecs), TARGET_SIGNAL_0);
1790 prepare_to_wait (ecs);
1791 return;
1792 }
1793 else
1794 { /* Single step */
1795 breakpoints_inserted = 0;
1796 if (!ptid_equal (inferior_ptid, ecs->ptid))
1797 context_switch (ecs);
1798 ecs->waiton_ptid = ecs->ptid;
1799 ecs->wp = &(ecs->ws);
1800 ecs->another_trap = 1;
1801
1802 ecs->infwait_state = infwait_thread_hop_state;
1803 keep_going (ecs);
1804 registers_changed ();
1805 return;
1806 }
1807 }
1808 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1809 {
1810 sw_single_step_trap_p = 1;
1811 ecs->random_signal = 0;
1812 }
1813 }
1814 else
1815 ecs->random_signal = 1;
1816
1817 /* See if something interesting happened to the non-current thread. If
1818 so, then switch to that thread. */
1819 if (!ptid_equal (ecs->ptid, inferior_ptid))
1820 {
1821 context_switch (ecs);
1822
1823 if (deprecated_context_hook)
1824 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1825
1826 flush_cached_frames ();
1827 }
1828
1829 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1830 {
1831 /* Pull the single step breakpoints out of the target. */
1832 SOFTWARE_SINGLE_STEP (0, 0);
1833 singlestep_breakpoints_inserted_p = 0;
1834 }
1835
1836 /* If PC is pointing at a nullified instruction, then step beyond
1837 it so that the user won't be confused when GDB appears to be ready
1838 to execute it. */
1839
1840 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1841 if (INSTRUCTION_NULLIFIED)
1842 {
1843 registers_changed ();
1844 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1845
1846 /* We may have received a signal that we want to pass to
1847 the inferior; therefore, we must not clobber the waitstatus
1848 in WS. */
1849
1850 ecs->infwait_state = infwait_nullified_state;
1851 ecs->waiton_ptid = ecs->ptid;
1852 ecs->wp = &(ecs->tmpstatus);
1853 prepare_to_wait (ecs);
1854 return;
1855 }
1856
1857 /* It may not be necessary to disable the watchpoint to stop over
1858 it. For example, the PA can (with some kernel cooperation)
1859 single step over a watchpoint without disabling the watchpoint. */
1860 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1861 {
1862 resume (1, 0);
1863 prepare_to_wait (ecs);
1864 return;
1865 }
1866
1867 /* It is far more common to need to disable a watchpoint to step
1868 the inferior over it. FIXME. What else might a debug
1869 register or page protection watchpoint scheme need here? */
1870 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1871 {
1872 /* At this point, we are stopped at an instruction which has
1873 attempted to write to a piece of memory under control of
1874 a watchpoint. The instruction hasn't actually executed
1875 yet. If we were to evaluate the watchpoint expression
1876 now, we would get the old value, and therefore no change
1877 would seem to have occurred.
1878
1879 In order to make watchpoints work `right', we really need
1880 to complete the memory write, and then evaluate the
1881 watchpoint expression. The following code does that by
1882 removing the watchpoint (actually, all watchpoints and
1883 breakpoints), single-stepping the target, re-inserting
1884 watchpoints, and then falling through to let normal
1885 single-step processing handle proceed. Since this
1886 includes evaluating watchpoints, things will come to a
1887 stop in the correct manner. */
1888
1889 remove_breakpoints ();
1890 registers_changed ();
1891 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1892
1893 ecs->waiton_ptid = ecs->ptid;
1894 ecs->wp = &(ecs->ws);
1895 ecs->infwait_state = infwait_nonstep_watch_state;
1896 prepare_to_wait (ecs);
1897 return;
1898 }
1899
1900 /* It may be possible to simply continue after a watchpoint. */
1901 if (HAVE_CONTINUABLE_WATCHPOINT)
1902 STOPPED_BY_WATCHPOINT (ecs->ws);
1903
1904 ecs->stop_func_start = 0;
1905 ecs->stop_func_end = 0;
1906 ecs->stop_func_name = 0;
1907 /* Don't care about return value; stop_func_start and stop_func_name
1908 will both be 0 if it doesn't work. */
1909 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1910 &ecs->stop_func_start, &ecs->stop_func_end);
1911 ecs->stop_func_start += FUNCTION_START_OFFSET;
1912 ecs->another_trap = 0;
1913 bpstat_clear (&stop_bpstat);
1914 stop_step = 0;
1915 stop_stack_dummy = 0;
1916 stop_print_frame = 1;
1917 ecs->random_signal = 0;
1918 stopped_by_random_signal = 0;
1919 breakpoints_failed = 0;
1920
1921 /* Look at the cause of the stop, and decide what to do.
1922 The alternatives are:
1923 1) break; to really stop and return to the debugger,
1924 2) drop through to start up again
1925 (set ecs->another_trap to 1 to single step once)
1926 3) set ecs->random_signal to 1, and the decision between 1 and 2
1927 will be made according to the signal handling tables. */
1928
1929 /* First, distinguish signals caused by the debugger from signals
1930 that have to do with the program's own actions. Note that
1931 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1932 on the operating system version. Here we detect when a SIGILL or
1933 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1934 something similar for SIGSEGV, since a SIGSEGV will be generated
1935 when we're trying to execute a breakpoint instruction on a
1936 non-executable stack. This happens for call dummy breakpoints
1937 for architectures like SPARC that place call dummies on the
1938 stack. */
1939
1940 if (stop_signal == TARGET_SIGNAL_TRAP
1941 || (breakpoints_inserted &&
1942 (stop_signal == TARGET_SIGNAL_ILL
1943 || stop_signal == TARGET_SIGNAL_SEGV
1944 || stop_signal == TARGET_SIGNAL_EMT))
1945 || stop_soon == STOP_QUIETLY
1946 || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1947 {
1948 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1949 {
1950 stop_print_frame = 0;
1951 stop_stepping (ecs);
1952 return;
1953 }
1954
1955 /* This is originated from start_remote(), start_inferior() and
1956 shared libraries hook functions. */
1957 if (stop_soon == STOP_QUIETLY)
1958 {
1959 stop_stepping (ecs);
1960 return;
1961 }
1962
1963 /* This originates from attach_command(). We need to overwrite
1964 the stop_signal here, because some kernels don't ignore a
1965 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1966 See more comments in inferior.h. */
1967 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1968 {
1969 stop_stepping (ecs);
1970 if (stop_signal == TARGET_SIGNAL_STOP)
1971 stop_signal = TARGET_SIGNAL_0;
1972 return;
1973 }
1974
1975 /* Don't even think about breakpoints if just proceeded over a
1976 breakpoint. */
1977 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1978 bpstat_clear (&stop_bpstat);
1979 else
1980 {
1981 /* See if there is a breakpoint at the current PC. */
1982 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1983
1984 /* Following in case break condition called a
1985 function. */
1986 stop_print_frame = 1;
1987 }
1988
1989 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1990 at one stage in the past included checks for an inferior
1991 function call's call dummy's return breakpoint. The original
1992 comment, that went with the test, read:
1993
1994 ``End of a stack dummy. Some systems (e.g. Sony news) give
1995 another signal besides SIGTRAP, so check here as well as
1996 above.''
1997
1998 If someone ever tries to get get call dummys on a
1999 non-executable stack to work (where the target would stop
2000 with something like a SIGSEGV), then those tests might need
2001 to be re-instated. Given, however, that the tests were only
2002 enabled when momentary breakpoints were not being used, I
2003 suspect that it won't be the case.
2004
2005 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2006 be necessary for call dummies on a non-executable stack on
2007 SPARC. */
2008
2009 if (stop_signal == TARGET_SIGNAL_TRAP)
2010 ecs->random_signal
2011 = !(bpstat_explains_signal (stop_bpstat)
2012 || trap_expected
2013 || (step_range_end && step_resume_breakpoint == NULL));
2014 else
2015 {
2016 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2017 if (!ecs->random_signal)
2018 stop_signal = TARGET_SIGNAL_TRAP;
2019 }
2020 }
2021
2022 /* When we reach this point, we've pretty much decided
2023 that the reason for stopping must've been a random
2024 (unexpected) signal. */
2025
2026 else
2027 ecs->random_signal = 1;
2028
2029 process_event_stop_test:
2030 /* For the program's own signals, act according to
2031 the signal handling tables. */
2032
2033 if (ecs->random_signal)
2034 {
2035 /* Signal not for debugging purposes. */
2036 int printed = 0;
2037
2038 stopped_by_random_signal = 1;
2039
2040 if (signal_print[stop_signal])
2041 {
2042 printed = 1;
2043 target_terminal_ours_for_output ();
2044 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2045 }
2046 if (signal_stop[stop_signal])
2047 {
2048 stop_stepping (ecs);
2049 return;
2050 }
2051 /* If not going to stop, give terminal back
2052 if we took it away. */
2053 else if (printed)
2054 target_terminal_inferior ();
2055
2056 /* Clear the signal if it should not be passed. */
2057 if (signal_program[stop_signal] == 0)
2058 stop_signal = TARGET_SIGNAL_0;
2059
2060 if (step_range_end != 0
2061 && stop_signal != TARGET_SIGNAL_0
2062 && stop_pc >= step_range_start && stop_pc < step_range_end
2063 && frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id))
2064 {
2065 /* The inferior is about to take a signal that will take it
2066 out of the single step range. Set a breakpoint at the
2067 current PC (which is presumably where the signal handler
2068 will eventually return) and then allow the inferior to
2069 run free.
2070
2071 Note that this is only needed for a signal delivered
2072 while in the single-step range. Nested signals aren't a
2073 problem as they eventually all return. */
2074 insert_step_resume_breakpoint (get_current_frame (), ecs);
2075 }
2076 keep_going (ecs);
2077 return;
2078 }
2079
2080 /* Handle cases caused by hitting a breakpoint. */
2081 {
2082 CORE_ADDR jmp_buf_pc;
2083 struct bpstat_what what;
2084
2085 what = bpstat_what (stop_bpstat);
2086
2087 if (what.call_dummy)
2088 {
2089 stop_stack_dummy = 1;
2090 #ifdef HP_OS_BUG
2091 trap_expected_after_continue = 1;
2092 #endif
2093 }
2094
2095 switch (what.main_action)
2096 {
2097 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2098 /* If we hit the breakpoint at longjmp, disable it for the
2099 duration of this command. Then, install a temporary
2100 breakpoint at the target of the jmp_buf. */
2101 disable_longjmp_breakpoint ();
2102 remove_breakpoints ();
2103 breakpoints_inserted = 0;
2104 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2105 {
2106 keep_going (ecs);
2107 return;
2108 }
2109
2110 /* Need to blow away step-resume breakpoint, as it
2111 interferes with us */
2112 if (step_resume_breakpoint != NULL)
2113 {
2114 delete_step_resume_breakpoint (&step_resume_breakpoint);
2115 }
2116
2117 #if 0
2118 /* FIXME - Need to implement nested temporary breakpoints */
2119 if (step_over_calls > 0)
2120 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
2121 else
2122 #endif /* 0 */
2123 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2124 ecs->handling_longjmp = 1; /* FIXME */
2125 keep_going (ecs);
2126 return;
2127
2128 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2129 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2130 remove_breakpoints ();
2131 breakpoints_inserted = 0;
2132 #if 0
2133 /* FIXME - Need to implement nested temporary breakpoints */
2134 if (step_over_calls
2135 && (frame_id_inner (get_frame_id (get_current_frame ()),
2136 step_frame_id)))
2137 {
2138 ecs->another_trap = 1;
2139 keep_going (ecs);
2140 return;
2141 }
2142 #endif /* 0 */
2143 disable_longjmp_breakpoint ();
2144 ecs->handling_longjmp = 0; /* FIXME */
2145 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2146 break;
2147 /* else fallthrough */
2148
2149 case BPSTAT_WHAT_SINGLE:
2150 if (breakpoints_inserted)
2151 {
2152 remove_breakpoints ();
2153 }
2154 breakpoints_inserted = 0;
2155 ecs->another_trap = 1;
2156 /* Still need to check other stuff, at least the case
2157 where we are stepping and step out of the right range. */
2158 break;
2159
2160 case BPSTAT_WHAT_STOP_NOISY:
2161 stop_print_frame = 1;
2162
2163 /* We are about to nuke the step_resume_breakpointt via the
2164 cleanup chain, so no need to worry about it here. */
2165
2166 stop_stepping (ecs);
2167 return;
2168
2169 case BPSTAT_WHAT_STOP_SILENT:
2170 stop_print_frame = 0;
2171
2172 /* We are about to nuke the step_resume_breakpoin via the
2173 cleanup chain, so no need to worry about it here. */
2174
2175 stop_stepping (ecs);
2176 return;
2177
2178 case BPSTAT_WHAT_STEP_RESUME:
2179 /* This proably demands a more elegant solution, but, yeah
2180 right...
2181
2182 This function's use of the simple variable
2183 step_resume_breakpoint doesn't seem to accomodate
2184 simultaneously active step-resume bp's, although the
2185 breakpoint list certainly can.
2186
2187 If we reach here and step_resume_breakpoint is already
2188 NULL, then apparently we have multiple active
2189 step-resume bp's. We'll just delete the breakpoint we
2190 stopped at, and carry on.
2191
2192 Correction: what the code currently does is delete a
2193 step-resume bp, but it makes no effort to ensure that
2194 the one deleted is the one currently stopped at. MVS */
2195
2196 if (step_resume_breakpoint == NULL)
2197 {
2198 step_resume_breakpoint =
2199 bpstat_find_step_resume_breakpoint (stop_bpstat);
2200 }
2201 delete_step_resume_breakpoint (&step_resume_breakpoint);
2202 break;
2203
2204 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2205 /* If were waiting for a trap, hitting the step_resume_break
2206 doesn't count as getting it. */
2207 if (trap_expected)
2208 ecs->another_trap = 1;
2209 break;
2210
2211 case BPSTAT_WHAT_CHECK_SHLIBS:
2212 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2213 #ifdef SOLIB_ADD
2214 {
2215 /* Remove breakpoints, we eventually want to step over the
2216 shlib event breakpoint, and SOLIB_ADD might adjust
2217 breakpoint addresses via breakpoint_re_set. */
2218 if (breakpoints_inserted)
2219 remove_breakpoints ();
2220 breakpoints_inserted = 0;
2221
2222 /* Check for any newly added shared libraries if we're
2223 supposed to be adding them automatically. Switch
2224 terminal for any messages produced by
2225 breakpoint_re_set. */
2226 target_terminal_ours_for_output ();
2227 /* NOTE: cagney/2003-11-25: Make certain that the target
2228 stack's section table is kept up-to-date. Architectures,
2229 (e.g., PPC64), use the section table to perform
2230 operations such as address => section name and hence
2231 require the table to contain all sections (including
2232 those found in shared libraries). */
2233 /* NOTE: cagney/2003-11-25: Pass current_target and not
2234 exec_ops to SOLIB_ADD. This is because current GDB is
2235 only tooled to propagate section_table changes out from
2236 the "current_target" (see target_resize_to_sections), and
2237 not up from the exec stratum. This, of course, isn't
2238 right. "infrun.c" should only interact with the
2239 exec/process stratum, instead relying on the target stack
2240 to propagate relevant changes (stop, section table
2241 changed, ...) up to other layers. */
2242 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2243 target_terminal_inferior ();
2244
2245 /* Try to reenable shared library breakpoints, additional
2246 code segments in shared libraries might be mapped in now. */
2247 re_enable_breakpoints_in_shlibs ();
2248
2249 /* If requested, stop when the dynamic linker notifies
2250 gdb of events. This allows the user to get control
2251 and place breakpoints in initializer routines for
2252 dynamically loaded objects (among other things). */
2253 if (stop_on_solib_events || stop_stack_dummy)
2254 {
2255 stop_stepping (ecs);
2256 return;
2257 }
2258
2259 /* If we stopped due to an explicit catchpoint, then the
2260 (see above) call to SOLIB_ADD pulled in any symbols
2261 from a newly-loaded library, if appropriate.
2262
2263 We do want the inferior to stop, but not where it is
2264 now, which is in the dynamic linker callback. Rather,
2265 we would like it stop in the user's program, just after
2266 the call that caused this catchpoint to trigger. That
2267 gives the user a more useful vantage from which to
2268 examine their program's state. */
2269 else if (what.main_action ==
2270 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2271 {
2272 /* ??rehrauer: If I could figure out how to get the
2273 right return PC from here, we could just set a temp
2274 breakpoint and resume. I'm not sure we can without
2275 cracking open the dld's shared libraries and sniffing
2276 their unwind tables and text/data ranges, and that's
2277 not a terribly portable notion.
2278
2279 Until that time, we must step the inferior out of the
2280 dld callback, and also out of the dld itself (and any
2281 code or stubs in libdld.sl, such as "shl_load" and
2282 friends) until we reach non-dld code. At that point,
2283 we can stop stepping. */
2284 bpstat_get_triggered_catchpoints (stop_bpstat,
2285 &ecs->
2286 stepping_through_solib_catchpoints);
2287 ecs->stepping_through_solib_after_catch = 1;
2288
2289 /* Be sure to lift all breakpoints, so the inferior does
2290 actually step past this point... */
2291 ecs->another_trap = 1;
2292 break;
2293 }
2294 else
2295 {
2296 /* We want to step over this breakpoint, then keep going. */
2297 ecs->another_trap = 1;
2298 break;
2299 }
2300 }
2301 #endif
2302 break;
2303
2304 case BPSTAT_WHAT_LAST:
2305 /* Not a real code, but listed here to shut up gcc -Wall. */
2306
2307 case BPSTAT_WHAT_KEEP_CHECKING:
2308 break;
2309 }
2310 }
2311
2312 /* We come here if we hit a breakpoint but should not
2313 stop for it. Possibly we also were stepping
2314 and should stop for that. So fall through and
2315 test for stepping. But, if not stepping,
2316 do not stop. */
2317
2318 /* Are we stepping to get the inferior out of the dynamic
2319 linker's hook (and possibly the dld itself) after catching
2320 a shlib event? */
2321 if (ecs->stepping_through_solib_after_catch)
2322 {
2323 #if defined(SOLIB_ADD)
2324 /* Have we reached our destination? If not, keep going. */
2325 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2326 {
2327 ecs->another_trap = 1;
2328 keep_going (ecs);
2329 return;
2330 }
2331 #endif
2332 /* Else, stop and report the catchpoint(s) whose triggering
2333 caused us to begin stepping. */
2334 ecs->stepping_through_solib_after_catch = 0;
2335 bpstat_clear (&stop_bpstat);
2336 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2337 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2338 stop_print_frame = 1;
2339 stop_stepping (ecs);
2340 return;
2341 }
2342
2343 if (step_resume_breakpoint)
2344 {
2345 /* Having a step-resume breakpoint overrides anything
2346 else having to do with stepping commands until
2347 that breakpoint is reached. */
2348 keep_going (ecs);
2349 return;
2350 }
2351
2352 if (step_range_end == 0)
2353 {
2354 /* Likewise if we aren't even stepping. */
2355 keep_going (ecs);
2356 return;
2357 }
2358
2359 /* If stepping through a line, keep going if still within it.
2360
2361 Note that step_range_end is the address of the first instruction
2362 beyond the step range, and NOT the address of the last instruction
2363 within it! */
2364 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2365 {
2366 keep_going (ecs);
2367 return;
2368 }
2369
2370 /* We stepped out of the stepping range. */
2371
2372 /* If we are stepping at the source level and entered the runtime
2373 loader dynamic symbol resolution code, we keep on single stepping
2374 until we exit the run time loader code and reach the callee's
2375 address. */
2376 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2377 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2378 {
2379 CORE_ADDR pc_after_resolver =
2380 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2381
2382 if (pc_after_resolver)
2383 {
2384 /* Set up a step-resume breakpoint at the address
2385 indicated by SKIP_SOLIB_RESOLVER. */
2386 struct symtab_and_line sr_sal;
2387 init_sal (&sr_sal);
2388 sr_sal.pc = pc_after_resolver;
2389
2390 check_for_old_step_resume_breakpoint ();
2391 step_resume_breakpoint =
2392 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2393 if (breakpoints_inserted)
2394 insert_breakpoints ();
2395 }
2396
2397 keep_going (ecs);
2398 return;
2399 }
2400
2401 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2402 && ecs->stop_func_name == NULL)
2403 {
2404 /* There is no symbol, not even a minimal symbol, corresponding
2405 to the address where we just stopped. So we just stepped
2406 inside undebuggable code. Since we want to step over this
2407 kind of code, we keep going until the inferior returns from
2408 the current function. */
2409 handle_step_into_function (ecs);
2410 return;
2411 }
2412
2413 /* We can't update step_sp every time through the loop, because
2414 reading the stack pointer would slow down stepping too much.
2415 But we can update it every time we leave the step range. */
2416 ecs->update_step_sp = 1;
2417
2418 if (step_range_end != 1
2419 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2420 || step_over_calls == STEP_OVER_ALL)
2421 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2422 {
2423 /* The inferior, while doing a "step" or "next", has ended up in
2424 a signal trampoline (either by a signal being delivered or by
2425 the signal handler returning). Just single-step until the
2426 inferior leaves the trampoline (either by calling the handler
2427 or returning). */
2428 keep_going (ecs);
2429 return;
2430 }
2431
2432 if (frame_id_eq (get_frame_id (get_prev_frame (get_current_frame ())),
2433 step_frame_id))
2434 {
2435 /* It's a subroutine call. */
2436 handle_step_into_function (ecs);
2437 return;
2438 }
2439
2440 /* We've wandered out of the step range. */
2441
2442 ecs->sal = find_pc_line (stop_pc, 0);
2443
2444 if (step_range_end == 1)
2445 {
2446 /* It is stepi or nexti. We always want to stop stepping after
2447 one instruction. */
2448 stop_step = 1;
2449 print_stop_reason (END_STEPPING_RANGE, 0);
2450 stop_stepping (ecs);
2451 return;
2452 }
2453
2454 /* If we're in the return path from a shared library trampoline,
2455 we want to proceed through the trampoline when stepping. */
2456 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2457 {
2458 /* Determine where this trampoline returns. */
2459 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2460
2461 /* Only proceed through if we know where it's going. */
2462 if (real_stop_pc)
2463 {
2464 /* And put the step-breakpoint there and go until there. */
2465 struct symtab_and_line sr_sal;
2466
2467 init_sal (&sr_sal); /* initialize to zeroes */
2468 sr_sal.pc = real_stop_pc;
2469 sr_sal.section = find_pc_overlay (sr_sal.pc);
2470 /* Do not specify what the fp should be when we stop
2471 since on some machines the prologue
2472 is where the new fp value is established. */
2473 check_for_old_step_resume_breakpoint ();
2474 step_resume_breakpoint =
2475 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2476 if (breakpoints_inserted)
2477 insert_breakpoints ();
2478
2479 /* Restart without fiddling with the step ranges or
2480 other state. */
2481 keep_going (ecs);
2482 return;
2483 }
2484 }
2485
2486 if (ecs->sal.line == 0)
2487 {
2488 /* We have no line number information. That means to stop
2489 stepping (does this always happen right after one instruction,
2490 when we do "s" in a function with no line numbers,
2491 or can this happen as a result of a return or longjmp?). */
2492 stop_step = 1;
2493 print_stop_reason (END_STEPPING_RANGE, 0);
2494 stop_stepping (ecs);
2495 return;
2496 }
2497
2498 if ((stop_pc == ecs->sal.pc)
2499 && (ecs->current_line != ecs->sal.line
2500 || ecs->current_symtab != ecs->sal.symtab))
2501 {
2502 /* We are at the start of a different line. So stop. Note that
2503 we don't stop if we step into the middle of a different line.
2504 That is said to make things like for (;;) statements work
2505 better. */
2506 stop_step = 1;
2507 print_stop_reason (END_STEPPING_RANGE, 0);
2508 stop_stepping (ecs);
2509 return;
2510 }
2511
2512 /* We aren't done stepping.
2513
2514 Optimize by setting the stepping range to the line.
2515 (We might not be in the original line, but if we entered a
2516 new line in mid-statement, we continue stepping. This makes
2517 things like for(;;) statements work better.) */
2518
2519 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2520 {
2521 /* If this is the last line of the function, don't keep stepping
2522 (it would probably step us out of the function).
2523 This is particularly necessary for a one-line function,
2524 in which after skipping the prologue we better stop even though
2525 we will be in mid-line. */
2526 stop_step = 1;
2527 print_stop_reason (END_STEPPING_RANGE, 0);
2528 stop_stepping (ecs);
2529 return;
2530 }
2531 step_range_start = ecs->sal.pc;
2532 step_range_end = ecs->sal.end;
2533 step_frame_id = get_frame_id (get_current_frame ());
2534 ecs->current_line = ecs->sal.line;
2535 ecs->current_symtab = ecs->sal.symtab;
2536
2537 /* In the case where we just stepped out of a function into the
2538 middle of a line of the caller, continue stepping, but
2539 step_frame_id must be modified to current frame */
2540 #if 0
2541 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2542 generous. It will trigger on things like a step into a frameless
2543 stackless leaf function. I think the logic should instead look
2544 at the unwound frame ID has that should give a more robust
2545 indication of what happened. */
2546 if (step-ID == current-ID)
2547 still stepping in same function;
2548 else if (step-ID == unwind (current-ID))
2549 stepped into a function;
2550 else
2551 stepped out of a function;
2552 /* Of course this assumes that the frame ID unwind code is robust
2553 and we're willing to introduce frame unwind logic into this
2554 function. Fortunately, those days are nearly upon us. */
2555 #endif
2556 {
2557 struct frame_id current_frame = get_frame_id (get_current_frame ());
2558 if (!(frame_id_inner (current_frame, step_frame_id)))
2559 step_frame_id = current_frame;
2560 }
2561
2562 keep_going (ecs);
2563 }
2564
2565 /* Are we in the middle of stepping? */
2566
2567 static int
2568 currently_stepping (struct execution_control_state *ecs)
2569 {
2570 return ((!ecs->handling_longjmp
2571 && ((step_range_end && step_resume_breakpoint == NULL)
2572 || trap_expected))
2573 || ecs->stepping_through_solib_after_catch
2574 || bpstat_should_step ());
2575 }
2576
2577 /* Subroutine call with source code we should not step over. Do step
2578 to the first line of code in it. */
2579
2580 static void
2581 step_into_function (struct execution_control_state *ecs)
2582 {
2583 struct symtab *s;
2584 struct symtab_and_line sr_sal;
2585
2586 s = find_pc_symtab (stop_pc);
2587 if (s && s->language != language_asm)
2588 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2589
2590 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2591 /* Use the step_resume_break to step until the end of the prologue,
2592 even if that involves jumps (as it seems to on the vax under
2593 4.2). */
2594 /* If the prologue ends in the middle of a source line, continue to
2595 the end of that source line (if it is still within the function).
2596 Otherwise, just go to end of prologue. */
2597 if (ecs->sal.end
2598 && ecs->sal.pc != ecs->stop_func_start
2599 && ecs->sal.end < ecs->stop_func_end)
2600 ecs->stop_func_start = ecs->sal.end;
2601
2602 /* Architectures which require breakpoint adjustment might not be able
2603 to place a breakpoint at the computed address. If so, the test
2604 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2605 ecs->stop_func_start to an address at which a breakpoint may be
2606 legitimately placed.
2607
2608 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2609 made, GDB will enter an infinite loop when stepping through
2610 optimized code consisting of VLIW instructions which contain
2611 subinstructions corresponding to different source lines. On
2612 FR-V, it's not permitted to place a breakpoint on any but the
2613 first subinstruction of a VLIW instruction. When a breakpoint is
2614 set, GDB will adjust the breakpoint address to the beginning of
2615 the VLIW instruction. Thus, we need to make the corresponding
2616 adjustment here when computing the stop address. */
2617
2618 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2619 {
2620 ecs->stop_func_start
2621 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2622 ecs->stop_func_start);
2623 }
2624
2625 if (ecs->stop_func_start == stop_pc)
2626 {
2627 /* We are already there: stop now. */
2628 stop_step = 1;
2629 print_stop_reason (END_STEPPING_RANGE, 0);
2630 stop_stepping (ecs);
2631 return;
2632 }
2633 else
2634 {
2635 /* Put the step-breakpoint there and go until there. */
2636 init_sal (&sr_sal); /* initialize to zeroes */
2637 sr_sal.pc = ecs->stop_func_start;
2638 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2639 /* Do not specify what the fp should be when we stop since on
2640 some machines the prologue is where the new fp value is
2641 established. */
2642 check_for_old_step_resume_breakpoint ();
2643 step_resume_breakpoint =
2644 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2645 if (breakpoints_inserted)
2646 insert_breakpoints ();
2647
2648 /* And make sure stepping stops right away then. */
2649 step_range_end = step_range_start;
2650 }
2651 keep_going (ecs);
2652 }
2653
2654 /* The inferior, as a result of a function call (has left) or signal
2655 (about to leave) the single-step range. Set a momentary breakpoint
2656 within the step range where the inferior is expected to later
2657 return. */
2658
2659 static void
2660 insert_step_resume_breakpoint (struct frame_info *step_frame,
2661 struct execution_control_state *ecs)
2662 {
2663 struct symtab_and_line sr_sal;
2664
2665 /* This is only used within the step-resume range/frame. */
2666 gdb_assert (frame_id_eq (step_frame_id, get_frame_id (step_frame)));
2667 gdb_assert (step_range_end != 0);
2668 /* Remember, if the call instruction is the last in the step range,
2669 the breakpoint will land just beyond that. Hence ``<=
2670 step_range_end''. Also, ignore check when "nexti". */
2671 gdb_assert (step_range_start == step_range_end
2672 || (get_frame_pc (step_frame) >= step_range_start
2673 && get_frame_pc (step_frame) <= step_range_end));
2674
2675 init_sal (&sr_sal); /* initialize to zeros */
2676
2677 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (step_frame));
2678 sr_sal.section = find_pc_overlay (sr_sal.pc);
2679
2680 check_for_old_step_resume_breakpoint ();
2681
2682 step_resume_breakpoint
2683 = set_momentary_breakpoint (sr_sal, get_frame_id (step_frame),
2684 bp_step_resume);
2685
2686 if (breakpoints_inserted)
2687 insert_breakpoints ();
2688 }
2689
2690 static void
2691 stop_stepping (struct execution_control_state *ecs)
2692 {
2693 /* Let callers know we don't want to wait for the inferior anymore. */
2694 ecs->wait_some_more = 0;
2695 }
2696
2697 /* This function handles various cases where we need to continue
2698 waiting for the inferior. */
2699 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2700
2701 static void
2702 keep_going (struct execution_control_state *ecs)
2703 {
2704 /* Save the pc before execution, to compare with pc after stop. */
2705 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2706
2707 if (ecs->update_step_sp)
2708 step_sp = read_sp ();
2709 ecs->update_step_sp = 0;
2710
2711 /* If we did not do break;, it means we should keep running the
2712 inferior and not return to debugger. */
2713
2714 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2715 {
2716 /* We took a signal (which we are supposed to pass through to
2717 the inferior, else we'd have done a break above) and we
2718 haven't yet gotten our trap. Simply continue. */
2719 resume (currently_stepping (ecs), stop_signal);
2720 }
2721 else
2722 {
2723 /* Either the trap was not expected, but we are continuing
2724 anyway (the user asked that this signal be passed to the
2725 child)
2726 -- or --
2727 The signal was SIGTRAP, e.g. it was our signal, but we
2728 decided we should resume from it.
2729
2730 We're going to run this baby now!
2731
2732 Insert breakpoints now, unless we are trying to one-proceed
2733 past a breakpoint. */
2734 /* If we've just finished a special step resume and we don't
2735 want to hit a breakpoint, pull em out. */
2736 if (step_resume_breakpoint == NULL
2737 && ecs->remove_breakpoints_on_following_step)
2738 {
2739 ecs->remove_breakpoints_on_following_step = 0;
2740 remove_breakpoints ();
2741 breakpoints_inserted = 0;
2742 }
2743 else if (!breakpoints_inserted && !ecs->another_trap)
2744 {
2745 breakpoints_failed = insert_breakpoints ();
2746 if (breakpoints_failed)
2747 {
2748 stop_stepping (ecs);
2749 return;
2750 }
2751 breakpoints_inserted = 1;
2752 }
2753
2754 trap_expected = ecs->another_trap;
2755
2756 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2757 specifies that such a signal should be delivered to the
2758 target program).
2759
2760 Typically, this would occure when a user is debugging a
2761 target monitor on a simulator: the target monitor sets a
2762 breakpoint; the simulator encounters this break-point and
2763 halts the simulation handing control to GDB; GDB, noteing
2764 that the break-point isn't valid, returns control back to the
2765 simulator; the simulator then delivers the hardware
2766 equivalent of a SIGNAL_TRAP to the program being debugged. */
2767
2768 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2769 stop_signal = TARGET_SIGNAL_0;
2770
2771
2772 resume (currently_stepping (ecs), stop_signal);
2773 }
2774
2775 prepare_to_wait (ecs);
2776 }
2777
2778 /* This function normally comes after a resume, before
2779 handle_inferior_event exits. It takes care of any last bits of
2780 housekeeping, and sets the all-important wait_some_more flag. */
2781
2782 static void
2783 prepare_to_wait (struct execution_control_state *ecs)
2784 {
2785 if (ecs->infwait_state == infwait_normal_state)
2786 {
2787 overlay_cache_invalid = 1;
2788
2789 /* We have to invalidate the registers BEFORE calling
2790 target_wait because they can be loaded from the target while
2791 in target_wait. This makes remote debugging a bit more
2792 efficient for those targets that provide critical registers
2793 as part of their normal status mechanism. */
2794
2795 registers_changed ();
2796 ecs->waiton_ptid = pid_to_ptid (-1);
2797 ecs->wp = &(ecs->ws);
2798 }
2799 /* This is the old end of the while loop. Let everybody know we
2800 want to wait for the inferior some more and get called again
2801 soon. */
2802 ecs->wait_some_more = 1;
2803 }
2804
2805 /* Print why the inferior has stopped. We always print something when
2806 the inferior exits, or receives a signal. The rest of the cases are
2807 dealt with later on in normal_stop() and print_it_typical(). Ideally
2808 there should be a call to this function from handle_inferior_event()
2809 each time stop_stepping() is called.*/
2810 static void
2811 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2812 {
2813 switch (stop_reason)
2814 {
2815 case STOP_UNKNOWN:
2816 /* We don't deal with these cases from handle_inferior_event()
2817 yet. */
2818 break;
2819 case END_STEPPING_RANGE:
2820 /* We are done with a step/next/si/ni command. */
2821 /* For now print nothing. */
2822 /* Print a message only if not in the middle of doing a "step n"
2823 operation for n > 1 */
2824 if (!step_multi || !stop_step)
2825 if (ui_out_is_mi_like_p (uiout))
2826 ui_out_field_string (uiout, "reason", "end-stepping-range");
2827 break;
2828 case BREAKPOINT_HIT:
2829 /* We found a breakpoint. */
2830 /* For now print nothing. */
2831 break;
2832 case SIGNAL_EXITED:
2833 /* The inferior was terminated by a signal. */
2834 annotate_signalled ();
2835 if (ui_out_is_mi_like_p (uiout))
2836 ui_out_field_string (uiout, "reason", "exited-signalled");
2837 ui_out_text (uiout, "\nProgram terminated with signal ");
2838 annotate_signal_name ();
2839 ui_out_field_string (uiout, "signal-name",
2840 target_signal_to_name (stop_info));
2841 annotate_signal_name_end ();
2842 ui_out_text (uiout, ", ");
2843 annotate_signal_string ();
2844 ui_out_field_string (uiout, "signal-meaning",
2845 target_signal_to_string (stop_info));
2846 annotate_signal_string_end ();
2847 ui_out_text (uiout, ".\n");
2848 ui_out_text (uiout, "The program no longer exists.\n");
2849 break;
2850 case EXITED:
2851 /* The inferior program is finished. */
2852 annotate_exited (stop_info);
2853 if (stop_info)
2854 {
2855 if (ui_out_is_mi_like_p (uiout))
2856 ui_out_field_string (uiout, "reason", "exited");
2857 ui_out_text (uiout, "\nProgram exited with code ");
2858 ui_out_field_fmt (uiout, "exit-code", "0%o",
2859 (unsigned int) stop_info);
2860 ui_out_text (uiout, ".\n");
2861 }
2862 else
2863 {
2864 if (ui_out_is_mi_like_p (uiout))
2865 ui_out_field_string (uiout, "reason", "exited-normally");
2866 ui_out_text (uiout, "\nProgram exited normally.\n");
2867 }
2868 break;
2869 case SIGNAL_RECEIVED:
2870 /* Signal received. The signal table tells us to print about
2871 it. */
2872 annotate_signal ();
2873 ui_out_text (uiout, "\nProgram received signal ");
2874 annotate_signal_name ();
2875 if (ui_out_is_mi_like_p (uiout))
2876 ui_out_field_string (uiout, "reason", "signal-received");
2877 ui_out_field_string (uiout, "signal-name",
2878 target_signal_to_name (stop_info));
2879 annotate_signal_name_end ();
2880 ui_out_text (uiout, ", ");
2881 annotate_signal_string ();
2882 ui_out_field_string (uiout, "signal-meaning",
2883 target_signal_to_string (stop_info));
2884 annotate_signal_string_end ();
2885 ui_out_text (uiout, ".\n");
2886 break;
2887 default:
2888 internal_error (__FILE__, __LINE__,
2889 "print_stop_reason: unrecognized enum value");
2890 break;
2891 }
2892 }
2893 \f
2894
2895 /* Here to return control to GDB when the inferior stops for real.
2896 Print appropriate messages, remove breakpoints, give terminal our modes.
2897
2898 STOP_PRINT_FRAME nonzero means print the executing frame
2899 (pc, function, args, file, line number and line text).
2900 BREAKPOINTS_FAILED nonzero means stop was due to error
2901 attempting to insert breakpoints. */
2902
2903 void
2904 normal_stop (void)
2905 {
2906 struct target_waitstatus last;
2907 ptid_t last_ptid;
2908
2909 get_last_target_status (&last_ptid, &last);
2910
2911 /* As with the notification of thread events, we want to delay
2912 notifying the user that we've switched thread context until
2913 the inferior actually stops.
2914
2915 There's no point in saying anything if the inferior has exited.
2916 Note that SIGNALLED here means "exited with a signal", not
2917 "received a signal". */
2918 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2919 && target_has_execution
2920 && last.kind != TARGET_WAITKIND_SIGNALLED
2921 && last.kind != TARGET_WAITKIND_EXITED)
2922 {
2923 target_terminal_ours_for_output ();
2924 printf_filtered ("[Switching to %s]\n",
2925 target_pid_or_tid_to_str (inferior_ptid));
2926 previous_inferior_ptid = inferior_ptid;
2927 }
2928
2929 /* NOTE drow/2004-01-17: Is this still necessary? */
2930 /* Make sure that the current_frame's pc is correct. This
2931 is a correction for setting up the frame info before doing
2932 DECR_PC_AFTER_BREAK */
2933 if (target_has_execution)
2934 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2935 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2936 frame code to check for this and sort out any resultant mess.
2937 DECR_PC_AFTER_BREAK needs to just go away. */
2938 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
2939
2940 if (target_has_execution && breakpoints_inserted)
2941 {
2942 if (remove_breakpoints ())
2943 {
2944 target_terminal_ours_for_output ();
2945 printf_filtered ("Cannot remove breakpoints because ");
2946 printf_filtered ("program is no longer writable.\n");
2947 printf_filtered ("It might be running in another process.\n");
2948 printf_filtered ("Further execution is probably impossible.\n");
2949 }
2950 }
2951 breakpoints_inserted = 0;
2952
2953 /* Delete the breakpoint we stopped at, if it wants to be deleted.
2954 Delete any breakpoint that is to be deleted at the next stop. */
2955
2956 breakpoint_auto_delete (stop_bpstat);
2957
2958 /* If an auto-display called a function and that got a signal,
2959 delete that auto-display to avoid an infinite recursion. */
2960
2961 if (stopped_by_random_signal)
2962 disable_current_display ();
2963
2964 /* Don't print a message if in the middle of doing a "step n"
2965 operation for n > 1 */
2966 if (step_multi && stop_step)
2967 goto done;
2968
2969 target_terminal_ours ();
2970
2971 /* Look up the hook_stop and run it (CLI internally handles problem
2972 of stop_command's pre-hook not existing). */
2973 if (stop_command)
2974 catch_errors (hook_stop_stub, stop_command,
2975 "Error while running hook_stop:\n", RETURN_MASK_ALL);
2976
2977 if (!target_has_stack)
2978 {
2979
2980 goto done;
2981 }
2982
2983 /* Select innermost stack frame - i.e., current frame is frame 0,
2984 and current location is based on that.
2985 Don't do this on return from a stack dummy routine,
2986 or if the program has exited. */
2987
2988 if (!stop_stack_dummy)
2989 {
2990 select_frame (get_current_frame ());
2991
2992 /* Print current location without a level number, if
2993 we have changed functions or hit a breakpoint.
2994 Print source line if we have one.
2995 bpstat_print() contains the logic deciding in detail
2996 what to print, based on the event(s) that just occurred. */
2997
2998 if (stop_print_frame && deprecated_selected_frame)
2999 {
3000 int bpstat_ret;
3001 int source_flag;
3002 int do_frame_printing = 1;
3003
3004 bpstat_ret = bpstat_print (stop_bpstat);
3005 switch (bpstat_ret)
3006 {
3007 case PRINT_UNKNOWN:
3008 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3009 (or should) carry around the function and does (or
3010 should) use that when doing a frame comparison. */
3011 if (stop_step
3012 && frame_id_eq (step_frame_id,
3013 get_frame_id (get_current_frame ()))
3014 && step_start_function == find_pc_function (stop_pc))
3015 source_flag = SRC_LINE; /* finished step, just print source line */
3016 else
3017 source_flag = SRC_AND_LOC; /* print location and source line */
3018 break;
3019 case PRINT_SRC_AND_LOC:
3020 source_flag = SRC_AND_LOC; /* print location and source line */
3021 break;
3022 case PRINT_SRC_ONLY:
3023 source_flag = SRC_LINE;
3024 break;
3025 case PRINT_NOTHING:
3026 source_flag = SRC_LINE; /* something bogus */
3027 do_frame_printing = 0;
3028 break;
3029 default:
3030 internal_error (__FILE__, __LINE__, "Unknown value.");
3031 }
3032 /* For mi, have the same behavior every time we stop:
3033 print everything but the source line. */
3034 if (ui_out_is_mi_like_p (uiout))
3035 source_flag = LOC_AND_ADDRESS;
3036
3037 if (ui_out_is_mi_like_p (uiout))
3038 ui_out_field_int (uiout, "thread-id",
3039 pid_to_thread_id (inferior_ptid));
3040 /* The behavior of this routine with respect to the source
3041 flag is:
3042 SRC_LINE: Print only source line
3043 LOCATION: Print only location
3044 SRC_AND_LOC: Print location and source line */
3045 if (do_frame_printing)
3046 print_stack_frame (get_selected_frame (), 0, source_flag);
3047
3048 /* Display the auto-display expressions. */
3049 do_displays ();
3050 }
3051 }
3052
3053 /* Save the function value return registers, if we care.
3054 We might be about to restore their previous contents. */
3055 if (proceed_to_finish)
3056 /* NB: The copy goes through to the target picking up the value of
3057 all the registers. */
3058 regcache_cpy (stop_registers, current_regcache);
3059
3060 if (stop_stack_dummy)
3061 {
3062 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3063 ends with a setting of the current frame, so we can use that
3064 next. */
3065 frame_pop (get_current_frame ());
3066 /* Set stop_pc to what it was before we called the function.
3067 Can't rely on restore_inferior_status because that only gets
3068 called if we don't stop in the called function. */
3069 stop_pc = read_pc ();
3070 select_frame (get_current_frame ());
3071 }
3072
3073 done:
3074 annotate_stopped ();
3075 observer_notify_normal_stop (stop_bpstat);
3076 }
3077
3078 static int
3079 hook_stop_stub (void *cmd)
3080 {
3081 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3082 return (0);
3083 }
3084 \f
3085 int
3086 signal_stop_state (int signo)
3087 {
3088 return signal_stop[signo];
3089 }
3090
3091 int
3092 signal_print_state (int signo)
3093 {
3094 return signal_print[signo];
3095 }
3096
3097 int
3098 signal_pass_state (int signo)
3099 {
3100 return signal_program[signo];
3101 }
3102
3103 int
3104 signal_stop_update (int signo, int state)
3105 {
3106 int ret = signal_stop[signo];
3107 signal_stop[signo] = state;
3108 return ret;
3109 }
3110
3111 int
3112 signal_print_update (int signo, int state)
3113 {
3114 int ret = signal_print[signo];
3115 signal_print[signo] = state;
3116 return ret;
3117 }
3118
3119 int
3120 signal_pass_update (int signo, int state)
3121 {
3122 int ret = signal_program[signo];
3123 signal_program[signo] = state;
3124 return ret;
3125 }
3126
3127 static void
3128 sig_print_header (void)
3129 {
3130 printf_filtered ("\
3131 Signal Stop\tPrint\tPass to program\tDescription\n");
3132 }
3133
3134 static void
3135 sig_print_info (enum target_signal oursig)
3136 {
3137 char *name = target_signal_to_name (oursig);
3138 int name_padding = 13 - strlen (name);
3139
3140 if (name_padding <= 0)
3141 name_padding = 0;
3142
3143 printf_filtered ("%s", name);
3144 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3145 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3146 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3147 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3148 printf_filtered ("%s\n", target_signal_to_string (oursig));
3149 }
3150
3151 /* Specify how various signals in the inferior should be handled. */
3152
3153 static void
3154 handle_command (char *args, int from_tty)
3155 {
3156 char **argv;
3157 int digits, wordlen;
3158 int sigfirst, signum, siglast;
3159 enum target_signal oursig;
3160 int allsigs;
3161 int nsigs;
3162 unsigned char *sigs;
3163 struct cleanup *old_chain;
3164
3165 if (args == NULL)
3166 {
3167 error_no_arg ("signal to handle");
3168 }
3169
3170 /* Allocate and zero an array of flags for which signals to handle. */
3171
3172 nsigs = (int) TARGET_SIGNAL_LAST;
3173 sigs = (unsigned char *) alloca (nsigs);
3174 memset (sigs, 0, nsigs);
3175
3176 /* Break the command line up into args. */
3177
3178 argv = buildargv (args);
3179 if (argv == NULL)
3180 {
3181 nomem (0);
3182 }
3183 old_chain = make_cleanup_freeargv (argv);
3184
3185 /* Walk through the args, looking for signal oursigs, signal names, and
3186 actions. Signal numbers and signal names may be interspersed with
3187 actions, with the actions being performed for all signals cumulatively
3188 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3189
3190 while (*argv != NULL)
3191 {
3192 wordlen = strlen (*argv);
3193 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3194 {;
3195 }
3196 allsigs = 0;
3197 sigfirst = siglast = -1;
3198
3199 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3200 {
3201 /* Apply action to all signals except those used by the
3202 debugger. Silently skip those. */
3203 allsigs = 1;
3204 sigfirst = 0;
3205 siglast = nsigs - 1;
3206 }
3207 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3208 {
3209 SET_SIGS (nsigs, sigs, signal_stop);
3210 SET_SIGS (nsigs, sigs, signal_print);
3211 }
3212 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3213 {
3214 UNSET_SIGS (nsigs, sigs, signal_program);
3215 }
3216 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3217 {
3218 SET_SIGS (nsigs, sigs, signal_print);
3219 }
3220 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3221 {
3222 SET_SIGS (nsigs, sigs, signal_program);
3223 }
3224 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3225 {
3226 UNSET_SIGS (nsigs, sigs, signal_stop);
3227 }
3228 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3229 {
3230 SET_SIGS (nsigs, sigs, signal_program);
3231 }
3232 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3233 {
3234 UNSET_SIGS (nsigs, sigs, signal_print);
3235 UNSET_SIGS (nsigs, sigs, signal_stop);
3236 }
3237 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3238 {
3239 UNSET_SIGS (nsigs, sigs, signal_program);
3240 }
3241 else if (digits > 0)
3242 {
3243 /* It is numeric. The numeric signal refers to our own
3244 internal signal numbering from target.h, not to host/target
3245 signal number. This is a feature; users really should be
3246 using symbolic names anyway, and the common ones like
3247 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3248
3249 sigfirst = siglast = (int)
3250 target_signal_from_command (atoi (*argv));
3251 if ((*argv)[digits] == '-')
3252 {
3253 siglast = (int)
3254 target_signal_from_command (atoi ((*argv) + digits + 1));
3255 }
3256 if (sigfirst > siglast)
3257 {
3258 /* Bet he didn't figure we'd think of this case... */
3259 signum = sigfirst;
3260 sigfirst = siglast;
3261 siglast = signum;
3262 }
3263 }
3264 else
3265 {
3266 oursig = target_signal_from_name (*argv);
3267 if (oursig != TARGET_SIGNAL_UNKNOWN)
3268 {
3269 sigfirst = siglast = (int) oursig;
3270 }
3271 else
3272 {
3273 /* Not a number and not a recognized flag word => complain. */
3274 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3275 }
3276 }
3277
3278 /* If any signal numbers or symbol names were found, set flags for
3279 which signals to apply actions to. */
3280
3281 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3282 {
3283 switch ((enum target_signal) signum)
3284 {
3285 case TARGET_SIGNAL_TRAP:
3286 case TARGET_SIGNAL_INT:
3287 if (!allsigs && !sigs[signum])
3288 {
3289 if (query ("%s is used by the debugger.\n\
3290 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3291 {
3292 sigs[signum] = 1;
3293 }
3294 else
3295 {
3296 printf_unfiltered ("Not confirmed, unchanged.\n");
3297 gdb_flush (gdb_stdout);
3298 }
3299 }
3300 break;
3301 case TARGET_SIGNAL_0:
3302 case TARGET_SIGNAL_DEFAULT:
3303 case TARGET_SIGNAL_UNKNOWN:
3304 /* Make sure that "all" doesn't print these. */
3305 break;
3306 default:
3307 sigs[signum] = 1;
3308 break;
3309 }
3310 }
3311
3312 argv++;
3313 }
3314
3315 target_notice_signals (inferior_ptid);
3316
3317 if (from_tty)
3318 {
3319 /* Show the results. */
3320 sig_print_header ();
3321 for (signum = 0; signum < nsigs; signum++)
3322 {
3323 if (sigs[signum])
3324 {
3325 sig_print_info (signum);
3326 }
3327 }
3328 }
3329
3330 do_cleanups (old_chain);
3331 }
3332
3333 static void
3334 xdb_handle_command (char *args, int from_tty)
3335 {
3336 char **argv;
3337 struct cleanup *old_chain;
3338
3339 /* Break the command line up into args. */
3340
3341 argv = buildargv (args);
3342 if (argv == NULL)
3343 {
3344 nomem (0);
3345 }
3346 old_chain = make_cleanup_freeargv (argv);
3347 if (argv[1] != (char *) NULL)
3348 {
3349 char *argBuf;
3350 int bufLen;
3351
3352 bufLen = strlen (argv[0]) + 20;
3353 argBuf = (char *) xmalloc (bufLen);
3354 if (argBuf)
3355 {
3356 int validFlag = 1;
3357 enum target_signal oursig;
3358
3359 oursig = target_signal_from_name (argv[0]);
3360 memset (argBuf, 0, bufLen);
3361 if (strcmp (argv[1], "Q") == 0)
3362 sprintf (argBuf, "%s %s", argv[0], "noprint");
3363 else
3364 {
3365 if (strcmp (argv[1], "s") == 0)
3366 {
3367 if (!signal_stop[oursig])
3368 sprintf (argBuf, "%s %s", argv[0], "stop");
3369 else
3370 sprintf (argBuf, "%s %s", argv[0], "nostop");
3371 }
3372 else if (strcmp (argv[1], "i") == 0)
3373 {
3374 if (!signal_program[oursig])
3375 sprintf (argBuf, "%s %s", argv[0], "pass");
3376 else
3377 sprintf (argBuf, "%s %s", argv[0], "nopass");
3378 }
3379 else if (strcmp (argv[1], "r") == 0)
3380 {
3381 if (!signal_print[oursig])
3382 sprintf (argBuf, "%s %s", argv[0], "print");
3383 else
3384 sprintf (argBuf, "%s %s", argv[0], "noprint");
3385 }
3386 else
3387 validFlag = 0;
3388 }
3389 if (validFlag)
3390 handle_command (argBuf, from_tty);
3391 else
3392 printf_filtered ("Invalid signal handling flag.\n");
3393 if (argBuf)
3394 xfree (argBuf);
3395 }
3396 }
3397 do_cleanups (old_chain);
3398 }
3399
3400 /* Print current contents of the tables set by the handle command.
3401 It is possible we should just be printing signals actually used
3402 by the current target (but for things to work right when switching
3403 targets, all signals should be in the signal tables). */
3404
3405 static void
3406 signals_info (char *signum_exp, int from_tty)
3407 {
3408 enum target_signal oursig;
3409 sig_print_header ();
3410
3411 if (signum_exp)
3412 {
3413 /* First see if this is a symbol name. */
3414 oursig = target_signal_from_name (signum_exp);
3415 if (oursig == TARGET_SIGNAL_UNKNOWN)
3416 {
3417 /* No, try numeric. */
3418 oursig =
3419 target_signal_from_command (parse_and_eval_long (signum_exp));
3420 }
3421 sig_print_info (oursig);
3422 return;
3423 }
3424
3425 printf_filtered ("\n");
3426 /* These ugly casts brought to you by the native VAX compiler. */
3427 for (oursig = TARGET_SIGNAL_FIRST;
3428 (int) oursig < (int) TARGET_SIGNAL_LAST;
3429 oursig = (enum target_signal) ((int) oursig + 1))
3430 {
3431 QUIT;
3432
3433 if (oursig != TARGET_SIGNAL_UNKNOWN
3434 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3435 sig_print_info (oursig);
3436 }
3437
3438 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3439 }
3440 \f
3441 struct inferior_status
3442 {
3443 enum target_signal stop_signal;
3444 CORE_ADDR stop_pc;
3445 bpstat stop_bpstat;
3446 int stop_step;
3447 int stop_stack_dummy;
3448 int stopped_by_random_signal;
3449 int trap_expected;
3450 CORE_ADDR step_range_start;
3451 CORE_ADDR step_range_end;
3452 struct frame_id step_frame_id;
3453 enum step_over_calls_kind step_over_calls;
3454 CORE_ADDR step_resume_break_address;
3455 int stop_after_trap;
3456 int stop_soon;
3457 struct regcache *stop_registers;
3458
3459 /* These are here because if call_function_by_hand has written some
3460 registers and then decides to call error(), we better not have changed
3461 any registers. */
3462 struct regcache *registers;
3463
3464 /* A frame unique identifier. */
3465 struct frame_id selected_frame_id;
3466
3467 int breakpoint_proceeded;
3468 int restore_stack_info;
3469 int proceed_to_finish;
3470 };
3471
3472 void
3473 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3474 LONGEST val)
3475 {
3476 int size = DEPRECATED_REGISTER_RAW_SIZE (regno);
3477 void *buf = alloca (size);
3478 store_signed_integer (buf, size, val);
3479 regcache_raw_write (inf_status->registers, regno, buf);
3480 }
3481
3482 /* Save all of the information associated with the inferior<==>gdb
3483 connection. INF_STATUS is a pointer to a "struct inferior_status"
3484 (defined in inferior.h). */
3485
3486 struct inferior_status *
3487 save_inferior_status (int restore_stack_info)
3488 {
3489 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3490
3491 inf_status->stop_signal = stop_signal;
3492 inf_status->stop_pc = stop_pc;
3493 inf_status->stop_step = stop_step;
3494 inf_status->stop_stack_dummy = stop_stack_dummy;
3495 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3496 inf_status->trap_expected = trap_expected;
3497 inf_status->step_range_start = step_range_start;
3498 inf_status->step_range_end = step_range_end;
3499 inf_status->step_frame_id = step_frame_id;
3500 inf_status->step_over_calls = step_over_calls;
3501 inf_status->stop_after_trap = stop_after_trap;
3502 inf_status->stop_soon = stop_soon;
3503 /* Save original bpstat chain here; replace it with copy of chain.
3504 If caller's caller is walking the chain, they'll be happier if we
3505 hand them back the original chain when restore_inferior_status is
3506 called. */
3507 inf_status->stop_bpstat = stop_bpstat;
3508 stop_bpstat = bpstat_copy (stop_bpstat);
3509 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3510 inf_status->restore_stack_info = restore_stack_info;
3511 inf_status->proceed_to_finish = proceed_to_finish;
3512
3513 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3514
3515 inf_status->registers = regcache_dup (current_regcache);
3516
3517 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3518 return inf_status;
3519 }
3520
3521 static int
3522 restore_selected_frame (void *args)
3523 {
3524 struct frame_id *fid = (struct frame_id *) args;
3525 struct frame_info *frame;
3526
3527 frame = frame_find_by_id (*fid);
3528
3529 /* If inf_status->selected_frame_id is NULL, there was no previously
3530 selected frame. */
3531 if (frame == NULL)
3532 {
3533 warning ("Unable to restore previously selected frame.\n");
3534 return 0;
3535 }
3536
3537 select_frame (frame);
3538
3539 return (1);
3540 }
3541
3542 void
3543 restore_inferior_status (struct inferior_status *inf_status)
3544 {
3545 stop_signal = inf_status->stop_signal;
3546 stop_pc = inf_status->stop_pc;
3547 stop_step = inf_status->stop_step;
3548 stop_stack_dummy = inf_status->stop_stack_dummy;
3549 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3550 trap_expected = inf_status->trap_expected;
3551 step_range_start = inf_status->step_range_start;
3552 step_range_end = inf_status->step_range_end;
3553 step_frame_id = inf_status->step_frame_id;
3554 step_over_calls = inf_status->step_over_calls;
3555 stop_after_trap = inf_status->stop_after_trap;
3556 stop_soon = inf_status->stop_soon;
3557 bpstat_clear (&stop_bpstat);
3558 stop_bpstat = inf_status->stop_bpstat;
3559 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3560 proceed_to_finish = inf_status->proceed_to_finish;
3561
3562 /* FIXME: Is the restore of stop_registers always needed. */
3563 regcache_xfree (stop_registers);
3564 stop_registers = inf_status->stop_registers;
3565
3566 /* The inferior can be gone if the user types "print exit(0)"
3567 (and perhaps other times). */
3568 if (target_has_execution)
3569 /* NB: The register write goes through to the target. */
3570 regcache_cpy (current_regcache, inf_status->registers);
3571 regcache_xfree (inf_status->registers);
3572
3573 /* FIXME: If we are being called after stopping in a function which
3574 is called from gdb, we should not be trying to restore the
3575 selected frame; it just prints a spurious error message (The
3576 message is useful, however, in detecting bugs in gdb (like if gdb
3577 clobbers the stack)). In fact, should we be restoring the
3578 inferior status at all in that case? . */
3579
3580 if (target_has_stack && inf_status->restore_stack_info)
3581 {
3582 /* The point of catch_errors is that if the stack is clobbered,
3583 walking the stack might encounter a garbage pointer and
3584 error() trying to dereference it. */
3585 if (catch_errors
3586 (restore_selected_frame, &inf_status->selected_frame_id,
3587 "Unable to restore previously selected frame:\n",
3588 RETURN_MASK_ERROR) == 0)
3589 /* Error in restoring the selected frame. Select the innermost
3590 frame. */
3591 select_frame (get_current_frame ());
3592
3593 }
3594
3595 xfree (inf_status);
3596 }
3597
3598 static void
3599 do_restore_inferior_status_cleanup (void *sts)
3600 {
3601 restore_inferior_status (sts);
3602 }
3603
3604 struct cleanup *
3605 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3606 {
3607 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3608 }
3609
3610 void
3611 discard_inferior_status (struct inferior_status *inf_status)
3612 {
3613 /* See save_inferior_status for info on stop_bpstat. */
3614 bpstat_clear (&inf_status->stop_bpstat);
3615 regcache_xfree (inf_status->registers);
3616 regcache_xfree (inf_status->stop_registers);
3617 xfree (inf_status);
3618 }
3619
3620 int
3621 inferior_has_forked (int pid, int *child_pid)
3622 {
3623 struct target_waitstatus last;
3624 ptid_t last_ptid;
3625
3626 get_last_target_status (&last_ptid, &last);
3627
3628 if (last.kind != TARGET_WAITKIND_FORKED)
3629 return 0;
3630
3631 if (ptid_get_pid (last_ptid) != pid)
3632 return 0;
3633
3634 *child_pid = last.value.related_pid;
3635 return 1;
3636 }
3637
3638 int
3639 inferior_has_vforked (int pid, int *child_pid)
3640 {
3641 struct target_waitstatus last;
3642 ptid_t last_ptid;
3643
3644 get_last_target_status (&last_ptid, &last);
3645
3646 if (last.kind != TARGET_WAITKIND_VFORKED)
3647 return 0;
3648
3649 if (ptid_get_pid (last_ptid) != pid)
3650 return 0;
3651
3652 *child_pid = last.value.related_pid;
3653 return 1;
3654 }
3655
3656 int
3657 inferior_has_execd (int pid, char **execd_pathname)
3658 {
3659 struct target_waitstatus last;
3660 ptid_t last_ptid;
3661
3662 get_last_target_status (&last_ptid, &last);
3663
3664 if (last.kind != TARGET_WAITKIND_EXECD)
3665 return 0;
3666
3667 if (ptid_get_pid (last_ptid) != pid)
3668 return 0;
3669
3670 *execd_pathname = xstrdup (last.value.execd_pathname);
3671 return 1;
3672 }
3673
3674 /* Oft used ptids */
3675 ptid_t null_ptid;
3676 ptid_t minus_one_ptid;
3677
3678 /* Create a ptid given the necessary PID, LWP, and TID components. */
3679
3680 ptid_t
3681 ptid_build (int pid, long lwp, long tid)
3682 {
3683 ptid_t ptid;
3684
3685 ptid.pid = pid;
3686 ptid.lwp = lwp;
3687 ptid.tid = tid;
3688 return ptid;
3689 }
3690
3691 /* Create a ptid from just a pid. */
3692
3693 ptid_t
3694 pid_to_ptid (int pid)
3695 {
3696 return ptid_build (pid, 0, 0);
3697 }
3698
3699 /* Fetch the pid (process id) component from a ptid. */
3700
3701 int
3702 ptid_get_pid (ptid_t ptid)
3703 {
3704 return ptid.pid;
3705 }
3706
3707 /* Fetch the lwp (lightweight process) component from a ptid. */
3708
3709 long
3710 ptid_get_lwp (ptid_t ptid)
3711 {
3712 return ptid.lwp;
3713 }
3714
3715 /* Fetch the tid (thread id) component from a ptid. */
3716
3717 long
3718 ptid_get_tid (ptid_t ptid)
3719 {
3720 return ptid.tid;
3721 }
3722
3723 /* ptid_equal() is used to test equality of two ptids. */
3724
3725 int
3726 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3727 {
3728 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3729 && ptid1.tid == ptid2.tid);
3730 }
3731
3732 /* restore_inferior_ptid() will be used by the cleanup machinery
3733 to restore the inferior_ptid value saved in a call to
3734 save_inferior_ptid(). */
3735
3736 static void
3737 restore_inferior_ptid (void *arg)
3738 {
3739 ptid_t *saved_ptid_ptr = arg;
3740 inferior_ptid = *saved_ptid_ptr;
3741 xfree (arg);
3742 }
3743
3744 /* Save the value of inferior_ptid so that it may be restored by a
3745 later call to do_cleanups(). Returns the struct cleanup pointer
3746 needed for later doing the cleanup. */
3747
3748 struct cleanup *
3749 save_inferior_ptid (void)
3750 {
3751 ptid_t *saved_ptid_ptr;
3752
3753 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3754 *saved_ptid_ptr = inferior_ptid;
3755 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3756 }
3757 \f
3758
3759 static void
3760 build_infrun (void)
3761 {
3762 stop_registers = regcache_xmalloc (current_gdbarch);
3763 }
3764
3765 void
3766 _initialize_infrun (void)
3767 {
3768 int i;
3769 int numsigs;
3770 struct cmd_list_element *c;
3771
3772 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3773 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3774
3775 add_info ("signals", signals_info,
3776 "What debugger does when program gets various signals.\n\
3777 Specify a signal as argument to print info on that signal only.");
3778 add_info_alias ("handle", "signals", 0);
3779
3780 add_com ("handle", class_run, handle_command,
3781 concat ("Specify how to handle a signal.\n\
3782 Args are signals and actions to apply to those signals.\n\
3783 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3784 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3785 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3786 The special arg \"all\" is recognized to mean all signals except those\n\
3787 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3788 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3789 Stop means reenter debugger if this signal happens (implies print).\n\
3790 Print means print a message if this signal happens.\n\
3791 Pass means let program see this signal; otherwise program doesn't know.\n\
3792 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3793 Pass and Stop may be combined.", NULL));
3794 if (xdb_commands)
3795 {
3796 add_com ("lz", class_info, signals_info,
3797 "What debugger does when program gets various signals.\n\
3798 Specify a signal as argument to print info on that signal only.");
3799 add_com ("z", class_run, xdb_handle_command,
3800 concat ("Specify how to handle a signal.\n\
3801 Args are signals and actions to apply to those signals.\n\
3802 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3803 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3804 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3805 The special arg \"all\" is recognized to mean all signals except those\n\
3806 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
3807 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3808 nopass), \"Q\" (noprint)\n\
3809 Stop means reenter debugger if this signal happens (implies print).\n\
3810 Print means print a message if this signal happens.\n\
3811 Pass means let program see this signal; otherwise program doesn't know.\n\
3812 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3813 Pass and Stop may be combined.", NULL));
3814 }
3815
3816 if (!dbx_commands)
3817 stop_command =
3818 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
3819 This allows you to set a list of commands to be run each time execution\n\
3820 of the program stops.", &cmdlist);
3821
3822 numsigs = (int) TARGET_SIGNAL_LAST;
3823 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3824 signal_print = (unsigned char *)
3825 xmalloc (sizeof (signal_print[0]) * numsigs);
3826 signal_program = (unsigned char *)
3827 xmalloc (sizeof (signal_program[0]) * numsigs);
3828 for (i = 0; i < numsigs; i++)
3829 {
3830 signal_stop[i] = 1;
3831 signal_print[i] = 1;
3832 signal_program[i] = 1;
3833 }
3834
3835 /* Signals caused by debugger's own actions
3836 should not be given to the program afterwards. */
3837 signal_program[TARGET_SIGNAL_TRAP] = 0;
3838 signal_program[TARGET_SIGNAL_INT] = 0;
3839
3840 /* Signals that are not errors should not normally enter the debugger. */
3841 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3842 signal_print[TARGET_SIGNAL_ALRM] = 0;
3843 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3844 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3845 signal_stop[TARGET_SIGNAL_PROF] = 0;
3846 signal_print[TARGET_SIGNAL_PROF] = 0;
3847 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3848 signal_print[TARGET_SIGNAL_CHLD] = 0;
3849 signal_stop[TARGET_SIGNAL_IO] = 0;
3850 signal_print[TARGET_SIGNAL_IO] = 0;
3851 signal_stop[TARGET_SIGNAL_POLL] = 0;
3852 signal_print[TARGET_SIGNAL_POLL] = 0;
3853 signal_stop[TARGET_SIGNAL_URG] = 0;
3854 signal_print[TARGET_SIGNAL_URG] = 0;
3855 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3856 signal_print[TARGET_SIGNAL_WINCH] = 0;
3857
3858 /* These signals are used internally by user-level thread
3859 implementations. (See signal(5) on Solaris.) Like the above
3860 signals, a healthy program receives and handles them as part of
3861 its normal operation. */
3862 signal_stop[TARGET_SIGNAL_LWP] = 0;
3863 signal_print[TARGET_SIGNAL_LWP] = 0;
3864 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3865 signal_print[TARGET_SIGNAL_WAITING] = 0;
3866 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3867 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3868
3869 #ifdef SOLIB_ADD
3870 add_show_from_set
3871 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3872 (char *) &stop_on_solib_events,
3873 "Set stopping for shared library events.\n\
3874 If nonzero, gdb will give control to the user when the dynamic linker\n\
3875 notifies gdb of shared library events. The most common event of interest\n\
3876 to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
3877 #endif
3878
3879 c = add_set_enum_cmd ("follow-fork-mode",
3880 class_run,
3881 follow_fork_mode_kind_names, &follow_fork_mode_string,
3882 "Set debugger response to a program call of fork \
3883 or vfork.\n\
3884 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3885 parent - the original process is debugged after a fork\n\
3886 child - the new process is debugged after a fork\n\
3887 The unfollowed process will continue to run.\n\
3888 By default, the debugger will follow the parent process.", &setlist);
3889 add_show_from_set (c, &showlist);
3890
3891 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
3892 &scheduler_mode, /* current mode */
3893 "Set mode for locking scheduler during execution.\n\
3894 off == no locking (threads may preempt at any time)\n\
3895 on == full locking (no thread except the current thread may run)\n\
3896 step == scheduler locked during every single-step operation.\n\
3897 In this mode, no other thread may run during a step command.\n\
3898 Other threads may run while stepping over a function call ('next').", &setlist);
3899
3900 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
3901 add_show_from_set (c, &showlist);
3902
3903 c = add_set_cmd ("step-mode", class_run,
3904 var_boolean, (char *) &step_stop_if_no_debug,
3905 "Set mode of the step operation. When set, doing a step over a\n\
3906 function without debug line information will stop at the first\n\
3907 instruction of that function. Otherwise, the function is skipped and\n\
3908 the step command stops at a different source line.", &setlist);
3909 add_show_from_set (c, &showlist);
3910
3911 /* ptid initializations */
3912 null_ptid = ptid_build (0, 0, 0);
3913 minus_one_ptid = ptid_build (-1, 0, 0);
3914 inferior_ptid = null_ptid;
3915 target_last_wait_ptid = minus_one_ptid;
3916 }
This page took 0.114821 seconds and 4 git commands to generate.